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ABSTRACT
The success of matching algorithms relies on the defini-

tion of features which are both invariant against the geo-
metric distortions to be considered, and distinctive enough
to avoid ambiguities. This paper addresses the problem of
color feature points matching under photometric and geo-
metric changes. Considering the popular SURF descriptor,
it analyzes its state-of-the-art color versions, and proposes a
new extension by using local histogram equalization (LHE).
While most existing descriptors stem from color conversions
and apply to standard lighting variations acquired by the
same device, the proposed feature is device-independent and
could fit to very generic changes.
The experimental results show that the proposed color des-
criptors outperform the existing ones under some types of
distortions, and are more precise and invariant to different
color variations. The paper considers Projector-based Aug-
mented Reality (PAR) as an application field, where one of
the evaluation criteria is homography accuracy between real
and estimated distorted images. The results show that the
proposed method gives the most stable results over all the
other techniques and therefore they justify its use for ro-
bust color feature matching and its application to geometric
correction.

Categories and Subject Descriptors
I.4.7 [Feature Measurement]: Feature Representation,

Invariants; H.5.1 [Multimedia Information Systems]:
Artificial, augmented, and virtual realities

General Terms
Theory, Experimentations, Algorithms
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Color Invariance, Color Feature Matching, Histogram Equa-
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1. INTRODUCTION
Feature matching algorithms are subjects of many appli-

cations in computer vision, robotics, image and stereo pro-
cessing. Intensity-based methods have appeared in 80s and
received a new incentive with appearance of the SIFT al-
gorithm developed by Lowe [10]. Its success caused emer-
gence of many different modifications and alternatives ai-
med to improve their quality or to reduce their computation
time. In these methods, invariance is introduced with res-
pect to geometrical variations such as rotation, translation,
scaling, and affine/projective transformations. Furthermore,
such descriptors offer good robustness to partial appearances
[9, 12, 14]. However working only with grayscale images ne-
glects an important source of information which is represen-
ted by the captured color of objects. Some objects can be ea-
sily discriminated by the color whilst in grayscale they look
similar. Research studies have recently started to combine
the two main sources of information : color and geometry
and accordingly to introduce color and geometric invariant
descriptors for matching. In other words, color invariance
can only be built on the basis of image color information.
Van de Sande et al. [19] provide a good taxonomy of dif-
ferent color spaces which are used for computing descriptors.
Among them are HSV, Opponent color space and Weighted
opponent color space. Verma et al. [20] use in their experi-
ments recently proposed oRGB color space.

This paper also addresses the problem of color feature
matching for Projector-based Augmented Reality (PAR) ap-
plications. PAR methods aim to achieve a smart projec-
tion by compensating radiometric and geometrical distor-
tions (multi-projection is outside the scope of our work). To
that purpose, projection devices are enhanced by sensors,
for instance a camera to gain information about the envi-
ronment. A lot of research has been done in this field [3,
1, 21, 15] to efficiently calibrate the system, to compensate
different distortions, and to perform 3D registration in order
to achieve better quality of final projection onto real-world
objects. For example structured light methods rely on mat-
ching processes to find correspondence between points in the
projected and the captured images [16, 17, 21].

Finlayson et al. [5] describe how a well-known histogram
equalization technique can be used to provide color inva-
riance. The authors state that the equalization, applied on
each color channel independently, has the property to pre-



serve relative color ranking. Therefore, it is invariant to any
monotonous color distortion and is independent of the sensor
device, which is an important property, required for image
indexing. However, this interesting transform is very sensi-
tive to geometric changes, because the device-independance
is reached only when the contents of the image is constant.
This paper proposes a solution to combine histogram equa-
lization with a local feature point descriptor.

It is important to consider the illumination model under
which color invariants have been defined. In this paper two
illumination models are addressed : the linear illumination
transform used in the taxonomy by van de Sande et al. [19],
and the non-linear gamma function which is typical for most
camera sensors.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the two color changing models and the color
invariance models involved in the study. Section 3 describes
Feature matching methods used to make correspondences
between color invariant features. Section 4 describes the
experiments, the evaluation criteria, and the matching re-
sults. Finally, section 5 gives a summary of the results and
discusses future works.

2. COLOR INVARIANT DESCRIPTORS
In order to define color invariant features, it is interesting

to analyze and to model the color variations due to camera
settings or changing illumination conditions. The color cap-
tured by a camera results from the integration along the
visible spectrum wavelengths of several functions which are
difficult to compute : the spectrum of lighting sources, the
reflectance of the surfaces, and the camera response func-
tion for each channel. Unfortunately the physical equation
is too difficult to be used directly for color change modeling,
unless some simplifying assumptions are made, as in Shafer
dichromatic model [18]. Two photometric models are explai-
ned in section 2.1. They describe the distortions appearing
in images acquired with different camera settings and un-
der different illumination conditions. A few color invariance
spaces are mentioned in part 2.2. They are defined so as
to have constant values under photometric transformations.
Finally, a brief description of the properties of Histogram
Equalization is made. As explained further in this paper,
the use of this method is appropriate for dealing with the
considered distortions.

2.1 Color Change Models
First, let us consider the diagonal model of illumination

used by van de Sande et al. [19] which defines illuminant
color changes and shifts in the resulting image. The equation
for this transform is described below :RcGc

Bc

 =

a 0 0
0 b 0
0 0 c

RG
B

+

o1o2
o3

 (1)

where (Rc, Gc, Bc) are colors after illumination variations,
(R,G,B) are colors under the canonical illuminant. The
multiplicative parameters a, b, c vary under contrast changes,
and o1, o2, o3 model the color shifts.

The second model under consideration is the gamma color
transform. Most camera sensors have a non-linear response
function which relates irradiance of the scene with image
brightness. Grossberg and Nayar [8] have collected a data-

base of camera response functions 1 and shown that they
all have an exponential form. As shown by many papers on
camera-projector systems [15, 4], the projector has very si-
milar non-linear response function. Thus, each response can
be modeled by a gamma curve expressed as :

(Rc, Gc, Bc) = α(Rγ , Gγ , Bγ) (2)

where c indicates color distortions that pixels undergo, γ is
the exponent. Here (α, γ) are the parameters of the color
change model, and are the same for each color channel. α
can vary under contrast change.

Starting from these models, it becomes easier to deduce
colors invariant features, or to study the invariance property
of existing features.

2.2 Color Invariance
Color invariance can be achieved by converting the initial

RGB components towards another color space and use this
representation for computing descriptors. Let us consider
the color transforms described in [19] and histogram equali-
zation from [5]. These invariants are used further in section
3 for feature matching.

Opponent color space. This color space is a linear trans-
form of R,G and B channels. Intensity is represented by O1

and color information by O2 and O3.(
O1, O2, O3

)
=
(
R−G√

2
, R+G−2B√

2
, R+G+B√

2

)
(3)

This color representation is invariant against gray shifts changes,
i.e. when o1 = o2 = o3 in (1) but does not provide invariance
against variations in α and γ in (2).

HSV color space. HSV is a well-known perceptual color
space which separates chrominance from luminance. Since
Hue is a function of a ratio of RGB differences, it is robust
against gray shifts changes when o1 = o2 = o3, and gray
contrast changes when a = b = c in (1), and it is also robust
to α variations in (2).

Histogram equalization. Histogram equalization (HE)
is a technique used to increase the contrast of grayscale
images. When applied to color images, it produces unna-
tural and distorted colors, so its use for color images has
long been argued. For matching purposes, the problem is
not related to appearance but to discriminative power and
color invariance. As shown in [5], HE preserves rank ordering
and is therefore invariant to monotonous color changes.

An HE algorithm transforms image pixels in such a way
that the resulting intensity histogram is close to the uni-
form distribution. It is achieved by computing the cumula-
tive distribution function (cdf) and making it linear across
the intensity range. The cdf should be normalized to [0, 255].
Intensity values after histogram equalization appear as fol-
lows :

I ′(i) = cdf(i) · (max(I)−min(I)) +min(I)) (4)

where I is the grayscale image, cdf(i) is the cumulative dis-
tribution function of ith pixel, operations max(I),min(I)
are the maximum and the minimum intensity values in the
image.

This method is described here for a grayscale image but
it can be easily extended to color by applying it to each
channel. Considering the color change models of (1) and (2),

1. This database can be downloaded at http://www.cs.
columbia.edu/CAVE¸



both of them are monotonous functions, so HE should handle
these distortions very well.

Note that many colorspaces are not considered in our
work, either because they provide no invariance when com-
pared to RGB (e.g. XY Z), or because they have already
been tested for point description, with little success, e.g.
normalized rgb (L1 and L2 of [7]) due to a loss in discrimi-
native power for non-saturated colors as it is the case for
C-SURF. This section has considered two models for illumi-
nation changes and a few color invariance models that are
used in our experiments for descriptor computation.

3. COLOR FEATURE MATCHING
This section first discusses the local feature matching pro-

cess which comprises three main stages : regions of interest
detection, descriptors computation, and feature matching.
After that, the Local Histogram Equalization (LHE) method
is introduced and its use is justified for Feature Matching.
In addition, a discussion is made concerning the validity of
LHE for PAR applications.

3.1 Feature Matching
A feature detector extracts the most prominent parts of

the image (edges, corners, blobs) to use them as correspon-
ding anchors in a pair of transformed images of the same
source. It is shown in [14] that the Hessian matrix-based
methods [13] produce better results than the other methods.
Detected regions in this case are invariant both to rotation
and scale changes. According to the work of Mikolajczyk
and Schmid it is better to use Hessian matrix rather than
its trace (the Laplacian) for scale selection. As shown in the
SURF method [2], Hessian matrix can be efficiently approxi-
mated with small degradation in accuracy.

The second stage is descriptor construction for detected
feature points. SIFT-like descriptors are some of the best
performing and the most widely-used descriptors nowadays.
The SIFT algorithm computes a histogram of local orien-
ted gradients around the detected feature point and stores
the bins in a 128-dimensional vector (4× 4 histograms each
with 8 bins). Because intensities are implicitly normalized
in SURF, this descriptor is invariant to uniform contrast
and intensity changes. The SURF algorithm in many ways
approximates the SIFT and other descriptors. It describes
a distribution of Haar wavelet responses within the feature
point neighborhood. Integral images are used for speed and
only 64 dimensions are used to reduce matching time.

At the second stage the problem of color invariance repre-
sentation becomes important, and it is necessary to make
descriptors invariant not only to geometric but to illumina-
tion changes. For these purposes the initial color space is pre-
transformed to make descriptor representation independent
of illumination changes. As for color transformations, one of
the models described in section 2 can be applied. A local
color feature descriptor can be constructed by concatena-
tion of intensity-based descriptors computed independently
for each channel. As a result, a large descriptor is obtained
which is further used in matching. According to the work of
Van de Sande et al. [19], RGB- and Opponent-SIFT produce
very good matching quality and they are among the methods
with the best overall performance in the evaluation.

The last stage is descriptor matching. In this process each
feature descriptor in one image is compared with each des-
criptor in another image. There exist several ways to define

a match. One way is a threshold-based matching where fea-
tures are matched if the distance is below a threshold. Each
feature therefore can have several matches. Another way is
nearest neighbor-based matching where two descriptors are
considered as a matched pair if the distance between them
is below one threshold and the distance to the second clo-
sest descriptor is greater than another threshold. In this case
each descriptor can have at most only one match. In our ex-
periments we will use the second strategy, because in most
applications each point can only have one correct match.

3.2 Local Histogram Equalization for Feature
Matching

As explained in section 2.2, HE can provide invariance
against any monotonous illumination change, therefore it is
more generic than most existing color invariants. However,
the transform is generally made globally in the image, be-
cause the invariance holds only when the contents of the two
images to be matched are perfectly similar. Otherwise the
rank preservation cannot be ensured. This is unfortunately
a very important constraint. On the other hand, color varia-
tions are not always similar in all the areas of the scene, and
the global HE (noted GHE in the rest of the paper) would
provide poor results in this situation. The question is then :
how to achieve Local HE (noted LHE) while being sure of
the stability of the image contents ?

Most local feature descriptors have the advantages to re-
quire only local color information around each feature point,
and to be very stable under geometric distortions (local
image contents is preserved). Then, once all points are pre-
cisely detected after the first stage, it is easy to extract rec-
tangular regions centered around these points according to
their orientation and scale. Then, LHE can simply be per-
formed on this region in a reliable way. For sake of clarity,
Fig. 1 illustrates the process. The detection of the points can
be made in the grayscale image, and the LHE performed on
each color channel before matching. More than being a color
invariant for the matching of several images acquired by the
same sensor, LHE is also well suited for camera-projector
systems. This assertion is discussed in the following section.

3.3 Discussion on local histogram equalization
for PAR applications

Let P be a physical point in the scene (real world) lighted
by a projector which produces an energy depending on its
input image at a pixel p, Ak(p), where k is the color channel
R,G, or B. In the general case, the viewed color component
Bk(q) is produced by the integration along the wavelengths
of : 1) the illuminant spectrum E(λ, q), which is the emission
spectrum produced by the projector, 2) the surface reflec-
tance R(λ, q) which defines the proportion of incident light
which is reflected by the surface for each λ ; 3) the spectral
sensitivity of the sensor Sk(λ) for the kth channel. Assuming
that there is no ambient lighting in the scene, then :

Bk(q) =

∫
λ

E(λ, q)R(λ, q)Sk(λ)dλ (5)

Note that p is the initial location of the point in Ak, and
q is its location in the distorted image Bk. The spectrum
E(λ, q) produced by a projector depends on the technology,



which is generally tri-LCD 2 or DLP 3. In the case of tri-
LCD, the video signal is decomposed into three components.
Each color beam illuminates a monochrome LCD panel, then
the three channels are merged via a prism. The lamps are
based on mercury vapors, the emission spectrum is discrete
and has generally three monochromatic beams, sometimes
more. Therefore E(λ, p) = 0 except on some wavelengths.
Thus, in the case of one wavelength per channel k, (5) can
be simplified as :

Bk(q) = E(λk, q)R(λk, q)Sk(λk) (6)

In that case, the energy at the wavelength λk is a monoto-
nic function F vk of the original intensity in that bandwidth,
generally a gamma function as said previously :

E(λk, q) = F vk (Ak(p)) (7)

Finally, under these assumptions, equation (5) becomes :

Bk(q) = F vk (Ak(p))R(λk, q)Sk (8)

where Sk is finally a constant related to the sensor gain, but
can vary slowly during time due to the aging of the system.
Let us now discuss on the validity of the rank conservation,
with respect to the type of projection surface.

White Lambertian surfaces. Consider two pixels q and
q′ localized on the same surface. When the surface is white
and Lambertian then R(λk, q) = 1 and :

Bk(q) = Fk(Ak(p))Sk

Therefore whenAk(p) < Ak(p′) then Fk(Ak(p)) < Fk(Ak(p′))
and Bk(q) < Bk(q′). The ranks are preserved and the HE
proposed by Finlayson is a color invariant in that context.

Uniform surfaces. When R(λk, q) = R(λk, q
′), ∀q, q′,

which implies that the surface is Lambertian, then ifAk(p) <
Ak(p′) then Fk(Ak(p)) < fk(Ak(p′)) and Bk(q) < Bk(q′).
On a same Lambertian projection surface, the rank of colors
is preserved between the ideal image Ak and the distorted
image Bk .

Non uniform surfaces. Consider two neighbor pixels p
and p′ localized on two areas with different reflectance pro-
perties, then the rank is preserved only in some situations. In
other words, Bk(q) < Bk(q′) when : 1) Ak(p)=Ak(p′) and
R(λk, q) < R(λk, q

′) ; 2) Ak(p) < Ak(p′) and R(λk, q) <
R(λk, q

′) ; 3) Ak(p) < Ak(p′) and R(λk, q) = R(λk, q
′). It

yields that, for non uniform surfaces, the rank is preserved
only locally, either when the region is uniform in terms of
colors or when the colors of both image and surface vary
in the same way, i.e. when both of them increase or de-
crease. By assuming that the surface vary smoothly in terms
of reflectance R, we can assume that its projection on the
image is locally constant in a small neighborhood W , i.e.
R(λk, q) = R(λk, q

′)∀q, q′ ∈ W . Then the color rank is pre-
served locally in W .

Thus, the GHE (i.e made once in the whole image) pro-
vides color invariance only when the projection surfaces are
of uniform reflectance everywhere in the scene under consi-
deration. The LHE provides color invariance also when these
surfaces have constant reflectance locally. Note also that the
invariance is not guaranteed when the feature point is loca-
ted on the edges between surfaces of very different colors,

2. This technology is transmissive and is based on tiny
and transparent LCD screens (0,55” to 0,9”)

3. DLP technology is reflexive and is based on thousand
tiny mobile mirrors

Figure 1: Example of LHE for a feature point

for example between two tapestries. When a priori know-
ledge is available on both the image to be projected and on
surface properties, it is possible to assess whether the size
of the neighborhood chosen for LHE is appropriate for color
rank preservation.

The experiments made in the following section analyze
the behavior of the proposed LHE SURF matching, when
compared to existing methods.

4. EXPERIMENTAL RESULTS
This section describes the experiments made to evaluate

different color invariance descriptors under various photome-
tric and geometric distortions. First, the experimental setup
is described. Next we review the evaluation criteria used for
descriptor assessment. Here we consider both general fea-
ture matching performance and homography estimation as
the principal tasks of geometric compensation algorithms for
PAR. Finally, the experimental results for all the considered
methods are shown.

4.1 Experimental Setup
Figure 2 represents the processing pipeline of the expe-

riments being conducted in the framework of our research
work. It shows the main steps that we perform to evaluate
color invariant descriptors. We start with an RGB test image
of 256 by 256 pixels resolution. For this image three classes
of distortions are introduced : photometric, geometric, and
both color and geometric, which are noted Photo., Geo. and
Photo. + Geo respectively (some examples can be seen in
figure 3). For each class, N = 100 transformations are syn-
thesized and applied to the initial image. As a result, the
generated test database consists of 2N images with photo-
metric distortions, N images with geometric distortions and
2N images with both photometric and geometric distortions.
As for photometric distortions, the two illumination change
models of 2.1 are applied. An example of such a distorted
image is presented as step 1 in the figure 2. We randomly
choose parameters for the linear and the gamma color trans-
forms. As for geometric transformations we generate random
homography matrices and use them to generate various war-
pings of the test image. We changed the coordinates of the
four image vertices and used a standard OpenCV function
to get a homography matrix. The transformation radius was
chosen randomly to be approximately equal to one third of
the image size at maximum.

The next step is feature detection (step 2). The feature
points are the same in each experiment in order to provide
a fair comparison. To that purpose, they are extracted in
the luminance images. As the detected points are the same
for each considered color space, we can focus on comparing



Figure 2: Processing pipeline of Color Homography
Estimation Experiments

descriptions, which is the main objective of the paper. Af-
ter that, we perform color invariance transformation on the
test and distorted images (step 3) and pass to descriptors
computation and feature matching (step 4).

The SURF method was used in our experiments because
of its successful use in different computer vision applications.
SURF is similar to SIFT in terms of results and nature of
operations. It only uses an approximate version of the ope-
rations used in SIFT and therefore is several times faster.
The processing time comparison, done by L. Juan and O.
Gwun in [11], shows that SURF feature matching is almost
four orders faster than SIFT. Note however that the study
could also hold for SIFT. We used the SURF implementation
of E. Oyallon and J. Rabin available at 4. The parameters
were chosen to give the best matching performance on a
set of 100 test images. They were fixed and kept unchanged
throughout the experiments. Except for the implementation
of SURF, we used the OpenCV library for image processing
and homography estimation. Note that although OpenCV is
a well-optimized tool, the purpose of this paper is to analyze
quality of the algorithms rather than their runtime perfor-
mances.

The following point descriptors are used :

1. SURF is the classical SURF computed on the lumi-
nance I ;

2. LHE is the classical SURF with local histogram equa-
lization ;

3. GHE is the classical SURF with global histogram equa-
lization, made on the whole image ;

4. RGB is the color feature SURF with a descriptor of
size 68 × 3 ;

5. RGB + LHE is the RGB SURF for which LHE has
been performed on each channel ;

6. HSV is the same implementation of RGB SURF with
a conversion to HSV ;

4. http://www.ipol.im/pub/pre/69/¸

7. O1O2O3 or Opponent SURF, is similar with conversion
to O1O2O3 colorspace.

Note that C-SURF, where O1 and O2 are divided by O3,
is not used in the evaluation. The first reason is that our
experiments have shown very unstable results, probably be-
cause the descriptor distinctiveness is reduced. In addition,
invariance against intensity is already implicitly performed
in SURF, as mentioned in 3.1.

The two final stages (steps 5,6) correspond to homogra-
phy estimation and geometric compensation. They will be
described in detail in the next section.

4.2 Evaluation Criteria
We examine the impact of color descriptions on three main

properties : invariance, distinctiveness, and precision.
Color invariance. The first property shows how mat-

ching quality deteriorates when introducing geometric and/or
color distortions. Concerning geometric distortions, invariance
is provided directly by the SURF procedure, which has been
designed to offer invariance to rotation and scale. Therefore,
the geometric invariance should be the same for each me-
thod. We evaluate the quality of color descriptors by com-
paring their performances under various distortions. More
precisely, for each test image we compute the normalized
number of correct matches and then we average it over the
number of test images. This criterion CMR, for Correct
Matches Ratio, is used to evaluate descriptor invariance :

CMR =

N−1∑
i=0

# correct matches (i)

# total matches(i)

N
(9)

N is the number of test images, # correct matches (i) and
# total matches (i) are the number of correct matches and
the total number of matches in image i respectively.

Distinctiveness. This criterion defines a possibility to
discriminate objects that are represented by feature descrip-
tors. It ensures that, for each feature point, there is only one
matched point that produces a distance significantly lower
than the second nearest point does. We examine descriptors
on this property by computing the total number of correct
matches divided by the total number of matches over all the
test images. This metrics shows how the number of correct
matches CM varies after applying the distortions defined in
section 4.1.

#CM =

∑N
i=0 #correct matches(i)∑N
i=0 #total matches(i)

(10)

Precision. In order to estimate the precision of the mat-
ching, let us consider a registration problem. In PAR ap-
plications, this task will be useful to compensate geome-
tric distortions of the projected video. Once feature matches
are computed for the projected and the captured distorted
image, the projective transform between the images can be
estimated. It can be done by several different methods but
we chose the RANSAC algorithm [6] which is implemented
in the OpenCV library. It is one of the most used and best
performing algorithms for this purpose.

To compare homography matrices, we first apply the in-
verse randomly generated homography transform Hr to the
the distorted image. We do the same operation with the in-
verse estimated homography matrix He. Homogeneous coor-
dinates of these warped images are transformed to Cartesian



Figure 3: Examples of distorted images. The first
row represents geometric transforms, the second and
the third rows - gamma + geometry and linear color
+ geometry transformations respectively.

Xe, Ye, Xr, Yr :

(Xe Ye) = (xe/ze ye/ze) (11)

(Xr Yr) = (xr/zr yr/zr)

where xe, ye, ze, xe, ye, ze are the coordinates of the distorted
image warped by He and Hr.

Finally, the metrics to estimate how close the compensa-
tion images are in the geometric sense can be computed as
follows :

d(He, Hr) =

W,H∑
Xe=0,Ye=0
Xr=0,Yr=0

√
(Xe −Xr)2 + (Ye − Yr)2 (12)

where W,H are the width and height of all the images ; He

and Hr are 3 × 3 estimated and real inverse homography
matrices. We assume, that the lower the distance, the higher
the precision of the global feature points matching. This
criterion is analyzed in section 4.4 on synthetic and real
images.

4.3 Experimental Results
First, we consider the results when only photometric dis-

tortions are applied to the test image. In this case there are
no geometric transformations, and it is easy to check true
matches by comparing feature point coordinates. The first
columns of table 1 and table 2 show matching performance
of the descriptors under linear color changes. According to
these results the use of RGB SURF with LHE gives the best
performance among all the descriptors. Under gamma color
change, Opponent SURF slightly outperforms this method
(the second columns of the same tables).

The third columns of tables 1 and 2 correspond to the
matching results under geometric distortions. As the real
homography matrix is known, we can apply this transfor-
mation to the coordinates of the feature points to estimate
ground-truth matches and consequently to compute exactly
the same metrics as for photometric distortions. According

to the results HSV-SURF works very well and produces the
best performance. That means that the use of this descriptor
is reasonable if only geometric distortions occur.

The last two columns provide us with the matching results
when both color and geometric distortions are applied simul-
taneously. It is important to mention that both HSV- and
Opponent-SURF produce significantly poor results under li-
near color distortions coupled with geometric transforms.
As mentioned in 2.2 HSV colorspace is robust only to grays-
cale photometric changes. Although Opponent-SURF yields
slightly better results in the case of gamma color and geo-
metric transformations, RGB with LHE SURF gives more
stable results without considerable losses in quality for each
distortion scenario. It is worth to mention that, since photo-
metric changes are uniform in the whole image, it makes the
use of GHE favorable. It is proved by the results for which
GHE SURF is more accurate than Intensity-based SURF
(see tables 1 and 2).

4.4 Color Feature Matching Results for PAR
Applications

This subsection shows results of color feature matching
for homography estimation. Two cases are considered here.
The first one corresponds to the tests on synthetic images
from the previous subsection. We focus on the comparison
of homography matrices estimated on the basis of feature
matching with ground-truth homographies. The second case
corresponds to real images. As we do not have ground truth
homographies to compare with, we show the results for user-
based quality evaluation.

Table 3 shows the performances of the descriptors accor-
ding to the estimated homographies. As explained in section
4.2 we use Euclidean distance between compensated coordi-
nates as a measure of error with respect to exact coordi-
nates. The very high error values in the table for HSV- and
Opponent-SURF can be explained by the fact that, on some
test images, these methods fail in computing enough correct
matches to correctly estimate the homography transforma-
tion. For that reason they produce large error values which
are accumulated in the final mean error value. Although
RGB with LHE SURF is not the best performing method in
case of geometric only transformations, it produces robust
results for all the three experimental distortion combina-
tions.

In figure 4 the real compensated images are presented.
The captured image was taken under geometric and lighting
distortions. Also it can be seen that the background surface
is not single-color and this fact makes the matching pro-
cess even harder. In this example we consider only geometric
compensation made by means of the estimated homography.
In the figure the results of all considered methods are shown.
We can see that except for HSV-SURF based compensation
all the images look similar. The Grayscale-SURF with LHE,
the RGB-SURF, and the GHE compensated images seem
to be closer to the correct result. This proves the fact that
using LHE can enhance quality of compensated images.

5. CONCLUSIONS
Based on the review on existing illumination change mo-

dels and color feature descriptors, the paper has proposed
a new SURF descriptor based on local histogram equali-
zation. In addition to its intrinsic geometric invariance, it
has the property to be invariant to monotonous illumina-
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Figure 4: Real homography transform estimation experiments. (a) Projected image ; (b) Captured image ;
The following images compensated by : (c) SURF ; (d) SURF with LHE ; (e) RGB SURF ; (f) RGB SURF
with LHE ; (g) SURF with GHE ; (h) HSV SURF ; (i) Opponent SURF.

Table 1: Correct Matches Ratio in % (see sec-
tion 4.2) for different SURF descriptors under geo-
metric and photometric variations.

Feature Photo Geo Photo+Geo
Linear Gamma Linear Gamma

RGB 96.18 97.63 84.66 82.97 84.30
RGB +

LHE
97.05 98.03 86.03 84.99 86.52

I 95.72 97.18 84.13 80.25 81.67
I +

LHE
96.03 97.44 81.75 81.33 82.80

HSV 90.15 79.16 89.09 69.93 67.02
O1O2O3 93.2 98.22 87.83 74.08 87.13

GHE 96.93 97.85 84.71 83.38 84.84

tion changes, and to be device-independent. Owing to our
study, LHE can be used for PAR applications, where the dis-
tortions to be compensated are complex, because they are
due to the projection on a non-ideal surface and the acqui-
sition by the camera. Experiments have been performed on
synthetic tests and real images, and three criteria have been
considered. Contrary to most color invariants, the proposed
method produces stable and robust results for all tested pho-
tometric and geometric distortions. The best performance is
achieved under gamma photometric changes where it out-
performs all the other methods. LHE has been successfully
used for homography estimation, which is the standard geo-
metrical transformation used in camera/projector systems.

Computation time optimization issue comes up when using

Table 2: Number of Correct Matches in % (see sec-
tion 4.2) for different SURF descriptors under geo-
metric and photometric variations.

Feature Photo Geo Photo+Geo
Linear Gamma Linear Gamma

RGB 96.67 97.88 86.68 84.95 85.93
RGB

+
LHE

97.50 98.16 88.28 87.35 88.17

I 96.28 97.50 84.13 82.57 83.41
I +

LHE
96.56 97.66 86.85 83.70 84.83

HSV 94.65 95.54 90.50 75.94 81.76
O1O2O3 94.75 98.30 89.26 78.90 88.69
GHE 97.34 98.0 86.85 85.51 86.39

LHE for real-time color feature matching. In our experi-
ments we used a non-optimized implementation which takes
more processing time than RGB SURF because LHE is per-
formed in each region independently. To be used in real-time
applications the algorithm requires optimization that can be
obtained through parallel processing of feature regions.

The paper considered two photometric distortion models.
Although they are easy-to-model and widely used in litera-
ture, they are not necessarily good approximations of PAR
physical conditions. In this way some investigation is requi-
red to construct a more precise model that better fits these
conditions and that can be easily addressed by color inva-
riant methods. In future works, we will also go further in



Table 3: Average Euclidean Distance (see section 4.4
for the different SURF descriptors under geometric
and photometric variations.

Feature Geo. Linear
+ Geo.

Gamma
+ Geo.

RGB 1.69 2.38 1.83
RGB + LHE 1.55 1.90 1.70

I 1.54 2.06 1.61
I + LHE 1.69 2.0 1.79

HSV 0.95 117.20 108.45
O1O2O3 1.57 35.18 1.67

GHE 1.65 2.07 1.63

the experiments to assess the device-independence property
of the descriptor.

6. REFERENCES
[1] M. Bajura and U. Neumann. Dynamic registration

correction in video-based augmented reality systems.
IEEE Comp. Graph. and Appli., 15 :52–60, 1995.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool.
Speeded-up robust features (surf). Comput. Vis.
Image Underst., 110(3) :346–359, June 2008.

[3] O. Bimber and R. Raskar. Spatial Augmented Reality :
Merging Real and Virtual Worlds. A. K. Peters, Ltd.,
Natick, MA, USA, 2005.

[4] J. Dehos, E. Zeghers, C. Renaud, F. Rousselle, and
L. Sarry. Radiometric compensation for a low-cost
immersive projection system. In Proc. of ACM
symposium on Virtual reality softw. and techno.,
VRST ’08, pages 130–133, New York, NY, USA, 2008.
ACM.

[5] G. D. Finlayson, S. D. Hordley, G. Schaefer, and G. Y.
Tian. Illuminant and device invariant colour using
histogram equalisation. Pattern Recognition,
38 :179–190, 2005.

[6] M. A. Fischler and R. C. Bolles. Random sample
consensus : a paradigm for model fitting with
applications to image analysis and automated
cartography. Commun. ACM, 24(6) :381–395, 1981.

[7] T. Gevers and A. W. M. Smeulders. Colour based
object recognition. Pattern Recognition,
32(3) :453–464, March 1999.

[8] M. Grossberg and S. Nayar. What is the Space of
Camera Response Functions ? In IEEE CVPR,
volume II, pages 602–609, Jun 2003.

[9] D. G. Lowe. Object recognition from local
scale-invariant features. In ICCV, 1999.

[10] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. Jour. Comput. Vision,
60(2) :91–110, 2004.

[11] O. G. Luo Juan. A comparison of sift, pca-sift and
surf. Inter. Jour. of Im. Proc. (IJIP), 3 :143–152,
2009.

[12] K. Mikolajczyk and C. Schmid. An affine invariant
interest point detector. In 7th ECCV, pages 128–142.
Springer, 2002. Copenhagen.

[13] K. Mikolajczyk and C. Schmid. Scale and affine
invariant interest point detectors. Int. Jour. of Comp.
Vision, 60(1) :63–86, 2004.

[14] K. Mikolajczyk and C. Schmid. A performance
evaluation of local descriptors. IEEE Trans. on PAMI,
27(10) :1615–1630, 2005.

[15] S. Nayar, H. Peri, M. Grossberg, and P. Belhumeur. A
Projection System with Radiometric Compensation
for Screen Imperfections. In ICCV Workshop
PROCAMS, Oct 2003.

[16] H. Park, M.-H. Lee, B.-K. Seo, and J.-I. Park.
Undistorted projection onto dynamic surface. In Proc.
PSIVT’06, 2006.

[17] H. Park, M.-H. Lee, B.-K. Seo, J.-I. Park, M.-S.
Jeong, T.-S. Park, Y. Lee, and S.-R. Kim.
Simultaneous geometric and radiometric adaptation to
dynamic surfaces with a mobile projector-camera
system. IEEE Trans. Cir. and Sys. for Video Technol.,
18(1) :110–115, Jan. 2008.

[18] S. A. Shafer. Color. chapter Using color to separate
reflection components, pages 43–51. Jones and
Bartlett Publishers, Inc., USA, 1992.

[19] K. E. A. van de Sande, T. Gevers, and C. G. M.
Snoek. Evaluating color descriptors for object and
scene recognition. IEEE Trans. on PAMI,
32(9) :1582–1596, 2010.

[20] A. Verma, S. Banerji, and C. Liu. A new color SIFT
descriptor and methods for image category
classification. In Int. Cong. on Comp. Appli. and
Comput. Sci., pages 819–822, 2010.

[21] S. Zollmann, T. Langlotz, and O. Bimber.
Passive-active geometric calibration for
view-dependent projections onto arbitrary surfaces.


	Introduction
	Color Invariant Descriptors
	Color Change Models
	Color Invariance

	Color Feature Matching
	Feature Matching
	 Local Histogram Equalization for Feature Matching
	Discussion on local histogram equalization for PAR applications

	Experimental Results
	Experimental Setup
	Evaluation Criteria
	Experimental Results
	Color Feature Matching Results for PAR Applications

	Conclusions
	References

