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Abstract

Lineage switches are genetic regulatory motifs that govern and main-
tain the commitment of a developing cell to a particular cell fate. A
canonical example of a lineage switch is the pair of transcription factors
PU.1 and GATA-1, of which the former is affiliated with the myeloid and
the latter with the erythroid lineage within the hematopoietic system.
On a molecular level, PU.1 and GATA-1 positively regulate themselves
and antagonise each other via direct protein–protein interactions. Here
we use mathematical modelling to identify a novel type of dynamic be-
haviour that can be supported by such a regulatory architecture. Guided
by the specifics of the PU.1–GATA-1 interaction, we formulate, using the
law of mass action, a system of differential equations for the key molecu-
lar concentrations. After a series of systematic approximations, the sys-
tem is reduced to a simpler one, which is tractable to phase-plane and
linearisation methods. The reduced system formally resembles, and gen-
eralises, a well-known model for competitive species from mathematical
ecology. However, in addition to the qualitative regimes exhibited by a
pair of competitive species (exclusivity, bistable exclusivity, stable-node
coexpression), it also allows for oscillatory limit-cycle coexpression. A
key outcome of the model is that, in the context of cell-fate choice, such
oscillations could be harnessed by a differentiating cell to prime alter-
nately for opposite outcomes; a bifurcation-theory approach is adopted to
characterise this possibility.
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1 Introduction

1.1 Lineage switches

The differentiation of hematopoietic stem cells into mature blood cells consists
of a series of branching decisions, which successively restrict the availability of
certain cell fates, and enforce others (Akashi et al., 2000; Nimmo et al., 2015).
Any such decision is thought to be regulated by a lineage switch, a genetic
regulatory motif which typically consists of two mutually inhibiting transcrip-
tion factors (Swiers et al., 2006). Which of these is turned on determines which
branch of the hematopoietic decision tree is selected; cross-inhibition guarantees
the exclusivity of commitment (Cantor and Orkin, 2001).

The transcription factors PU.1 and GATA-1 are key hematopoietic regula-
tors that are associated with myeloid and erythroid lineages, respectively (Shiv-
dasani and Orkin, 1996). Either factor is able to maintain its expression via
positive transcriptional feedback (Chen et al., 1995; McDevitt et al., 1997).
However, PU.1 interferes with GATA-1’s autoregulation by interacting with the
latter’s DNA binding region (Zhang et al., 2000). Conversely, GATA-1 inacti-
vates PU.1 by binding to a region of PU.1 that would otherwise be available to
its critical co-activator c-Jun (Zhang et al., 1999). Provided that these antago-
nistic interactions are sufficiently strong, the ability of either factor to sustain
itself via a positive feedback loop is contingent on the absence of its antagonist,
resulting in switch-like behaviour (Graf, 2002).

Other examples of lineage switches are Gfi-1 v. Egr within the myeloid
compartment (Laslo et al., 2006) and EKLF v. Fli-1 within the erythroid com-
partment (Krumsiek et al., 2011); on a different branch of the decision tree,
T-bet v. GATA-3 dictates commitment in T cells (Antebi et al., 2013).

1.2 Modelling assumptions

Differing interpretations and emphases on the specifics of the PU.1 and GATA-1
example have led to a variety of alternative mathematical models, a number of
which are reviewed in (Duff et al., 2012); see also (Tian and Smith-Miles, 2014;
Alsaedi et al., 2014) for models incorporating the GATA-2 factor.

While most models for PU.1 and GATA-1 are based on the Shea–Ackers
formalism (Shea and Ackers, 1985; Bintu et al., 2005) and consider the effects
of the interaction at the genes’ promoters only, we proposed an alternative
approach (Bokes et al., 2009) according to which any molecular pair can interact:
only a fraction of the total protein number is free (transcriptionally active), while
the rest are engaged in a disabling protein–protein complex. Yet the protein–
protein interaction is not permanent; on the contrary, the free and bound groups
are continuously exchanging constituents, old interactions being ceaselessly torn
apart and replaced by new ones. Similar approaches have been used elsewhere
to describe the interaction of a protein with DNA decoy binding sites (Lee
and Maheshri, 2012; Burger et al., 2010; Bokes and Singh, 2015) and protein
dimerisation (Erban et al., 2006).

Since GATA-1 deactivates PU.1 but does not disrupt the latter’s ability to
bind to the DNA (Zhang et al., 1999), there is a possibility that a GATA-1
– PU.1 complex may effectively repress the pu.1 gene by displacing free PU.1
molecules from the promoter (Chickarmane et al., 2009). Aiming to keep our
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model as simple as possible, in (Bokes et al., 2009) we ignored (and will continue
to do so here) the structural asymmetry of the PU.1 and GATA-1 interaction,
using PU.1’s effect on GATA-1 as a template for a more generic, structurally
symmetric, model. In part for this reason we shall refer to our model’s antag-
onists as X1 and X2 rather than restricting ourselves to specific transcription
factor names.

As is customary in models of this kind, we assume that proteins are degraded
with a rate that increases linearly with their concentration (Alon, 2007; Tyson
et al., 2003). Complexed proteins must also be degraded, lest the protein–
protein interaction should serve merely as a reservoir of decay-proof molecules,
in which case it could not maintain the necessary competitive pressure. Previ-
ously we made the protein–protein complexes degrade as a whole (Bokes et al.,
2009), implying that there should be a single mechanism which removes both
constituent proteins simultaneously. Here we adopt a different stance, assuming
instead that there are two separate degradation mechanisms, each degrading
one of the factors while freeing its partner. This new approach, as well as being
biologically sound, will have an additional advantage of removing a mathemat-
ically superfluous constraint in the parameter space of our model. It is within
this extension of the parameter space that a new type of qualitative behaviour
will be found.

1.3 Paper’s Outline

The model is derived and systematically simplified in Section 2. First, we express
our key modelling assumptions in the language of the law of mass action, which
yields a system of three differential equations, two for the transcription factor
antagonists in free form and one for their complex. The system is nondimen-
sionalised, which helps identify the crucial dimensionless parameter groupings,
several of which can reasonably be assumed to be small. Neglecting the small
terms in the usual fashion, we end up with a simpler, tractable, system of two
differential equations, the equation for the complex being replaced in one of the
simplifications by an algebraic relation.

The reduced two-dimensional system formally generalises (in a sense made
explicit in Section 2) a classical ecological model for the population dynamics of
two competing species (Murray, 2003). Phase-plane and linearisation analyses of
the competitive species model help identify three distinct regimes of qualitative
behaviour (Murray, 2003):

Exclusivity The stronger competitor (transcription factor/ecological species)
inevitably defeats the weaker and ends up reigning unopposed.

Bistability Both competitors are strong: initial advantage determines which
wins and which disappears.

Coexistence/coexpression Weak competition makes the simultaneous pres-
ence of the competitors possible.

Extending in Section 3 the qualitative analysis of competitive species to our
genetic switch model opens up an additional possibility of

Oscillatory coexpression The transcription factors are alternately favoured
due to weak but asymmetric competition.
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We show in Section 4 that the regime of oscillatory coexpression is available only
if certain criteria of parametric asymmetry are met. Identifying these criteria
helps us understand intuitively how the oscillations are first triggered and then
sustained.

The model can change its regime from oscillatory coexpression to bistable
due to specific changes to parameter values, which are introduced in Section 5.
We also show that the phase of the oscillation at the point of parametric change
can determine which of the two stable steady states that are available in the
bistable regime is selected. In Section 6, we investigate the bifurcation structure
of the model. The results of the paper are summarised and placed within a wider
context in Section 7.

2 Modelling framework

We consider a system of three ordinary differential equations for the concentra-
tions x1 of free factor X1 (e.g. PU.1), x2 of free factor X2 (e.g. GATA-1), and
y of their complex Y,

dx1

dt
=

p1x1

K1 + x1
− α1x1 + β2y − konx1x2 + koffy, (1)

dx2

dt
=

p2x2

K2 + x2
− α2x2 + β1y − konx1x2 + koffy, (2)

dy

dt
= konx1x2 − (koff + β1 + β2)y. (3)

The first two terms on the right-hand sides of (1)–(2) are the production and de-
cay rates of free transcription factors. The production rate exhibits a Michaelis–
Menten type dependence on the protein concentration, which is indicative of
noncooperative positive autoregulation (Keener and Sneyd, 2008); the decay
rates are proportional to the protein concentrations. The remaining mass-action
expressions in (1)–(3) represent the reactions

X1 + X2

kon−−⇀↽−−
koff

Y, Y
β1−→ X2, Y

β2−→ X1, (4)

the first of which is the reversible pair of complexification and dissociation, and
the other two (irreversible) reactions represent the decay of protein in complexed
form; note that if a complexed protein is degraded, its partner is freed. Hence,
complexification can affect the constituent proteins twofold: first, it interferes
with their ability to bind to the promoter to catalyse the expression of their
gene; second, it changes their rate of decay from α1 (α2) to β1 (β2).

Adding the equation for the complex (3) to those for the free protein (1)–(2),
we obtain

d(xi + y)

dt
=
αixi

(
pi
αi
−Ki − xi

)
Ki + xi

− βiy, i = 1, 2 (5)

for total concentrations of protein — both free and complexed. Also, we ex-
pressed in (5) the difference of production and decay rates in the form of a
single rational function. Equations (5), if supplemented by equation (3) for the
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protein complex, can be used as an equivalent, and in a number of aspects more
convenient, formulation of system (1)–(3).

In addition to the trivial zero steady state, the system given by (5) and (3)
has a steady state in which the first factor is expressed at a non-zero level,
x1 = p1/α1−K1, while its antagonist, and the complex, are absent (x2 = y = 0),
as well as the symmetric reflection of that steady state, which is given by
x2 = p2/α2 − K2, x1 = y = 0. Henceforth we assume that pi/αi − Ki > 0,
i = 1, 2, so that both are physically admissible. Other steady states may also
exist, namely coexpression ones for which x1 > 0, x2 > 0, and y > 0 hold
simultaneously. These are hard to investigate by analytic methods; however,
progress can be made after a series of rational approximations from which in-
teresting implications follow, as seen below.

We nondimensionalise (5) and (3) according to

t =
τ

p1
K1
− α1

, xi =

(
pi
αi
−Ki

)
ui, y =

(
p1
α1
−K1

)(
p2
α2
−K2

)
Kd

v, (6)

in which Kd = koff/kon, obtaining

d(u1 + b12v)

dτ
=
u1(1− u1)

1 + δ1u1
− a12v, (7)

d(u2 + b21v)

dτ
= ρ

(
u2(1− u2)

1 + δ2u2
− a21v

)
, (8)

ε
dv

dτ
= u1u2 − v − ε

(
a12

b12
+ ρ

a21

b21

)
v, (9)

where

a12 =
β1K1

(
p2
α2
−K2

)
α1Kd

(
p1
α1
−K1

) , a21 =
β2K2

(
p1
α1
−K1

)
α2Kd

(
p2
α2
−K2

) , (10)

b12 =

p2
α2
−K2

Kd
, b21 =

p1
α1
−K1

Kd
, ρ =

p2
K2
− α2

p1
K1
− α1

, (11)

δ1 =
p1

α1K1
− 1, δ2 =

p2

α2K2
− 1, ε =

p1
K1
− α1

koff
(12)

are dimensionless parameters. The parameter ε is the ratio of the growth rate
constant of the first factor — the first eigenvalue of the linearisation around the
trivial steady state — to the rate constant for complex dissociation. Typically,
the timescale of protein accumulation would be much slower than the lifetime
of individual protein–protein interactions, implying that ε is a small parameter.

Taking ε = 0 in (9), we obtain v = u1u2 which, if inserted into (7)–(8), leads
to a two-dimensional system for u1 and u2,

d(u1 + b12u1u2)

dτ
= u1

(
1− u1

1 + δ1u1
− a12u2

)
, (13)

d(u2 + b21u1u2)

dτ
= ρu2

(
1− u2

1 + δ2u2
− a21u1

)
. (14)
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The three-dimensional problem (7)–(9) is singularly perturbed (Kevorkian and
Cole, 1981) in ε; should initial conditions be imposed on it, say at t = 0,
a separate analysis is required to obtain the correct leading-order behaviour
at the τ = O(ε) transient timescale (Bokes et al., 2009), during which the
system relaxes onto the two-dimensional “slow manifold” (Jones, 1995) given
by v = u1u2.

The parameters δi compare the steady-state protein concentrations pi/αi −
Ki — in the absence of the antagonist — to the effective dissociation constant
Ki for non-cooperative autoregulation. Specifically, small values of δi imply
that the protein expression levels are sustained by an undersaturated feedback
loop. While we do not claim that such feedback loops are necessarily biologi-
cally prevalent, the smallness of the δi facilitates the tractability of the model,
motivating us to make this assumption.

Taking δ1 = δ2 = 0 in (13)–(14), we obtain

d(u1 + b12u1u2)

dτ
= u1 (1− u1 − a12u2) , (15)

d(u2 + b21u1u2)

dτ
= ρu2 (1− u2 − a21u1) , (16)

which is the model on which we focus in the rest of the paper. In a special case
b12 = b21 = 0, the system (15)–(16) reduces, in its mathematical form, to a well-
studied ecological model for two competitive species (Murray, 2003). The phase-
plane analysis of the competitive species model implies that, in particular, any
nondegenerate steady states must be saddles or nodes, but not spirals, and that
no limit cycles may exist (Hirsch, 1982). Below, we show that such restrictions
are no longer in place if b12 and b21 are allowed to be nonzero.

In an analogy with competitive species, the parameters a12 and a21 measure
the competitive impact of the second transcription factor on the first and vice
versa, respectively. The parameters b12 and b21 measure the ability of the second
factor to bind the first and vice versa, respectively. Indeed, should we perturb
the system from the state of exclusive expression of the second factor by adding
a small amount of the first factor, then b12 gives the ratio of complexed and free
molecules of the added factor; a symmetric statement can of course be made for
b21. The parameter ρ compares the growth rates of the two antagonists.

The aforementioned special choice of b12 = b21 = 0 is that of competition by
annihilation: while negligible amounts of either factor are bound in a complex at
any time, the ephemeral interaction strongly catalyses their degradation (unless
a12 and a21 are also zero, in which case there is no interaction between the two
factors).

The implicit form of (15)–(16) can be turned into an explicit one by chain-
rule differentiating the total protein concentrations on the left-hand sides of the
equations,

(1 + b12u2)
du1

dτ
+ b12u1

du2

dτ
= u1 (1− u1 − a12u2) , (17)

b21u2
du1

dτ
+ (1 + b21u1)

du2

dτ
= ρu2 (1− u2 − a21u1) ; (18)
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solving in the unknowns du1/dτ and du2/dτ yields

du1

dτ
=

(1 + b21u1)f1(u1, u2)− b12u1f2(u1, u2)

1 + b12u2 + b21u1
, (19)

du2

dτ
=
−b21u2f1(u1, u2) + (1 + b12u2)f2(u1, u2)

1 + b12u2 + b21u1
, (20)

in which

f1(u1, u2) = u1 (1− u1 − a12u2) , f2(u1, u2) = ρu2 (1− u2 − a21u1) (21)

represent the right-hand sides of (17)–(18). We use the explicit form (19)–(21)
for numerical simulations, whereas the implicit forms (15)–(16) and (17)–(18)
are preferable for analytical investigations.

3 Linearisation

Here we investigate the asymptotic behaviour of solutions u = (u1, u2)ᵀ to sys-
tem (15)–(16) using the standard technique of linearisation in the neighbourhood
of steady states. The steady states are obtained by equating the right-hand sides
of (15) and (16) to zero; it follows immediately that the position of steady states
depends on the competition strengths a12 and a21 only, being independent of
b12, b21 and ρ.

In addition to the zero steady state (0, 0)ᵀ and the two steady states (1, 0)ᵀ

and (0, 1)ᵀ of exclusive expression, there is a coexpression state ū = (ū1, ū2)
given by

ū1 =
1− a12

1− a12a21
, ū2 =

1− a21

1− a12a21
, (22)

which is physically plausible only if both are positive, requiring either (i) a12 > 1
and a21 > 1 or (ii) a12 < 1 and a21 < 1 to hold simultaneously. In case of (i),
which is that of strong mutual competition, we have ū1 + ū2 < 1; in the opposite
case (ii) of weak mutual competition, the coexpression state satisfies ū1+ū2 > 1.

The inverse relationship to (22) is

a12 =
1− ū1

ū2
, a21 =

1− ū2

ū1
. (23)

Below, we shall often be using ū1 and ū2 instead of a12 and a21 to parametrise
the model in the important regimes in which the coexpression state exists.

We consider a time-dependent solution which is close to a steady state, i.e.

u(τ) = ū + εũ(τ), ε� 1. (24)

Inserting (24) into (17)–(18) and neglecting higher-order terms we obtain a
linear system of differential equations

B
dũ

dτ
= Aũ, (25)

where

A =

(
1− 2ū1 − a12ū2 −a12ū1

−ρa21ū2 ρ(1− 2ū2 − a21ū1)

)
, (26)
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and

B =

(
1 + b12ū2 b12ū1

b21ū2 1 + b21ū1

)
. (27)

Inserting ū = (0, 0)ᵀ in (25)–(27), we immediately find that the zero steady
state is an unstable node. For the states of exclusive expression, system (25)
assumes a triangular structure, which makes finding the eigenvalues again fairly
straightforward: we find that (1, 0)ᵀ is a stable node if a21 > 1 and a saddle if
a21 < 1; conversely, (0, 1)ᵀ is a stable node if a12 > 1 and a saddle if a12 < 1.
The exclusive expression states, should they be saddles, are stable with respect
to perturbations in the concentration of the factor that is being exclusively
expressed, but unstable with respect to perturbations that add but a minute
amount of the antagonist.

Thus, if a21 > 1 and a12 < 1, then (1, 0)ᵀ is a single global attractor (see
Parameter Set 1 of Figure 1); conversely, if a21 < 1 and a12 > 1, it is (0, 1)ᵀ

that attracts all positive initial conditions. However, more interesting types of
behaviour are observed in the bistable (a21 > 1 and a12 > 1) and coexpression
(a21 < 1 and a21 < 1) cases, when the coexpression steady state ū = (ū1, ū2)
given by (22) is available.

For the coexpression state (22), we can use (23) to simplify the diagonal
terms of matrix (26) to

A = −
(

ū1 a12ū1

ρa21ū2 ρū2

)
. (28)

The determinant of the linearisation matrix in (25) satisfies

det(B−1A) =
det(A)

det(B)
=
ρū1ū2(1− a12a21)

1 + b12ū2 + b21ū1
. (29)

Thus, if a12 > 1 and a21 > 1 (bistable regime; the blue region in the param-
eter space of Figure 1), then det(B−1A) < 0, implying that (25) has two real
eigenvalues of opposite signs, and the coexpression steady state is a saddle. The
stable manifold (here a curve) of the saddle is the separatrix, delineating the
basins of attractions to the two stable nodes of exclusive expression (Parameter
Set 2 of Figure 1).

If a12 < 1 and a21 < 1 (the yellow and brown regions in the parameter space
of Figure 1), both steady states of exclusive expression are unstable saddles;
hence a global attractor must exist for which the antagonists are coexpressed.
By (29), we have det(B−1A) > 0, implying that the coexpression state cannot
be a saddle: it is a node or a spiral; its stability is determined by the sign of

tr(B−1A) =
ρū2(a21b12ū1 − 1− b12ū2) + ū1(a12b21ū2 − 1− b21ū1)

1 + b12ū2 + b21ū1

=
ρū2(b12(1− 2ū2)− 1) + ū1(b21(1− 2ū1)− 1)

1 + b12ū2 + b21ū1
. (30)

If the trace is negative, the coexpression steady state is stable, attracting all
positive initial conditions (Parameter Set 3 of Figure 1). If the trace is positive,
the coexpression steady state is unstable; the Poincare-Bendixson theorem then
implies the existence of a limit cycle, which substitutes as a global attractor for
the destabilised steady state (Parameter Set 4 of Figure 1). For fixed values of
b12, b21 and ρ, the set of ū for which (30) is positive is an ellipse (the brown
region of the parameter space in Figure 1).
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Figure 1: A selection of phase portraits of (15)–(16). The binding abilities are
b21 = 5, b12 = 1; the growth rate ratio is ρ = 0.2. Four different combinations
of the competition coefficients a12 and a21 (or, equivalently, the coexpression
levels ū1 and ū2) are selected: (1) a21 = 2, a12 = 0.5; (2) a21 = 2.74, a12 = 1.45;
(3) a21 = 0.26, a12 = 0.57; (4) a21 = 0.5, a12 = 0.87. Shadings in the top
panels indicate individual parametric regimes: bistable (blue), stable-steady-
state coexpression (yellow), oscillatory coexpression (brown).
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4 Necessary conditions for limit cycle coexpres-
sion

In this section, we show that our model can sustain limit-cycle oscillations only
in certain parametric regions of the coexpression regime, which are defined by
specific requirements on asymmetry.

We call the competitors equally strong if a12 = a21. If a12 > a21, then the
second factor is the stronger and the first is the weaker competitor; if a21 > a12 it
is the other way round. Since ū1/ū2 = (1−a12)/(1−a21), the weaker competitor
is expressed at a lower level — relative to the maximal self-sustainable expression
— than the stronger competitor. In order to sustain oscillatory coexpression,
the weaker competitor needs to be expressed at less than its half-maximal level
to make either 1 − 2ū1 or 1 − 2ū2 positive in (30); since ū1 + ū2 > 1 holds
in the coexpression scenario, the stronger one must be expressed at more than
its half-maximal level. In particular, equally strong competitors cannot sustain
oscillations.

Without loss of generality, we assume that the first factor is the weaker
competitor. Since 1− 2ū2 < 2ū1 − 1 in the coexpression regime, we have

tr(B−1A) <
(1− 2ū1)(b21ū1 − ρb12ū2)− ρū2 − ū1

1 + b12ū2 + b21ū1
. (31)

Hence, a necessary condition for the trace to be positive is ρb12/b21 < ū1/ū2; in
particular, given that ū1 < ū2, we have

ρb12

b21
< 1. (32)

Equation (32) means that the weaker competitor should have the stronger
growth rate and/or the greater binding ability. Since

a12

a21
=
β1ρb12

β2b21
> 1

together with (32) imply β1 > β2, the weaker competitor must be degraded
faster in complexed form.

In Figure 2, time traces are shown of the competing transcription factors’
concentrations for parameter values which conform to the regime of oscillatory
coexpression (Parameter Set 4 of Figure 1). In the top panel of Figure 2, the
free protein concentrations u1 and u2 are shown in solid blue and red, while the
total protein concentrations u1T = u1 + b12u1u2 and u2T = u2 + b21u1u2 are
represented by dashed lines.

According to the chosen nondimensionalisation, the concentration of either
transcription factor is measured relative to its maximal possible self-sustainable
expression, which can differ between the two. This difference is compensated
for in the bottom panel of Figure 2 by multiplying the dimensionless protein
concentrations by their binding abilities b21 and b12; in other words, the bottom
panel shows all protein concentrations in the same units of the dissociation
constant Kd for the protein–protein interaction. Such a choice illustrates vividly
that the weaker competitor is indeed the more abundant one.

A crucial aspect of the oscillations portrayed in Figure 2 appears to be
that, while the weaker competitor’s free and total concentrations oscillate in
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Figure 2: Oscillatory coexpression of competitive transcription factors: time
traces of free (full line) and total (dashed line) concentrations for both the
weaker (blue colour) and the stronger (red colour) competitors.

sync, there is a distinct phase shift between the free and total concentrations
of the stronger competitor. The dynamics captured in Figure 2 start with the
weaker competitor being present below its coexpression steady-state level; free
molecules of the stronger competitor are present above the steady-state level.
The undersaturated weaker competitor grows and, being an efficient binder,
captures the stronger competitor into a complex, leading to a decrease in the
amount of free molecules u2 and a simultaneous increase in the total molecule
level u2T. Unrestrained by its competitor, u1 peaks at a high value. The peak
is followed by a corrective phase, during which the weaker competitor decays
and the stronger competitor grows. The final phase of the growth in the free
stronger competitor is driven by the release of the captured molecules: the total
molecular amount u2T decreases while u2 increases further, eventually peaking
at a high value. Thus, the oscillatory dynamics are driven by the capture and
release of the stronger competitor by the weaker competitor.

5 Lineage choice driven by phase

Here we assume that the model operates in the coexpression regime for 0 < τ <
τc, where τc represents the time at which the cell receives a specific signal for
lineage commitment, switching into the bistable regime for τ > τc.

Thus, for 0 < τ < τc, the factors’ concentrations are given by (15)–(16) with
competition coefficients satisfying a12 < 1 and a21 < 1, in order that the system
be in the coexpression regime. Additionally, we shall require that a12 6= a21

and that the remaining dimensionless parameters b21, b12 and ρ be chosen so
as to render the coexpression oscillatory. At τ = τc, an instantaneous change
in parameter values is assumed to occur which converts the system from the
coexpression to the bistability regime; in particular, such conversion requires
that the competition coefficients satisfy ã12 > 1 and ã21 > 1 after the change
(here and below we use tilded symbols for parameter values after the change).
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The competition coefficients are dimensionless groupings (10) of the biolog-
ical (dimensional) parameters. There are a number of ways in which the neces-
sary increase in competition can be brought about in terms of the dimensional
parameters. Here we shall focus on the case of

p̃i = λipi, K̃i = λiKi, i = 1, 2, (33)

according to which the maximal attainable gene expression rates pi and the
dissociation constants for the protein–DNA interaction Ki are increased pro-
portionally by factors of λi. The remaining biological parameters are assumed
to remain unchanged: the free factor decay rate constants α̃i = αi, those of the
complexed factors β̃i = βi, and the dissociation constant for the protein–protein
interaction K̃d = Kd. Biologically, an increase in pi means that a committed
cell is transcriptionally more active; an increase in Ki means that it becomes
harder for a transcription factor to interact with its target DNA, e.g. because
of increased competition by unspecific binders.

The change in dimensional parameters (33) induces a change in the dimen-
sionless competition coefficients and binding abilities,

ã12 = λ2a12, ã21 = λ1a21, b̃12 = λ2b12, b̃21 = λ1b21, (34)

whereby we require λ2 > 1/a12 > 1 and λ1 > 1/a21 > 1 to guarantee bistability
after the parametric change. The remaining dimensionless quantities, ρ, δ1, δ2,
and ε, remain unchanged through (33); in particular, the conditions of δi � 1
and ε � 1, which we invoked to simplify our model into the tractable form
of (15)–(16), remain in place after the parameter values are changed according
to (33).

The dimensionless transcription-factor concentrations satisfy for τ > τc the
same system as for τ < τc but for the change in parameters, i.e.

d(ũ1 + b̃12ũ1ũ2)

dt
= ũ1 (1− ũ1 − ã12ũ2) , (35)

d(ũ2 + b̃21ũ1ũ2)

dt
= ρũ2 (1− ũ2 − ã21ũ1) . (36)

The concentrations ũ1 and ũ2 in (35)–(36) are measured in units of their max-
imal self-sustainable levels, which are larger than those before the parameter
change; by setting

ui = λiũi, i = 1, 2, (37)

we return to the original concentration scales. Relation (37) implies, in partic-
ular, that the exclusive-expression steady states (ũ1, ũ2) = (1, 0) and (ũ1, ũ2) =
(0, 1) of the bistable system (35)–(36) map onto (u1, u2) = (λ1, 0) and (u1, u2) =
(0, λ2) in the original concentration scales.

Figure 3 exemplifies the behaviour of the gene switch model subject to a
transition from oscillatory coexpression to the bistable regime by the mecha-
nism described above. The phase plane in panel A includes the coexpression
limit cycle of the pre-commitment regime (red colour), as well as a couple of
trajectories of the post-commitment bistable regime (black colour), including
the separatrix connecting the zero steady state with the coexpression saddle.
Importantly, the limit cycle intersects with the separatrix and straddles the
post-commitment basins of attraction of the exclusive-expression stable nodes.
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Figure 3: Lineage choice driven by phase. (A) The phase plane includes the
limit cycle (red colour) of system (15)–(16) in the oscillatory coexpression regime
(a21 = 0.5, a12 = 0.87, ρ = 0.2, b21 = 5, b12 = 1) as well as selected trajectories
the bistable system (35)–(36) (black colour) obtained by increasing transcrip-
tional activity threefold (λ1 = λ2 = 3). (B-C) Depending on the phase of
oscillation at the point of the transition from oscillatory coexpression (red) to
bistability (black), either stable steady state can be chosen. (D) Detail of a
complete period T of oscillation of the periodic solution to (35)–(36). We indi-
cate the phases spent above the separatrix (“primed for X2”) and underneath
it (“primed for X1”). (E-F) The proportion of the period being primed for X2

as function of parameters λ1, λ2, a12 and b21 (all parameters are as in panel A
unless explicitly stated otherwise).
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The implications of such a configuration are visible from panels B and C,
which give the time traces of the free protein concentrations prior to (red colour)
and after (black colour) the inducement to commit. The two scenarios coincide
in all respects except for the time at which the signal for lineage commitment
is given: while in panel B the signal comes when the first factor peaks, in
panel C the signal arrives as the first factor bottoms out and the second factor
is maximal. Upon transitioning into the bistable regime, these two cases are
on the opposite sides of the separatrix, leading to opposite attractors being
eventually chosen.

The preference for one or the other lineage is decided by the proportion of a
complete period T of oscillation that the periodic solution spends in either basin
of attraction of the bistable system; we say that the system is being primed for
the first (X1) or the second (X2) factor depending on in which basin it currently
resides. In the reference parametric scenario (a21 = 0.5, a12 = 0.87, ρ = 0.2,
b21 = 5, b12 = 1, λ1 = λ2 = 3), the system spends roughly half of the period
being primed for either of the two available outcomes (Figure 3, panel D).

By panel E of Figure 3, the proportion primed for X2 increases as function of
λ2 (fold inducement of X2) and decreases as function of λ1 (fold inducement of
X1). If λ1 is close (from above) to 1/a21, then ã21 = λ1a21 is close to one, making
the (post-inducement) steady state of exclusive X1 expression marginally stable.
The opposite steady state of exclusive X2 expression then attracts the entire
(pre-inducement) limit cycle: the solution primes for X2 throughout its period
of oscillation. Conversely, if λ2 is close 1/a12, the periodic solution primes
exclusively for X1. Aside from the borderline behaviour, the proportion of time
being primed for X2 varies moderately between 0.4 and 0.6 as function of λ1 and
λ2 (Figure 3, panel E). The proportion of time being primed for the second factor
increases with its competition strength a12 (Figure 3, panel F); it goes sharply to
zero or one close to the Hopf bifurcation points, at which the periodic solution is
eliminated (see the next section for details on the bifurcation structure). Away
from the bifurcation points, the proportion varies but moderately with a12.

Increasing the first factor’s binding ability b21 typically implies a decrease in
the proportion of time that the system is primed for the second factor (Figure 3,
panel F). An opposite effect can nevertheless be observed at lower ranges of
a12, for which the system exhibits low-amlitude oscillations or none, priming
exclusively for the first factor; an increase in b21 can then amplify the small
oscillations, making the second factor available at some phases of the heightened
oscillation.

Details on the numerical calculation of the priming proportions are given in
Appendix A.

6 Bifurcation structure

Consider a vertical path in the (a21, a12)-parameter space of the system (15)–
(16) (Figure 1, top left), which runs through the point with label 4 in the
direction of increasing a12. Such a path starts at a12 = 0 in the regime of stable
coexpression (Figure 1, top left, yellow region), crosses the oscillatory coex-
pression regime as a12 increases (Figure 1, top left, brown region), and ends in
the regime of exclusive expression as a12 exceeds one (Figure 1, top left, white
region). The bifurcation diagram in Figure 4 (the left panels, one for either co-
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Figure 4: Bifurcation diagrams show the u1- (top panels) and u2- (bottom pan-
els) coordinates of stable steady states (solid black curves), unstable steady
states (dotted black curves), and maxima and minima of stable periodic solu-
tions (solid red curves), as functions of a bifurcation parameter. Implausible
steady states with either coordinate negative are omitted from bifurcation dia-
grams. Left: Bifurcation diagram of the system (15)–(16), in which a12 is the
bifurcation parameter; a21 = 0.5, b21 = 5, b12 = 1, ρ = 0.2. Right: Bifurcation
diagram of the reparametrised system (35)–(36), in which the fold inducement
λ = λ1 = λ2 is the bifurcation parameter; a21 = 0.5, a12 = 0.87, b21 = 5,
b12 = 1, ρ = 0.2.

ordinate) details the manner in which these transitions in qualitative behaviour
are realised. This bifurcation diagram and the others in this section have been
created with the help of the numerical continuation software auto07p (Doedel
and Oldeman, 2007).

At a12 = 0, the second factor exerts no competitive effect on the first factor,
which is therefore (stably) coexpressed at the maximal possible level ū1 = 1
while the second factor is coexpressed at a lower level ū2 = 1 − a21 = 0.5
(Figure 4, left, solid black branch at a12 = 0). As the competitive effect a12

of the second factor increases from zero to one, the coexpression level ū1 of
the first factor decreases, and that of the second factor ū2 increases (Figure 4,
left, the nonconstant steady-state branch). The limit cycle emerges from, and
subsequently collapses back into, the coexpression steady state in a pair of su-
percritical Hopf bifurcations (Figure 4, left, solid red curves). Between the two
Hopf bifurcation points (0.82 < a12 < 0.93), the coexpression steady state loses
stability in favour of the limit cycle (Figure 4, left, the dotted part of the noncon-
stant steady-state branch). At a12 = 1, the coexpression steady state coalesces
with the exclusive-expression steady state of the second factor in a transcritical
bifurcation, whereby the two steady states exchange stability (Figure 4, left,
a12 = 1). After the transcritical bifurcation, the first coordinate ū1 of the coex-
pression steady state becomes negative; we discard the implausible coexpression
steady-state branch for a12 > 1 from the bifurcation diagram (Figure 4, left,
a12 > 1).

The panels on the right-hand side of Figure 4 show a bifurcation diagram for
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the reparametrised system (35)–(36). The bifurcation parameter λ = λ1 = λ2

gives the fold increase in competition strengths and binding abilities in (35)–(36)
relative to a reference set of parameter values (a21 = 0.5, a12 = 0.87, b21 = 5,
b12 = 1, ρ = 0.2), see (34). We report the bifurcation diagram in terms of the
reference concentration variables u1 = λũ1 and u2 = λũ2, cf. (37), where ũ1 and
ũ2 are the dependent variables of the reparametrised system (35)–(36).

The steady-state exclusive-expression concentration of either transcription
factor is equal to the bifurcation parameter λ (Figure 4, right, the upper steady-
state branches in either panel). At λ = 1, we recover the reference system, which
possesses a limit cycle, which we previously depicted in Figure 3, panel A (the
red orbit). The λ-diagram (Figure 4, right) is initially structurally similar to
the a12-diagram (Figure 4, left), featuring two consecutive supercritical Hopf
bifurcations (at λ = 0.95 and λ = 1.08) in the coexpression regime and a
transcritical bifurcation (at λ = 1/a12 = 1.15) by which the system transitions
into the regime of exclusive expression of the second factor. However, with a
further increase in λ, yet another transcritical bifurcation occurs (at λ = 1/a21 =
2), this time round at the steady state of exclusive expression of the first factor,
whereby it becomes stable and an unstable coexpression steady state re-enters
the first quadrant; after the second transcritical bifurcation, the system operates
in the bistable regime. At λ = 3, we obtain the bistable system whose phase
portrait we previously sketched in Figure 3, panel A (black trajectories).

The stable coexpression branch (Figure 4, solid black branch, λ < 1.15),
despite the oscillatory intermezzo, is continued after the first transcritical bi-
furcation by the stable branch of exclusive expression of the (stronger) second
factor (Figure 4, solid black branch, 1.15 < λ < 2). The opposite stable branch
of exclusive expression of the (weaker) first factor, which enters into play after
the second transcritical bifurcation (λ > 2), can never be reached by following
the stable limit sets of the diagram. In order to make both branches available,
an instantaneous transition from oscillatory coexpression to the bistable regime
is required, as described in Section 5.

The next two bifurcation diagrams, shown in Figures 5 and 6, reveal the
typical bifurcation structure exhibited in response to changes in binding abilities
b12, b21, or the growth rate ratio ρ. While the steady-state coordinates of
the system (15)–(16) are independent of these three parameters, an increase in
the weaker competitor’s binding ability or its relative growth rate is conducive
to oscillatory coexpression (see Section 4). In Figure 5, we use the standard
parameter set used in Figure 1, case 4, and elsewhere, for which the first factor is
the weaker competitor, using the first factor’s binding ability b21 as a bifurcation
parameter. A limit cycle emerges from a Hopf bifurcation at b21 = 4.37 and
continues to grow in size with further increase in the bifurcation parameter
(Figure 5, top left).

For a clear picture of the bifurcation dynamics, we present for selected val-
ues of the bifurcation parameter the phase portraits of the system (15)–(16),
which include the nullclines shown in blue and green, selected trajectories in
black, and, if applicable, the limit cycle in red (Figure 5, top right to bottom).
The nullclines consist of trivial branches, which form the boundary of the first
quadrant, as well as nontrivial branches within the interior of the first quadrant,
the shape of which is parameter-dependent. Except for nongeneric cases, the
nontrivial part of either nullcline forms a hyperbola. The u1-nullcline, i.e. the
set of points on which the concentration of first factor is stationary, is nearly
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Figure 5: Top Left: Bifurcation diagram of the system (15)–(16), in which b21

is the bifurcation parameter; a21 = 0.5, a12 = 0.87, b12 = 1, ρ = 0.2. Solid
curves represent stable limit sets (steady states in black and limit cycles in red);
black dotted curves give unstable steady states. Top Right, Centre and Bottom:
Phase portraits of (15)–(16) for selected values of b21. Other parameters are as
in the bifurcation diagram. The portraits include nullclines (in green and blue
colours), the limit cycle (red) and selected trajectories (black).

17



straight and changes very little in response to an increase in its binding abil-
ity b21 (Figure 5, blue colour). The u2-nullcline, on which the second factor
is stationary, undergoes a dramatic transformation as the binding ability of its
competitor increases (Figure 5, green colour).

For the degenerate initial case of zero binding ability, b21 = 0, the nontrivial
branch of the u2-nullcline is a straight line (Figure 5, top right), and the phase
portrait is qualitatively identical with that of the competitive species model
in the coexistence regime (Murray, 2003). As b21 increases, the straight line
deforms and assumes a distinctly hyperbolic shape, while the other branch of the
hyperbola appears off the u1 axis (Figure 5, centre left). With a further increase
in b21, the two branches degenerate into their own asymptotes (not shown), after
which they reconstitute on the other sides of the asymptotes (Figure 5, centre
right). The changes in the u2-nullcline are accompanied by the emergence of
damped oscillations around the coexpression steady state. These oscillations
destabilise after the Hopf bifurcation, and a limit cycle appears, which is initially
elliptical (Figure 5, bottom left), but grows in size and bends as b21 increases
further (Figure 5, bottom right).

The deformation of the u2-nullcline reported in the phase portraits in Fig-
ure 5 can be related back to our mechanistic understanding of the model (15)–
(16). Underneath the u1-nullcline, u1 grows and captures u2 into a complex,
reducing or even reversing any growth in u2. The reversal of growth in u2 occurs
where it is a priori weak — near the saturation or extinction points (u2 = 1 or
u2 = 0) — and where the growth of its capturer is particularly strong (middle
values of u1). These conditions are initially fulfilled in two disconnected com-
ponents which are delineated by the u2-nullcline underneath the u1-nullcline
(Figure 5, centre left). After the hyperbolic nullcline branches degenerate and
reconstitute on the other sides of their asymptotes, the two components merge
into one, while the single component in which u2 retains its growth splits into
two (Figure 5, centre right), which subsequently diminish in size as the binding
capacity of u1 increases further (Figure 5, bottom left). Indeed, if the bind-
ing ability of u1 is very large, the branches of the u2-nullcline become tightly
aligned with those of the u1-nullcline: except for narrow regions of the phase
plane, growth in u1 dictates a decrease in u2 (Figure 5, bottom right). Above
the u1-nullcline, u1 decays and the captured u2 is released, which brings about
a reduction, or even a reversal into growth, of any decline in u2. As the binding
ability b21 of u1 increases, the region in which both u1 and u2 decrease shrinks,
until it consists of a narrow strip extending from the coexpression steady state
up along the u2 axis, where too few u2 have been captured to overthrow the
tendency to decay. Since growth (decline) in u1 implies capture (release) of its
competitor u2, phases of u1-growth overshoot while those of u1-decline under-
shoot the coexpression steady state, thus driving oscillatory behaviour.

Oscillatory behaviour can be reinforced by a fast turnover of u1, occurring
for ρ� 1, in which case the capture or release of u2 due to growth or decay in u1

dominates any slow corrective dynamics of u2. The bifurcation structure of the
model in response to increasing 1/ρ is similar to the one described above in case
of an increasing b21: a limit cycle appears in a supercritical Hopf bifurcation,
and continues to grow monotonically in size as the parameter increases. If we
exchange the roles of u1 and u2 by flipping a12 ↔ a21 and b12 ↔ b21, the same
bifurcation structure is obtained in response to increasing the parameter ρ itself
(Figure 6).
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Figure 6: Left: Bifurcation diagram of the system (15)–(16), in which ρ is the
bifurcation parameter; a21 = 0.87, a12 = 0.5, b21 = 1, b12 = 5. Solid curves
represent stable limit sets (steady states in black and limit cycles in red); black
dotted curves give unstable steady states. Right: Phase portrait of (15)–(16)
for ρ = 15.1.

Figure 7: Bifurcation diagrams of (13)–(14), in which δ2 (left) or δ1 (right) is the
bifurcation parameter. The other parameters are set to a21 = 0.5, a12 = 0.87,
b21 = 5, b12 = 1, ρ = 0.2, δ1 = 0 (left), δ2 = 1 (right). Solid curves represent
stable limit sets (steady states in black and limit cycles in red); black dotted
curves give unstable steady states.
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We have so far studied the phase-plane and bifurcation structure of the sys-
tem (15)–(16), which was derived in Section 2 from a more general system (13)–
(14) by taking the feedback saturation parameters δ1 and δ2 to zero. Next we
use numerical continuation to study the persistence of oscillatory coexpression
in (13)–(14) as δ1 and δ2 are increased from zero to positive values.

We initially set both δ1 and δ2 to zero whilst keeping the other parameters at
values which have previously been shown to support sustained oscillations in the
system (15)–(16) (Figure 1, case 4). Increasing δ2 leads to a Hopf bifurcation
at δ2 = 0.6, after which the system no longer supports sustained oscillations
(Figure 7, left panels). Fixing δ2 = 1 and using δ1 as continuation parame-
ter, we observe a re-emergence of the periodic solution after a Hopf bifurcation
at δ1 = 0.3, which collapses back into the coexpression steady state after an-
other Hopf bifurcation at δ1 = 0.92 (Figure 7, right panels). Importantly, the
results of numerical continuation presented in Figure 7 demonstrate that sus-
tained oscillations are available in the system (13)–(14) under medium feedback
saturations.

7 Discussion

7.1 Comparison with previous work

We have revisited a mathematical model (Bokes et al., 2009) for a genetic switch
that is based on inhibitory protein–protein interactions between two transcrip-
tion factors, broadly inspired by the pair of hematopoietic regulators PU.1 and
GATA-1. Changes have been made to the way protein decay is assumed to
act upon protein molecules that are bound to one another: the previous ver-
sion featured a single mechanism for simultaneous removal of both interacting
constituents; here we consider two separate pathways, each targeting one pro-
tein species for degradation, freeing the other. As well as encompassing more
biological processes, this modification leads to wider possibilities of dynamic
behaviour, including the possibility of limit cycle oscillations, which were not
reported in (Bokes et al., 2009).

Changes to the model, and to our insights into what it might demonstrate,
prompted us to seek a different choice of nondimensionalisation: the maximal
self-sustainable expression levels serve as units of concentration (instead of the
interaction’s dissociation constant); time is measured in the units of the initial
period of growth in the first factor’s concentration (instead of the timescale of
decay for bound proteins).

Nondimensionalisation helps identify key dimensionless parameter groupings
which determine the model’s qualitative behaviour. Specifically, there is a pa-
rameter ε which, similarly to its namesake with a slightly different definition
in (Bokes et al., 2009), compares the (short) lifetime of individual interactions
and the (large) time dynamics of protein concentration accumulation and de-
cay. Following (Bokes et al., 2009), we simplified the model by systematically
neglecting small O(ε) terms, obtaining a reduced model (13)–(14) of lower or-
der, which can be interpreted as one in which the proportions between free
and bound molecules adjust instantaneously in response to any changes in total
protein concentrations.

There are two other dimensionless parameters, δ1 and δ2, which we con-

20



sider small here in the analytical work, whereas no analogous assumption was
made in (Bokes et al., 2009). Biologically, small δi’s imply that the autoregula-
tory loops of the two transcription factors operate in the low-saturation regime.
We concede that this simplifying assumption is motivated primarily by mathe-
matical considerations, rather than biological evidence. Neglecting O(δi) terms
facilitates the linearisation analysis of all steady states, including the coexpres-
sion one, which was not done in full in (Bokes et al., 2009) and does not seem to
be feasible without the simplification. It also helps establish an interesting anal-
ogy between lineage switches and a classical ecological model for competitive
species, as is discussed below. Nevertheless, we used numerical (continuation)
methods to show that the qualitative behaviour of interest, which we identified
in the tractable system, persists after δi’s are increased to positive values.

7.2 Lineage switch and competitive species

Having eliminated ε and the δi, our model reduces to (15)–(16), which depend
on the five remaining dimensionless quantities: the competition coefficients a12

and a21, the binding capacities b12 and b21, and the ratio ρ of initial growth rate
constants.

The value of a12 measures the competitive effect of the second on the first
factor: the steady-state exclusive expression of the second factor is stable with
respect to perturbations adding small amounts of the first factor only if a12

exceeds one. For high values of b12, the competitive effect is due to the capture
by the second factor of most molecules of the first factor into a complex. Low
values of b12 imply that only a small fraction of the first factor’s molecular
concentration becomes bound by the second factor, and any competition results
from an elevated propensity for degradation in bound state.

If b12 = b21 = 0, then, rather than forming an interaction, random collisions
of molecular pairs lead to immediate annihilation of either factor. Mathemati-
cally, our model (15)–(16) then formally reduces to a system that has tradition-
ally been used in mathematical ecology to describe the population dynamics of
competitive species.

The competitive species model operates a bistable regime if both competition
coefficients exceed one, a coexpression regime if both are less than one, and a
regime of the stronger competitor’s exclusivity in the remaining cases of highly
asymmetric competition. The same coarse-grained classification remains valid
even if b12 or b21 are nonzero.

However, a number of additional observations that hold for the competitive
species model — the limited impact of ρ on the qualitative behaviour and the
impossibility of either damped or sustained oscillations — no longer apply if b12

or b21 are allowed to be positive.
Linearising the model around the coexpression steady state in the coex-

pression regime shows that the steady state can become unstable in certain
parametric regimes, implying that a limit cycle must exist which attracts solu-
tions repelled by the unstable state. These oscillatory regimes are characterised
by parametric asymmetry: in order that limit-cycle coexpression occurs, it is
necessary that:

• competition coefficients are unequal (and both less than one);
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• the weaker competitor has a greater binding capacity and/or grows faster,
but is more available for degradation in bound form.

These results reinforce previous observations that asymmetry in parameter val-
ues can supply additional functionality to lineage switches (Alagha and Zaikin,
2013). They allow us to speculate that alternating lineage promiscuity in mul-
tipotent progenitor cells can be realised by deterministic oscillations sustained
by a lineage switch in the regime of weak cross-inhibition. Deterministic oscil-
lations can alternatively be sustained by intransitive competition between three
or more transcription factors (May and Leonard, 1975; Rabajante and Babierra,
2015; Rabajante and Gavina, 2015).

7.3 Limit-cycle coexpression and lineage promiscuity

The bistable regime offers two stable steady states in which either transcription
factor is exclusively expressed, each associated with commitment to a distinct
cell fate. In the PU.1 and GATA-1 example, cells which express exclusively
PU.1 are committed to the myeloid, while those expressing GATA-1 belong
to the erythroid lineage. Bistability means that the lineage choice depends
on which factor holds an advantage initially (Waters et al., 2017). Moreover,
it explains the reversal of commitment, which ensues upon a transient forced
expression of the transcription factor associated with the alternative genetic
programme (Kulessa et al., 1995; Nerlov and Graf, 1998), in the form of an
escape from the basin of attraction of the chosen stable state driven by an
application of external forcing.

Prior to their commitment to a particular lineage, bipotent progenitor cells
coexpress genes of both available lineage programmes, in a phenomenon bear-
ing the names of multilineage priming or lineage promiscuity (Nimmo et al.,
2015; Hu et al., 1997). It has been suggested that the coexpression could be
either simultaneous, in which case the propensity for one or other programme
is constant over time, or fluctuating, meaning that the cell alternatingly primes
for either lineage (Hu et al., 1997). Simultaneous lineage promiscuity can be
modelled by lineage switches in weakly cross-inhibiting regimes possessing a sta-
ble coexpression steady state (Laslo et al., 2006). The present model can also
account for fluctuating lineage promiscuity by its regime of limit-cycle coexpres-
sion. Lineage promiscuity has also been modelled by a coexpression state of a
switch supporting a tristable regime (Huang et al., 2007; Foster et al., 2009); by
a burst-like stochastic constitutive expression of lineage-affiliated transcription
factors (Teles et al., 2013); by metastable attractors in a stochastic model emerg-
ing as a result of including explicit mRNA dynamics (Strasser et al., 2012); and
through using the bistable regime in excessive noise conditions (Bokes et al.,
2013); the need for further modelling methodologies has been accentuated in re-
cent experimental studies challenging prevailing approaches (Hoppe et al., 2016;
Buggenthin et al., 2017; Velten et al., 2017).

Having thus associated uncommitted cells with the coexpression regime and
committed cells with the bistable regime, the act of commitment must involve a
change in parameter values causing the model to transition from the former to
the latter. While in general parameter values may change on the same timescale
as the model operates, one often considers two extreme cases of the above: either
that the parameters change in a discontinuous step, i.e. much faster than the
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dynamics of model itself; or that the parameters change very slowly while the
model is at a (quasi-) steady state or other attractor, as can be visualised by
bifurcation diagrams (Huang et al., 2007; Li et al., 2015). Notably, changes in
parameter values can themselves be controlled by a separate (primary) genetic
switch (Schittler et al., 2010).

We modelled lineage commitment using a specific type of (instantaneous)
parametric transition to bistability involving a coordinated increase in maximal
transcription rates and dissociation constants for protein–promoter interactions.
Increasing transcription rates has traditionally been used as a mechanism for
resolving a lineage switch (Laslo et al., 2006; Antebi et al., 2013; Roeder and
Glauche, 2006). However, in the present model, an increase in transcription
rates has a side effect of strengthening the positive feedback loops, which offsets
any rise in mutual cross-inhibition. Therefore, we additionally assumed that
the affinities of transcription factors for their promoters decrease (dissociation
constants increase), which we justified biologically as stemming from a rise in
unspecific molecular competition at the promoter (Matsuda et al., 2014).

If coexpression is realised by a single globally stable steady state, then the
choice of attractor in the bistable regime depends solely on which side of the
separatrix the coexpression state appears after the transition to bistability. The
choice is therefore predetermined by the parametric values before and after the
transition: one lineage is inevitable and the other is impossible.

However, if one extends the model by stochastic noise, its asymptotic be-
haviour will not be concentrated in the single point of stable coexpression steady
state, but will instead be distributed in an ellipsoid around it, as is dictated by
the fluctuation–dissipation theorem (Paulsson, 2004). If the steady state is po-
sitioned close to the separatrix, then — even in small-noise conditions — the
ellipsoid will transcend the basins of attraction, enabling either attractor to be
selected (Andrecut et al., 2011).

Here we propose an alternative mechanism, which uses the oscillatory co-
expression regime of the lineage switch to account for lineage promiscuity of
uncommitted cells. Both basins of attraction in the bistable regime contain a
section of the limit cycle. Therefore, depending on the phase of the oscillation
at the point of transition into bistability, either attractor can eventually be se-
lected and, as analysed in Section 5, the proportion attaining each outcome can
be assigned by appropriate choice of parameter values.

In conclusion, our model provides a mechanism for selection of cell fate using
oscillations in a purely deterministic model for two antagonistic transcription
factors. More widely, it suggests that protein–protein interactions can sustain
interesting dynamical behaviour in genetic regulatory networks. Additionally,
it illustrates that perturbation methods can be used to examine parallels be-
tween detailed law-of-mass-action models of chemical kinetics and simpler (of-
ten phenomenological) systems traditionally used in population dynamics and
mathematical ecology.

Appendix: Calculating priming proportions

In order to determine the proportion of time spent by the periodic solution in ei-
ther basin of attraction, we need to calculate the oscillating solution to (15)–(16)
and its period; we also need to calculate the separatrix of the post-commitment
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system (35)–(36) and implement an automated test which decides for a given
point in the phase plane which side of the separatrix it resides. Below we de-
scribe how we carried out each of these tasks.

Rather than integrating an initial-value problem and checking for return
to the initial condition, we determined the periodic solution to (15)–(16) on
one complete period of oscillation using a boundary-value approach with the
continuation software auto07p (Doedel and Oldeman, 2007). The numerical
solution returned by auto07p is defined on a nonuniform time discretisation of
the period, which is denser where the solution moves faster. We used linear
interpolation (using Python’s interp1d from the scipy.interpolate package)
to obtain the values of the solution on a uniform time discretisation. For each
of these values, we tested, using a procedure described below, which side of the
separatrix of the post-commitment system (35)–(36) it falls into: the proportion
of these values found in the basin of attraction of the second factor was returned
as the numerical approximation of the proportion of the period spent in the
basin.

After the signal for commitment is given, the transcription factors are gov-
erned by system (35)–(36), which is the same system as (15)–(16) but with
changed parameters (34) and concentration scales (37). For notational simplic-
ity, we show how to find a separatrix for system (15)–(16) operating in the
bistable regime; we then comment on the transformations that are required to
use this procedure to obtain the separatrix for (35)–(36).

The separatrix consists of two (up to a time shift) solutions to (15)–(16)
which approach the saddle point as time increases. We focus exclusively on
cases when the separatrix forms a graph of a function u2 = S(u1) (such as in
Figure 1, bistable regime). Dividing (20) by (19), we obtain for the function
u2 = S(u1) a first-order differential equation

du2

du1
=
−b21u2f1(u1, u2) + (1 + b12u2)f2(u1, u2)

(1 + b21u1)f1(u1, u2)− b12u1f2(u1, u2)
, (A1)

where f1(u1, u2) and f2(u1, u2) are given by (21). The separatrix passes through
the saddle point with coordinates

ū1 =
1− a12

1− a12a21
, ū2 =

1− a21

1− a12a21
,

for which f1(ū1, ū2) = f2(ū1, ū2) = 0 holds, so that the right-hand side of (A1)
is not defined there. Avoiding the saddle point, we solve (A1) numerically on
the interval 0 < u1 < ū1 − κ1, where κ1 � 1, subject to a terminal condition

u2 = ū2 − κ1
v2

v1
at u1 = ū1 − κ1, (A2)

where v1 and v2 are the coordinates of the eigenvector corresponding to the neg-
ative eigenvalue of the linearisation around the saddle point of the system (15)–
(16). The terminal-value problem (A1) and (A2) amounts to an initial-value
problem in−u1. We also solve (A1) numerically on the interval ū1+κ2 < u1 < 1,
where κ2 � 1, subject to an initial condition

u2 = ū2 + κ2
v2

v1
at u1 = ū1 + κ2.
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Concatenating the two solutions, we obtain a numerical approximation of the
separatrix u2 = S(u1) defined on a fine discretisation of the interval 0 < u1 < 1.
We use linear interpolation (again Python’s interp1d) to obtain the S(u1) for
any value from within the unit interval; values of S(u1) outside of the unit
interval are not needed. We classify a given point (u1, u2) in the phase plane
such that 0 < u1 < 1 and u2 > 0 as belonging to the basin of attraction of the
stable steady state (0, 1) if u2 > S(u1) holds; otherwise it belongs to the basin
of attraction of (1, 0).

Applying the above procedure on the post-commitment system (35)–(36)
leaves us with a (numerical representation of) the separatrix ũ2 = S̃(ũ1) in the
post-commitment concentration scales; using (37), we obtain

u2 = S(u1) = λ2S̃(λ−1
1 u1)

for the separatrix in the pre-commitment concentration scales (in which the
periodic solution is recorded).
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