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Abstrakt

Táto práca podrobne popisuje návrh a implementáciu chráneného súborového sysC
tému pre Linux. Rieši rôzne bezpečnostné zraniteľnosti v existujúcich riešeniach, ako
napríklad absencia kontrol integrity a opätovné použitie kryptografických kľúčov a
inicializačných vektorov. Úvodné kapitoly obsahujú predbežnú diskusiu o súborových
systémoch a kryptografii, stanovujú potrebné pojmy a koncepty a definujú požiaC
davky, ktoré usmerňujú neskoršie fázy vývoja. Nasledujúce sekcie opisujú návrh
jednotlivých častí, po ktorých nasleduje implementácia. Tieto časti rozoberajú probC
lémy, ktoré sa vyskytli počas vývoja, a ich príslušné riešenia. Práca končí empirickými
porovnávacími testami a porovnaniami s existujúcimi riešeniami. Súčasťou práce je
funkčný chránený súborový systém, spĺňajúci požiadavky definované predtým.

Kľúčové slová: súborový systém, FUSE, dôvernosť a integrita
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Abstract

This thesis details the design and implementation of a protected filesystem for Linux.
It addresses various security vulnerabilities in existing solutions, such as the absence
of integrity checks and the reuse of cryptographic keys and initialization vectors. The
initial chapters contain preliminary discussion about filesystems and cryptography,
establish necessary terms and concepts, and define requirements that guide later
phases of development. Subsequent sections describe the design of individual parts,
followed by the implementation. These sections discuss the challenges encountered
during the development and their respective solutions. The thesis concludes with
empirical benchmarks and comparisons against existing solutions. The thesis includes
a working protected filesystem satisfying the requirements defined previously.

Keywords: filesystem, FUSE, confidentiality and integrity
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Introduction

Modern computing, for the most part, consists of large amount of data. Secure
storage of data is becoming increasingly important and the general requirement for
its protection is confidentiality and integrity. Although, there exist many established
solutions for disk or filesystem encryption, many of them show shortcomings such as
missing integrity checks and repeated use of keys and initialization vectors.

The primary focus of our thesis is the implementation of protected filesystem for
Linux which can be used on top of commonly used filesystems such as ext family of
filesystems, btrfs, ZFS, or others. Additionally, the implementation needs to preserve
the random access property of files without incurring any significant performance
overhead. It also needs to be secure, ensuring confidentiality and integrity of the
stored content, not leaking any information such as identification of same plaintext
blocks or, in case of integrity, the permutation or replacement of blocks. The impleC
mentation is done using the FUSE C Filesystem in Userspace feature of the Linux
Kernel.

The thesis consists of 6 chapters. The first chapter focuses on basic introduction
to filesystems and cryptography. The primary goal is to give some background into
how filesystems and cryptography work. It introduces concepts such as Filesystem
in Userspace and encryption algorithms that are used throughout the thesis. The
second chapter defines requirements of our software, which we adhere to during the
design phase. The third chapter is largely focused on the design and architecutre of
individual parts that the filesystem consists of. Each part is comprised of defining the
problem needed to be solved. Following with exploration of possible solutions. Finally,
ending with design decision and rationale of why the specific solution was chosen.
In the fourth chapter, we discuss the decisions made during the implementation of
the FUSECbased filesystem and the user facing interface. Finally, the fifth chapter
focuses on the benchmarks and comparisons against existing solutions and the sixth
chapter focuses on possible further work and improvements to the filesystem.
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Chapter 1

Filesystems and Cryptography

The first part of this chapter gives brief explanation of what a filesystem is, how it
closely relates to the virtual filesystem and what it means for a filesystem to be based
on FUSE. The second part describes cryptography principles, ciphers, authenticated
encryption with associated data, hash functions, and key derivation functions. In the
third and the last part, we look and compare similar solutions that exist right now.

1.1 Filesystems

Filesystems are an integral part of the day to day computing. They handle the
organization and access to data. They provide shared access to storage medium
and usually have a treeClike structure of files. Without a filesystem, every software
would have to handle the access to a physical storage medium by itself which is
both infeasible and could potentially lead to data corruption, deadlocks or in the
worst case to a complete data loss. Multiple different filesystems exist with their
respective advantages and disadvatages. Some are optimized for speed, others for
data integrity and security, some work better with hard disk drives, others with
solid state disks. Nowadays, there even exist distributed filesystems that can operate
across the network. Some popular filesystems used on Unix are ext4, btrfs, or ZFS,
on Windows it is NTFS, or its possible successor ReFS.

Now we take a closer look at how an UnixCstyle filesystem such as ext4 works
(other filesystems usually work analogously). The fundamental data structure used
is called an inode that stores metadata about a file or directory, such as permissions,
size, timestamps and locations of data blocks. Notably, it does not store the name
nor actual content. A file is an entry in a directory that points to an inode which
contains the file metadata. Multiple file entries can point to the same inode which is
called a hardlink. The directory inode contains names of directory entries, such as
files and directories, and their respective inodes.
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4 chapter 1. filesystems and cryptography

1.1.1 Virtual Filesystem - VFS

Virtual filesystem is an abstraction in UnixClike systems which allows multiple
different filesystems be accessed from a single hierarchy, usually starting at root,
denoted by /. It allows client software to access the underlying filesystems in a
common way. In order for it to all work seamlessly the individual filesystems are
required to implement common functions such as:

• mount() and unmount() C mounting a filesystem makes the filesystem contents
available at specified path.

• read() and write() C functions for reading from and writing to a specified file.

• open(), close(), stat() C functions for opening, closing and getting metadata
of a file, respectively.

• chmod() C allows modifying the permissions of a file.

Virtual filesystem facilitates the Unix philosophy of everything being a file. Concrete
filesystems can be mounted. A ramdisk, filesystem that uses RAM as the underlying
storage medium, can be mounted. The individual hardware in a computer is accessible
through a virtual filesystem. Each process has a corresponding file in the VFS. The
FUSE filesystem, which we talk about in the next part, also plug into the virtual
filesystem.

1.1.2 Filesystem in Userspace - FUSE

Filesystem in Userspace, as the name suggests, allows nonCprivileged software from
userspace to hook into the virtual filesystem. It allows users to write their own
filesystems without having to touch any of the kernel code.

Filesystems implemented using FUSE communicate with the Linux kernel
through the FUSE protocol. Figure 1.1 describes how the protocol interacts with the
individual parts. As an example, when a user wants to list directory contents with ls,
from userspace ls uses the virtual filesystem function call for reading the directory
that then gets passed to kernel’s virtual filesystem. The VFS then passes the call to
the appropriate driver, in this case the FUSE kernel module, that then communicates
with the filesystem implementation that is in userspace. The kernel FUSE module
and the concrete userspace filesystem communicate through a shared file descriptor.
The concrete filesystem implementation has to provide certain functions for it to
work seamlessly. The functions required and their documentation are described in
FUSE docs [1].
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Figure 1.1: Example FUSE communication

1.2 Cryptography

Cryptography, the art of hidden writing, studies various algorithms, schemes and
protocols and their security properties such as confidentiality, integrity, authenticC
ity, nonCrepudiation. The properties we mainly care about are confidentiality and
integrity.

• Confidentiality ensures that information remains accessible only to authoC
rized parties through the use of encryption.

• Integrity ensures that data has not been in any way altered, modified,
nor corrupted by unauthorized parties. In our case achieved by using hash
functions.

The following text defines some common terminology used in cryptography. The data
before encryption is called plaintext. The encrypted data is called ciphertext. The
cryptography algorithms are called ciphers. The ciphers usually require a secret key
that is used when encrypting and decrypting the data. The key, ideally, is a secret
between the two or more parties doing communication and should not be known to
the outside world.

In the past, cryptography was mostly focused on data confidentiality, that is, the
encryption and decryption of data. Some examples of one of the oldest ciphers is the
Caesar cipher. It is a simple substitution cipher where each letter in the plaintext is
shifted by 3 positions, wrapping around. The name comes from Julius Caesar who,
allegedly, used it for communication with his generals. The key in Caesar cipher is
the amount the letters are shifted by. Another wellCknown substitution cipher is the
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Vigenère cipher. Compared to the Caesar cipher, the only difference is that each
position of a letter in the plaintext is shifted by the same position letter in the key, i.e.
plaintext “hello” and key “abcde” would produce ciphertext “igopt”. These ciphers
are easily defeated by frequency analysis, a technique that is based on the inherent
property of natural languages having certain letter patterns.

Modern cryptography is built upon the rigorous foundation of mathematics. The
cipher techniques can be categorized into symmetric cryptography and asymmetric
cryptography, the latter is also known as public key cryptography. In the former,
both parties use the same key agreed upon beforehand. Whereas in the latter, each
party generates their own private and public key pair which they use to compute a
shared secret. Asymmetric encryption is based on intractable mathematical problems
such as integer factorization. discrete logarithm, etc. The following text primarily
focuses on symmetric encryption since it is used in the implementation.

Symmetric encryption ciphers can be categorized into two groups based on the
processing of data.

• block ciphers process data on fixedClength input called blocks. Example:
AES, Blowfish.

• stream ciphers process data bit by bit, plaintext is usually combined with a
keystream that is produced by the cipher. Example: Salsa20, ChaCha20.

The symmetric ciphers also have different modes of operation. The way of how they
combine the plaintext with the cipher. Some block modes require initialization
vector (IV), bits of data not requiring secrecy, but are later needed for decryption.
Some block modes as an example include:

• Electronic Codebook (ECB) C plaintext block is encrypted into a ciphertext
block.

• Cipher Block Chaining (CBC) C plaintext block is XORed with the previous
ciphertext block and then is encrypted into a new ciphertext block, uses IV as
the initial ciphertext block.

• Counter (CTR) C input into the cipher is an IV and a counter, output from
the cipher then is XORed with the plaintext.

Most commonly used block cipher is AES which can use block lengths of 128, 192 or
256 bits. Some stream ciphers worth mentioning are Salsa20 and ChaCha20. Both
are add, rotate, XOR (ARX) ciphers. The latter is a modified Salsa20 with more
performant round function with increased diffusion. The 20 in their name implies the
amount of rounds performed.
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None of these modes provide protection against any manipulation of the cipherC
text, be it accidental or adversarial. Authenticated encryption is covered in the
following section.

1.2.1 Authenticated Encryption with Associated Data

Authenticated encryption provides confidentiality and also authenticity of the enC
crypted data. These ciphers enable the detection of ciphertext manipulation. They
achieve it by additionally computing and saving a hash, or a MAC (message authenC
tication code). Some block modes providing authentications are:

• Counter with CBCCMAC (CCM) C plaintext encrypted using CTR mode and
authentication tag computed as CBCCMAC, authenticateCthenCencrypt, needs
to pass over plaintext twice.

• Galois/Counter mode (GCM) C input into cipher is an IV and a counter,
additionally computes a GHASH using associated data and ciphertext.

• Synthetic Initialization Vector (SIV) C generates unique IV from the key, the
plaintext, and any associated data, usually using CMAC, encryption using
CTR mode.

From block ciphers we have chosen AES in GCM mode as it provides both
confidentiality and authentication and is best suited for our needs. From stream
ciphers the best candidate is ChaCha20Poly1305. As the name implies, it is a
ChaCha20 cipher that additionally computes a message authentication code using
the Poly1305 hash function. It usually has faster performance when compared with
AESCGCM without hardware instructions.

1.2.2 Hash Functions

Hash functions turn input of arbitrary length to a fixed size output called hash,
digest, checksum. Hash functions are intentionally designed to be irreversible, proC
viding preimage and collision resistance. They also have a property where changing
a single bit in input causes each bit in output to have 50% probability of flipping.
MerkleCDamgård construction contains a fixed input length compression function
with collision resistance. Sponge construction contains a finite state that “absorbs”
input of arbitrary length and then “squeezes out” output of fixed length. Some of
the common hash functions are:

• MD5 C MerkleCDamgård construction, producing output of 128Cbits, it is not
secure anymore and should not be used.
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• SHA2 C family of MerkleCDamgård hash functions with input limit of 264 bits.

• SHA3 C successor to SHA2 family of hash functions, based on Keccak [2] and
the sponge construction, input can be arbitrarily long.

• BLAKE2 C finalist of SHA3 competition, based on ChaCha20 stream cipher,
input can be arbitrarily long [3].

In our implementation we are using BLAKE2 with optionally changing to SHA3.
We have chosen BLAKE2 primarily due to the speed and strong security guarantees.
The hash functions are used for integrity checking of entire files. See Chapter 3.2 for
more information.

1.2.3 Key Derivation Functions

Key derivation functions are cryptographic algorithms used for deriving secret keys
out of passwords or master keys. The primary use of key derivation functions is to
stretch keys into a desired length. The output of KDF is called output key or hash.
Common use for key derivation functions is password hashing, where they are
used for strengthening the input material, usually a user password, which is not as
strong as a randomly generated vector of bytes. It is accomplished by combining
the password with additional arbitrary input, called salt, which together is used
to generate cryptographically secure output key. The use of salt makes bruteforce
attacks on the input password way harder. It prevents attacker to simply lookup
into a precomputed table containing password and its respective hash since the
input additionally depends on the randomly generated salt. Modern key derivation
functions allow setting the number of iterations and amount of memory to use during
the computation. It leads to significantly slower cracking of passwords even when the
salt is known since the computation alone is an expensive operation. The commonly
used key derivation functions are PBKDF2 [4], bcrypt [5], scrypt [6], argon2 [7]. The
first two are easy to parallelise and have small memory footprint, whereas the latter
two have controls for managing the amount of memory used during operation.

Our filesystem uses Argon2id for the secure storage of master key. Argon2id
is a hybrid mode of Argon2d and Argon2i. The first uses dataCdependent memory
access, the memory accesses later depend on the previous computation. The primary
objective of Argon2d is to provide resistance against GPU and ASICCbased cracking.
The second uses dataCindependent memory access, the memory access is predeterC
mined and does not depend on the input data. The goal is to resist sideCchannel
timing attacks. Argon2id is a hybrid between the two, aiming to provide balanced
resistance to both GPU cracking and sideCchannel attacks. It accomplishes this by
using dataCindependent memory access for the first half of the first pass and then
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switches to dataCdependent memory access for the remainder of the first pass and
subsequent passes.

1.3 Comparison with existing solutions

The following part analyses existing solutions. We primarily look at EncFS and
gocryptfs. Finally, we briefly mention disk encryption solutions.

EncFS [8] originally released for Linux in 2003. It is written in C++ and runs in
userspace using the FUSE library. For cryptography, it is using openssl. It was
one of the first solutions that offered encryption at the filesystem level. It uses
one key for encryption of all the files, AES in CBC mode, which does not provide
any kind of data authenticity and integrity. For ensuring that the data was not
tampered with it uses openssl’s implementation of HMAC. Although, message
authentication codes are a valid solution, in the EncFS case they are using 64 bit
MACs, which nowadays can easily be broken by bruteforce. During a security
audit of EncFS v1.7.4 in 2014 [9] multiple potential vulnerabilities were found.
many of the vulnerabilities exist likely due to its age, since during its inception,
the standard security practices were more relaxed compared with today. After
the security audit, version 1.8 was released fixing some of the problems found.
Unfortunately, most of the security issues remain to this day and the project is
no longer maintained.

gocryptfs [10] It is heavily inspired by EncFS. It is written in Go, a memory safe
programming language, which is a huge plus from the security point of view. For
cryptography, it is using Go’s standard library, but optionally can use openssl.
Many software vulnerabilities stem from the usage of memory unsafe languages
[11]. The project is aiming to fix most of the security shortcomings of EncFS
as can be seen in the design [12]. The cryptographic primitives it employs are
AES in GCM mode which is known for providing both data confidentiality and
authenticity, and scrypt as a key derivation function, which makes a bruteforce
attack infeasible due to its high memory requirement. It manages to be way
faster than EncFS while using more complicated and stronger ciphers.

Although gocryptfs has many positives, some negatives exist, too. It offers
data authenticity and integrity over large amount of blocks, but does not prevent
replacing current encrypted blocks with previous versions of them. The other
possibly bad design choice is the absence of block alignment. From the design
[12] we can see that gocryptfs is using 4KiB blocks where each block gets its own
unique initialization vector. The place where it stores these initialization vectors
is at the beginning of each 4KiB block. Unfortunately this way of storage may
have a negative impact on the amount of disk accesses. The filesystem blocks are
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not aligned to the physical medium’s blocks, and as such, when we want to access
4KiB filesystem block, in reality, we need to access two 4KiB physical blocks
cause the 4KiB filesystem block would actually take 4KiB + additional data for
IV and authentication tag. This may have a detrimental effect on disk intensive
software such as database management systems. Those systems usually store
their data in blocks of certain size. As an example, when looking at PostgreSQL
[13], they store their data in 8KiB (or larger) blocks. In a situation where there
is a large amount of data accessed the negative impacts may be noticeable.

Disk encryption dmCcrypt and LUKS [14] on Linux, and BitLocker [15] on
Windows. As the name suggests, these software solutions encrypt entire disks
instead of individual files. However, that comes with some drawbacks such as one
key used for everything. Additionally, they are constrained by the underlying
disk space, usually, ciphertext size has to match with the size of sectors on a
disk, which leads to no support for storing extra information for authenticated
encryption schemes, such as initialization vectors, hashes, digests or MACs.



Chapter 2

Requirements

This chapter starts with defining the requirements of our software. Afterwards, it
discusses prgramming languages and the search for a suitable programming language
for our filesystem. We list the specific needs, features, and properites of the mentioned
programming languages.

2.1 General Requirements

Requirements are an integral part of every design process. They define what
properties and goals our software needs to fulfil and are used as a helpful guide
throughout the design phase of the software development. The filesystem must meet
these requirements:

1. Confidentiality The software shall not reveal any information about the
original plaintext to unauthorized parties.

2. Integrity The software shall discern if the ciphertext has been tampered with.

3. Random Access The software shall allow random access to data without
incurring any noticeable performance penalty.

4. Integrity of entire files The software shall not allow adversary to permute
ciphertext blocks of a file, nor replace with previous versions of the block.

5. Performance The software shall be fast enough even for performance critical
applications.

When it comes to filenames, we additionally require:

6. Determinism The same filename shall encrypt to the same ciphertext given
the same encryption key.

11
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7. Collision Avoidance Different filenames shall not encrypt to the same
ciphertext.

2.2 Programming Language

Choosing the right programming language is essential, as the choice is made only
once and changing it later in implementation phase, due to shortcomings, is almost
impossible.

There are two groups of languages, compiled and interpreted. As the name
suggests, code of compiled languages is directly translated to machine code which
later can be executed on a CPU. In interpreted languages, the code is executed with
the help of an interpreter.

Since we require the programming language to be suitable for performance
critical applications., we are primarily looking at compiled languages. The three
candidates we have chosen are C, C++, or Rust. Although Rust is a relatively new
language, Rust code is compiled into an LLVM intermediate representation (IR)
which is then compiled to machine code. The clang compiler for C++ and C works the
same way. It allows Rust to utilize the decades of compiler design and optimizations
done to the LLVM compiler infrastructure. All three of the chosen languages are
suitable for systems programming.

The C and C++ are languages with decades of history, used in performance
critical workloads across many different industries. Most of the software used today is
built upon the C family of languages. Probably the most known performance critical
software written in C is the Linux Kernel. Although the languages are ubiquitous,
they are not perfect. Both are memory unsafe, that is, the compiler does not check
for unsafe memory operations such as reading/writing out of bounds, accessing
unallocated memory, buffer overflows, dangling pointers, etc. Another drawback is
the tooling. Even though the languages have existed for many decades, the tooling
is fragmented and archaic. There does not exist any unified way of package manageC
ment. The compiling of programs is done through build tools such as the simple
make, or more complicated CMake which requires to learn an entire new language.
The languages do not have any native support for testing. Testing is a great way to
catch a lot of bugs, errors, and regressions.

Compared all of the mentioned issues with Rust, one of newer languages, which
was designed to prevent, and in some cases, completly eliminate certain types of
bugs. It has great tooling with the unified build tool and package manager cargo.
The language natively supports tests, both unit and integration. It is designed
to easily create and run them. Lastly and probably most significantly, it has the
concept of ownership and borrowing. The ownership rules are that each value has
one owner at a time, and the value will be dropped when the owner goes out of
scope [16]. Additionally, the rules for borrowing are that at any given time, you
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can have either one mutable reference or any number of immutable references, and
references must always be valid [17]. It is similar to the definition of data race, where
two or more pointers access the same memory location at the same time, where
at least one of them is writing, and no synchronization is done. These simple rules
eliminate many of the common bugs that are possible in other languages. Bugs such
as accessing and modifying a variable at the same time, use after free errors, dangling
pointers, and various data races. Unfortunately Rust also has its negatives, since
it is a relatively new language, the ecosystem is not as mature when compared to
C/C++. The learning curve is steeper due to differences in syntax and semantic
features such as ownership, borrowing, and lifetimes. The memory safety may in
certain scenarios introduce noticeable performance overhead. Rust performs bounds
checking by default which incurs slight overhead, although most of the time, the
bound checking is optimized away by the compiler.

After consideration of the mentioned languages, we have chosen to write the
filesystem in the Rust programming language. It provides the needed memory safety
when building a cryptosystem. It is a compiled language which is suitable for
performance critical software. The drawbacks of slight performance penalty in certain
situations and the not as mature ecosystem are an acceptable tradeoffs.





Chapter 3

Design

This chapter focuses on the design of the individual parts that form our filesystem.
At the beginning we discuss the data encryption and layout of a file. Then we move
onto integrity of files, and how we handle the encryption of directory entries. At the
end we take a look at the handling of secrets such as user passwords, key encryption
keys and data encryption keys.

3.1 File Layout and Encryption

This section explores the main part of our filesystem, the encryption and secure
storage of the file contents. In the beginning, we define the problem, then follow two
possible solutions and finally the design decision. At the end we discuss the integrity
handling of entire file. Following definitions are used throughout this section.

• block size is 4096 bytes.

• data block is a block containing raw encrypted data.

• plaintext block is a block containing raw plaintext data.

• master key is used for the encryption of the entire filesystem, excluding file
contents. Depending on the cipher used, it can either mean 256 bits (AESC
GCM, ChaCha20Poly1305), or 512 bites (AESCSIV).

• data encryption key (DEK) is used for the encryption of file contents, each
file is given a unique key. The length of DEKs is 256 bits.

• key encryption key (KEK) is used for encrypting the master key. The length
of KEK is 256 bits.

15



16 chapter 3. design

Problem: Essential part of encrypted filesystems is the encryption of file contents,
the secure usage of existing ciphers and the management of encrypted and auxiliary
data used for correct decryption. The primary goal of this section is the the design
of efficient layout of the storage medium, in our case, the underlying filesystem’s file.

Common features: As we have mentioned previously, our filesystem is customizable
to accommodate users with different needs. The main cipher used for encrypting the
file contents is configurable between AESCGCM and ChaCha20Poly1305, both with
key lengths of 256 bits. Providing acceptable security margins well into the future.

Encryption keys Every encrypted file contains randomly generated encryption key
that is exclusively used for the encryption of plaintext blocks. There are multiple
reasons for not using one master key for the whole filesystems. First, security,
the ciphers used become inherently less secure the more invocations with the
same key happen. When using randomly generated IVs it is recommended to
rotate keys after invoking the ciphers around 232 times [18]. Second, it enables
the rotation of master key without having to reencrypt the whole file. The only
necessary part to reencrypt is the data encryption key located in the header
block of each file.

Header Block Both of the following layouts discussed contain a header block at
the beginning of the file. A block containing information for its respective file,
made of two parts, plaintext and ciphertext. Plaintext part contains the logical
file size, a size when the file is decrypted, initialization vector and authentication
tag of the ciphertext part. Ciphertext part contains data encryption key. See
Figure 3.2 for more details. The header block could have been omitted in case of
storing the data in the extended attributes of a file. In our case, the underlying
filesystem may not support extended attributes. as such, we cannot rely on it.

IV Auth Tag

Ciphertext - 4060 bytes8 bytes 12 bytes 16 bytes

Data
Encryption Key

Reserved
Space

32 bytes 4028 bytes

File Size IV

Figure 3.2: Header block layout

Block Oriented Layout: This design approach acknowledges that virtually all
modern hardware organizes data into equally sized blocks. It closely resembles the
underlying storage medium by aligning the data into blocks of 4096 bytes.
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At the beginning of the file we have the previously mentioned header block. FolC
lowed by a group consisting of a metadata block and 146 data blocks. The metadata
block contains initialization vectors and authentication tags that are required for
decrypting the subsequent data blocks. The layout can be seen in Figure 3.3. It starts
with initialization vector and authentication tag for the first data block, followed
for the second data block, etc. The ciphers we selected use 12 bytes for IV and
16 bytes for authentication tag. At first glance, the count of data blocks being 146
may seem arbitrary, but in fact, it is the maximum number of initialization vectors
and authentication tags that can fit inside one 4096 bytes large block, ⌊4096

28 ⌋ = 146.
Unfortunately there is a slight space overhead of 8 bytes due to 28 not dividing evenly
into 4096. The grouping of metadata block followed by 146 data blocks continues
throughout the entire file. The layout of the file can be seen in Figure 3.4.

IV
+

Auth Tag

Empty
Space

Data Block #1
12 + 16 bytes

IV
+

Auth Tag

Data Block #2
12 + 16 bytes

Data Block #146
12 + 16 bytes 8 bytes143 more

· · ·
IV
+

Auth Tag

Figure 3.3: Metadata block layout

Header
Block

Metadata
Block

Repeating Pattern
4096 bytes 4096 bytes

Data
Block

Data
Block

146 Data Blocks each 4096 bytes

· · · · · ·

Figure 3.4: Block file layout

Stream Oriented Layout: Instead of closely resembling the underlying storage
medium as was the case with the block oriented layout. This design approach is more
focused on the CPU. Data locality is an important factor for performance critical sysC
tems. In the stream oriented layout, the data is organized inline as it is processed on a
CPU. As previously mentioned, the file starts with the header block followed by data
blocks in the form of initialization vector | data block | authentication tag.
See Figure 3.5.
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Figure 3.5: Stream file layout

Design decision: After evaluating the possible solutions, we reached to the concluC
sion of implementing both file layouts. The differences are not insignificant, and as
such, they both may be useful for users with different needs.

Both layouts process the encrypted and decrypted data in chunks of 4096 bytes.
As mentioned previously in their respective descriptions, the layouts handle the
storage of initialization vectors and authentication tags differently. Block oriented
layout stores them in metadata blocks, whereas stream oriented layout stores them
inline, next to their respective data blocks.

3.2 File digests

For additional security, each file can have a digest computed from the encrypted data.
The digest is checked, or updated when accessing, or writing to the file, respectively.
It can catch various attacks such as permuting the encrypted blocks in a file, swapping
blocks between different files, or replacing current blocks with their previous versions.
Although increasing security, this approach may incur nonCnegligible computational
overhead. To address this potential performance impact, users can disable this feature
through a configuration flag. We discuss the user configuration later in Chapter 4.4
and computational overhead in Chapter 5.

Problem: In certain situations, the additional security from computing digests may
be necessary. The digests are computed using data blocks. The current challenge is
how to efficiently handle creation, storage, and deletion of digests, and how many
data blocks to include in a single digest.

Store digest in the encrypted file: The first idea is to store the digests inside the
encrypted file, be it in the metadata block for block oriented layout, or inline for the
stream oriented layout. Both of these variants are challenging to implement, hard
to extend and do not allow easy modification of data block count in a single digest,
since the amount needs to be closely tied to the layout of metadata or digest block.
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Store digest in a separate digest file: The second idea is to store the digests
in an auxiliary file that only contains digests of a single file. This method is easily
extensible, easier to implement and in case of no digest checking, does not incur any
storage overhead.

Design decision: From the mentioned two alternatives, we have chosen the second
one. Although the first alternative does not require any additional files, it contains
significant drawbacks such as hardwiring the digest count into the metadata/digest
block layout, and the storage overhead in case of disabled digest checking. The second
alternative does not have any of these drawbacks and is simpler to implement. The
count of encrypted data blocks that are included in a single digest is currently set to
28. The value is arbitrary, and further testing needs to be done to find the optimal
value.

The amount of digests a file has depends on its size. Digest index is the
digest position in the digest file. As an example, encrypted blocks from 0 up to
27 are included in digest with index 0, blocks 28 up to 55 in digest with index
1, and so on. Since the digests are saved in plaintext, to prevent adversaries
from being able to compute them, we additionally use data encryption key of the
corresponding file during the digest computation, To prevent permutation of digests,
digest index is also added. The formula used for digest computation is 𝑑𝑖𝑔𝑒𝑠𝑡𝑖 =
𝐻𝐴𝑆𝐻(𝐷𝐸𝐾 | 𝑖 | 𝑑𝑎𝑡𝑎 𝑏𝑙𝑜𝑐𝑘28𝑖 | 𝑑𝑎𝑡𝑎 𝑏𝑙𝑜𝑐𝑘28𝑖+1 | … | 𝑑𝑎𝑡𝑎 𝑏𝑙𝑜𝑐𝑘28𝑖+27). By default,
the hash function used for computing digests is BLAKE2, but can optionally be set
to SHA3.

3.3 Directory Entry Encryption

This section is focused on the problem of encryption of directory entries. It starts
with describing the problem, then goes through three solution alternatives, and at
the end justifies the chosen solution.

Problem: Encrypted filesystems are expected to securely store the names of
directory entries while maintaining acceptable performance for common operations.
Specifically, the system must support efficient creation, lookup, and deletion of
entries. The primary challenge is maintaining reasonable performance for common
operations without sacrificing confidentiality or integrity.

AEAD encryption using ciphers from file encryption: If we have already
designed the encryption of file data, why not extend it to directory entry encryption?
The ciphers give us both confidentiality and integrity. Entry creation is simple. All
that is required is to encrypt the name, convert it to valid filename format and
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save the entry with produced ciphertext. Unfortunately, when it comes to querying
and deleting entries, we cannot simply encrypt the name in question and ask the
underlying filesystem. Due to how the ciphers work, each entry must have a unique
initialization vector, which results in different ciphertexts when encrypting the same
name. It leads to linear search through the directory, needing to decrypt each entry
name and checking if it matches the given name. Such strategy becomes infeasible
quickly when having to search directories containing hundreds to thousands of entries.

Deterministic AEAD using AES-GCM-SIV: Since we are already using AESC
GCM in the file encryption, why not use AESCGCMCSIV? A variant of AESCGCM
where the synthetic initialization vector is derived from the supplied initialization
vector, plaintext, and associated data. Compared to plain AESCGCM, an initializaC
tion vector reuse does not completly break down the cipher. The only information
that gets revealed when using the same initialization vector is in the case where the
same plaintexts are encrypted multiple times. Unfortunately the cipher is designed
for accidental IV reuse, not for intentional use of the same IV for multiple different
plaintexts.

Deterministic AEAD using AES-SIV: So what about using AES in SIV mode
[19]? This block cipher mode of operation has the same properties as AESCGCMC
SIV. Where IV reuse reveals only that the same plaintexts are encrypted multiple
times. Additionally it does not have the problem of cryptosystem breakage due to
intentionally using same IVs. The downsides are that it is slower compared to AESC
GCM and ChaCha20Poly1305 due to twoCpass encryption. It also requires twice
as long keys for comparable security which forces us to use different key length of
512 bits.

The problem, when using same IV, with revealing if there are two plaintexts
encrypted multiple times implies that there are multiple directory entries with the
same name. It is impossible in practice, as having two entries with the same name
in one directory would lead to ambiguous file accesses.

Design decision: After analyzing the possible solutions, we selected Solution 3
(AESCSIV) as it provides the necessary deterministic encryption properties while
being secure enough. Although AESCSIV is computationally slower and requires
longer keys (512 bits vs 256 bits), it enables 𝒪(1) lookups, which is essential when
accessing directories containing hundreds to thousands of entries.

Each directory contains its own randomly generated initialization vector. When
creating a new entry in the given directory, we take the directory specific IV and its
name, encrypt it, and use the resulting ciphertext as an entry name. Additionally,
we need to encode it in a specific format that consists of allowed path characters.
We chose the base64url [20], which is a filename safe encoding, as it contains only
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readable characters and none of the special characters such as dots or slashes. When
querying or deleting existing entry with a given name, we first take the directory
IV, use it to encrypt the name, then base64url encode it and we ask the underlying
filesystem if the entry with the given encrypted name exists, or in case of deletion,
to delete it. Various filesystem implementations have a limit to the length of a path,
usually 4096 bytes long. For the sake of simplicity, we only support lengths smaller
than the limit.

3.4 Keys, Passwords, and Secrets

This section focuses on the handling of secrets. It starts with defining the problem.
Then continues into providing possible solutions. Finally justifying the chosen
solution.

Problem: We can employ any strong, impossible to break ciphers, with all the nice
properties such as confidentiality, integrity, and authenticaton, but all of it is useless
when the encryption key is saved in plaintext right next to the ciphertext. The
challenge now is how to safely manage user supplied credentials such that it does not
affect the overall security of our system.

Using user password as a key: The most simple and straightforward way is to
ask a user for a password and use it for the encryption. Unfortunately ciphers expect
keys of certain size which requires to pass the user password through a secure key
derivation function that turns the variable user input into cryptographically secure
fixed size output ready to be used with ciphers. Although simple, this method has
its drawbacks. The encryption key is tied to the user password. In case of a password
change, it would require to reencrypt the whole filesystem which may be possible for
small amount of data, but gets computationally costly when encrypting hundreds to
thousands of files.

Using randomly generated key: As we discussed in the previous paragraph, using
user password for encryption is not feasible. Instead of using the user password for
encryption of the whole filesystem, how about using it only for encrypting a master
key? Here, the user password serves for deriving a key encryption key, which is then
used for the encryption and decryption of the master key. This approach requires to
store extra data, specifically, the randomly generated key and configuration for the
key derivation function.

Design decision: We selected the second solution as it is more ergonomic to work
with. The huge advantage of not having to reencrypt the whole filesystem in case of
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a password change far outweighs any tradeoffs with having to save additional data.
It is also more extensible into the future, as an example, when the filesystem is used
by multiple users, each can have their own password. In the first solution, that would
be impossible. With the second, all it requires is to save multiple encrypted copies
of the master key where each copy is encrypted with the respective user’s password.
The cipher used for encrypting the master key is the same cipher used for encrypting
the file contents.
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Implementation

This section documents the implementation process of our system. It is divided into
four parts. The first part contains discussion about libraries used. The second part
describes the structure of how we represent a cryptographic file. The third part
describes problems and solutions during the implementation of the FUSE library
wrapper, the component that defines common filesystem functions and communicates
with the FUSE kernel module. Lastly, the fourth part is focused on the implemenC
tation of the main binary that the user interacts with.

4.1 Libraries

This section is divided into two parts. The first part contains discussion about the
library facilitating the communication with the FUSE kernel module. The second part
revolves around the discussion of library implementing the cryptographic primitives
required for the implementation of our filesystem.

4.1.1 FUSE Library

As previously mentioned in Chapter 2, we are using the Rust programming language
and the FUSE protocol. In order to communicate with the kernel side of FUSE,
we require a library implementing the FUSE protocol. Multiple existing libraries
implement the FUSE protocol in Rust, most notably:

• fuse-rs [21]: Appears to be one of the oldest FUSE libraries written in Rust.
Unfortunately it looks to be unmaintained as the last commit, at the time of
writing, is from 2020C07C29.

• fuser [22]: Seems to be a continuation of the original fuseCrs project. It appears
to be well mainainted as there are recent commits.

23
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• FUSE-MT [23]: Originally a multithreaded wrapper on top of fuseCrs which
later switched to fuser due to fuseCrs being unmaintained. It provides additional
features such as dispatching system calls on multiple threads so I/O does not
block and translating inodes to paths which removes the burden of keeping
track of inode and path pairs. It might also be unmaintained, as the last
commit, at the time of writing, was on 2023C10C11.

In the end, we chose the fuser library as it appears to be the only library that is being
actively maintained. We also do not need the additional features and the additional
complexity of FUSECMT. The handling of mapping between inodes and paths is
explained later in Chapter 4.3.

4.1.2 Crypto Library

We also require a cryptography library. Rolling own crypto is heavily discouraged in
the security industry since it is difficult to get it right and its easy to mess something
up rendering the entire system cryptographically insecure. The best practice is to
look for already established and security vetted projects implementing the constructs
we need, the libraries such as:

• ring [24]: Touting itself as safe, fast, small crypto for Rust. It contains a small
subset of most commonly used cryptography algorithms. Parts of the library
are written in assembly and C, and parts are in Rust. The usage of assembly
and C is due to the code being faster than comparable Rust code. But as
the Rust compiler and ecosystem gets better, the goal is to eventually replace
everything with Rust¹.

• RustCrypto project [25]: Contains multiple repositories defining common
traits and implementations of the specific algorithms:

‣ AEAD repository: Contains ciphers concerning the authenticated encrypC
tion with associated data such as the implementations of the AESCGCM,
ChaCha20Poly1305 and AESCSIV ciphers.

‣ hashes repository: Contains commonly used hash algorithms such as
BLAKE2, SHA2, SHA3.

‣ passwordChashes repository: Contains password hashing and KDF algoC
rithms such as argon2, scrypt, PBKDF2.

After the analysis of both projects implementing the cryptographic algorithms. We
chose the RustCrypto project. The ring library, although small and comprising of

¹At the time of writing the library was still maintained. Shortly afterwards the author posted
about an indefinite break. Now it seems to be maintained again and described as “An experiment”.
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faster and more optimized algorithms, contains significant drawbacks such as the
absence of algorithms we need, in this particular instance BLAKE2 and argon2,
and the uncertainty of its future. The RustCrypto project contains all the required
algorithms we need, purely implemented in Rust, and overall having greater integraC
tions between the different libraries. The only minor drawback is worse performance
of algorithms due to not having optimized C and assembly code.

4.2 Cryptographic file

The cryptographic file is the main structure powering our filesystem. It handles the
transparent encryption and decryption of data. Seamlessly integrates into the Rust
ecosystem by implementing common I/O traits, specifically Read and Write, that
enable the encrypted file to be used the same way as a regular file. The file is generic
over the cipher, digest, and mode. where cipher is the cipher used for encryption,
digest is the digest used for optional integrity checking, and mode is the layout of
the encrypted data.

1   struct CryptoFile<C: Cipher, D: Digest, M: Mode>
2   {
3       file: File,
4       digest_file: Option<File>,
5       cache: FileCache,
6       // snip
7   }

Listing 4.1: Snippet of CryptoFile

The CryptoFile struct encapsulates two regular files. The first contains the encrypted
data, the second is optional and contains the digests used for integrity checking.
The struct manages the reads and writes of those files. Working with files backed by
slower hardware requires some kind of cache, otherwise, especially in our situation of
encryption, the I/O would be excruciatingly slow. As such, the struct also contains
a FileCache that handles the caching of current working block. When accessing the
current block, it delegates the I/O to the cache. When accessing different block than
the currently cached one, depending on if the block was written to, it either needs to
encrypt the cached contents, and write them to the file, or simply load the requested
new block, decrypt it, save it in the cache, and return the data.



26 chapter 4. implementation

1 struct FileCache {
2     block_idx: u64,   // Block index
3     block: Block,     // Block data, alias to [u8; 4096]
4     dirty: bool,      // Indicator if ̀ block` was written to
5     // snip
6 }

Listing 4.2: Snippet of FileCache

The reading and writing is handled through the functions of
the Read and Write traits, fn read(&mut self, mut buf: &mut [u8]) and
fn write(&mut self, mut buf: &[u8]) respectively. Those functions, depending if
the block is not in the cache, delegate the work to the fn update_cache(&mut self)
that handles the loading and unloading, and encryption and decryption of the blocks.

4.3 FUSE wrapper

The FUSE wrapper facilitates the communication between our code and the kernel
FUSE module. It is implemented using the fuser library which requires us to impleC
ment functions of the Filesystem trait. This section focuses on the implementation
decisions of filesystem functions. The list is nonCexhaustive. Most of these functions
have their respective entries in the Linux manCpages.

fn lookup() A function that checks if a filename at a given path exists, returns an
inode number on success. In order to keep track of individual files we have to
somehow uniquely identify each file. We could enumerate each file as we receive
lookup calls from the kernel. Although simple in theory, in practice we either
have to keep track of all files’ indices each time we mount the filesystem, or have
them stored in a file somewhere. Keeping track of indices after each mount also
complicates the handling of hard links, as remounting the filesystem may result
in different file enumeration, and the old links would point to the now invalid
enumeration.

Instead we have chosen to reuse the underlying filesystem inodes. The
uniqueness is guaranteed by the underlying filesystem. That solves both of the
issues with the previous solution of enumerating the files ourselves. The inodes
stay the same after remounting the filesystem and there is no need to store the file
inode anywhere. When requiring hard links, we reuse the underlying filesystem’s
ability to create hard links, see fn link() description for more information.
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fn read() and fn write() The reading from and writing to files is handled through
the previously covered CryptoFile which manages the encryption and decrypC
tion of file contents. The FUSE functions merely delegate the work to it.

fn link() Creates a hard link of a file. Our filesystem handles hardlinks the same
way as the underlying filesystem. When creating hardlinks, it delegates the work
to the underlying filesystem link() which links the specified encrypted and
digest files.

fn symlink() Creates a symbolic link in our filesystem. We have a couple possible
ways to implement the symbolic link storage.

Store inside a special file: The idea is to have special files similar to the
way digests are stored, but instead having a .ln extension signifying that the
file contains a symbolic link inside. It would require us to redesign the handling
of lookups and overall the storage of file attributes, as currently we reuse the
underlying file object attributes.

Reuse underlying filesystem symlinks: Saves the path that the link is
pointing to in the underlying filesystem symlink. This way the implementation
is really simple, it only requires us to call a symlink function on the underlying
filesystem This solution takes advantage of the fact that symbolic links do not
have to point to a valid location, as such, we can encode arbitrary data inside
of it.

Implementation Decision: Due to simplicity we have decided to implement
the second version, as it does not require us to change the existing code and all
the symbolic link handling is delegated to the underlying filesystem. The actual
implementation is as follows: We receive call to symlink with the link name and
target path that it points to. We encrypt the symlink name same way as we
handle the directory entry encryption, see Chapter 3.3 for more information.
The target path is encrypted with the file encryption cipher using the master
key, and finally encoded to base64url encoding since it needs to be a readable
string. With these two encrypted strings, we call the symlink syscall to create a
symlink in the underlying filesystem.

fn readlink() Reads symbolic links. The kernel expects a nonCencrypted path that
the symbolic link points to, which is then resolved by the specific filesystem that
the symbolic link points to. With the way that the fn symlink() is implemented,
all that is required is to base64url decode the symlink target path, decrypt it
and return the plaintext path to the kernel. It then resolves that path by calling
regular functions such as fn readdir() and fn open(), in case of directory and
regular file, respectively.
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fn unlink() Removes files. Since the operation is destructive, accidentally receiving
a path corresponding to a file outside of our encrypted root would lead to
unwanted deletion of arbitrary files. As such, we decided that during the initialC
ization of the filesystem, the program changes its root to encrypted_root that
is received from the user. However, this solution requires the compiled binary to
either be run as root, or in better case, only have the CAP_SYS_CHROOT capability
set. Additionally, it simplifies the path handling in other functions, since all
paths now start at root /.

fn fallocate() Corresponds to the LinuxCspecific fallocate() syscall which
manipulates the allocated disk space of a file. Our filesystem supports
only the default mode of operation equivalent with the posix_allocate()
function. It does not support any of the advanced operations such as
hole punching using FALLOC_FL_PUNCH_HOLE or collapsing file space using
FALLOC_FL_COLLAPSE_RANGE. It would complicate the encryption handling while
not being that useful.

fn setattr() and fn getattr() Sets and lists the file attributes such as access and
modification time, file permissions, owner and group of a file. For simplicity, we
reuse the underlying file attributes. In case of setting attributes, we change the
underlying file attributes. In case of retrieving attributes, we call the lstat()
syscall on the underlying file object.

fn setxattr(), fn getxattr(), fn listxattr(), fn removexattr() The underC
lying filesystem may not support extended attributes, as such we do not support
them either. The situations in which extended attributes are not available may
be if the underlying filesystem is some kind of network filesystem, those usually
do not support extended attributes.

4.3.1 FUSE specific settings

This part covers some of the FUSE settings and oddities. The first part covers the
caching of data, in particular the caching modes such as writeback and writeCthrough.
The second part covers the FUSE file access mechanism.

FUSE I/O modes FUSE supports several caching strategies with different perC
formance implications. The directCio mode does not perform any caching, it
bypasses the page cache completely and does not do any readCahead. The cached
mode makes use of page cache. The kernel may perform readCahead and keeps
the cache in consistent state. The cached mode is divided into two submodes
depending on how the writes are handled. The default behavior is writeCthrough
where each write gets immediately sent to our filesystem as several write
requests, as well as updating any cached pages. The other mode is writeback,
where the writes only go to cache. The dirty pages are written back at a later
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time, either implicitly during background writeback or page reclaim, or explicitly
when calling close(), or fsync().

After analysis of the available caching strategies. We have decided to use
the default mode of writeCthrough. In case of reading, the data readCahead is
beneficial as there are less context switches since it caches certain amount of
data and does not have to call our implementation for more data. In case of
writes, the writeCthrough does not create any inconsistent states and the written
data always gets encrypted.

FUSE permissions The permission handling of FUSE depends on options supplied
during the initialization. By default the filesystem is only accessible to the user
mounting the filesystem. The options are:

• default_permissions C By default FUSE kernel module does not check
file access permissions and the behaviour depends on the implementation.
When set, kernel performs permission checking based on file mode.

• allow_root C This option allows root user to also access the filesystem.

• allow_other C This option allows any user to also access the filesystem.

Using allow_root or allow_other options can lead to unauthorized file access
to the directory containing the encrypted root of our filesystem. The way our
filesystem is implemented, mounting user needs to have permissions to access
the encrypted files as it delegates the file access to the underlying filesystem.
Since we delegate the permission checking to the underlying filesystem file access
mechanism, default_permission is left unset. The options allow_root and
allow_other can optionally be set to allow root and other users, respectively,
access to the mounted filesystem.

4.4 User facing interface

The following section covers the design and implementation decisions of the user
interface. At the beginning we describe the requirements of the interface. Afterwards,
we move onto the implementation.

For the ease of implementation, we are using the clap library [26], short ComC
mand Line Argument Parser. A library that greatly simplifies the implementation
of the command line interface, as it handles everything from parsing, validating
input, and generating code and documentation. The interface to our filesystem should
expose functions for initialization, mounting, and configuring certain properties, such
as changing the password, and turning on/off integrity checks. We define all of the
mentioned operations as subcommands, where the main command is the executable
of our filesystem. The subcommands are:
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• init --cipher <cipher> --digest <digest> --mode <mode> <enc_dir> C iniC
tializes the encrypted filesystem in a directory dir, with the specified cipher,
digest, and mode of operation

• mount -o <fuse_options> <enc_dir> <mount> C mounts the decrypted data at
mount, enc_dir needs to be a valid initialized encrypted root, fuse_options
contains the FUSE specific options.

• passwd C changes the currently used password.

• status <enc_dir> C if <enc_dir> is a valid encrypted root, lists information
about it.

• digest --check <bool> C turns on and off digest checking.

Problem: All of the listed commands require a password. The primary challenge
now is to implement the handling of passwords without compromising on the security
and usability.

Command line argument: This method exposes additional argument in our comC
mand line interface in the form of --password <password>. Allowing the password to
be specified at command invocation enables easier automation and testing. UnforC
tunately, it also brings reduced security in the form of potential password leakage.
Since the password needs to be specified at command line, it may be logged in a
history file, stored in various automation scripts, or can be seen in the respective
/proc/ entry.

Prompt user for password: Upon running a subcommand that requires a passC
word, it prompts the user to enter the password. Although better for security as the
password never leaves our program, the nonCexistent support for automation and
testing is in certain situations a major dealCbreaker.

Implementation decision: After thorough analysis of the two methods. We have
decided to implement both of them, as each serves a different purpose. The first
method, although worse from the security standpoint, enables easier automation and
testing of our filesystem. On the other hand, the second method contains better
security at the expense of automation and testing. In most situations, the second
method should be preferred.
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1 Init { /// Initialize the filesystem

2     /// Password used for encryption of the
filesystem

3     password: Option<String>,

4     /// Directory where to initialize the
encrypted filesystem

5     encrypted_root: String,

6     /// Cipher algorithm used for
encryption

7     cipher: Cipher,

8     /// Digest algorithm used for checking
integrity of a file

9     digest: Digest,
10     /// File block aiignment
11     mode: Mode,
12 } // snip

1 Mount { /// Mount the filesystem

2     /// Password used for encryption of the
filesystem

3     password: Option<String>,

4     /// Directory containing encrypted
filesystem

5     encrypted_root: String,

6     /// Path where to mount the decrypted
filesystem

7     mount_point: String,
8     /// FUSE options
9     fuse_options: String
10 } // snip

Listing 4.3: Snippet of Subcommands

We decided to name the command line tool fscryptrs, it contains a help which can
be accessed with help subcommand. Example usage:

• fscryptrs help C shows general help with available subcommands.

• fscryptrs help <subcommand> C shows specific description of the supplied
subcommand.

• fscryptrs help init C shows help for init subcommand, containing possible
flags, values and their default values if not specified.

More can be seen in Appendix A which contains the source code of the entire
implementation.
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Benchmarks

This chapter covers the benchmarks and comparisons with existing solutions. Initially
we look at the performance of our filesystem’s different ciphers and modes. AfterC
wards, we compare the fastest variant of our filesystem with existing solutions.
Disclaimer: The following benchmarks are in no way thorough. They are simple
in nature and for informational purposes only. The primary goal of this thesis is to
create a protected filesystem, not to thoroughly test multiple filesystems.

All the benchmarks can be found in the main repository of the filesystem in the
benchmarks directory. It contains main and helper scripts for running them. The folC
lowing benchmarks were performed on tmpfs on a system with Intel Core i7 7700k
CPU and 32GB 3000MHz DDR4 RAM.

5.1 Extracting Archive

The main benchmark performed is the extraction of the Linux Kernel archive
to a mounted encrypted filesystem. It is a good indicator of how performant
the filesystem is with files of various sizes. The main benchmark used is
tar xzf ./linux-6.0.tar.gz -C ./mnt. The software used for running a repeatable
set of benchmarks is hyperfine [27]. The main purpose of the tool is benchmarking,
more specifically, measuring the running time of software. It contains configurable
options such as specifying the amount of runs and warmup runs to do, commands
to run before and after the run. Warmup runs are usually done to prime the cache
with data.

5.1.1 Comparing Different Modes

As can be seen in Chart 5.1, unsurprisingly, our filesystem is fastest when digest
checking is turned off, a bit slower with Blake2 and finally, slowest with SHA3.
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Additionally the bar chart shows that in every case block mode of data alignment is
slightly faster compared to stream mode. Also, the hardware that the benchmarks
were performed on contains AES-NI instructions for efficient AES computation which
is consistent with the results.

Chart 5.1: Results of different modes of our filesystem

5.1.2 Comparing with Existing Filesystems

The following chart shows comparison between the fastest modes of our filesystem
with gocryptfs and no filesystem which is labeled as default. As can be seen, our
filesystem is faster when handling a lot of smaller files.

Chart 5.2: Comparing fastest modes with others
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5.2 Single File Performance

Previous benchmark focused on the performance of the filesystem when accessing
multiple smaller files. The primary goal of the following benchmark is to test single
file sequential read and write performance by reading or writing a large amount of
data. The command used for benchmarking is the simple Linux utility for converting
and copying files dd.

The following charts show single file read and write speed. The benchmarks were
split into two. The first benchmark tests file I/O when reading and writing a single
block of 1GB size, see Chart 5.3. On the other hand, the second benchmark tests
reading and writing 1024 blocks of 1MB size, see Chart 5.4. The results show that our
filesystem is slower than gocryptfs and, as expected, slowest when digest checking
is enabled. There is plenty of room for improvement, especially in the way that
our filesystem handles reading and writing to the underlying filesystem. Chapter 6
contains more discussion about future improvements.

Chart 5.3: Single File Read/Write of 1 block of size 1GB

Chart 5.4: Single File Read/Write of 1024 blocks of size 1MB
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Future Work

During the implementation we have made several decisions that warrant a redesign
to make it cleaner, more extensible, reduce bugs and increase performance.

Better data caching Currently the filesystem caches one data block of 4096 bytes.
We propose to cache a variable amount of data blocks, depending on the length
of the buffer kernel requested. Additionally, when reading and writing, write
multiple blocks at once, instead of currently writing one block at a time. It would
lead to less context switching and increased performance.

Better digest handling Decouple FileCache struct and digest handling. OptionC
ally, when no digest checking is performed, there should not be any code paths
mentioning digests. Also, design a generic Filesystem that accepts None as
digest to disable digest checking. Currently, there is a boolean flag controlling
the behaviour.

Extended attributes support When the underlying filesystem supports extended
attributes, use those for storage of directory initialization vectors, encrypted
keys, and also implement common functions to support ACLs and other Linux
features that use extended attributes.

Long Filename Handling Design and implement support for filenames exact or
longer than 255 bytes. Currently, there is no mechanism to handle filenames over
the limit, and some longer filenames may silently fail due to the extra length of
IVs, authentication tags, and base64url encoding overhead.

Profiling Profiling and benchmarking is an important part of software optimization.
With tools such as Linux’s perf [28] and DTrace [29] which collect profiling events
that can later be analyzed with flamegraph [30] and others. Flamegraph neatly
visualizes hot code paths which provide starting point for further optimization
of the software.

Testing Improve and write more unit and integraton tests to achieve greater test
code coverage. Also make the filesystem work with testing and quality assurance
suites such as xfstests [31].
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Conclusion

We successfully designed and implemented a FUSECbased protected filesystem for
Linux while adhering to the requirements defined in advance in Chapter 2. Also,
we performed some benchmarks, as can be seen in Chapter 5, and found that the
filesystem has comparable performance with existing solutions.

During design, the primary challenge consisted of how to design a secure system
out of the cryptographic primitives. Additionally, the task of how to efficiently access
files and directories. Finally, how to design digest checking of entire files, such that
it can optionally be turned off, if greater performance is required.

The implementation phase was not without issues. The cryptographic file, in
particular, the data caching part of it, is not as performant as we hoped and needs
redesign in the future.

Development relied heavily on the Rust programming language and various
essential libraries to create the secure FUSECbased filesystem.

Overall, we have created a protected filesystem for Linux, which is performant
enough. In the future, it can be expanded upon with various testing and profiling
work to make it better and faster, using tools such as xfstests and flamegraph.
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Appendix A

Filesystem Source Code

The digital attachment contains a repository with the source code of the filesystem
described in this thesis. The building and running of the software is described in the
README.md file.
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Appendix B

Benchmarks and Results

The digital attachment, also contains a repository with the benchmark scripts
mentioned in Chapter 5. The visualizations are in the form of jupyter notebooks,
and can be viewed in various tools supporting the .ipynb file format. AddiC
tionally, it contains benchmark results in the benchmarks/archive_extract and
benchmarks/single_file_performance for the Linux Kernel archive extraction and
single file performance, respectively.
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