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Abstract

Hybrid models for gene expression combine stochastic and deterministic rep-

resentations of the underlying biophysical mechanisms. According to one of the

simplest hybrid formalisms, protein molecules are produced in randomly occurring

bursts of a randomly distributed size while they are degraded deterministically. Here

we use this particular formalism to study two key regulatory motifs — the autoreg-

ulation loop and the toggle switch. The distribution of burst times is determined

and used as a basis for the development of exact simulation algorithms for gene

expression dynamics. For the autoregulation loop, the simulations are compared to

an analytic solution of a master equation. Simulations of the toggle switch reveal

a number of qualitatively distinct scenarios with implications for the modelling of

cell-fate selection.

1 Introduction

The typical abundances of the various biochemical species involved in the regulation

of gene expression range from very few to many thousands [1, 2]. Genes are typically

present at low copy numbers, while proteins can be highly abundant [1]; mRNA tran-

scripts are scarce in prokaryotic cells [2], but they can be copious in eukaryotes [3]. The

mechanisms affecting only the abundant species (translation, protein decay, eukaryotic

transcription and mRNA decay) will consequently be largely deterministic, while those
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involving scarce species (promoter transitions, prokaryotic transcription and mRNA de-

cay) will be stochastic.

Mathematical models that consist of stochastic jump processes with deterministic

behaviour between jumps are called piecewise deterministic processes [4] or stochastic

hybrid models [5]. Hybrid modelling facilitated the analysis of a range of biological phe-

nomena, such as the dynamics of cell dispersal [6], the self-assembly of microtubules [7],

spontaneous neuronal action potentials [8], as well as stochastic gene expression [5]. Hy-

brid models for gene expression typically concern a single gene copy, whose promoter

randomly transitions between an active and an inactive state like a random telegraph [9–

12]. The levels of the mRNA and protein encoded by the gene are treated as continuous

quantities, which obey ordinary differential equations. Stochasticity generated at the

promoter stage is transmitted down to the mRNA and protein levels by assuming that

the transcription rate depends on the promoter activity state. Transcriptional regulation

can be modelled by assuming that the stochastic rates of promoter activation and/or

inactivation depend on the protein level [13].

There are a number of variations on the above formalism. First, some species, such

as mRNA molecules, may be treated as continuous (abundant) in some models and as

discrete (scarce) in others [5]. Second, jumps may occur either at random times or at

regularly spaced time points. Stochastic jump processes that are discrete not only in

state space but also in time have been used as part of a hybrid model for a regulatory

cascade governing subtilin production in B. subtilis [14]. Third, the deterministic mech-

anisms can be extended by diffusion noise [15–17]. These three examples illustrate the

variety of modelling approaches available when using the hybrid formalism.

The hybrid model studied in [9–12] (stochastic promoter, deterministic mRNA and

protein) reduces into a particularly important special case if the promoter is inactive

for most of the time, with the exception of short periods of rapid transcription [18].

The length of any such period is exponentially distributed if one considers the simplest

possible inactivation mechanism — a single memoryless random step [18]. The amount

of mRNA transcribed is proportional to the length of the period and is therefore ex-

ponentially distributed too [19]. If the two processes are fast, the production of the

exponentially distributed amount of transcript virtually occurs as a single event, and

this is referred to as a burst; the amount of transcript produced in a burst is the burst

size [18].

Neglecting any delay resulting from the elongation and translation processes, a burst

of mRNAs spurs an immediate burst of protein synthesis. The size of the protein burst is

proportional to that of mRNA, the factor of proportionality being given by the balance

between the rates of translation and mRNA decay [20].
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Proteins are degraded, and the decay process is deterministic provided that they

are abundant [19]. The balance between the protein synthesis in exponential bursts

occurring at random times and the deterministic decay gives the overall hybrid protein

dynamics on which we shall focus in this paper. The main advantage of this model is its

simplicity: neither promoter state nor mRNA level is explicitly present in it; at the same

time it is physically well justified. It was originally used to describe translational bursting

in prokaryotes [19]. Its relationship to other descriptions of bursting gene expression has

been characterised using singular-perturbation and system-size expansions in [17].

In this paper we use the hybrid formalism for burst-like protein dynamics to study

two key regulatory motifs, the autoregulation loop [21, 22] and the toggle switch [23]

(see also e.g. [24–29], which are reviewed in more detail at a later point in this paper).

For both motifs the distribution of burst times is characterised, and algorithms for

exact stochastic simulations are presented. The simulations of the autoregulation loop

are compared to an analytic solution to the master equation. For the toggle switch

we report that bistability and co-expression scenarios of the deterministic model [23]

each have their counterparts in the hybrid stochastic formulation, but that these can

further be divided into qualitatively distinct sub-categories depending on the level of

gene-expression noise present. The various possible types of behaviour are interpreted

in the context of a developmental switch that governs cell-fate selection.

2 Autoregulation

We consider a stochastic model for gene expression dynamics, in which a transcription

factor X (TF X) is degraded deterministically with rate constant γ, but its transcription

is stochastic, occurring in discrete events [19]. The transcription rate may depend on the

current level x of X (measured in arbitrary units); various choices can be made regarding

its functional form, a(x), one of the most common being the S-shaped function [30–32]

a(x) = a0 +
a1K

n

Kn + xn
. (1)

Here a0 > 0 is the minimal, or basal, transcription rate. The parameter a1 > 0 gives the

difference between the minimal and maximal rates. The dissociation constant K > 0

gives the amount of X that sets the transcription rate to the arithmetic average of the

minimal and maximal rates. The Hill constant n can be positive or negative, with n > 0

corresponding to negative feedback and n < 0 corresponding to positive feedback ∗.

Each transcription event leads to a production of a quantity of X. The event is

referred to as transcription burst and the quantity produced is the size of the burst.

∗Alternatively, n > 0 could be required in place of a1 > 0, with a1 < 0 corresponding to positive

feedback.
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Figure 1: Hybrid protein expression dynamics.

Each burst size is assumed to be statistically independent of the past protein dynamics

and distributed exponentially with some specific mean b (refer back to Section 1 for a

justification). A typical temporal dynamics of x is shown in Figure 1.

Below, we review the previous analysis [19] of the associated master equation (Sec-

tion 2.1) and the main properties of its deterministic reduction (Section 2.2). The

probabilistic properties of burst timing are examined in Section 2.3, the results of which

facilitate the stochastic simulation of the hybrid autoregulation model (Section 2.4).

2.1 The master equation

The probability p(x, t) of observing an amount x of X per unit margin satisfies the

master equation [19]
∂p

∂t
− γ

∂(xp)

∂x
= w ∗ (ap), (2)

where ∗ is the convolution operation with respect to x ≥ 0 and

w(x) =
e−x/b

b
− δ(x) (3)

is the burst kernel (the integral of w over x ≥ 0 is required to be zero to conserve total

probability). In other words, the right-hand side of (2), when evaluated at specific values

x and t, is given by

w ∗ (ap)(x, t) =

∫ x

0
w(x− z)a(z)p(z, t)dz =

1

b

∫ x

0
e−(x−z)/ba(z)p(z, t)dz − a(x)p(x, t).

If a ≡ 0, i.e. in the absence of any transcription, the right-hand side of (2) is zero

and the integro-differential equation reduces to the continuity equation corresponding

to linear decay dx/dt = −γx. If a 6≡ 0, then a(x)p(x, t) gives the part of the density that

is subject to transcription per unit time; by convolving a(x)p(x, t) with the kernel w(x),

we obtain what the density transforms into after a transcriptional burst. Superimposing

the convolution term on the continuity equation gives the complete dynamics (2).

From now on we assume that γ = 1 and b = 1, as this can always be achieved by

measuring time in the units of the TF lifetime 1/γ and measuring abundance in the

units of the mean burst size b.
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For constitutive promoter, i.e. if a(x) ≡ a is a constant with respect to x, equation

(2) is satisfied by the gamma distribution, see [19],

p(x) =
1

Γ(a)
e−xxa−1, if a(x) ≡ a. (4)

For the S-shaped functional form (1) of the transcription rate a(x), the normalised

stationary solution of (2) is given, see [19], by

p(x) = Ce−xxa0+a1−1(Kn + xn)−a1/n, (5)

where C is the normalisation constant. The conditions for (5) to be bimodal have

been compared to the conditions for the deterministic reduction of (2), see below, to

be bistable [33]. Global stability of the stationary solution (5) to (2) was established

using semigroup theory in [34], see also [33]. Interestingly, the distribution (5) can

also be obtained from a very different autoregulation model, according to which protein

synthesis is deterministic and all the noise is due to a stochastic drift-diffusion decay [33].

2.2 The deterministic reduction

Multiplying the master equation (2) by x and then integrating it with respect to x

ranging from zero to infinity, we find that

d〈x〉

dt
= −γ〈x〉+ b〈a(x)〉, (6)

where 〈·〉 denotes the expected value.

The deterministic reduction of (2) is obtained by neglecting fluctuations in (6),

see [35], which yields

dx

dt
= −γx+ b · a(x) = −γx+ c0 +

c1K
n

Kn + xn
, (7)

where c0 = b · a0 gives the amount of protein synthesised per unit time under total

repression and c1 = b · a1 is the amount per unit time by which the production can be

boosted by autoregulation.

The nonlinear first-order ordinary differential equation (7) is one of the most basic

deterministic models for transcriptional autoregulation [21, 22]. If the autoregulation is

positive and cooperative, i.e. if n < −1, then (7) exhibits hysteresis and, depending on

the parameter values, can possess up to two stable steady states [30]. If n ≥ −1, then

equation (7) possesses a unique stable steady state. In the case of highly cooperative

negative autoregulation, i.e. for n positive and large, the level of the stable steady

state is typically close to the dissociation constant K and is insensitive to variations in

the remaining parameters [36]. The positive autoregulation loop enables the living cell
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to “remember” past occurrences [30], while the negative autoregulation loop makes a

homeostatic response to changing external stimuli possible [36]. The negative loop can

drive biological oscillations if the model is extended by a suitable delay mechanism [37].

2.3 Burst times

Suppose that at the initial time t = 0 we know the level x of X, and we want to

characterise the waiting time T until the next burst occurs. The random variable T (for

a fixed x) can be described by its hazard function (or hazard rate) h(t) ≥ 0, which is

defined by the relationship, cf. [38],

P [T ≤ t+ dt|T > t] = h(t)dt+ o(dt), (8)

this being equivalent to stating, cf. [38],

P [T > t] = exp

(

−

∫ t

0
h(τ)dτ

)

for the distribution of T .

The hazard function of the burst time T can easily be expressed in terms of the

transcription rate a(x). The condition T > t in (8) implies that no bursts occurred

between the initial time and time t, during which X decays with unit rate constant, its

level falling to xe−t at time t. Consequently,

h(t) = a(xe−t) = a0 +
a1K

n

Kn + xne−nt
.

We partition the hazard function into a sum of two,

h(t) = h0(t) + h1(t),

where

h0(t) = a0, h1(t) =
a1K

n

Kn + xne−nt
,

identifying h0(t) with the constant hazard of a basal transcription burst and h1(t) with

the hazard of a regulated transcription burst.

The timing of the next burst can be determined using the following general result [38]:

Lemma 1 If T0 and T1 are independent waiting times with hazard functions h0(t) and

h1(t), then T = min(T0, T1) has hazard function h(t) = h0(t) + h1(t).

A waiting time T0 with hazard function h0(t) ≡ a0 is exponentially distributed with

mean equal to the reciprocal 1/a0 of the rate [38]. We interpret the variable T0 as the
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candidate waiting time for basal transcription. By the inversion sampling method [39],

a realisation t0 of T0 can be drawn by setting

t0 = −
lnu0
a0

, (9)

where u0 is a random variate drawn from the standardised uniform distribution.

The cumulative distribution function of a waiting time T1 with hazard function h1(t)

satisfies

P [T1 > t] = exp

(

−

∫ t

0
h1(τ)dτ

)

=

(
xn +Kn

xn +Knent

) a1
n

. (10)

The variable T1 can be interpreted as the candidate waiting time for a regulated burst: it

is not the real waiting time, because a number of basal bursts may precede, and change

the hazard rate of, the regulated transcription burst we are waiting for.

By the inversion sampling method, we can draw a realisation t1 of T1 by equating (10)

to a uniformly distributed random variate 0 < u1 < 1, solving the resultant equation in

t, and taking for t1 the (unique) solution if it exists, or setting t1 = ∞ if it does not;

this yields

t1 =







1

n
ln

(

u
−

n

a1
1 (1 + (x/K)n)− (x/K)n

)

if u
n

a1
1 < 1 + (K/x)n,

∞ otherwise.

(11)

While for n > 0 the candidate waiting time T1 is always finite, for n < 0 it is infinite with

probability (1+(K/x)n)
a1
n (this can be established either from (11) or directly from (10)

by taking t → ∞). Recalling that negative n corresponds to positive autoregulation,

infinite T1 pertains to the possibility that the TF decays to low levels at which it can

no longer sustain transcription.

In view of Lemma 1, we draw a realisation t of the waiting time T for the next

transcription burst by setting

t = min(t0, t1), (12)

where t0 and t1 are defined by (9) and (11), whereby u0 and u1 are independently drawn

from the standardised uniform distribution.

Between the initial time and the burst time t given by (12) the level of X decays with

unit rate constant, so that xe−t gives the level of X just before the burst occurs. The

size of the burst is exponentially distributed with mean equal to unit abundance and

independent of the past dynamics of X. Therefore, by the inversion sampling method,

the level x̃ of X just after the burst can be determined by

x̃ = xe−t − lnũ,

where ũ is drawn from the standardised uniform distribution independently of u0 and

u1. Hence, having started at the initial time zero with a given level x, we are able to
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Require: An initial distribution X(0) ≥ 0 and a parameter set (a0, a1, n, K).

Return: A sample trajectory x(t), t ≥ 0, of TF expression dynamics.

1: Draw the initial state x(0) from the initial distribution X(0).

2: Set the current time and state: t← 0; x(0)← x(0).

3: loop

4: Draw three independent variates u0, u1 and ũ from the standardised uniform

distribution.

5: if a0 > 0 then

6: Set τ0 ← −
lnu0
a0

.

7: else

8: Set τ0 ←∞.

9: end if

10: if u
n

a1
1 < 1 + (K/x(t))n then

11: Set τ1 ←
1
n ln

(

u
−

n

a1
1 (1 + (x(t)/K)n)− (x(t)/K)n

)

.

12: else

13: Set τ1 ←∞.

14: end if

15: Set τ ← min{τ0, τ1}.

16: Set x(t+ δ)← x(t)e−δ for 0 < δ < τ .

17: Set x(t+ τ)← x(t)e−τ − ln(ũ).

18: Update the current time t← t+ τ .

19: end loop

Algorithm 1: Hybrid simulation of autoregulation

8



sample the TF dynamics for the next t units of time, ending up with the level x̃. We

may then start afresh from time t and level x̃ and prosecute the whole procedure over

again to sample the dynamics until the second burst, and then again until the third

occurs, etc., until we have sampled the dynamics over a period of our choosing. The

boundedness of the transcription rate a(x) ensures that the sequence of burst times will

with probability one converge to infinity and the TF dynamics cannot “blow up” in

finite time. The pseudocode for hybrid simulation of autoregulation dynamics is given

in full as Algorithm 1 (note that in it we use τ0, τ1 and τ for waiting times and t for the

total cumulative time).

2.4 Simulations

We introduce the logarithmic scale

x = 10y.

The decimal base is chosen because it is more convenient for visualisation purposes than

the mathematically appealing natural base. The density q(y) of y is obtained from the

density p(x) of x by the transformation rule

q(y) = p(10y)
d(10y)

dy
= p(10y)10y ln(10).

Using (5), we find that the log-scaled level of a self-regulating TF is distributed with

density

q(y) = C̃exp(−10y)10(a0+a1)y(Kn + 10ny)−
a1
n , (13)

where C̃ is the normalisation constant. The use of the logarithmic scale eliminates the

singularity at x = 0 of the original density (5) which occurs if a0 + a1 < 1 (for n > 0)

or if a0 < 1 (for n < 0); the boundedness of the transformed density (13) will facilitate

its visualization.

We examine a specific parameter set characterised by an infrequent leakage (a0 =

0.5), which can be up-regulated to up to 5 bursts per protein lifetime (a1 = 4.5) via a

sharp positive autoregulation loop (K = 2, n = −6). Given these values, the determinis-

tic model (16) possesses two stable steady states, a basal expression state (xlow ≈ 0.501),

and an up-regulated state (xhigh ≈ 4.98). Below, we investigate the behaviour of the

hybrid model in this regime (see [40] for further simulations).

We implemented Algorithm 1 in a suitable high-level programming language (our

choice is Python enhanced by the packages NumPy, SciPy and Matplotlib) and generated

a large number N = 20000 of mutually independent trajectories xi(t), i = 1, . . . , N , of

the TF dynamics for the given parameter set (a0 = 0.5, a1 = 4.5, K = 2 and n = −6)
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and subject to the initial condition X(0) = 10Y
(0)
, where Y (0) is the standardised normal

distribution.

The logarithmically transformed trajectories yi(t) = log10(xi(t)), i = 1, . . . , N , pro-

vide us, for any fixed value of time t, with the dataset {yi(t)}
N
i=1. These large datasets

contain enough information for non-parametric estimation of the distribution of the un-

derlying process. Figures 2Ai–iv show histograms q̂(y, t) based on the datasets {yi(t)}
N
i=1

for selected values of time t and compare these histograms to the theoretical stationary

distribution q(y): we can see that as time increases, the histograms converge to the

stationary distribution. The stationary distribution is bimodal, the two modes corre-

sponding to the basal and up-regulated states of protein dynamics.

Figures 2Bi–iv show the histogram evolution for the same choice of parameters but

with a different initial distribution: we consider one that has the whole probability mass

concentrated around the lower of the two modes of the stationary distribution so as to

observe the dynamics of the transfer of the mass to the other mode. Specifically, we

choose the gamma distribution with the shape parameter a0, which gives the stationary

expression of a protein which is transcribed at the constant basal rate a(x) ≡ a0, cf.

equation (4). Biologically, this choice of initial distribution indicates that, prior to the

initial time t = 0, the autoregulatory loop of X was disabled (say X was modified by an

interaction with signalling molecules that prevented it from binding to the DNA); the

expression of X stabilised at a basal level. At t = 0 the autoregulatory interaction is

established (say the signalling that previously disrupted DNA binding is switched off),

and we observe the evolution of the basal level to a bi-modal expression.

In Figures 2Ci–iv, we use the gamma distribution with shape parameter a0 + a1,

this being the stationary distribution for a protein transcribed constitutively at the

maximal transcription rate a0 + a1. Again, such an initial state models a biologically

relevant situation, in some respect complementary to the previous one. In transcriptional

regulation X binds to the gene promoter, catalysing (if we are concerned with positive

autoregulation) the initiation of transcription. The binding to the promoter can be

unspecific, and a different transcription factor with a similar chemical structure, say T,

may substitute for X to the same effect. Assume that T is constitutively expressed, and

highly abundant, but is activated only in the presence of a certain signal. If prior to

t = 0 the signalling is present, the abundant substitute T saturates the binding site,

leading to the maximal expression rate of a0 + a1 (Figure 2Ci). If the signal is switched

off at t = 0, the TF X takes over the regulation and sustains its own expression via a

positive feedback (Figures 2Cii–iv).

Note that the convergence of the histograms of the generated data to the stationary

distribution as time t increases is faster if the probabilistic mass of the initial distribution
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Figure 2: The histograms of the log-scaled expression levels of X, generated by the

algorithm for the positive autoregulation process (Algorithm 1), approach as time t

increases the theoretical stationary probability density function (the solid line), which

is given by (13). The parameters of the process and the probability law of the three

specific initial conditions considered (corresponding to the histograms in Figures 2Ai,

Bi and Ci) are detailed in the main text. Note that the histograms in Figures 2Ci–iii

peak at values which are out of the figure frame.
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is evenly spread between the two modes of the stationary distribution (as in Figure 2Ai)

than it is for the two gamma initial distributions (Figures 2Bi and 2Ci). This indicates

that the transfer between the two peaks operates on a time-scale that is considerably

slower than the unit time-scale of decay.

3 The toggle switch

By the toggle switch we mean a motif involving two mutually antagonistic genes. Tog-

gle switches have been examined both by deterministic and various kinds of stochastic

approaches. Even in the deterministic regime, there is a variety of different models, each

following a specific set of assumptions on the interaction between the two antagonists.

Here we focus on one that was previously used to model a synthetically engineered an-

tagonism between LacI and cI [23], and also a switch between hematopoietic lineage

determinants Gfi-1 and Egr [41]. The model is appropriate for a pair of genes which

are governed by separate promoters, each being transcriptionally repressed by the co-

operative action of the proteins encoded by the other gene [23]. Different descriptions

follow if the genes are governed by a shared promoter [24], if either gene positively

regulates itself [42], or if the antagonism is brought about by direct protein-protein

interactions [43].

Stochastic models for gene switches are typically based on the discrete formulation of

chemical kinetics [24, 26, 28, 44]. Alternatively, they may be obtained from a determin-

istic description by extending it by a phenomenological source of noise. For example, a

system of differential equations representing the dynamics of a gene switch can first be

discretised using the Euler method, which yields a system of difference equations, the

right-hand sides of which can then be re-interpreted as random Poisson increments [25].

Superimposing a Gaussian noise term on a system of differential equations provides a

similar means for turning a deterministic model into a stochastic one [29].

Hybrid stochastic descriptions of the toggle switch are also available [11, 27]. In [11],

transcriptional repression decreases the duration of promoter activity period. In the

bursting regime, this implies that repression leads to bursts of low size, rather than

infrequent ones, which follow from the model examined below. Newby [27] considers

(and analyses with matched asymptotics) the case of fast promoter transitions and slow

protein synthesis/decay. Switch-like behaviour in hybrid models has been examined in

a number of other contexts in mathematical biology, such as molecular transport [45] or

spontaneous action potentials [46].

We consider two transcription factors X and Y with levels x and y, whose transcrip-

tion is stochastic: TF X is transcribed with rate a1 = a1(y) that functionally depends on
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the level of TF Y; the transcription of Y occurs with rate a2 = a2(x). Both functional

dependencies are given by the Hill expressions

a1(y) =
r1K

m
1

Km
1 + ym

, a2(x) =
r2K

n
2

Kn
2 + xn

,

where m > 0 and n > 0. Here r1 and r2 are the maximal transcription rates, while

the dissociation constants K1 and K2 give the levels of Y and X necessary to reduce

the transcription rate of the other by half. The transcription of the gene coding for X

(Y) results in an increase in the amount of the factor by an exponentially distributed

random quantity with mean b1 (b2). Both X and Y are degraded deterministically, with

rate constants γ1 and γ2.

3.1 Burst times

If levels x of X and y of Y are observed at the initial time t = 0, then xe−γ1t and ye−γ2t

give the levels of X and Y at a later time t > 0, given that no burst of either X or Y

took place by then. The hazard function of the waiting time until the next transcription

burst at either gene is given as the sum

h(t) = h1(t) + h2(t)

of individual hazard rates for bursts of X and those of Y, which are given by

h1(t) = a1(ye
−γ2t) =

r1K
m
1

Km
1 + yme−mγ2t

, h2(t) = a2(xe
−γ1t) =

r2K
n
2

Kn
2 + xne−nγ1t

.

The functional form of the above hazard rates is the same as that of the hazard function

of a regulated transcription burst in the autoregulation model. This hazard function

led to an explicit formula (11) for drawing a candidate waiting time for a regulated

transcription burst. Analogously, for the present problem we find that we can draw

candidate waiting times t1 for a burst of X and t2 for a burst of Y by setting

t1 =
1

mγ2
ln

(

u
−

mγ2
r1

1 (1 + (y/K1)
m)− (y/K1)

m

)

,

t2 =
1

nγ1
ln

(

u
−

nγ1
r2

2 (1 + (x/K2)
n)− (x/K2)

n

)

,

(14)

where u1 and u2 are independent random variates drawn from the standardised uniform

distribution. The waiting time t until the next burst occurs is the earlier of the two

candidate waiting times,

t = min(t1, t2).

Indeed, this random variate obeys the probability law defined by the total hazard func-

tion h(t) due to Lemma 1.
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Require: An initial distribution (X(0), Y (0)) ≥ 0 and a parameter set (r1, r2, K1, K2,

m, n, b1, b2, γ1, γ2).

Return: A sample trajectory (x(t), y(t)), t ≥ 0, of TF expression dynamics.

1: Draw the initial state (x(0), y(0)) from the initial distribution (X(0), Y (0)).

2: Set the current time and state: t← 0; x(0)← x(0); y(0)← y(0).

3: loop

4: Draw three independent random variates u1, u2 and ũ from the standardised

uniform distribution.

5: Set τ1 ←
1

mγ2
ln

(

u
−

mγ2
r1

1 (1 + (y(t)/K1)
m)− (y(t)/K1)

m

)

.

6: Set τ2 ←
1

nγ1
ln

(

u
−

nγ1
r2

2 (1 + (x(t)/K2)
n)− (x(t)/K2)

n

)

.

7: Set τ ← min{τ1, τ2}.

8: Set x(t+ δ)← x(t)e−γ1δ for 0 < δ < τ .

9: Set y(t+ δ)← y(t)e−γ2δ for 0 < δ < τ .

10: if τ = τ1 then

11: Set x(t+ τ)← x(t)e−γ1τ − b1ln(ũ).

12: Set y(t+ τ)← y(t)e−γ2τ .

13: else

14: Set x(t+ τ)← x(t)e−γ1τ .

15: Set y(t+ τ)← y(t)e−γ2τ − b2ln(ũ).

16: end if

17: Update the current time: t← t+ τ .

18: end loop

Algorithm 2: Hybrid simulation of the toggle switch.
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Immediately before the burst time t, the level of X is xe−γ1t and the level of Y is

ye−γ2t. If t = t1 < t2, then the burst was that of X, and the level of X is increased by an

exponentially distributed amount with mean b1, while the level of Y remains unchanged

by the event. Therefore, by the inversion sampling method, the levels x̃ and ỹ of X and

Y right after the burst are given by

x̃ = xe−γ1t − b1lnũ, ỹ = ye−γ2t if t = t1 < t2,

where ũ is a random variate drawn from the standardised uniform distribution indepen-

dently of u1 and u2. On the other hand, if t = t2 < t1, then the burst was that of Y,

after which the levels are updated to

x̃ = xe−γ1t, ỹ = ye−γ2t − b2lnũ if t = t2 < t1,

where ũ is, again, a random variate drawn from the standardised uniform distribution

independently of u1 and u2. Thus, having started at time zero with the levels x and y,

we are able to sample the dynamics of X and Y levels until the next burst occurs, at

which point the levels are x̃ and ỹ. Looping this procedure, we are able to determine the

dynamics until any number of bursts occur, i.e. for a time interval of any pre-determined

length. The resulting method is summarised in pseudocode as Algorithm 2.

3.2 Simulations

We examine the types of qualitative behaviour exhibited by the hybrid formulation of

the toggle switch. We focus on the situation in which the two factors are assumed to

have equivalent biological properties, i.e. we consider that the two transcription factors

have a common degradation rate constant γ1 = γ2 = γ, maximal transcription rate

r1 = r2 = r, dissociation constant K1 = K2 = K, Hill coefficient m = n = β and

mean amount b1 = b2 = b of protein produced per transcription event. The number

of parameters of the model can further be reduced by measuring time in units of the

protein lifetime 1/γ and protein level in units of mean burst size b; these choices of units

correspond to taking γ = 1 and b = 1. Therefore, to examine the qualitative behaviour

of the toggle switch in the symmetric case, it is sufficient to consider the parameter sets

of the form

γ1 = γ2 = 1, r1 = r2 = r, K1 = K2 = K, m = n = β, b1 = b2 = 1, (15)

i.e. we need to explore only a three-dimensional parameter space r ≥ 0, K ≥ 0 and

β ≥ 0.

The deterministic formulation of the toggle switch model for the symmetric param-

eter set (15) is given by two ordinary differential equations

dx

dt
=

r

1 + (y/K)β
− x,

dy

dt
=

r

1 + (x/K)β
− y. (16)

15



0 20 40
0

10

20

x
, y

a. r=10, K=0.5, β=4

0 20 40
t

0

75

150

x
, y

b. r=100, K=25, β=2

Figure 3: Trajectories of the toggle switch for chosen parameter sets.

This planar dynamical system is bistable, see [47], if

β > 1 and r/K > β(β − 1)−1−1/β ; (17)

the two stable steady states represent two possible biological states of the motif: one

with the factor X switched on and the factor Y switched off (XhiYlo) and the other state

characterized by the reverse combination (XloYhi). If either of the above conditions for

bistability of the planar system is not met, the system possesses a single stable steady

state at which the two factors X and Y are coexpressed at equal levels.

In stochastic models such as one that we are currently studying, there always exists

a unique stationary distribution, and therefore the initial condition has no effect on

the state of the system in the limit of infinite time. Nevertheless, the hybrid toggle

switch model can exhibit a metastable behaviour, which is practically tantamount to

bistability: the transcription factors can be expressed either in a XhiYlo state or a

XloYhi state; transitions between these states occur on an extremely slow timescale so

that the model can be considered practically bistable on a moderate timescale. For

the toggle switch to exhibit metastable behaviour, it is necessary (but not sufficient)

that the parameter values r, K and β satisfy the condition (17) for bistability of the

deterministic model (16); as a rule of thumb, one can expect metastable behaviour of

the stochastic model if the inequalities (17) are met by a sufficiently large margin.

The metastable scenario of the toggle switch is illustrated in two sample trajectories

in Figures 3a–b that were generated using the hybrid Algorithm 2. In Figure 3a, we

used the parameter values r = 10, K = 0.5, β = 4. The initial levels at t = 0 were set

to x = 10 and y = 0, which correspond to having a high amount of the factor X (blue

curve in the figure) and no factor Y (red curve) in the system at the initial time. We

observe that the system remains in the state of high levels of X and lack of Y over a
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Figure 4: Trajectories of the toggle switch for chosen parameter values.

long period of time (t < 40).

Indeed, a very simple calculation shows that the transcription of Y is tightly re-

pressed. From Figure 3a we see that the amount of the factor X fluctuates within the

range 5 to 15. Using the lower bound, x = 5, we can estimate that at any given time the

transcription propensity of Y is bounded above by r/(1+(x/K)β) ≈ 10−3; therefore, we

can expect that the factor Y will first be transcribed at a time t of order 103 or higher.

In Figure 3b we show a different kind of metastable behaviour of the stochastic

model, in which both transcription factors are expressed simultaneously, albeit one of

them at high and the other one at low levels. Stochastic simulations show that this kind

of qualitative behaviour type can be observed only for high levels of the parameter r (in

the example shown in the figure we chose r = 100, K = 25, β = 2).

In addition to the metastable scenarios, the hybrid model for the toggle switch

exhibits a variety of distinct non-metastable sub-regimes, which are presented in Figures

4a–f. In Figure 4a we chose a parameter set (r = 0.5, K = 0.25, β = 2) for which the

competition between the two antagonistic transcription factors is relatively strong, i.e. if

X is expressed, then Y is repressed and vice versa. However, the low rate of transcription

in this case causes the expression of either of these factors to be significantly stochastic,

and the state of the system switches several times between the two biological states of the

toggle switch within the temporal period 0 < t < 40, thus forgetting the initial condition

given at the time t = 0. The mutual exclusivity of the expression of the two factors can

be modified by perturbing the dissociation constant K, which gives the threshold value

for their mutual repression. In Figure 4b we show a sample path for a parameter set

obtained from that of Figure 4a by increasing this threshold significantly to K = 5; the

expression of the two factors is no longer exclusive. Yet another parameter set (r = 2,
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K = 1, β = 4), bringing about the alternating exclusive expression pattern of the toggle

switch motif, is shown in Figure 4c to illustrate the robustness of such behaviour; again,

exclusivity in expression is lost if the value of K is increased to 4, as shown in Figure

4d.

All sample paths in Figures 4a–d are characterized by low values of the maximal

transcription rate r, which makes the expression profiles of the transcription factor

amounts intrinsically noisy. For high values of the parameter r, the non-metastable

behaviour of the toggle switch is characterized by lesser noise and by the simultaneous

expression of both factors, which is illustrated in Figures 4e, f. The parameter sets used

for the sample paths in these two figures differ only in the value of threshold: if K is

high, X and Y are coexpressed and are almost uncorrelated (cf. Figure 4f); for lower

values of K, the amounts of the two factors become significantly negatively correlated

(cf. Figure 4e). If we decrease the value of K further, we enter the metastable mode of

the stochastic model (not shown but analogous to the metastable cases discussed above).

Thus, using the hybrid simulation Algorithm 2, we were able to classify the charac-

teristic types of the toggle switch dynamics in the bursting regime of gene expression.

In addition, large-scale simulations can be used to estimate the steady-state joint dis-

tribution of the levels of the antagonistic factors [40].

4 Discussion

In gene expression, proteins are produced in bursts of many copies, while they are

degraded one molecule at a time. Consequently, protein production contributes to the

overall gene-expression noise by a far larger share than the decay process. The hybrid

modelling formalism based on this premise was applied in this paper to examine some

relatively simple and fundamental regulatory motifs.

First, we characterised the statistics of transcription burst times in the autoregu-

latory loop motif. Like many other authors we used the Hill function to describe the

autoregulation response curve. We found the hazard rate for a burst to occur to follow

a relatively simple functional form. From this we derived the cumulative distribution

function (10) for the waiting time until the burst occurs, and, by the inversion sampling

method, found a means for drawing this waiting time (11). The method for drawing the

waiting time is exact in the same sense as is the choice of the next reaction time in the

classical Gillespie algorithm [48]: it does not introduce any numerical error except for

that which is incurred by the evaluation of the closed-form expression (11).

The only further subtlety in the determination of the waiting time is due to leaky

transcription, i.e. the expression at a low constant rate under a complete transcriptional
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repression. In order to obtain the correct waiting time, we first determined the candi-

date waiting time for a leaky transcription (a simple exponential), then the candidate

waiting time for the regulated transcription (as described above), taking the earlier of

the two for the realised waiting time. The approach is analogous to the “first-reaction”

implementation of the Gillespie algorithm [49].

Once the burst time is determined, the level of TF right after the burst is obtained

by discounting the amount that was degraded during the time of waiting and then by

including the new proteins synthesised in the burst. We may then look anew for the

next burst time, and then for the one after that, etc., and in doing so we end up with

the hybrid simulation Algorithm 1. The simulations of a positive autoregulation loop

were shown to be in agreement with a previous analytic approach [19].

We extended the hybrid model for autoregulation to the toggle switch motif that

involves two antagonistic transcription factors X and Y. In a hybrid formulation of the

toggle switch, there are two distinct kinds of random events: bursts of the transcription

of X and those of Y. The waiting time until the next burst occurs can be obtained

by taking the minimum of the two candidate waiting times for either kind of bursts.

The candidate waiting times follow a distribution of a form that has already been en-

countered in the autoregulation model and from which random variates can be sampled

exactly. Which one occurs first determines whether it is X or Y whose transcription is

realised. The levels of the factors immediately after the burst event are obtained first

by discounting the amounts degraded during the time of waiting and then by including

the new proteins of that species whose transcription was realised in the event. The

specification of the next burst time and the determination of the resulting expression

state are the basis for the hybrid toggle switch simulation algorithm (Algorithm 2).

The hybrid toggle switch model depends on eight dimensional and two dimensionless

parameters; of the total ten parameters, six determine the Hill response curves, two give

the deterministic degradation rate constants, and the remaining two are the mean burst

sizes of X and Y. The parameter space was reduced by stipulating symmetry (15) in

parameter values. Biologically, the symmetry constraint will be satisfied by an idealised

pair of completely interchangeable transcription factors. Measuring time in the units

of TF lifetime, and abundance in the units of mean burst size, leaves us with three

dimensionless parameters only: r gives the average number of bursts per TF lifetime

in the absence of repression; K gives the TF level (in the units of mean burst size)

necessary to reduce the other’s transcription rate by half; β is the Hill coefficient that

determines the sharpness of the mutual repression between the factors.

The algorithm was used to characterise the various distinct qualitative types of

behaviour that the toggle switch can exhibit under the symmetric constraint as the
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three remaining dimensionless parameters r, K and β are varied. The first distinction

was made between the metastable and non-metastable behaviour. The former occurs

if β > 1 (high cooperativity) and r is substantially larger than K; the latter follows

otherwise.

The metastable behaviour can further be subdivided into two categories. The first

is characterised by a complete repression of one factor by the other (Figure 3a). The

level of the highly expressed factor fluctuates widely, and a single transcription burst of

the repressed factor can lead to a switch reversal. Only tight repression (requiring a low

value of K) ensures that this happens very infrequently, as would typically be desirable

of a biological switch [50].

The second kind of metastable behaviour, illustrated in Figure 3b requires a much

higher value of r, resulting in smaller fluctuations of the highly expressed factor. The

repressed factor can be transcribed at a background rate (unlessK is very low); however,

the consistently high levels of the antagonist make a spontaneous reversal of the switch

highly improbable.

The metastable behaviour, of either sub-category, is a stochastic analogy of the

bistable scenario of the deterministic reduction (16) of the toggle switch. Multistability

in the deterministic and metastability in the stochastic model both imply that a single

regulatory motif, specifically the toggle switch, can exhibit multiple distinct stable ex-

pression patterns. It is the cell’s history, here the initial data, that specifies which one

is selected.

The ability of a regulatory network to remember past choices is of a particular im-

portance in the process of cellular development. Genetic switches, which can perform

that role, are ubiquitous in genetic regulatory networks governing developmental pro-

cesses [51]. The transcription factors X and Y of a toggle switch may act as lineage

determinants, each activating a separate gene programme specific to a particular lin-

eage. Mutual repression between the lineage determinants maintains the exclusivity of

lineage commitment. Hybrid modelling enabled us to identify two distinct scenarios of

how the repression may be realised in the presence of gene-expression noise.

The hybrid toggle switch exhibits a non-metastable behaviour if the initial conditions

do not influence its expression dynamics at timescales that are significantly longer than

the mean TF lifetime (here scaled to one). Metastability breaks down if there is too

much noise (r is small), if the repression threshold is too high (K is large) or if the

repression is not sufficiently cooperative (β not sufficiently larger than one).

The non-metastable behaviour is a stochastic counterpart to the mono-stable sce-

nario of the deterministic formulation (16) of the toggle switch. In the monostable

scenario, the deterministic model possesses a single stable steady state, which is situ-
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ated on the diagonal x = y when the symmetry constraint (15) holds. Such a stable

steady state implies that, irrespective of the initial conditions, the expression of the two

factors stabilises in time at equal levels.

The co-expression scenario has been used to explain the gene-expression profiles ob-

served in stem and progenitor cells. Prior to committing itself to a particular lineage,

a stem cell or a progenitor cell co-expresses genes affiliated to the various differentiated

lineage programmes. The phenomenon, referred to as multilineage priming or lineage

promiscuity, has been modelled by the co-expression scenario of the genetic switch be-

tween the lineage determinants [41].

The simulations of the hybrid toggle switch in the non-metastable regime provide two

scenarios for the dynamics of multilineage priming in the presence of gene-expression

noise. In the “fluctuating” scenario, at any single time point one of the factors is

expressed and the other turned off (Figures 4a,c). The switching between the two

available patterns is frequent owing to large noise levels. On the other hand, in the

“simultaneous” scenario, both factors are expressed at any single time at relatively lower

noise levels (e.g. Figure 4f). While in the fluctuating scenario the progenitor cell wavers

between the two available programmes, in the simultaneous scenario it exhibits mixed

lineage characteristics. We conclude that the relatively simple hybrid formulation of the

toggle switch can account for the concepts of fluctuating and simultaneous multilineage

priming [52]. We expect that qualitatively similar results would be obtained not only

for our specific gene-switch model, but also for a broad range of plausible choices of

switching mechanisms subject to bursting gene expression.

Hybrid modelling and simulation techniques applied in this paper to the autoreg-

ulation loop and the toggle switch motifs can be extended to investigate other motifs.

The gene-regulation response functions can be of any suitable form previously suggested

for deterministic models, such as those based on the Shea-Ackers formalism [53], or the

Heaviside step function [54]. Transcription factors obeying hybrid dynamics can be com-

bined in a single model with ones following a purely deterministic dynamics described

by ordinary differential equations.

In such a general hybrid model, the distribution of the waiting time for the next

burst will not follow a form as simple as that obtained for the examples studied in this

paper; a more general — if less effective —procedure, based on rejection sampling, may

then be applied. The exact simulation procedure can nevertheless be applied directly

to an important special kind of motifs: those in which transcription factors regulate

genes synergistically. In such motifs, the transcription rate of any individual gene is

given by a sum of Hill response curves, or similar simple functions. For any pair T1 and

T2 of transcription factors involved in the motif we may consider the candidate waiting
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time of a burst of T1 regulated by T2. These candidate variables follow the distribution

described in the analysis of the autoregulation loop, from which random variates can be

sampled directly using the inversion method; the minimal candidate waiting time over

all pairs gives the realised waiting time.

In summary, a hybrid modelling and simulation framework was applied in this paper

to study the transcriptional dynamics of the autoregulation loop and of the toggle switch.

For the former, we reported an agreement with previous analytic results, while the

latter’s behaviour was interpreted in the context of cell-fate selection. Other possible

uses of the hybrid framework have also been discussed.
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