
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Characterizing Malware Samples in the
SOREL-20M dataset by Concept Learning

Bachelor Thesis

2023
Tomáš Bisták

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Characterizing Malware Samples in the
SOREL-20M dataset by Concept Learning

Bachelor Thesis

Study Programme: Applied Computer Science
Field of Study: Computer Science
Department: Department of Applied Informatics
Supervisor: doc. RNDr. Martin Homola, PhD.

Bratislava, 2023
Tomáš Bisták

Acknowledgments: Tu môžete poďakovať školiteľovi, prípadne ďalším osobám,
ktoré vám s prácou nejako pomohli, poradili, poskytli dáta a podobne.

ii

Abstrakt

Slovenský abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt stručne suma-
rizuje výsledky práce. Mal by byť pochopiteľný pre bežného informatika. Nemal by
teda využívať skratky, termíny alebo označenie zavedené v práci, okrem tých, ktoré sú
všeobecne známe.

Kľúčové slová: jedno, druhé, tretie (prípadne štvrté, piate)

iii

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

iv

Contents

1 Introduction 1

2 Description Logics and OWL 3
2.1 SROIQ DL . 3

2.1.1 Syntax . 3
2.1.2 Semantics . 7

2.2 OWL 2 DL . 11

3 Learning in Description Logics 13
3.1 Concept-Learning Problem . 13
3.2 Concept Learning Using Refinement Operators 14

3.2.1 The ρ Refinement Operator . 14
3.2.2 Algorithms . 18

4 Data and Representation 23
4.1 Portable Executable Files . 23
4.2 SOREL-20M . 24
4.3 PE Malware Ontology . 25

5 Corrections and Enhancements 29
5.1 Refinement Operator . 29

5.1.1 At-Most Restrictions . 29
5.1.2 Negations And Universal Quantification 31
5.1.3 “Some-Only” Rule . 31

5.2 Reasoner Component . 32
5.2.1 Cardinality Constraints in the Closed-World Reasoner 32
5.2.2 Concurrent Closed-World Reasoner 32

5.3 Heuristic in OCEL . 32
5.4 ParCEL and ParCEL-Ex . 33

5.4.1 Same-Length Refinements . 33
5.4.2 Accuracy Calculation in ParCEL 33

v

5.4.3 Acceleration of Accuracy Calculation 34
5.4.4 Search Tree Organization . 35

6 Experiments 37
6.1 Test Cases and Ontology Preparation 37

6.1.1 Test Case 1 – Mixed Data . 37
6.1.2 Test Cases 2 and 3 – Separation of Concerns 38

6.2 Evaluation . 39
6.3 Tested Configurations . 41

7 Results 45
7.1 Test Case 1 . 45

7.1.1 Noise Optimization . 45
7.1.2 Use of Negations/“Some-Only” Optimization 49
7.1.3 Cardinality Optimization . 55
7.1.4 Validation . 57
7.1.5 Learned Descriptions . 58

7.2 Test Cases 2 and 3 . 59
7.2.1 Noise Optimization . 59

vi

List of Figures

4.1 Simplified structure of a PE file . 24
4.2 Core structure of the PE Malware Ontology 26

7.1 Test case 1: OCEL noise optimization – Accuracy progression. 47
7.2 Test case 1: CELOE noise optimization – Accuracy progression. 47
7.3 Test case 1: OCEL noise optimization – FP rate progression. 48
7.4 Test case 1: CELOE noise optimization – FP Rate progression. 48
7.5 Test case 1: ParCEL noise optimization – accuracy progression. 50
7.6 Test case 1: ParCEL noise optimization – FP rate progression. 50
7.7 Test case 1: OCEL use of negations/“some-only” optimization – Test FP

rate progression. 52
7.8 Test case 1: CELOE use of negations/“some-only” optimization – pro-

gression of test FP rate. 52
7.9 Test case 1: ParCEL-Ex use of negations/“some-only” optimization –

accuracy progression. 54
7.10 Test case 1: ParCEL with noise of 0 cardinality optimization – progres-

sion on test sets. 57
7.11 Test Case 1: Examples of learned descriptions and partial definitions. . 58

vii

List of Tables

2.1 Comparison of DL and OWL terminology. 12

4.1 Contents of data-directory tables. 25

6.1 Number of malicious/benign samples by file type in the mixed datasets. 37

7.1 Test Case 1: OCEL and CELOE Noise Optimization. 47
7.2 Test Case 1: ParCEL and ParCEL-Ex Noise Optimization. 49
7.3 Test Case 1: OCEL and CELOE Use of Negations/“Some-Only” Opti-

mization. 51
7.4 Test Case 1: ParCEL and ParCEL-Ex Use of Negations/“Some-Only”

Optimization. 53
7.5 Test Case 1: OCEL and CELOE Cardinality Optimization. 55
7.6 Test Case 1: ParCEL and ParCEL-Ex Cardinality Optimization. 56

ix

1 Introduction

The immense technological advances we had a chance to witness in the past few decades
has gradually enabled us to perform many of the previously implausible computationally-
intensive tasks in near real time. As a consequence, various artificial-intelligence (AI)
methods have been successfully applied in a number of areas where data is abundant.

Although the cyber-security industry can certainly be considered a field belonging
into this category, the research regarding malware detection is still conducted predom-
inantly by the commercial sector and the details are often highly confidential. This is
due in part to the lack of sufficiently-large publicly-available data sets. Fortunately, in
the recent years, a few such sources of information have emerged, e.g. the EMBER [1]
and SOREL-20M [14] data sets.

While machine-learning (ML) techniques have long been used in the proprietary
tools to protect a user’s system against misbehaving software [3], there have been only
few attempts to employ symbolic AI to malware detection (for instance, ...). Hence,
our main objective is to empirically evaluate the performance of one novel symbolic
approach to inductive learning, i.e. learning from examples, called concept learning.

As its name suggests, a concept-learning algorithm in general endeavours to find
the most precise descriptions of the given set of positive examples based on the pro-
vided knowledge. We will use these algorithms to obtain possible characterisations of
malware deduced from the information acquired via static analysis of both malicious
and benign files. These data will be extracted from EMBER and SOREL-20M. Since
the outcome of a concept-learning process is a human-readable logical formula, we ex-
pect to achieve better explainability of malware classification in comparison with the
standard statistical methods.

In addition, we propose several changes to the algorithms selected for evaluation.
Despite having been tested only in this specific scenario, we believe that the applying
our modifications can lead to relevant improvements in other situations as well. We
will also justify their relevance formally.

In the remainder of this document, we first discuss ...

1

2 Description Logics and OWL

Description Logics (DLs) were introduced in the late 1980s as a new family of logical
formalisms specifically designed for structured knowledge representation in an effort to
automate reasoning over vast amounts of knowledge [4].

Inspired by human conceptual thinking, description logics (DLs) provide us with
instruments to classify entities, identify binary relationships between them, and create
hierarchies over the classes and associations. Using these tools, we can model the
knowledge of an application domain. We refer to such representations as knowledge
bases in the context of DLs.

Although most of the DLs are essentially fragments of first-order logic (FOL), the
theory behind them was carefully developed so that reasoning in DLs, unlike in FOL,
remains decidable [20], which is, of course, crucial for automation.

The whole DL family comprises a number of formalisms, differing mainly in the level
of expressivity stemming from the richness of syntax. Here, we present the SROIQ
DL and OWL 2 DL.

2.1 SROIQ DL

The SROIQ DL [15] is among the most expressive DLs. The next two sections deal
with its syntax and semantics, respectively. The definitions we provide in these sections
are based on Rudoplh’s [20] and Baader et al.’s [4] treatises.

2.1.1 Syntax

As in any logical formalism, we first need to specify a set of distinguishable symbols
(vocabulary) in order to define a language in which meaningful sentences (statements)
can be formed, possibly with use of connectors and modifiers. In DLs, we have con-
cept names, role names, and individual names that together determine a language’s
vocabulary.

Definition 1 (Vocabulary). The vocabulary of a SROIQ language L is a triple
Σ = (NR, NC , NI), where NR is a set of role names, NC a set of concept names,

3

4 Description Logics and OWL

and NI a set of individual names. The sets NR, NC , NI are mutually disjoint. None
of the symbols in {⊤,⊥,¬,⊓,⊔,∃,∀, Self,≥,≤, ◦} and punctuation symbols appears in
NR, NC, or NI .

Intuitively, we use concept names to denote categories, such as Person, Animal,
or Laptop, role names as identifiers of binary relationships, e.g., worksAt, livesIn,
or manufacturedBy, and individual names to refer to particular entities, for example,
john, cat_alice, or bobs_newest_ultrabook.

Given the vocabulary of a SROIQ language, we can clearly define what constructs
are considered valid in that language. However, contrary to monolithic theories in
FOL, knowledge bases in SROIQ are split into three parts: assertional (ABox), ter-
minological (TBox), and relational (RBox). Since each of them has a different purpose,
we need to treat the syntax of ABox, TBox, and RBox statements separately.

RBox

The main component of an RBox is the role hierarchy, which enables us to define how
the binary relationships are connected to one another.

Definition 2 (Roles and Role Inversion). Let L be a SROIQ language. The set of
all roles in L is the set R = {r | r ∈ NR} ∪ {r− | r ∈ NR} ∪ {u}, where u denotes the
universal role.

For any r ∈ NR, the role r− is called the inverse role of r. The function of role
inversion Inv : R→ R is defined for all r ∈ R as follows:

Inv(r) =

r−, if r ∈ NR,

s, if r = s−, for some s ∈ NR,

u, if r = u.

Definition 3 (Role Inclusion Axioms and Role Hierarchies). Let L be a SROIQ
language. A role inclusion axiom (RIA) is any statement of the form r1◦r2◦· · ·◦rn ⊑
r, where n ∈ Z+ and r1, r2, . . . , rn, r ∈ R. For any r, s ∈ R, we call the RIA r ⊑ s a
simple role inclusion and r a subrole of s.

A role hierarchy (HR) is any finite set of RIAs.

For decidability of reasoning in SROIQ, it is inevitable that the role hierarchy in
an RBox is regular [20].

Definition 4 (Simple and Non-Simple Roles). Let L be a SROIQ language and HR

be a role hierarchy in L. The set Rn of all non-simple roles in L w.r.t. HR is the
smallest set for which each of the following conditions holds:

• if r1 ◦ r2 ◦ · · · ◦ rn ⊑ r ∈ HR, for n > 1 and any r1, r2, . . . , rn, r ∈ R, then r ∈ Rn,

SROIQ DL 5

• if r, s ∈ R, r ∈ Rn, and r ⊑ s ∈ HR, then s ∈ Rn,
• if r ∈ Rn, then Inv(r) ∈ Rn.

The set of all simple roles in L w.r.t. HR is the set Rs = R \Rn.

Definition 5 (Regular Role Hierarchy). Let L be a SROIQ language and HR be a
role hierarchy in L. The role hierarchy HR is regular if there exists a strict partial
order1 ≺ on Rn such that r ≺ s iff Inv(r) ≺ s, for any r, s ∈ Rn, and each RIA in HR

has one of the following forms:

• r ◦ r ⊑ r,
• Inv(r) ⊑ r,
• s1 ◦ s2 ◦ · · · ◦ sn ⊑ r,
• r ◦ s1 ◦ s2 ◦ · · · ◦ sn ⊑ r,
• s1 ◦ s2 ◦ · · · ◦ sn ◦ r ⊑ r,

where n ∈ Z+, r ∈ NR, s1, s2, . . . , sn ∈ R, with si ≺ r, for every non-simple role si,
where i = 1, 2, . . . , n.

The rest of the RBox consists of statements through which we can express that
some roles have additional properties, such as reflexivity or symmetry. We collectively
call these statements role characteristics.

Definition 6 (Role Characteristics). Let L be a SROIQ language and HR be a role
hierarchy in L. A role characteristic is any statement of one of the following forms:
Ref(r) (reflexivity), Irref(r) (irreflexivity), Sym(r) (symmetry), Asym(r) (asym-
metry), or Disj(s, s′) (disjointness), for any r ∈ R and s, s′ ∈ Rs.

A SROIQ RBox can be thus formally defined as follows.

Definition 7 (RBox). Let L be a SROIQ language. A SROIQ RBox is any set
R = HR∪CharR, where HR is a regular role hierarchy and CharR is a finite set of role
characteristics.

TBox

The terminological part of a knowledge base predominantly allows us to create a com-
plex hierarchy over the set of categories we denote by concept names.

Definition 8 (Concept Expressions). Let L be a SROIQ language and R be an RBox
in L. The set C of all concept expressions (concepts) in L w.r.t. R is the smallest
set for which each of the following conditions is satisfied:

• every concept name C ∈ NC is an element of C (atomic concept),
• the concepts ⊤ (top concept) and ⊥ (bottom concept) belong to C,

1A strict partial order is a transitive and asymmetric binary relation.

6 Description Logics and OWL

• {a1, a2, . . . , an} ∈ C, for any n ∈ Z+ and a1, a2, . . . , an ∈ NI ; the concepts of this
form are called nominals,

• if C,D ∈ C, then ¬C ∈ C (negation), C ⊓ D ∈ C (intersection/conjunc-
tion), and C ⊔D ∈ C (union/disjunction),

• if r ∈ R and C ∈ C, then ∃r.C ∈ C (existential quantification), and ∀r.C ∈
C (universal quantification),

• if r ∈ Rs, then ∃r.Self ∈ C (self restriction),
• if r ∈ Rs, C ∈ C, and n ∈ N, then ≥ n r.C ∈ C (at-least restriction),

and ≤ n r.C ∈ C (at-most restriction)2; these concepts are also jointly called
cardinality constraints.

Definition 9 (General Concept Inclusion Axioms and TBox). Let L be a SROIQ
language and R be an RBox in L. A general concept inclusion axiom (GCI) is
any statement of the form C ⊑ D, where C,D ∈ C, read “C is subsumed by D”, “C
is a subconcept of D”, or “D is a superconcept of C”.

A SROIQ TBox (T) is any finite set of GCIs.

ABox

An ABox serves as a tool to express facts about named individuals inside the model of
the world built via the RBox and TBox.

Definition 10 (Individual Assertions and ABox). Let L be a SROIQ language, R
be an RBox in L, and T be a TBox in L. An individual assertion is a statement
in any of the following forms: C(a) (concept assertion), r(a, b) (role assertion),
¬r(a, b) (negated role assertion), a ≈ b (equality statement), or a��≈ b (inequality
statement), where C ∈ C, r ∈ NR, and a, b ∈ NI .

A SROIQ ABox (A) is any finite set of individual assertions.

Knowledge Base

As we mentioned earlier, a SROIQ knowledge base is simply a union of an ABox,
TBox, and RBox.

Definition 11 (Knowledge Base). Let L be a SROIQ language. A SROIQ knowl-
edge base is any set K = R ∪ T ∪ A, where R, T ,A are an RBox, a TBox, and an
ABox in L, respectively.

Before we move on to the semantics of SROIQ, we will look at one example of a
SROIQ knowledge base to better grasp how the knowledge described by sentences in
a natural language is converted into a knowledge base.

2We assume that zero is a natural number as well.

SROIQ DL 7

Example 1 (Knowledge Base). Imagine we would like to translate the English sen-
tences S1, . . . , S7 given below into SROIQ statements and create a knowledge base.

S1: One is a parent of somebody else if and only if the latter is a child of the former.
S2: If someone is a parent of another parent, then the first is a grandparent of all the

children the second has.
S3: No one is a parent of themselves.
S4: Every man is a person.
S5: A happy person is either a man with no child or a person who has at least two

children.
S6: Alice is a parent of Bob.
S7: Chris is a happy person.

To accomplish this task, we first define a SROIQ language L with

NR = {parentOf, childOf, grandparentOf},

NC = {Person, Man, HappyPerson},

NI = {alice, bob, chris}.

The sentences S1, . . . , S7 can be then transformed into the statements SL
1.1, S

L
1.2, S

L
2 , . . . ,

SL
7 in L as follows:

SL
1.1: parentOf ⊑ childOf−,

SL
1.2: childOf ⊑ parentOf−,
SL
2 : parentOf ◦ parentOf ⊑ grandparentOf,

SL
3 : Irref(parentOf),

SL
4 : Man ⊑ Person,

SL
5 : HappyPerson ⊑ (Man ⊓ ∀parentOf.⊥) ⊔ (Person⊓ ≥ 2 parentOf.⊤),

SL
6 : parentOf(alice, bob),

SL
7 : HapyPerson(chris),

where SL
1.1, S

L
1.2, S

L
2 , S

L
3 together constitute an RBox R, SL

4 , S
L
5 form a TBox T , and

SL
6 , S

L
7 represent an ABox A. The corresponding knowledge base K would thus be a

union of R, T and A, i.e., K = {SL
1.1, S

L
1.2, S

L
2 , . . . , S

L
7 }.

2.1.2 Semantics

Knowing the rules for writing statements in SROIQ and understanding their intended
use, we can discuss their formal semantics in detail, i.e., how we interpret them and
investigate whether they are satisfied.

8 Description Logics and OWL

Interpretations

Since every knowledge base is merely an abstraction of the world it tries to model, we
need to define the way we will materialize this abstraction given a set of entities. In
DLs, this need is fulfilled by interpretations.

Definition 12 (Interpretation). Let L be a SROIQ language. An interpretation
is a pair I = (∆I , ·I), where ∆I is a non-empty set, called domain, and ·I is an
interpretation function which maps

• each a ∈ NI to an element aI ∈ ∆I (individual),
• each C ∈ NC to a subset CI ⊆ ∆I (concept extension),
• each r ∈ NR to a subset rI ⊆ ∆I ×∆I (role extension).

The interpretation function ·I is then extended to all SROIQ roles and concepts
as follows:

• uI = ∆I ×∆I,
• (r−)I = {(δ, δ̂) ∈ ∆I ×∆I | (δ̂, δ) ∈ rI},
• ⊤I = ∆I, ⊥I = ∅,
• (¬C)I = ∆I \ CI,
• {a1, a2, . . . , ak}I = {aI1 , aI2 , . . . , aIk},
• (C ⊓D)I = CI ∩DI, (C ⊔D)I = CI ∪DI,
• (∃s.C)I = {δ | there is δ̂ ∈ ∆I with (δ, δ̂) ∈ sI and δ̂ ∈ CI},
• (∀s.C)I = {δ | for all δ̂ ∈ ∆I , if (δ, δ̂) ∈ sI, then δ̂ ∈ CI},
• (∃s.Self)I = {δ | (δ, δ̂) ∈ sI},
• (≥ n t.C)I = {δ | |{δ̂ ∈ ∆I | (δ, δ̂) ∈ tI and δ̂ ∈ CI}| ≥ n},
• (≤ n t.C)I = {δ | |{δ̂ ∈ ∆I | (δ, δ̂) ∈ tI and δ̂ ∈ CI}| ≤ n},

for all r ∈ NR, s ∈ R, t ∈ Rs, C,D ∈ C, a1, a2, . . . , ak ∈ NI , k ∈ Z, and n ∈ N.
Every individual δ ∈ CI is called an instance of C. If (δ, δ̂) ∈ rI, then we say that

δ̂ is an r-filler of δ in I.

For illustration, we will examine one model of the knowledge base constructed in
Example 1.

Example 2 (Interpretation). Let L be the SROIQ language and K be the knowledge
base in L defined in Example 1. Now, let us take the interpretation I = (∆I , ·I) where

∆I = {A,B,C,D,E, F},

aliceI = A, bobI = B, chrisI = C,

PersonI = {A,B,C,D}, ManI = {B,C,D}, HappyPersonI = {A,C,D},

parentOfI = {(A,B), (A,D), (E,F)}, childOfI = {(B,A), (D,A), (F,E)},

grandparentOfI = {(E,F)}.

SROIQ DL 9

Apparently, I is a model of K by Definition 12. Note that not every individual in ∆I

has to be named, that is, there can be δ ∈ ∆I for which no a ∈ NI exists such that aI = δ

(for instance, D). Conversely, we could re-define I so that BobI = ChrisI = B. Of
course, when an individual from ∆I is identified by more than one individual name, all
individual assertions referring to any of these individual names apply to such individual.
Looking at the definition of ·I, we can also see the importance of diligence in modeling,
since for example in I, E is simultaneously a parent and a grandparent of F , which
is possible due to the fact that K does not require the disjointness of parentOf and
grandparentOf.

Seeing how interpretations work, it slowly becomes evident that apart from building
a concept hierarchy, we are also able to define various constraints with the help of
GCIs. For instance, we can assert that all individuals related to another individual (or
to themselves) via a given role r have to be instances of a particular concept, called
domain and referred to as dom(r). Returning back to Example 1, to set the domain
of the role parentOf to Person, that is, to tell that all parents have to be people, we
would use the statement

¬Person ⊓ ∃parentOf.⊤ ⊑ ⊥.

Analogously, it is possible to restrict the range of r, i.e., to state that every indi-
vidual to which any individual is connected through r must be an instance of a specific
concept, denoted rng(r). To give an example, we may express that the range of the
role parentOf has to be Person, or equivalently, that one can only be a parent of a
person, as follows:

∃parentOf.¬Person ⊑ ⊥.

Satisfaction of Statements

Determining if a statement is true is always bound to a specific interpretation, as this
process corresponds to examining whether a particular instance of the world conforms
to certain constraints. Therefore, the definition of statement satisfaction also depends
on the provided interpretation.

Definition 13 (Statement Satisfaction). Let L be a SROIQ language and I be an
interpretation. The relation “the interpretation I satisfies a statement α” (I ⊨ α)
is given by the following definition:

• I ⊨ r1 ◦ r2 ◦ · · · ◦ rn ⊑ r iff {(δ0, δn) ∈ ∆I × ∆I | there exist δ1, δ2, . . . , δn−1 ∈
∆I such that (δi−1, δi) ∈ rIi , for i = 1, 2, . . . , n} ⊆ rI,

• I ⊨ Ref(r) iff {(δ, δ) | δ ∈ ∆I} ⊆ rI,
• I ⊨ Irref(r) iff {(δ, δ) | δ ∈ ∆I} ∩ rI = ∅,

10 Description Logics and OWL

• I ⊨ Sym(r) iff it holds that (δ, δ̂) ∈ rI implies (δ̂, δ) ∈ rI, for any δ, δ̂ ∈ ∆I,
• I ⊨ Asym(r) iff it holds that (δ, δ̂) ∈ rI implies (δ̂, δ) /∈ rI, for any δ, δ̂ ∈ ∆I,
• I ⊨ Disj(s, t) iff sI ∩ tI = ∅,
• I ⊨ C ⊑ D iff CI ⊆ DI,
• I ⊨ C(a) iff aI ∈ CI,
• I ⊨ r(a, b) iff (aI , bI) ∈ rI,
• I ⊨ ¬r(a, b) iff (aI , bI) /∈ rI,
• I ⊨ a ≈ b iff aI = bI,
• I ⊨ a ��≈ b iff a ̸= b,

where r1, r2, . . . , rn, r ∈ R, s, t ∈ Rs, C ∈ C, a, b ∈ NI , and n ∈ Z.
The interpretation I satisfies (is a model of) a knowledge base K (I ⊨ K) if it

satisfies all statements in K.
The notation I ��⊨ α (I ��⊨ K) indicates that the interpretation I does not satisfy the

statement α (the knowledge base K).

Entailment

Having acquired some knowledge, we usually seek to make new inferences from this
knowledge. In order to have a formal apparatus to verify that our observations logically
follow from a knowledge base, we define the notion of entailment.

Definition 14 (Entailment). Let L be a SROIQ language and K be a knowledge base
in L. We say that the knowledge base K entails a statement α (K ⊨ α) if for all
interpretations I, it is true that if I ⊨ K, then I ⊨ α.

The knowledge base K entails a set of statements S (K ⊨ S) if it entails each
statement in S. The notation K ��⊨ α (K ��⊨ S) indicates that the knowledge base K does
not entail the statement α (the set of statements S).

Logical Equivalence and Strict Subsumption

We conclude the section on SROIQ semantics with the definitions of logical equivalence
and strict subsumption, which are convenient ways to detect likeness of two concepts
or roles and exclude such pairs from the relation of subsumption, respectively.

Definition 15 (Logical Equivalence). Let L be a SROIQ language and K be a knowl-
edge base in L. Concepts C,D ∈ C are logically equivalent w.r.t. K (K ⊨ C ≡ D)
if and only if K ⊨ {C ⊑ D,D ⊑ C}. Roles r, s ∈ R are logically equivalent w.r.t.
K (K ⊨ r ≡ s) if and only if K ⊨ {r ⊑ s, s ⊑ r}.

If in addition K = ∅, the concepts C,D (roles r, s) are said to be logically equivalent,
denoted C ≡ D (r ≡ s).

OWL 2 DL 11

Definition 16 (Strict Subsumption). Let L be a SROIQ language and K be a knowl-
edge base in L. A concept C ∈ C is strictly subsumed by a concept D ∈ C w.r.t.
K (K ⊨ C ⊏ D) if and only if K ⊨ {C ⊑ D} and K ��⊨ C ≡ D. A role r ∈ R is
strictly subsumed by a role s ∈ R w.r.t. K (K ⊨ r ⊏ s) if and only if K ⊨ {r ⊑ s}
and K ��⊨ r ≡ s.

If K ⊨ C ⊏ D, where C,D ∈ {⊤} ∪ NC, and there exists no E ∈ C such that
K ⊨ C ⊏ E and K ⊨ E ⊏ D, we call C a direct subconcept of D. If K ⊨ r ⊏ s,
where r, s ∈ {u} ∪ NR, and there exists no t ∈ C such that K ⊨ r ⊏ t and K ⊨ t ⊏ s,
we call r a direct subrole of s.

2.2 OWL 2 DL

The OWL 2 DL [13] is a member of the family of OWL ontology languages, which
were proposed by the World Wide Web Consortium (W3C) to back the Semantic Web
initiative [2] – an initiative for a next-generation Web where information is semantically
organized. Since then, OWL ontology languages have been used in a wide range of areas
apart from the Semantic Web, where automated reasoning and semantic retrieval helps
with organization of large amounts of data (e.g., medicine [8] or energy management
[9]). Ontology languages in general were and still are evolving alongside DLs as a
means of structured knowledge representation. Some ontology languages, such as the
OWL 2 DL, even take DLs as their formal bases. More precisely, the OWL 2 DL is
based on the SROIQ DL and is essentially its extension. For example, OWL 2 adds
the support for data types, so the role fillers can be numbers, strings, etc. There are
also several extra-logical features OWL 2 provides beyond the standard DL tools, e.g.,
annotations. Lastly, the OWL 2 syntax differs from the discussed SROIQ syntax as
well, resulting from the slightly different origins of ontology languages and DLs.

In our research, we use an OWL 2 DL ontology to represent data (a knowledge base
in effect, see Table 2.1) but the extensions of SROIQ are not yet utilized and all OWL 2
statements we present can and will be written in the SROIQ syntax. Therefore, we do
not dive into the details of OWL 2 and its connection to SROIQ, which are, however,
thoroughly covered by Rudoplh [20] and Baader et al. [4]. We only introduce a bit of
OWL terminology by linking the most fundamental OWL terms to their respective DL
counterparts in Table 2.1. In later chapters, we use the corresponding terms from this
table interchangeably, albeit we incline to the DL terminology in the chapters closely
related to DLs, i.e., Chapters 3 and 5, and to the OWL nomenclature elsewhere.

12 Description Logics and OWL

Table 2.1: Comparison of DL and OWL terminology.

DLs OWL
knowledge base ontology

concept class
role object property

data-type role data property
top concept owl:Thing

bottom concept owl:Nothing

universal role owl:topObjectProperty

universal data-type role owl:topDataProperty

3 Learning in Description Logics

Since DLs, especially those supporting role hierarchies, give us the ability to capture
various aspects of an application domain, one may choose from several learning objec-
tives to pursue. In this section, we thus first define the DL learning problem a solution
to which we aim to find in malware detection. Next, we present the approach to this
problem that we decided to employ, together with the selected algorithms.

3.1 Concept-Learning Problem

In our research, we focus on solving the problem of learning concept expressions, which
we define below [17].

Definition 17 (Concept-Learning Problem). Let L be a DL language and K be a
knowledge base in L. Let E+ ⊆ NI be a set of positive examples and E− ⊆ NI be a set
of negative examples, with E+ ∩ E− = ∅.

Given K, E+, and E−, find a concept expression C ∈ C, also called a description,
such that both of the following conditions are satisfied:

K ⊨ C(a), for all a ∈ E+, (3.1)

K ⊨ ¬C(a), for all a ∈ E−. (3.2)

If K ⊨ C(a) holds for some a ∈ E+ ∪ E− and C ∈ C, we say that C covers a.

This definition can be interpreted as follows: Given some background knowledge
and two sets of individuals, positive and negative examples, respectively, the goal of
concept learning is to use the background knowledge to find a minimal description
of the positive examples, where minimality is achieved by ensuring that none of the
negative examples fits the description.

Notice that we always supply additional information about which instances are
positive and which are negative, in other words, the learning is supervised. There is
also an adaptation of the above definition that allows unlabeled examples as well. This
is useful for learning under the open-world assumption, i.e., when we do not conclude
that a certain observation is false if it does not follow from the knowledge base. Despite

13

14 Learning in Description Logics

relying on the open-world assumption is a common practice in the field of knowledge
representation due to the awareness of the possibility that the current knowledge may
be incomplete, we decided to work under the closed-world assumption, as we first
wanted to assess the learning capabilities of algorithms in these arguably less adverse
conditions, in which exhaustive information is supposed to be provided.

3.2 Concept Learning Using Refinement Operators

Definition 17 states that a concept learning problem is considered to be solved once an
appropriate description of positive examples is found. Hence, it is possible to cast this
problem to a search problem, with the search space being simply the space of all valid
concept expressions. One of the approaches to order the elements of this search space
is to exploit the standard DL relation of subsumption [17]. Such successor functions
are called refinement operators.

Definition 18 (Refinement Operator). Let L be a DL language and K be a knowl-
edge base in L with no ABox. A mapping ρ : C → 2C is a downward (upward)
refinement operator in the quasi-ordered1 space (L,⊑) if for all C ∈ C, it holds that
D ∈ ρ(C) implies K ⊨ D ⊑ C (K ⊨ C ⊑ D). The concept D is called a refinement
of C and more specifically, a specialization (generalization) of C.

For example, if we let ⇝ denote a single refinement operation, one branch of a
search tree induced by a downward refinement operator may have the following form
(with the leftmost concept being in the root node and the rightmost in the leaf node):

⊤⇝ ∀r.⊤⇝ ∀r.C ⇝ (∀r.C) ⊓D. (3.3)

We refer to such a sequence of refinement operations as a refinement chain. Usually,
the downward-refinement process starts from the most-generic concept, i.e., the top
concept, which has the maximum potential to specialize.

In our research, we study the suitability of concept-learning algorithms utilizing the
refinement operator called simply ρ, all of which is implemented in DL-Learner [6], a
state-of-the-art Java framework for learning in DLs. In the next two sections, we first
present the definition of the ρ operator and then discuss the examined algorithms with
their peculiarities.

3.2.1 The ρ Refinement Operator

Proposed by Lehmann and Hitzler [17], the ρ refinement operator was the first operator
for solving the concept-learning problem in DLs. Before we formally define ρ, it is
inevitable to introduce several auxiliary notions.

1A quasi-order is a reflexive and transitive binary relation.

Concept Learning Using Refinement Operators 15

To move through the subsumption hierarchies created over the sets of concept names
and role names, we need functions for crawling them both in the upward (shC

↑ and shR
↑)

and downward (shC
↓ and shR

↓) direction.

Definition 19 (Subsumption Hierarchy Crawlers). Let L be a DL language and K be
a knowledge base in L with an ABox A. Let K′ = K \ A. We define the functions
shC

↑ : {⊤} ∪ NC → 2{⊤}∪NC and shC
↓ : {⊤} ∪ NC → 2{⊤}∪NC for all C ∈ {⊤} ∪ NC as

follows:

shC
↑ (C) = {D ∈ {⊤} ∪NC | K′ ⊨ C ⊏ D and C is a direct subconcept of D w.r.t. K′},

shC
↓ (C) = {D ∈ {⊤} ∪NC | K′ ⊨ D ⊏ C and C is a direct subconcept of D w.r.t. K′}.

The functions shR
↑ : {u} ∪ NR → 2{u}∪NR and shR

↓ : {u} ∪ NR → 2{u}∪NR map each
r ∈ {u} ∪NR to the sets below:

shR
↑ (r) = {s ∈ {u} ∪NR | K′ ⊨ r ⊏ s and r is a direct subrole of s w.r.t. K′},

shR
↓ (r) = {s ∈ {u} ∪NR | K′ ⊨ s ⊏ r and s is a direct subrole of r w.r.t. K′}.

The presence of domain and range assertions facilitates the ρ operator to avoid
generating refinements that certainly do not cover any individual because they do not
satisfy a domain or range restriction. However, ρ was designed to work only with atomic
domains and ranges, i.e., those which are either concept names or the top concept.

Definition 20 (Atomic Domains And Ranges). Let L be a DL language and K be a
knowledge base in L.

The atomic domain of a role r ∈ R is a concept ad(r) ∈ {⊤} ∪ NC such that
K ⊨ dom(r) ⊑ ad(r) and there is no C ∈ {⊤} ∪ NC with K ⊨ dom(r) ⊑ C and
K ⊨ C ⊏ ad(r).

The atomic range of a role r ∈ R is a concept ar(r) ∈ {⊤} ∪ NC such that K ⊨
rng(r) ⊑ ar(r) and there is no C ∈ {⊤}∪NC with K ⊨ rng(r) ⊑ C and K ⊨ C ⊏ ar(r).

Conversely, given a concept name, we are able to determine the set of applicable
role names, whose atomic domains are not disjoint from this concept name, based on
the information about domains.

Definition 21 (Applicable Role Names). Let L be a DL language, K be a knowledge
base in L, and C ∈ {⊤}∪NC be a concept. The set of all applicable role names for
the concept C is the set

app(C) = {r ∈ NR | K ��⊨ ad(r) ⊓ C ≡ ⊥}.

The set of the most general applicable role names for the concept C is the set

mgr(C) = {r ∈ app(C) | there is no s ∈ app(C) such that K ⊨ r ⊏ s}.

16 Learning in Description Logics

With the above terms defined, we can now, according to [17], formulate the def-
inition of ρ for the SROIQ DL without nominals and inverse roles, which we omit
because the rules for their refinement were not enabled in our experiments.

Definition 22 (The ρ Refinement Operator). Let L be a SROIQ language without
nominals and inverse roles. Let K be a knowledge base in L. For any B ∈ {⊤}∪NC, let
MB be the set of all top-concept refinements not disjoint from B defined as follows:

MB = {A | A ∈ NC ,K ��⊨ A ⊓B ≡ ⊥,K ��⊨ A ⊓B ≡ B, and

there is no A′ ∈ NC such that K ⊨ A ⊏ A′}

∪ {¬A | A ∈ NC ,K ��⊨ ¬A ⊓B ≡ ⊥,K ��⊨ ¬A ⊓B ≡ B, and

there is no A′ ∈ NC such that K ⊨ A′ ⊏ A}

∪ {∃r.⊤ | r ∈ mgr(B)}

∪ {∀r.⊤ | r ∈ mgr(B)}

∪ {≤ mf(r)r.⊤ | r ∈ mgr(B)},

where mf(r) = maxa∈NI
|{b | K ⊨ r(a, b)}|, for all r ∈ NR.

The refinement operator ρ : C→ 2C maps every C ∈ C to a set

ρ(C) =

{⊥} ∪ ρ⊤(C), if C = ⊤,

ρ⊤(C), otherwise ,

where ρB is given for each domain of refinement B ∈ {⊤} ∪NC as follows:

ρB(C) =

∅, if C = ⊥,⋃∞
m=1{D1 ⊔D2 ⊔ · · · ⊔Dm

| Di ∈MB, for i = 1, 2, . . . ,m}, if C = ⊤,

{A′ | A′ ∈ shC
↓ (A)}

∪ {A ⊓D | D ∈ ρB(⊤)}, if C = A,

{¬A′ | A′ ∈ shC
↑ (A)}

∪ {¬A ⊓D | D ∈ ρB(⊤)}, if C = ¬A,

{∃r.E | E ∈ ρar(r)(D)}

∪ {(∃r.D) ⊓ E | E ∈ ρB(⊤)}

∪ {≥ 2r.D}

∪ {∃t.D | t ∈ shR
↓ (r)}, if C = ∃r.D,

{∀r.E | E ∈ ρar(r)(D)}

∪ {(∀r.D) ⊓ E | E ∈ ρB(⊤)}

∪ {∀r.⊥ | D ∈ NC and shC
↓ (D) = ∅}

∪ {∀t.D | t ∈ shR
↓ (r)}, if C = ∀r.D,

Concept Learning Using Refinement Operators 17

ρB(C) =

{≥ n+ 1 r.D | n < mf(r)}

∪ {≥ n s.E | E ∈ ρar(s)(D)}

∪ {(≥ n s.D) ⊓ E | E ∈ ρB(⊤)}, if C = ≥ n s.D,

{≤ n− 1 r.D | n > 1}

∪ {≤ n s.E | E ∈ ρar(s)(D)}

∪ {(≤ n s.D) ⊓ E | E ∈ ρB(⊤)}, if C = ≤ n s.D,

{C1 ⊓ · · · ⊓ Ci−1 ⊓D ⊓ Ci+1 ⊓ · · · ⊓ Ck

| D ∈ ρB(Ci), for i = 1, 2, . . . , k}, if C = C1 ⊓ C2 ⊓ · · · ⊓ Ck,

{C1 ⊔ · · · ⊔ Ci−1 ⊔D ⊔ Ci+1 ⊔ · · · ⊔ Ck

| D ∈ ρB(Ci), for i = 1, 2, . . . , k}

∪ {(C1 ⊔ C2 ⊔ · · · ⊔ Ck) ⊓D | D ∈ ρB(⊤)}, if C = C1 ⊔ C2 ⊔ · · · ⊔ Ck,

for any n ∈ N, k ≥ 2, A ∈ NC , r ∈ R, s ∈ Rs, C1, C2, . . . , Ck, C,D ∈ C.

Intuitively, MB serves as a basis from which all refinements can be constructed
by repeatedly applying ρ to the obtained concepts, starting with the top concept.
Normally, one would use ρ or ρ⊤ to get refinements but it might be also beneficial to
employ ρB directly if we know that all examples we aim to describe are instances of an
atomic concept B.

Although the formal definition of ρ is strict, its implementation in DL-Learner is
largely configurable. One of the options allows us to control the use of the “some-
only” rule, with which we later deal in Sections 5.1.3 and 6.3. If this rule is applied,
a universal quantification of a role can occur in a refinement only in conjunction with
an existential quantification of the same role. For example, the descriptions of the
form (∀r.C) ⊔ D, for any C,D ∈ C and r ∈ R, would be considered invalid, but a
concept such as (∃r.E ⊓ ∀r.C) ⊔ D, with any E ∈ C not disjoint from C, would be
accepted. Taking this precaution precludes the algorithms from over-fitting when no
negative example that does not have any r-filler is seen during learning, in which case,
the first example description covers exactly the same set of individuals as the second
while being significantly shorter and thus preferred by each algorithm.

As the algorithms using ρ learn from examples, we can also choose between instance-
based and explicit checks of concept disjointness for the construction of MB, that is,
whether to infer the disjointness of two concepts from the fact that they have no
instance in common, or to rely solely on the available concept-disjointness axioms and
the information on disjointness they entail. This raises the necessity to have a tool
to check if an individual is an instance of a concept (instance checking) or perform
reasoning over the set of concept-disjointness axioms. For these purposes, DL-Learner
provides various reasoner components, such as the closed-world reasoner that is the

18 Learning in Description Logics

most relevant for our use case because it makes the assumption of a closed world.
Other configuration parameters are discussed in Section 6.3 as needed.

3.2.2 Algorithms

In our experiments, we evaluated the performance of four concept-learning algorithms,
namely, OCEL, CELOE, ParCEL, and ParCEL-Ex version 2 (hereafter just ParCEL-
Ex). To solve the concept-learning problem, each of these algorithms searches the
space of all valid concept expressions in a given language ordered by the ρ refinement
operator with the guidance of an additional heuristic, measuring mainly how accurate
a concept is (exact definition of accuracy is given in Section 6.2). However, notice
that the ρ operator is infinite, meaning that there exists a concept C for which the set
ρ(C) is not finite (this actually holds for all concepts in the case of ρ). Therefore, the
algorithms limit the refinements to only those whose length is lower than or equal to a
specified value, where length is defined quite naturally as in Definition 23 below.

Definition 23 (Concept and Role Length). Let L be a SROIQ language. The length
of a role r ∈ R, referred to as lenR(r), is determined as follows:

lenR(C) =

1, if r ∈ {u} ∪NR,

2, otherwise.

The length of a concept C ∈ C, denoted lenC(C), is calculated based on this recursive
formula:

lenC(C) =

1, if C ∈ {⊤,⊥} ∪NC or C = {a1, a2, . . . , ak},

lenC(D) + 1, if C = ¬D,

lenC(D) + lenC(E) + 1, if C = D ⊓ E or C = D ⊔ E,

lenC(D) + lenR(r) + 1, if C = ∃r.D or C = ∀r.D,

lenC(D) + lenR(s) + 1, if C = ∃s.Self,

lenC(D) + lenR(s) + 1, if C = ≥ n s.D or C = ≤ n s.D,

where r ∈ R, s ∈ Rs, D,E ∈ C, a1, a2, . . . , ak ∈ NI , k ∈ Z, and n ∈ N.

Using this technique the algorithms can proceed iteratively by revisiting an already
searched concept whenever they find it promising based on its heuristic score and grad-
ually asking for longer refinements. The example refinement chain 3.3 demonstrates
one such course of action, indeed. The general and substantially simplified procedure
is shown in Algorithm 1.

We see that the algorithms allow us not only to restrict the domain (D) in which
they search for solutions as hinted in Section 3.2.1, but also to choose a concept (C)

Concept Learning Using Refinement Operators 19

Algorithm 1: General concept-learning algorithm using ρ

Input: a start concept C ∈ {⊤} ∪NC , a domain of refinement D ∈ {⊤} ∪NC ,
termination criteria, solution criteria, minimum-quality criteria

Output: a set of solutions

1 heuristic← an algorithm-specific heuristic
2 startNode← a new node with
3 parent = none, children = ∅, concept = C, length = lenC(C)

4 searchTree← a new tree with startNode as the root and only node
5 solutions← ∅

6 while termination criteria are not satisfied do
7 node← the currently best node from searchTree according to heuristic

8 remove node from searchTree

9 refinements ← {E ∈ ρD(best) | node.length− 1 ≤ lenC(E) ≤ node.length}
10 nodesToAdd← ∅

11 foreach E ∈ refinements do
12 refNode ← a new node with
13

parent = node, children = ∅, concept = E, length = lenC(E)

14 refNode.score ← heuristic.evaluate(refNode)

15 if refNode does not satisfy minimum-quality criteria then
16 continue
17 end

18 node.children← node.children ∪ {refNode}
19 nodesToAdd← nodesToAdd ∪ {refNode}

20 if refNode satisfies solution criteria then
21 solutions← solutions ∪ {E}
22 end

23 end

24 node.length← node.length+ 1

25 nodesToAdd← nodesToAdd ∪ {node}

26 add each node from nodesToAdd to searchTree

27 end

28 return solutions

20 Learning in Description Logics

other then the top concept with which they should start. The next input parameter,
termination criteria, controls when the learning process is stopped, for instance, af-
ter a provided period of time. In Definition 17, we clearly stated what concepts are
considered to be solutions, nevertheless, in many real-world situations, it is extremely
hard to find perfect descriptions having the there-required properties. For this reason,
solution criteria can be changed in order to relax the original definition of a solution.
Similarly, less strict minimum-quality criteria enable us to determine a lower bound for
the quality of concepts that should be kept in the search tree for further refinement,
usually, by enforcing the concepts to cover at least a decent share of the positive ex-
amples and/or at most a small number of negative examples. In reality, there is a lot
more parameters to tweak and we expand upon the ones whose effects we investigated
in our experiments in Section 6.3.

Looking at the actual search process represented by the while loop in Algorithm 1,
we have to point out that during the evaluation of the heuristic score at line 14, the
coverage of positive and negative examples must be implicitly determined to calculate
accuracy, so the aforementioned closed-world reasoner is consulted here as well.

Understanding the learning procedure, we can now discuss the primary character-
istics of the algorithms with which we experimented.

OCEL and CELOE

OCEL [17] was the first concept-learning algorithm based on a refinement operator.
CELOE [16] was introduced as a variation of OCEL attracted to shorter concepts fol-
lowing the principle of Occam’s razor [11], i.e., that simpler descriptions may generalize
better since they fit the training conditions more loosely. With OCEL and CELOE,
the solution and minimum-quality criteria either coincide (CELOE) or are interrelated
(OCEL), and thus only the minimum-quality criteria are configurable. Both of these
algorithms were designed to work sequentially in a single thread.

ParCEL and ParCEL-Ex

ParCEL [23] parallelizes the learning process by creating a new worker to execute the
instructions at lines 9−26 in Algorithm 1 allowing it to immediately continue and spawn
multiple such workers, each responsible for refining a different concept. The maximum
number of concurrently running workers is one of the hyper-parameters. Besides that,
this algorithm does not support minimum-quality criteria and instead of trying to find
true solutions, its workers search for partial definitions, i.e., descriptions that cover
none or just a few of the negative examples and at least one positive example. The
maximum possible proportion of all negative examples covered by a partial definition
is ParCEL’s solution criterion. If a concept is marked as a partial definition, it is also

Concept Learning Using Refinement Operators 21

excluded from the set of refinements added to the search tree. Furthermore, rather than
returning the set of partial definitions (the solutions set in Algorithm 1) this algorithm
merges them together into a single disjunction, which we call a generalization process.
While focusing on partial definitions helps to fulfill the condition 3.2 from Definition
17, the subsequent generalization deals with the problem of satisfying the property 3.1
to some extent, as a partial definition alone often covers only a handful of positive
examples. Since disjunctions are introduced during generalization, the ρ operator is
configured so that it does not produce refinements with disjunctions.

ParCEL-Ex [24] is a modification of ParCEL that requires the partial definitions
to cover solely positive examples, so no solution criterion can be specified. Moreover,
ParCEL-Ex records counter-partial definitions as well, i.e., the partial definitions of
negative examples. Anytime a refinement is processed that is neither a partial nor a
counter-partial definition, the algorithm tries to combine this refinement with some of
the negated counter-partial definitions into a conjunction in order to create a partial
definition. By appending the negations of counter-partial definitions, all the negative
examples covered by any of these counter-partial definitions are removed from the set of
negative examples that particular refinement covers. Although the combination can be
postponed to happen after the entire search ends, the version 2 of ParCEL-Ex that we
decided to employ performs it on-the-fly as described above. This method is suitable
when a large search tree is expected to be generated, which definitely is our case based
on the conducted preliminary tests. Due to the use of negations during combination,
the ρ operator is further banned from producing refinement in which negated concepts
occur.

4 Data and Representation

Our aim is to characterize malware targeted at the family of Windows operating sys-
tems. Therefore, we begin this chapter with a brief overview of the Windows-specific
Portable Executable format. Then, we present the SOREL-20M dataset as the source
of malicious- and benign-software examples for our experiments. In the end, we dis-
cuss the PE Malware Ontology, which we used during data preprocessing that was
inevitable for us to be able to supply the learning algorithms with semantic input.

4.1 Portable Executable Files

The Portable Executable (PE) standard [5] defines a common format for executables
(EXEs), dynamic link libraries (DLLs), and object files in modern Windows operating
systems, starting with Windows NT. The PE format extends the ubiquitous Common
Object File Format (COFF) [22], initially introduced to unify the structure of exe-
cutable, object, and shared-library files in Unix-based operating systems. The basic
organization of a PE file is shown in Figure 4.1. We shortly describe its constituent
parts below.

The MS-DOS header is a legacy header added purely for compatibility with MS-
DOS 2.0 and newer, as well as earlier versions of Windows [7]. For this reason, we omit
the details about the information it contains.

The MS-DOS stub can be found only in PE image files, i.e., EXEs and DLLs. It is
an MS-DOS program which outputs a warning message saying that that image cannot
be run in DOS mode when a user tries to run a PE image in an MS-DOS environment.

The PE signature is a string of four bytes indicating that the file is an image file
in the PE format. This field is not present in PE object files.

The COFF file header contains details about the class of machines for which the
file is targeted, the total number of sections in the file, the size of the optional header
that follows, the file’s type (e.g., EXE or DLL), and more.

The optional header has received its name on the grounds of the fact that it
is used exclusively in image files. If present, this header provides us with further
information about the file, such as linker version, address of the entry point, image

23

24 Data and Representation

Figure 4.1: Simplified structure of a PE file.

base, data directories etc. Here, we focus on the data located in and referred to by data
directories since they are the most relevant for our use case. Each of these directories
act as a pointer to a table, a group of related tables, or a string with the actual data.
Normally, every table (or group) resides in a separate section. The contents of the
most notable tables are summarized in Table 4.1.

The array of section headers stores the key characteristics of all the sections in
the PE file. For every section, there is a dedicated header bearing information about
the section’s name, entropy (a degree of randomness in the section’s data), the type
of the data it contains (code, initialized data, uninitialized data), access permissions
(whether it can be read, modified, executed, or shared among multiple processes), etc.

4.2 SOREL-20M

The SOREL-20M dataset [14] is one of the first public large-scale datasets for static
malware analysis. This dataset is composed of almost 20 million samples amassed from
the beginning of 2017 until the middle of 2019, each representing either a malicious or
a benign PE file (EXE or DLL). Alongside PE metadata extracted directly from the
binary files, SOREL-20M contains format-agnostic data useful for malware analysis.

For each of the samples with PE metadata available (approx. 98% of all samples),
there is a JSON object holding all the information in the headers and data-directory
tables of the corresponding PE file, except for the actual certificates, fonts, graphics,
and other resources.

The format-agnostic data are provided for each sample. This data include:

• the date and time the file associated with a given sample was first detected,

PE Malware Ontology 25

Table 4.1: Contents of data-directory tables.

Table(s) Description of Contents

Import Tables identifiers of imported functions, constants, etc. and the
respective DLLs from which they should be imported

Export Tables public identifiers of exported functions, constants, etc. and their
respective addresses

Resource Table fonts, graphics and other file resources
Certificate Table certificates indicating that the file is digitally signed
Base Relocation
Table

pointers to addresses which need to be relocated if the image is
loaded at a base address different form the desired

Debug Table debug information (symbols, line numbers, strings, etc.)
TLS Table information on how to initialize and clean up thread-local storage

(TLS)1

• the total number of times the file was seen in the span of data collection, and

• for malicious binaries only, a list of malware categories into which it may belong,
such as adware, spyware or ransomware, as hinted by the results of behavioral
analysis.

Besides SOREL-20M, there are very few datasets for static PE-malware analysis, for
example, Microsoft Malware Classification Challenge Dataset [19], BODMAS [25], and
EMBER [1], the majority of which does not include such comprehensive information
about PE files extracted from headers. The EMBER dataset is an exception to this and
hence, the previous experiments were carried on data from EMBER. As we were looking
for an alternative source to validate the studied approach, we selected SOREL-20M for
being largely compatible with EMBER and relatively up to date, which together with
its extraordinary size allows for creating a realistic picture of the current state of the
PE-malware world with much of the diversity captured.

4.3 PE Malware Ontology

Since our approach uses concept learning requiring semantic input, the data from
SOREL-20M need to be first transformed into a knowledge base or, as in our case,
into an ontology. We decided to base this ontology on the PE Malware Ontology [21],

1Thread-local storage is a special kind of static (automatic) memory local to each thread. The
data in this memory are initialized before a thread starts and emptied on its termination.

26 Data and Representation

which defines a class hierarchy and both object- and data-property hierarchies2 suitable
for static malware detection. The main reason behind this choice is the fact that the
PE Malware Ontology is an extended and refined version of the ontology used in the
proof-of-concept work whose outcomes we aim to validate and that to the best of our
knowledge, no other relevant ontology for analysis of malicious software was published
at the time of conducting this research.

Figure 4.2 depicts the core structure of the PE Malware Ontology. Below, we
describe the class hierarchy and the available object properties by going through all
the most-generic classes (direct subclasses of owl:Thing).

Figure 4.2: Core structure of the PE Malware Ontology. Class names are enclosed in
rounded boxes. The fact that C is a direct subclass of D is represented by an empty
arrow beginning at C and pointing towards D. A free end of a subclass-relation arrow
indicates that there are more subclasses of that particular class which are not shown
in the figure. A filled arrow connects the domain of the object property whose name
is given above or next to that arrow to the property’s range.

PEFile. This class is meant to represent all instances of PE files that are in the
ontology. We distinguish between EXEs and DLLs, for which there are two separate
subclasses of PEFile – ExecutableFile and DynamicLinkLibrary, respectively.

FileFeature. The subclasses of the FileFeature class symbolize features of PE files
that are interesting from the perspective of malware analysis, such as, the presence
of a data directory (e.g., Resources and Relocations), the fact that the file’s entry
point lies within a non-executable section (NonexecutableEntryPoint), or that the
file contains COFF debug symbols (Symbols). For each of the features a given PE

2Here, by hierarchies, we mean the orderings induced by ⊑ on the sets of class names, object-
property names and data-property names, respectively.

PE Malware Ontology 27

file has, a link between the associated PEFile instance and the prototypical instance
of the relevant FileFeature subclass is created using the has_file_feature object
property.

Action. This class is the root of a three-level hierarchy of action-related classes. At
the first level, there is the class Action. The second level consists of the direct sub-
classes of Action, which can be conceived of as action categories, e.g., FileHandling
and Networking. Finally, the classes at the third level, i.e., the subclasses of the
action-category classes, represent individual actions PE files may take, especially those
that are potentially harmful, for example, FindFile and CreateSocket. The set of
actions to which a PE file has access is inferred from the list of imports. To indicate
that a PE file can perform a certain action, the corresponding PEFile instance and the
representative of that particular action are connected through the has_action object
property.

Section. In the PE Malware Ontology, each section of a PE file is also supposed
to be modeled as an instance. The role of the Section class is to group together all
these section instances. Similarly to PEFile, Section is further divided into three sub-
classes, CodeSection, InitializedDataSection, and UninitializedDataSection,
to differentiate between sections based on the type of data they contain. A PE file
(PEFile instance) is linked to its sections (Section instances) via the has_section

object property.

SectionFlag. Section flags are simply access permissions, for which there are ded-
icated subclasses of the SectionFlag class: Readable, Writable, Executable, and
Shareable. When a section has a particular flag, it is signified with the help of the
has_section_flag object property the same way the connections between PEFile and
FileFeature instances are created.

SectionFeature. The subclasses of SectionFeature enable us to record some pur-
portedly valuable attributes of a section, e.g., high entropy (HighEntropy). Once again,
the fact that a section has a given feature is signalized by defining a relationship between
the corresponding Section instance and SectionFeature instance (the only instance
of the matching SectionFeature subclass) through the has_section_feature object
property.

The object-property hierarchy consists only of the already presented properties, all
of which are direct subproperties of owl:topObjectProperty.

As mentioned earlier, there are also several data properties declared in the PE
Malware Ontology, for instance, to store a section’s name, exact value of entropy, or
the number of imported/exported symbols for a PE file. However, since we do not

28 Data and Representation

utilize the data properties throughout our experimentation, we will not discuss the
data-property hierarchy any further.

5 Corrections and Enhancements

Prior to beginning the experimentation described later in Section 6, we made several
modifications to the theoretical definition of the ρ refinement operator, as well as to
its implementation and the implementation of the examined learning algorithms in the
official distribution of DL-Learner1, to improve the performance of the learners and
resolve a couple of issues that arouse as we were performing preliminary tests. The
updated version of DL-Learner which we used in our experiments is accessible through
our GitHub repository2. In this chapter, we discuss the most pivotal changes.

5.1 Refinement Operator

5.1.1 At-Most Restrictions

After noticing some inexplicable differences in the accuracy of two logically equivalent
descriptions reported by OCEL (for the definition of accuracy, see Section 6.2), we
found out that the ρ refinement operator was handling at-most restrictions inappro-
priately. More specifically, we realized that the operation

≤ n r.D ⇝≤ n r.E, (5.1)

for any concept D, any simple role r, n ∈ N, and E ∈ ρar(r)(D), does not produce
downward refinements. Moreover, this operation actually generates upward refinements
if we assume that E ⊑ D, which is expected to be satisfied for a downward refinement
operator like ρ. We verify our claims by proving Lemma 1 below.

Lemma 1. Let L be a DL language which allows cardinality constraints and K be a
knowledge base in L. Let n be a natural number, r ∈ Rs be a role, and D,E be such
concepts from C that E ⊑ D. Then, the operation

≤ n r.D ⇝≤ n r.E, (5.2)

is an upward refinement operation.
1https://github.com/SmartDataAnalytics/DL-Learner/releases/tag/1.5.0
2https://github.com/mousetom-sk/DL-Learner/tree/v3

29

https://github.com/SmartDataAnalytics/DL-Learner/releases/tag/1.5.0
https://github.com/mousetom-sk/DL-Learner/tree/v3

30 Corrections and Enhancements

Proof. Let L be a DL language which allows qualified number restrictions and K be a
knowledge base in L. In order to prove that (5.2) is an upward refinement operation,
it is now sufficient to show that for all concepts D,E ∈ C such that E ⊑ D, all roles
r ∈ Rs, and any n ∈ N, the proposition ≤ n r.D ⊑ ≤ n r.E holds, i.e., that for every
model I of K it is also true that

I ⊨≤ n r.D ⊑≤ n r.E. (5.3)

Therefore, let D and E be arbitrary concepts in C with E ⊑ D, let r ∈ Rs be an
arbitrary role, and let n be a natural number. Let us further take an arbitrary model
I of K. As we aim to prove (5.3) which holds if and only if (≤ n r.D)I ⊆ (≤ n r.E)I ,
we first construct the sets (≤ n r.D)I and (≤ n r.E)I based on the definition of the
interpretation function:

(≤ n r.D)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}| ≤ n},

(≤ n r.E)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI}| ≤ n}.

Taking into account our premise that E ⊑ D, we can also conclude that for any b ∈ ∆I ,
it has to be true that if b ∈ EI , then b ∈ DI , since E ⊑ D iff EI ⊆ DI . Consequently,
the inclusion

{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI} ⊆ {b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}

and the corresponding inequality

|{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI}| ≤ |{b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}|

must be satisfied for any a ∈ ∆I . Thus, when an individual a ∈ ∆I belongs to
(≤ n r.D)I , it has to be an element of (≤ n r.E)I as well, because given such a ∈ ∆I ,
from our previous observations it follows that

n ≥ |{b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}|

≥ |{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI}|.

This brings us to the desired conclusion that (≤ n r.D)I ⊆ (≤ n r.E)I .

Refining at-most restrictions through the operation (5.1) is thus not in accordance
with the intention to design ρ as a downward refinement operator. To cope with this
problem, we redefined this operation as follows:

≤ n r.D ⇝≤ n r.(¬E), (5.4)

i.e., we inverted the direction in which the constrained concept is refined (from down-
wards to upwards). With the help of Lemma 1, it can be easily shown by the principle

Refinement Operator 31

of structural induction for the selected language L that when we change (5.1) to (5.4)
in the definition of ρ, the ρ operator becomes a downward refinement operator. The
key is to leverage the fact that the validity of Lemma 1 also implies that the inverse of
(5.2) is an operation of specialization.

Of course, this modification also requires the refinement process of at-most restric-
tions to start from the concept ≤ n r.⊥ instead of ≤ n r.⊤ as in Definition 22.

5.1.2 Negations And Universal Quantification

Studying the definition of the ρ refinement operator more carefully, we later detected
at least two other places for potential improvement.

Fristly, we prevented the operator from generating the concept-negation refinements
having the form ¬C, where C ∈ C is a super-concept of the domain in which the
refinement is performed, for instance, the range of a role. Clearly, this does not decrease
the expressive power of the operator because such negations cannot cover any individual
from the given domain, yet it helps to reduce the number of nodes in the search tree.

Secondly, we decided to shorten the refinement path from the top concept to the
universal quantification concepts of the following kind: ∀r.⊥. Originally, a concept
∀r.C, with C ∈ NC a most-specific concept name, i.e., one for which no D ∈ NC exists
such that D ⊑ C, had to be reached in order to produce ∀r.⊥ (see Definition 22). Pro-
ceeding in this manner, we could observe a phenomenon that ∀r.⊥ is never introduced
during refinement, which may happen if, for example, the universal quantifications
with most-specific concept names are not promising enough to be further refined. We
think that ∀r.⊥ should be searched irrespective of whether a universal quantification
of r with some most-specific concept name is valuable, as it bears a slightly different
meaning, e.g., in our context, ∀has_section_feature.⊥ represents all sections with
none of the special features. Contrarily, a concept of the form ∀r.⊥ could also quite
unnecessarily appear multiple times in a search tree because it was a refinement of
every concept ∀r.C, where C is most-specific. To address these issues, we redefined the
ρ operator in a way that makes ∀r.⊥ a direct refinement of ∀r.⊤.

5.1.3 “Some-Only” Rule

As mentioned in Section 3.2.1, previously, the "some-only" rule allowed the generation
of a universal quantification only if put in a conjunction with an existential quantifi-
cation of the same role.

We extended this rule by permitting a universal quantification in conjunction with
an at-least restriction as well since semantic-wise, at-least restrictions are just more
constrained existential quantifications. If the "some-only" rule is applied, this relax-

32 Corrections and Enhancements

ation thus opens the way for the algorithms to more finer concepts, which may also be
more precise descriptions, while preserving the cautiousness discussed in Section 3.2.1.

In addition, we found out that these "some-only" checks were not performed consci-
entiously in the DL-Learner implementation. For example, the top concept refinements
of the form ∀r.C would be generated despite the activated "some-only" rule. As this
erroneous behavior was canceling much of the efforts to prevent over-fitting, we felt
compelled to correct it.

5.2 Reasoner Component

5.2.1 Cardinality Constraints in the Closed-World Reasoner

Redefining the ρ operator as suggested in Section 5.1.1 did not settle all the problems
with accuracy. We discovered this while comparing the output of OCEL and CELOE,
which disagreed in the accuracy of the same concepts containing at-most restrictions.
After further investigation, we came to the conclusion that the problem was caused
by the employed closed-world reasoner, which was not always answering the queries
asking whether a certain individual belongs to the extension of a given concept with
cardinality constraints correctly due to simple programmatic errors.

This problem was fixed by rectifying the closed-world reasoner.

5.2.2 Concurrent Closed-World Reasoner

Experimenting with the parallel algorithms, we noticed that when opting for the ex-
plicit method of concept-disjointness checks, some worker threads terminated due to an
unexpected concurrent modification of the closed-world reasoner’s internal data struc-
tures. We deduced that this was a consequence the fact that all workers were consulting
the same reasoner instance.

To resolve this issue, we first tried creating one standalone copy of the closed-world
reasoner for each worker but this solution was causing a bottleneck in the early phases
of learning since each copy had to be initialized separately. As a remedy to this prob-
lem, we thus eventually implemented a concurrent closed-world reasoner maintaining a
pool of the original (base) closed-world reasoners sharing the read-only internals whose
construction demands the majority of time during initialization.

5.3 Heuristic in OCEL

As mentioned in Section 3.2.2, OCEL uses a heuristic to determine which parts of
the search space to explore first. The role of one undocumented component of this

ParCEL and ParCEL-Ex 33

heuristic function was to encourage the algorithm to refine concepts containing ∀r.⊤
or ≤ n r.⊤ by artificially bettering their heuristic score. Such concepts might be
interesting for further refinement due the fact that ∀r.⊤ is logically equivalent to ⊤
and that ≤ n r.⊤ is usually too broad, which means that on their own, they provide no
or only little information. In addition, ∀r.⊤ and ≤ n r.⊤ were the starting points on the
paths to all universal-quantification and at-most-restriction refinements for the role r,
respectively, so, naturally, there is a greater potential to replace these less informative
expressions with some more specific ones through refinement. A clear advantage of
their refinement is that we can gain the extra expressivity without much increase in
the length and complexity of the whole concept.

However, the implementation of this component of the heuristic was not determin-
istic and the adjustment to the final score did not grow with each occurrence of any
of the above two expressions in the evaluated concept, which we consider crucial for
a proper assessment of a concept’s capacity to specialize. Moreover, after the changes
presented in Section 5.1.1, it makes more sense to favor ≤ n r.⊥ rather than ≤ n r.⊤,
as it is the former that now begins every refinement chain of at-most restrictions on r.

Hence, we altered this part of OCEL’s heuristic to ensure that its output is de-
terministic, that the final score correction accumulates with the increasing number
of appearances of the expressions in question, and that it supports the refinement of
concepts containing ≤ n r.⊥ instead of those with ≤ n r.⊤.

5.4 ParCEL and ParCEL-Ex

5.4.1 Same-Length Refinements

When refining a concept expression via the ρ operator, both parallel algorithms, or at
least their implementations in DL-Learner, required the direct refinements to be longer
than the expression from which they resulted. Apparently, this was not the intention of
the authors, since it deprives the algorithms of many valuable concepts. For instance,
the descriptions of the form ∀r.C, with C ̸= ⊤, were completely unreachable with this
restriction imposed because the only path to them leads through ∀r.⊤, of which they
are direct refinements but with no greater length.

We resolved this issue by allowing ParCEL and ParCEL-Ex to accept also those
direct refinements whose length is equal to the length of the refined concept.

5.4.2 Accuracy Calculation in ParCEL

The process of calculating the accuracy of a concept expression for the purposes of
ParCEL’s heuristic and determining if the concept is a partial definition was originally

34 Corrections and Enhancements

taking into account the coverage of the hitherto found partial definitions as well. More
specifically, the positive examples covered by the already learned partial definitions
were excluded from the set of positive examples considered during the calculation.

We suppose that the rationale behind this change to the standard definition of
accuracy was to promote those expressions that can potentially contribute to the overall
coverage of all positive examples the most, which is a reasonable goal to strive for.
Nevertheless, the way this objective was attained brought a bit of uncertainty into
the selection of concepts for refinement, possibly developing a preference for otherwise
less suitable concepts, as under these circumstances, the accuracy reflects not only the
actual quality of a concept from the global viewpoint, but also when it was evaluated.
This would require us to recompute the accuracy of each searched concept every time
a new partial definition is found to always have an up-to-date measurement of their
aptitude for refinement. Despite that, the calculation was performed only at the time
of the discovery of a given concept by virtue of being a resource-intensive task.

Therefore, we decided to re-implement the procedure of accuracy calculation so that
the basic definition, provided in Section 6.2, is used. In order to draw the algorithm’s
attention to the promising concepts, we added the following rules. When a node of the
search tree is revisited to seek for new refinements, we first check whether the concept
it represents still covers at least one positive example that is not an instance of any of
the already found partial definitions. If no such example exists, the node is removed
from the search tree and the corresponding concept is never refined again. Likewise,
a description now needs to cover strictly more of the yet uncovered positive examples
than uncovered negative examples in order to be deemed a partial definition.

5.4.3 Acceleration of Accuracy Calculation

Previously, the accuracy of a concept was always calculated from scratch in ParCEL
and ParCEL-Ex. Inspired by the implementation of OCEL, we sped up this calculation
by keeping and exploiting the information on which positive and negative examples are
covered by the searched concept expressions. These data are stored in the respective
nodes of the search tree. To compute the accuracy of a given concept’s refinement, it
is then sufficient to determine what subsets of positive and negative examples covered
by the original concept are also covered by that particular refinement because we know
that ρ is a downward refinement operator, and thus each refinement can cover only the
examples covered by its direct predecessor. In combination with other enhancements,
this modification enabled the parallel algorithms to triple the number of concept ex-
pressions they were able to search per unit of time, which also forced us to devise a
compressed representation of the sets of the covered examples to fit the entire search
tree into the available memory.

ParCEL and ParCEL-Ex 35

Motivated by this rise in the number of searched expressions, we tried to improve
the performance of CELOE in a similar manner. However, our experiments showed
that CELOE can barely benefit from the accelerated accuracy calculation and that the
necessary compression and decompression sometimes even outweighs the effects of the
more efficient computation of accuracy in terms of time consumption. We assume that
this stems from the fact that CELOE endeavors to find a single description as a whole,
whereas the parallel algorithms search for partial definitions that often cover signifi-
cantly less examples so much more time is saved with this optimization of accuracy
calculation. OCEL, which uses this technique out of the box, copes with the problem
of the enlarged search tree by means of periodic branch pruning in place of compres-
sion. Since this would be a quite fundamental intervention in the implementation of
CELOE, we eventually decided not to alter the way CELOE computes accuracy.

5.4.4 Search Tree Organization

Although the change we discuss in this section is a bit more technical when compared to
the ones mentioned above, we find it important to present it here due to its surprisingly
immense impact despite its simplicity.

The problem we are about to describe consisted in how the search tree was accessed
and maintained by ParCEL and ParCEL-Ex. Both investigated parallel algorithms use
Java’s ConcurrentSkipListSet to store all the nodes of the search tree in the order
determined by the values assigned to the concepts they embody by their heuristics.
Previously, each time ParCEL or ParCEL-Ex was ready to refine a concept expression
it polled the last element of this set – the node with the currently best concept according
to the heuristic.

In our efforts to make the search tree representation more compact, induced by the
modification proposed in Section 5.4.3, we noticed that the official documentation for
ConcurrentSkipListSet emphasizes that ascending iterators over this data structure
allows faster access than the descending iterators. Therefore, we closely examined the
difference in the time required to empty a set of this type by repeatedly polling the last
element versus the first. As retrieving the first element proved to be on average almost
two times faster during our tests, we reversed the order of nodes in the search tree and
instructed the algorithms to poll the first element instead of the last. It also has to
be noted that storing the elements in the reversed order does not affect the insertion
time.

6 Experiments

In this chapter, we describe our experimentation process in detail. We expand upon
the conditions under which we evaluated the performance of the learning algorithms,
including the input data we prepared, what methodology we used for performance
evaluation, and what configurations of the algorithms were tested.

6.1 Test Cases and Ontology Preparation

We performed our experiments in three settings differing in the nature of input data.

6.1.1 Test Case 1 – Mixed Data

In the first test case, we studied the capabilities of the learning algorithms in the most
general situation where no prior categorization of samples takes place.

For the purposes of this test case, we prepared four mutually disjoint datasets.
Each dataset consists of 1000 samples evenly split between malicious and benign, as
well as EXEs and DLLs (see Table 6.1). These samples were selected from the entire
SOREL-20M dataset at random. The decision on dataset size was largely affected
by the time and memory requirements of the algorithms and the resources we had
at our disposal. Augmenting the PE Malware Ontology by adding the knowledge
about the extracted samples, we then created the ontology that was later provided
to the learning algorithms together with the information on which samples should be
treated as positive and which as negative – in our context, malware and benign-software
samples, respectively.

Table 6.1: Number of malicious/benign samples by file type in the mixed datasets.

File Type Malicious Benign
EXE 250 250
DLL 250 250

37

38 Experiments

In reality, the number of benign-software samples exceeds the number of malware
samples by an order of magnitude, usually, 80 benign binaries are observed per each
piece of malware that appears [18]. In spite of that, we were encouraged to balance
the datasets in this regard because with a dataset of 1000 samples, ensuring even a
10% share of malware does not have to sufficiently motivate the algorithms to learn as
in such a case, it is still enough to precisely cover a few malicious samples to achieve
a favorable heuristic score due to high accuracy (we define accuracy in Section 6.2).
Moreover, our goal is to also find descriptions that can discriminate malware from
benign software in general, which is hardly possible when we give the algorithms only
a limited amount of information on features of malicious binaries, lacking diversity.

Likewise, we did not want the algorithms to learn that the chance a file of a certain
type is harmful is too low to bother describing it. To this end, the one-to-one ratio of
EXEs to DLLs among both the malicious and benign samples was established, which
we think was particularly important for the objectivity of the obtained results. We
hold this opinion because of our experience with undesirable results in an unbalanced
setting. Initially, we constructed one dataset of 500 malicious and 500 benign samples
randomly drawn from SOREL-20M without any restrictions on the proportion of EXEs
to DLLs. Inspecting this dataset, we discovered that only about 20% of all samples
were DLLs and that malicious DLLs barely accounted for 10% of all DLLs in this
dataset. The non-parallel algorithms were thus able to achieve high accuracy, recall,
and F1 score (see Dafinition 24 in Section 6.2) but merely in the wake of the scarcity
of malicious DLLs and the fact that the expressions they found were covering mostly
EXEs.

Finally, it has to be noted that we also added a number of axioms to the resulting
ontology to explicitly express the obvious fact that each class in the PE Malware
Ontology is disjoint from every other class therein, with the exception of the subclasses
of the class Section. We refrained from asserting disjointness here because we noticed
that it is possible to attach multiple content-type labels to a PE-file section. As this
is unusual, it may be an indication of malware as well. We further clarify why we
introduced these class-disjointness axioms in Section 6.3.

6.1.2 Test Cases 2 and 3 – Separation of Concerns

The test cases number 2 and 3 are tightly related to one another because in the former,
we let the algorithms to focus exclusively on EXE binaries while in the latter, they
were only confronted with DLLs. We expected that learning the attributes of malicious
EXEs and DLLs separately could yield better results as finer descriptions might be
found. Furthermore, having to characterize both at once may overwhelm especially
the non-parallel algorithms, i.e., OCEL and CELOE, which try to find a description

Evaluation 39

as a whole rather than producing it in a distributed manner, for example, through
partial definitions. OCEL and CELOE thus almost necessarily have to search for
disjunctions with one disjunct per file type but such concepts are inherently longer and
less attractive for the learners. Additionally, since we are able to determine whether
a file is an EXE or DLL directly by inspecting the file’s metadata, we consider first
finding out a file’s type and then using a type-specific classifier a feasible approach to
malware detection.

For each of these two test cases, we again created four non-overlapping datasets
comprising 1000 samples. As mentioned above, each dataset for the second test case
contains only the samples representing EXE files, of which 500 are malicious and 500

benign. Similarly, each dataset prepared for the third test case consists of 500 malicious
and 500 benign DLL samples. The calibration and the first validation dataset for both
of these test cases were constructed from the samples present in the datasets for the first
test case. The other validation datasets are composed of randomly selected samples
from the remainder of SOREL-20M.

The final ontologies provided to the learning algorithms were created as previously,
i.e., by combining the PE Malware Ontology with sample data and class-disjointness
axioms.

6.2 Evaluation

In each test case, we first investigated various configurations of the learning algorithms
to optimize some hyper-parameter values as we describe in Section 6.3. Among the
four datasets prepared for the corresponding test case, we reserved one (calibration)
dataset for this stage, on which the performance of all configurations was evaluated.
Then, we selected the overall best configurations of each algorithm and evaluated their
performance on the other three (validation) datasets for that particular case. The
purpose of this further validation was to counteract the smaller dataset volume and
verify that similar results can be produced on broader range of data.

For the evaluation of each configuration, whether during the optimization or the
subsequent validation stage, we employed k-fold stratified cross-validation [10]: With
the dataset partitioned into k subsets (folds) of equal size preserving the original pro-
portions of selected classes, k experiments are performed, each time leaving a different
fold aside as the test set while using the remaining k − 1 folds as the training set. We
chose k = 5 and our stratification resided in retaining the ratio of malicious samples to
benign samples, as well as EXEs to DLLs within these categories in the first test case.

Experiments were run on two identical Ubuntu 20.04-1 machines, both equipped
with a 12-core AMD Ryzen 9 5900X CPU and 64 GB of RAM. The duration of each

40 Experiments

experiment was limited by a specified amount of time, which was also the only termina-
tion criterion used apart from finding a perfect solution (see Definition 17). For OCEL
and CELOE configurations, we fixed this learning timeout to 2 hours of user time,
i.e., the actual time the CPU spent executing the corresponding process. This usually
corresponds to approx. 2 real-time hours as both OCEL and CELOE are intended to
work in a single execution thread. For ParCEL and ParCEL-Ex configurations, the
time limit was set to 24 hours of user time in the first test case and then reduced to 12

hours in the second and third test case on the grounds of our observations described
in Section ... Since we allowed a maximum of 12 concurrent workers to be utilized
by the parallel algorithms (see Section 6.3) and conducted the experiments on 12-core
machines, 24 hours of user time should amount to roughly 2 hours of real time here.
The initial time limits were determined after some preparatory tests which showed that
the above values are generous enough for the algorithms to unleash their potential. We
decided to keep the time measurement relative to the utilization of CPU to ensure
fairness regardless of the system load.

For evaluation purposes, we used the standard metrics [12], i.e., accuracy, precision,
recall, specificity, false-positive (FP) rate, false-negative (FN) rate, and F1 score, which
can be defined in the context of concept learning as follows.

Definition 24 (Evaluation Metrics). Let L be a DL language and K be a knowledge
base in L. Let E+ ⊆ NI be a set of positive examples and E− ⊆ NI be a set of negative
examples, with E+ ∩ E− = ∅. Let C ∈ C be a concept expression, then

accuracy(C) =
|TP|+ |TN|
|E+|+ |E−|

, FP rate(C) =
|FP|
|E−|

= 1− specificity(C),

precision(C) =
|TP|

|TP|+ |FP|
, FN rate(C) =

|FN|
|E+|

= 1− recall(C),

recall(C) =
|TP|
|E+|

, F1 score(C) = 2 · precision(C) · recall(C)

precision(C) + recall(C)
,

specificity(C) =
|TN|
|E−|

,

where

TP = {a ∈ E+ | K ⊨ C(a)}, FP = {a ∈ E− | K ⊨ C(a)},

TN = {a ∈ E− | K ⊨ ¬C(a)}, FN = {a ∈ E+ | K ⊨ ¬C(a)}.

From the success measures in Definition 24, we decided to pay special attention to
FP rate and precision due to our preference for strong descriptions of malware even at
the cost of, e.g., lower recall, meaning that only a certain category of malicious software
is covered. This problem may be simply mitigated by repeating the learning process

Tested Configurations 41

multiple times in succession while always removing the already covered instances of
malware, or even better, labeling them as negative examples. All the learned descrip-
tions can be then combined into a single disjunction uniting the sets of malware samples
they cover separately.

6.3 Tested Configurations

We identified several hyper-parameters of the studied learning algorithms that we pre-
sumed can potentially impact their performance. These parameters were subject to
optimization throughout our experimentation in each test case. Before we delve into
the details, we present the modifications we made to the default configuration of the
algorithms which were applied in all experiments.

Firstly, we instructed the algorithms to seek refinements exclusively in the domain
of PEFile, i.e., to consider only those class expressions which are subsumed by PEFile

when searching for solutions. This means that the expressions which cannot charac-
terize any (malicious) PE file, such as CodeSection ⊓ ∃has_section_flag.Readable,
do not appear in the search space on their own, which helps the algorithms to learn
more efficiently. The default for both the domain of refinement and the start class is
owl:Thing, however, we did not alter the latter to allow the generation of disjunctions
at the top-most level. Next, we changed the process of determining whether two classes
are mutually disjoint form being instance based to being based on explicit assertions,
since we think that class disjointness should not be deduced from the instance data, but
rather from the general knowledge about the classes, hence also the need for the sup-
plementary class-disjointness axioms. To make the learning easier, we forbade the use
of data properties as mentioned earlier. For the purposes of instance checking, OCEL
and CELOE were provided with the corrected closed-world reasoner, while ParCEL and
ParCEL-Ex were requested to consult the new concurrent version of this reasoner. We
set up both reasoners to use the standard semantics of universal quantification because
by default, ∀r.C is interpreted as ∀r.C ⊓ ∃r.C, resulting in an implicit application of
the “some-only” rule, with which we decided to experiment during the hyper-parameter
optimization. In order to spare computing time, we disabled the simplification of class
expressions in the set of solutions based on logical equivalence, for example, (C⊔D)⊓E,
where C ⊑ D, would be transformed to D⊓E. This is normally performed by CELOE
to output shorter and less complicated descriptions. Lastly, ParCEL and ParCEL-Ex
were limited to 12 concurrent workers to fully exploit the benefits of parallelization
w.r.t. the available resources (the number of CPU cores on the evaluation machines
described in Section 6.2). With regard to this choice, we configured the concurrent
closed-world reasoner to maintain a pool of 13 base reasoners, so that there is always

42 Experiments

at least one idle reasoner ready to handle incoming queries.
Now, we look at the hyper-parameters with which we were experimenting.

Noise. Noise represents the minimum-quality criteria for OCEL and CELOE, the
solution criteria for ParCEL, and the termination criteria for ParCEL-Ex. The respec-
tive roles of these criteria were discussed in Section 3.2.2. In CELOE, noise directly
translates to an upper bound for the percentage of the false-negative rate of a class
expression that should be considered for further refinement, i.e., for such expressions,
following must hold: FN rate < noise/100. OCEL’s formula is more intricate but can
be simplified to FN rate < 2 · noise/100 in our case. For ParCEL, the noise value is
the maximum percentage of the FP rate of a partial definition, so any expression has
to satisfy the inequality FP rate ≤ noise/100 to be accepted as a partial definition.
ParCEL-Ex treats noise as the FP-rate percentage of the entire disjunction of partial
definitions which is enough to reach to terminate the learning process. Since we de-
cided to stop learning after a specified a period of time, we did not optimize the value
of noise for ParCEL-Ex, leaving it always at 0. Tweaking the value of noise, our goal
was to optimize the level of FP rate in combination with other metrics.

Use of Negations. By means of this parameter, we can control the use of nega-
tions in the generated class expressions. Disallowing negations not only narrows
the search space, but we hypothesized that it may also encourage the algorithms to
find expressions of higher quality, i.e., ∃has_action.(AddUser ⊓ Encrypt) rather than
∃has_action.(¬DeleteUser), and reduce the number of negative test examples clas-
sified as positive, which the negated expressions are more likely to cover. Even though
ParCEL-Ex was originally designed to work with negations disabled due to the intro-
duction of counter-partial definitions, we studied the effects of enabling them on the
performance of ParCEL-Ex as well on account of the fact that ParCEL and ParCEL-Ex
use the same heuristic, which is optimized for finding partial definitions only.

“Some-Only” Universal Quantification. In spite of the fact that the default be-
havior is to perform “some-only” checks, which could prevent the algorithms from
over-fitting, we theorized that deactivating this rule might give the algorithms access
to valuable parts of the search space. For example, it might be the case that an ex-
pression of the form ∀r.C alone generalizes well, i.e, that the individuals which do not
have an r-filler are mostly or exclusively positive examples. Hence, by forcing such
an expression to appear only in conjunction with an existential quantification or an
at-least restriction on r, we loose the ability to explore loads of promising descriptions.

Restrictions on Cardinality Constraints. We experimented with two parame-
ters restricting the construction of cardinality constraints – allowedRolesInCardinal-
ityRestrictions and maxCardinalityLimit. With the former, we can define the set of
properties that are allowed to be used to produce cardinality constraints. The latter

Tested Configurations 43

represents an upper limit for the quantity in at-most restrictions. Our goal was to guide
the search towards more explicit and simpler descriptions via these two parameters,
respectively.

For example, the expression ≥ 3 has_action.FileHandling is a relatively vague
characterization of a PE-file category and this applies to a lot of other cardinality-
constraint expressions on any of the available object properties in the PE Malware
Ontology, except for has_section, which we view as a relation where cardinality natu-
rally arises, since a PE file is often composed of multiple sections with different contents.
Therefore, we investigated whether allowing only the has_section object property to
be constrained via cardinality constraints (this option is hereafter also referred to as
HS) enables the algorithms to discover more specific descriptions, which would also
justify our conjecture that cardinality constraints on other properties merely distract
the learners.

Similarly, we assumed that for an at-most restriction of the form ≤ n r.C, where
n ≥ 2, to be a decent description, C needs to be fairly complex. Moreover, at-most
restrictions in general rather prohibit individuals from having too many properties, but
the PE Malware Ontology was clearly developed to characterize malware by listing the
features that make malware distinct from benign software. Nonetheless, expressions
like ≤ 1 r.(C ⊔ D) ⊓ ∃r.(C ⊔ D) concisely mimic the standard logical exclusive or,
which may be convenient in some situations. To reconcile these two aspects of at-
most restrictions in our efforts to focus on simpler expressions, we tried limiting the
maximum quantity in at-most restrictions to 1 (hereafter also abbreviated as M1).

However, neither of these two parameters was included in the official distribution
of DL-Learner and the support for them was implemented by us, taking an inspiration
from the existing parameter for limiting the quantity in all cardinality constraints.

In order to test as much reasonable combinations of values for the aforementioned
hyper-parameters, we split the experimentation in each test case into three phases. At
the end of each phase, the best configurations of each algorithm were chosen to proceed
to the next phase.

In the first phase, we optimized the selection of noise. For OCEL, we started with
the value of 5, which we were gradually increasing by 5 until we stopped at the noise of
25. This translates to the range of admissible minimum recall on the training set from
0.9 to 0.5 (see the part describing the noise parameter). To align CELOE configurations
with those of OCEL in terms of the tested values of minimum recall, the first, the step,
and the last value for CELOE were 10, 10, and 50, respectively. We did not try to set
the minimum recall above 0.9 or below 0.5 as we deemed such a high recall to be a too
strict criterion and such a low recall to be unacceptable. With ParCEL, we tried the
noise values of 0, 1, 2, and 3 since for ParCEL, noise is just an upper bound for the FP

44 Experiments

rate of a single partial definition on the training set, meaning that the final FP rate
can easily grow when they are all combined. Although we aimed to minimize FP rate,
we experimented with higher values of noise to allow for a more loose representation
of training data and perhaps better generalization.

The second phase was devoted to investing the effects of disabling negations and
“some-only” checks on the overall performance. Both were enabled in the first phase
and here, we tested all the remaining combinations.

In the last phase, we used the two newly-added parameters to control the generation
of cardinality constraints through either the HS or the M1 rule. These restrictions on
cardinality constraints were not applied in the previous phases.

We decided to optimize the selected hyper-parameters in this order based on our
experience with what interdependencies there are between the individual parameters
from the perspective final performance, showing that the value of noise is the most
crucial.

7 Results

After describing our experimentation process, evaluation methodology, and the out-
comes we expected, in this chapter, we share the results we obtained throughout the
optimization and validation in each of the three arranged test cases discussed in Section
6.1.

All tables of results in this chapter adhere to the following format. In the columns
for evaluation metrics, we give the final scores represented as the average value ± the
standard deviation across all 5 iterations of the cross-validation. For test data, the
tables contain the score for each of the success measures from Definition 24, except
for the FN rate and specificity that can be easily computed from recall and FP rate,
respectively. For training data, we present only the final accuracy as the value for this
metric is one of the main components of the heuristics guiding the studied algorithms.
The Configuration column describes to what configuration of which algorithm the
scores in a particular raw belong in the form algorithm[noise/use of negations/“some-
only” checks/restrictions on cardinality constraints]. The symbols T, F, and “-” in a
configuration description mean enabled, disabled, and none, respectively.

The provided accuracy-against-time and FP-rate-against-time plots display the av-
erage score of the most accurate description on the training set discovered until a given
point in the user-time space. For brevity, we do not present the learning progression
of every configuration in the main text, but all are available in Appendix ...

7.1 Test Case 1

In this section, we first go through the respective phases of optimization. Then, we
summarize the validation results and present some examples of learned descriptions.

7.1.1 Noise Optimization

OCEL and CELOE

The evaluation results of the final descriptions found by OCEL and CELOE config-
urations in the first phase of optimization are displayed in Table 7.1. We see that

45

46 Results

in general, it holds that the higher the noise, the lower the FP rate, which we also
expected, since allowing the algorithms to cover less positive examples, i.e., to reach
lower recall, enables them to find more specific descriptions. Moreover, FP rate was
decreasing at a slightly faster pace than recall on average, leading to a considerable
improvement in precision, although not enough to offset the lowering recall (see the F1
scores in Table 7.1). Interestingly, setting the value of noise to 50 caused CELOE to
behave erratically, producing results comparable to those achieved by CELOE at the
noise of 30 but with much higher variance. This may indicate that there is an inflec-
tion point between the values 40 and 50 beyond which the noise becomes irrelevant for
CELOE in these conditions, forcing it to determine minimum-quality criteria by itself.
Looking at the final results, we can also conclude that OCEL and CELOE configura-
tions with the matching lower bounds for recall seemed to perform very similarly, of
course, with the exception of CELOE[50/T/T/-].

The learning progression of OCEL and CELOE configurations in terms of accu-
racy is outlined in Figures 7.1 and 7.2, respectively. Examining these figures, we can
notice that OCEL configurations were consistently getting towards more accurate de-
scriptions, whereas CELOE configurations reached their maximum much quicker. We
assume that this is an implication of CELOE’s endeavor to search for the shortest de-
scriptions possible, making it hard to achieve major improvements in the later phases
of learning, when more complex expressions are generated.

Since we decided to put extra emphasis on FP rate, we analogously studied how the
algorithms performed with respect to this metric. Figures 7.3 and 7.4 show that the
progression of FP rate on the test set copied the progression on the training set, which
signalizes that both OCEL and CELOE where able to eliminate negative examples
equally well in the training and the unseen test data. However, Figure 7.3 also reveals
that the OCEL[25/T/T/-] configuration over-fit, reaching the lowest FP rate quite
early and then almost doubling it until the end.

Prioritizing low FP rate, OCEL[20/T/T/-], OCEL[25/T/T/-], CELOE[30/T/T/-],
and CELOE[40/T/T/-] were chosen to proceed to the next phase. We decided to
pick two configurations of each algorithm to ascertain that a configuration with a
better noise setting, performance-wise, cannot be later surpassed by a configuration
performing worse at first.

ParCEL and ParCEL-Ex

Optimizing the noise value for ParCEL, we likewise obtained results that are in ac-
cordance with our intuition. As we see in Table 7.2, any increase in noise negatively
affected ParCEL’s performance in every aspect apart from recall, so no improvement
in generalization occurred. The lowering precision and the fact that the test accuracy

Test Case 1 47

Table 7.1: Test Case 1: OCEL and CELOE Noise Optimization.

Configuration
Training Test

Accuracy Accuracy Precision Recall FP Rate F1 Score
OCEL[5/T/T/-] 0.72± 0.01 0.70± 0.04 0.64± 0.03 0.91± 0.04 0.51± 0.04 0.75± 0.03

OCEL[10/T/T/-] 0.74± 0.00 0.75± 0.03 0.72± 0.03 0.82± 0.03 0.32± 0.05 0.76± 0.03

OCEL[15/T/T/-] 0.74± 0.01 0.71± 0.02 0.73± 0.02 0.68± 0.03 0.25± 0.03 0.70± 0.02

OCEL[20/T/T/-] 0.73± 0.01 0.72± 0.02 0.76± 0.04 0.66± 0.07 0.21± 0.06 0.70± 0.04

OCEL[25/T/T/-] 0.72± 0.00 0.70± 0.01 0.78± 0.03 0.56± 0.06 0.16± 0.04 0.65± 0.03

CELOE[10/T/T/-] 0.70± 0.01 0.69± 0.03 0.63± 0.02 0.94± 0.04 0.55± 0.02 0.75± 0.03

CELOE[20/T/T/-] 0.73± 0.01 0.72± 0.04 0.69± 0.03 0.80± 0.05 0.35± 0.03 0.74± 0.04

CELOE[30/T/T/-] 0.74± 0.00 0.71± 0.03 0.71± 0.03 0.72± 0.07 0.29± 0.05 0.71± 0.04

CELOE[40/T/T/-] 0.74± 0.00 0.71± 0.02 0.76± 0.03 0.63± 0.08 0.20± 0.06 0.69± 0.03

CELOE[50/T/T/-] 0.73± 0.01 0.73± 0.04 0.74± 0.06 0.74± 0.10 0.27± 0.10 0.73± 0.05

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

OCEL[5/T/T/-]
OCEL[10/T/T/-]
OCEL[15/T/T/-]
OCEL[20/T/T/-]
OCEL[25/T/T/-]

(a) Training accuracy.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

OCEL[5/T/T/-]
OCEL[10/T/T/-]
OCEL[15/T/T/-]
OCEL[20/T/T/-]
OCEL[25/T/T/-]

(b) Test accuracy.

Figure 7.1: Test case 1: OCEL noise optimization – Accuracy progression.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CELOE[10/T/T/-]
CELOE[20/T/T/-]
CELOE[30/T/T/-]
CELOE[40/T/T/-]
CELOE[50/T/T/-]

(a) Training accuracy.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CELOE[10/T/T/-]
CELOE[20/T/T/-]
CELOE[30/T/T/-]
CELOE[40/T/T/-]
CELOE[50/T/T/-]

(b) Test accuracy.

Figure 7.2: Test case 1: CELOE noise optimization – Accuracy progression.

48 Results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

OCEL[5/T/T/-]
OCEL[10/T/T/-]
OCEL[15/T/T/-]
OCEL[20/T/T/-]
OCEL[25/T/T/-]

(a) Training FP rate.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

OCEL[5/T/T/-]
OCEL[10/T/T/-]
OCEL[15/T/T/-]
OCEL[20/T/T/-]
OCEL[25/T/T/-]

(b) Test FP rate.

Figure 7.3: Test case 1: OCEL noise optimization – FP rate progression.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

CELOE[10/T/T/-]
CELOE[20/T/T/-]
CELOE[30/T/T/-]
CELOE[40/T/T/-]
CELOE[50/T/T/-]

(a) Training FP rate.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

CELOE[10/T/T/-]
CELOE[20/T/T/-]
CELOE[30/T/T/-]
CELOE[40/T/T/-]
CELOE[50/T/T/-]

(b) Test FP rate.

Figure 7.4: Test case 1: CELOE noise optimization – FP Rate progression.

Test Case 1 49

Table 7.2: Test Case 1: ParCEL and ParCEL-Ex Noise Optimization.

Configuration
Training Test

Accuracy Accuracy Precision Recall FP Rate F1 Score
ParCEL[0/T/T/-] 0.90± 0.01 0.79± 0.02 0.85± 0.02 0.70± 0.04 0.12± 0.02 0.77± 0.03

ParCEL[1/T/T/-] 0.86± 0.01 0.79± 0.03 0.80± 0.05 0.77± 0.03 0.19± 0.05 0.79± 0.02

ParCEL[2/T/T/-] 0.84± 0.01 0.79± 0.02 0.79± 0.03 0.79± 0.03 0.21± 0.03 0.79± 0.02

ParCEL[3/T/T/-] 0.83± 0.01 0.78± 0.04 0.76± 0.05 0.82± 0.03 0.27± 0.07 0.79± 0.03

ParCEL-Ex[0/T/T/-] 0.89± 0.02 0.78± 0.02 0.83± 0.02 0.71± 0.03 0.14± 0.02 0.76± 0.02

was oscillating around 0.79 among all ParCEL configurations suggest that progressing
from the noise value of 0 up to 3, the FP rate was growing relatively faster than re-
call but by roughly the same absolute amount. The average test FP rate of 0.12 for
ParCEL[0/T/T/-] might indicate that the training sets were not representative enough
of the entire dataset, since no false positives were allowed during learning here.

Figures 7.5 and 7.6 show that all ParCEL configurations made the most tangible
progress in the first user-time hour of training, that is, the first five minutes in the real
time. This means that even ParCEL struggled with detecting the common features of
malicious software after covering the most obvious examples. Note also that the test
FP rate for ParCEL configurations with non-zero noise value differed from the training
FP rate significantly less than in the case of ParCEL[0/T/T/-]. We can thus infer that
when we let ParCEL bring some noise into the partial definitions, it is more tolerant
to the lack of information in training data.

As mentioned before, we did not optimize the value of noise for ParCEL-Ex, hence,
we tested only the configuration ParCEL-Ex[0/T/T/-]. Due to the similarities between
ParCEL and ParCEL-Ex, we expected ParCEL-Ex[0/T/T/-] to perform as good as
ParCEL[0/T/T/-]. In reality, ParCEL-Ex[0/T/T/-] proved to be able to produce com-
parable descriptions with just slightly worse FP rate and precision, which may result
from the use of negated counter-partial definitions. The learning progression curves for
ParCEL-Ex[0/T/T/-] are provided together with other ParCEL-Ex configurations in
the next section.

For the second phase of optimization, ParCEL[0/T/T/-], ParCEL[1/T/T/-], and
ParCEL-Ex[0/T/T/-] were selected.

7.1.2 Use of Negations/“Some-Only” Optimization

OCEL and CELOE

In the second phase, the performance of both OCEL configurations improved in all
aspects after disabling exclusively the “some-only” checks, but worsened when we for-
bade negations (see Table 7.3). Our hypothesis regarding the “some-only” rule was thus

50 Results

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ParCEL[0/T/T/-]
ParCEL[1/T/T/-]
ParCEL[2/T/T/-]
ParCEL[3/T/T/-]

(a) Training accuracy.

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ParCEL[0/T/T/-]
ParCEL[1/T/T/-]
ParCEL[2/T/T/-]
ParCEL[3/T/T/-]

(b) Test accuracy.

Figure 7.5: Test case 1: ParCEL noise optimization – accuracy progression.

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

ParCEL[0/T/T/-]
ParCEL[1/T/T/-]
ParCEL[2/T/T/-]
ParCEL[3/T/T/-]

(a) Training FP rate.

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

ParCEL[0/T/T/-]
ParCEL[1/T/T/-]
ParCEL[2/T/T/-]
ParCEL[3/T/T/-]

(b) Test FP rate.

Figure 7.6: Test case 1: ParCEL noise optimization – FP rate progression.

Test Case 1 51

Table 7.3: Test Case 1: OCEL and CELOE Use of Negations/“Some-Only” Optimiza-
tion.

Configuration
Training Test

Accuracy Accuracy Precision Recall FP Rate F1 Score
OCEL[20/T/T/-] 0.73± 0.01 0.72± 0.02 0.76± 0.04 0.66± 0.07 0.21± 0.06 0.70± 0.04

OCEL[20/T/F/-] 0.77± 0.00 0.76± 0.01 0.80± 0.02 0.69± 0.03 0.18± 0.02 0.74± 0.01

OCEL[20/F/T/-] 0.72± 0.01 0.70± 0.02 0.76± 0.04 0.60± 0.04 0.20± 0.04 0.67± 0.02

OCEL[20/F/F/-] 0.72± 0.01 0.71± 0.02 0.75± 0.03 0.62± 0.02 0.21± 0.03 0.68± 0.02

OCEL[25/T/T/-] 0.72± 0.00 0.70± 0.01 0.78± 0.03 0.56± 0.06 0.16± 0.04 0.65± 0.03

OCEL[25/T/F/-] 0.75± 0.00 0.74± 0.02 0.83± 0.04 0.61± 0.02 0.13± 0.04 0.70± 0.02

OCEL[25/F/T/-] 0.73± 0.01 0.70± 0.01 0.77± 0.04 0.56± 0.04 0.17± 0.04 0.65± 0.02

OCEL[25/F/F/-] 0.73± 0.01 0.70± 0.01 0.77± 0.04 0.56± 0.04 0.17± 0.04 0.65± 0.02

CELOE[30/T/T/-] 0.74± 0.00 0.71± 0.03 0.71± 0.03 0.72± 0.07 0.29± 0.05 0.71± 0.04

CELOE[30/T/F/-] 0.74± 0.00 0.71± 0.03 0.71± 0.03 0.72± 0.07 0.29± 0.05 0.71± 0.04

CELOE[30/F/T/-] 0.74± 0.00 0.71± 0.03 0.71± 0.03 0.72± 0.07 0.29± 0.05 0.71± 0.04

CELOE[30/F/F/-] 0.74± 0.00 0.71± 0.03 0.71± 0.03 0.72± 0.07 0.29± 0.05 0.71± 0.04

CELOE[40/T/T/-] 0.74± 0.00 0.71± 0.02 0.76± 0.03 0.63± 0.08 0.20± 0.06 0.69± 0.03

CELOE[40/T/F/-] 0.74± 0.00 0.71± 0.02 0.76± 0.03 0.63± 0.08 0.20± 0.06 0.69± 0.03

CELOE[40/F/T/-] 0.74± 0.00 0.72± 0.02 0.76± 0.04 0.63± 0.08 0.20± 0.06 0.69± 0.03

CELOE[40/F/F/-] 0.74± 0.00 0.72± 0.02 0.76± 0.04 0.63± 0.08 0.20± 0.06 0.69± 0.03

confirmed in this case, while banning negations did not lead to the awaited increase
in the quality of descriptions, which may be due in part to the higher complexity
of quality expressions without negations. For example, to describe PE files which
do not have a debug data-directory table (class Debug) and are not digitally signed
(class Signature), we would have to name all the remaining file features in the PE
Malware Ontology that such a file can have in place of using the simple expression
∀has_file_feature.(¬Debug ⊓ ¬Signature). We deliberately provided this example
because OCEL[20/T/T/-] actually included this short expression in some of the most
promising descriptions it found.

The progression of FP rate (Figure 7.7) shows that the key to the success of
OCEL[20/T/F/-] and OCEL[25/T/F/-] from the perspective of evaluation scores was
either the ability to lower the FP rate (OCEL[20/T/F/-]) or to stay close to the mini-
mum reached early on (OCEL[25/T/F/-]).

Contrary to OCEL, CELOE was not affected by changes to the here-studied two
hyper-parameters in terms of evaluation metrics at all. Moreover, for each level of
noise, the new CELOE configurations mostly came to the same descriptions as the
respective configuration which was selected in the first phase. We think that there was
no reaction to the prohibition of negations since CELOE was designed to favor shorter
descriptions really aggressively, which discourages it from even considering negations.
In fact, CELOE[30/T/T/-] and CELOE[40/T/T/-] already outputted descriptions con-
taining negations only rarely. Disabling the “some-only” rule probably did not deliver

52 Results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0
FP

 R
at

e

OCEL[20/T/T/-]
OCEL[20/T/F/-]
OCEL[20/F/T/-]
OCEL[20/F/F/-]

(a) OCEL with noise of 20.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

OCEL[25/T/T/-]
OCEL[25/T/F/-]
OCEL[25/F/T/-]
OCEL[25/F/F/-]

(b) OCEL with noise of 25.

Figure 7.7: Test case 1: OCEL use of negations/“some-only” optimization –
Test FP rate progression.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

CELOE[30/T/T/-]
CELOE[30/T/F/-]
CELOE[30/F/T/-]
CELOE[30/F/F/-]

(a) CELOE with noise of 30.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

CELOE[40/T/T/-]
CELOE[40/T/F/-]
CELOE[40/F/T/-]
CELOE[40/F/F/-]

(b) CELOE with noise of 40.

Figure 7.8: Test case 1: CELOE use of negations/“some-only” optimization
– progression of test FP rate.

any improvement because an expression of the form ∀r.C may be convenient merely to
complement a strong, complex description. This is where also much of the superiority of
OCEL[20/T/F/-] and OCEL[25/T/F/-] over OCEL[20/T/T/-] and OCEL[25/T/T/-],
respectively, resided.

The only difference we noticed between the configurations of CELOE was the learn-
ing progression (see Figure 7.8). More precisely, the configurations with the search
space depleted of negations reached the best descriptions faster than CELOE[30/T/T/-]
and CELOE[40/T/T/-], accordingly, whereas those with the greatest expressive power,
i.e., with negations enabled and the “some-only” rule disabled, were not far from being
two times slower. We see this as a direct consequence of the extent to which the search
was restricted.

Test Case 1 53

Table 7.4: Test Case 1: ParCEL and ParCEL-Ex Use of Negations/“Some-Only” Op-
timization.

Configuration
Training Test

Accuracy Accuracy Precision Recall FP Rate F1 Score
ParCEL[0/T/T/-] 0.90± 0.01 0.79± 0.02 0.85± 0.02 0.70± 0.04 0.12± 0.02 0.77± 0.03

ParCEL[0/T/F/-] 0.90± 0.01 0.79± 0.02 0.85± 0.03 0.70± 0.05 0.12± 0.03 0.77± 0.03

ParCEL[0/F/T/-] 0.90± 0.01 0.79± 0.02 0.85± 0.03 0.70± 0.04 0.13± 0.03 0.77± 0.02

ParCEL[0/F/F/-] 0.90± 0.01 0.79± 0.02 0.86± 0.02 0.70± 0.05 0.11± 0.02 0.77± 0.03

ParCEL[1/T/T/-] 0.86± 0.01 0.79± 0.03 0.80± 0.05 0.77± 0.03 0.19± 0.05 0.79± 0.02

ParCEL[1/T/F/-] 0.86± 0.00 0.79± 0.02 0.81± 0.04 0.76± 0.03 0.18± 0.05 0.79± 0.01

ParCEL[1/F/T/-] 0.86± 0.01 0.78± 0.02 0.80± 0.04 0.76± 0.03 0.19± 0.05 0.78± 0.02

ParCEL[1/F/F/-] 0.86± 0.00 0.77± 0.02 0.77± 0.04 0.76± 0.04 0.23± 0.06 0.76± 0.01

ParCEL-Ex[0/T/T/-] 0.89± 0.02 0.78± 0.02 0.83± 0.02 0.71± 0.03 0.14± 0.02 0.76± 0.02

ParCEL-Ex[0/T/F/-] 0.90± 0.01 0.78± 0.02 0.82± 0.02 0.71± 0.04 0.16± 0.02 0.76± 0.02

ParCEL-Ex[0/F/T/-] 0.90± 0.00 0.78± 0.02 0.83± 0.03 0.71± 0.06 0.15± 0.03 0.77± 0.03

ParCEL-Ex[0/F/F/-] 0.90± 0.01 0.78± 0.03 0.82± 0.03 0.71± 0.06 0.16± 0.04 0.76± 0.04

Despite the prolonged way to the final descriptions, we chose CELOE[30/T/F/-] and
CELOE[40/T/F/-] for the next phase since firstly, these configurations have access to
the richest search space, which we planned to narrow in the third phase of optimization,
and secondly, they had still plenty of time left to further learn after getting to the same
level as their respective competitors. Among OCEL configurations, OCEL[20/T/F/-]
and OCEL[25/T/F/-] were selected.

ParCEL and ParCEL-Ex

Based on the evaluation of the final descriptions constructed by various configurations
of ParCEL (see Table 7.4), we can conclude that it depended on the level of noise
which combination of settings suited this algorithm the most. With the noise value
of 0, there were only minor differences between the configurations. The deactivation
of the “some-only” rule helped only if negations were disabled as well. Since ParCEL
relies too much on training data for noise equal to 0, we suppose that this may correlate
with the fact that a learner is more prone to over-fitting even when solely negations are
enabled or the “some-only” rule is disabled. However, with noise set to 1, ParCEL not
only avoided this pitfall, but also took advantage of the new opportunities brought by
loosening the restrictions on universal quantification, as the partial definitions already
do not have to describe the seen malware examples precisely in this case. This lead
to a moderate performance gain of the ParCEL[1/T/F/-] configuration in comparison
with ParCEL[1/T/T/-] from the previous phase.

The results of our experimentation with ParCEL-Ex in the second phase show that
it was fruitful to study how ParCEL-Ex would behave with negations enabled despite
being disabled by default because ParCEL-Ex[0/T/T/-] delivered the best results in

54 Results

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

ParCEL-Ex[0/T/T/-]
ParCEL-Ex[0/T/F/-]
ParCEL-Ex[0/F/T/-]
ParCEL-Ex[0/F/F/-]

(a) Training accuracy.

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ParCEL-Ex[0/T/T/-]
ParCEL-Ex[0/T/F/-]
ParCEL-Ex[0/F/T/-]
ParCEL-Ex[0/F/F/-]

(b) Test accuracy.

Figure 7.9: Test case 1: ParCEL-Ex use of negations/“some-only”
optimization – accuracy progression.

terms of FP rate (see Table 7.4). Analyzing the output of ParCEL-Ex[0/T/T/-], we
found out that it leveraged the presence of negations to include them in both partial
and counter-partial definitions. Nonetheless, allowing negations proved to be beneficial
exclusively in the situation when the “some-only” rule was applied, which we think is
connected to the above mentioned amplification of the risks to over-fit if we permit
negations but do not perform the “some-only” checks.

Examining the progression of accuracy, displayed in Figure 7.9, we noticed a quite
significant contrast between the pace at which the individual configurations of ParCEL-
Ex learned. Clearly, the redundancy introduced by negations, stemming from the fact
that the negated counter-partial definitions are used for the same purpose, caused
ParCEL-Ex to slow down.

Moreover, the impact of negations was much more severe if the generation of uni-
versal quantification was controlled by the “some-only” rule. This was a consequence of
the fact that negations were overly distracting ParCEL-Ex[0/T/T/-]. For example, the
expression ExecutableFile ⊓ ¬DynamicLinkLibrary, in spite of being equivalent to
ExecutableFile, frequently appeared in partial and counter-partial definitions found
by this configuration since it was still shorter than, e.g.,

∃has_file_feature.⊤ ⊓ ∀has_file_feature.LowImportsCount,

and thus more likely to be refined. Contrarily, the configuration with the “some-only”
rule disabled, i.e., ParCEL-Ex[0/T/F/-], could simply opt for

∀has_file_feature.LowImportsCount.

On the grounds of our observations, we decided to continue with the optimization
of ParCEL[0/F/F/-], ParCEL[1/T/F/-], and ParCEL-Ex[0/T/T/-].

Test Case 1 55

Table 7.5: Test Case 1: OCEL and CELOE Cardinality Optimization.

Configuration
Training Test

Accuracy Accuracy Precision Recall FP Rate F1 Score
OCEL[20/T/F/-] 0.77± 0.00 0.76± 0.01 0.80± 0.02 0.69± 0.03 0.18± 0.02 0.74± 0.01

OCEL[20/T/F/HS] 0.74± 0.02 0.72± 0.02 0.76± 0.03 0.66± 0.04 0.21± 0.03 0.71± 0.03

OCEL[20/T/F/M1] 0.76± 0.00 0.76± 0.01 0.80± 0.02 0.69± 0.03 0.18± 0.02 0.74± 0.01

OCEL[25/T/F/-] 0.75± 0.00 0.74± 0.02 0.83± 0.04 0.61± 0.02 0.13± 0.04 0.70± 0.02

OCEL[25/T/F/HS] 0.75± 0.00 0.74± 0.02 0.83± 0.04 0.61± 0.02 0.13± 0.04 0.70± 0.02

OCEL[25/T/F/M1] 0.75± 0.00 0.74± 0.02 0.83± 0.04 0.61± 0.02 0.13± 0.04 0.70± 0.02

CELOE[30/T/F/-] 0.74± 0.00 0.71± 0.03 0.71± 0.03 0.72± 0.07 0.29± 0.05 0.71± 0.04

CELOE[30/T/F/HS] 0.74± 0.01 0.71± 0.02 0.69± 0.03 0.76± 0.07 0.34± 0.07 0.72± 0.03

CELOE[30/T/F/M1] 0.74± 0.00 0.72± 0.03 0.73± 0.02 0.71± 0.06 0.27± 0.01 0.72± 0.04

CELOE[40/T/F/-] 0.74± 0.00 0.71± 0.02 0.76± 0.03 0.63± 0.08 0.20± 0.06 0.69± 0.03

CELOE[40/T/F/HS] 0.74± 0.01 0.71± 0.03 0.74± 0.06 0.67± 0.08 0.25± 0.10 0.70± 0.03

CELOE[40/T/F/M1] 0.74± 0.00 0.71± 0.02 0.76± 0.03 0.63± 0.08 0.20± 0.06 0.69± 0.03

7.1.3 Cardinality Optimization

OCEL and CELOE

As discussed in Section 6.3, in the last phase of optimization, we aimed to motivate
the algorithms to explore more valuable and accessible areas of the search space.

Regarding OCEL, the results in Table 7.5 hint that these goals were not achieved.
Restricting the use of cardinality constraints to has_section even induced an in-
crease in FP rate for the configuration with the noise value of 20. The problem,
however, did not consist in the lack of expressive capabilities as the descriptions found
by OCEL[20/T/F/-] were already free of any cardinality constraints on other object
properties. Hence, OCEL needed such expressions just to populate the search tree,
helping its heuristic to provide better guidance in this particular situation.

The OCEL[20/T/F/M1] configuration reached almost the same final descriptions
as OCEL[20/T/F/-], taking a very similar path to that of OCEL[20/T/F/-]. This was
also true for OCEL[25/T/F/-] and the configurations derived from it. Therefore, the
only visible change in OCEL’s performance we registered when limiting the maximum
cardinality in at-most restrictions to 1 was a 3− 10% reduction in the total number of
expressions searched.

For CELOE configurations, it was especially hard to cope with the restriction on
cardinality constraints allowing no property except for has_section to be used. We
discovered that the main reason behind these difficulties was that CELOE[30/T/F/-]
and CELOE[40/T/F/-] often arrived at the following final description:

≤ 1 has_file_feature.(CLR ⊔ Debug ⊔ Resources ⊔ Signature). (7.1)

Although we do not view this as a satisfactory characterization of malware (ergo, the

56 Results

Table 7.6: Test Case 1: ParCEL and ParCEL-Ex Cardinality Optimization.

Configuration
Training Test

Accuracy Accuracy Precision Recall FP Rate F1 Score
ParCEL[0/F/F/-] 0.90± 0.01 0.79± 0.02 0.86± 0.02 0.70± 0.05 0.11± 0.02 0.77± 0.03

ParCEL[0/F/F/HS]* 0.89± 0.01 0.79± 0.02 0.87± 0.03 0.68± 0.03 0.10± 0.03 0.76± 0.03

ParCEL[0/F/F/M1]* 0.89± 0.00 0.79± 0.02 0.86± 0.01 0.69± 0.04 0.11± 0.01 0.76± 0.03

ParCEL[1/T/F/-] 0.86± 0.00 0.79± 0.02 0.81± 0.04 0.76± 0.03 0.18± 0.05 0.79± 0.01

ParCEL[1/T/F/HS] 0.86± 0.01 0.79± 0.02 0.80± 0.05 0.76± 0.03 0.19± 0.06 0.78± 0.02

ParCEL[1/T/F/M1] 0.85± 0.01 0.79± 0.03 0.81± 0.05 0.76± 0.04 0.18± 0.06 0.78± 0.03

ParCEL-Ex[0/T/T/-] 0.89± 0.02 0.78± 0.02 0.83± 0.02 0.71± 0.03 0.14± 0.02 0.76± 0.02

ParCEL-Ex[0/T/T/HS] 0.88± 0.01 0.76± 0.02 0.82± 0.03 0.67± 0.03 0.15± 0.03 0.74± 0.02

ParCEL-Ex[0/T/T/M1] 0.89± 0.01 0.78± 0.02 0.82± 0.02 0.70± 0.04 0.15± 0.03 0.76± 0.02

* Some experiments run out of memory.

higher final FP rate), it managed to exceed 0.70 test accuracy most of the time and
apparently, CELOE was unable to find an equally successful alternative in those situa-
tions. On the contrary, setting the upper limit for quantities in at-most restrictions to 1

did not degrade the performance of CELOE and contributed to an improvement in FP
rate in the case of CELOE with the noise of 30 (see CELOE[30/T/F/M1] in Table 7.5),
which at least marginally supports our theory that searching “higher-order” at-most
restrictions is unnecessary in this scenario. Similarly to OCEL, CELOE[40/T/F/M1]
benefited from this limitation just in terms of the size of the search tree, which shrunk
by about 15%.

Since there were no signs of negative effects of restricting the quantity in at-most re-
strictions, we selected OCEL[20/T/F/M1], OCEL[25/T/F/M1], CELOE[30/T/F/M1],
and CELOE[40/T/F/M1] as the best configurations.

ParCEL and ParCEL-Ex

Looking at the results in Table 7.6, we see that despite our efforts to make the search
tree representation as compact as possible, some of the experiments with the configu-
rations ParCEL[0/F/F/HS] and ParCEL[0/F/F/M1] were terminated prematurely by
the out-of-memory killer. As this happened sometime between 12 and 24 user-time
hours of learning, the last known statistics should give us a decent picture of what the
final scores would be if these experiments had not been interrupted, because from that
point onward, only few partial definitions are added to the resulting description.

We assume that the enormous surge in the memory required may mean that Par-
CEL could not later decide on which expressions would be more valuable, and thus
kept them all, since the restrictions on cardinality constraints prevented it from travers-
ing less relevant parts of the search space. Nevertheless, ParCEL[0/F/F/HS] and
ParCEL[0/F/F/M1] reached an FP rate comparable to or slightly better than the FP

Test Case 1 57

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ParCEL[0/F/F/-]
ParCEL[0/F/F/HS]
ParCEL[0/F/F/M1]

(a) Accuracy progression.

0 3 6 9 12 15 18 21 24
User Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

FP
 R

at
e

ParCEL[0/F/F/-]
ParCEL[0/F/F/HS]
ParCEL[0/F/F/M1]

(b) FP rate progression.

Figure 7.10: Test case 1: ParCEL with noise of 0 cardinality optimization –
progression on test sets.

rate of the description created by ParCEL[0/F/F/-] until the corresponding runs ended
(see Figure 7.10).

With noise set to 1, ParCEL was able to approach the learning task a bit more
appropriately in the unconstrained settings as well. This might suggest that on the
smaller scale at which partial definitions operate, i.e., when it is enough to precisely
cover a handful of positive examples, cardinality constraints on other properties than
has_section and at-most restrictions with higher quantities than 1 can be interesting.
For instance, ParCEL[1/T/F/-] included the following expressions in partial definitions:

∃has_section.(≥ 3 has_section_feature.⊤),

≤ 2 has_action.ProcessHandling.

The performance of ParCEL-Ex was influenced by the restrictions on the use of
cardinality constraints in a similar way. We noticed that when forming counter-partial
definitions, ParCEL-Ex[0/T/T/-] also exploited the negative connotation of at-most
restrictions, that is, the fact that they forbid individuals from having too many features.
The other two configurations were substantially limited in this regard.

ParCEL[0/F/F/-], ParCEL[1/T/F/-], and ParCEL-Ex[0/T/T/-] were chosen as the
ultimately best configurations.

7.1.4 Validation

As we expected, the performance of the optimized learning algorithms varied across
the three prepared validation datasets. Nevertheless, the results of validation in Table
... show that the majority of configurations stayed at approx. the same level as during
optimization. The most evident exceptions were CELOE[40/T/F/M1], which surpris-

58 Results

(ExecutableFile ⊓ ∃has_file_feature.MultipleExecutableSections)

⊔ (∃has_action.(¬SendHttpConnectRequest)

⊓ ∀has_file_feature.(¬Signature ⊓ ¬Symbols)) (7.2)

(DynamicLinkLibrary ⊓ ∃has_action.FileHandling)

⊔ (∃has_file_feature.MultipleExecutableSections) (7.3)

∃has_file_feature.LowImportsCount

⊓ ≥ 3 has_section.(InitializedDataSection

⊓ ∃has_section_feature.NonstandardSectionName) (7.4)

DynamicLinkLibrary ⊓ ∃has_action.OpenProcess

⊓ ¬(DynamicLinkLibrary

⊓ ∃has_action.OpenFileMapping ⊓ ∃has_file_feature.Signature) (7.5)

Figure 7.11: Test Case 1: Examples of learned descriptions and partial definitions.

ingly improved, and CELOE[30/T/F/M1], whose performance deteriorated. Overall,
we can thus conclude that the quality of the output we obtained throughout the op-
timization proved to be a strong indicator of how a configuration would behave when
trained on other data, although the volume of the data may still affect an algorithm’s
abilities to learn. As such, we verified that it is sufficient to concentrate on optimizing
solely the best configuration from the first phase, i.e., that the selection of noise plays
an overarching role in an algorithm’s performance and tweaking the other parameters
does not help a configuration with a worse setting of noise to outperform a configuration
with a better choice of noise.

7.1.5 Learned Descriptions

The main advantage of concept-learning is its explainability, which we demonstrate on
a few examples of learned descriptions and partial definitions in Figure 7.11.

OCEL was able to identify that a top-level disjunction is necessary to deal with
distinct categories of malware separately. One of the most accurate descriptions found
by OCEL[25/T/F/M1], with an accuracy of 0.75 and FP rate equal to 0.15, was the
expression (7.2), which can be interpreted as follows: A PE file is malicious if it is an
EXE that has multiple sections which can be executed, or if it simultaneously (i) cannot

Test Cases 2 and 3 59

send an HTTP client request for a connection to a server, (ii) is not digitally signed,
and (iii) does not contain COFF debug symbols. Except for the part requiring a PE
file to be unable to connect via HTTP to a server, we consider this a reasonable, albeit
simple characterization of malware.

On account of preferring shorter descriptions, CELOE struggled with finding dis-
junctions and the most promising it discovered were still quite broad, such as, (7.3).
Besides these attempts to search in multiple directions at the same time, it often out-
putted descriptions similar to the expression (7.1) presented in Section 7.1.3.

The final descriptions constructed by ParCEL and ParCEL-Ex are disjunctions by
design, so taking a case-wise approach posed no problem for them. In our scenario,
their descriptions usually consisted of above 50 partial definitions targeted at a specific
subset of malicious samples. For instance, ParCEL[0/F/F/-] incorporated the partial
definition (7.4) into the final description to cover 10 positive examples in the training
data (3 in the test data). An extensive use of counter-partial definitions in ParCEL-Ex
was also visible as many of the partial definitions learned by ParCEL-Ex, e.g., (7.5),
resulted from a combination of a mediocre expression with negated counter-partial
definitions.

7.2 Test Cases 2 and 3

Now, we analyze the results from the test cases 2 and 3, mostly highlighting the dif-
ferences in the behavior and performance of the corresponding configurations.

Again, we discuss first, and draw conclusions in the end.between these two test
cases and comparing them to the results obtained in the first test case.

To speed up the optimization in these test cases, we set the time limit for ParCEL
and ParCEL-Ex to 12 hours of user time since we noticed that in the first test case,
ParCEL, ParCEL-Ex, and CELOE configurations reached their maximum, or got at
least close enough, during the first quarter of training. However, the timeout for
CELOE remained unchanged as it occupies only one execution thread, which allows us
to run multiple experiments with CELOE concurrently. Additionally, in the test cases
2 and 3, where we always proceeded with a single configuration of each algorithm.

7.2.1 Noise Optimization

OCEL and CELOE

Bibliography

[1] Hyrum S. Anderson and Phil Roth. EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models. ArXiv e-prints, April 2018. arXiv:
1804.04637 [cs.CR].

[2] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT press,
2004.

[3] Ömer Aslan and Refik Samet. Investigation of possibilities to detect malware
using existing tools. In 2017 IEEE/ACS 14th International Conference on Com-
puter Systems and Applications (AICCSA), pages 1277–1284, 2017.

[4] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to
Description Logic. Cambridge University Press, 2017.

[5] Karl Bridge et al. PE format. 2023. url: https://learn.microsoft.com/en-
us/windows/win32/debug/pe-format (visited on 03/24/2023).

[6] Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. Dl-learner—a frame-
work for inductive learning on the semantic web. Journal of Web Semantics,
39:15–24, 2016. issn: 1570-8268.

[7] Alfonso Caruso. The old useless DOS header of Windows PE. 2022. url: https:
//quercialabs.com/blog/dos- header- portable- executable- windows/

(visited on 03/24/2023).

[8] Werner Ceusters, B Smith, and Louis J. Goldberg. A terminological and ontolog-
ical analysis of the nci thesaurus. Methods of Information in Medicine, 44:498–
507, 2005.

[9] Pierre Chaussecourte, Birte Glimm, Ian Horrocks, Boris Motik, and Laurent
Pierre. The energy management adviser at edf. In The Semantic Web – ISWC
2013, pages 49–64, Berlin, Heidelberg. Springer Berlin Heidelberg, 2013. isbn:
978-3-642-41338-4.

[10] N.A. Diamantidis, D. Karlis, and E.A. Giakoumakis. Unsupervised stratification
of cross-validation for accuracy estimation. Artificial Intelligence, 116(1):1–16,
2000. issn: 0004-3702.

61

https://arxiv.org/abs/1804.04637
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://quercialabs.com/blog/dos-header-portable-executable-windows/
https://quercialabs.com/blog/dos-header-portable-executable-windows/

62 BIBLIOGRAPHY

[11] Pedro M. Domingos. The role of occam’s razor in knowledge discovery. Data
Mining and Knowledge Discovery, 3:409–425, 1999.

[12] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–
874, June 2006. issn: 0167-8655.

[13] Bernardo Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider,
and Uli Sattler. OWL 2: the next step for OWL. Web Semantics: Science, Services
and Agents on the World Wide Web, 6:309–322, November 2008.

[14] Richard E. Harang and Ethan M. Rudd. SOREL-20M: a large scale benchmark
dataset for malicious PE detection. ArXiv e-prints, December 2020. arXiv: 2012.
07634 [cs.CR].

[15] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible sroiq.
In International Conference on Principles of Knowledge Representation and Rea-
soning, 2006.

[16] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp. Class ex-
pression learning for ontology engineering. Journal of Web Semantics, 9(1):71–
81, 2011. issn: 1570-8268.

[17] Jens Lehmann and Pascal Hitzler. Concept learning in description logics using
refinement operators. Machine Learning, 78:203–250, 2009.

[18] Bo Li, Kevin Roundy, Chris Gates, and Yevgeniy Vorobeychik. Large-scale identi-
fication of malicious singleton files. In Proceedings of the Seventh ACM on Confer-
ence on Data and Application Security and Privacy, CODASPY ’17, pages 227–
238, Scottsdale, Arizona, USA. Association for Computing Machinery, 2017. isbn:
9781450345231.

[19] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ah-
madi. Microsoft malware classification challenge. ArXiv e-prints, 2018. arXiv:
1802.10135 [cs.CR].

[20] Sebastian Rudolph. Foundations of description logics. In Reasoning Web. Seman-
tic Technologies for the Web of Data: 7th International Summer School 2011,
Galway, Ireland, August 23-27, 2011, Tutorial Lectures. Springer, Berlin, Heidel-
berg, 2011, pages 76–136.

[21] Peter Švec, Štefan Balogh, Martin Homola, and Ján Kľuka. Knowledge-based
dataset for training PE malware detection models. ArXiv e-prints, December
2022. arXiv: 2301.00153 [cs.CR].

[22] Texas Instruments Inc. Common Object File Format. Technical report SPRAAO8–April
2009, Texas Instruments, April 2009.

https://arxiv.org/abs/2012.07634
https://arxiv.org/abs/2012.07634
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/2301.00153

BIBLIOGRAPHY 63

[23] An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland. An ap-
proach to parallel class expression learning. In Rules on the Web: Research and
Applications, pages 302–316, Berlin, Heidelberg. Springer, 2012.

[24] An Cong Tran, Jens Dietrich, Hans W. Guesgen, and Stephen R. Marsland. Two-
way parallel class expression learning. In Asian Conference on Machine Learning,
2012.

[25] Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ahmadzadeh, and Gang Wang.
BODMAS: an open dataset for learning based temporal analysis of PE malware.
In 2021 IEEE Security and Privacy Workshops (SPW), pages 78–84, 2021.

	Introduction
	Description Logics and OWL
	SROIQ DL
	Syntax
	Semantics

	OWL 2 DL

	Learning in Description Logics
	Concept-Learning Problem
	Concept Learning Using Refinement Operators
	The Refinement Operator
	Algorithms

	Data and Representation
	Portable Executable Files
	SOREL-20M
	PE Malware Ontology

	Corrections and Enhancements
	Refinement Operator
	At-Most Restrictions
	Negations And Universal Quantification
	"Some-Only" Rule

	Reasoner Component
	Cardinality Constraints in the Closed-World Reasoner
	Concurrent Closed-World Reasoner

	Heuristic in OCEL
	ParCEL and ParCEL-Ex
	Same-Length Refinements
	Accuracy Calculation in ParCEL
	Acceleration of Accuracy Calculation
	Search Tree Organization

	Experiments
	Test Cases and Ontology Preparation
	Test Case 1 – Mixed Data
	Test Cases 2 and 3 – Separation of Concerns

	Evaluation
	Tested Configurations

	Results
	Test Case 1
	Noise Optimization
	Use of Negations/"Some-Only" Optimization
	Cardinality Optimization
	Validation
	Learned Descriptions

	Test Cases 2 and 3
	Noise Optimization

