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Abstract

Inside individual cells, expression of genes is stochastic across organ-
isms ranging from bacterial to human cells. A ubiquitous feature of
stochastic expression is burst-like synthesis of gene products, which drives
considerable intercellular variability in protein levels across an isogenic
cell population. One common mechanism by which cells control such
stochasticity is negative feedback regulation, where a protein inhibits its
own synthesis. For a single gene that is expressed in bursts, negative
feedback can affect the burst frequency or the burst size. In order to
compare these feedback types, we study a piecewise deterministic model
for gene expression of a self-regulating gene. Mathematically tractable
steady-state protein distributions are derived and used to compare the
noise suppression abilities of the two feedbacks. Results show that in the
low noise regime, both feedbacks are similar in term of their noise buffer-
ing abilities. Intriguingly, feedback in burst size outperforms the feedback
in burst frequency in the high noise regime. Finally, we discuss various
regulatory strategies by which cells implement feedback to control burst
sizes of expressed proteins at the level of single cells.

1 Introduction

Stochastic expression of genes drives significant random fluctuations (noise) in
protein copy numbers over time in single cells [1–8]. These fluctuations manifest
as cell-to-cell variability in level of a protein, even in genetically-identical popu-
lations under the same external conditions. Stochastic gene expression poses a
challenge for the precise control of cellular function, placing cells under evolu-
tionary pressure to minimize the noise in vital proteins [9–11]. Not surprisingly,
cell use diverse regulatory mechanisms to buffer noise in gene expression [12–16].
Negative feedback, by which the synthesis of gene products is switched off in
their excess, and switched on in their absence, is a commonly used mechanism
for noise control [17–23].

A major contributor to the overall noise in gene expression is the synthesis
of proteins in random bursts, and these bursts can occur both at the transcrip-
tional and translation levels. At the transcriptional level, a promoter can slowly
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become active, producing a burst of mRNAs before becoming inactive [24–29].
At the translational level, a short-lived unstable mRNA degrades after synthe-
sizing a burst of protein molecules [30–32]. In the context of such burst-like
gene expression, negative feedback can act either by reducing the frequency with
which bursts occur, or by reducing their size.

Transcriptional control can reduce the frequency or the size of transcrip-
tional bursts, the former by hindering promoter activation and the latter by
enhancing promoter inactivation. By controlling transcription, the frequency of
translational bursts can also be regulated; however, their size needs be regulated
post-transcriptionally. For example, many RNA binding proteins reduce the size
of translational bursts by shortening the half-life of their own mRNA [33–38].
As a specific example, splicing factors typically bind to their own pre-mRNA to
create an alternatively spliced transcript that is degraded via non-sense medi-
ated degradation [36; 38].

In this paper, we present a theoretical comparison of the feedback in burst
frequency and burst size with regards to their performance in protein noise
reduction. We use a piecewise deterministic mathematical framework according
to which any decrease (due to decay) in protein concentration is deterministic
and continuous, and any increase (due to synthesis) occurs in randomly timed
discontinuous jumps of random size [39–48]. This framework yields explicit
formulae for protein probability density functions. We utilize these formulae by
(i) calculating key noise characteristics by numerical integration and (ii) perform
qualitative analysis of noise reduction performance by asymptotic evaluation of
integrals.

The outline of the paper is as follows. First, we introduce the chosen mod-
elling framework in Section 2. This is used to study feedback in burst frequency
in Section 3 and burst size in Section 4. Then follows a more technical Section 5,
in which strong-feedback asymptotics of protein mean and noise are developed.
The results of Sections 2–5, and their implications, are summarised in a non-
technical language in Section 6. Finally, Section 7 is devoted to discussing our
results, especially in the context of previous theoretical comparisons between
different types of negative feedback [18; 23; 49–52].

2 Modelling framework

We study a random telegraph model for stochastic gene expression with feedback
in general form,

Off
kon(x)−−−−⇀↽−−−−
koff (x)

On
kp(x)−−−→ X

kd(x)−−−→ ∅, (1)

according to which the gene transitions between an inactive Off state and an
On state, from which the protein X is synthesised, and eventually degraded.

The reaction rates kon(x) of activation, koff(x) of inactivation, kp(x) of pro-
tein production, and kd(x) of degradation depend on the current amount x of
protein X in the system. We shall treat x as a continuous quantity, i.e. a con-
centration, which evolves according to the ODE dx/dt = kp(x) if the gene is
On and according to dx/dt = −kd(x) if the gene is Off.

We shall assume that the inactivation rate koff(x) and the protein synthesis
rate kp(x) are much faster than the activation rate kon(x) and decay rate kd(x).
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In that case, the gene is mostly Off, while the protein level slowly decays, switch-
ing momentarily into the On state, upon which a short spell of rapid production
of protein, i.e. a burst, ensues, during which the effect of degradation is negli-
gible. Bursts can be either transcriptional, in which case On and Off represent
the active and inactive promoter states [cf. 24], or translational, in which case
On and Off are meant to indicate the presence or absence of an unstable mRNA
transcript [cf. 45]

In order to characterise the dynamics of a single burst, we denote by y the
protein concentration on entering the On state, and let G(x, y), where x > y,
be the probability that the protein concentration exceeds x before the burst is
terminated.

For any concentration level z such that x > z > y, the ratio dz/kp(z) gives
the time of gene activity required to produce dz of protein, while koff(z) gives
the hazard rate for aborting the burst. The probability that it is not aborted
before x is reached is then determined by exponentiating the cumulative hazard
rate [cf. 53; 54],

G(x, y) = e
−
∫ x
y

koff (z)

kp(z)
dz
. (2)

If kp(x) and koff(x) are constants, then (2) implies exponential distribution of

burst sizes [cf. 39]. We assume that
∫∞ koff (z)

kp(z) dz = ∞ so that bursts are finite

with probability one.
The probability density p(x, t) of having x protein at a time t satisfies a

continuity equation
∂p

∂t
+
∂J

∂x
= 0, (3)

where

J = −kd(x)p(x, t) +

∫ x

0

G(x, y)kon(y)p(y, t)dy. (4)

The term J is the probability flux, which specifies how much probability mass
passes through a given point x (in the positive direction) per unit time. Equa-
tion (3) mathematically expresses the fact that all changes in probability den-
sity function are due to this flux, i.e. that the total mass remains conserved.
By (4), the flux consists of a local term −kd(x)p(x, t), which gives the trans-
fer of probability mass due to protein decay; since decay leads to movement of
probability mass in the negative direction, this term takes a negative sign. The
other term in (4) is nonlocal, and gives the transfer of probability mass due to
bursts that start at a protein concentration y, which is lower than x, and end
at a concentration which exceeds x. The probability of a burst being of a suf-
ficient size is equal to G(x, y), which needs to be multiplied by the probability
kon(y)p(y, t) of the burst actually having been initiated, and then integrated
over all possible starting concentrations y; this indeed yields the second term
in (4). Equations (3)–(4) are equivalent to the Chapman–Kolmogorov differen-
tial equation [55] for a drift-jump (i.e. diffusion-less) Markov process, where the
drift is due to protein degradation and jumps are due to bursts.

The steady-state probability distribution p(x) is found by setting J = 0 and
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dJ/dx = 0, i.e.

kd(x)p(x) =

∫ x

0

e
−
∫ x
y

koff (z)

kp(z)
dz
kon(y)p(y)dy, (5)

d

dx
(kd(x)p(x)) = kon(x)p(x)− koff(x)

kp(x)

∫ x

0

e
−
∫ x
y

koff (z)

kp(z)
dz
kon(y)p(y)dy. (6)

Eliminating the integral term from (5)–(6), one obtains a linear first-order or-
dinary differential equation

d

dx
(kd(x)p(x)) =

(
kon(x)

kd(x)
− koff(x)

kp(x)

)
kd(x)p(x),

which implies

p(x) =
C

kd(x)
exp

(∫ (
kon(x)

kd(x)
− koff(x)

kp(x)

)
dx

)
, (7)

where C is the normalisation constant. In order to guarantee that solutions to
the master equation (3)–(4) converge, as time increases to infinity, to (7), one
needs to impose, in addition to the integrability condition for (7), a number of
additional constraints on the reaction rates to exclude certain degenerate types
of behaviour such as extinction due to sublinear decay or infinite waiting for
the next burst [see 41]. An alternative derivation of (7), which extends to non-
bursting regimes also, can be found in [56]. Additional methodology, such as
finding mean first passage times, for problems of this kind can be found in [45].

3 Feedback in burst frequency

In this section we assume that the burst frequency kon(x) decreases with in-
creasing protein concentration x, the decay rate kd(x) is proportional to the
concentration of protein, and the mean burst size is a constant; specifically, we
set

kon(x) =
ε−1

1 + (x/K)H
, kd(x) = x,

kp(x)

koff(x)
= ε, (8)

where the dissociation constant K and cooperativity coefficient H parametrise
the decreasing Hill-type dependence of the burst frequency on the protein level.
The Hill function (8) can be viewed as a quasi-steady-state approximation of
a finer-grained regulation mechanism, in which individual protein molecules
cooperatively bind to multiple binding sites at the promoter of an inactive gene,
whereby they prevent its transition to the active state. Stochastic models for
negative autoregulation in the presence of bursting, which explicitly include
binding of protein to promoter, have been studied in Grönlund et al. [57] and
Kumar et al. [58].

Both time and concentration scales are already nondimensionalised in (8).
Time is measured in the units of mean protein lifetime: the decay rate is equal
to the concentration of the protein. Concentration is measured in the units of
its mean in the absence of self-repression (K →∞): the unrepressed (maximal)
burst frequency ε−1 is the reciprocal of the mean burst size ε. The parameter
ε characterises the noisiness in the autoregulatory system. Small ε implies
frequent and small bursts, large ε implies infrequent and large bursts.
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Inserting (8) into (7), we find that the steady-state distribution assumes a
Wentzel–Kramers–Brillouin (WKB) form [59]

p(x) =
Ce−

Φ(x)
ε

x
, (9)

where

Φ(x) = −
∫

dx

x(1 + (x/K)H)
+ x =

ln
(
1 + (x/K)H

)
H

− lnx+ x. (10)

The integration constant C, mean concentration 〈x〉 and the variance σ2 can be
computed by numerical integration of

C =

(∫ ∞
0

e−
Φ(x)
ε

x
dx

)−1

, 〈x〉 =

∫ ∞
0

xp(x)dx, σ2 =

∫ ∞
0

(x− 〈x〉)2p(x)dx.

(11)
Some care has to be taken when evaluating in the ε� 1 regime the first integral
of (11), which, due to the exponentially small term, can easily become smaller
than any absolute error tolerance. Such problems can be circumvented e.g. by
multiplying the integrand by a sufficiently large constant, such as eΦ(xs)/ε, where
xs is defined as detailed below.

A scale-free characteristic of protein noise is the coefficient of variation de-
fined by

CV2 =
σ2

〈x〉2
. (12)

We shall compare the coefficient of variation of the regulated protein to that
of a constitutively expressed protein with the same mean and burst size; this
requires the burst frequency set to 〈x〉/ε. In the constitutive case, the protein
concentration has a gamma distribution with the shape parameter being equal
to the burst frequency [39]. The squared coefficient of variation of the gamma
distribution is the reciprocal of its shape parameter and hence of the burst
frequency. Thus, we define

CV2
rel =

〈x〉
ε

CV2 (13)

as the relative coefficient of variation.
In the small-noise regime (ε � 1), explicit asymptotic expression for the

noise characteristics can be derived using the linear noise approximation (LNA).
Here we can obtain the LNA results easily by expanding the integrals in (11)
using Laplace’s method [60].

The function Φ(x) in (9) is a Lyapunov function [61] corresponding to the
deterministic model

dx

dt
=

1

1 + (x/K)H
− x, (14)

i.e. Φ(x) is minimal when x = xs, where xs is the single stable steady state
of (14), decreasing for x < xs and increasing for x > xs (cf. Fig 1).

For ε� 1, the dominant contribution of probability mass in the probability
density function (9) comes from the neighbourhood of xs, around which we have

Φ(x) = Φ(xs) +
1

2
Φ′′(xs)(x− xs)

2 + . . . (15)
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Figure 1: Deterministic model and its two Lyapunov functions. The top panel
shows the synthesis rate (1 + (x/K)H)−1 and the decay rate x as functions of
x. The point xs at which they are equal is the steady state of the deterministic
model (horizontal dashed lines). At the same point the Lyapunov functions are
minimal (bottom panel). Note the flatness and asymmetry of the Lyapunov
function used in the model for regulation via burst frequency in contrast with
that used for regulation via burst size. The parameters are H = 4, K = 1/4.

Substituting the parabolic approximation (15) into (9) and neglecting higher
order terms in the usual manner [60], we find that the protein concentration is
approximately normally distributed with the moments given by

〈x〉 ∼ xs, σ2 ∼ ε

Φ′′(xs)
if ε� 1. (16)

Notably, the steady-state distribution reduces for ε→ 0 to a point mass situated
at the steady state xs of the ODE model; in Appendix A we provide a more
general argument that the (time-dependent) master equation itself reduces, as
ε tends to zero, to the ODE model (14).

In order to express the variance (16) in terms of the model parameters, we
differentiate the Lyapunov function (10) twice, finding

Φ′′(xs) =
H(1− xs) + 1

xs
. (17)

Using (16) and (17) in (12) and (13) we find that asymptotic approximations

CV2 ∼ ε

xs(H(1− xs) + 1)
, CV2

rel ∼
1

H(1− xs) + 1
(18)

hold for the coefficients of variation in the small-noise regime (ε� 1).
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4 Feedback in burst size

In this section we focus on the case of

kon(x) = ε−1, kd(x) = x,
kp(x)

koff(x)
=

ε

1 + (x/K)H
. (19)

In contrast with (8), the burst frequency in (19) is constant, but the burst size is
regulated: the burst growth rate kp/koff decreases with increasing protein con-
centration. The functional form of the decrease is again that of a Hill function
parametrised by H and K. Small ε corresponds to small-noise regime.

If we interpret the Off/On states as indicators of translational, rather than
promoter, activity, meaning that Off refers to the absence of transcripts and On
indicates the presence of a short-lived mRNA copy [cf. 45], then koff(x) acquires
the meaning of the mRNA degradation rate. The Hill-type dependency in (19)
can be achieved by an RNA-binding protein, which cooperatively catalyses the
removal of its mRNA [33–35].

Inserting (19) into (7), we find that the WKB form (9) is still valid for the
steady-state distribution, but with a different Lyapunov function

Φ(x) =
xH+1

(H + 1)KH
− lnx+ x. (20)

The difference in the two Lyapunov functions reflects the difference in the two
stochastic models. However, both Lyapunov functions correspond to the same
ordinary differential equation (14), being minimal at the ODE’s steady state
xs (cf. Fig 1). Thus, regardless of whether the feedback acts on burst size or
burst frequency, the steady-state protein concentration is narrowly distributed
around the deterministic steady state xs in the small-noise regime. In Appendix
A, we provide a more general result which holds also outside of the steady-state
regime: we show that the master equation (3)–(4) reduces for ε→ 0 to the ODE
model (14), regardless of whether the feedback acts via burst frequency (8) or
burst size (19).

Formulae (9), (11) and (12) can be reused with the new definition (20) of
Φ to compute numerically the mean, variance, and the squared coefficient of
variation of the protein distribution. However, a modification is due in the
definition of the relative coefficient of variation. Since the burst frequency is
constant but the burst size is regulated, we compare the CV2 of a regulated
protein to that of a constitutively expressed protein with the same mean 〈x〉
and burst frequency ε−1, adjusting the burst size to ε/〈x〉 as required.

The reciprocal ε of the burst frequency gives the squared coefficient of vari-
ation for the referential constitutively expressed protein. Thus, we define

CV2
rel =

CV2

ε
(21)

as the relative coefficient of variation. This differs from (13), in which the CV2

of a protein with a regulated burst frequency was compared to the CV2 of a
constitutively expressed protein with the same mean and burst size, adjusting
the burst frequency as required.
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In the small-noise regime (ε � 1), the mean and variance satisfy (16), in
which the second derivative of the Lyapunov function is given not by (17) but

Φ′′(xs) =
H(1− xs) + 1

x2
s

, (22)

as is easily checked by differentiating (20) twice. Using (16) and (22) in the
definitions of the CV2 (12) and the relative CV2 (21), we find that

CV2 ∼ ε

H(1− xs) + 1
, CV2

rel ∼
1

H(1− xs) + 1
(23)

hold in the small-noise regime in the case of regulation via burst size.

5 Strong feedback asymptotics

Here we present an additional asymptotic analysis that yields explicit predic-
tions for mean and CV2 that hold even in the large-noise regime (ε = O(1)),
provided that the feedback is very strong (K � ε). We focus solely on the
case of feedback in burst frequency, for which the strong-feedback asymptotics
are more interesting than for feedback in burst size. The latter is nevertheless
treated in Appendix B.

By (9)–(10), we have

p(x) = Ce−x/εx
1
ε−1

(
1 + (x/K)H

)− 1
εH (24)

for the protein pdf.
The protein moments are given by

〈xn〉 =
Bn
B0

, (25)

where

Bn =

∫ ∞
0

e−x/εx
1
ε−1+n

(
1 + (x/K)H

)− 1
εH dx. (26)

Note that B−1
0 = C is the normalisation constant. Substituting x = Ky in (26)

yields
Bn = K

1
ε+nAn, (27)

where

An =

∫ ∞
0

e−Ky/εy
1
ε−1+n(1 + yH)−

1
εH dy. (28)

The protein mean and the squared coefficient of variation can be expressed in
terms of An, n = 0, 1, 2, as

〈x〉 =
KA1

A0
, CV2 =

〈x2〉
〈x〉2

− 1 =
B0B2

B2
1

− 1 =
A0A2

A2
1

− 1. (29)

Thus, we need to establish the limiting behaviour of Laplace transforms

An =

∫ ∞
0

e−λyfn(y)dy, where fn(y) = y
1
ε−1+n(1 + yH)−

1
εH (30)
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for small values of the Laplace variable λ = K/ε.
If n ≥ 1, then λ� 1 implies y � 1, so that fn(y) ∼ y−1+n, and

An ∼
∫ ∞

0

e−λyy−1+ndy = (n− 1)!λ−n. (31)

The case of n = 0 is an exception because of the divergence of the exponential
integral.

For n = 0 we split the integration range [see 62]

A0 =

∫ ∞
0

e−λyf0(y)dy =

∫ δ

0

e−λyf0(y)dy +

∫ ∞
δ

e−λyf0(y)dy, (32)

where δ is chosen so that

1� δ � 1

λ
(33)

is asymptotically satisfied.
In the second integral of (32), y > δ � 1 implies f0(y) = yε

−1−1(1 +
yH)−1/εH ∼ y−1. i.e.∫ ∞

δ

e−λyf0(y)dy ∼
∫ ∞
δ

e−λy

y
dy = E1(λδ) ∼ −lnδ − lnλ− γ, (34)

where E1(z) is the exponential integral and the right-hand side of (34) is made
of the first two terms of its asymptotic expansion: γ = 0.577 . . . is the Euler–
Mascheroni constant [63].

In the first integral on the right-hand side of (32), we have λy < λδ � 1, so
that ∫ δ

0

e−λyf0(y)dy ∼
∫ δ

0

f0(y)dy

=

∫ δ

0

y
1
ε−1(1 + yH)−

1
εH dy. (35)

Substitution v = yH/(1 + yH) in (35) yields∫ δ

0

y
1
ε−1(1 + yH)−

1
εH dy =

1

H

∫ δH/(1+δH)

0

v
1
εH−1(1− v)−1dv. (36)

Next, we extricate the divergent logarithmic part from the right-hand side
of (36) and neglect small terms in the convergent remainder (bearing in mind
that δ � 1),

1

H

∫ δH/(1+δH)

0

v
1
εH−1(1− v)−1dv

=
1

H

(
ln(1 + δH)−

∫ δH/(1+δH)

0

1− v 1
εH−1

1− v
dv

)

∼ lnδ − 1

H

∫ 1

0

1− v 1
εH−1

1− v
dv. (37)
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The integral on the right-hand side of (37) is Euler’s integral representation of
the ( 1

εH − 1)-th harmonic number [64], for which we have∫ 1

0

1− v 1
εH−1

1− v
dv = γ + ψ

(
1

εH

)
, (38)

where γ is the Euler–Mascheroni constant and ψ(s) is the digamma function (the
logarithmic derivative of the gamma function) [63]. Thus, equations (35)–(38)
imply that ∫ δ

0

e−λyf0(y)dy ∼ lnδ − 1

H

(
γ + ψ

(
1

εH

))
(39)

holds for the first integral on the right-hand side of (32).
Inserting the approximations (34) and (39) into (32), we obtain

A0 ∼ −lnλ− q, (40)

where the constant q is given by

q = γ

(
1 +

1

H

)
+

1

H
ψ

(
1

εH

)
. (41)

The constant q in (40) asymptotically dominated by the divergent logarithmic
term −lnλ as λ tends to zero; nevertheless, from a practical viewpoint, the
constant is not negligible since the slowly convergent logarithmic term is in
most situations comparable in magnitude.

Using the asymptotic expressions (31) for A1 and A2 and (40) for A0, to-
gether with the definition λ = K/ε, in the formulae for the mean and CV2 (29),
we find

〈x〉 ∼ ε

ln ε
K − q

, CV2 ∼ ln
ε

K
− q − 1, (42)

where the constant q is given by (41); these expressions are valid in the strong
feedback regime (K � ε). Additionally, we have

CV2
rel =

〈x〉
ε

CV2 ∼ 1− 1

ln ε
K − q

(43)

for the ratio CV2
rel of the regulated protein’s CV2 and that of a constitutively

expressed protein with an equal mean expression and mean burst size.
It is interesting to compare the ultimate asymptotics (42) in the strong

feedback regime to the intermediate asymptotics obtained by taking K small in
the LNA results. In the latter case, the protein mean is approximated by the
deterministic steady state xs, which is equal to the fixed point of the function
(1 + (x/K)H)−1. One sees easily that

xs ∼ K
H

1+H , K � 1, (44)

which suggests a faster, power-law, decrease in the protein mean and, if inserted
in (16)–(18), a power-law increase in the coefficient of variation. However, the
power-law mode is applicable only in the low noise scenario for an intermediate
range of K; as K further decreases, the logarithmic law (42) applies.
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Figure 2: Protein distributions for varied feedback strength. ε = 0.2.

6 Results

The methods described in the previous sections are used here to study the
protein distributions and noise characteristics as a function of strengthening
negative feedback, whereby we shall distinguish and juxtapose two cases, the
first being the regulation of the burst frequency and the second the regulation
of the burst size.

The feedback strength is determined by one key parameter, the dissociation
constant K, which is defined as the concentration of protein required to achieve
50% repression. The lower the dissociation constant, the lower the concentration
threshold for effective self-control: the stronger the feedback.

The dissociation constant is measured in the units of protein concentration.
In this study, the chosen unit of concentration is equal to the mean protein
abundance in the absence of regulation. This natural choice of scale helps
minimise the dimension of the parameter space of our models.

In addition to the dimensionless dissociation constant K, two other key
parameters are identified: the cooperativity coefficient H and the noise param-
eter ε. The cooperativity coefficient determines the steepness of the regulatory
response to increasing protein concentrations. All examples in this study use
H = 4, which we consider a satisfactory representative for any H > 1. The non-
cooperative case H = 1 is an exception and is treated in Appendix C. Negative
cooperativity (0 < H < 1) is not considered.

The noise parameter ε determines the size of bursts of protein synthesis
in the chosen units of protein concentration. The burst frequency is therefore
O(ε−1) in order that protein concentration be O(1) as stated. In the small-noise
regime (ε� 1), analytically tractable expressions for protein noise are obtained
using linear noise approximation. These will be contrasted with exact (i.e. not
asymptotic) numerical results.

Right tails of protein distributions are narrower for feedback in burst
size. The response of steady-state protein probability densities to increasing
strength of either kind of feedback is investigated in Figure 2. The exact re-
sult (9), in which the Lyapunov function Φ is given by (10) for feedback in burst
frequency and (20) for feedback in burst size, is shown in solid lines, and is
compared to histograms obtained by large-scale Gillespie simulations of a finer-
grained discrete stochastic model (description of which is found in Appendix
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Figure 3: Protein mean and CV2 in response to strengthening feedback in burst
frequency.

D).
Inspecting the distributions in Figure 2, we infer that strengthening nega-

tive feedback (decreasing the dissociation constant K) of either kind reduces the
mode and the width of steady state protein distributions. However, feedback in
burst size of medium to high strength (K = 0.5) leads to narrower distributions,
in particular in their right tail, than feedback in burst frequency. Such differ-
ences can intuitively be explained: negative regulation in burst frequency leads
to less frequent bursts, which are nevertheless large and contribute towards the
right tail; regulation in burst size, on the other hand, leads to smaller burst
sizes, thus effectively reducing the tail.

Noise increases after an initial decrease in response to strengthen-
ing feedback in burst frequency. The impact of increasing the strength of
feedback in burst frequency on protein mean and the squared coefficient of vari-
ation (12) (CV2) is examined in Figure 3. The horizontal axis in Figure 3 gives
the dissociation constant K on the inverse logarithmic scale, i.e. moving con-
stantly to the right along the axis corresponds to increasing feedback strength
exponentially. The values of K range from K = 10 (low feedback strength) to
K = 10−1 (strong feedback).

Solid lines give exact (as opposed to asymptotic) results obtained by numer-
ical integration of the moments of the density (9)–(12) for a selection of values
of ε. Dashed lines give the linear noise approximation (LNA) results (16)–(18),
which are valid asymptotically in the small noise regime of ε� 1.

Focusing at first on the left panel of Figure 3, we observe that the protein
mean 〈x〉 monotonically decreases from 1 (for K = ∞, i.e. without feedback)
down to 0 (for K = 0, i.e. complete repression). In small- to moderate-noise
regimes of ε, the exact protein mean differs little from the LNA, which is equal
to the steady state xs of the deterministic model (14). The deterministic steady
state is computed numerically as a unique fixed point of the production rate
function (1 + (x/K)H)−1.

Looking at the right panel of Figure 3, we see that in the absence of regulation
(K = ∞), we have CV2 = ε. In response to lowering the dissociation constant
K, the CV2 first decreases and then increases back again. The LNA suggests
that CV2 goes to infinity as K decreases. For ε � 1, the minimal CV2 is
achieved for xs = (H + 1)/2H and is equal to 4Hε/(H + 1)2. Comparing the
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Figure 4: Impact of strengthening feedback in burst frequency on mean and
CV2 of a noisy protein (ε = 0.5). Comparison of exact results (full line) with
LNA (dashed line) and small K (dotted line) asymptotics.

LNA to the exact results, we observe that larger values of ε make the initial
blip in the CV2 less pronounced than the LNA predicts.

The initial decrease of noise in response to strengthening feedback strength
is intuitively expected: whenever protein is in surplus, additional synthesis of
protein is restricted by negative feedback, thus reducing deviations from the
mean. However, as well as reducing deviations from the mean, the present type
of feedback decreases the overall burst frequency, which implies higher levels
of noise. The increase in noise due to lower burst frequencies demonstrably
dominates over the decrease due to reduction in deviations from the mean for
large feedback strengths. Below, we describe a more refined measure of noise,
the relative coefficient of variation, which adjusts for the decrease in overall burst
frequency. Additionally, at very low frequencies feedback in burst frequency may
lose its ability to control protein fluctuations, whereby each burst overshoots and
is followed by a period of complete self-repression, which takes a long time until
enough protein is degraded, so that another burst may occur (which, inevitably,
overshoots again).

LNA underestimates the mean and overestimates CV2 of a noisy pro-
tein subject to strong feedback in burst frequency. As we pointed out
above, the LNA predicts that protein CV2 diverges to infinity as the dissocia-
tion constant K tends to zero. Additionally, it predicts a power-law growth of
the CV2, which is due to a power-law decay of the mean (44). However, since
increasing the feedback strength in burst frequency leads to large levels of noise,
the LNA prediction, which assumed little noise, becomes ever less reliable as
K → 0. Hence, even for small ε the LNA will ultimately fail provided that the
feedback is raised to a sufficient strength.

For these reasons, we derived in Section 5 asymptotic expressions for protein
mean and CV2 which are valid in the strong feedback regime even at high
noise levels. More precisely, they are valid for K � ε: noisier proteins require
lesser feedback strengths for these results to apply. In contrast with the LNA
prediction, a slow logarithmic decrease (42) in the mean and increase in the
CV2 is discovered. The LNA power-law prediction can thus only be taken as an
intermediate asymptotic result applicable for small ε for intermediate ranges of
feedback strengths.
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Figure 5: Protein mean and CV2 in response to strengthening feedback in burst
size.

The exact numerics, the linear-noise, and the strong-feedback asymptotics
for protein mean and CV2 are compared in Figure 4 for a relatively noisy protein
ε = 0.5 (this value corresponds to a maximum of average two bursts per protein
lifetime). Since K is measured on a logarithmic scale, the limiting logarithmic
dependence (42) of the CV2 on K (right-panel, dotted line) looks like a straight
line, whose slope is ln10 and intercept is lnε− q− 1, where q is defined by (41).

Noise decreases in response to strengthening feedback in burst size.
In case of feedback in burst size, equations (9), (11), and (12) are used with
the alternative definition (20) of the Lyapunov function Φ to compute the ex-
act mean and CV2 numerically. The LNA of the mean is again equal to the
deterministic steady state xs, and the LNA of the CV2 is given by (23).

In contrast to the previous case, the CV2 decreases monotonically from the
value ε in the absence of regulation to a lower value in the limit of complete
repression, which is equal to ε/(H + 1) in the small-noise regime. For moderate
values of ε, the decrease in the CV2 is less sigmoidal than predicted by the LNA.

Comparing noise of a regulated protein to that of a constitutively
expressed one with the same mean. The ability of negative feedback to
suppress protein noise can be evaluated by comparing the regulated protein
CV2 to that of a constitutively expressed protein with the same mean level of
expression. We refer to the ratio of the regulated CV2 and constitutive CV2 as
the relative CV2, or shortly CV2

rel.
In our modelling framework, a constitutive expression of a protein is modu-

lated by two parameters: the average burst size, which is measured in the chosen
units of concentration; and the burst frequency, which is measured in the units
of protein decay rate constant. Our condition of equal means implies that the
product of these two must be equal to the mean of the regulated protein.

Having made requirement of equal means, one degree of freedom still remains
in the parameter space of the constitutively expressed protein, and with this
breadth of freedom a continuum of values of CV2 can be attained. Therefore,
an extra condition is required on the constitutive protein to arrive at a well-
defined comparison.

This extra condition differs depending whether we investigate feedback in
burst frequency or feedback in burst size. If feedback is in burst frequency,
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Figure 6: Relative squared coefficient of variation (CV2
rel), i.e. the ratio of the

regulated protein CV2 relative to that of a constitutive protein, for feedback in
burst frequency and size.

the average burst size is constant, and we require that the constitutive protein
have the same average burst size, adjusting its burst frequency to achieve the
required mean. On the other hand, if feedback is in burst size, then the burst
frequency is constant, and we require that the constitutive protein has the same
burst frequency. This difference leads to different constitutive CV2’s and and
hence different definitions of CV2

rel in the two cases: compare (13) and (21).

The two feedback types exhibit the same relative noise attenuation in
the small noise regime. In the regime of small but frequent bursts (ε� 1),
linear noise approximation yields an explicit expression for CV2

rel. Interestingly,
the same result is obtained whether feedback is in burst size or frequency, cf. (18)
and (23). The asymptotic CV2

rel decreases with increasing feedback strength,
converging to 1/(H + 1) as the dissociation constant K tends to zero (Figure 6,
both panels, dashed line).

Feedback in burst size outperforms feedback in burst frequency in
reducing relative noise outside of the small noise regime. Unlike in
the small-noise regime, at moderate noise levels feedback type influences CV2

rel.
While feedback of either type brings about a decrease of CV2

rel, feedback in burst
frequency is most efficient at intermediate strengths, after which CV2

rel begins to
increase again (Figure 6, left panel, solid coloured lines); on the other hand, the
response of CV2

rel to strengthening feedback in burst size is monotone, albeit
less sigmoidal than in the LNA regime (Figure 6, right panel, solid coloured
lines).

Noise optimisation for feedback in burst frequency. There is a positive
value of the dissociation constant K which minimises CV2

rel for feedback in burst
frequency (Fig 6, left). If feedback is very weak (K � 1), protein fluctuations
are largely free of repression, and protein noise is close to that of an unregu-
lated protein (i.e. CV2

rel ≈ 1). If feedback is very strong (K � ε), then protein
time traces consist of separated, regularly spaced, bursts: each burst produces
amount of protein that is typically much larger than K, so that immediately
after the burst the propensity for another burst drops dramatically; only after
the present amount of protein degrades another burst may occur. In contrast to
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an unregulated protein produced with the same average burst frequency, strin-
gently self-repressed protein maintains regular time-spacing between individual
bursts. The effect of regular bursting on protein noise becomes less impor-
tant as feedback strength increases further, since stronger feedback implies a
lower average burst frequency and hence a lesser chance of two bursts occurring
at similar times by chance in the absence of regulation. Thus, in the strong-
feedback limit of K → 0, noise of a strongly self-repressed protein is equal to
that of an unregulated protein. In the intermediate range of dissociation con-
stants 1 - K - ε, negative feedback efficiently reduces protein fluctuations, and
a regulated protein is less noisy than its unregulated counterpart.

7 Discussion

In this paper we aimed to contribute towards the theoretical understanding of
the effects of negative feedback on stochastic gene expression. Previous stud-
ies used small-noise approximations to obtain tractable expressions for protein
noise characteristics as functions of biochemical parameters [18; 49; 51; 52].
Others obtained exact, but perhaps harder to interpret, results, which are valid
even at low molecule copy numbers or large-deviation regimes [50; 65–67]. We
decided to combine the two approaches, comparing the exact numerical predic-
tions with asymptotic approximations to obtain a complete characterisation for
a minimalistic model for the a protein produced in bursts subject to negative
feedback.

Our results reinforce previously made observations that downstream feed-
back (here feedback in burst size) can better perform than upstream feedback
(here regulation of burst frequency) in reducing protein variability [18; 23; 49;
51; 52]. For a protein which regulates its burst frequency, increasing feedback
strength tends to increase the coefficient of variation, after an initial decrease.
On the other hand, strengthening feedback in burst size leads to a monotone
decrease in noise.

If instead of focusing on absolute coefficients of variation we measure how
does the feedback improve in reducing noise on the performance of an equivalent
constitutively expressed protein, we obtain a subtler difference between the two
types of feedback, which is indeed indistinguishable in the small-noise regime.
However, outside of this regime, even this subtler comparison shows a preference
for regulation in burst size, especially in stringent feedback regimes. Hence, our
approach suggests a possible role of large deviations in distinguishing between
the two regulation mechanisms.

Our paper confirms the useful role asymptotic analysis can play in under-
standing the minutiae of stochastic gene expression [68–71]. Asymptotics com-
plements numerics, one working well in parameter regimes where the other fails
and vice versa. More than one asymptotic regime may be needed to be consid-
ered in a given modelling context; our example required two: small noise regime
and strong feedback regime. Finding the asymptotics in this two regimes and
filling the middle ground with numerical results yielded a satisfactory under-
standing of the model behaviour across the parameter space.
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Appendix A. Reduction to the deterministic limit

In the main text we showed that, irrespective of whether the feedback acts
on the burst frequency or burst size, the steady-state mean 〈x〉 of the protein
concentration tends in the small-noise limit ε → 0 to the fixed point xs of the
ordinary differential equation (14). Here we provide a stronger result, showing
that for both feedback types the master equation (3)–(4) reduces as ε → 0 to
Liouville’s partial differential equation associated with the ordinary differential
equation (14). Thus, we show that both regulation strategies yield the same
deterministic model in the limit of small noise.

For feedback in burst frequency (8) the probability flux (4) is given by

J = −xp(x, t) +
1

ε

∫ x

0

e−
x−y
ε p(y, t)dy

1 + (y/K)H
(A1)

If ε is small, a dominant contribution to the integral in (A1) comes from a neigh-
bourhood of the upper integration limit y = x. Following Watson’s lemma [62],
we extend the lower integration limit in (A1) to −∞ and use the approximation

p(y, t)

1 + (y/K)H
∼ p(x, t)

1 + (x/K)H
for y that is close to x, (A2)

obtaining

J ∼ −xp+
p

1 + (x/K)H
(A3)

at the leading order; higher-order terms, which are not required for our present
purposes, can be determined by including in (A2) additional terms of the Taylor
series expansion in y around x. The right-hand side of (A3), being the product
of the protein pdf and the right-hand side of the ODE (14), gives the flux of
probability induced by the drift of the deterministic model. Inserting (A3) into
the probability conservation law (3) yields a Liouville equation [55, p. 213] — a
Chapman–Kolmogorov equation without diffusion or jumps — whose solutions
are time-dependent pdfs for a variable which evolves deterministically according
to (14). Thus, the stochastic model with feedback in burst frequency given by
the conservation law (3) and (A1) reduces as ε tends to zero to the deterministic
model (14).

If feedback acts on burst size (19), the probability flux (4) simplifies to

J = −xp(x, t) +
1

ε

∫ x

0

e−
1
ε

∫ x
y

1+(z/K)Hdzp(y, t)dy. (A4)

Again, a neighbourhood of the upper limit y = x of integration dominates in its
contribution to the integral in (A4). Therefore, we extend the lower integration
limit to −∞ without incurring appreciable error; we also use the approximations∫ x

y

1 + (z/K)Hdz ∼ (1 + (x/K)H)(x− y), p(y, t) ∼ p(x, t), (A5)

which are valid for y that is close to x. Inserting (A5) into (A4) and integrating
the simple exponential, we obtain the same leading-order approximation (A3) for
the probability flux (A4) as we previously did for the flux (A1). Thus, whether
the bursting stochastic model operates a feedback in burst frequency (A1) or in
burst size (A4), it reduces to the same deterministic model (14) in the small-
noise limit of ε→ 0.
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Appendix B. Strong feedback asymptotics (burst
size)

Inserting the second Lyapunov function (20) into the WKB form (9), we obtain

p(x) = Cx
1
ε−1e

− 1
ε

(
xH+1

(H+1)KH
+x
)

(B1)

for the protein pdf in the case of feedback in burst size.
Similarly as in the Main Text, we express the protein moments as

〈xn〉 =
Bn
B0

, (B2)

where instead of (26) we have

Bn =

∫ ∞
0

x
1
ε−1+ne

− 1
ε

(
xH+1

(H+1)KH
+x
)
dx. (B3)

Again, B−1
0 = C is the normalisation constant. Substituting x = Ky in the

integral (B3) yields

Bn = K
1
ε+nAn, (B4)

where

An =

∫ ∞
0

y
1
ε−1+ne

−λ
(
yH+1

H+1 +y
)
dy, (B5)

in which λ = K/ε is an auxiliary parameter.
In the case of strong feedback, we have λ � 1, which implies y � 1,

and therefore the term yH+1/(H + 1) dominates the term y in the exponen-
tial of (B5), so that

An ∼
∫ ∞

0

y
1
ε−1+ne−

λyH+1

H+1 dy =
1

λ

(
H + 1

λ

) ε−1+n
1+H −1

Γ

(
ε−1 + n

1 +H

)
, (B6)

where Γ(z) is the gamma function [63]. Unlike for feedback in burst frequency,
here is no need to treat A0 differently from A1 or A2.

For the protein mean we have

〈x〉 =
B1

B0
=
KA1

A0
∼ DεK

H
H+1 , (B7)

where the prefactor Dε is given by

Dε = (ε(H + 1))
1

H+1

Γ
(
ε−1+1
H+1

)
Γ
(
ε−1

H+1

) . (B8)

Unlike for feedback in burst frequency, which yielded a slow logarithmic de-
crease of the mean with decreasing dissociation constant K, here we obtain a
faster power-law decrease, which is consistent with the LNA prediction (44).
Additionally, as ε tends to zero the prefactor Dε converges to one, which is the
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Figure C1: Protein distributions for varied feedback strength. ε = 0.2.

prefactor of the LNA-predicted power law. The asymptotics of Dε as ε → 0
follow from

Γ(z + a)

Γ(z)
∼ za, z � 1, (B9)

in which we take z = ε−1/(H + 1) and a = 1/(H + 1); see [63] for this and
other properties of the gamma function. These results suggest that, unlike for
feedback in burst frequency, where the LNA approximation could only be used
for intermediate ranges of K, here the LNA yields a uniform (i.e. valid for all
K) approximation.

For the protein CV2 we have

CV2 =
B2B0

B2
1

− 1 =
A2A0

A2
1

− 1 ∼
Γ
(
ε−1

H+1

)
Γ
(
ε−1+2
H+1

)
Γ2
(
ε−1+1
H+1

) − 1, (B10)

which, for a fixed ε, is a constant independent of K. As ε tends to zero, we can
again use (B9) to show that the right-hand side of (B10) is equal to ε/(H+1) at
the leading order in ε, which is the same value as that obtained by taking K very
small in the LNA prediction (23). This suggests that the LNA approximation
of the coefficient of variation, like that of the mean, can be used uniformly for
all K.

Appendix C. Noncooperative feedback

Here we present variants of the figures from the Results in the Main Text ob-
tained by taking H = 1 (noncooperative feedback) instead of H = 4. We shall
not repeat the points made in the Main Text, focusing instead on the main
differences that occur in the absence of cooperativity.

CV2 monotonically increases with strengthening noncooperative
feedback in burst frequency. In contrast with the cooperative case, where
a gradual increase in burst-frequency feedback strength led at first to a tran-
sient decrease in protein noise (Fig 3), without cooperativity the CV2 is strictly
increasing (Fig C2).

Protein mean and CV2 are less sensitive to feedback strength.
Wider ranges of dissociation constants are required to achieve similar changes
in protein mean and noise as those reported previously. In order to appreciate
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Figure C2: Protein mean and CV2 in response to strengthening feedback in
burst frequency.

Figure C3: Impact of strengthening feedback in burst frequency on mean and
CV2 of a noisy protein (ε = 0.5). Comparison of exact results (full line) with
LNA (dashed line) and small K (dotted line) asymptotics.

Figure C4: Protein mean and CV2 in response to strengthening feedback in
burst size.
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Figure C5: Relative squared coefficient of variation (CV2
rel), i.e. the ratio of the

regulated protein CV2 relative to that of a constitutive protein for feedback in
burst frequency and size.

this, one needs to compare the scales on the horizontal axes of Figures C2–C5
with those of their counterparts in the Main Text.

Noncooperative performs worse than the cooperative in reducing
noise. Noncooperative feedback, even if acting through burst size, leads at
best to a 50% reduction in CV2 (Fig C5), which is inferior to a 80% reduction
achievable in the cooperative case with H = 4 (Fig 6).

The main conclusion of the Main Text holds also in noncooperative
case. The regulation in burst size performs better in reducing noise, especially
for noisy proteins subject to strong self-repression (Fig C5).

Appendix D. Discrete simulations

The discrete model is a chemical system of two species [72], A and P , whereby
A ∈ {0, 1} is an indicator variable describing whether the gene is active (A = 1)
or inactive (A = 0) and P gives the number of protein.

The two species are subject to four reactions, gene activation, gene inacti-
vation, protein production, and protein decay. Each reaction is characterised
by the change in copy numbers that a single occurrence of the reaction induces
and by the stochastic rate with which the reaction occurs (Table D1).

The dependence of the rates of activation k̃on(P ), inactivation k̃off(P ), pro-
tein production k̃p(P ) and protein decay k̃d(P ) is as yet undefined in Table D1,
but is specified below for feedbacks in burst frequency and burst size. We

Reaction name Copy number change Stochastic rate

Activation A→ A+ 1 (1−A)k̃on(P )

Inactivation A→ A− 1 Ak̃off(P )

Protein production P → P + 1 Ak̃p(P )

Protein decay P → P − 1 k̃d(P )

Table D1: Reactions, their stoichiometries, and rates for the discrete stochastic
model.
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use tildes to distinguish the microscopic rates (expressed in terms of individual
molecules) from the macroscopic ones (expressed in terms of concentrations)
which were used throughout the Main Text.

For feedback in burst frequency, we choose

k̃on(P ) =
ε−1

1 + (P/KΩ)H
, k̃p(P ) =

εΩ

δ
, k̃off(P ) =

1

δ
, k̃d(P ) = P, (D1)

while for feedback in burst size, we use

k̃on(P ) = ε−1, k̃p(P ) =
εΩ

δ(1 + (P/KΩ)H)
, k̃off(P ) =

1

δ
, k̃d(P ) = P.

(D2)
In addition to the noise parameter ε, dimensionless dissociation constant K
and the cooperativity coefficient H, which have been introduced in the Main
Text, cf. Eq. (8) and (19), we have in (D1) and (D2) two new parameters: δ
and Ω. The parameter δ compares the time scale of gene activity to that of
protein turnover, and Ω is the system size parameter: the number of proteins
corresponding to the unit of concentration.

Provided that δ � 1 and Ω � 1, the protein concentration defined as x =
P/Ω can be compared to the predictions of the continuous bursting model (7).
For mathematical analysis of the bursting asymptotics (δ � 1) as well as system-
size asymptotics (Ω� 1), we refer the reader to [70].

In Figure 2, we used ε = 0.2, H = 4, a range of values of K (detailed within
the figure panels), δ = 0.01 and Ω = 100. Each distribution was estimated from
a single large run (105 iterations) of Gillespie’s direct method [73] implemented
in the StochPy stochastic modelling software package [74].
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