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1.1 Some books

o FReif: Fundamentals of Statistical and Thermal Physics
e L. E.Reichl: A Modern Course 1n Statistical Physics

o C . Kittel: Elementary Statistical Physics

J.5ethna Statistical Mechanics,mEntropy, Order Parameters and Complex-
ity (free on internet)

E_K.Pathria: Statistical Mechanics

Gould, Tobochnik: Thermal and Statistical Physics (free on internet)

o 5 K Ma: Statistical Physics

MIT Open course project (http://focw.mit eduw/OcwWeb/Physics/index him)

e J.M.Yeomans Statistical Mechanics of Phase Transitions



Probability density

Mean value

Independent varables

Marginal distribution

pla<xz<b) = fb olx)dr
@ = [ 1@l
olx.y) = pi(x)o2(y)

o(z) = f olx, y)dy



Function of random variable

v = f(x)
5 = [ srNeta)dz = [ ooy Fa))eladzdy -

= fg[y]g{f-l{g}m[g —e}f,{f}l{mdydf =[§{y}@”{y}dy

1
— _ Sy — fi. dr = -1
aly) f (y — flx))olx)dr = ol f {H}}fa{f—1{y}]



=T+ Y

o(z) = / 5(2 = (2 + 1)1 (2) 0a(y)dardy = / o1 (2) 02z — 2)d

It 1s a convolution



Characteristic function

f(k) = (exp(ikz)) = /d:r. exp(ikx)p(z) = Z

ole) = 5= [ dkexp(=iko) /()

(@) = (=) TS

T

For the sum of two variables the density function is a convolution, so the charac-

teristic function is a product, since the Fourier transform of a convolution is a the
product of Fourier transforms.

/ ™0 (z—(z+y)) o1 (z) 02 (y)dadydz = / dre™ g (z) f dye™ 05 (y) = fi(k) fa(k)



Characteristic function of a function of a random variable

y = p(z)
o) = [ o@)ily - plw)dz

f(k) = / dyeVo(y) = f ddye™ o(z)5(y — o(z)

f(k) = /eik“ﬂ(r}g(r)dm



Cumulants

s(k)=In(f(k)) = Z (lm C,
Cy = (x)

Cy = (2°) — (2)* = (z%)c
Cy = (%) = 3(z) (2% + 2(2®)® = (2%)¢

Co = (=i)"s™ (k) o

(@) = (=i o

Cumulant expansion

(r12023%4) = (T1722324) 0 + (T120223) c(x4)c + 3 terms +
+(x129) o (T324) 0 + 2 terms + (x129) o (x3) o (x4)c + 5 terms +
+(x1)c{x2) o (®3) o (T4)



We now prove the cumulant expansion. Factor (—)™ is implicitely hidden in both
moments and cumulants, so it gets canceled finally.

(k) = exp(s(k)
(@) = 10l = ( g exp(s0))
") = exp(s(0)) = exp(Cy) = C(0) =0

i

d 1
— (E » ( U(k ) exp(s l 0=
= (% D (k) e:{p(a(h)))k_n ((s*(k) + s'(k)s'(k)) exp(s(k)))_, = C2 + C1C4

S (k )sl(ﬁc))exp(sw))) .

mm}(k D) + (k)2 (k)
- s@(ﬂu)a‘”( )+ 5O (k)sD (k)5 D (k) exp(s(k)))

k=0

Here the terms in the first line of the last equation originated by differentiating the
terms in the bracket before the exponential, the terms in the second line of the last
equation originated by differentiating the exponential.



(@) = (g (20 + 5 0k exp(s(h) ) =
(sO(k) + s (R)sO(R) + 5O (k)sO (k) +

SO (k)5 (k) + 5O (k)5 (k)s (k) exp(s(k)) ) _

I
r

9836229 20

My ©@
oweyy| O}

Figure 2.1: Third momentum into cumulants @% % @@ O @O

Figure 2.2: Fourth momentum into cumulants



Covariance
cov(x,y) = (zy) — (x)(y)

Correlation function
cor(x,y) = —mt(:r,y)

D'_.I_.D'y



Normal distribution

1 T

Q(:I:) ar \/%7 exp(_ﬁ)
k202
f(k) = exp(———)
k.20‘2
In(f(k)) = =

only second cumulant non-zero, so all higher moments are expressible through
the second cumulant.

Variance



Multivariant Gauss distribution

det(g 1
o, cuBi) = (275)3 exp(—Eng:L')

flky, ..., k) = (exp(i(k1zy + ... + knzy,)))

o 0 0 0
4 s i —_
Ok, Oky Ok3 Oky IR |ki=°

= (x122)(x324) + (T123)(T224) + (T124) (T23)

(r129234) = (—1)

Wick theorem



Generating function

A
flu) = \/;/dx exp(—%sz + uzx)

to be compared with characteristic function with © = ik
Technique: shift of variables

f(u) = exp (;—A)

Taylor series generates moments



Another technique to calculate moments: Euler Gamma function

['(z)= /OOO t*~! exp(—t)dt

['(n)=(n-1)!
I'(z+1) = 2I'(2)

[(1/2) =v=

—2)!
) = ﬁ(gn_l)/)z for odd n

f dzz" e‘xp(—%Aﬂ:g) = (é)_%ﬂ / de€™ exp(—€2) =

2
-1

-(3)7 [rrerencn=5(3) T




2.2 n-dimensional sphere

(/)" = / dzexp(— Y 2?) / exp(—12)S, (r)dr

from here one easily calculates the surface of the n-dimensional spehere S,,(r)
assuming the form

Sp(r) = Cpr!

211‘”/’2 rn—1

[(n/2)

and then also the volume of an n-dimensional spehere V,,(7) via

Sn(r) =




2.3 Laplace method

Also called steepest descent method or saddle point method is an approximation
scheme which is used to evaluate the integral I=

/exp(Mf(:z:))d:U for M — oo

Let f(z) has only one maximium at xg, then the integral is dominated by this

maximum ;

f(x) = f(zo) + Ef”(fﬁo)(l" — To)?

[ exp0 f(@)de = exp(M f(a0)) [ doexp(= 11" ()@ = 0)*) =

2T
M| f"(zo)|

= exp(l\/[f(:co))\/
The logarithm 1s dominated by the maximum

Inl = M f(xo)



Stirling formula
N!'=+V2rNNVe™™

We denote z = Nz
N'=T(N+1) = /mNe_Idl‘ = /e_Nz(Nz)NNdz =

— NN+1/dze(—i\Tz+Nlrlz) — NN—I—I/eN{lnz—z)dZ

Laplace method with

f(z)=Inz—z
1
f(z)=-=—1  maximum for z =1
2
1
f(z) = T2
N! = NN—I—le—ﬁ Z_ﬂ-



Central limit theorem

by the central limit theorem, according to which in the limit n — oo the variable

Xn — Z?:l (‘Tfr _ lu)
V/no

is distributed according to the standard normal distribution N(0, 1). Here p < oo
is the mean of z;, 0 < oo is the root mean squared of (z; — p).

We define new random variables y; = (x; — 1) /0. These variables have the mean
value 0 and variance 1.

Using this relation, we can write the Taylor series of the characteristic function of
the probability density f(x) with a mean 0 and variance 1 in the form

pi(t)=1— g Lot (t—0)



By convolution the characteristic functions get multiplied (they are the Fourie
transforms). Since X,, = ) . y;/+/n, the characteristic function of its distribution

g(X,) is the product of the characteristic functions of the distribution f(y) and
can be written as

2

[pq(t/Vn)]" = [1 — ;—n + o(#? /n)] " nooo, /2

The last function i1s the characteristic function of the standard normal distribution

N(0,1), we have proved that the distribution g(X,,) converges to the standard
normal distribution A (0, 1).

Characteristic function of a function of a random variable

y = ()

o) = [ e@)ly - (@)
1) = [ dyero(w) = [ dadye™ofa)iy — o(a)
f(k) = /eikﬂx]g(m)d;‘n



Thebyshev inequality

pe [ e s

(@)= 2 > 2
o 2/00 (z — (z)) f(:.c)dst’—l—/{@JﬂE (z — (2)) f(z)dx

{zi f(x) d:r] =¢" P(|lz — (2)| > ¢)

(x)—e
02262[/ f(x)dz +

2

P(lz— (z)] > €) < =

€



Thebyshev inequality

P(a— () > ¢) < %

€

Now let us consider the sum of /N independent identically distributed random
variables yy = (x1 + - -+ + an)/N. Clearly (y) = (z). Since o, = o;/N (the
reader can easily check this himself) the Tchebyshev inequality gives

oy _ 0o

€2 Ne2

P(lyy — (z)] > €) <
Assuming o, < oo it is clear that for any chosen value € we get

lim P(lyy — ()| > ¢) =0

The probability that the arithmetic average yy of independent identically dis-

tributed random variables z; difference from (), in the limit N — oo declines to
7ero.



So far we have shown how to determine experimentally the mean value with arbi-
trary precision. Now let us do the same for a probability that the random variable
value hits some predefined subset M. We have a random variable x with the prob-
ability density p(z). Let us define a yes/no event

yes:xr € M no:x & M

Now we define a new random variable as a function y(x) where ¢ is the charac-
teristic function of the set M, that 1s

(@) = {0 rg M

1 ze M

The mean value of y is

¥ = / x(@)p(e)dz = / pla)ds = pla € )

On the other hand the mean value x can be determined experimentally with arbi-

trary precision as

o 1
X_N(X1+X2+---+X’n)

This fact justifies the experimental procedure to measure the probability as a ratio
of the number favorable events to the total number of events. This ratio according
to the law of large numbers converges to a certain value and this value we call the
probability of the studied phenomenon.



Binomial distribution

Binomial distribution is the discrete probability distribution of the number of suc-

cesses in a sequence of n independent yes/no experiments, each of which yields
success with probability p.



In the limit n — oo assuming pn = const. = A, the binomial distribution ap-
proaches the Poisson distribution

f(k) = ge_'\;

where )\ 1s the mean value of the random variable k.
T

k* — k" =np(1—p)

In the limit A — oo the Poisson distribution approaches the normal distribution

N\ V).



Random numbers

Generic random number generator

1:= (i%xk) mod N

r:=1i;

r:=r/N; //this is real number arithmetic
return(r)



The key 1s Monte Carlo integration

_ 1 b
f:b_afa f(z)da

The mean value can be determined “experimentally”

I
f=ﬁzl:f(a+RND()*(b—a))

this 1s a default Monte Carlo integration algorithm.



We want to calculate by Monte Carlo the integral

| t@etwyis

but we want to use random generator generating x distributed according to o(z)
The key is the substitution to integral using “inverse to primitive”

r=F"(§)  £€(0,1)

where

The substitution 1s

1 1
A AN TG
and we get
| @@= [ a5t e ©) i = [ defF©)



Importance sampling

We see that the integral can be calculated by the following Monte Carlo

| f@ol)ds - sz Y(RND()))

So random variable z distributed according tho the probability density o(z) is

generated by the algorithm
r=F"(RND())

5 | /././.’_V

Numerically




Another method which can be used if p(z) is defined on the finite interval (a, b) if
we know, that o(z) is majorized by some value M:

Vo € (a,b): 0 < p(x) < M

e we generate randomly a point (£, 7) in the “bounding rectangle” that is £ =
a+ (b—a)x RND()andn = M x RND()

e if the generated point (£,7) is below the curve p, that is if n < p(§) we
accept value £ as the generated value x

e otherwise we repeat the process by generating a new point (£, 7)

M

g /\

accept - reject




Importance sampling for normal distribution

r = y/—20% In(RND()) cos (2 RND())



Selected items from statistics



0(z) = = (=)
Now we form a new random variable
Yy==x
Its probability density is

1 1
exp(— g) —— ~+term with the negative root)

V2 2" 2,\/y
_ 11
ViVer

This is a special case of a more general ”y? distribution with n degrees of free-
dom”

0,(y) = ] o(2)d(y—12)dz = O(y)(

exp(—%)

Qy(y)

1 n
o T
2?3/2["(5)

0.2(x) = L exp(—3)



If 2,2, ..., x, are independent draws from a normal N (0, 1) distribution, then
the random variable
_ 2
-3
i

is distributed as x* with n degrees of freedom (This is the definition.)

It is easy to derive the explicit formula for the y? distribution.

1 1 2y ¢ 2
pxz(y)zf(\/%)n exp(—§Z:ci)()(y—Zmﬁ-)dxl...dﬁz =
1

Rk exp(—y/2)0(y — r*)S,(r)dr =
1 1

i P (Y25 =SV




Suppose we have a container of random values x said to be distributed according
to normal distribution N(u, o). We want to verify the fact experimentally. The
procedure is

e We formulate a null-hypothesis according to which the assumed fact is true:
that is we assume that the random values in the container are really dis-
tributed according to N (u, o).

e We perform an experiment: draw n independent samples x4, ..., z,.

e We calculate the statistics

2 - (z — p)?
X _Z o2
1

e The value of y? obtained in the previous step is checked for probability.
That 1s we evaluate the probability p that a chi-squared distribution can give
value as observed or higher

pz/ 02 (x)dx
X

2



e The value of y? obtained in the previous step is checked for probability.
That 1s we evaluate the probability p that a chi-squared distribution can give
value as observed or higher

pz/ sz(sc)dfs
X

2

e It the obtained value p is very small (like < 0.001) we say that it is very
improbable that we have such a bad-luck that we observe such a big devi-
ation form the expected null-hypothesis-behaviour. So we reject the null-
hypothesis. If the value p is not small enough, we say that it may be that
the value x? we have observed is due to a fluctuation and we keep the null
hypothesis as valid.

Expected y? value is of the order of n.



Another use of chi-squared distribution for statistical testing is given by the fol-
lowing Pearson theorem.

We have r histogram bins, and the expected probabilities for a random event to
fall into the :-th bin are p;. We observe n random events and the actual number of
hits in the ¢-th bin are n;. Then the statistics

r

2 (n; — np;)*
=D

1 Pi

is distributed as chi-squared with (r — 1) degrees of freedom.

e We assume we know the expected probabilities p; and as the null hypothesis
we assume they are true.

e We perform the experiment and observe the actual number of hits n; and
calculate the statistics 2.

e We calculate what is the probability p to observe the value y* as observed
or even higher.

e If p is reasonably small we reject the null hypothesis and say that the true
probabilities are different from those expected.



W consider a a clinical study (experiment) the aim of which is to test which of
the two available drugs (DRUGI1, DRUG?2) is better for treatment of a partic-
ular disease. The study 1s organized as follows. The patient having the disease
are randomized (chosen randomly) for treatment either with DRUG1 or DRUG2.
Then their health state 1s observed and classified into two categories RESPONSE
(these are patients whose disease positively reacted to the treatment) and NO RE-
SPONSE (those for whom the treatments did not have the required effect). Then
a “contingency table” is created where number of patients of each category is en-
tered. The contingency table for our case 1s a 2 X 2 matrix and is defined by the
white fields in the following table

DRUGI1 | DRUG2 | Totals
RESPONSE 15 8 23
NO RESPONSE 7 5 12
Totals 22 13 35




DRUGI | DRUG2 | Totals
RESPONSE 15 8 23
NO RESPONSE 7 5 12
Totals 22 13 35

There are four categories of patients in our table (number of rows tzmes number
of columns). The actual number of entries in each category can be denoted as V;;.
So for example Na; is the observed number of patients in the second row and
first column, that is it is the number of patients treated by the DRUG1 with status
NO RESPONSE, so Ny; = 7 in our table. The independence of features means
that the probability for a patient to enter a particular row is independent on what
column it enters and the probabilities to enter a particular cell factorize. If the null
hypothesis holds, then a set of parameters r,, 75, ¢;, co must exist which give the
probabilities to enter the rows 1 and 2 and columns 1 and 2, respectively. If there
were no statistical fluctuations then the observed numbers of hits should be

Nz’j = Nncj

where N is the total number of patients. Now the task is twofold



e Estimate the optimal values of parameters 1,75, ¢;, co Which best describe
the observed data provided the null hypothesis holds

e Test whether the optimal parameters really describe the observed data well
or the description is so poor that we should abandon the null hypothesis.

To estimate the optimal parameters we introduce the following notation

Niy =Y Ny
J
Nyij = Z N

These variables describe the number of hits of particular row (or column) and are
entered as “’totals™ in the above contingency table. For the total number of patients

we get
N=> Nj=)» Nyu=>» Ny
i i J

Now it is intuitively clear’® that




So the expected number of hits F;; in the cell (7, 7), provided the null hypothesis
holds and fluctuations are zero, is

E;.;j == N'?’;.;Cj

;?\'Ti+ iT\"T+ 7
N

So we create another contingency table containing not the observed but rather the
expected numbers of hits. Here it is

DRUGI1 | DRUG2 | Totals
RESPONSE 14.457 8.543 23
NO RESPONSE | 7.543 4.457 12
Totals 22 13 35
DRUGI1 | DRUG2 | Totals
RESPONSE 15 8 23
NO RESPONSE 7 5 12
Totals 22 13 35

> (N:i;j — Ei;)?
X = Zj 2

chi-squared with (r — 1) x (¢ — 1) degrees of freedom'



Student test

The Student distribution with n degrees of freedom is defined by the probability
density

(2) = ot
R YWD

It can be shown that if we have (n + 1) samples
Lo, T1,T2,...,Tp

from the normal N (0, 1) distribution, then the statistics
Zo

1 n _9
—2at
n

} =

is distributed according to the Student distribution with n degrees fo freedom



The generic example looks as follows. We have two containers said to contain
normally distributed samples of the same gaussian distributions N (y, o) with un-
known but equal values of the parameters ;1 and 0. We make n draws from the
first container, getting the sequence of random values

T, Tr2,...,Tn
and m draws from the second container getting the sequence

Y,Y2, ... Ym

The null hypothesis is that the two containers are truly equivalent. The question is
can we rule out the null hypothesis on basis of the observed events?



Calculate the sample means

TZ%Z% Ey)Z%Z%

i i

calculate sample variances

1 1
2 E —\2 2 § ) — 2

calculate the statistics ¢

r—y

(n—1)s; + (m —1)s; /‘l N 1
n+m — 2 n o m
the random variable ¢ should have the Student distribution with (n +m — 2)
degrees of freedom. Usually it is |¢| which matters and we ask what is the
probability that the absolute value of a student-distributed variable is greater
than the value we have observed. So we have to integrate both the left and
the right tail of the distribution to get the probability which we consider for
estimating the significance.

} =




Bayesian statistics

prior probability + data obtained — posterior probability

The prior probability here measures our complete knowledge obtained before the
experiment considered, the posterior probability corresponds to our knowledge
after the proces of the considered data evaluation. The scheme looks rather mys-
teriously. To understand it better we have to discuss its different parts.

For example we said that the prior probability measure our complete knowledge.
How it is possible? If we understand the notion of probability as the ratio of the
number favorable events to the number of all events, it cannot measure knowl-
edge. As an alternative here we consider the probability to be the measure of our
confidence of a realization of a particular event. The limiting values are 0 for the

events we consider to be impossible and 1 for the events we consider to be cer-
tain.



The next reasoning is heavily based on the Bayes relation for the conditional
probability, so we start by deriving it. Let A be some event and {B;} is a set
of disjoint events such that UB; = (2. The definition of conditional probabil-
ity leads to the equality P(A N B) P(A)P(B;|A) and in the same time
P(AN B;) = P(B;N A) = P(B;)P(A|B;). Comparing these two relations we

get
P(B;)P(A|B;)

P(B;|A) = P(A)
_ P(B)P(AB))
P(B;|A) = S P(B;)P(A|B;)

Now we rename the entries in the Bayes formula to correspond more clearly to
the context in which we shall use it

7w(M;) P(D|M;)
S . w(M;) P(D|M;)
Here M; denotes competing models, D the data obtained, 7(M;) the prior proba-
bility of the model M; and P(D|M;) the probability to observe the data assuming

validity of the M;. The left side of the relation, P(M;|D), is the posterior proba-
bility. We shall demonstrate the practical use of the formula by several examples.

P(M;|D) =




Let us investigate its use in the simple example of fitting the data by a straight line.
This simple example will also manifest better the relation between the classical

and Bayesian statistics.

We have results of some measurement, the set of data points {x;,y;} for i =
1,..., N. According to theory, the relation between z a y should be a linear one
Y = A:c + B. What values of A a B correspond best to the observed data?

If we measured absolutely exactly, we should obtain for each x; the value y; =
Ax; + B. Now let us assume, that the deviations from this value (measurement
errors) are distributed normally with the standard deviation ¢ and the mean ;. = 0.
This assumption is essential and is usually justified by the central limit theorem.

The probability that for x; we obtain the value vy; is

1 exp [_ (y; — Az; — B)ff] |

2mo 202

The probability to obtain the whole observed set of values {y;} is

N

i=1

This 1s so called likelihood function.



This 1s so called likelihood function. Now let be non-Bayesian (frequentist) for a
moment. Then the likelihood function is all we need and we estimate the best
values for A a B by maximizing the likelihood function P(data|parameters).
The above expression shows that the maximum is achieved when the sum of the
squares of deviations is minimal. The estimates AaBare given as

h?
A A — Ar. — B)?
A,B:argmin{g (i 3:; ) }
o

A, B i=1

Within the Bayesfian spirit, however, we

should also consider the prior probability 7( A, B). Our main interest is not the
likelihood function, but the posterior probability of the values of A and B after
observing {y; }. According to the Bayes formula it is given as

W(A: B) P({%HA* B)

J(A, Bl{wi}) = [ (A, B) P({y:}|A, B) dAdB
_ nmAB | Y (y; — Az, — B)?
- C(V2mo)N P Z 202

i=1
The denominator of the fraction plays no role for the further consideration and is

denoted simply by C'. The maximum of the posterior probability differs in general
from the maximum of the likelihood function.



Competition of two models

In physics we often meet situations when we have to choose between two alter-
native models. For example for the set of data points {z;,y;} we have to decide
whether the data support the two-parameters linear model

vi = A+ Bz,
or an alternative three-parameters quadratic model

yi:AJrB:rt-JrC:rf

This is a question from the methodology of physics and within the Popper-like
spirit it seems to be wrongly stated. Our basic belief is that in physics we cannot
prove hypotheses, we can just disprove (reject) them. Here we have two hypothe-
ses, linear and quadratic. If one of them can be rejected (by suitable statistical test)
then we favor the other hypothesis. But what if neither of them can be disproved?

Then we usually use "The Occam razor”.



So the standard folklore” (non-Bayesian, frequentist) is the following.

e Choose the simplest model (here the linear one). Adjust its parameters (A, B)
by maximizing the likelihood

e Having fixed the parameters of the model perform a statistical test. For ex-
ample you can calculate the y? statistics

i—A—BIiQ
ngz(y )

o2

and calculate the probability to observe the value obtained if the null hy-
pothesis (linear model is true) holds

e If you get a reasonable probability, accept the model until new analysis is
forced by new data.

e If you get too small a probability, reject the model and repeat the analysis
with a more complicated model



Now, the Bayesian approach to the same problem would be:

e Estimate the prior model probabilities w(M;) and 7(M,). (M, is the lin-
ear model, M, is the quadratic model.)The model prior probabilities might
depend on the model parameters.

e Express the posterior model probabilities through the model parameters for
both models

e Maximize both posterior probabilities choosing the optimal values of the
model parameters.

e Compare the two posterior model parameters calculating their ratio (so that
the normalization factor from the denominator drops out)

P(M;

P(M,

data)  m(M;)P(data| M)
data) 7 (Msy)P(data| M)

e Accept the model for which the posterior probability is higher



Model as data compression

010101010101010101010101010101010101010101010101 .. .,

Can be reproduced by a very short program
for (i=0;1<1079;1i++) print ("01");

e Programs are just finite strings of zeros and ones. This is a countable set.
This set can be even ordered according to the length of the string represent-
ing the program. So the set of all programs can be numbered giving number
1 to the shortest program, 2 to the next one etc.

e Begin with program No 1. Run it. Wait until it stops. If it prints the de-
sired data string, you have found the shortest program, the “theory”. If not,
continue with program No.2. And so on.

e Some program eventually prints the desired data string, at least the "copy
program” must do so.

e The first program (found in this way) which prints the data string is the

shortest one doing so. THEORY




The argumentation was wrong. Halting theorem!

It is quite instructing to prove the halting theorem. So far we considered only pro-
grams which do not need any inputs. Let us now consider more general programs
which read some input string at their start, then run, stop and produce output
string.

Input strings are again just sequences of zeros and ones. Without loss of gen-
erality we can say that each such string starts with one'?. So it is just a binary
representation of some integer number, we shall denote it by m. Programs can
be also denoted by numbers, say n. The output string of a program n given the
input string m is again a binary number, let us denote it as 7'(n, m). Well, with
one exception. Maybe the program n given the input string m never stops, then it
does not produce any number. In this case we define

T(n,m) =01

So in principle we can imagine an infinite table with all the results of all the
programs given all the possible input strings'!. This table is the matrix 7'(n, m).
(In the n-th row and m-th column is the output 7'(n, m). Some entries in the table
are, of course 1.



We said ”in principle” because we are not sure whether the matrix can really be
constructed (computed). Well, the matrix is infinite, so it can never be constructed
(computed) in totality. But we can define the matrix be computable if we can
compute the entry in any given (n, m) position. Can we?

Yes if the halting problem can be solved. We need the program symbolically de-
noted as H which if given two'>numbers (n,m) (that is some program and its
data) always halts and outputs 1 if the considered program n with data string m
stops and outputs 0 if the program n with data m does not stop. °

With the help of the magic program H one can compute the matrix 7'(n, m). In-
deed: given the two numbers (n,m) we first run the H program with (n,m) as
input. If it writes 0, we know T'(n, m) = [J and that is all. If the H program ends
with 1, it is safe to run the program n with data m and we get the result 7'(n, m).
So if the program H exists, the table 7'(n, m) is computable.



Now we are going to show, that the table 7'(n, m) cannot be computable. Suppose
it is. Then its diagonal T'(n, n) is also computable. Then a vector V' (n) defined'*as
V(n) = T(n,n) + 1 is also computable. It means there exists a program which
computes this vector. There must be a number ng such that T'(ng, m) = V(m) but
then

T (ng,ng) = V(ng) = T(ng,ng) + 1 # T(ng, ng)

We got contradiction. So the program H does not exist. The halting theorem is
proven.



Coding theory

In this section we start to investigate deep relation between probability and infor-
mation. We shall first need elements of the coding theory.

It is possible to construct codes for letters such that no sequence of symbols which is a
true code for some symbol appears as a prefix in the sequence of some other letter.
Then a sequence of symbols without any gaps can be cut into pieces representing
individual letters (the gaps can be introduced automatically).

Let us denote the lengths of codes of letter of an m-letter alphabet as s4, ..., s,,.
Let the corresponding code 1s prefix-free. Then the following (Kraft inequality)

holds
Zz-Sf <1.

i
The 1nverse 1s also true, that 1s if the lengths of m sequences s, ... . s, fulfill the

Kraft inequality, then a prefix-free code exists for an m-letter alphabet with the
code sequences of the corresponding lengths.



Let us prove the theorem. Without a loose of generality we assume that the lengths
are ordered and s,, 1Xx maximal. Any given prefix code can be represented by
an binary tree of depth s,, where the branches from each node correspond code
symbols (0 and 1) and each codeword 1s represented by a path to a leaf at depth
s;. This guarantees that no codeword 1s a prefix of another. For each leaf in such
a code tree, consider the set of descendents A; the leaf considered would have at
depth s,,, 1n a full binary tree. Then

Aiﬂﬂj:@, I;ﬂéj

and
|A1| — 25Tr1_5i

Thus, given that the total number of nodes at depth s,,, 1s 2°™ |

i T
il =3 2o < oo
i=1 i=1
ZQ-Sf <1



It 1s useful to demand that the message should have the total length as small as
possible. Let us denote the length of the code assigned to the letter = by L(x)
and the alphabet of all letter by .A. The mean length assigned to a letter is (L) =

> P(x)L(x). We assume here that the probabilities P(x) are known beforehand.

L= Px)L(z)=A() 27" —1).

reA reA

6 —Lix _
9L() (; P(z)L(z) + )\(22 (@) _ 1)) =

xIr

= P(x) — AMn(2) exp(—L(x) In(2)) =0
P(z) = An(2) exp(—L(z) In(2))

P(x) _ 9-L()
Aln(2)
Z 2—L[I} -1
S P@) _ 1
Aln(2)  AIn(2)
A= L

In(2)

P(x) = 9—L(z) L(z) = —log, P(z)




The solution is L(x) = —log, P(x). The optimal mean code length per letter is

H = —ZP x)log, P(x)
reA

This expression 1s called the entropy of the information source (when coding in
the binary code). Since log, ¥ = In 2-In x, H differs only by a multiplicative factor
from the expression for entropy S = —k ) p; In p; known in statistical physics.

An optimal solution (coding individual letters) is the Huffman code'®. We start
with two least probable letters and assign to them (as final symbols for their code
sequences) () and 1. We sum their probabilities and count them together as if one
letter the number of “effective letters” of the alphabet decreases by one. We iter-
ate the procedure until all the letters have their code sequences assigned (see the

figure).
znak| pp.
A[0,3 —0, 3—()3
B|0,25—0, 25— .)(7) ¢
¢ ()2)—()2 04\)—0 450)
D |0, 70 27
E[(0,1 4

The code sequences for the example in the above figure are A +— 11, B
10,C + 01,D + 001, £ + 000. Huffman code is used in many applications
like zip, mp3 a mpeg.



Supplements to the foundations of
statistical physics



Density matrix

A= Zp (x| Alz)
p= S Je)p(a)al

A =Tr(pA)

Tr(pA) = Z(ﬂlﬁﬁln}—znl ZII r)(z| Aln) =
= ZZ n | z) p(z){z| Aln) =
= ZZPNIIMH (n|z)=
= Zp (x| Alz) =



The density matrix 1s evidently a hermitian operator, it can be expressed in any
base (in general 1t would not be diagonal) as

p= Zl?’?’l)pmn<ﬂ.|

The time evolution of a macrostate will be described by a time dependent density
matrix

pt) = S Ja()p(a)(t)] =

;exp(—%m)\m(r)m exp( A1)

Differentiating with respect to time we get the equation of motion

. -
ih—5(t) = [H. b
ﬂﬁtp() (H, p]



If the macrostate 1s stationary, then it will be described by a time independent
density matrix. According to the equation of motion we see that such a density
matrix commutes with the Hamiltonian. Therefore there exists a base of stationary
states in which the density matrix will be diagonal having the form

p=_|n)pun(n]

This is the reason why in statistical physics of stationary macrostates we can limit
ourselves to the ensembles composed of stationary states.




In the case of a canonical ensemble we get for the density matrix

1 by
p= Z|n) A exp(—ﬁ (n]

n

which can be formally written as

A

1 H

P = 7 EXP(—E)



Entropy

How to measure the quantity of information?

The starting point is the requirement that the message saying an improbable event
happened carries more information then a message reporting that a probable event
happened. The quantity of information is therefore related to the probability of the message
carrying the information. Information about the event is related to the probability of that
event before it happened.

Now we require that the information can be communicated in parts. For example

| can first announce that the unknown number is odd, and then only the number

itself. It is natural to require that the information from partial messages should be

added to get the total information. Having in mind that the probability of independent events
combine multiplicatively, but the corresponding independent pieces of

information should be combined additively it is natural to assume that the amount

of information is given by the logarithm of the corresponding probability.

I = —log(p)



Let us now consider a communication channel communicating the pieces of infor-
mation. Each piece of information is a message that some event happened. Let the
events are denoted by the index ¢ and their probabilities p;. Then the mean amount
of information contained in one message is

S=- Z p; log(p;)

We have seen this expression in the previous section when we discussed the op-
timal coding. We came to the conclusion the having events with probabilities p;
it is optimal to assign to them codewords with the lengths — log,(p;) so that the
mean message length would be

S==> p:logy(p)

Information is, in fact, measured by the price of telex carrying that
information. If telex is priced by some amount of money per letter.

Using the logarithms of different bases just changes the units in which we measure the
amount of information. (Changing the base just multiplicatively renormalizes the
logarithm.) The unit corresponding to binary logarithm is called bit, the unit
corresponding to natural logarithm is called nat.



Now we prove that the expression for entropy has the following important opti-
mality property. Considering arbitrary sequences of positive numbers g; satisfying
the condition ) _. ¢; = 1 the following inequality holds

_ Zpi log(gi) > — Zpi log(pi)

log(T) < z-—1
i
lo < ==1
g( ) s
pilog(gi) — pi lﬂg(m) < ¢G—pi
> (pilog(q:) — pilog(pi)) < Z(qt—pz)—ﬂ

i

|/

— Z pilog(pi) < - Z pilog(g:)

By the way we have proved again the optimal coding theorem, that is that
one should use the codewords of the length log(g:) = log(p)).



Now, why all this 1s relevant to statistical physics?

A macrostate in statistical physics is represented by a statistical ensemble of mi-
crostates ¢, whose probabilities are p;. Statistical entropy (of the macrostate) is

defined as
S=- Z'}Ji log(p:)

So we see that the statistical entropy can be interpreted in the following way.

Let us imagine that somebody gives us a sample of some macrostate. A macrostate is a
virtual notion, he must actually give us some specific microstate. He just does not tell us
which specific microstate from the corresponding ensemble he gave us.

So our knowledge about the system considered just corresponds to its macrostate,
we are completely unaware of the microstate actually delivered. Now imagine
that someone tells us which particular microstate was actually delivered. Then

our original unawareness is changed to a complete knowledge. The amount of
information contained in the message was -/log(p:) where piis the probability
assigned in the statistical ensemble to the microstate actually delivered.



So the mean amount of information needed to complete our knowledge from macrostate to
microstate level is

S=—=> pilog(p;)

S =—k Zpa- log(p;)

In thermodynamic:
0Q)
AS = | —=
5 / -

therefore thermodynamical entropy is measured in J/K



Variation principles

We have already met the inequality
= pilog(q:) > =) pilog(pi)

in terms of the density matrix it can be written in the following form

—Sp(pln(p)) < =Sp(pln(p))

This inequality holds for arbitrary density matrixp’.



The proof is not completely trivial, since in general the two matrices p, p’ can-
not be diagonalized concurrently. Let us suppose that both matrices are strictly
positive. Let p is diagonal in base |m) and p’ in base |¢). Then we get

Sp(plnp’) — Sp(plnp) =Y pm (m | g) In g, (g | m) melnpm =

.,

=> pu(m @) g, (g m)y =" (m|q)(g|m)pnlnp, =

m,q m.q

-Z\(m\q pmln ‘iZIﬂllq ﬂm—— ) =

= Sp(p') — Sp(ﬁ) =

We have proven the above inequality for strictly positive matrices. By continuity
it 1s true also for positive semidefinite matrices.



Entropy is maximal

Let us consider the Hilbert space of some physical system and a subspace of this
space corresponding to vectors with a given fixed energy. Let this subspace have
the dimension N. This subspace corresponds to microcanonical ensemble with the

density matrix given as
1
P=N Eﬂ [n)(n|

—Sp(pln(p)) < =Sp(pIn(p))

For arbitrary density matrix defined in the energy subspace we get (according to
the above 1nequality)

1
i?'\‘."

S"==Sp(p'In(p’)) < =Sp(p'In(p)) = =Sp(p'In(+)) =In N



Free energy is minimal

1 -
)= —exp(—FH
p=< xp(—38H)

and an arbitrary density matrix p’ (defined on the whole Hilbert space). We get the
inequality

S'==Sp(p'In(p")) < —Sp(p'in(p))
H 1
S" < =Sp(p(—=In(Z) — ?) = +1In(Z) + ?E’
E-TS < E' =TS8
F < F

F' is different from canonical, so it is non-equilibrium free energy



How to calculate a non-equilibrium free energy at a given temperature

Practically we use this variation principle in a special way. There are more then
one "canonical density matrices" in the sense that the macrostates corresponding

to them are macroscopically undistinguishable from each other. In the standard
definition of the canonical density matrix

1 -
)= —exp(—FH
p=- xp(—3H)

we assume that calculating the traces (which we do to get physical predictions) we
sum over the complete Hilbert space. However we can modity the density matrix
that we do the traces only over some subspace of the complete Hilbert space.

Formally we can write

| A oa
p = EPexp(—ﬁH)P



Formally we can write

1 - A
p = EPEK}}(—,BH)P

where P is the projection operator projecting to the subspace considered. Usually
we choose the subspace as the subspace on which all the states have specific value
A of some (macroscopically measurable) variable A. We denote the corresponding
projection operators symbolically as

P A=A

and we get
1

Za

we mean by this notation that, for example

Zy = Z exp(—LH;)

i, A=A

pA = ﬁ_&:.ﬁ exp(—,ﬁﬂ)ﬁ‘_fizﬂ

We know that for a macroscopical system all sums are saturated by the subspace
on which the value of some variable 1s equal to the macroscopical equilibrium
value of that variable. In other words p is equivalent to p 4 if A = (A) = Tr(pA).



Now we can use the value A as the variation parameter in the above described
variation principle. So among the subspaces having specific fixed value A of the
variable A we look for the subspace for which the corresponding free energy 1s
minimal. The value A,,;, for which the minimum is achieved is the equilibrium
value of the quantity A

Amin = (A) = Sp(pA)

This 1s the way how equilibrium values are often calculated in statistical physics.
We minimize the non-equilibrium free energy corresponding to a general non-
equilibrium value of the quantity of interest. The value of this quantity for which
the minimum 1s achieved i1s its equilibrium value.

So far we have considered a variation procedure based on the inequality saying
that the non-equilibrium free energy is greater then the equilibrium free energy of
the same system.



Now we formulate an alternative variation principle based on comparing two equi-
librium free energies. We start from the previous inequality but now as a trial den-
sity matrix we shall choose canonical (equilibrium) matrix corresponding, how-
ever, to different Hamiltonian H’. We keep the notation

E' = Sp(p'H)

so that £’ is the mean energy corresponding to the original Hamiltonian H in the
trial state p'. Now we introduce a new quantity

E" = Sp(¢/ i)

it 1s the mean energy corresponding to the trial Hamiltonian H' in the trial state
p'. Adding and subtracting the same term E” to the previous inequality we get

E-TS
F

E.f _ EH _I_ EH _TS!

<
E (E.f_ EH') +Fﬂ

where F” is the canonical (equilibrium) free energy of a trial system with the
Hamiltonian H’ Variation technology proceeds in a standard way. We introduce a
free parameter «v into the trial Hamiltonian A’ and we get a variable upper estimate

F < (E'(a) = E"(a)) + F'()



Classical and quantum statistics

Problem: how to define microcanonical ensemble in classical physics, which is
continuous. For continuous system we generally cannot define uniform probability,
since this notion does not survive a change of continuous variables.

Solution: only canonical transformations are allowed.

Let us have canonical coordinates p, g. We shall omit indexes everywhere, so p, g
can represent many (10%*) variables with indexes. We have Hamiltonian H (p, q)

and the equations
OH . OH

o T
We introduce new variables P, () by transformations P(p, q), Q(p, q). The new
coordinates P, () are called canonical, if

p=

OH . OH

P=——- Q=—
0@ @ dp

where

H(P,Q) = H(p(P,Q),q(P,Q))



We get from definition of /°

We should get

o) (), (3) ()
09~ \ap),\oQ), \o7),\0Q) »

Comparing the two expressions we get two conditions of canonicity

(50), =~ ().
(%), (@),

The two other conditions of canonicity can be get similarly considering Q



Now the Jacobian can be calculated by dividing the total canonical transformation
into two subsequent canonical transformations

_ 0@, P) _9(Q,P)d(g,P)
d(q.p) ~ 9(q,P) dq.p)

= (&), (&),

Substituting the second condition of canonicity we get

_(9Q) (91 _
= (@), (),

J




We shall show now that the volume of the phase space 1s also invariant with respect
to time development according to the equations of motion. So let we have 1initial

point p, ¢, and the final point p’, ¢" which is reached after an infinitesimal time
development during the time dt.

OH ’ oH
! I
=g+ ——dt p=p——-d
The Jacobian will be
/ | 2 2
dp  Jdp —aHdt 1—3Hdt
J=| 9 Op | _ 3%2 pdq
o 9 1+ _@ a dt &E—Hdt
dq Op dqdp  Op*
|J| =1+ O(dt?)
And so
dJ

Ezl}:}r|J|=1=cnn5t



Now suppose we define a probability density in the phase space, which generally
depends explicitly on time

o(t.p,q)
Since probability has to be conserved, the continuity equation should be satisfied
do 0
— -|- — + —(0q) =0
o (Qp 3q( 0q)

Substituting from the equations of motion we get

%0 _ 0 OH 0 OH
ot apaq’ " agCap

) =0

The mixed derivatives drop out and we get

%, 0, 0,
at " apt T aglT

That means that if we insert into p the solutions of the equations of motion

o(t, p(t), q(t))
we get the total time derivative is zero

d
EQ@) =0



Entropy for a classical system

If we just speak about probabilities, the choice of canonical coordinates makes
things unique. If we want to introduce entropy we arrive at a problem of choosing
the unit for the volume of the phase space. The discrete formula for the entropy

S=- Z In(p;)pi

can be generalized to the case of continuous space and probability density as

S= —/ln(p)pd@

where d® denotes the element of the phase space volume. However p is the prob-
ability density, that means probability divided by the phase space volume. So the
normalization of the probability density depends on the choice of a unit for the
phase space volume.



phase space volume. In the integrals defining probabilities we get something like

P(subset) = f pd®

subset

and the unit of the volume of the space, being in the numerator in d® and in the
denominator in p cancels. In the integral defining the entropy, the phase space vol-
ume unit is present also in p under the logarithm In(p) and does not cancel in the
integral. Moreover, the phase space volume 1s not dimensionless, in one particle
mechanics i1t has the dimension of distance {2mes momentum what in the usual
units 18 Js. The logarithm 1s, however, well defined only for dimensionless quan-
tities. So we have to express the phase space volume 1n some prescribed unit and
take for p just the numerical factor. Changing the unit of the phase space volume
does not change the values of probabilities, but it does change the value of entropy.
Since changing the volume unit renormalizes the probability density p multiplica-
tively, and p appears under logarithm, the entropy gets additively renormalized.
So classical entropy 1s well defined up to an arbitrary additive constant.

To choose the unit for the phase space volume we look for something with the
dimension Js. The obvious candidate is the Planck constant 2 = 1.055 x 10™%4Js.



In quantum statistics we have discrete space of stationary states, their number can
be counted 1n a unique way and it 1s a dimensionless quantity, so the quantum

entropy is absolutely defined, without any additive arbitrariness?.

We can ask whether we can choose the phase space volume unit in such a way
that we get for the entropy in the classical case the same number as in the classical
limit of quantum statistical physics. The answer 1s positive, the matching unit of
the phase space can be found. We demonstrate it on the example of ideal gas.

In the classical limit of the quantum statistics of the ideal gas we get for entropy
the well known Sackur-Tetrode formula

oV 3 s m 5)
Sy, = M\lnf-l-k\f ln,"aT+M\.—lnzﬂh2 —kN




In classical statistical physics we get the expression’

1 1 3., 13, i 3N/2 Pf ﬂ 3N/2 P?
S0 = _h/ N Hd rid P O exp(= 1_ o) R exp(= — 2mkT
where

C=(—0)
- 2emkT
EN kN
Se=—kNInN+EN+ENInV + & In(2rmkT) + 5 5
T V '."3 ! . ;-"3 5 « T
Se =kNIn N + kN 5 InkT + kN 5 In(27rm) + gk.f\

The classical calculation and the classical limit of the quantum calculation differ
by an additive term

S, = S, — 3kN In(27h)

T'he results will be identical if we write the integration measure as



Metropolis algorithm

A= Z Aip(i)

. 1 E;
p(i) = — eXPp (_kT>

Blind Monte Carlo

A=Y Ap(i)

i=rg()

Importance sampling needed

Nature:

A= )" A4

events



repeat|
&wia -= Generate_trial_state_near_to_the_actual_state(&cyrrent)
if (E(éﬁiﬂl) < E(‘Ecurrenl))

then G = o i

elseif (rnd() < exp(— =)= banen )

then fcurrent L= ffu—ia]

pl'iﬂt (étun’enl )
}

The Metropolis algorithm is a special case of a Markov process. This 1s a name
given to a random process where the probability distribution relevant for the n-th
step depends only on the value drawn in the (n — 1)-th step, and (generally) on the
value n. If the probability does not depend on n, we speak about a homogenous
Markov process.



The dynamics of a homogenous Markov process in discrete space is completely

given by a transfer matrix
P,

The matrix element P;; denotes' the probability that the actual state j is (in the
actual step) changes into the state ¢. It is the probability of the transition 7 — 1.

The matrix elements /°;; are non-negative and satisfy the normalization condition

-

The ensemble probability that in the n-th step the ¢ state will be generated we
denote by p,:. Then from the definition of the transfer matrix it is clear that the
following relation holds.

pn(i) = Z Fijpn-1(J)

This recurrence relation can be explicitly solved and ensemble probability after n
steps can be written in terms of the ensemble probability at the beginning?.

pali) = Y (P)ipi)



As usual 1n matrix linear algebra, investigation of the properties of the expression
is based on the technique of eigenstates and eigenvalues. We shall not do a gen-
eral analysis, we just demonstrate the procedure on the simple two-dimensional
case. So let us have two states "1 and 72" with energies F; a E5, where the no-
tation is chosen so thatf; < FE,. Then the Metropolis algorithm is given by the
probabilities

p(? — 1) = ] = Plg
p(? — 2) = 0= ng

Ey— E
p(l1—=2) = p= EXI}(—%) = I’y
p(l—=1) = 1—-p=PFP,

P

|l
o
=t
< |
=
=
S



Notice that the matrix is not symmetric, therefore the left eigenvactors are not
equal to the right eigenvectors. We clearly need the right eigenvectors, they are
easily found in this simple case. They are

1
(lj,jp) with eigenvalue 1
1+p

and
1 .
(_1) with eigenvalue — p

Notice, that the first eigenvector has positive components and we have normalized
it to the sum 1. So this vector can be interpreted as the ensemble probability vec-
tor. The second eigenvector does not have non-negative components, their sum is
equal to zero. It is a "non-physical” vector, its components cannot be interpreted
as ensemble probabilities. However, the vector 1s useful, since it 1s linearly inde-
pendent from the first one and they together form a base in the space of ensemble
probabilities. Each “physical” vector of ensemble probabilities can be written as
a linear combination of the two eigenvectors.

(hiy) =2 () += (2)



p(1) — pp(2)
1+ p

So we express the initial ensemble probability in the base of the eigenvectors and
after n steps we get

(8) -+ () oir ()

In the limit n — oo we get
\ L Ey— E
P (1) — (TP p= EXP(—#)
Poo(2) 1+p kT



Supplements to thermodynamics

Basic notions and laws of thermodynamics



First postulate: an isolated system spontaneously changes its (macro)state until
it arrives at a steady state which we call the equilibrium state. The typical time
needed to arrive to the equilibrium state 1s called the relaxation time. In equilib-
rium state all the (macroscopic)parameters of the system are constant with time.
Sometimes the equilibrium time to reach the true equilibrium state is unrealisti-

cally high, the system might for a very long time stay in a metastable state (like
glass).

We have the notion of external parameters (like volume or external magnetic

field). Intuitively these are parameters which can be externally set by the experi-
mentalist.

Going beyond the thermodynamics these are the parameters which set the en-
ergy levels of the (quantum) system. The energy of the system in the microstate

¢ depends on the value of some external parameter V' like E;(V .. ) Then the

conjugate force is
OE;

A%
and the corresponding macroscopic parameter 1is

pi =

p=(p:)



Staying at the level of phenomenological thermodynamics we have to identify
the macroscopic parameter conjugate to the external parameter V' for example by
observing it as a force to be applied to the system from outside to keep the external
parameter V' constant at the set value. Then the work done by an external agent
changing the set value of V' by dV is

0A" = —pdV
and the work done by the system upon the external agent is

SA = pdV

Now we need the notion of thermal contact. It is a way of interaction of two
systems such that non of their (individual) external parameter is changed (but

they still can exchange energy. We shall discuss energy in detail when we shall
speak on the first law of thermodynamics.

Then we need the notion of "two systems being in thermal equilibrium with each
other”. We say the two systems are in thermal equilibrium with each other when,
after bringing them to thermal contact, nothing macroscopic happens, that is the
compound system is immediately in thermal equilibrium.



Zeroth law of thermodynamics

Then there 1s the zeroth law of thermodynamics, definition of temperature. We
experimentally find and then postulate: The notion of of "being in thermal equi-
librium with each other” is transitive.

The properties of reflexivity and symmetry are automatic by definition, so the
zeroth law of thermodynamics effectively says "being in thermal equilibrium is
equivalence (in mathematical sense). So all the systems can be classified into (not-
overlapping) classes of equivalence. And the classes can be labeled. The label is
called "the temperature”. Temperature defined in this way is not unique: the only
requirement is that different classes have different labels. We, however, usually
require more, we need property of continuity in labeling the classes. We need to
find some practical (experimental method) to label the classes.

To do that we had to choose a suitable “thermoscope”. By that we mean some
system which can be find in many equivalence classes (in each class the system is,
of course, in a different (macro)state. Ideally the system should be found in states
having the same values of external parameters, differing by the value of some in-
ternal parameter (like pressure) in different equivalence classes. The system (and
its chosen parameter) can be used as thermoscope: bringing it to thermal contact

with any other system and reading the value of pressure we can recognize to which
equivalence class the "measured” system belongs.



the readings of our thermoscope to label the classes: so we use it effectively as a
thermometer. Most often we first choose some (arbitrary) calibration to define our
temperature scale. Like this: we take the thermoscope of a defined prescribed size,
put it into contact with a melt of ice and water and label the pressure reading by
zero. Then we put it to contact with boiling water and label the pressure reading
as 100. The other pressure readings are simply linearly interpolated or extrapo-
lated. The temperature defined in this way is rather arbitrary but can serve our
purposes and is “continuously defined”. Topology is introduced into the space of
equivalence classes: the two classes are considered to be close to each other if the
thermoscope readings are close to each other.



Reversible processes in gas — experimental setup

The first dwarf (piston-pusher) can set any I/
value (in the vicinity of the current value) by
moving carefully the piston by small amount.
He has to act by a proper force on the piston:
a bit higher then corresponding to the gas
pressure (if he wants to decrease V) or a bit
lower then corresponding to gas pressure (if
he wants to increase V).

The second dwarf (boiler attendant) can set

any pressure p (in the vicinity of the current
value) indirectly by increasing or decreasing
the current temperature of the gas. To control temperature in a reversible manner is a tricky
task. Here it is how it can be done. The boiler attendant control roughly the water
temperature (by manipulating the valves with hot and cold water) in an external boiler which
serves as a heat exchanger. The boiler is in thermal contact with the gas through an interface
with low coefficient of heat transfer. If the boiler water is a bit hotter then the gas, energy
slowly flows from the boiler to the gas thus increasing its temperature. If the boiler is colder
then the gas, energy slowly flows from the gas into the boiler thus decreasing slowly the gas
temperature. The energy exchange between the boiler and the gas is an irreversible process
(the boiler and the gas are not in the state of mutual equilibrium), but the gas remains in
internal equilibribrium because the energy transfer is slow.

6



Calorimetry

Quantitative experiments about heating or cooling were
Thermometer—_ done using calorimeters.

A calorimeter is a thermally isolated vessel. Inside the
vessel we bring into contact two physical objects having
initially different temperatures. Typically one object is a

Water
liquid like water, the other may be some solid body.
After some time the thermal equilibrium is established,
both object having the same temperature which we
System measure.

So the experiment looks like this

Water: mass m4, initial temperature t;. Solid body: mass m,, initial temperature t, > t;.
The final temperature is t.

Empirical facts show that there is a material constant for water ¢; and for the body ¢,, so
that a following calorimetric equation holds

miCq (t — tl) = mQCQ(tQ — t)

The material constants ¢4, ¢, are called specific heat constants.



Calorimetric equation as a conservation law

Calorimetric equation can be rewritten as: micity + maocala = macit + maocal

Inspecting that equation it looks like a conservation law. Some quantity calculated like mct is
the same at the beginning an at the end of the process. This something looks like to be hidden
inside the objects but distributed differently between the two objects during the process, the
total sum being conserved.

We certainly cannot resist the temptation to introduce a new physical quantity: the heat. The
heat is hidden inside the objects, can be transferred between the objects, the total amount of
heat is conserved. More heat inside the object means higher temperature. It lead to
terminology like heat transfer, loss of heat, “heat is transferred through conduction, flow or
radiation”. All this was found to be wrong!

The crucial point was, that the first calorimetric measurements were done using fluids or solid
bodies both having the property that they change their volumes with temperature only
slightly. The situation is dramatically different with gases.

We have seen during a qualitative discussion of an adiabatic process that we can change the
temperature of some gas just by changing its volume by the “piston pusher” who is acting
by fore on a moving piston therefore performing mechanical work.

So the lesson is simple, to change the temperature, we do not need to increase the “heat
content” of the body, we can just perform mechanical work.



Phenomenological units of heat

Historically, when people defined heat as “something that is conserved according to the
calorimetric equation

miCt (t — tl) = mQCQ(tQ — t)
it was obvious, that there is not any “natural” physical unit of heat, The content of heat in
a body defined as mct is not well defined until we define the physical unit for the heat
capacity.

It is obvious, that if we multiply the heat capacities of all materials by the same constant,
the calorimetric equation would still hold, That means the unit for heat capacity can be
arbitrary, since the heat capacity and/or heat itself is (at this level of physics knowledge)
not directly connected to any other physical quantity (with already defined physical unit).

So the unit of heat was chosen arbitrarily to be one calorie “cal” defined as the amount of
heat needed to increase the temperature of one gram of water by one degree.

Therefore the specific heat of water was defined as 1 cal/g/K. The specific heat of any
other material can then be measured by a suitable calorimetric measurement.



Mechanical equivalent of heat

Benjamin Thompson, Count Rumford, had observed the frictional heat generated by
boring cannon at the arsenal in Munich, Germany circa 1797. More prcecise
measurements were done by James Prescott Joule in the 1840s.

Joule's apparatus for measuring the mechanical

equivalent of heat in which the "work" of the falling
weight is converted into the "heat" of agitation in the

water.

Finally it was found that the same
increase of temperature of some
object as achieved by “transfer of
heat” of 1 cal can be achieved by
performing a mechanical work of
4186 J.

So it was found that the “amount od
heat” can be more naturally measured
by the units of work, Joules. In this way
a “mechanical equivalent of heat” was
found. Calories can be universally
converted to Joules by the conversion
constant 4186 J/cal.
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Work and heat for reversible processes in gas

We have found that the work performed by the “piston-pusher” during a reversible
process changing the state of gas from the state “1” to the state “2” can be calculated as

2
A:/ pdV
1

and this work depends on “the trajectory” of the process between the initial and final
states, as it is clearly seen from the figure below.

p

The obvious question is how much heat is to be provided by the boiler attendant on a
particular process (trajectory). A careful investigation of this problem has lead to precise
specification of the concept of energy formulating the law called “first law of
thermodynamics”.



First law of thermodynamics

For any process between the two states “1” and “2” we can calculate the work
performed by the piston pusher 2
A= / pdV
1

and we can measure the heat “transferred” to the gas by calorimetric consideration of
the actions performed by the boiler attendant. The following empirical law was
established.

The sum of mechanical work and heat (converted to Joules) depends only on the initial
and final states of the system and so this sum is the same for any (reversible) process
(trajectory) between those two states.

Let us stress again: the work by itself and the heat by itself depend on the specific
trajectory, their sum does not.

This means that the sum of work and heat must be calculable from the characteristics
of the initial and final states only.

This means that we can define a physical quantity of state in such a way, that the
difference of this quantity between the two states is equal to the sum of work and heat
performed during (any reversible) process between the two states. 12



First law of thermodynamics

Repeating: the first law of thermodynamics says, that there must be a physical quantity of
state such that the sum of work and heat is calculable as a difference of this quantity
between the final and initial state.

This quantity was given a name: energy. More precisely, the phenomenological
thermodynamics used the name internal energy. The reason perhaps was, that it was not
obvious that the state function “energy” as found by thermodynamical considerations has
anything common with the quantity “energy” as found in the studies of Newtonian
mechanics of particles.

Of course, there was a connection: the internal energy can be changed at the expense of
mechanical work, the same work as found in classical mechanics.

Only after molecules were discovered, it was clear that the “internal energy” is just a
“standard” mechanical energy of molecules, just macroscopically “not directly visible”.

In what follows we shall just use the terminology “energy”, without the attribute internal.



First law of thermodynamics

The obvious task for a phenomenologist is to find the formula for energy as a function of
guantities defining the macrostate.

Obviously, the first law of thermodynamics can determine only the difference of
energies of twos states, so energy in thermodynamics is defined up to an arbitrary
additive constant.

The phenomenologist has to define some arbitrary reference macrostate whose energy
is set to 0 by definition. Then he has to measure the sum of work and heat going from
the reference state to an arbitrary macrostate. Based on experimental data he has to
“guess” a formula for energy.

A theoretician, who already knows that behind the macrostate there is some microstate
of molecules can in principle calculate the (mechanical) energy of molecules in the
chosen representing microstate and, based on statistical considerations, express the
energy of the microstate through the macroscopic quantities defining the macrostate
considered.



Now we should recognize, that the macrostate (and its energy) can be changed by
external influence even if no external parameter is changed and so no macroscopic
work 1s done. We conclude some other form of work can be performed and we call
it heat. In general we get the first law of thermodynamics

5Q = dE + 5A

Going beyond the phenomenological thermodynamics the interpretation is easy,
from the notion of microstate we now what are the external parameters and the
corresponding conjugate variables and we know (from mechanics, say) what is
the energy of the microstate, and therefore we also know what is the macroscopic
energy £ being the average over microstates

E = (E;)

Staying at the level of phenomenological thermodynamics the situation is more
complicated. We can macroscopically well identify the macroscopic work, but we
do not have direct access to neither macroscopic energy nor heat. We need more
assumptions and usually we assume that we intuitively feel in which situations

5Q = 0.

The problem is that an arbitrary final state cannot be reached from the reference
state via the quasi-static adiabatic curve.



Energy conservation law holds for irreversible processes as well. So we can measure in
principle the energy of any macrostate.

We first go from the reference state by adiabatic process to the state which has the same
values of the external parameters as the desired final state, but is still a different

state differing for example by the value of the conjugated parameters (practically

it means by temperature). Now we keep the external parameters constant and perform heat
to get to the desired final state. We perform ("produce”) heat by an irreversible process
(Joule) performing mechanical work on some other (macroscopic

but very small with respect to our system of interest) auxiliary system which is in

contact with our system and exchanges heat with it, with the auxiliary system performing an
irreversible process where external work is performed upon it. The

auxiliary system is small, so even if its temperature is gradually increasing its energy increases
by negligible amount.

Historically the procedure was still different from the procedure using the Joule
irreversible (work to heat transfer) process as described above.

The notion of heat was older then the fact that it can be measured using the units
for work. The notion of heat developed in calorimetric measurements.



c1(ty — 1) = ot — 12)

Problem: heat capacity may depend on temperature, so the more realistic
calorimetric equation is

/t e ()t = ft ? ()it

Idea: parametrize heat capacity by a function with a few free parameters,
then perform a fit.

How to measure heat.
Fixed volume, no work.
Contact with hot water
until desired temperature
measure heat reached. Measure heat
exchanged by measuring
the hot water the hot
water final temperature.
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Historical problem: work and heat measured by different units.

First law of thermodynamics:

there exists a universal unit converting constants that the sum lof work and
converted calories to get from an initial state to a final state does not depend
on trajectory

Therefore there exists a state function E, which can be determined as

AE =W +cxQ

thus the energy conservation law was discovered: any energy change is
balanced by the work (mechanical work + heat). To perform work there must
be an agent. The work performed by an agent on the system is the same but
with an opposite sign as the work performed by the system on the agent.
Therefore the energy change of the agent is just opposite to the energy
change of the system and the overall energy of system + agent is
conserved.



Second law of thermodynamics:

as = [

does not depend on the trajectory. So entropy is a state function.

Cyclic reversible engine:

1y — T
AS:0:>Q1/T1+Q2/T2:0:>77:Q1+Q2: —

Q1 17



Properties of thermodynamic potentials

We now investigate the situation when all the parameters are extensive quantities,
we shall generically call them £ and V. We are going to prove that the entropy

S(E,V)

is a concave function of its parameters.

E E

S(E — AE) + S(E + AE) < 25(E)

this 1s just the definition of the concave function of one variable.



E.V E.V
AE, AV

S(E—=AE,V —=AV)+ S(E+AE,V + AV) <2S(E,V)

Expanding into Taylor serie we get

2 2 2
%(QE)E + gtfg(mf)? + QaaEgVaEmf <0
0*S oA
0E? OEQJV
T
OEOV — 0V?2

must be negative definite, so we get the conditions for the concavity

~oEov: =

2 2 2 2 2 2
0°S 65‘{01 (88) 0°S oS

oz =" gz = GEQV

These conditions are also called conditions of stability.



What was essential to derive the concavity property was that the
parameters were extensive.

Other thermodynamic potentials do not have extensive natural
parameters. However, they are derived by Legendre transformation. And
the Legendre transformation preserves (or changes the sighn) of

concavity. So we get concavity property for other thermodynamic
potentials as well.

The Gibbs potential is defined by the Legendre transformation
G=FE-TS+pV

and since the Legendre transformation written in this order changes convexity

to concavity, we have the statement: Gibbs potential is a concave function of its
variables p and 7'.



2

We remind the “statistical thermodynamics definitions’

- (3z)
- aE V.N
p_ (95
T~ NIV —
k__ (95
2 N i

differentiating the first equation by E we get

L o 0*S
—_ = | — <
TQ (6E> V,.N <8E2) V.N - ?

where we used the condition of concavity so we get
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Let us consider two systems (S;, £y, 77) and (Ss, E5, T5). Let put them into ther-
mal contact, however with the wall between them that 1s only slightly diathermic,
so the energy flow between the two system is small. Then, even the global process
is irreversible, both subsystems individually are in equilibrium state. So the total
entropy can be calculated as the sum of two equilibrium entropies. The system
as a whole is isolated so the total energy is conserved. Therefore for the energy
changes of the subsystems we get

dE, = —dE>

The change of the total entropy will be

05 052 (95 05 (1 1
dS = a—aijl + a_E‘ZdEE = (6E1 (‘?Eg) dE] = (Tl TZ) dEl > ()

If 75 > 717 then dE; > 0 so the energy flows from the hotter subsystem to the
colder one.



Now about the derivation of the equation of state.

L (@)
T \OE),x

The condition of convexity gives

(5’2_5) <0
OE? ) vy

so the first equation can be inverted and the energy can be expressed in terms of
temperature and volume. This expression then can be inserted into the equation

P _ (E)
T \aV BN

Energy 1s eliminated and we get p in terms of V, ', that 1s the equation of state.

We start with the equation



We remind here the definition of thermodynamic potentials
F=FE-TS
G=E-TS+pV
Q=FE—-TS — uN

In the last equation we have introduced so called grand potential, which is relevant
for the grand-canonical distribution: the grand statistical sum can be expressed in
terms of the grand potential

The first and second law of thermodynamics give (for general, even irreversible)processes
TdS > dE + pdV — pdN
dE <TdS — pdV + pdN
dF < —SdT — pdV + pudN

dG < —=S5dT + Vdp + pdN
dQ) < —SdT — pdV — Ndu



The Gibbs potential is a function of intensive variables p, 7" and one extensive
variable V. So scaling the system by A we get

AG(p,T,N)=G(p,T,\N)
Differentiating by A and putting A = 1 we get (for equilibrium potential)

oG

and
dG =dNpu+ Ndp = —SdT + Vdp + ndN

and we get finally the Gibbs Duham relation

Ndp + SdT — Vdp =10



dG < —SdT + Vdp + pdN

PG G
opdT  OTOp

(%)
T ), N

-

D JrN

()., = (or)
Jp TN T DN

This relation 1s called the Maxwell relation and similar Maxwell relations can be
obtained doing the second derivatives of other potential.

Since



The second derivatives of the thermodynamic potentials are often easily measur-
able physical quantities, so they often get a special name.

PF\ . (9S\ _ [8Q\ _
(58),77 (), (),

So we get for the specific heat at constant volume

O°F
=1 (57:)
a1z ) |,

For example



Expansion coefficient
oo L (a_V)
V\aT/,
Coefficient of 1sothermal compressibility

T v i\op -

Coefficient of adiabatic compressibility (for constant entropy)

1 [OV
ko — —— _
T vdp /s



In addition to Maxwell relations we also often use the following properties of

partial derivatives
o\ () _,
dy)_ \ox ).

which is simply the theorem about the derivative of inverse function.

or\ (v (0:) __,
dy). \oz) \ox),6
This property can be easily derived considering
([ 0y dy
= (5:) 2+ (50), %
Now we put dy = 0 and we get
([ 0Oy dy 0z
- (52).+ (52). (50),

which is just the required relation if we invert the partial derivative (52) .



We start with the entropy expressed as a function of (non/natural) variables p, T'.

aS oS
5= (39,1 () 5

TdS = Cpdl'+T (@) dp
op ),

Now we use the Maxwell relation
95\ _ _(9V
o), ar ),

)%
TdS = CpdT — T (a_T)p dp

and we get



oV
TdS = CodT — T (8T)p dp

Now we use the above general equation for a isochoric process at constant 1. We

get
0S oV Ip
or), ° or ), \oT ),

oV dp
Gp=Cvtl (acr)p (aT)V

Now we substitute from the general relation

(2) +(%) (&), -0

and using the definition od expansion coefficients we get the final formula

So we get

TV o?
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We shall now investigate the consequences of the concavity of G, we get so called
stability conditions. The concavity conditions are

2 2 )2 2 12 2
0°G 8G<O, (00) 0°G 0°G

= <0, =< RS f A
arz — Op? OpdT oT? Op?

From the first equation we get
0 (0G 0S 1
oT <8T>p <8T>p TCP_O

and so we get the stability condition



From the second concavity condition we get

o [0G 1 /oV
N — V| = — <
ap(ap)T VV(SP)T Ve =0

And we get another stability condition

H-T::’O

what means that increasing pressure must decrease the volume.



From the third concavity condition we get

G\ PCIC |
opdT o172 op? —
9°G \° C
(3p07) —CPN-Vrr) <0
2
GVer ((3_‘/) ) > 0
T oT
P
2y
c, - a“V >0
KT

So we get another stability condition

Cyv >0



Free expansion

We consider isoleted system of a gas performing free expansion into vacuum. It
is an irreversible process during which the volume is increased V' +— (V + dV)).
Since the system is isolated, its energy remains constant dU = (). Both the initial
and the final state are equilibrium states, for which we can write

oU oU
dlU = | — dT — d
v (aT)V +(av)T v

we put dU = 0 and get
oUu
aT (av)T
(G_V)U NCAY
(o7),

The Lh.s. is called the Joule coefficient and describes how much the temperature
is changed during free expansion.

From molecular consideration it is clear, that for ideal gas

oU
(av);“



TdS = dU + pdV

95 _1(oUN _p
ov ), T\ov), T

Now we use the Maxwell relation (derived from the F potential)
95\ _ (o
ov), \oT),
O\ _1(OUN _p
or ), - T \ov r T

UN _ (o) _
ov ), “\or), ¥

and get



OUN _p(or) _
ov), “\ar), "

The trick was that using the Maxwell relation we got rid of the calorical variables
and everything on the r.h.s. can be evaluated just from the equation of state. If we
use the equation of state for the ideal gas

pV = RT

oU
(a—v)ﬂ

we finally get



IF we consider the Van der Waals gas

(p+15) (V=) =RT

oy _ R
or), V-—b

(aU) o TR a RT _ a
T

- — 0
ov

Vs v vy v

to evaluate the Joule coefficient for the Van der Waals gas we still need

oU
or },,
what 1s the specific heat at constant volume. To get it we first prove, that the

specific heat for the Van der Waals gas does not depend on volume at fixed tem-
perature.



We start with the Maxwell relation

(@)= ),

Differentiating by T’

_a N RT
Pmrvi vy
we get
82
(o72), =
oT .
and



oCy,
(57),

So the specific heat at constant temperature does not depend on volume, it can be
evaluated for large volume where the gas is sufficiently dilute and behaves like
ideal gas, so we get

oU 3
o= (o), ~3%

For the Joule constant we finally get

B 2a
3RV?

oU
or\ (W) _
(W) AN
(7).
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Throttling

Suppose that initially we have a volume V1 of gas in the left compartment at pres-
sure p; and no gas in the right compartment. At the end we shall have the volume
V5 in the right compartment at pressure p, and no gas in the left compartment. The
total work performed by the gas during the process will be

A =p2VQ —plvl

Since heat is zero the following energy conservation law must hold

and we get
Ei +piVi = Es + paVs

So the process is isenthalpic. For infinitesimal process we get
dH =TdS + Vdp

Now let us consider entropy being a function of 7', p, so that

oS aS
dS = — | dT — | d

dH =T o5 dT + V+T(§ dp
arj, dp ) 1



i =1 (50) ar+ (v () )i
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from the Maxwell relation (for G)

05\ __(9V
op)p ar ),
oS aV
di =T (22 ar _r (2 )4
(ST)p +(V (GT)p) P

oV
dH = C,dT + (V -T (O_T)p) dp

putting dH = 0 we get for the Joule Kelvin coefficient

(5), =6 (),



Maxwell construction

(P+§,)(v—b)=RT




dG = —SdT + Vdp
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Fig. 1. Cyclic isothermal compression and expansion of particles within a
fluid. The fluid is free to cross the semi-permeable membrane. Step 1: Com-
pression of the particles within the liquid (dark gray). The fluid volume is
constant. Step 2: Expansion of the fluid to evaporate all the liquid. Step 3:
Expansion of the confined particles within a gas (light gray). The fluid
volume is constant. Step 4: Compression of the gas to partially condense it
into a liquid. The work of fluid expansion (step 2) is equal to the work of
fluid compression (step 4). Therefore, by the second law of thermodynam-
ics, the work of particle compression within the liquid must be equal to the

work of particle expansion within the gas.
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(1) The confined particles in the lower volume are dissolved
in the liquid. The two pistons move up together without
changing the fluid volume, and therefore there is no
work done on it. The lower piston compresses the dis-
solved particles between it and the membrane, and does
an amount of work wAV, where 7 is the osmotic pres-
sure, V is the volume of the dissolved particles, and AV
is a small volume change.
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(2) The upper piston moves up and induces evaporation of

(3)

(4)

the liquid until it is transformed into a gas. It is assumed
that the dissolved particles are now also in a gas phase.
The two pistons move down together, again without
changing the fluid volume. The confined particles push
the lower piston, expand, and do a work pAV where p is
the gas pressure and AV is the same volume change as in
step 1.

The upper piston moves down, compresses the fluid, and
induces condensation of the gas into a liquid until it
reaches the initial state of the completed cycle.

Because the process is reversible and isothermal, the net
work done during the closed cycle must be zero. Otherwise it
would violate the second law of thermodynamics as postu-
lated by Kelvin.’
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Density of states

We started with one-particle states in a box, which are sinus waves with zeros
at the box boundaries. The states are labeled by three positive integer numbers
ni, ne, n3 and their energy is

2h?
2mL?

£ = (n? + n3 +n3)

States correspond to points with integer-valued coordinates in positive octant of
the n-space, so the total number of one-particle states with energy less then ¢ 1s

= 14 omL? \*
PR3\

And the density of states in the s-space 1s

E
©'(e) = (ZWL (2m)3/2e1/2

2mh)3



So the density of states in the k-space is

Vv
(2m)?

and in p-space
V

(27h)3

To switch to the -space one needs the dispersion relation, which for free particles
reads

p*z B h_::zkz
o2m  2m

£

and the substitution in the integrals reads

Vot YV edah = Y g E
(2m)3 (2m)3 (2m)3 de
dk

Substituting from the dispersion relation we get the same density of states in the
c-space as before.



Vo o=V 1% de
Br = Ark? dk = k2 o

_. Ark?
(27)3 (27)? 2n)3

grupova rychlost

Ak ratam balisticky prud v nanofyzike, hustotu stavov treba vynasobit’
grupovou rychlostou a ostane univerzalny vzorec nezavisly na tom, o aku
tuhu latku ide.



Ideal Bose gas

We calculate grandcanonical distribution for one one-particle state. The “state of
the state j” is given by the occupation number n; and the relevant grandcanonical

sum 1is |
_ L S
2= ;EXI}(R‘Tnj E”J) = . (;1. — gj)
J PY%T
We introduce fugacity z by
_ e

z = exp( T

So we get
1

Z =

J

1 — zexp(—fe;)

The one-particle states are independent, so the total grandcanonical sum is given

by the product
z=1]2
J

InZ =— Z In(1 — zexp(—p¢;))
J



nZ=— Z In(1 — z exp(—p¢;))
J

We remind that VvV
p
Z) = T
(2) = exp(77)
and so v
p ;
= Zln(l — zexp(—fk¢;))
J

We pretend to know the value of y, but experimentally we rather know the number
of particles

T N. = 1 = :
N = ; N;= Z Ej— M B Z z~lexp(fe;) — 1

i exp(= )—1

This equation should be inverted: one should calculate ;¢ in terms of N and 7,
substitute it to the previous equation and get the equation of state.



To perform this program, we need to replace the summations by integration in the
energy space, using the known expression of the density of states in the -space.

We get 9 . o
p —_— T . 3,;2 lfﬂ _ A
LT (Q?rh)ﬁ(zm) /ﬂ € 111(1 zexp( ﬁ:‘_,))dg
N _ 2rm 3/2 /DC gl/?
Vo (Qﬂﬁ):a(gm) o 2 texp(Be) — ldg

We switch to dimensionless integration variable

p 2 (2rmkT)*/? /m 1/2
. J= (2rh)’ n - In( zexp(—x))dx

N 2 (2amkT)3/? /.x zl/?
VT (2mh)3

dx

z=lexp(z) —1

We introduce the notation (de’Broglie thermal length)

)\ — 2mh
~ (2nmkT)1/?

and using the relation

r(d)= YT



p 2 (2rmkT)*?* [ /2
kKT /m  (27h)3 /D 2" In(1 — zexp(—x))dx

N 2 (2emkT)3/% [ 21/2
Vo VT @rh)3 ),

dx

z=lexp(xz) —1

p 1 1

—_— —— o _.1‘#‘2] ]_— _ d
kT )\3 F(3/2)/n /" In(1 — zexp(—z))dz

N 1 1 /OC 1/2 .
Vo OMD(3/2) ), zlexp(z)—1

Since similar integrals are often met in statistical physics, new special functions
are introduced (called Einstein functions) as

(2) = — /m LN
TN e



(2) = 1 /m L dx
g2 = L(v) J, zlexp(z)—1 "

which can be expanded into Taylor series:

1 z [ v
0 = . d
9.(2) ['(v) FI/D 1 — zexp(—2z) !

1 2 /DO -1 = —_\ ke
— x” (ze™")"dx
L(v)er Jo ;

o0 oo
]‘ =1

(ze_I)kdm

= RIS 1
ZF(ykZ/ e k_F(u;k_k

T %



N 1 1 /@C s
Vo OXT(3/2) Jy z7lexp(w)—1

p 11 /m 1/2
T NTG/2) . /% In(1 — zexp(—x))dx

: / 22 In(1 — zexp(—z))dz = : / 23_4_3;2 —zexp(=2) dr =
0 I'3/2) Jo 3 1= zexp(—x)

I'(3/2)
32

2 1 > r3/2 1 e T
BE I'(3/2) fﬂ z=lexp(x) — 1 - _F(5/2) /n z=lexp(r) — 1 = ~952(2)

So we get
P 1
R = o)
N 1
v = ﬁga,ﬁz(z)

Now the idea is we should calculate z from the second equation and substitute it
to the first one to get the equation of state, formally
pV V1 s N

_ -1 :




method of “series reversion”

2 3
Yy =a1T+ a2x" + azxr” + ...

we can look for it inverse in the form
r=Ajy+ Ay’ + A3y’ + . ..

Plugging the second equation into the first one one gets

y=a1Ad1y+ (a2 A +a1A2)y” + ...

Comparing coefficients on both sides one gets

—1 —3
;’-11 = a; , Ag = —a,; d2,



N 1

v = ﬁgaﬁ(z)

In the classical limit we have z < 1, so to get the first correction we expand to
the second order in z

N 22
3_ — -
A V =z+ 23{2
We look for z in the form
N N\?
=N Fe( N2
v +e(%)
We find 1
Cc= m

NET Eﬁﬂﬁjz(é’g;g(}* F))

pV_VIN( 1L\ _VIN [N 1 [ N 2+ 1/ A3 ?
NkT — x "7 )T \v/N T 22\ \V/N) T 22 \V/N

pvo_,_ 1N
NkKT 4/2V/N




Van der Waals gas

we consider gas of molecules which interact via pairwise interaction:

pPairs
p?:
= d°T; exp
N1 | (@anypy LLEPETe KT
1 1 o 3N/2
4 = N (Q?Tﬁ):?"w (Q?T?’TI-RT) Z{;
where

—-U
ZU = /]:[dg?'t' exp (E)



—-U
ZU = /Hdg'rt- exp (ﬁ)

We calculate Z;; using the following trick with the mean potential energy

- d
U= —ﬁan{ (5)

and since Z;;(0)

|
<
=
<
@]
09
o
—

B
InZy(f) =NV — / U(g')ds'
0

Now we assume that we can neglect correlations between pairs of particles and
we get

U = %N(N ~1)a

/dngdHT‘g’u(Tl,T‘g) exp( 1‘1,1"; )
fd:3r143r2 e:{p( (1"1,?“2 )

where

il =



where

u(ry, r
/dledHTg'u(Tl,?‘gj exp (— Y le 2))

: u(ry, r
/d‘arld‘r‘rg exp (— i k?T 2))

1+ T2
9

/ &R / &Pr u(r) exp (—“;_;))
[ [ fren(~10)

u= —% ln/exp(—,ﬁu)dgr

il =

Using substitution

.72 R = .. =17 —T92

we get

il =

/exp(—ﬁu)dgr = /[1 + (exp(=Bu) = 1)]|dr =V +I=V(1 + é)

(s u]

I(B) = /(exp(—ﬁu} — Dd’r = /ﬂ (exp(—pBu) — 1) 47r? dr



g 1(8) i 13 1dI(B)
eV a1 4 2By 4 1) 1 al(p)
i=—gpnV4in(l+ =)~ —op— V 4B

B
InZy(B) =NV — / U(B")dp
0

T IN2 [ dI(B) 1 N?
IIIZU([?)—J_;\'IIIV-FEV / T —f\'rlIlVﬁ-E?I(ﬁ)

P _ Oln ZU N 1?\'&

kT oV Vooo2V2

I(B)



I(B) = /(exp(—ﬁu} — 1)d*r = /ﬂm(exp(—ﬁu) — 1) 47r? dr

u(r) =00 for r <ry

u(r) = f(r) for r>rg

I(S):—r—il?r/ ?*Edr+4?r/ (exp(=ABf)—=1)r’dr = ——'mn / f(r)yridr
0 T

2a
1(8) = =2b+ =

where we have denoted

p _3IHZ{1_4M 1 N2 _=__|_i_2,5__)
KT oV vV 2V2 ) KT VoV kT




p
I A {
v v T
N
N* N NPT
Vv
4'2
(p+a75)(V = bN) = NkT

what 1s Van der Waals equation.



Critical phenomena



Spin-spin interaction

Classically the magnetic moment of a current loop is given as m = .S (where [/
is the current, and S the surface of the loop). One can generalize this to a classical
case of a point particle with charge ¢ moving with a velocity v. We get m =
(q/2m)L, where L is the particle (orbital) angular momentum L = mrv. If we
expect that a similar relation holds for the internal angular momentum, spin, we
get for the electron (having spin //2 the magnetic moment efi/4m. Experiment
(Einstein, de Haas) however shows that the electron (internal) magnetic moment
is up = eh/2m (this value is called Bohr magneton). This value of the electron
magnetic moment (the "mysterious factor 27) is explained by the Dirac equation.

Now back to the question of magnetic moment alignment in a ferromagnet. The
first guess might be, that it is the interaction of magnetic moment with each
other, which is responsible for the alignment. A quick order-of-magnitude esti-

mate shows, that it is most probably not so.



g Mo (3?‘(‘”1-?") B m)
47 o r3

So B ~ pgm/4mr3, therefore the interaction energy of a magnetic moment with
its neighbours in a lattice is W ~ zpgm? /47r? (2 is the number of nearest neigh-
bours (In a cubic lattice z = 6). Numerically g = 9,27 - 102 Am?. So the in-
teraction energy for 7 = 2 - 107! m is roughly 10~* eV, what in temperature units
means roughly 1 K. So we expect that at temperatures above 1 K the spin orienta-
tions would be randomized by thermal fluctuations and the ferromagnetism could
not be observed at room temperatures. The solution of the puzzle is the effect of
an electrostatic interaction combined with the Pauli exclusion principle.



Let us consider two non-interacting electrons in states with quantum numbers a
and b, The state ¥, has energy E,, the state ¥V, energy E;. The electron coordi-
nates are denoted as @ a x», spins S; a S,. If we consider two particle states, let
us first forget about the fact that the two electrons are identical (indistinguishable).
We can construct two states, the first will be W5 (21, 2) = U, (1) Vp(22) = Uy
and the second one will be Wy,(x1,x2) = Wy(x1)Vu(x2) = Uhe The ener-
gies of these two states (as of any of their linear combinations) are the same
E(Vy) = E(Vy) = E, + E) For interacting electrons changes the situation
considerably The interaction potential between two electrons must be symmetric
V(x,,xy) = V (@, x,) # 0, the Hamiltonian of the system is H; + Hy + V. We
can construct two different two-particle states, a symmetric and an antisymmetric

one
1 1

Vg = — (U + V). Vu=—(Vy — V).

S \/5( b+ ba) A ﬁ( b ba)

Their mean energies we calculate as(¥|H; + Hy + V|U). As a result we get two
different energies

Es=E,+Ey+1—-J Es=E,+Ey,+1+J

where / and .J denote the integrals (J 1s called the exchange integral)

I = f@;bvwab: f@;ﬂvwm, J= —fw;bvwbﬂ = —/@;ﬂvwab.



The total antisymmetry of the state requires that we combine the symmetrical
spin function with the antisymmetrical spatial function and the antisymmetrical
spin function with the symmetrical space function. So legal two-particle states are

Uoy'? and ¥ 4yY. When we denote the total spin as s we get for the correspond-
ing mean energy values

Eso = Eg
Es—1 = FEg

We can combine these two expression formally into one

s(s+1) S-S

E =FEs+ (Ex— Es) = H=FEs+ (Fa— ES)T

2
3
S-S=(S1+52) (S1+52) =815, +853+25: - Sy =5 +25: - S,
3G+) 3G+
3 J
H=Es+(Ea—Es)(7+51-S2) = Ea+ By + 1+ 5 + (Ea = Es)S1-Ss.

T

2J



Ising model

A simple model with interaction between (classical) spins is the Ising model,
where the interaction is limited to nearest neighbours. As already said the model
is classical, what means, that in the hamiltonian there are no operators, just vari-
ables, which, however, can have only discrete values —1, 1. Energy of the system
is given by the following formula

E({s}) = —JZsisj — pupB Z Si,

invj

where ¢ ~ j means summation over the different pairs of neighbouring spins. The
first author who formulated the model was Wilhelm Lenz (1920). Ernest Ising
was his student who in his thesis described the first exact solution in the one-
dimensional case (1924). The two-dimensional model (for zero external field) was
solved by Lars Onsager (1944). For higher dimensions we do not know (up to
now) an exact solution, we have just numerical simulations.



A A A A A A A A 2 A A2

V'V VvV vV ¥y YY v vy VY Y

There is no phase transition in the one-dimensional Ising model. The lowest en-
ergy state 1is the state with no excited links. By excited links we mean here a link
for which the spins on its two sites are oppositely oriented. In one-dimensional
model the state closest to the lowest energy state is a state with exactly one link
excited, the energy difference being 2.J. For such a state roughly one half of the
spin 1s oriented "up” and the other half is oriented "down”. The magnetization for
most of such states is equal to zero. A finite lattice with [V sites has (roughly, for
large V) N links. One excited link can be therefore chosen in NV ways, so there
are N states with energy larger from the lowest energy by 2.J. The entropy of the
“macrostate” with the energy F\, + 2.J is therefore proportional to In(/N), so the
free energy of such a state is

F = Ey+2J — Tln(N)

For a non-zero temperature the state with higher energy has lower free energy and
so for a non-zero temperature the mean magnetization is zero.



N2 spins
Domain boundary is like a
random walk from top to
bottom.
At each step 3 possibilities
Each line typically N? steps
3V* dividing lines
Energy difference

2JN?
Entropy
NZ2In3
AF =~ 2JN? — TN”2In3
Neither energy nor entropy
IS a clear winner
Phase transition possible



The Ising model in one dimension is explicitly calculable. Let us fix the boundary
conditions so that the first spin from left has value s; = 1. Then the state of every
other spin is given if we know about everv link whether it is excited or not.

Let us introduce a dual lattice which correspond to the original lattice in such a
way that to every link of the original lattice there corresponds a site of the new
lattice with a spin having value ¢ with value ¢ = 1 if that link is not excited and
g = —1 if that link 1s excited. The states of the dual lattices exactly correspond
to each other If we require, that the energies of the corresponding states are equal
then the energy of the new lattice should be given as

This, however, describes the model of independent spins, the statistical sum 1is
easily calculated as

7 = (exp(J/kT) + exp(—J/kT))N~!

and we see there is no singularity in the thermodynamic limit and so there is no
phase transition.



Mean field theory

H'\(s)= Y —Js(s)=—Jn(s)s

neighbour

where n si the number of nearest neighbours. Because of the symmetry reasons,
the mean values for all the spins are equal. We have got the Hamiltonian of one
spin in an external field B = Jn(s). This problem is easily solvable, and for the
mean spin value we get a self-consistent equation’

(s) = tanh(B/kT) = tanh(Jn(s)/kT)



(s) = tanh(B/kT) = tanh(Jn(s)/kT)

The solution of this selfconsistent equation can be looked for graphically It is

clear that for
Jn <1
kT

there exists just one solution (s) = 0, while for
Jn
— >1
kT
there exist three solutions. The change happens in the critical point

Jn
kT.




'Let us discuss now an alternative argumentation, which, however, is wrong and leads to wrong
answer. Let us try to solve the Ising model approximately, so that the real Hamiltonian is replaced
by new (approximate) Hamiltonian

= Z —JSE'{Sj}
link

so one of the spins on the considered link is replaced by its mean value. Because of the symmetry
reasons all the spins have the same mean value and we get

= Z—J.@i{s}

The sum over the links can be replaced by the sum over the spins if we realize that each link has
two spins on its ends and so each link can be assigned to one of its spins as “being owned™ by that
spin. The lattice determines the number of nearest neighbours n. Each spin therefore "owns™ n /2

links. We get
H' = Z —J%Si{.'i) = Z —Bs;

where B = Jn(s)/2 is the effective mean field felt by each spin. This is an easy problem of
independent spins, with the (selfconsistent) solution

(s) = tanh(B/kT) = tanh(Jn(s)/(2kT))

So we again got a selfconsistent solution, however, different from the correct one, with twice
smaller the selfconsistent field.



We begin by constructing a trial Hamiltonian
H' =) —Bs,

where B is so far unknown parameter. The free energy for the model with the
Hamiltonian H' is

F'= —kTInZ = —kT In((2cosh(B/kT))N) = —=NkT In(2 cosh(B/kT))

The variation method still needs the mean value of the true Hamiltonian averaged
over the canonical ensemble generated my the trial Hamiltonian (we denote this
as (H)"), and we also need the mean value of the trial Hamiltonian averaged over

the same canonical ensemble generated by the same trial hamiltonian (we denote
this as (H’)". We get

HY = (3 —Jsis;) =Y —J(sis;) = —gJN(sYQ

link link

because the spins are independent in the trial ensemble and the lattice with NV
spins has n/N/2 links.

(H'Y = (Z —Bs;) = —BN(s)



Variation function is
(HY —(H'Y + F' = —gJN(S)'Q + BN (s)' — NkT In(2 cosh(B/kT))

The value of the variation parameter B is found by the minimization of the varia-

tion function. Differentiating with respect to B we get

d(s)’ d(s)’
dB dB

—nJN(s) + N(s) + BN — Ntanh(B/kT) =0

On the other hand the following relation holds
(s) = tanh(B/kT)

and so we get

d(s)’ d(s)
—nJN(s)' 052 + BN (;2 =0
B =nJ(s)

We got the same expression es in the intuitive Boltzmann-like approach?.



Landau theory of the phase transitions of the
second kind

The essence of the Landau phenomenological approach is the idea where the non-
analytic behaviour of the thermodynamic potentia can come from. Let us assume
that we have an order parameter )M like magnetization. In the equilibrium state
this order parameter assumes some equilibrium value. One can calculate this value
when one first deals with the non-equilibrium thermodynamic potential, which, in
addition to its standard variables (p and T for the Gibbs potential) depends also on
the (non-equilibrium) value of the order parameter A/. Now we look for the mini-
mum of the thermodynamic potential. The value of M for which the minimum is
reached is just the equilibrium value of the order parameter.

Gneq (pa Ta M)
M., = argmin Geq(p, T, M)

Geq — Gneq (pa Ta Mneq)



Let us consider a case where the system is symmetric with respect to the change
of sign of the order parameter

M— —M

The pramater is chosen so that it assumes the value zero at the critical point.
According to the assumption of analyticity we can expand the non-equilibrium
potential (per one molecule) into the Taylor series in M in the form

G(p, T, M) = Go(p,T) + Ga2(p, T)M* + G4(p, T)M*

Gy >0 a(p)
G Gy <0 Gﬂ(p T) = ( (T - Tc)

<
IS



Critical exponent

Phase transitions occur at a certain temperature, called the critical temperature T. We want to describe
the behaviour of a physical quantity f in terms of a power law around the critical temperature. So we
introduce the reduced temperature 7 1= [T — ﬂ)f:ﬂ: which is zero at the phase transition, and define

the critical exponent k-

kd:Ef lim log |f[T)|
r—0 log ||

This results in the power law we were looking for.
flr) o7, 7=0.

It is important to remember that this represents the asymptotic behavior of the function f (T) as 7+ — ().

Critical exponents for 7 > 0 (disordered phase) Critical exponents for 7 < 0 (ordered phase)
Greek letter relation Greek lefter relation
e
o Coxct o Co (=7)"
! xoer 8 ¥ o (—7)°
_!“I' —
v focr o4 x o< (—=7)77
—
v § oc (—7)
1
W order parameter X the susceptibility/compressibility/etc 3_
9*f
C' specific heat, _ T —__ .
’ correlation length
aT? § g




In the presence of an external (magnetic) field the (non-equilibrium) thermody-
namic potential will be

G(p, T,M) = Go(p,T) — HM + Go(p, T)M? + G4(p, T)M*

The critical isotherm (a graph showing dependence of M on H for constant 7" =
1.) will be

M ~ H'Y?

w ~ 23
OH ] _p.

The magnetic susceptibility

diverges at the critical point.

Fazovy prechod druhého druhu: nespojité (divergujuce)druhe
derivacie termodynamického potencialu



Transfer matrix

So let us investigate the one-dimensional Ising model with /N spins 1n external
magnetic field. The energy of the system 1s given as

N-=1 N-=1
E_.ﬁ.,.' = —./ E S5iSi+1 — JLE-BB E Si,

with s; = 41. Let us assume periodic boundary conditions sy = sg (topologically
the spins are distributed along a circle) We expect that in the thermodynamic limit
N — oo this choice will not influence the result.



The trick consists in suitable rewriting of the statistical sum

Ly = Z exp I;BJ(S[]S] + ...+ S_.f\,r_lé-_?f-.,r) + ISJUBB(S(] +s51+...4+ t‘:‘;ﬁ.,r_l)] =
{s}
= ZEX]_‘} 3]‘:1(]‘31 + GJJUBB
{s}
- exp [5}5 N=150 + 3}135(9;\._1 + 8 /2 Z TD 1T1 2 - TN—l,ﬂ
{s}

Sp + S1

51+ 52} _

} exp[&’Jalsg-l-H,uEB 5

where summing over {s} is meant as summing over all possible spin configura-
tions what means a multidimensional sum over sg, $1....,Sy-1. We have intro-
duced a matrix T, with matrix elements T, .. ., = T, (so the matrix rows are

numbered by the values of the spin s;, the columns are numbered by values of the
spin s; 1 In our specific case the matrix is

T oB(J+psB) o—BJ
= o—BJ eB(J=uBB) | -

The expression for Z, can be simplified when we notice that summing over the
spins effectively means matrix multiplication. What is left is only summation over

4N = Z (TN)D,D = Sp(T") = Z A
i=1

sp==x1

15'[]:



Zn = Z (TN)D’D = Sp(TY) = Z AN

sp==x1 i=1

N-1
f= _ka\ah—I}I::'l:o ﬁi InZy = _kT'hlri_I},},U % In |\ (1 s Z(/\i/)\n)hr) = —kT In )\,
i=1



Ising model on a square lattice

7 = Z H exp(Js;s;)

states links
exp(J), exp(—J)

and these two values can be expressed using a suitable small variable, using the
identity

exp(J) + exp(—J) L exp(J) —exp(—J)

exp(Js;s;) = 5 $iS; 5
which holds for
s;s; € {1, —1}
We have
exp(Js;s;) = cosh(J)(1 + s;s;t)
where

t = tanh(.J)

Small t means large T. High temperature expansion.



Z = cosh*"(J) Z H (1 + s;i85t) = 2V Z' cosh?™ (J)

states links

= hZHI—i—qst

states links

where

Expanding the product we get

:% Z Z Z {1+fZSi5j+t2 Z (SiSj)(SmSn)+"‘}

s1==1 so==x1 sy==x1 links link pairs

Now one has to realize that after summing over the spin states all the products
where at least one spin 1s presented odd number of times (as a factor) give zero. If

the spin appears in the product even number of times the product is equal to one
and the sum over all the spin states gives 2°.

So we get
=Y g(L)t*
L

where
g(L)



pclfasn
Z.'_I—Jim

So we get

where

denotes the number of possibilities how L links can be highlighted on a square
lattice 1n such a way that every site 1s highlighted even number of times (zero
count as even number here). Expressed differently, g(L) is the number of graphs
which can be drawn on a square lattice in such a way that each site on the graph
is connected with the remaining sites by even number of edges.



Low temperature expansion

7 Z H exp(7sis;)

states links

At low temperatures the spins prefer to be oriented in parallel if they sit on the
same link. So we expect that at low temperatures those links contribute which
have "their spins” oriented in parallel (both having value +1 or —1).

For a given spin state each link with parallelly oriented spins contributes to the
statistical sum by the factor

exp(;)
On the other hand each link with antiparallel spins contributes by the factor

exp(—j)

Z =) exp((2N — L)j) exp(—Lj)

states

Z="Y" exp(2Nj)(exp(~2j))*

states
where 2V 1s the total number of links (for N sites) and the number L depends on
the particular spin states and gives the number of links with antiparallel spins on
their sites.



Dual latices

The statistical sum can be then rewritten as

Z = exp(2Nj) Z m(L)(exp(—=25))"
L

where m(L) is the number of states to which (after highlighting) correspond a
graph with exactly L links highlighted. Rephrased differently m(L) je is the num-
ber of possibilities how a graph with L edges can be drawn on a lattice in such a

m(L) = g(L)




So we have got the high-temperature expansion

Z(J) = 2" cosh®™(J) Z g(L)t"
L

where

t = tanh(J)

and the low-temperature expansion

Z(j) = exp(2Nj) ) g(L)(exp(=24))*

Up to now we have two arbitrary independent coupling constants ./ and j. We
assume however that .J is small and j is large. Let us now choose j related to J as

exp(—2j) = tanh(J)
Then we get a selfconsistent relation for the statistical sum
Z(J) = 2V cosh®™ (J) tanh™ (J) Z(j)

where

Jj= —% In(tanh(J)



&
Let us suppose now that in the thermodynamic limit N — oo the free energy per

site (only intensive variable can have thermodynamic limit) has a singularity at
some temperature 7. Let us also suppose that there is just one temperature value
for which there 1s such a singularity. The selfconsistent formula for the statistical
sum does not introduce any new singularity. So if there is only one singularity, it
must be both at 7 and at ./ and the two values must be equal, that is j = .J and we
get the relation

J. = —% In(tanh(.J,)

The solution gives for the critical value

Jo = %ln(l +/2)



Renormalization group

We start with a model which is more geometrical then physical (there is no tem-
perature nor statistical sum involved). It is, however, very useful, since it is very
illustrative. We shall investigate the percolation model. The lives on a lattice of
square cells. Each cell can be “empty” or "occupied”. The probability p of a cell
being occupied is independent on the occupation of any other cell. We introduce
the notion of cluster: a set of occupied cells which are touching each other by at
least one edge. Now we shall investigate a problem whether there exists a span-
ning cluster: a cluster which reaches from the top side of the lattice continuously
to its bottom side. If yes, the lattice is considered to be percolative (imagine that
the spanning cluster provides a path for water to percolate from top to bottom.
The figure shows examples of possible lattice states for different values of p.

We shall investigate the limit for the size of the lattice going to infinity. We expect
that there exists a critical probability p. above which the lattice is percolative.



The main idea is that in the critical point the correlation length goes to infinity.
The correlations between cells are present for any distances between them. We
expect that the system looks qualitatively the same irrespective what zoom we
ese to observe it. (So we expect a fractal like behaviour.) The key notion here is
’selfsimilarity”. The renormalization technique looks for the selfsimilar behaviour
by averaging the image at some scale it hopes to find a selfsimilar image.

Let us combine the cells of the original lattice into larger square cells, containing

b x b original cells. The new squares are cells of a new, renormalized lattice.
Now we design a rule to specify which of the new larger cells are considered
as occupied. There are many possible rules to be considered (those which have
majority of the original cells occupied, those large cells which are percolative
horizontally, or vertically, or in both directions.. .).

Let us take b = 2 and the rule: the renormalized cell is considered to be occupied
if at least three of its original cells are occupied. Let the probability that the new
renormalized cell is occupied is denoted as p’. Clearly

p=p"+4p°(1 —p) = R(p).



P =p'+4p°(1 — p) = R(p).

If the original lattice had p = 0,5 we get p’ = 0.3125. By next renormalization
we would get p' = 0.0934. The fix point of these iterative transformations is
p = 0 what means an empty lattice.So in this specific case the selfsimilarity is not
realized. The selfsimilarity requires to get p’ = p. A numerical solution of this
simple algebraic equation gives p, = 0.7676 (the true value is je p. = 0.5927).

To find the critical exponent for the correlation length &, one has to realize that all
the corresponding lengths in the renormalized lattice are reduced b-times. There-
fore ¢ = £/b. In the vicinity of the critical point we expect £ ~ |p — p.|™".
Comparing the two expressions we get

I I

AR

P=P« = 7IP = Dx
We have replaced here the true value p. with our fix point p,, because for our
choice of the renormalization rule the singular behaviour is expected for p,. Now

we have to find the relation between p and p’ int the vicinity of the critical point

P —p. = R(p) — R(p.) = (p—p.) (j;; = Ap —p).

P=p«



= 7lp—».

" —pa| ™" |~
, dR
p—p. = R(p) — R(p:) = (p — p) m = Ap —p+)
P lp=p.
_ 1 — v g1 ~Inb
A p=p[ =5 lp—p]™ = AT =0T = v =

Inourcase b = 2a A = 1.6432, so v = 1.40 (the exact result is v = 4/3)



KANONICK‘E’“FORMALIZMUS PRE POHYB
KLASICKEJ CASTICE V ELEKTROMAGNETICKOM POLI

d oL oL
dt ev Or

Pre pohyb ¢astice s nabojom g v EM poli s intenzitami E(r, 1), B(r, t) plati

m—=qgE+qgvxB (3)
dt
ako sme uz hovorili v predchadzajucom ¢lanku. Intenzity E, B moézeme vyjadrit’ pomocou potencialov
A, ¢
PA
E-vp-" B=vxA (4)

S

Ukazeme teraz, ze Lagrangeovu funkciu nabite) ¢astice s nabojom ¢ v elektromagnetickom poli mozno
volit’ v tvare

L=%mv2+qA.v-q¢J (5)



|
L=Emv1 +gA.v—qgg

oL

— =mVv +gA
oV
p=mv
P=p+gA

1 ,
H(r,F’)=£(P—c¥A)‘+qw
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Z 'IfHdHdeﬂpt' exp(— BH(ry,...;p1,--.)),
where H is the classical Hamilton function.

1 2
H= Ezi:(pi +eA(r;))” + V(re,...).

But now we can substitute p; — pi = pi + eA(r;) in the integrals,

This is called the Bohr-van Leeuwen theorem.

Zo [TTar’hiexp [~ 55 i+ V)]

Thus we have eliminated the vector potential A from the partition function.

This is called the Bohr-van Leeuwwen theorem.



Fluctuation — Response Theorem

Z & Zop 0B
C(OEN 98 1 | 18°Z 1 (9Z\?| 1 [=5 oo
CV_(@5>V6T__W _2652+Z2(85) = e |-
1 — _
_ 2 _ 2
CV_kT2[E E]

This is how one calculate C;, numerically, since calculating it via
E(T + dT) — E(T) is numerically intractable

Note: cumulant O

—%)2 InZ

F-e]-




Fluctuation — Response Theorem for arbitrary quantity

19
A= _
ﬁaJan
6A__B_A 4 0 212
XA = 5T 30.J BoJ)
xa = BAA?

Note: if A is extensive, then y, is extensive, so

AA2 x N

AA? 1
——
A VN




Z(J]) is a generating function of moments of A
In(Z(])) is a generating function of cumulants of A.



Fluctuation — Response Theorem for arbitrary quantity

E;, - E, — A;J
A:%%mz
xXa = BAA?

Note: if A is extensive, then y, is extensive, so

AA2 x N

V AA?

1
A YN




Z(J]) is a generating function of moments of A
In(Z(])) is a generating function of cumulants of A.



Probability of fluctuations

1

p(i) = Z exp(—BLE;)

M =" Mip(i) ZMexp ~BE;)

Z exp(—BE;)
i,M;=M
=S M0 = ;YN Y el )Y Y Maea(-E) -
Y i,M;=M M i, M;=M

— % > M;exp(—BE;)



1

1 1
p(M) = 7 exp(—BE;) = 7 Zneq(T,V, M) = EeXP(_ﬁFneq(Tv V,M))
L, M;=M
p(M) = exp(—BAF(M))
AF(M) = Fneq(T, V., M) — Feq(T, V)
Z = eXp(_BFeq(Ta V))
Be careful:
Feq (T,V) ~ Fneq(T, V, Meq)
but

10%3 4+ 100 ~ 10%3

A 75 eXp(—BFneq(Ta Vv Me(]))
exp(10%%) x exp(100) # exp(10%3)



Sometimes we can reasonably guess the dependence of

Freq(T,V, M)

on M. Like in the Landau model of phase transitions. Then we can have a
phenomenological effective theory like

Freo(T,V,M) = Fo(T, V) + Fp(T,V)M? 4+ Fy(T,V)M*

p(M) = % exp(—B(Fo(T. V) + Fy(T, V)M? + Fy(T, V) M%)

Then Z need not be calculated from the original microscopic Hamiltonian,
but as a normalization of an effective theory

7 = Zexp B(Fy(T, V) + Fa(T,V)M? + Fy (T, V)M*))



p(M) = % exp(—B(Fy(T, V) + Fy(T, VM2 + Fy(T,V)M™Y)

7 = Zexp B(Ey(T,V) + Fo(T,V)M? + F,(T,V)M?))

It looks like a canonical physics of a simple system with one degree of freedom,
M, with a Hamiltonian

H(M) = Fy(T, V) + F(T,V)M? + Fy(T, V) M*

The (nonequilibrium) free energy of the microscopic theory effectively becomes
a Hamiltonian of the effective theory. This is why people in textbooks suddenly
switch the language and start to speak about “Hamiltonian”.
This happens even more in effective field theories, when one introduces a
nonequilibrium field

M (7)

The nonequilibrium free energy of the microscopic theory is then a functional

Fneq[M] — Fneq(Ta Va M()D



Ginzburg-Landau Theory

Phenomenological hamiltonian

t .
JH = [d.}( |:§Hl"’ -+ um> 4 ...

K . I . . N . y
+%(Vm)£ + ?{vgm)z + ?le(?m)z +---—h- m]

)

External field h(7)

Z is then a functional of h and is a generating functional of moments of m(7).

5
G

In Z|h]

All moments and correlations can be calculated as certain variational
derivatives of the generating functional.



Scattering cross section

cross section = are of ring of radius b
and width db

X
)

|

\

\

Particles hitting the ring between
b and b+db are scattered by an

angle between 6 and Q+(0

vYYY VY Y YY

NS
\VVVV vy

They are scattered into a larger
ring on a sphere with the
scattering nucleus in its center

Solid angle of the
entire ring :

dQ = ZRSNORIE 1 7rin(0)dO solid angle of
R small area:

dQ= w - sin(0)dOd

n:jd—adﬂ‘

particles/cm/s

df2
detector_clicks/s .




n=jo

Assumption: all collision events are independent of each other

This may not be true. If a collision destroys the target particle, the target
particle is no more available for colliding with the next beam particles, so
there would be only one click of the detectors eventually.



cross section = are of ring of radius b
and width db

/

Particles hitting the ring between
b and b+db are scattered by an

angle betwveen @ and @+ <9
/ They are scattered into 3

ring on a sphere with th
scattering nucleus in itg center

Solid angle of the
entire ring :

dQ=2"ROKE 2 1sin(6)d6

solid angle of
small area:

dQ= w - sin(6)dOde

. . massive target p volume density
"= / j(r)op(r)dV of scattering centers
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N = fdtL(t)a = L;n:0

L luminosity s'cm?
L;,; integrated luminosity cm™ (inverse milibarns)

Luminosity is difficult to measure directly, beam profile not
uniform, fluctuates in time

Solution: calibrate by a well known process with well known
Cross section



for head-on collisions

Colliders

n = /papB|vA + vplodV

12



n = fpapB|fUA + vglodV

o may be differential cross section or even may contain d-functions like
— — = =
o (U1, Ug; Uy, Us)

If detectors measure U1, Us they measure with certain precision
(discrete histograms, not points). So the number of detector counts is
the integral over the sensitivity volume, the delta functions for energy
momentum conservation get integrated-out.



The first obvious property is the invariance with respect to time inversion
o'(v,v; = v, v]) =o' (=v, —v] = —v, —v1).

Next obvious property is the invariance with respect to reflections.
o(v,v; = v, v)) =d(-v,—v, - =0, —v)),

Combining these two invariances we get the invariance with respect to the inverese

scattering which we get from the original proces by exchanging the initial and final
state.

o' (v, v = v, v]) =o' (v, v] = v,v1).

14



Boltzmann equation

Up to now we have investigated only equilibrium statistical systems. Here we start
investigating non-equilibrium system. We shall not present any general theory, we
limit ourselves to investigating dilute gas not far from equilibrium in classical
(non-quantum) approximation.

We consider a classical dilute gas consisting of just one type of molecules. Clas-
sically, we know the state of the gas if wee know the position and the velocity
of each of the molecules. If we consider an ensemble of microstates representing
some (in general non-equilibrium) macrostate we should describe it by a proba-
bility density which is the function of 6N variables. We shall limit ourselves to a
drastic approximation: a one-particle description.

So let us look to an infinitesimal region of space around the vector r and ask what
is the mean density of molecules at r at time ¢: let us denote it as n(r, t). Then we
ask what 1s the probability distribution of the velocities of individual molecules in
this region. We arrive at the function

f(r.v.1)

15



f(r.v.1)

whose meaning is the following. f (7, v, t) d®r d®v is the mean number of molecules
present at time ¢ in the infinitesimal region around 7 and having velocities in the

infinitesimal neighbourhood of vector v. The following (normalization condition)
holds

n(r) = / flr,v.t)d*v
It becomes to be the oneparticle approximation when we say that it contains whole

statistical information. By that we mean, that all statistical results (like mean values of
all the physical variables) can be obtained just from function

fir, v, t).

fa(r1,v1, 72,02, 1) = f(r1,v1,1) f(1r2, V2, 1)

16



Ideal gas,

no collisions

F
Vo + — t
m
1F ,
g+ Vol + =— 1
2m

5}
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5}

frot=0)d’rd’v= | f(r,v.t)drdv

Qg LN

The integration variables at the right-hand side can be denoted arbitrarily, so let
us denote them as r;, v; and we write

flr.v,t =0)drd*v = f(ry, v, ) dPrdiv,
1 (24

18



fro.t=0)d*rd*v= [ f(ry, v, t)d*rd*v,
Qp (2

In the integral at the right-hand side we perform a substitution. The variables r;, v;
will be substituted by variables 7, v,. The substitution relations will be those of

(8.1),

v = v+ —1
m
1 F

Tt == ?“n + ﬁl]f; + _— ?Ez
2m

When the “old” variables r;, v; run through the region {2,, the "new” variables
. Vo run through the region{), and we get

fr,v,t =0)rd’v = [ f(ry,v,t)J Prodiv,
ﬂn ﬂﬂ

It is understood that the variables ¢, v; are expressed through the integration vari-
ables 1, vg and .J is the Jacobian of the substitution transformation

19



According to the Liouville theorem

a so we get

f(r,v,t =0)d*rd*v = f(re, v, t) dProd®vg
g g

Now we change the notation of the integration variables on the left-hand side for
Ty, Up and we get

flro,vo.t = 0)drod’vy = | f(rs, vy, t) d*rodPo,
ﬂn DD

This relation holds for an arbitrary region of integration (2, thus the integrands
must be equal

[(ro,vy,t =0) = f(r, v, t)

20



This relation holds for arbitrary £, therefore

d

= flrvi,t) =0

From there we get the "Boltzmann equation without the right-hand side”

0 0 F 0
Efﬁ"ﬂ.@f‘i'a '8—Uf—0

This equation holds for ideal gas when we neglect collisions between molecules.
In a general case the fﬂllnwing equation holds

s, F J

f+ Or m f}uf Def

where at the right-hand side one writes so called collision term, which we shall

discuss later. The differential operator at the left-hand side is usually denoted as

D

b9 0 F 8
ot or m ov

And the Boltzmann equation is then written in a compact form
Df = Dcf

21



Mean time between collisions

Molecules in gas collide with each other. Let us suppose that the collisions are
independent and express the probability that a given particle collides with some
other particle in the next infinitesimal time interval df as

1
—dt
-

We denote as P(t) the probability that the given particle does not collide in the
time interval { from the present moment. Then

Pt + dt) = P(t)(1 — %dt)

This differential equation has the solution

P(t) = exp(—t/7)

Now let us denote as P(t)dt the probability that the given particle collides for the
first time (from now) at the time interval(¢,t + dt). Then

P(t)dt = * exp(—t/7)dt
T



P(t)dt = * exp(—t/7)dt

T

This probability is (of course) correctly normalized as

/ dtP(t) = 1

The mean time up to the next collision is given as
(t)y = /dt tP(t) =7

This time is also called "mean time between two collisions” and one can easily
check that the notion is correct. Indeed, due to independence of collisions the
“mean time between two collisions” and the "mean time from now to the next
collision” is the same. If the collisions are independent, then the two notions "from

now’ and “from now, when the particle just collided” have the same meaning what
concerns future.



Thought experiments

e catch a molecule. Ask her to send you the time of the next
collision from now

e catch a molecule. Ask her to tell you the time of the last
collision before now

e catch a molecule. Ask her to tell you the time of the last
collision and then the time of the next collision. Subtract the
two numbers

e catch a molecule. Ask her to give you the recordings of the
times of collisions. Subtract always the two consecutive
times



Now we shall describe a simple approximate way how to include collisions into
the Boltzmann equation. To simplify the explanation, let us assume the gas con-
sidered lives in a one-dimensional world without external field. In such a world
the molecules between collisions move uniformly (and linearly, but everything is
linear in a one-dimensional world).

The expression
[z, v, t)dxdv

gives the number of molecules which in the time moment t are in the position
interval (z, x + dz) and have velocities from the interval (v, v + dv). Let us ask
where these molecules were in past in the time moment ¢ — ¢/, ' > (. If there
are no collisions then during the time ' they moved uniformly and so at the time

moment { — ' they had velocity v" = v and were positioned in the neighbourhood
of the point 2’ = & — vt’. Using the Liouville theorem we get
dx dv = dx' dv'

and thus the identity

f(z,v.t) = flz —ot', v, t =)



If particles collide, then every particle which at the time ¢ is at the phase-space
point (x, v) have collided somewhere sometimes the last time before the arrival to
the point (z, v). After that last collision the particle moved uniformly. So in that
last collision the particle has to obtain just the velocity v and if the last collision
happened at the time £ — ¢, then the collision must have happened at the position

x' = x — vt'. Each particle comes from the point of its last collision, so we can

write !

f(;;;__ v, ﬁ) = / dt!f(l‘ — 'Uf"._ v, — f!) exp(—¥)
T

Where f (z,v,t)dx dv dt gives the number of particles which at time ¢ are in the
interval (z, x + dx), have velocity from (v, v + dv) and in the infinitesimal time
interval (t — dt, t) they just collided, so the velocity v was obtained just in that
collision. Other molecules which at the time ¢ are present in the interval (z, v+ dx)
with velocity from (v, v+duv) are those which did not just collide and their number
18

[z, v, t)dedv

The normalization is the following

dt d:r:]d'e;f(r,?;,t) = Edr/dt‘f(ﬂf,ﬂ,ﬂ
T



Now the question is how f; depends on velocity. Here we make a strong assump-
tion that the distribution f, describing those particles which have just collided
is Maxwellian By that we assume that the particles which just collided are ther-
malized, so they are a sample from some equilibrium distribution, which is the
Maxwell distribution.

We get the expression for the Boltzmann distribution in the form of integral through
the trajectory

1 t
f(I'JfL-'-,t) = /dt!_fn(r - “Ufr-. :U‘Jt - f')ex]'}(__)
T

T

where the index 0 denotes, that the function 1s Maxwellian what means

fn(.’lf._ i';) — 'Tl-(l‘)

mpB(x) 3/2 1 )
( 7 ) exp(—ﬁ,ﬁ(.x,)e,-)

If the functions 5(x),n(x) were known, then the above integral would explic-
itly define the Boltzmann distribution function. These function, however, are not
known a priori. That means that the integral represents a selfconsistent equation,



20 3/2
fo(z,v) = n(x) (m;(:)) e:.{p(—%ﬁ(j;)f,.-?)

If the functions 3(x),n(x) were known, then the above integral would explic-
itly define the Boltzmann distribution function. These function, however, are not
known a priori. That means that the integral represents a selfconsistent equation,
which determines the function f my through 3(z) a n(x), but these functions are
determined through [ via the consistency equations

/ dv f(z,v)

1 1 1,
E,B(:r:) = /d?,am?,- flz,v)

n(x)




Now we derive a differential equation satisfied by the Boltzmann function as de-
fined by the integral through the trajectory. We write the expression defining f for
two close points in the phase space which are connected by a particle trajectory.
We shall assume the external field is zero, to get simple solutions for the trajectory.
1 t’

flz,v,t) = /dt’;fn(r — vt v, t —t') exp(——)

T

1 t!
fle+vdtv,t+dt) = /dt’—fﬂ(r —vt' +vdt,v t+dt —t')exp(——)

T T
In the second expression we make the substitution ¢” = t' — dt and we get

(& &)

t" + dt

T

1
dt" = fo(x — vt" v, t —t") exp(—
T

)

We expand the exponential up to the first order and write ¢’ instead of ¢”. We get

flx+uvdt,v t+dt) = /

—dt

oo

1 t’
flx+vdt,v, t+dt) = / dt'— fo(x — vt’ v, t —t") exp(——) +

—dt T T

© 1 v dt
v [ dfula =t vt = t)ep(=2)

dt T T T



In the second integral the integrand is of the first order in df so we can shift the
lower limit infinitesimally and get

's) 1 t
flx+vdt,v, t+dt) = / dff—fn(ﬁf — ot vt — t!) exp(——) +
-dt T T
dt [~ 1 t
- dt' = fo(x — vt' v, t —t") exp(——)
T 0 T T
}1 ! ! t!
f(.’}:,’-!}._,f) = dt —fn(_’}j — vt v, t—1 )E‘Xp(—_)
T T
0 1 f’
fle+vdt,v,t+dt)— f(z,v,t) = / df};fn(if — ot v, t —1) E‘XP(_;) +
—dt

dt [~ 1 t

—— dt’— — ot v, t =1t ——

- —folz —ot'; vt = ') exp(——)

dt dt
= _fﬂ'(m- v, t) - —f(:r,'u,t)
T T
We have got the equation
sz_f—ﬁ




We have got the equation

Df:—f_h
T
Boltzmann equation with this choice of the collision term at the right-hand side
is called Baltzmann equation in the approximation of relaxation time and is usu-
ally just postulated after presenting a few more-or-less plausible arguments. Our
approach presented here is taken from Reif.

10



“(rrt) = (v(r:t)) = n(:-,t) f d:vf(r:ﬂst)v (1315)

This velocity w(r,t) describes the mean velocity of flow of the gas at a given
point. (This is just the “hydrodynamic velocity’”’ of the fluid described by
macroscopic hydrodynamics.) It is useful to measure the velocity v of a
molecule with respect to this mean velocity. We shall therefore define the
‘““peculiar velocity’’ U of a molecule by the relation

U=v—u (13-1:6)
Thus it follows, by the definition (13-1-5), that
(U) =(v) —u=0 (13-1-7)

In considering transport phenomena, one is interested in calculating the
fluxes of various quantities. Consider at time ¢ and at the point r an infini-
tesimal element of area dA whose normal is denoted by the unit vector A.

11



Fig. 13:1-1 The element of area dA with normal n divides the gas into a
(+) and (—) region and moves with velocity u. The figure illustrates mole-
cules crossing the element of area in time d!{ from the (—) to the (+) side
(left diagram), and from the (+) to the (—) side (right diagram).

Fa(r,l) = the net amount of x which is transported per unit
time per unit area of an element of area (oriented with its
normal along A) from its (—) to its (+) side.

12



> Fa(r,t) = [d*v fA- Ux (13-1-12)
In terms of the definition (13-1:4) this can be written

’ Fu(r,t) = n(A- Ux) (13-1-13)

Thus F, can be regarded as the /A component of a flux vector F such that
F.=N-F (13-1-14)

where F = n(l/x) (13-1-15)

Examples In calculating the viscosity of a gas (a8 we did in Sec. 12-3),
one i8 interested in finding P.., the @ component of the mean stress exerted,
on a unit area of surface with normal oriented along the z axis, by the fluid
below this surface on the fluid above this surface. The corresponding rate of
change of momentum is given by the net flux of & component of molecular
momentum transported from below to above the surface. The quantity
transported is thus x = mv,, whileAA - U = U,. Hence this stress, or momen-
tum flux, is by (13-1-13)

P.o = nm{U,v,) (18-1-16)
u: #0and v, = 0. Then U, = v,, and (13:1-16) becomes simply

P,o = nm(v,v,) = m| d*v fv,0,



Fig. 13:1-1 The element of area dA with normal n divides the gas into a
(+) and (—) region and moves with velocity u. The figure illustrates mole-
cules crossing the element of area in time d!{ from the (—) to the (+) side
(left diagram), and from the (+) to the (—) side (right diagram).

Fa(r,l) = the net amount of x which is transported per unit
time per unit area of an element of area (oriented with its
normal along A) from its (—) to its (+) side.



> Fa(r,t) = [d*v fA- Ux (13-1-12)
In terms of the definition (13-1:4) this can be written

’ Fu(r,t) = n(A- Ux) (13-1-13)

Thus F, can be regarded as the /A component of a flux vector F such that
F.=N-F (13-1-14)

where F = n(l/x) (13-1-15)

Examples In calculating the viscosity of a gas (a8 we did in Sec. 12-3),
one i8 interested in finding P.., the @ component of the mean stress exerted,
on a unit area of surface with normal oriented along the z axis, by the fluid
below this surface on the fluid above this surface. The corresponding rate of
change of momentum is given by the net flux of & component of molecular
momentum transported from below to above the surface. The quantity
transported is thus x = mv,, whileAA - U = U,. Hence this stress, or momen-
tum flux, is by (13-1-13)

P.o = nm{U,v,) (18-1-16)
u: #0and v, = 0. Then U, = v,, and (13:1-16) becomes simply

P,o = nm(v,v,) = m| d*v fv,0,



Tlak: P..=nm< fui >

Note: even power of v! Nonzero also for Maxwell (equilibrium)
distribution. How it is possible to have non-zero flux of some quantity
in equilibrium. Symmetry prohibits equilibrium flux for a scalar
qguantity, but for a vector quantity like momentum it is possible. Look

to the glass of water in equilibrium

Pop=nm<v:> >0




Tlak: P..=nm< ’Ug >

Note: even power of v! Nonzero also for Maxwell (equilibrium)
distribution. How it is possible to have non-zero flux of some quantity
in equilibrium. Symmetry prohibits equilibrium flux for a scalar
qguantity, but for a vector quantity like momentum it is possible. Look

to the glass of water in equilibrium

Pop=nm<v:> >0




Tlak: P..=nm< ’Ug >

Note: even power of v! Nonzero also for Maxwell (equilibrium)
distribution. How it is possible to have non-zero flux of some quantity
in equilibrium. Symmetry prohibits equilibrium flux for a scalar
guantity, but for a vector quantity like momentum it is possible. Look
to the glass of water in equilibrium
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the blue box is zero, box
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direction



Heat conduction in the approximation of relax-
ation time

As an illustration we present here the problem of energy ("heat™) conduction in
a pipe filled with gas, which is inserted between two thermal reservoirs, one at

temperature 77, the other at temperature 75. After certain time a stationary regime
is established: a constant energy current will flow from the hotter end towards
the colder end. Along the pipe a time-constant temperature distribution will be
formed, with temperature linearly decreasing from the hotter end towards the
colder one.

We shall be looking for the Boltzmann distribution function f(x, ?) which is
stationary, that 1s it does not depend on time explicitly. Non-trivial spatial distri-
bution develops only along the pipe axis, in the direction of the energy flow. We
select the x-axis to be 1in this direction.



We look for the solution of the equation

fa ) = [ LoD e = o, )

where fy has the form of the Maxwell distribution

| 3/2
folz, ) = n(z) (mg’(r)) EX}}(—%,S(:I:)TH?Q)
n

3(x) and n(x) are unknown functions which should be found while solving for f.
They correspond to the distribution function f(x _?) as follows

n(x) = /d‘?‘?f(;r:,?)

3 1 a—:»l —2 (. =
25 /d vymuy [z, V)




We look for the solution of the equation

f(z,T) = / Y exp(=L) foe = vst!, T

The trick leading to the solution is to do the per-partes transformation

Fa ) = fola ) + [ Do exp(=D)ar

where f( has the form of the Maxwell distribution

mf(x)
2T

3/2
folz, @) = n(z) ( ) exp(——3( YmT?)

Next one has to realize that formally we are integrating through the region (0, 00),
but practically only through the interval of the order (0, 7). Outside this interval

the integrand is exponentially small Performing the differentiation with respect to
t' we get



f(z, L) folz, )

dn 3 d 1 d3 t,
— e ] 1 ) ﬁz _t ,
+/ ( ndx Ve 2 Bdx Uz + m ) fﬂ(r ) exp( T)dt

All the terms in the bracket are proportional to the mean free path v,.7, there-
fore the variable x in the integrand in functions n, (3, f; is no more shifted by
—uv,1'.Such a shift would lead to corrections of higher order in 7.

10



dn 3 df 1 dA "
—_—) — o — ) _ ﬁ'?_-f? = I ,
+~/ ( ndz'® " 2 Bdx Vo ¥ SMmv *’I) fo(z, V') exp(——)dt

The integration 1s therefore trivial and we get

i' dn 3 dj 1 — d3
! = N ——" _—— — 2
flz, 7)) = fola, V) + 7 ( Uz 25033:'! + ;MY — )fn(:r v)

The distribution function is expressed through a Maxwell-like distributions, so all
the momenta will be expressed through the Maxwellian momenta which are

('Ul.}(} = D
, 1
IV
(Uzlo mf3
3
vl =
(V2o (mf3)?

3 XD
8 =
(vz)o (mB)3

11



dn d dps
f(ﬂ",?) :fﬂ(I1?)+T (_éi gﬁfrﬂrﬁ'lrnﬁzd )fﬂ(j" )

We are interested only in the stationary situation, when there 1s no flow of particles
along the pipe. So we want a distribution function satistying the relation

1
(vg) = H/dg?furf(:r, T)=0

3 B dn 3 d3 , , 1 dg, 4 2 2
0=(v;) = ’T( ndl‘(t Jo — §%<%}n+§ma{‘bz+* 2 +0ivl)o
T dn d“ﬁ
- mfB ndr Bdzx
From there
dn B dj3
ndr  Bdx

nkdl = const

12



Let us now calculate the density of energy flow, which is given by the relation

1
JB = Hnm (%0,

d d df3
f(ﬂn?)=fn(ru?)+’r(—n; gﬁfr + o )fn(ﬁ“ 7)

JE = %nm*r (—%(?%2)“ _ g%{ﬁz'ﬂih + %mg(?Q??Ui ﬂ)
= %nm*r ( E(mlg)g ;i(fr + .mg{vg + 21;31}: + 21* -|- .3? ,31 + L L + 2L “ 5{})
57 df
— (mpB)?dx
57k*Tn dT
T2 om (‘a)

So the coetficient of the heat conduction 1s

57k*Tn
o= —
2 m




Electrical conductivity The physical situation is the one described in Sec.
13-4. In the absence of an external electric field &, the distribution function
is given by |

O = 9@, = fmo (13:8-1)

where g(e) is the MB distribution (13-4-2) in the case of ions or the FD dis-
tribution in the case of electrons in a metal. If a spatially uniform time-
independent electric field & is applied in the z direction, one expects that the
new distribution function f(r,v,t) will still be independent of r and ¢{. Then
the Boltzmann equation (13:6-3) becomes simply, since F' = ¢& has only a
2z compornent,

g9 — £(0)
%aa{ - - -rf (13-8-2)

Let us assume that & is quite small. Then one expects that f differs only
slightly from f(® = g. Thus we put

f=g+ fO where fO) L g (13-8-3)

f f—g m B0, e&rv, e
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dg
(1) = — e e e— —— T e sl
f f—g m o0, e&rv, o

> f(rvt) = gle) — eSw,g—f (13-4-5)

The current density 7, in the A direction is the flux of charge through an
element of area directed along A. Thus

jo=e f dv fo, (13-4-6)

I o gt [ g% 0 4.
; e[dv TV, (13:-4-7)

> Tel de
The ratio j./& = oa is, by definition, the electrical conductivity of the particles.
As one would expect for the case of sufficiently low electric fields, (13-4-7)
shows that j, = &.

When g is the Maxwell-Boltzmann distribution of (13-4-2), as it would be
for ions or for (sufficiently dilute) electrons in a gas,

i

dg _

Then (13-4-7) becomes
o = Be? [ d%v gro,? (13-4-9)



oo = Peir [ d®v gv,? = Ber(nv,?)

Here the average is calculated with the equilibrium function g so that the
equipartition result mv,2 = $kT applies. Thus

2
o = %f (13-4-10)
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Collision term

Without collisions the particles move on Newtonian trajectories and Boltzmann
equation without the right-hand side holds.

Df =0

D_ﬁ_+_ £+£ i
“ot  Tor "m ov

With collisions on the right-hand side there is the collision term
Df = Def

Let us imagine two infinitesimally close regions of the phase space such that they
are connected by Newtonian trajectories. If the regions have equal volumes, then
each trajectory which begins in the first region ends in the second region and
vice versa. When collision take place, the particles do not follow the Newtonian
trajectories. Some particles which start in the first region fall out of their trajectory
before arriving to the second region and never arrive at the second region. On the
other hand, some particles arrive to the second region which never started in the
first region. They change the velocity in a collision and get onto a trajectory which
leads to the second region somewhere between the two regions. The two regions
we are speaking about are infinitesimal regions around the phase space point r,v.

17



Let us firs consider a particle which collides in the point » which before the colli-
sion had velocity v. It collided with a particle which was present 1 the same space
point r and had before the collision velocity v;.

The definition of the collision cross section says that the number of such collisions
within a time interval dt in the volume element d°7 is

DS f(r, v, t)dPrd®vdt = d*rdPvdt / / / Po v P
v —vi|f(r,v,8) f(r,v1,t)o (v, v1; 0, )

We have integrated over the velocities after the collisions and also over the veloc-
ity vy, since we are just interested in the fact, that there was a particle with the
velocity v which escaped from the phase space point irrespective what happened
to it and its collision partner.

18



On the other hand, the number of collisions in the considered space volume ele-
ment such that one of the particles gained the velocity v after the collision is

D f(r v, t)dPrd®vdt = dPrdvdt / / / Po v P

o = | f(r, 0, ) f(r, 0], D)o (0], 0} v, v1)

The energy momentum conservation gives
v — v = |v' — v
and P, T invariance of the collision process gives
o(v,v;v,v]) = o(v', v]; v, v1)
The total collision term will be

D¢ = DY) — DY

Decf(r,v,t) ///d?”vldci ‘A

v —v|(f(r, v t) f(r, v}, t) — f(r,v,t)f(r,v,t))o(v, v];v,v;)

and so



Dcf(r,v,t) ///dS’vld% 'd*v]

o — W (f(r, 0 8) f(r, 00, 1) = (1, 0,8) f (7, 01,1)) (o] vlw)

The notation is usually make shorter as

Def(rot) = [ [ [ dudvdv -l fi - 1)

when we added to the symbol f the index and/or prime sign according to what
velocity is to be inserted into the function f as the velocity variable.
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Equilibrium distribution

Def(rot) = [ [ [dudvdv —lrf - 1)
Dof =0
f) f(vi) = f(0"?) f(0f)

v? +0f =0 + 0P

F(@) f(E — z) = const

fl(@)f(E—x)— flx)f(E—2)=0
)/ f(z)=f(E—-z)/f(E -z
f'(z)/ f(x) = const

f(v?) = Cexp(—av?)

Maxwell

21



Conservation laws

Let us consider som one-particle physical quantity x(r,v,t). By that we mean a
quantity which has the value y when a particle is found at the time ¢ in the phase-
space point 7, v. Then the mean value of the quantity y in the space point r atr
time ¢ will be

1

n(r,t)

(x(r.t)) = / Pof(r,v,t)x(r, v, 1)

where
n(r,t) = /dgvf(r,v,t)
Let us start from the Boltzmann equation
Df = Dcf

We get
/ doyDf = / vy De f

22



/dg'ufo = /dg'uchf

At the left-had side we get several terms which we rewrite as follows

[#oxh = [ dols (0 - 155 = 5 m00) - (G0

af of 9, )%
3 . — = 3 e = l — -
/d v v 8?1)( /d v v, . X ama(nwax)) n(va&:a)

The third term we rewrite assuming that external forces are independent of veloc-

ttes F of o F F, .0
3, & YY) 3 o X
[ = [#olo- (o -2

m Ov

Here the first term after the integration gives zero on the integration boundaries

and so we get
F Of F, ,0x

3 _ — —
/dv m dv~ mn<(’)va>

23



/ dvyDf = / vy Do f
Now we look at the right-hand side of the Boltzmann equation.

/d3vchf=////d3vd3v1dsv’d3vi(f’f{—ffl)|fv—fv1|0('v,Ul;v’,v{)x(r,v,t)

We change the notation for the integration variables v <+ v, and v’ < v]. We get

/d3vchf=////d3vd3vldsi}’d3vi(f’f{—ffl)|v1—v|cr(1)1,’v;U;?U’)X('r,vht)

This change of notation, however, does not change the values neither of the rela-
tive velocity, nor of the cross section, so we get

/dSUXDc =1 / / / / Pod o, d*'d) (' fl — f£)|vr = vlo(x + 1)

where for the quantity y we used the same short notation as for f, that is we
used indices to denote what velocity should be used as the variable in the function
evaluation.
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/dSvXDc F=1 / / / ] Pod o, d*'dl (' f — [ £)|vr — vlo(x + 1)

Let us use further symmetry of the above relation: we change variables v < v’

and v; <> v;. This gives the inverse collision which has the same cross section
and we finally get

1
/ PvxDef = / f / / Bod*v,d ' P (f fi— 1 f1)[o1—v]o (¢ +Xs —x—x1)

The result 1s particularly interesting when the quantity y is conserved in collisions.
Then

X +xXi—x—x1=0
and so

/d3vchf =0

25



/d3vfo = /dsfuchf

At the left-had side we get several terms which we rewrite as follows

[ #oxSh = [@ol(r0 - 12 = 5 nt0) - n()

df df %, ox
3 . — — 3 T = ' — P—
/d v v GT‘X /d v v, D axﬂ(n{vax)) n(vaama)

The third term we rewrite assuming that external forces are independent of veloc-

ities F of 9 F F, .0
3, - Y] 3 a X
[ = [#o (20 - 22N

m Ov

Here the first term after the integration gives zero on the mtegratlon boundaries
and so we get

F Of F, b 0x
3 —_— —
/dv m ovX mn<3va>
0 0

2 1) + () = n(D)
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conservation of mass Yy = m

The mass conservation gives the equation

2(1r1*,m) + i(:*fi,s'nfvﬂf) =0

ot oz,

The quantity n is independent of velocities, so it can be taken in front of the

averaging angle brackets and we get

dp 0 B
ot i axap@“) =0

If the mean velocity (drift) is denoted as

u = (v)
we get the equation of continuity

Op
Fn + V.(pu) =0

27



B, s,
a{nmv ) + — (nmuv,v,) = (nm Dv,) = nm(—

0T,

If the external force does not depend on velocity we get

2 () + 5o (pluay)) =

T m
We separate now the chaotic and the drift velocity
v=u+U

then
((Vavy) = uqu, + (UaU,)

We introduce the tensor of tensions as
Po, = p{UaUL)

and we get the Euler hydrodynamic equation

9 9 0P, | F,

F, v,

m Ovg

=)
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H-theorem

Let us consider the Boltzmann distribution function satisfying the Boltzmann
equation with the collision term on the right-hand side.

Df =Dcf
where 9 9 P8
Df= Ef-F’U.a—T +a a_’Uf
and

D¢ f = /d%ld%’d%ﬂv —vi|(f' fi — ffi)o(v,v; 0", v))

Let us now investigate the expression

H(t) = /d“%'rdSvf('r',vjt) In(f(r,v,t))

H(t) = /d‘gndgvtf(rt,vt?t) In(f(ry, ve, 1))
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H(t) = /d‘gndgvtf(rt,vt?t) In(f(ry, ve, 1))

where we introduced a formal index . Now we make a substitution in the inte-
gral so that instead of variables r;, v; we introduce new variables 7, vy via the
relations

where the functions R(7rg, vy, t) and V (7, vy, t) denote solutions of the Newton
equations of motion with initial conditions 7, vg. The Jacobian of this transfor-
mation is equal to unity, the integration region is again the whole phase space, so
we get

H(t) = /dST‘DdBU{)f(R(TQj V(ro,vo,t),t), v, t) In( f(R(ro, V (7o, v0,1),t), v4,t))

d

10 = [ @rudo (D) + [ d@rudons
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d

E#ﬂﬂ::[fnﬁ%MMfﬂ%f

Now we make the "inverse trick” and we go over to integration variable r, v and
we get

d
EH(t) = /dgrd'gvd'gvldgv'd'gv’l In(f)lv — v |(f fi — ffi)o(v,v; 0", v])
Now we proceed the same way as we did while deriving the continuity equation

we get

d 1
ﬁH(t) =7 /d‘ard%dgvldav’d%’l ln(}i?f)'U—U1|(f’f{—ffl)a(v,vl;v’,vi)
1
d 1 f."}('.’ ffff
LH(t) = — | Erdodio,d*y @) jv—v |ffIn(L2) (11 V0,
GHO =1 [ Erdododvdsiv—ulffiln R Do, v/, o)

The logarithmic function satisfies the inequality (draw the graph of the function)
In(z)(z—1) >0

and so we get

d
—H(t) <0
dt (1) =



Langevin equation

The Langevin equation describes movement of a classical particle in the field of a
random force.

where F' is deterministic external force and f(¢) is a random force describing
for example influence of the collisions of the observed particle with surrounding
molecules. The typical correlation time for that force is of the order 10-'s.

We investigate the problem by introducing statistical ensembles. So let as imagine
an ensemble where v is the same for all the ensemble members and the ensemble
averages of the fluctuating force is f So we have

f=f+f

If v = 0 then f = 0 because there is no preferred direction. Therefore in the
lowest approximation tho following must hold

f:—a'v

and we get the Langevin equation

d
md—?=F—av+f’



To simplify the calculations let us consider one-dimensional case without external
deterministic force. We get

dx

m—- = —az + [
di
mxd—: = —azz +zf
d . -2 . /
m[a(x:r) — 1| = —azz +xf

Averaging we get (since (f’) = 0 independently of = and &

m(—(2t)) = (mi®) - azd)
d KT «
d—<1733> e E(“’)
Denoting -
p(t) = (zz) — Y

we get the equation



t) = (zi) — —
olt) = (wi) = =
we get the equation
o
p(t) = ——¢(t)
ET
(xz) = Cexp(—t) + —
where
o
Y=
m

Let us suppose, that all the particles in the ensemble start at v = 0, £ = 0. Then

(ad) = (1~ exp(—1)
Sl = (1~ exp(—1))

(%) = 2t = 2(1 = exp(=1)



2T, 1

2 oL o
(z%) = —( 7( exp(—t)))
This means that for ¢ < %
kT
2 2
S
(z%) m
and for t > %
2T



dz , ,
m— = —axr +
dt /
For strong dumping we can neglect in the Langevin equation the inertial term and

we get a Aristotle type of equation

0=—az+ [
y
()
r(t) ==z dr
) =20)+ [ dr’
For the initial condition z(0) = 0 we get
1 t
22(t)) = = | drdn(f () f (1
@ 0) = = [ dndratf () ()

Now the correlation depends only on the time difference and we get

@) = 3 [ 4752 = ) OF (7= )



@) = 35 [ 475 =) (O (= )

@)= [ arlrOre)

where we extended the region of integration formally to (—oo, c0) since the cor-
relation function is different from zero only on a very small interval and so the

integration region does not play any role.

We, however, know from previous calculation that

2kT
2
= ——1
(@) = =
and comparing the two results we get
a= g [ drlf0)5)
2T J_

So the dissipation coefficient «v is given by the correlations of the fluctuation force.
This is so called fluctuation-dissipation theorem.



Now we return back to the expression

o(t) = /D RAG

@]

The integral is the sum of many random variables, so z(¢) must be normally dis-
tributed with zero mean and variance

2kT
2

= ——1
(%) = =
so the distribution is

1 xr?

plat) = ——= exp(=17)

where

kT
D=—

@]

This is called Einstein dissipation theorem. The distribution density satisfies the
diffusion equation

dp



TRANSITION PROBABILITIES AND MASTER EQUATION

Consider an isolated system A. Let its Hamiltonian (or energy) be
¥o = I + X (15-1-1)

where JC is the main part of the Hamiltonian and 3¢; < 3 is a small additional
part desc_ribing some weak interactions not included in 3C.

Let the quantum states of 3¢ be denoted by r and their corresponding
energy levels by E,. If 3¢; = 0, these states would be quantum states of the
total Hamiltonian so that the system A would remain in any such state indefi-
nitely. The presence of the additional interaction 3¢; makes this no longer
true, since 3C; is capable of inducing transitions between the various unper-
turbed states . If 3¢; is small, if there is a nearly continuous distribution of
accessible energy levels,* and if one considers time intervals which are not too
small, then there exists a well-defined transition probability W,, per unit time
from the unperturbed state r to the unperturbed state s of system A. By
conservation of energy W,, is such that

if B, = E, W, =0 (15-1-2)
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Furthermore, there is a symmetry property relating this transition to the
inverse transition* from state s to state r,

> W, =W, (15-1-3)
NESTACIONARNA PORUCHOVA METODA
H(#) = Ho + H'(?)

i Oy (r,1)
ot

p(r,0)=) a, (e, (r)

=H()y (r,1)

) =6, i (f) = %ZH,;H (a, ()™, k=1,2,..
1

kde bodka oznacuje derivaciu podl'a ¢asu, priCom
Wy = (Ek o Em)/h
H},(1) = [©3(NH@)D, (r) d°r



/
inal)(t) = / dt’ Hj, (') e“rm?’ (6)

—00
Next, it is assumed that the perturbing force described by H" “turns on”

at t = 0 and is constant over the interval 0 <t <t. Equation (6) can then
be integrated to give:

ih Gagzl)(t) ~ QH;::m eiwkmt/Q (Slﬂwkmt/Z)

Wkm

The probability Px(t) that the system undergoes a transition from state
m to state k is:
4|H. |? sin? wimt /2

Pi(t) = |ar(t)]* ~ 2 2
km

(7)

The mean rate for the transition is given by wy = Py(t)/t.
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1sin” wt/2
t Nk

w on
t !
.2
Figure 1: Behavior of the function g(w,t) = %Smu;tf 2 versus w. g has

the effect of enforcing energy-conservation because in the limit ¢ — oo,
g — F0(w); it explicitly demonstrates the Heisenberg uncertainty relation
between energy and time through, for example, the half-width of the peak
Aw and the “lifetime” t of the perturbation: Awt ~ .



that states to which transitions can occur must have wg,, =~ 0, forcing energy
conservation.

In general, there will be some number of states dn within an interval
dwgm,. The number of possible transition states can be written:

dn = p(k) dEg

where p(k) = dn/dFEy is the “density of states” per unit energy interval near
Ey; dwiy, and dEj are related by dwg,, = dEg/h. It is expected that p(k)
and H,, are smoothly varying functions of momentum or energy near the
state k.

The physically meaningful quantity is the fotal transition rate to states
near the state k:

Wk:% Z Pkf(t)

12



This summation can be replaced by an integral over dFEy:

1
Wi = o / Py (t)p(K') Ay
4|H. | 1 [sin? wgmt/2
— dE k) —_km! —
/ k:P( ) ) 7 ( wzm )
4 > [ 1sinwt/2
= E|1hr,;;_m| p(k)/dw; —

As can be anticipated from Figure 1, the last integral has the value 7/2 and
we arrive at Fermi’s “Second Golden Rule”:

2
Wi = = [Hin|* p(k) (8)
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Let P.({) denote the probability that system A is found in state r at time {.
Then P, tends to increase with time because systems in other states make
transitions to the given state r, and it tends to decrease because systems in this
state r make transitions to other states s. The time dependence of P, can thus

be described by the equation

d;:" = Z P.W., — E P.W,, (15-1-4)
dj:’ = ¥ (PW.. - P,W.) (15-1-5)

Equation (15-1-5) is called the ‘“‘master equation.” Note that all terms
in it are real and that the time ¢ enters linearly in the first derivative. Hence
the master equation does not remain invariant as the sign of the time { is
reversed from ¢ to —t. This equation describes, therefore, the irreversible
behavior of a system. It is thus quite unlike the detailed microscopic equations
of motion, e.g., the Schrodinger equation, which provide a description which
78 invariant under time-reversal.

14



detailed balance

dPr
dt = Z (PIWIT _ Prwrl)

P'I'er = PIWI!' W"

(15-1-5)
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Decoherence,
guantum measurement,
master equation, exponential decay
and all that



Quantum mechanics and measurement

* states (pure states) are vectors in Hilbert space |¢)
* measuring devices correspond to Hermitian operators A
* superposition states 1

ﬁm + 1)

* measuring devices are classical devices, described by classical, not quantum mechanics
* quantum system state collapses to an eigenstate of the measuring device’s operator

/ Stern-Gerlach shows “up” —_— )

Sl

5+

Stern-Gerlach shows “down” | — |{)

Problem of measurement in QM:

We would like to describe the measuring device also by quantum mechanics (by
Schrodinger equation), but this is incompatible with state collapse as shown by von
Neuman because state collapse is a non-unitary operation




Density matric, statistical

A= Z p(z)(z| A|z)
p= Z|;r)p(;r)(r

A =Tr(pA)

Dn pAln) Z (n Zl (2] Ajn) =
ZZ n | ) p()(z| Aln) =

= zzp ol An) (n | ) =

= Zp (z| Alz) =

Tr( /)A)



The density matrix is evidently a hermitian operator, it can be expressed in any
base (in general it would not be diagonal) as

5= Y m)pm(n

m.mn

The time evolution of a macrostate will be described by a time dependent density
matrix

pt) = D la(t)p(x)(a(t)] =

i, i
D> exp(—Ht)|z)p(z)(z| exp(; H1)

T

Differentiating with respect to time we get the equation of motion

-r s
lﬁ'ap(t) = [H, p]



Density matric, subsystem

Compound system (S,E)

W))s’E — Z Cik |Z>s |k>E

ik

ﬁ:ﬁ8+ﬁE+ﬁint

Z ¢ij () [0) s 17) &

Suppose we have a measuring device which measures some quantity of the system S. It
means that its operator A operates just in the subspace of the compound Hilbert space.
This subspace is spanned on vectors [i) ¢ . It means it is completely determined by the
matrix elements .

- (Z‘s A ’j>s

the mean A value is then calculated as

Wlsp Al sy =Y i (g (K5 A cinli)g k)

'k’ ik



Density matric, subsystem
(Ylsp A V) sE = Z Cir ('] (K| AZ Cik [1) g |k) g = ZAW Z CirkCik
ik’ ik 1’ k

So we see that all information about the state is hidden in the expression

*
Qi — E Ci.Cik

k
We can introduce a density matrix operator

o= owili') (il
1

and the mean A value can be written as

(V]sp A V) op = T""(A@)

This is similar to what we had for the statistical density matrix. A big difference
between the two matrices is that the time evolution of the subsystem density matrix is

not given just by the system Hamiltonian H;. To calculate the time evolution of a
subsystem density matrix is not simple.



Density matric, subsystem

The time evolution of a subsystem density matrix can clearly be calculated by keeping
the pure state of the overall system SE:

|¢>5E = Zcik |7f>s |k>E

N ~ ik N
Using the total Hamiltonian H = Hs + Hg + Hint
we calculate its time development (using the Schrédinger equation)

Vs = ZC@J s li) e

and then calculate the subsystem den5|ty7matr|x in each time instant anew:

0iri(t) =Y cip(t)cin(t)

The time development of the subsystem density matrix is clearly non-unitary.

If at some time instant ¢, system S becomes decoupled from E, then its state is given by
the subsystem density matrix 0(¢p) which becomes the statistical density matrix at time
to, and its further time development is unitary corresponding to the Hamiltonian Hs.

iheoft) = s, o(t)




Measurement, wave function collapse,
statistical density matrix

Suppose we have a pure quantum state of some system S given as a superposition of
eigenstates |¢;) of a Hermitian operator A

121 \%‘) = a4 \%‘)

1) = ZCi [y,

2
We perform the measurement of the quantity A and the measuring device shows the
value ay, (it always shows one of the eigenvalues a;). The wave function collapse
happens immediately after the measurement the system wave function becomes |¢x) .
The probability of this to happen is |Ck|2.
If we repeat the identical measurement experiment many times, we get various vales a;
with probabilities |c;|? leading the wave function collapse into the state |©;) .

So repeating the measurement experiment we get a statistical ensemble of states
described by the statistical density matrix

o=">_lei)leil? (gl




Measurement, wave function collapse,
statistical density matrix

So a measurement of a quantity A4, leads to the non-unitary wave function collapse, the
state of the system after the measurement can be described by a statistical density matrix

Y) = Zc i) — 0= Z i) Jeil? (@il

1

Problem of measurement in QM:
We would like to describe the measuring device also by quantum mechanics (by
Schrodinger equation), but this is incompatible with state collapse as shown by von

Neuman because state collapse is a non-unitary operation

Our aim is to show that a process of quantum decoherence can
lead to “effective” wave function collapse and thus can “mimic” a

measurement process.




Decoherence due to interaction with environment

Zcm |Sz |90j ﬁ:ﬁ8+ﬁE+ﬁint

System and envwonment s;) is an arbitrary base in system subspace, ;) is a base
in environment subspace. Time development is given by the total Hamiltonian (via

Schrodinger equation)
P(t) = Zcij(t) [si) %) g

Z|3'L ch ) 1©5) g

Z ciz(t |9OJ is a set of some vectors in the subspace of the environment, indexed by i.

These vectors do not form a base in the environment subspace: the environment has much
more degrees of freedom We can mtroduce normalized vectors in the environment

subspace as |ei(?) Zczj Jei)y  We get

Z)\ ) Isi) lei(t))

Suppose we have a physical quantity which from the system subspace (not sensitive to the
state of environment. Then

= NN (t) (eslt)] (s Als]) [ef(t))

12/



Decoherence: collapse to diagonal density matrix

Now we can introduce a subsystem density matrix:

ZA i) (si| Als]) |es( ZQH i = Tr(oA)
ii = Ay (t) A (t) (eq(t)] e5(1))
What if

(ei(t)] €i(t)) = diw

0=>_|si) Nl (sil

This matrix is diagonal !!!

Compaer this with the wave function collapse after measurement

V)= cilpi) — @ZZM) ei? (]

7



Decoherence: collapse to diagonal density matrix
Y(t) = Z%’(t) [si) [05) &

ZA () |s:) |es(t))
= X/ (t) A (t) (es(t)] e (t)

(ei(t)] €i(t)) — i

For a different choice of the basis |ss;)we would get different accompanying environment
vectors |ee;). So even if for some choice of |s;) we get (e;(t)| €.(t)) — d;;+, for a
different choice |ss;), the accompanying environment vectors will not converge to

diagonal matrix
(eei(t)] eei(t)) = s

It means that we can have a decoherent collapse for some choice of basis states of the
system and not have a decoherent collapse for some other choice. Or perhaps a bit
weaker: for some choice we could observe a decoherence collapse after just a small time
of interaction with environment and for other choice of basis states the decoherence

time would be much larger



Decoherence: collapse to diagonal density matrix

A) = YNN8 (es®)] (51l Alsh) [e4(0) = Y ouidis = Tr(eA)

oiri = A7 (1) Air (t) {es (1) €3(t))

Do notice that the definition of the density matrix does not depend at all on what
operator A we have chosen for the derivation of the density matrix.

If the density matrix is diagonal, it means that all measurements on the system S can
discover superpositions of the basis states.

Be careful: we cannot deduce from the results of any measurement, that the system S was
in some superposition of states |s;)before the measurement was performed. Of course
after the measurement the system would be in an eigenstate of the measured quantity,
which can be a superposition of the states |s;) .

Be careful: we did not prove that decoherence exists. We did not prove that
(ei(t)| ei(t)) — diir

We just said that “perhaps it may happen”.



Decoherence and quantum kinetics:
master equation

The following is a snippet from Reif: Fundamentals of statistical and thermal physics

Let P,(!) denote the probability that system A is found in state r at time ¢.
Then P, tends to increase with time because systems in other states make
transitions to the given state r, and it tends to decrease because systems in this
state » make transitions to other states s. The time dependence of P, can thus

be described by the equation

dz' - Y pw. - Y Pw., (15-1-4)
ddI:' = Z (P,W, — P,W.,) (15-1-5)

Equation (15-1-5) is called the ‘“master equation.” Note that all terms
in it are real and that the time ¢ enters linearly in the first derivative. Hence
the master equation does not remain invariant as the sign of the time ¢ is
reversed from ¢ to —¢. This equation describes, therefore, the irreversible
behavior of a system. It is thus quite unlike the detailed microscopic equations
of motion, e.g., the Schrodinger equation, which provide a description which

78 invariant under time-reversal.
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Decoherence and quantum kinetics:
master equation

Reif stresses the fact of time irreversibility of the master equation used to describe the
kinetics of a quantum object.

For me, reading the book, a more important question is this: where are the superposition
states?

dPr
dt = Z (Pawlr - Prer)

The master equation deals only with probabilities, not with amplitudes! How this can
be justified for a quantum object?

The answer may be this:

Consider the time steps in the differential master equation as not infinitesimally small. So
net derivatives in a strict mathematical sense. Just small time denominators (Newton had
no €, , just fractions of small quantities). If the small time increments are larger than
decoherence time due to continuous interaction with environment, we get it!

In this way an exponential decay is acceptable, which otherwise can hardly be justified in
“orthodox” quantum mechanics.




System in contact with a heat reservoir

Consider a system 4 in thermal contact with a much larger system A’. The
total Hamiltonian of the combined system A = 4 4+ A4’ is

x© =g + 3 + 3

where 3 is the Hamiltonian of A4, 3¢’ is that of the heat reservoir A’, and 3¢; is
very small and describes the weak interaction between A and A’. In the
absence of interaction when 3¢; = 0, denote the energy of A in state r by E,,
and the energy of A’ in state ' by E... The presence of the interaction 3c;
induces transitions between these states and is responsible for bringing about
equilibrium between A and A’

Let P, be the probability that A is in state r, and F,- the corresponding
probability that A’ is in state »/. The state of the combined system A is
described by the pair of numbers » and r’; the probability of 4(® being in this
state is P® = P,P,. In this combined system the interaction 3C; causes
transitions between states. Under assumptions similar to those of the last
subsection, there exists a well-defined transition probability W (rr’ — ss’) per
unit time from state rr’ to state ss’. By conservation of energy,

if E, + E, = E, + E,, WO (re' — s5") =0 (15-2-1)

3



WO (ss' — rr') = WO (rr' — ss')
detailed balance

P.P.W©(rr' — ss') = P,P, WO (s8' — rr')

P, _ Py
P, P!
(B J(E)
f(Es) f(E’r’)
fER) f(Er) = f(Es)f(Es)
F(E-)f(E - Ey) = f(Es)f(E — Es)
f(E.)f(E — E,) = const
f(E)f(E—E;)— f(E)f(E—E)=0
fI(ET) = comst
f(Ey
f(E) = Cexp(—BE)
Pr _ o5y =



The transition probability W,, can be obtained by multiplying the transi-
tion probability W® (rr' — ss’) for the combined system A by the probability
P!, that A’ is in the particular state ' and then summing over all possible
initial states ' in which A’ can be found and all the possible final states s’ in

which it can end up. Thus

W= P.WO@r - s5') = CY ePPWO(rr' — ss')  (15-2-8)

.rl"a.l

We=2C Z e PEvW (O (55" — r1')
r!..l'

But the energy conservation (15-2-1) implies that E, = E. + E, — E,.
Using the symmetry relation (15-2-2), the expression (15-2-9) becomes then
.W" = ( 2 e—BE. '_"“E'_E'}W(O}(TT’—I‘ ss') = g"ﬁ(Er"E.)W"

rf‘f

Thus

—BE,
’ W.r — e'_'ﬁ{Er_E.} — é ﬂ

W" g—ﬂEl (15'2' 10)



detailed balance

h

— e‘—ﬂ{Er_El) —




It is convenient to make the relationship (15-2-10) apparent by intro-
ducing a quantity A\,, = \,, defined by

B_ﬁEIW“_ = e"‘ﬂErWr. = h

AJr:'*

TE

Then one can write
W = 8B, W, = efE, (15-2-12)

and (15-2-10) follows automatically since A,, = A,,.
The probabilities for system A satisfy again the master equation (15-1-5)

aP, _ _ _ BE, _ 8E, 9.
i Z(P.W,, P,W,,) Z)«,,(P.e P, efE)  (15-2-13)




Magnetic resonance

An instructive and important example of the ideas developed in the preceding
sections is that of magnetic resonance. Consider a substance containing N
noninteracting nuclei (or electrons) of spin 4 and magnetic moment u. If the
substance is placed in an applied magnetic field H, each spin can point either
‘““‘up” (i.e., parallel to H) or ““down.” We denote the corresponding states by
+ and —, respectively. The two possible energies of each nucleus are then

e, = FuH (15-3-1)

Let n4 be the mean number of spins pointing up and n_ be the mean number of
spins pointing down. Clearly, ny, + n_ = N.



The total Hamiltonian of the system can be written as
xe =3, + 3, + I

Here 3C, 1s the Hamiltonian expressing the interaction between the nuclear
moments and the external field H; 3, is the Hamiltonian describing the “lat-
tice,” i.e., all non—spin degrees of freedom of the nuclei and all other atoms in the
substance. The Hamiltonian 3C; describes the interaction between the spins
of the nuclei and the lattice, and causes transitions between the possible spin
states of the nuclei. (For example, the magnetic moment of a moving nucleus
produces a fluctuating magnetic field at the positions of other nuclei and this
field causes transitions.) Let W,_ be the transition probability per unit time
that a nucleus flips its spin from ‘“‘up” to ‘‘down’ as a result of interaction
with the lattice. The lattice itself is a large system which can be regarded
as being always very close to internal equilibrium at the absolute temperature
T = (kB)~:. Thus (15-2-10) allows one to write the relationship

= gble-—es4) (1532)




W'—"l‘ ) e—ﬂ¢+
W+_ e—Pe-

= gBle-—es) (15-3-2)

Now (15-3-1) gives B(e— — ¢;) = 26uH. For nuclei the magnetic moment
p = 5 - 10~%* ergs/gauss so that in laboratory fields of the order of H = 10*
gauss

pH 5-10-¢
kT~ T
for all but exceedingly low temperatures. Even for electronic moments, which

are about 1000 times larger, this inequality is almost always well satisfied.

By expanding the exponential, the relation (15-3-2) can then be written in the
form

BuH = <1

W, =W

15-3-3
and W_, = W(Q + 28uH), where gpH < 1 (15 )

10






Finally, there may also be present an externally applied alternating mag-
netic field of angular frequency w. If #iw = e — e, = 2uH, this field will
induce transitions between the spin states of a nucleus. (If H =~ 104 gauss,
w 18 typically a radio frequency (rf) of the order of 108 sec—1.) Let w;_ be the
transition probability per unit time for the “up’’ to ‘“down” transition induced
by this rf field. Then one again has the symmetry property (15-1-3)

Here w = w(w) i8 only appreciable if « satisfies the resonance condition
fiw =~ 2uf.
The master equations for n.(¢) and n_(¢) then become
dn+
5 = =W +w) —n (W + )
dn (15-3-5)
—r (Wi +w) —n_(W_4 + w)

12



Dt = (W + 0) — nu(Wee + w)
n (15-3-5)

—-(E = n+(W+_ + ‘W) — n._.(W—{- + W)
By subtracting the second equation from the first, one obtains
%(n.,. —n.) = =2n, (Wi 4+ w) +2n_(W_ + w) (15-3-6)

Introducing the population difference

n=ng — n_ (15-3-7)
and using (15-3-3), the relation (15-3:6) becomes
W = —2(W + w)n + 28uHWN (15-3-8)

Here we have put 48uHWn_ = 48uHW (3 N — n) ~ 28uHWN, since one
always has n <« N in the temperature range of interest.

13



%‘%‘ — (W + w)n + 26uHWN (15-3-8)
Here we have put 48uHWn_ = 48uHW (3 N — n) =~ 28uHWN, since one
always has n < N in the temperature range of interest.

Let us now investigate various cases of interest. Consider first the equilib-
rium situation in the absence of an applied rf field, i.e., with w = 0. Then

dn/dt = 0, and (15-3-8) yields for the equilibrium excess number of spins
no = NBuH (15-3:9)

This is, of course, the result which follows from the canonical distribution
according to which one has in equilibrium

etPuH _ Nl + BuH

1
" = N g oo g N & Auh)

so that no = n, — n_ assumes the value (15-3-9)

Hence (15-3-8) can be written in the form

% = —2W(n — ny) — 2wn (15-3-10)

14



> %% = —2W(n — ng) — 2un (15-3-10)

In the absence of a rf field when w = 0, this yields upon integration
n(t) = no + [n(0) — no) e—27¢ (15-3-11)

where n(0) is the population difference at the initial time ¢ = 0. Thus n(¢)
approaches its equilibrium value n, exponentially with a characteristic ‘“relaxa-

tion time” (2W)~!. Obviously, the la,rger the interaction W of the spins with
the lattice heat reservoir, the shorter the relaxation time.

Suppose now that the interaction of the spins with the lattice is very weak,

so that W = 0, and that a rf magnetic field is applied. Then (15-3-10)
becomes

dn
?t = —2uwn
so that n(t) = n(0) e~ (15-3-12)

15
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Dynamic nuclear polarization; Overhauser effect
Nonequilibrium methods for achieving nuclear polarization (the so-called
“Overhauser effect’”’ being one such method) provide a particularly illuminating
illustration of the ideas presented in the last few sections. Consider a sub-
stance containing both nuclei of spin 4+ and magnetic moment p., and also
unpaired electrons of spin 4 and magnetic moment g, (u. < 0). The substance
is placed in an external magnetic field H pointing in the z direction. Suppose
that the principa.l interaction of a nucleus is with an electron through ‘“hyperfine
interaction,” i.e., through the magnetic field produced by the electron at the

positign-ef-thenucleus. (Th1s interaction is described by a Hamiltonian of the
for here I is the nuclear and S the electronic spin angular
momentam € no z component of external torque acts on the system

consisting of nucleus and electron (i.e., since the total Hamiltonian of this
system is invariant under rotations about the z direction), the ¢otal zcomponent
of angular momentum (7. + S.) of this system is a constant of the motion.
Thus the transitions induced by the interaction between a nucleus and an
electron must always be such that whenever the nucleus flips its spin from ‘‘up”
to ‘““down,” the electron must flip its spin from ‘“down’’ to ‘“‘up,” and vice
versa. We shall denote the transition probability per unit time due to this
interaction by W,.(+ — — — <4) where + and — indicate up and down
orientations of the nucleus n, and 4 and — up and down orientations of the
electron e.




The nuclei interact then predominantly with the electron spins, which in
turn interact appreciably with the lattice heat reservoir. It is through this
chain of interactions that the nuclear spins attain the thermal equilibrium
situation corresponding to the lattice temperature T = (k8)~!. Letn, and n_
denote the mean number of nuclear ‘““up’” and ‘““down’’ spins; let N, and N_
denote the mean number of electron ‘““up” and “down’” spins. In thermal
equilibrium one then obtains, for the nuclei of energy ¢, = Fu.H,

n + Bﬁﬂnﬂ-
n_ e BmH

= g¥mH (15-4-1)

Also for the electrons of energy E, = Fu.H,

Bu.H
%i —— ee—::;'ﬂ ] ezﬁl‘cﬂ' (15‘4-2)

The degree of polarization of the nuclei and electrons can be measured by the
respective ratios defined by

_N,-N_
N, +N_

ngy — n-
’n.|.+‘n_.

£n and £ (15-4-3)
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The degree of polarization of the nuclei and electrons can be measured by the
respective ratios defined by
— N+ - N_ .

and f_'N++N (15-4-3)
Each £ lies in the range —1 < ¢# < 1. Since |u| = 1000|u,|, it is clear by
(15-4-1) and (15-4-2) that £, < £.. Even if one goes to such high applied
fields H and low temperatures 7 that the electrons are a,pprecia.bly polarized,
the degree of nuclear polarization is thus still very small, in particular much too
small to do nuclear physics experiments on polarized nuclel

ny — N-
n, +‘n_.

En

From the point of view ef the transition probabilities one can regard the
combined system (n + e) of nucleus and electron as being in thermal contact
with the lattice heat reservoir. It then follows by (15-2-10) that the transition
probabilities must satisfy the relation

naEi‘ :: _T_ i; = g Ble-+Es—e4—E-) — p—28(ua—p)H (15-4-4)

21



detailed balance

n+N..WM(+ — ) — +) = H_N-l.Wne('_ + — + _)

N N obu—nont
n_ N.|.

Imagine, however, that an rf field is applied at the electron-spin resonance
frequency and suppose that it is strong enough to saturate the electron-spin
system so that N, = N_. If one assumes that the detailed balance condition
(15-4-5) remains valid in this steady-state situation, (15-4-6) becomes

> ::_'I' — ezﬂ(ﬂn—i‘-)-ﬂ ~ e—zﬂF-H (15’4.7)

22



Thermodynamics of Irreversible Processes
and the Onsager Reciprocal Relations

In many reversible processes, such as the dielectric polarization of a
crystal by an electric field, it is well known that the response matrix is
symmetric. Thus if in an anisotropic crystal the polarization P 1is
related to the electric field E by

‘ P, = x11E; + x1:E, + x138;;
(33.1) P, = xa1lly + x22E, + x23k;;
P, = x51E; + x3:B, + x338;

there exist among the matrix elements of the susceptibility tensor x the
relations

(33.2) Xij = Xjiy

23



dUA=TdO'+PdE,

FA-_—- UA—TG';

dFy = P+ dE — o dr,

aFA)
Pt B (aEi T

Consequently

(33.7) Xij =

which must be equal to

(33.8)

(?' =,Y, 2).

th' — (

G5). - Gyo)
0E;/. \OE;dE,).

9%, )
]
OE; 0E,;/,



the coefficients £;; in the relations

dr
Je = £118 +£12'('Z'“;
X

(33.14)

d’r‘
dz’
one relation involving the coefficients is found to hold. The relation-

ship is not in this instance as obvious as £12 = £33, for reasons which
will emerge

Jg = £218 + L2

25



Vsuvka

Now f, is a function of the energy e; the temperature r; and the
chemical potential u; the energy is a function of the velocity. Thus
we have 2,

oo [ o du), o dr

41.4
( ) dx ou dx o7 dx

Pre chemicky potencidl idealneho klasického plynu v objeme V pri teplote T sme
odvodili vztah

NVg,
=

o= kT In(

kde
2mh?

Q= (7
Ak namiesto volného idedlneho plynu uvazujeme idedlny plyn v konStantnom
potenciali U (o prakticky znamena len predefinovanie nulového bodu energie
jedno¢asticovych stavov ¢ = p?/(2m) + U, dostali by sme pre po zopakovani
predchadzajiceho postupu pre chemicky potencial vzfah

jafz

NV, :
.Q) +U

p = kT In( v

26



Klasicka limita

Vsimnime si teraz klasicky pripad, t.j. situacin ked stredna obsadenost vietkych
jednocasticovych hladin je ovela mensia ako jedna, teda ked

Takato situacia nastane nezavisle od toho, ¢i uvazujeme fermiony alebo bozony
viedy, ked plati
— £

1
T ) €

n(g) =~ exp(

Predpokladajme teda takiuto situaciu, uvazujeme klasicky idealny plyn. Nasim
cielom je najst vyjadrenie pre chemicky potencial idealneho klasického plynu.

Stredny pocet castic v celom uvazovanom objeme plynu dostaneme sumovanim
strednej obsadenosti cez vietky jednocasticové stavy. Bude teda

— — £
N =Y et %)
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L

Sumovanie cez jednocasticové stavy mozeme nahradif sumovanim cez jednocasticové
energie

— &
kT )
Sumovanie teraz mozno priblizne nahradif integralom cez spojité hodnoty energie
A7 =g
N = [ dey’(e)ex
[ dee@ e

kde p(g) udava pocet jednocasticovych stavov s energiou mensou ako «.

N = Z 2(e) te:r,:p{’t'L

Podla modelu " ¢astica v jame” dostaneme pre ¢astice so spinom 0

o 3/2
e(e) = %-:r (—QmL ) g2

m2h?
Poznamenajme, Ze hoci uvazujeme klasicki limitu, pri ktorej sa stiera rozdiel
medzi fermionmi a bozénmi, fakt degeneracie hladin vzhladom na spinové stavy
prezije i klasickil limitu. Pre ¢astice s roznym spinom sa preto i v klasickej limite
dostanii rozne vysledky lisiace sa viak len faktorom degenericie vo vyraze pre pocet
stavov. Preto budeme uvazovaf najjednoduchsi pripad bez spinovej degeneracie. Po
dosadeni a preintegrovani dostaneme

_ 1V I
N = V_Q exp(-—=

orh2\ */?
Vo = (ka)

kde sme oznacili

v



kT
orh2\ %2
Vo = (mki"’)
ﬁ-’« Vo
— N—=
exp( 17 Vv

= kT In N—



Chemicky potencial vo vonkajsom poli

Pre chemicky potencial idealneho klasického plynu v objeme V pri teplote T sme
odvodili vztah

NV,
= kT Q
p n(—)
kde ,
2mh
V — 3;’2
o= 5T

Ak namiesto volného idedlneho plynu uvazujeme ideadlny plyn v konstantnom
potenciali U (éo prakticky znamena len predefinovanie nulového bodu energie
jednocasticovych stavov e = p*/(2m) + U, dostali by sme pre po zopakovani
predchadzajiceho postupu pre chemicky potencial vzfah

Vo) 4 v

p= kT In( %
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Zmena energie o konstantnii hodnotu nema fyzikalne désledky, no predchadzajici
vztah mozeme velmi uzitoéne vyuzif, ak uvazujeme rozne systémy v kontakte s
vymenou ¢astic. Predstavme si dva idedlne klasické plyny zloZzené z rovnakych
castic, z ktorych jeden je vo vonkajSom poli U; a druhy vo vonkajsom poli Us.
Ak su tie dva plyny v rovnovahe, pricom si moézu vymienaf teplo i ¢astice, vieme,
Ze rovnovaha sa dosiahne, ak v obidvoch podsystémoch bude rovnaky chemicky
potencial. Musi teda platif

H1 = H2

V"?’ ) + Uy = kT In(

A VQ

Va
ked sme uz vyuzili fakt, ze system}r v tepelnom kontakte v rovnovahe musia mat

rovnaki teplotu. Pre objemové hustoty ¢astic n; = N;/V; teda dostaneme

kT In( + Us

T Ul - Ug

na kT :l
Toto je vztah, ktory uz pozname ako barometricki formulu a odvodili sme ho

z kanonického rozdelenia. Tento alternativny postup cez chemicky potencial v
niektorych situaciach je transparentnejsi.
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Electrical and Thermal Conductivity
in an Electron Gas

We consider a specimen with an electric field & in the 2 direction and
a temperature gradient dr/dx. Our program is to solve approximately
the Boltzmann equation for the distribution function and then to find
the flux of electric charge and of energy. We restrict ourselves to
the steady state (dc conditions), so that df/dt = 0. Then the trans-
port equation (40.10) becomes
o A [T

U
m ou ox T,

(41.1)

b

where u is the x component of the velocity, and e is the charge on the
electron. Rewriting (41.1) we have

(41.2) f=fo— 1. (;—Sj_i +ou gﬁ)

(41.3) f=fo— 7 (ﬁg-i’i‘? + uéﬁ})-

m ou ox
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(41.3) f=fo— 7 (E‘Ei{'{' + u@iﬂ)

m ou ox

Now f, is a function of the energy e; the temperature r; and the
chemical potential u; the energy is a function of the velocity. Thus
we have

afﬂ afg d,u 3fﬂ d‘T

41.4 S = e

( ) dx ou dx + dr dx
of dfo de df o

41. — = == — = —

(41.5) ou de du m Oe

The electrical conductivity is usually defined under the conditions
dr/dx = 0 and dN/dx = 0, where N is the carrier concentration.
Then 9fy/0x = 0, and (41.3) reduces to

(41.6) f = fo — 7.€8u fy/de.

The electric current density is given by

(41.7) Jo = | euf dv = —r1.e26 [ u%(9fo/d¢) dv,



The electric current density is given by

(41.7) Jo = | euf dv = —r1.e28 | u*(3fo/d¢) dv,
For the Maxwellian distribution
3
(418) fﬂ = N (ﬂ) e—mﬁﬂfﬂr,
27T

where v is the magnitude of the velocity:
(41.9) v? = 1.2 4+ 0,2 + 0,2
We note that for the Maxwellian distribution

0 1
(41.10) o _ _ = fo,

de T

so that, from (41.7),




But

and thus

(41.11)

and

(41.12)
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Fermi-Dirac Distribution

The Fermi-Dirac distribution function f(¢) defined by (19.17) may
be normalized to agree with transport equation usage as given in
(40.1). We have then, for spin 1/2, in the new normalization,

m\® 1
(41.13) fo = 2( ) fle) = (h) e/ 1

R . o
- (n1 +n3 +n3)

14 ., 14  2m
) Yo

537 = 25375

1 1 2m

(e )ds— frp(e )3 (2—52)3/2%61/2016
(=

n(e,e + de)de = frp(e)

E =

)3/2L3 3/2

e)p
n(e. e+ de)de = frpl(e )% )3/2( ) 2y
3

1
“Anvidu

m3h3 4

3

fole) = QFfFD(é‘)




The electric current density is given by

(41.7) Jo = | euf dv = —r1.e28 | u*(3fo/d¢) dv,

Now for 7 < u the function

d 1
de e 1

3 9 1
(41.15) J, = —2e%8 (ﬂ) f Tt — dv.

(41.14) > —§(e — p)

h de el ]
Now

4 4 2\ 1
(41.16) . wldv = — vtdy = — (_E) — de

3 3 \m/ m

8 .
T /B mhai



(41.17) Jo = €2 & r,(u)u¥(161/3) V2 m~%(m/h)3,

wo = (h2/8mm)(3r2N)%

so that (at 7 < u)
(41.18) ¢ =J,/8& = Ne¥r,/m, |

which is identical with the result (41.12) for the Maxwellian distribu-

tion, except that now we do not have to assume r, independent of
velocity; 1t is only the value of 7, at the Fermi surface that enters the
conductivity.



Thermal Conductivity, Maxwellian Distribution

We now carry through in the Maxwellian limit the problem of deter-
mining the coefficients £;; in the general relations (34.1):

d
Je = £118 -I-eﬁlz—T;
dx
(41.19)
Jg = £2186 + £ EZ
g = £216 2
We bear in mind that § = —d¢/dx. We assume for simplicity that

the relaxation time 7. is independent of velocity. We have already
evaluated £1; = ¢ = Ne?r,/m. Next consider the term £;5,. From

(41'8)1 3%
fﬂ = N (ﬂ) e—m«‘uﬂfﬂr,

2T

%_(f_é) 1dr
(41.20) oz~ \; T2)



JQ = fuﬁfd?
_ €& afu 6fﬂ)
J=Jo Tc(m ou +uax
of _ dfo de _ mu-%"
ou de du de
dfo 1
de *rfm
%o _ (5 _ §) g Ldr
ox - T 2 qu:t‘:’

&
Jo = [ uef dv = dNerer — ONTer dT'
2m m dx




the coefficients £;; in the relations

Jﬂ £118 + GB]'.2

-
d .‘l‘
(33.14)

dr

Jq = 3218 +£22 dxl

Nez*rﬂ
L£11 =0 = ;
m
Ne'rc
L£19 = — ;
m
0 SNer,r
21 = )
om
ONr,r
L£992 = — ‘



A basic theory which explains why reciprocal relations are found in
irreversible processes has been given by Onsager. The technique is to
look at the decay of a fluctuation. We consider an adiabatically
insulated system, represented by a microcanonical ensemble. We look
at it at an instant of time at which, by malice or by chance, the ensem-
ble is in the throes of a fluctuation from statistical average behavior.
Let a3, ag, * * =, a, denote the deviation of appropriate physical
parameters from their equilibrium values. Then

(33.15) Ao = —F 2 gaaiar,

where ¢;; is a positive definite form so that As¢ in a fluctuation from
equilibrium 1s never positive. Terms linear in the o’s are excluded
because the entropy is a maximum in the equilibrium state.

Recalling the connection ¢ = log AT', the probability of finding the
system with parameters in de at « is, according to Sec. 26,

eﬂ'dm_
[ e de

(33.16) P(e) de =



(33.15) Ac = —% 2 gaajar,

Now introduce the quantity

0
(33.17) X; = —E_ = - Z Jik0k,

which acts as a driving force for an irreversible or transport process.
We shall call X; the generalized force. If g** is the reciprocal matrix to

gix, We have
(33.18) o = —2 g% Xy

Now consider the ensemble average

(33-19) {I.l_XJ- =]a1.XJ.P dl'l! =f

e’ da
f e’ da

P(a) da =
Q; i de,
&y

using (33.16) and (33.17). On integrating by parts,

————

(33.20) @;X; = —[ Pé;;da =
Further, using this result,

- bi;.

(33.21) X X;=— E givex X = gij,
2




(33.22) oy, = — ) ¢*Xpa; = g,
k

Because of the invariance of the equations of motion under time
reversal, the correlation function must have the property

(33.23) ai(t) a;(t + 1) = a;i(t) ot — 7).

Here and below in this section the averages are to be taken over a
subensemble of all systems with the given values of the o’s at time ¢.
If magnetic fields or Coriolis forces are present, it is understood that
the sign of such fields or forces is to be reversed between the two sides
of this equation. This preserves the invariance of the equations of
motion. An alternate statement of (33.23) is that

(33.24) o;(t) a;(t + 7) = a;(t + 7)e;(2),

so that

(33.25)  a;(®[e;(t + 7) — aj(t)] = aj®)[a;(t + 7) — a;()].



(33.26) dag/dt = 2 Cyjaj,

or

(33.27) J; = dag/dt = T Ly X;;

here*the time derivative is defined as

(33.28) da;/dt = 7 You(t + 7) — o (t)].

Here the time 7 is to be taken as longer than the collision time for an
individual process but shorter than the time for the decay of a macro-
scopic fluctuation. Combining (33.17) and (33.27), we have

(33.29) do/dt = 2 Xl ;.

./

33.17 s = —
( ) ’ da;

10



(33.25)  ai()[e;(t + 1) — ()] = aj(O)[e(t + 7) — a;(?)]

(33.27) J; = dag/dt = T Ly X;;

here’the time derivative is defined as

(33.28) da;/dt = T_llﬂii;(t + 7) — a;(?)].

Here the time = is to be taken as longer than the collision time for an
individual process but shorter than the time for the decay of a macro-
scopic fluctuation. Combining (33.17) and (33.27), we have

(33.29) do/dt = 2 X:J s
Now from (33.25) and (33.27),

(33.30) a;(t) Z ijxk = a:j(t) z L{k}fk.
k k




(33.20) o:;*XJ- = '-f Pa,,.;;,- dt‘! = '—31;5.

(33.30) ot;(2) Z L X3 = ay(t) E Likxk-
k k

Using (33.20),

— Z Lijpdp; = — ZLikak;f:
% p

or
(33.31) Lj; = Ly;.

This is the Onsager relation. We note that it obtains only when the
forces X; are defined by (33.17) and the fluxes J; by (33.26) and (33.27).
It is rarely a trivial problem to find the correct choice of forces and
fluxes applicable to the Onsager relation. In the next section we
discuss the forces and fluxes which describe charge and energy trans-
port in a homogeneous conductor.

12



Application of the Onsager Relations
to Charge and Energy Transport

in a Homogeneous Conductor

T T+AT
=0 Ap
1 2
-
I =111 A¢ + 112 AT Je “£1lg+£12d ’

W = 321 ﬁgﬂ‘ —|— 522 AT

dr
Jg = £218 + Log — 7
x

13



first reservoir is at temperature 7' and potential 0; the second is at
temperature T + AT and potential Ap. Let n = —n; = ny denote
the number of electrons of charge ¢ transferred from 1 to 2; the energy
transfer is denoted by AU = —AU; = AU.,.

The change of entropy of reservoir 1 as a consequence of the transfer
is, according to (8.1) and (15.3),

(34.2) oy = — AU 4 [E] n,

T T

where u is the chemical potential or Fermi level for ¢ = 0. Similarly,
for reservoir 2,

(34.3) A, = AU _[#(‘r+&f)+q5ﬂn

T + Ar T + Ar

14



(34.4) Ao = Aoy + Acp = AU[

W]'l aTa

1
T + At

|

i"
T

Ar 9
q Or

(

7

T

15



(34.5)

where

(34.6)

(34.7)

(34.8)

(34.9)

d(AU) [ Ar dn[Ae Ar 8 [u
— Ao = — =) —g=|— Y N
dt dt T dt | = q Or \7
= 2 J@'Xi',
d(AU
J1 = (T = Energy (thermal) current = W;
Ar ,
X, = (— —2) = (Generalized force for energy current;
T
d
Jo = ¢q E?: = Hlectric current = I;
A Ar 0
Xg = — e _ T2 (E) = Generalized force for electric
T q Or \r

current.

16



Using this definition of currents and forces we can write the currents
J; as J; = EL"’-"’X-"F’ where the L;; satisfy the Onsager relation L;,

=L21:
[ Ay Ar 0 [fu Ar
4.1 I =1L - — — L —):
(34.10) s qﬂf()]+ 12( fz)’
[ Ap  Ar O /u Ar
34.11 W =Logy| —— — ——|- L — — )
( ) 21_ . an(T)]-l- 22( 7_2)
L
dr _21=£21
Je —3118+£12d, T
Loy 0 L
Ty = 2316 + £93 2 _EE_(E)__?:JB”
q — 21 de' e T \T T
L
_11_£11

T 17



— = £
i
Ly 0 (#) Lo
——— T\ — 5 = La
e Or \7 T
L1
— = L£11
.T
Li1 0 [(u Lo
() ke,
e oOr \7 T

Now, if Ly; = L9, we must have from these results

£11 0 £
(41.30) g (E) ~ 221 _ 2.
e Or \r

18



Now, if Ly; = L9, we must have from these results

£11 0 L
(41.30) o g (E) a2 S
e Jdr \r T
Ne?r,
NV L1y =0 = ——
= kT In( v ) m
YL, Ner,
Q= (—=)"" L12 = — - ;
B 5Nercr_
_‘9_(&) L E_ 21 — 2‘?}‘1 ’
or \7 2r
S5Nr,.r
22 = -

3Ner, bNer, Ner,

- - b

2m 2m m




Green function

From Wikipedia, the free encyclopedia

Green function might refer to:

« Green's function of a differential operator.
» Deligne-Lusztig theory (Green function) in the representation theory of finite groups of Lie type.
e Green's function in many-body theory.

In mathematics, a Green's function is the impulse response of an inhomogeneous
differential equation defined on a domain, with specified initial conditions or boundary
conditions. Via the superposition principle, the convolution of a Green's function with an
arbitrary function f(x) on that domain is the solution to the inhomogeneous differential
equation for f(x).

Green's functions are named after the British mathematician George Green, who first
developed the concept in the 1830s. In the modern study of linear partial differential
equations, Green's functions are studied largely from the point of view of fundamental
solutions instead.

Under many-body theory, the term is also used in physics, specifically in quantum field
theory, aerodynamics, aeroacoustics, electrodynamics and statistical field theory, to refer
to various types of correlation functions, even those that do not fit the mathematical
definition. In Quantum field theory, Green's functions take the roles of propagators.

LG(x,s) = 6(x — s)



Green's function (many-body theory)

From Wikipedia, the free encyclopedia

In many-body theory, the term Green's function (or Green function) is sometimes used
interchangeably with correlation function, but refers specifically to correlators of field

operators or creation and annihilation operators.

The name comes from the Green's functions used to solve inhomogeneous differential
equations, to which they are loosely related. (Specifically, only two-point 'Green's
functions' in the case of a non-interacting system are Green's functions in the
mathematical sense; the linear operator that they invert is the Hamiltonian operator,

which in the non-interacting case is quadratic in the fields.)



The retarded Green’s function of the Schrodinger equation G*(xy, x;;t4,¢;) is defined (up
to a factor of —¢) as a probability amplitude of a particle to hop from the point x; at a
time ¢; to the point z, at a time ¢y, where ¢y > ¢;. In other words, the Green’s function
coincides with a wave function ¢ (z,t) of a particle evaluated at a point x = z; and time
t = t; whose wave function at time t; was ¢(x,t;) = —id(z — x;) (The coefficient —i is
introduced because of a standard convention). At the same time, if t; < ¢;, the retarded
Green’s function is identically zero. The regarded Green’s function, by construction, must

satisfy the Schrodinger equation

Bz, 2t A
EaG (méfu ? 1) = H('Ijt) G(:E,x,,;;t, ti)? t > tz‘. (11)

It must also satisfy the boundary condition

tfggl+0 G(xp, xitp,t;) = —id(xy — ;). (1.2)



It is easy to check that the retarded Green’s function has the following expression in
terms of the eigenfunctions ), and the eigenvalues E, of the Hamiltonian, as long as

t; > t; (the assumption here is that the Hamiltonian does not change in time):
G (g, @ity ;) = =iy _exp (—iE, (tf — ;) Yn(z )1y (2:). (1.3)

Indeed, if t; > ¢;, this expression explicitly satisfies the Schrodinger equation. At the same

time, if t; — t;, then using a well known relation
> n(zp)n(zi) = 6(zy — 1) (1.4)

gives us (1.2).
It follows from this definition that, if a particle’s wave function is ¢;(z) at time ¢ = ¢;,

its wave function at £ =ty > t; is

Us(e) =i [ dy GP(a,ysty, L)), (15)



The Fourier transform of the Green’s function is very useful. In case of the retarded

Green’s function, this is defined by
Gz, 2i, E) :/ dt eP'G" (x4, 1), (1.6)
0

Substituting (1.3) we observe that we need to compute integrals of the form [;°dt "t
and these are not well defined if E' is real. However, if F is complex, and if its imaginary
part is positive, then this integral is well defined. It is customary to denote the real part

of E simply by E, and the imaginary part by €. This gives

R _ - ¢n($f)¢;(mz)
G (:Bf,a:“E)—; Etic— B, (1.7)
It is easy to see that
(E—I—z'e— H(m)) Gz, z,w) =0 (v — ;). (1.8)

Formally this means that the Green’s function can be understood as an operator

OR !

= —. 1.9
E+i1w€e—H ( )



E.S.Abers, B.W.Lee, Phys.Rep. 9,1 (1973). Je tam urobend zakladna filozofia
integralov po trajektériach v QM a prechod do euklidovskej formulacie ako
analyt. predlzenie. Odtial to odpisal a trochu okomentoval Amit

D.J.Amit, Field theory, renormalization group and critical phenomena,
McGrawHill 1978

Trochu matematickejsi je Vasiliev: A.N.Vasiliev, Funkcion. metody v kvantovoj
teorii polja, I1zd. Leningradskogo Universiteta 1976

B. de Wit, Functional methods in quantum field theory, NIKHEF-H/81-27



Logika je takd: Od Feynmana vieme, Ze (pre jednoduchost v jednorozmernom
pripade) plati

£

2 l‘y | 0,4 _ L | .
= 9. t> g%o@z o 51{ SX%QV’U" (* |
g5

Teda, Zze nejaky maticovy element prechodu sa rata cez funkcionalny integral.
Tato vec potrebuje komentar. |¢,t) je Heisenbergovsky stav, ktory oznaéuje
stav s touto vlastnostou: ked urobime v ¢ase t meranie suradnice na tomto
stave, dostaneme ostru hodnotu q.

Treba si uvedomit, 7e stav |¢,t) ako vektor v Hilbertovom priestore nezavisi
na €ase. Symbol t nie je asova zavislost vektora ale ¢ast mena toho stavu
(Cast hieroglyphu).

Casova zavislost je potom schovand v éasovej zavislosti operatora stradnice
q(7). (t je fixnd hodnota, T je premenna, oznacujuca Cas, v ktorom sa systém

vyvija.). Plati teda £ (n ,
D@( ) \D‘zt t>} =g (21{7>
=t



VSimnime si este maticové elementy typu

b s i§(£‘>*_§.(tb>1\‘i:t> e Lt gt <t

; ] | ! J
?*C unu\wuiﬂ Nz »L\.{;olm wa."-s't'"«, f{.a(\ﬁwa “&ﬂtﬂ\-}

Stawer o doilrnaRvn

SIS e (ST R A e
i Sg{o?,‘ dQLGEE‘LOLEH (2,1{-1 \24|;{;‘1><2'“‘qui(&d)lﬁll{‘l><2bl:&1 L?;, tz i
<25 3819,8S <ot lo ¢S =

I gotziotg,.dz#sa RO A S AR A TN
1 9<2i“2%> <2'~u£1}£= t>=.



I SA:& dj: <2‘rtl\ 2*!%‘1»24 4211{1 l.?:s I{L>=<’Ql</€3|t2r\—%‘k> Ii

Teraz by bolo treba dosadit vyjadrenia tych maticovych elementov cez
kontinualne integraly. Ukazalo by sa, Zze sucin tych integralov je to isté ako jeden
kontinudlny integral cez trajektdrie z g do q', ale len cez také trajektorie, ktoré v
Case t, idu cez bod g5 a v Case t; cezbod q; .

t'




T

SA& dj: <Q‘rtl\ 9_"“%"1»24 4»211"‘1 l.?:s f+’->=§'1<23|t2-\—%‘€> i

[
-

a po preintegrovani cez g4, g3 sa dostanu lubovolné trajektorie spajajuce g a q'.

<2‘tJé | ift*>§(tb>|§¢[5 il ;
. > oy, |05 9ldalh) e ( §£@‘w.€&%
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keby sme ratali
<IE | )G g, > peil 2Nl

teda to, o T produkt nepusti, dos’EaIi by sme v obdobnom medzikroku

toto sa ale neda spojit do jednej trajektorie, lebo ta by v Casti iSla v ¢ase
dozadu

11



Preto kontinualny integral

1

I\
g@% gle) D exp (4 gf(gfe)ﬁcm)am> (%)

rata oblozenu hodnotu T-produktu, hoci to z tohto vyrazu vobec nevidno. Je to
schované v tom, Ze uvazujeme len trajektoérie iduce v Cas stale len dopredu.

Pomocou kontinualnych integralov teda vieme ratat amplitady (a s pripadne
vloZzenymi T-produktmi) typu
<L [y SES

Casto nas ale viac zaujima amplitida (pripadne s vloZzenymi T-produktmi )typu

A A Wi

kde [?) oznacuje zakladny stav. Vietci vieme, Ze (**) aj (***) sa rataju
pomocou vyrazov typu (*). Ibaze (**) a (***) su rozne veci, tak sa musia ratat
dajako odlisne



V malo starostlivych textoch sa v kontinualnych integraloch nepisu integracné
hranice. Ale v roznych hraniciach prave spociva trik rozliSujuci (**) a (***).

Povieme najprv vysledok, potom bude komentar

L bt .

e e ———
.
-

Grogm>s (g 2 Gi(temsm)as) )

——

<¢'*ﬂ(¢'"°ﬂ7= R exp (+Ckcmf( (o) 5(’&))41"
82 “Ew 27 » %)

———t
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Let lg, ), be the Heisenberg picture state vector describing a state which at time ¢ is an eigen-
state of the coordinate Q,; with eigenvalue g:

Qu(D1g )y =qlg, )y,
= oif —iH.
Q, () =efQ e, (11.1)

where Qg is the time-independent position operator in the Schroedinger picture, and / in the ex-
ponent is the Hamilte@nian. The state

Iq) =g, 1),

is an eigenstate of O, with eigenvalue g:
Q.19 =qlq)>

and

g, 1), =e*fiq). (11.2)

14



The transformation matrix element
F(q',t;q 1)=4(q t'q, )y =(q' lexp{—iH({" — )} Ig) (11.3)

plays a fundamental role in quantum mechanics. We are going to express F(q', t'; g, t) as a path
integral. We shall subdivide the time interval into n» + 1 equal segments, and define

t,=lett, t'=(n+1)e+t. (11.4)
We make use of the completeness of the state vectors lg,, #,) to write

Fg',t: q t)= qul(tl)qug(tz)f....qun(rn)@', t'q, 1% G,y tao 4Gy tlg, D). (11.5)

(q',€lg, 0> =<q'le"ieH|g) = 6(q — q') —~ 1 e(q' 1HIg) + O(e?) (11.6)

where the first equality follows from (11.3).

The Hamiltonian H = H(P, Q) is a function of the operators P and Q. Consider the case when
H is of the form

H=5P*+ V(Q). (11.7)

In this case
’ dp . ! d 1 r J
(@' 1HP, Q)lg) = [ explipla' = Q3P + V@) = [Soexplip(@ — DIH(p. 1(@+q) (11.8)
where H(p, q) is the classical Hamiltonian. We can write eq. (11.6) correct up to first order in ¢, as

dp .
(q, t)lq_ v, - “""’fg expli{p(q, — q,_\) — € Hp, 3(q,+ q,_ N} (11.9)



n+1 dp‘

F('-?, +q )_hmfn dql [—[ o

n—bm

n+1
exp { i 3 [pa,—q,_) — Hp,, 5 (a;+q;_)) (4=, )IN(11.10)
j=1

i=1 =1
dgd i L
Flg. t:qt)= J‘[ ;ﬂ;} exp{%f(pq—ﬁ(p, q))d'r] (11.1D)
t

which is a suggestive shorthand notation for the operation implied by the right-hand side of eq.
(11.10). Ineq. (11.11)

When the Hamiltonian has the form of eq. (11.7), the p-integration on the right-hand-side of
eq. (11.10) can be performed explicitly by making use of the formula

f exp{le(pq 3p?)} = [2me] V2 exp(3ieq?). (11.13)

16



2

F@' t;,q t)= lim fﬁ 2:;:‘] - eXp [i nil E[%(E‘L— qj_l) B V(m):”
j=1

n— € 2

oo

where L is the Lagrangian,
L=214%— V(g (11.15)

and g, =q(t)and gq,,, =q'(t,, ).
The quantity

S = [L(q, ¢)dt (11.16)

is the action which generates the temporal development of the quantum mechanical system de-
scribed by the Lagrangian (11.15).

17



Next we want to demonstrate a crucial theorem. Let [ be a Lagrangian which does not depend
explicitly on time, and let ¢,(g) = (gln) be the wave function of the energy eigenstate In). In
particular, let ¢,(g) be the ground state. If the system is in the ground state at a time 7 in the dis-
tant past, we want to calculate the amplitude for it to be in that state at a time T in the distant
future, when an arbitrary external source term J(¢)g(¢) is added to L between T and T".

To do this, consider

dpd o
Q. T'Q, TY =f[£2;] exp [i [ pa - H(p, ) +Jq)dr (11.29)
T

where J is an arbitrary function of ¢, except that we restrict it to be non-vanishing only between
tand ¢', where T" > ¢ > t > T. We can write eq. (11.29) as

Q. TIQ, TY = qu‘ qu (@, T'lg’, ¢' Mg, g, t¥ (g, tiQ. T). (11.30)

Now (g, t|Q, T) and (Q', T"Ig’, t'} are given by formulae like (11.29) without the J(7)g(r) term.
Let us insert a complete set of energy eigenstates in (g, ¢1Q, T):

(q. t1Q, T) = (glexp{—iH(t — T} Q)= 23 ¢, (q)*(Q)exp{—iE (t — T)}. (11.31)

The T-dependence in (11.31) is known explicitly because we have required J(7) = 0 between T
and ¢. Therefore, we can continue T along the positive imaginary axis. In that limit, all the terms
with n» > 0 drop out, as T = i=~, and

r“m- exp(—iEoT)g, t1Q, T = ¢olg, 1)ea(Q),
dolg. 1)= do(glexp(—iEqt). (11.32)
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We can do the same analysis for (Q'T"Ig't'). Therefore, provided Q and Q' approach some con-
stants in the limit, we have

Q' T'Q, T/
lim ST = [dg [dq’ 62q' )G F'lg, Y u(g. 1) 11.33
o JUNIIRIIF CKp{-—lE@{T— T)}¢§{Q]¢D{Q) f qf q olq q q ¢'0q ( )

T — je=

which is the theorem we set out to prove. The right-hand side of (11.33) is just the ground state
to ground state amplitude of interest, since t' and —f can be taken as large as one pleases. Let us
denote it, symbolically, as W[J]. Then eq. (11.33) tells us how to calculate W[J].

(2|l*m\2l~m>= S@z ¥ (-(—C gf(s(Q)IS(T>)O(?> f
<pr=tf-=7 = (a ep(+‘himf( (v) §(?))dT
¥p (t¢ ) § L))dk
oz e (e G sy
— ——t
(B)
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Integral (B) sa mysli tak, Ze najprv sa urobi v realnych ¢asoch

<glelge> = F(y &) _
38! §x

a potom sa ndjde analytické prediZenie funkcie F(t,t") do bodu F (+ico, —io0)
v komplexnej Casovej rovine. To Co sa takto dostane je maticovy element

<§?5’ + O [ ;E(I il ﬁ,_\.>

az na nejaky trivialny faktor, o ktorom bude rec neskor.



" Na obr. su dve mozné trajektorie
q(1),q(—i0) =q' = 0,q(iv) =q =0

Tie trajektorie bezia ,,dopredu” v komplexnom case,
pricom pojem dopredu je definovany na bodkovanej
Ciare v komplexnejrovine 7.
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Samozrejme, vec ako AU - il

by nebola zaujimava, keby |)) bol zakladny stav celého Hamiltonianu, lebo

potom by bola ta ¢asova zavislost v maticovom elemente trivialna. To, o médme
naozaj na mysli je

AN j@).ﬁ(t\) - Ied=0 o TEE

V
J ’_tf{'t4

Teda vonkajsi zdroj zapnuty v (redalnom) Case t; < 7 < t, a () je zakladny stav
prislusny k hamiltonianu bez vonkajsieho zdroja. Zaujimame sa teda o

pravdepodobnost toho, Ze zakladny stav prejde na zakladny stav, ak zapneme a
potom zas vypneme vonkajsi zdroj J.



Dobré je to na to, ze si tak vyrabame generujuci funkcional greenovych funkcii,
napr.

o~1

P CARIC DY TN ?;uw v <) =\g, - 0>
{ tb

Nakoniec sa zaujimame len o connected greenove funkcie, ktoré sa dostanu

predelenim faktorom
{52{./ tee | ?/F"%>

Neznamy faktor, o ktorom sme sa zmienovali takto z hry vypadne.
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—

Chceme mat redlne ¢asové argumenty pri G(t) v T-produktoch, preto /] musi byt
funkcia redlneho argumentu, preto ¢asova krivka na obrazku musi ist po realnej

osi v tych Casoch, ked' je zapnuté J.



t = —ir { @ E = —ipy | @
{Euclidcan Euclidcan}\
ﬁ space space
o) £\

. >

e e e —
Minkowski J & Minkowski
space space

(a) (b)

Fig. 1.1. Direction of Wick’s rotation from Minkowski to Euclidean space (indi-
cated by the arrows) for (a) time and (b) energy. The dots represent singularities
of a free propagator in (a) coordinate and (b) momentum spaces. The contours
of integration in Minkowski space are associated with causal Green functions.
They can obviously be deformed in the directions of the arrows.
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Je vypoctovo nepraktické prehupnut sa ku koncom z realnej ¢asovej osi na
imagindrnu. Jednoduchsie je mat cell trajektoriu na imaginarnej ¢asovej osi, tam
zratat veci ako

ol mBeae) acEBins = dGis )

a potom urobit analytické predizenie v 74, T, naspat k redlnym ¢asom. To je idea
Wickovej rotacie a prechodu k Euklidovskej tedrii pola.

Zistili sme teda, Ze pre pocitanie v kvantovej tedrii moze byt uZitocné ratat nejaké
integraly v Euklidovskej oblasti. M4 to byt len matematicky trik pre ufahéenie
vypoctov s tym, Ze nakoniec urobime analytické predizenie k fyzike v normalnej
Minkovského teorii.

Prirodzena je vSak otazka, Ci tie Euklidovské kontinualne integraly maju aj nejaky
fyzikalny vyzname ,,samé o sebe, tak ako su”.

Odpoved je taka: maju a dokonca dva uplne r6zne vyznamy.



Pozrime sa, €o urobi Wickova rotacia v podintegralnej funkcii

Q/(S | 1

—_—D \
Napr. pre harmonicky oscilator

Jobds oyuod —

| f6gr) e ag Lt e

Mekea

(’o)—v 4 (T ) = E (T")

) \L\_‘Cm ulj W LQUL \:

l A1)
5) = 5(~v) = (dij> aOlniD| (I l2eltt

-(w A (-0 AV

- "‘E’Eu o))
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( g garoa g 3‘2&&: —> g 2 ("j.e:;u.( ~2~evuz. >+ i g,wk(-:d’t):

Sl (900t D= A WU e {0t Ll
Ssli D il Q“Llat ’~S§é(€’3)‘?‘§,j‘h’

Tu sme definovali, Co nazyvame Euklidovskym lagranzianom. For je vtom, ze
Euklidovky lagranzian je vlastne energia povodného kvantového systému.

NesSpecifikovali sme hranice integralov, lebo zatial sa len tak hrajkame, robime
heuristicku investigativu.

To ze sme dostali v exponente energiu so zapornym znamienkom znamena ze
zaciname tusit suvis so Statistickou fyzikou.
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Vratme sa k otazke hranic

_‘:I
‘ H gff‘:]j A
Gl ¥ V3D = §%;-2 i

'\}0_ U S _f(\_w\kxnm VOuaa

: %ﬁf@b "y G = 226 @) ey (E o)
o

Po Wickovej rotacii
G(QJ q,a t— t,) — d(Qa q’a T — T,)

bude to zrejme greenova funkcia zrotovanej rovnice

e A
w =Y (<)

188 F5)= (og anel

dmr)
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keby tam v exponente namiesto T’ — 7 bolo 3, tak by iSlo o maticové elementy
nenormalizovanej (bez Z) , matice hustoty”

o = exp(—GH)
d(q',q) = (¢'| exp(—BH) |q)

,Matica hustoty” je zjavne operator ¢asového posunutia v rovnici (*), preto sa
netreba divit, Ze to tak vychadza.
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Teda: ak urobime Wickovu rotaciu v generujucom funkcionali a zoberieme

casovy interval 1

dostaneme element matice hustoty

d(q',q) = (¢'| exp(—BH) |q)

kde g, @’ su fixované koncové body trajektorii v kontinudlnom integrali.
Ak chceme dostat Statisticki sumu

1= s 20y * goi£ <35>

To sa da urobit rovno v kontinualnom integrali tak, Ze zoberieme trajektorie
zaCinajuce a konciace v tom istom bode g (s periddou ) a potom eSte
preintegrujeme aj cez q.



Zaver: Ak chcem spoditat Statistickl sumu nejakého kvantoveho fyzikdlneho

systému pri inverznej teplote 5, potom

* tvarim sa ako keby som chcel ten klasicky systém kvantovat, teda robit
kvantové maticové elementy prechodu

e ale namiesto toho urobim v kontinualnom integrali Wickovu rotaciu

* zoberiem vSetky periodické trajektorie s periédou 5

e preintegrujem cez vSetky body trajektorii, teda ni¢ nedrzim fixné

Existuje ale eSte Uplne ina Statisticka fyzika, ktora suvisi s tym kvantovym
systémom a ziskamu je z Wickovsky zrotovanych hieroglyfov.



Na integral

!

ACQQ‘““‘) ) (
ke A G

Sa da divat ako na Statistick sumu nejakého fiktivneho nekvantového systému,
ktory nijako nesuvisi s tym poévodnym nekvantovym systémom, ktory sme chceli
kvantovat pomocou kontinudlneho integrdlu.

Ten fiktivny klasicky objekt je Cosi ako ,,struna®. Mikrostav tej struny je dany
funkciou q(t), pricom krajné body tej struny su vo vsetkych mikrostavov
zafixované v bodoch g, g'. Energia struny v kazdom mikrostave je dana integralom
Euklidovského lagranzianu pévodného klasického systému.
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Rovnovazne ziarenie v dutine a termodynamicky
dokaz Weylove) vety

Abstrakt: Weylova veta je (pre mia) tazkid veta z matematickej fyziky o spektre Laplacianu.
Bola ako hypotéza vyslovena okolo roku 1910 a velky Hilbert sa vtedy vyjadril, Ze neveri, Ze by
ju niekto eSte pocas jeho Zivota dokézal. Weyl mu za Styri mesiace dékaz priniesol. Mo6j seminar
nebude Ziadna veda, len zname veci. PoktuSam sa vyrabat akysi u¢ebny text zo Statistickej fyziky
a pri tom si musim na staré kolena vselico ujasinovat. Mam dojem Ze sa mi aj podarilo nieco si
ujasnit a o nieCo starostlivejSie nez je obvykle zvykom sformulovat nejaky termodynamicky doékaz
a jeho sivis s Weylovou vetou. To pochopenie mi prinieslo ista radost, ktorti by som vam rad
komunikoval. Ak pocas seminara usidite, Ze miera mojej radosti je len mierou mojej uz senility,
vopred sa ospravedliiujem za nedostatok kritickej sebareflexie.



Statistical physics of electromagnetic field



Physics manifesto

We have a new physical system: electromagnetic field. It is a new animal in the physics
Z00. So we have to show how the physics manifesto works for this new animal.

* Find how to describe “current” state of the animal

* Find the equation of motion

e Predict future states

* If you cannot write down current state in sufficient details do statistical
physics instead

State of electromagnetic field: two vector fields E(7) B(7)
What are the equations of motion, how to predict future?

=/ Lo . OE(F)
rot B (7) = _a‘gf) rot B(7) = 0] (7) + pogo—,
OE 1 . 1. 5B
— = rot B — — Y ol
a1 10€0 603 5 rotF

Suppose we know the state E(t, 7), §(t, 7). The state after time dt should be

— 1 —
rot B(t,7) dt — —j
HOEQ €0

B(t + dt,7) = B(t,7) — rotE(t,7) dt

E(t+ dt,7) = E(t,7) + (t,7) dt




Note: boundary conditions

— 1 —
rot B(t,7) dt — —j
HoE0 €0

B(t,7) — rotE(t,7) dt

E(t+ dt,7) = E(t,7) + (t,7) dt

B(t + dt, 7)

These equations can in principle be used to predict the state after a small time interval
dt knowing the current state at the time t. And then iterate to further future, next dt,
and next dt an d so on. We can try to do it at least numerically on a computer. However,
we meet two problems:

* numerical instabilities. We either have be very careful with the choice of steps in
time and space or we have to choose more sophisticated numerical methods. This is
not a sign of some essential problem

* we will not be able to numerically approximate the rotations in points at the
boundaries. We have to use boundary conditions for the boundary points instead.
This is essential and it helps us to understand why the partial differential equations
force us to specify the boundary conditions. To know the initial state is not enough
to predict the future.



If you cannot write down current state in sufficient details do statistical physics instead

Heating stove: even if the fuel is burned out, no fire there, if you open the door you see
red light. There is electromagnetic field inside heated to temperature T. This is all we
know about the field inside. We do not know the detailed state (microstate). We just have
very reduced information:

There is radiation in the box of volume V, having temperature T. This sentence describes
the current macrostate. We assume that some relaxation time has already passed, so it is
an equilibrium macrostate. A priori we do not know if V, T specify the equilibrium
macrostate sufficiently, so that we can start statistical physics machinery. Just assume that
yes and we shall see later that V/, T is really enough. .



Statistical physics machinery

One macrostate can be realized by tremendously high number of detailed microstates.
Those microstates we denote just symbolically as i. Each microstate has well defined
energy Ej;. Statistical physics machinery looks like this

* Calculate E;
Z(V.T) = —
)= Yo ()
F(V.T
e Rewrite it as Z(V,T) =exp (—%)

* You can calculate anything of interest from F(V, T) by suitable derivatives. For
example radiation pressure
OF

P:—W



Statistical physics machinery

)

Looks easy, if you know hot to calculate sums over all possible microstates

2.

7
for the new physics animal: the electromagnetic field.
The states are given by fields. It is a field theory. The sum is a sum over all possible

fields!

E;
Z(V,T) =) exp (— o

Wiener functional integrals !1? ®

A way out: write down the states differently in a simpler but equivalent way. At least for a
free electromagnetic field in a box (possibly of arbitrary shape).
The first thing is to find what the states of the field look like.



Free field in a box

rotE = —6—B make rot rot
ot
0> —
= ’AE

We have all learned in quantum mechanics how to handle such equation. First we find
Laplacian eigenfunctions

AU (F) = —k>U(7)

We need solutions inside the box satisfying the boundary conditions and an additional
condition

V.E(F) =0

We find that good solutions exist only for a discrete set of k values. Let denote them k;. j

might be a multiindex. We assume, that the eigenfunctions @}(?) form a complete set of
functions, therefore the solutions of the wave equation satisfying the boundary
conditions and the zero divergence condition can be looked for as superpositions

Z@ (t);(7)



Free field in a box, states, discrete formulation

E(t,7) =) ®;(t)¥;(7)

Inserting this into the wave equation (equation of motion) we get

0°®;(t)
Ot?

= —621632-(1)3' (t)

These are equation of motion for independent harmonic oscillators whose “names” are j.

We see that the state of the free field in a box can be given by writing down the states of
a (discrete) set of independent harmonic oscillators as

{®;(0),D;(0)}

The frequency of the oscillator j is w; = ck;. The frequencies are directly given by the

spectrum of the Laplacian corresponding to the shape of the box and the boundary
conditions.



Free field in a box: how to do statistical physics

We have retold the whole story about our physics animal: the electromagnetic field in a

box.

e jts state is given as a set of states of independent harmonic oscillators with frequencies
Wj

e its future can be predicted by predicting the time development of the set of
independent harmonic oscillators starting with their initial states. This is trivial.

» statistical physics can be done by creating a canonical ensemble for the set of
harmonic oscillators. This is trivial once the spectrum w; is found. However, we have a
choice:

The oscillators can be considered as classical or quantum objects

There is no general formula for the complete spectrum of the Laplacian. It has to be
determined anew for each box shape and each boundary conditions. However, there is the
Weyl theorem describing the asymptotic distribution of w; for large frequencies.

First let us investigate what we can say without knowing the spectrum in details.

10



Calculating mean energy

We shall not do complete statistical physics, we shall just calculate the mean energy at
temperature T. Since wee have a system of independent harmonic oscillators, the key
point is to calculate the mean energy of a harmonic oscillator having frequency w at the
temperature T. Let us denote this as €(w, T). Then the mean total energy of the radiation
in the cavity will be given by a sum over spectrum

E(T) = Z E(w;, T)

It is more convenient to rewrite the sum as an integral introducing Laplacian spectral
density p(w) with the meaning that p(w)dw is the number of oscillators (j's) having
frequencies w; in the interval dw around w. The integral is certainly a good approximation

to the sum for large enough w. If one wants to be more precise one can consider p(w) to
be a distribution consisting of delta functions for small w plus an ordinary smooth
function for large w. Thus we get

B(T) = / (w0, T p(w)dw

From there we get for the spectral energy density (energy per unit volume per unit
frequency interval)

u(w) =



Energy spectral density

1
u(w) = 5&w, T)p(w)
* For classical oscillator we have E(w, T)=kT

This is disaster: there is no dependence on w. The portion of energies carried by very high
frequencies relative to small frequencies does not depend on T!!! If you open the door on
your stove, you get irradiated by deadly ultraviolet, roentgen and gamma radiation.
WRONG !

* For quantum oscillatorwe have  &(w,T") =

-
&

5000 K
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If the Laplacian
spectral density is not
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the large w asymptotic
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Energy spectral density
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Wavelength (um)

You can experimentally determine the Laplacian spectrum for your cavity:

Measure the energy spectral density
Divide by hw

exp (%) —1

You get the Laplacian spectrum p(w) for your cavity ! (For the boundary conditions

relevant for the electromagnetic field inside.)

13




Example of boundary conditions
Free electromagnetic field in a conducting box

Free electromagnetic field in a conducting box (like o

microwave) satisfies wave equation inside the box. The
more difficult part of the problem are the boundary /

condition.
Let us investigate the x-component of the electric field
E.(x,y,z) in a cube-like conducting box a X a X a. /

Tangential components on the boundary have to be /
zero

E.(x,0,2) = FE,(x,a,2) = E,(x,y,0) = E.(x,y,a) =0 T

According to Fourier: function E, (x, y, z) satisfying such conditions can be constructed from

the set of functions (cyclically for other components)

Erni = foma(2) Sin(@) sjn(h—z) where f-s are so far unknown functions
a a

The electric field has to satisfy the condition div E =0alsoin points with x = 0,x = a.
There the y and z field components do not contribute since their sinuses are 0 there,
therefore we get the condition for the derivative of f

f;::;n,l(o) - f:{:;n,l(a) =0

so the derivatives of f can be constructed from sinuses, so f from cosines.



Free electromagnetic field in a conducting box

We have found that the electric field automatically satisfying the boundary conditions
can be looked for in the form

[
Eo(2,y,2,8) = > gyt (t) cos("s ) sin( "2 ) sin(~)
— a a a
. ommnx nmy., . Amz
Ey(z,y,2,t) = E lEy;mng(t) sin( » )COS(T)SIH(T)
. mmx, . nTY Iz
E, Y, 2, t) = Eomni(t —_— —_—
(1) = 3 Bt sin( ") sin( 22 cos(—)

mmnl

where Ey.nni (£), Ey.mni (t), Ez.mni (t) are so far unknown functions. Actually not all these
functions are independent, because of the zero divergence condition, which gives the

conditions m nm I
7 xymnl (t) + ?Ey;mnl(t) + EEz;mnl (t) =0

so for any mnl only two of these functions are independent (for example the x and y

component). The third one can be expressed from the other two. We have got the

Laplacian spectrum: j = (m,n, 1), k; = (?nf%ﬂ)

15




Laplacian spectral density

The states (m, n, [) can be visualized in an abstract (m, n, [)-space as points with integer
coordinates in the positive octant. To each unit cube belongs on average one its vertex,
so number of integer-coordinate points for which w; < w denoted as ¢ (w)is 1/8 of the

volume of a sphere with radius r,, = Vm?2 + n2 + 2 = %a)

14 14  a
— 9 o3 — 9 S ()3
plw) = 2537, = 2g3m( )
The pre-factor 2 is for 2 “polarizations” for each
(m,n, ).
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Energy spectral density

L _
u(w) = 7&w, T)pw)
/;} 143 5000 K
CECE
_ hw E .l
E(w,T) = Ry 1 -
exp (37) — s
- 6 -
2 o
w 'a ¥
=V
plw) 2.3 3 o
£ o
£ 1 Wavelength (um)
u(w) =

We have got this for a special case cube-like box cavity with perfectly
conducting walls

17



How to measure u(w): make hole into the cavity

You can experimentally determine the Laplacian spectrum for your cavity:
* Measure the energy spectral density
* Divide by hw
exp (%) —1
* You get the Laplacian spectrum p(w) for your cavity ! (For the boundary conditions
relevant for the electromagneticfield inside.)

1 hw

B Vexp (%) — 1,0(w)

u(w)

RN

) 9= Jeu(w)

spectral energy density flow (energy per unit of the hole
area per unit of time per unit of frequency

RN

\\ AT RN

Easy argument using photons: photons have velocity ¢, averaging over angles
gives 1/4.

How photons enter the game ? Be patient, we come to it soon
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Kirchhoff Sommerfeld thermodynamic universality proof

/

/
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AR RN

Kirchhoff (1859) proved that u is a function of the arguments » and T and
that it is independent of the nature of the walls of the cavity. This proposition is
known as Kirchhoff’s law. In order to indicate the method of proving it let
us consider two hollow boxes 4 and B whose walls are different. Let us assume
that u in 4 is larger than in B, in a certain spectral region (v, dv). We now
connect A to B through a small tube which is opaque to all wavelengths
except v (color filter). In such an arrangement more heat would flow from
A to B than in the reverse direction, thus upsetting the state of equilibrium;
the temperature of B would increase and that of A would decrease until the
two values of u would have become equal. In this way a temperature difference
would be created “spontaneously” (without work being done on the system)
and such a result is inconsistent with the Second Law. We conclude that u
must be a universal function of v and T ; it follows from (1) that « is a universal
function of T.

19




Total u(w) universality cannot be true

1 hw
) = ey )
If u(w) is universal, then p(w) is universal as well, that is Laplacian spectrum is universal
for a cavity of arbitrary shape. This cannot be true for small w.

So there is a flow in the thermodynamic argument as was presented .

Small frequencies mean large wave lengths, which do not get through a small hole.
Everybody knows that: you can look into running microwave oven through net full of small

; holes. Visible light gets out, 15 cm microwaves do

not: our eyes are not burned.

20



Kirchhoff Sommerfeld thermodynamic universality proof
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The thermodynamic universality proof survives only for frequencies for which the
formula 1

is a good approximation, that is for large frequencies. Conclusion:

Laplacian spectral density p(w) is asymptotically universal.

This is roughly what Weyl’s theorem says.

21



We have presented a thermodynamic proof of the Weyl theorem



We have presented a thermodynamic proof of the Weyl theorem

Well, no.
There is another flow in the thermodynamic argument
Actually the thermodynamic conclusion is correct, just the argumentation is not
clean enough.

We have first to learn more about photons.

23



What is electromagnetic field?

We have retold the whole story about our physics animal: the electromagnetic field in a
box.
* its state is given as a set of states of independent harmonic oscillators with frequencies
a).
J

Electromagnetic field in a box

))D IS

a set of harmonic oscillators

NN

Stupid naive question: the oscillators run out from the hole?

24



What is electromagnetic field? Alternative

formulation
Eo(e,28) = 3 Eupant(£) cos(™2%) sin("™Y ) sin(72)
— a a a
MTT nmy., . Amz

Ey(z,y,2,t) = Z E\ymni(t) sin( » )COS(T) SIH(T)
mnl
mnr., . Ny Iz

E.(x,y,2,t) = Y Fon(t) sin( ) sin(—=) cos(—-)

mmnl

Electromagnetic field in a box
IS
a set of stationary waves

Stupid naive question: why standing waves run out from the hole?

Easy answer: a superposition of standing waves can give you a running wave, which gets

out. Il si muove.

Never formulate statements of ontological character in physics.



Easy answer: a superposition of standing waves can give you a running wave, which gets
out.

But

Where are the superposition microstates in the statistical physics calculation of the
statistical sum?




Free electromagnetic field:

still another alternative description - photons

The complete (micro)state of the electromagnetic field we have represented by the
table where the excitation numbers are any integers. If you see the table do you recall
that you have already met a similar table in a very different
context? Here it is: The state of non-interacting

mnl,s | excit.number
111,x Nq11x
111,y Ni11y
112,x Nq12x
112,y Ni12y
121,x N121x
121,y N121y

indistinguishable spinless bosons was given by the list of one-

one particle occup.
state number
1,1,1 1
1,1,2 3
1,2,1 0
1,2,2 2
2,1,1 0
2,1,2 0
2,2,1 12
2,2,2 4

particle states each with its occupational
number which could be any integer. The
total energy was

E — E nn1n2n35n1n2n3

ninans

For the electromagnetic field the total
energy is

FE = E nmnlhwmnl — E NmnlEmnl

mmnl mmnl

The same (almost) description of the states, the same formula for the total

energy.
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Free electromagnetic field:
still another alternative description - photons

mnl;s | excit.number || onepartice | o | Now to the problem of “spin labels”. The particles we
s i 111 1 want to “invent and introduce” must be bosons, since
Y My 2 ’ the excitation numbers interpreted as occupational
iiz ZEZ 12; 2 nu_mbers are any integers.. The bosons should not be
x| 211 0 spinless since we have to interpret the labels x,y as
12y | ngy iii 102 some spln-§tate labels. So far we do n-ot know any

.y p bosons which would have just two spin states. Spin 1

bosons should have 3 “spin projections”. Two spin

projections suggest spin 1/2, but spin 1/2 particles are fermions!

However, the above mentioned classification is valid if we consider only nonrelativistic
particles. Relativistic particles with the mass equal to zero with the total spin 1 have only
two spin-projection states +1 and -1. Projection 0 is not possible. The reason is hidden
deeply in relativistic quantum mechanics (better: field theory). We skip the detailed
argumentation, just take it as a fact.

So there is a chance for a particle-like alternative description of the states of the
electromagnetic field introducing relativistic mass=0 particles with spin 1 named
photons. The “spin-projection labels” for photons do not necessarily mean true spin
projections: other quantum mechanical base of “spin states” can be used equally well.

For photons we most other use the “polarization basis”. .



Free electromagnetic field: photons

We found that the energy and momentum formulas for photons should be

[
DTS mEA 2412 fog = B(E, BT 2T
a a a a

chrm
Emnl —

This gives us the following relation between energy and momentum

e = clp]

Such a relation is expected for relativistic massless particle because of the general
relativistic formula for the particle rest mass

energy, rest mass and velocity of a particleis ¢ =

To get non-zero energy, the zero-mass particle velocity must always be v = c. So
photons always move with the velocity c.

We have discovered photons !!! 29



Thermal radiation in a cavity as a photon gas

We have arrived at a conclusion that we can consider the electromagnetic field in a cavity
as a photon gas. So we can try to calculate the properties of the thermal radiation by
calculating the properties of a photon gas in equilibrium with the cavity walls at the
temperature T.

How to do that? we certainly do not know a priori the total number of photons in the
cavity so we try to work within the grand canonical technology pretending to know the
chemical potential of photons, calculate with it as with a symbolical abstract number u and
finally find the correct value of it by adjusting this value to get the correct thermal radiation
results which we already know.

So we have a the photon gas with one-particle-states mnls. The mean occupational
number a one-particle-state will be (Bose-Einstein)

1

Nmnls — n —
exp (—wﬂg’,}l ‘“”) —1

The total energy of the photon gas will be

Enl hwmnl
E= Z (hwmnz—ﬂ) —1

mnls €XP LT




Thermal radiation in a cavity as a photon gas

Let us compare the formula we have just got with the formula we have got for
“equivalent oscillators” where we had “mean excitation numbers” instead of “mean
occupational numbers”
— mmnl Enil hwmnl
) & F=Y
mnls €XP (%ﬂ) —1 mnls P \TET

The formula for w,,,,; is the same in both cases, the only difference is that there is u in
the formula on the left. The conclusion is: we get exactly the same results for the
thermal radiation if calculated as for oscillators and if calculated as for photons if we set
u=0.

We discovered a new law of nature: chemical potential of photons is (always) zero.

Putting u = 0 we continue in exactly the same way as we did for the “equivalent
oscillators”: we replace the sum by an integral using formula for the density of one-
particle-states which would be for photons the same as was the formula for the
density of oscillators and we will get the same result

A hw

u(w) = 723 exp (% — 1)
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Kirchhoff Sommerfeld thermodynamic universality proof
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Kirchhoff (1859) proved that u is a function of the arguments » and T and
that it is independent of the nature of the walls of the cavity. This proposition is
known as Kirchhoff’s law. In order to indicate the method of proving it let
us consider two hollow boxes 4 and B whose walls are different. Let us assume
that u in 4 is larger than in B, in a certain spectral region (v, dv). We now
connect A to B through a small tube which is opaque to all wavelengths
except v (color filter). In such an arrangement more heat would flow from
A to B than in the reverse direction, thus upsetting the state of equilibrium;
the temperature of B would increase and that of A would decrease until the
two values of u would have become equal. In this way a temperature difference
would be created “spontaneously” (without work being done on the system)
and such a result is inconsistent with the Second Law. We conclude that u
must be a universal function of v and T ; it follows from (1) that « is a universal
function of T.
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Kirchhoff Sommerfeld thermodynamic universality proof
applied to ordinary ideal gas. Why not, particles like particles
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Two containers with monoatomic ideal gas, same temperatures, common hole with filter
allowing to go through only to particles with specified v = |¢] that is with specified
kinetic energy.

Let the energy density per unit of absolute velocity will be denoted as u(v) than the
spectral energy flow through the hole would be

1
—vu(v

Jou(v)
If the energy density is not the same on both sides, them net energy flow would result,
changing temperatures originally equal ! Forbidden by thermodynamics. Conclusion:
the energy density in an ideal gas is a universal function of temperature. That is grossly
wrong! But the logical syntax is the same as in Kirchhoff Sommerfeld proof, just

semantics is different. 33



Kirchhoff Sommerfeld thermodynamic universality proof
applied to ordinary ideal gas
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Where is the error?

1 ) N

u(v) = ngmu n=1

For standard ideal gas there is additional independent parameter: particle density. The
containers can have the same temperature but different particle densities (different
pressures). After making the hole pressures will be equalized, the temperatures will not
change.

The energy flow does not necessarily change the temperature for ordinary gas

For radiation Sommerfeld calls the energy flow as heat flow (warmestrahlung).
34



What is the difference between
the ordinary gas and the photon gas?

Why is there no independent parameter like photon density for the photon gas?

Because photons have zero chemical potential.

Actually the logic is reverse: photon have zero chemical potential because there is
no independent parameter like photon (spatial) density

Ordinary gas Oscillators
one particle | occup. mnl,s | excit.number
state number
1,1,1 1 111,x N111x
1,1,2 3 111,y Ni11y
1,2,1 0 112,X N112x
1,2,2 2

112,y nllzy
2,1,1 0 o1

X n

2,1,2 0 ’ 121x

M..
g

>

No state independent
sum here
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What is the role of the number of photons in a box?

Parameter of non-equilibrium

Start with empty box at T = 0. Heat the walls suddenly to T.
No photons inside, so the system is not in equilibrium.
Observe relaxation to equilibrium: N(t)

Number of photons finally reaches the equilibrium value N .

How to recognize equilibrium at a given temperature:

Free energy is minimal
Froneq(T,V,N) — F.,(T,V)

Close to equilibrium OF noneq(T,V, N)

ON =0

N = argminy Foneq(T,V, N)

Landau: OF(T,V,N)
ON




Chemical potential definition

B, VY
EQ E/ VI ’
E1 V2 1VY1
v N, | —P | M w
1

After the final common equilibrium is established the total entropy will be
S" = 81(FE1, Vi, N{) + So(ES, Vo, NY)

The final values of energies will be the same as in the case when we have considered
just a thermal contact. The only unknown value in this relation is Ny, since N is given
by the total number of particles conservation N, = N; + N, — N;.

dS'(N]) 05, 95, _
dN{ ON N=N] ON N=N;+Ny—N/
05, 05,
ON N=N/ ON N=N}

w08
T  ON
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Photon strange stoichiometry

2H2 + 02 < 2H2O

2UH, + oy, = 20 H,0

nothing < v

0=

38



Ordinary gas

What is the difference between
the ordinary gas and the photon gas?

Oscillators

one particle | occup. mnl,s | excit.number
state number
111 1 111,X N111x
1,1,2 3 111y Ni11y
1,2,1 0 112,x N112x
1,2,2 2

112,y Ny12y
2,1,1 0 121

X n

212 0 ’ 121x

Bose-Einstein distribution is derived
by grand canonical technology.
Needs conservation of the total
number of particles!

No grand canonical calculations for
photon gas!

Well, you can do grand canonical
calculations but then you have to
understand well why you can do it.

No state independent

sum here
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Kirchhoff Sommerfeld thermodynamic universality proof
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We conclude that u must be asymptotically a universal function of w and T .

1
_Vexp(%)—l

u(w) p(w)

If u(w) is asymptotically universal, then p(w) is asymptotically universal as well, that is
Laplacian spectrum is asymptyotically universal for a cavity of arbitrary shape.



The end



Energia, entropia, informacia a

inteligencia



















Pri T = 300 K, energia molekul je radove 0.02 eV.




Agent, ktory sa rozhoduje, musi mat pamatovy register,

aby vedel realizovat konstrukciu

if — then — else




Feynmanov register




HWHmH ~

g S

s

CPU register




Vratna izotermicka expanzia plynu

pV = NET

Praca pri posune piesta o dx je
0A=Fdr=pSdr=pdV

Celkova praca

A%
A= [pdV = NkT[7 = NkTIn(2)




Nevratna expanzia plynu

| —
iutazatataazazata ]
| — ———




Zmena poctu mikrostavov pri
expanzil

Saa

\E;;\\\

e
[ [
| @
1 L

Pocet moznych mikrostavov pred expanziou: 15,
teda na Specifikaciu konkrétneho stavu treba
priblizne 4 bity
Pocet moznych mikrostavov po expanzii: 66, teda

na sSpecifikaciu konkrétneho stavu treba priblizne
6 bitov




(2: pocet mikrostavov

S

Informacia

>

Pocet castic: N, pocet priehradiek: C
C'!
NY(C' = N)!

pocet bitov cisla () = log,(e) x In ()

In{) = 1In ~ NIn(C

pocet tritov cisla ) = log;(e) x In {2




Entropia

Informacia

Pocet castic: N, pocet priehradiek: C
InQQ~ NInhC
Chybajica informacia sa nazyva

entropia

S=NInC




Zmena entropie pri expanzii

=

Seea

AS=5—5=NIn2C)=NInC = NIn2
Praca vykonana pri expanzii A = k7T'N In 2

Okolie udrziavalo konstantnu teplotu, dodalo

mnozstvo tepla () = A

Q = kT AS




Manipulacie s registrom

|
-
* |

'
i

|
N

'} I
i |

Vychadzajuc so znameho stavu nastav na 0

Procedura bezi bez naroku na vykonanie prace.




Manipulacie s registrom

| |
R

?

g .

N
i

Vychadzajuc s neznameho stavu nastav na 0

Treba vykonat pracu A = kT In?2




Manipulacie s registrom

s
I+ ]
| I

L]

Okopiruj register v neznamom stave do registra v

defaultovom stave




Manipulacie s registrom

Ak je register v znamom stave, moézem s nim urobit
akiikofvek operaciu bez naroku na pracu.

Operacie typu ”set” vsak vyzaduju proces typu if-then-else
a teda pamatovy register, s ktorym mam vykonat Zelanu
operaciu musi byt okopirovany do registra procesora. Po

vykonani Zelanej operacie v registri procesora ostane kdépia
povodného stavu.

Register mozem resetovat do defaultového stavu

univerzalnou procedirou (bez if-then-else, teda bez potreby

képie v registri procesora), ale na taka operaciu treba

vykonat pracu:

A=FkTIh?2




Pracu (energiu) treba na jedinu

proceduru: na likvidovanie informacie,

teda na resetovanie registrov




Extrakcia prace na zaklade

informacie

Priprava na extrakciu uzitoc¢nej prace




Extrakcia prace

—i—.

__i_.

—

lfl
s

[y 3
i 1

Extrakcia uzitocnej prace za cenu privedenia
registra do neznameho stavu, teda za cenu

zvysSenia jeho entropie.




Extrakcia prace

Dodaci list: 0,1,1,0,1,...




Induktivna inferencia

2.4.6.8, ...




Induktivna inferencia

2.4.6,8, 34




Induktivna inferencia

2,4,6,8, 34
n* — 10n® + 35n% — 48n + 24




Wiliam of Ockham

1285-1349

Ockhamova britva

Pluralitas non est ponenda sine necessitate.




Induktivna inferencia

2,4.0,8,...
n* — 10n° + 35n% — 48n + 24
2n




Kolmogorovova zlozitost

Datové retazce (”dodacie listy”)
©0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1
e 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0

¢ 0,0,1,0,1,1,0,1,0,0,0,1,1,0,1,0,1,0,0,1

py(z,) je program v jazyku U ktory vygeneruje

postupnost z, a zastavi sa.

KL'T(IH) = min |pU($ﬂ-)‘




Extrakcia prace

Dodaci list: ”samé nuly”




Extrakcia prace na zaklade

informacie

\
N
+
\
N
N
)

Priprava na extrakciu uzitocnej prace




Ako sa naklada takyto vlak

L

Aby sa nestalo, ze vypravca vlaku potrebuje na

jeho nalozenie rovnaku pracu, ako prijemca ziska




Vypravca a induktivna inferencia

o] [ Te]
| oje] Jof |

T [ Je] J®T]

Heureka!




2,4,0,8, ...

Induktivna inferencia nedava

iIstotu, poskytuje len sancu.

Preziju iba inteligentni

hazardérai.







dz , ,
m— = —axr +
dt /
For strong dumping we can neglect in the Langevin equation the inertial term and

we get a Aristotle type of equation

0=—az+ [
y
()
r(t) ==z dr
) =20)+ [ dr’
For the initial condition z(0) = 0 we get
1 t
22(t)) = = | drdn(f () f (1
@ 0) = = [ dndratf () ()

Now the correlation depends only on the time difference and we get

@) = 3 [ 4752 = ) OF (7= )



@0 = o [ PG =m0 (7 = )

@)= [ dnirore)

where we extended the region of integration formally to (—oo, o) since the cor-
relation function is different from zero only on a very small interval and so the

integration region does not play any role.

We, however, know from previous calculation that

2kT
2
%) = ¢
(@) ==
and comparing the two results we get
a= [ ar(f ) ()
2T |_ .

So the dissipation coefficient « is given by the correlations of the fluctuation force.
This is so called fluctuation-dissipation theorem.

Integral runs only through a very short correlation time interval, so to get finite
a the correlation function must be very large at T = 0, it is approximately a
delta function.



Lct us consider a cylinder with a gas of particles with a piston in the middle.
(Sec Fig.1.) To make the calculations simple let us consider the gas as one
dimensional, the molecules moving only along the cylinder axis. The molecules
strike against the piston from both sides. If the pressure on both sides is equal, then
the mean net force on the piston is zero. However the net force on the cylinder is
fluctuating around the mecan zero value. Our aim is to estimate the fluctuations.
The situation is similar, but not cquivalent, to the case of brownian particle in the
gas as described by the Langevin cquation with a fluctuating force at the right hand
side.

Fig. 1

If we denotc the fluctuating force at the time ¢ as f{f) we can define the
autocorrelation function as

(f(0)f(0)



If we denote the fluctuating force at the time ¢ as f{f) we can define the
autocorrelation function as

(f(0)f(n)

where the angle brackets denote the average over the ensemble of cquivalent
cylinders with pistons. If the time difference ¢ in the autocorrelation function is
large, the valucs of /(0) and /(1) arc independent and therefore

() f(1)=(fO))f(®)=0

Large ¢ means ¢ larger then a certain correlation time 7. describing how long the
molecules remember their state.



For the short times ¢ ~ 7, we expect large correlation between f{0) and f(1).

To show how large, we try to estimatc the mean squarc valuc of the fluctuation
force.

Within the time interval 7 the molecules which are in small

volumes within the distance / from the piston strike at the piston. Here / denotes the
mean frce path of the molecules. The molecules within that distance from the piston
typically do not collide between themsclves, those which have velocities in the
dircction towards the piston strike at the piston. The next "bunch” of moleculcs

coming after the time 7 has suffered collisions between themsclves and therefore

their statc does not remember what was the state of the molecules in the previous
bunch. Very roughly we can thercfore represent the value f{0) as the value of the
force during the time interval 7 averaged to smear out the impacts of individual

molecules. The net impulse on the piston is therefore given as

I 1
f(O)T (2 lﬂ _E m,hrjzml l



I I
fO)r, = (E”"'ﬂ - Ell,,g,,,j 2m|v|

where 1, and 1, denote the number of molecules which strike at the piston

nght
from the left and from the right during the time 7, . From now on we use the

approximation that all thc molecules have the same absolute value of velocity |v|. If
we now average over the ensemble of cquivalent gas systems we get

<f(0)>rc = <”l€ﬁ o Hnght >”I‘\-’| = O .



<f2(0)>73 = <(nleﬁ = ”n'gm)2>(m|vl)2

2 2 2 2 2
<f (O)>Tc = <nleﬂ T nnghl 3 2nleﬂnngh! >(I"|VI)

<f2 (O))rﬁ = 2(<nz> - (n)z)(mlv )2

We sce that size of the net force fluctuations is given by the fluctuation of the
number of molecules striking at the piston. We stress that we do not consider here
the fluctuations in molecule velocities which would contribute as well to the
fluctuation of force. We have to estimate the fluctuation of the number of
molecules in the small volume of gas as given by the surface S of the piston and the
mean free path /. The mean number of molecules (over the ensemble) in this
volume is

IS
(n) = -17 N

where V denotes the volume of the cylinder on one side of the piston and N is the
total number of molecules again on one side of the piston.



To calculate the fluctuation one has to use the binomial distribution. Since the

volume /S is very small wit respect to the total volume ¥ the variance of the
number of particles within the small volume can be approximated as




1 1N
2(0))» —m*v| 28—
<f()> Tm |\| SV

c

What is important is the proportionality to 1/7,. We already stressed that the
autocorrelation function ( f(0)f (t)) is zero outside the time interval 7, and now

we have demonstrated that its value at £ =0 is of thc order of 1/7,. This is
exactly what is described by the relation

(f(tn)f(tz» = C5(l| = ’2)

10



Thé ﬁiener—Khjntchine Pheorem states a relationship between two
importan istics of a random process: the power spectrum of

the process and the correlation function of the process. 1

Fig. 27.2. Recordings of
W AAS TN A

by taking three intervals of
duration 7' from a single

long recording. Time aver-
2%(t) ’\\,//\VM A, A ages are taken in a hori-
o zontal direction in such a

display; ensemble averages
are taken in a vertical direc-

/l M 7\ /\ [~ p tion. (After S. O. Rice.)

3x(t) [/ 7 7 7

11



Suppose we develop one of the records in Fig. 27.2 of z(¢) for 0 < ¢
< T in a Fourier series:

(28.1) o(t) = ) (an 008 2uft + by sin 2nf,1),

ne=l

where f, = n/T. We assume that <z(f)> = 0, where the angular
parentheses <> denote time average; because the average is assumed
zero there is no constant term in the Fourier series. The Fourier
coefficients are highly variable from one record of duration 7T to
another. For many types of noise the a,, b, have Gaussian distribu-
tions. When this is true the process (28.1) is said to be a Gaussian
random process.

12



Let us now imagine that z(f) is an electric current flowing through
unit resistance. The instantaneous power dissipation is z?(f). Each

Fourier component will contribute to the total power dissipation. The
power in the nth component is

(28.2) ®, = (an cos 2mfnt + b, sin 2xf,t)>.
We do not consider cross product terms in the power of the form

(an cos 2xf,t + b, sin 2xf,t)(a,, cos 2xf,,t + b, sin 2xf,,t)

because for n % m the time average of such terms will be zero. The
time average of @, is

(28.3) <P,> = <ap,’ + b,2> /2,

13



We now turn to ensemble averages, denoted here by a bar over the
quantity. We recall from Sec. 27 that in the present context an
ensemble average is an average over a large set of independent records
of the type shown in Fig. 17.2, each record running in time from 0 to T'.
For a random process we will have

(28.5) an =0; by =0; abn, =0;

(28.6) Anlm = bpby = 03 20nm,

where for a Gaussian random process o, is just the standard deviation,
as in (27.15). Thus

(28.7) (@ €08 2mfnt -+ by sin 2nf,t)® = 0,%(cos® 2mfnt + sin’ 2xf,t)

= 7,2

Thus, from (28.3) the ensemble average of the time average power dissi-
pation associated with the nth component of x(f) is

(28.8) <®p> = 0,

n 14



We define the power spectrum or spectral density /() of the random
process as the ensemble average of the time average of the power dis-
sipation in unit resistance per unit frequency bandwidth. When we
speak of a power spectrum we shall not always mean literally the word
power, but we will usually be concerned with a quantity closely related
to power. Then if we pick a frequency band width Af, equal to the
separation between two adjacent frequencies

(28.9) Ao = fort = fa = dt = T =

(28.10) GF(fa) Afp = <Fp> = 0,".
Now by (28.5), (28.6), and (28.7),

(28.11) 2 = z ol

|

Using (28.10)

28.12) 20 = ) G(fa) & = [," G df.

15



C(r) = <z(t) z(t + 7)>

(28.14) C(r) = <z(t) z(t + ) >

Il

< E [ay, cos 2nfut + by, sin 2nf,t][am cos 2afn(t + 7)

+ by, Sin 20fm(t + 7)]>
= %‘2 (an® + b,%) cos 2nfpr = Z on’ COS 2mf,r.

n

Using (28.10)
(28.15) Cx) = [,” G(f) cos 2ufr df.

Thus the correlation function is the Fourier cosine transform of the
power spectrum. We can use our previous formulas (27.5) and (27.6)

Qf) = 4 fO” C(r) cos 2nfr dr.

The last two formulas are known as Wiener-Khinchin theorem

16



(28.17) C(r) = e,

we may say that 7. is a measure of the average time the system exists
without changing its state, as measured by z(f), by more than ¢~ 1,
We may think of 7. as a persistence time or correlation time. We then
expect physically that frequencies much higher than, say, 1/7, will
not be represented in an important way in the power spectrum. Now

if C(r) is given by (28.17), the Wiener-Khintchine theorem tells us that

o 4r
—_ ~7/Tg T = i *
(28.18)  G(f) =4 L ¢ o8 T T = T )

Thus, as shown in Fig. 28.1, the power spectrum is flat (on a log fre-
quency scale) out to 2xf =~ 1/r,, and then decreases as 1/f> at high
frequencies. We say roughly that the noise spectrum for the correla-
tion function ¢ ™ is “white’” out to a cutoff f, =~ 1/2xr..

17



Spectral density

1

05—

0 _l | | I ! |
1 2 3 4 5 log,, 2rf

Fig. 28.1. Plot of spectral density versus log;¢ 2=f for an exponential correlation
function with 7, = 10™* sec.
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Indukénost v elektrickom obvode

I
> |
—— lU() R UL
DN
dl
—Up+IR+L— =0
0+ + =

Skontrolujme este, Ci tento postup dava spravne znamienko ,,pridavného
napatia“ samoindukovaného cievkou. Ak prud rastie, pridavné napatie ako
sme ho napisali bude kladné a bude mat smer k nemu nakreslenej Sipky.
Zjavne posobi ,proti snaham batérie” a teda bude sa snazit zmensovat
prud pretlacany batériou. To je OK. Ak by prud klesal, bude nami napisané
,pridavné napatie” zaporné. Bude mat smer opacny ako nakreslend Sipka
a bude teda ,,pomahat batérii“ pretlacat prud, teda snazit sa ho
zvacSovat. To je znovu OK.



lem. Indeed;, ifv‘lJ-'-c'lt;,ﬁﬁi_;_es an ﬁppliea emf ;.nd V(t) thé_ e.ﬁ'_e_é-t;ive ﬁuc_t:u}a.ting
emf representing the interaction of the conduction electrons with all the other
degrees of freedom, the current I satisfies the equation

I
LY =00 + VO (15-8-12)
This is analogous to (15-5-1) withL =m, I =v,and V() = F¢t). IfVisa
relatively slowly varying function of time, an analysis similar to that leading
to (15-8-9) then gives the equation
dl

LE='U—-RI (15-8-13)

g
mes = —ai + f'

dt

o= g7 | a0 f(7)

R=m |~ (VOV()ds

20



L

R = kT [_’; (V(O)V(3)>ﬂ ds

N

1 oo
R = %—TQ/O < V(0)V(s) > cos(2m0s)ds

G(f) =4 [, C(x) cos 2nfr dr.

Spectral density

G(0) = 4kTR :
G(f) =~ G(0)
G(f) = 4RET ot '

Nyquist theorem

21



Koaxialny kabel




Kapacita na meter dizky
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Indukénost na meter dizky
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3 1 4

Vedenie je poskladané retazenim elementarnych buniek: bunku tvori
kondenzator a cievka vpravo od neho. Bunky ocislujeme: nad i-tym
kondenzatorom sa nachadza i-ty prudovy uzol. Cievka vpravo od
kondenzatora je oznac¢ena rovnakym ¢islom i a prud riou pretekajuci je i

Il-l l ll |

T 'y "', | Prud pritekajuci do i-teho kondenzatora je,

— T — Ly~ 1,

T . ":T naboj na i-tom kondenzatore je  (;




II-| li l|~| in

I i+ dt
F ki " Ui = _Qi
ToT c

= I — I;

Pre sucet napati okolo naznacenej slucky dostaneme

d
-U; + L dI +Uit1 =0
dI
—_Qz dt Z;Qi+1 =0
Zderivujme poslednu rovnicu podla ¢asu a dostaneme
1 d*1, 1
_EU' 1 — 1) + Ld_z E(Ii —Iiy1) =0

?I; 1

(fi—1 — 2L + I; )

dt2  LC



(12],' - 1
dt?  LC

i (]2],- B A? Liq — 20 + Tgqa
naglllln s dt>  LC A?

(Ii-1 — 2I; + I;41)

I,(t) = I(t,z = iA)
«<A—> PI(t,x) 1 9%(tx)
oz D

Indukénost aj kapacita kiska vedenia dizky A je imerna (uvidime to)
dizke A,teda L =LA C=CA,kde L, C stindukénost a
kapacita vedenia na jednotku dizky. Pre prid vo vedeni dostaneme
teda vinovu rovnicu 021(t, z) 1 82I(t,z)

ot? LC O0x2



FI(t,x) 1 9*(t,x)
o2 L Or?

d*I(t,x) _ 2 O%1(t, x)
ot? Or?

Vzruch sa teda 3iri po vedeni rychlostou



O*I(t,x) , 0%I(t, x)

= (" —— C =

ot? ox?

|

S~
A

» 1 "
) = Qmeq—— L
C 71'50111% 27_

b
Ho ln o

1 1

C = =

7 : ’
V L \/27rf0—,— 52 In < VvV HOED

c =299 792458 m/s, co je rychlost svetla vo vakuu.

Vzruchy sa takymto kablom (kde izolatorom medzi centralnym a
obvodovym vodic¢om je vakuum) Siria rychlostou svetla. Redlny vodic
ma ako izolator nejaké dielektrikum. Tvar vzorcov sa nemeni, len
namiesto permitivity vdkua £o bude vSade vystupovat permitivita
dielektrika £ > 0. Preto v kabli s dielektrikom sa bude signal Sirit
rychlostou mensou ako je rychlost svetla vo vakuu.



Vsimnite si na videu, ako sa vina na koncoch odraza
O%u(t, ) 5 0%u(t, x)

92 —C g2 S okrajovou podmienkou w(t,0) = u(t,L) =0

1.0

0.80]
0.60
040
020l

0.o0 1 1 ..h'\ ~~~~~ ) L L 1 L L 1 A
noo 010 020 030 040 0Aa0  O0EBOD  0OF0 080 0.0 1.0

-0.201L

-0.40L

-0.60 L

-0.80L

-1.0




Pre potreby bezproblémovej komunikacie by sme potrebovali zariadit, aby
na konci kabla nedochadzalo k odrazom.

Ako to urobit?

Myslienka je takato: ,,signal si musi mysliet, Ze vedenie je nekoneéné”.
Na konci vedenia musime ,,zahrat nejaké divadlo®, Ze je to tam takeé isté, ako
keby vedenie pokracovalo dalej az do nekonecna.

Ako to ,zahrat” najlepsie naznaci energeticka tvaha.

Pohybujuca sa vina sucasne prenasa aj energiu. Pri odraze sa ta energia zasa
vracia, nepokracuje dalej. Idea je, Ze energia sa nemozZe odrazit, ak ju niekto
alebo nieco na konci vedenia ,zozerie”. Lebo to je to isté, z hladiska
pozorovatela vo vedeni, ako keby energia pokracovala dalej az do
nekonecna. V nekonecnom kabli tu energiu ,zozerie nekonecno”. Lenze
energia je neznicitel'nd, neda sa ,,zoZrat”. Ale mozno ju premenit na nejaku
inu formu, ktora uz nepotrebuje na ,,odchod do nekonecna” kabel.
Napriklad ju méZzeme premenit na teplo, ktoré sa potom rozptyli do okolia.



Takze bezodrazova idea:

’

na ktorom sa celd dopadajlca energia bude menit na teplo a odraz

nenastane

Resistor
Terminator

._/

Ethernet medium (cable)

Resistor
Terminator

\'

Computer

Computer

W




twisted pair kabel

hub

x_,;_

. /

Strukturovana kabeldz: zakoncovacie odpory su dnu za konektormi

Resistor Resistor
Termirator Ethernet medium (cable) Terminator
o— — el

Computer Computer Computer

daisy chain



% / (I,_1 — I,,)dt = RI,
1 ol
(-_[ n—1 — n} Rﬁ

Prechodom do spojitej limity dostaneme odtial okrajovu podmienku

1 o oI
“cor o




O*I(t,x) 1 0%I(t,x)
mimo okrajov kabla plati : o2 IO Ox2

. ) 1or _ Lol
pre x=L (na konci kabla) plati: TCor Rﬂt

Vratme sa teraz k otiazke ako treba volif velkost R, abv na pravom konci
kabla nenastal odraz. Uvedomme s1 ze lnbovoIné rieSenie vinove) rovnice mozme
napisaf v tvare

T T
I(t,x) = f(t F} Fglt 4 F}

kde f a g musia byt volené tak, aby boli splnené okrajové podmienky, inak maji
[wbovolny tvar. Je pritom zrejmé, Ze funkcla f popisuje vzruchy Siriace sa zlava
doprava, fiimkcia g popisuje vzruchy siriace sa sprava dolava. dosadme teraz do
tohto vyjadrenia okrajovi podmienku praveho konca kabla. Dostaneme

]' f ]' ¢ f ¢
—f -qg = Rf + Ly

el e

1 1
R)f' —(—=+R)g =0

el el

(
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1 1

— £ g =Rf + Rqg'
e / e J f J
(=~ R)f' ~ (== + R)g' = 0
= . — g =
el ' e g
Zvolme: R = 15 — I,n'li
e \ (.

Dostaneme g = const, takze ziadne Sirenie zlava doprava

Po dosadeni typickych hodnot pre ethernetovy koaxialny kabel
dostaneme R =50 Q, televizny koaxialny kabel dava R =70 Q.
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Spravnu hodnotu zakoncovacieho odporu moézeme vyratat i inym trikom:

L Ii-l |

1
—_, —

1 1
BT st I 2t

nekonecny kabel sa musi javit z lavého konca ako odpor R.
Nekonecne vela buniek je to isté ako nekonecno plus jedna bunka
navyse, takze dostaneme rovnicu, ktoru schematicky mézeme

vyjadrit ako
I T
‘T




Paralelné spojenie impedancii C a R dava
1 1 1

—==+

X R Xc
A to spojené sériovo s impedanciou cievky musi dat R, teda
dostaneme rovnicu

. Etxe
1? = le+
R+sz
. L
1+ iwCR = iw—= — w?LC +1
C R

——l+1wCR—1+1R(‘A

- e\
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These thermal fluctuations are known as thermal or Johnson noise.'®)
“Noise” in this context means random fluctuations of the voltage across
a resistor, and thermal noise is the electrical analog of Brownian motion.
There are other, nonthermal, sources of electrical noise which we ignore

here.

< L & : ““““ -
5 URoLls

(a) (b)

Figure 6.8. (a) Transmission line of length L, terminated at each end by a
matching resistor. (b) Equivalent circuit of terminating resistor (within dashed
lines), feeding a transmission line of characteristic impedance R.



R§ §R E‘{h R\ 3R

(a) (b)

Consider the transmission line shown in Figure 6.8(a). Its length is
L and each end is terminated by resistors whose resistance R (not to be
confused with the gas constant Rj) is equal to the characteristic impedance
of the line. Electromagnetic waves travel along the line with velocity ¢, and
if the ends were short-circuited, the normal modes would be standing waves
like the waves on a string discussed in Section 6.2. The resistors, on the
other hand, absorb all the energy that comes to them along the line, but we
assume L to be so large that the resistors at the ends have negligible effect
on the density of normal modes. We can then use equipartition and the
results of Section 6.2 to find the thermal energy contained in the normal
modes.



From Equation (6.6), the number of modes!? per unit length with x
less than k is G(k) = k/m. Substituting v = ¢/27k and differentiating
with respect to v gives g(v) = 2/c. Each mode is a harmonic oscillator,
and since frequencies in electrical circuits are low relative to EALT, except at
extremely low temperatures, we can use the classical equipartition result
Equation (6.4) for the mean energy of an oscillator, so that the thermal
energy in each mode is kg7T. A mode is a standing wave and is the sum
of two counterpropagating waves, so that the energy in each propagating
wave is kg1 /2. The energy per unit length on the line in frequency interval
(bandwidth) Avr, moving (say) to the right, is thus %kBTg(V) Av = 537;—‘3"-.
This energy propagates at the velocity of light ¢. so that the energy de-
livered to one of the resistors per unit time (that is, the power) in this
frequency interval, is kg7 Av. Since the system is in thermal equilibrium,
on average the net power transfer between the line and the resistor must
be zero: hence, the resistor must deliver an equal power to the line. Fig-
ure 6.8(b) shows the equivalent circuit of the resistor, enclosed within the
dashed lines. It consists of a noise generator (which of course does not
exist, but the resistor behaves as if it did) whose open circuit voltage is
Vin. In series with a resistance R, feeding into the transmission line whose
characteristic impedance is also R. The voltage across the transmission
line is V4x /2, so that the resistor delivers a power V£, /4R to the line. In
equilibrium, this must equal the power delivered by the line to the resistor,
531;_—‘-3-5. so that the Johnson noise voltage is given by

Vin = (4RkgT Av)'/? . (6.52)

If T=300 K, R=1 M(, and Av = 1 MHz, V,;, = 130 V., a significant

input voltage in a high gain amplifier.



The Equipartition Theorem

Consider the quantity

OFE
<Qé8q> // /Q'z_PQI qo,...)dg1dgz ...
-7~ —e PE dg, dgs . ..
[ [ a
—(8Z) ‘1// /fh ~PEY dgy dgo .. ..

Now integrate with respect to g; by parts:

0 , _gE —
/Qéa—%(ﬁ ’SE) dg; :—/5 'GEde

ng> - —(ﬁZ}‘I//,../e‘-SEdql dgs . ..

0E
; =" = kgT.
<£I 3q3-> . B

(o




In many cases, a system of coordinates exists in which E can be written
as a sum of quadratic functions of the coordinates:

E=) ag. (G.10)

so that
OF 5
- = 20;4;
0q; 1
5 1 OF 1
qg-)y=—=(qg,— ) = =kgpT.
@) =5 (g ) = 3o

The fact that the contribution to the internal energy of the i'th degree of
freedom is independent of the magnitude of the coefficient a; has a curious
and (in classical terms) paradoxical consequence. Suppose that a; tends to
zero. However small a; may be, so long as it is nonzero, the equipartition
theorem says that the contribution to U is NkgT /2. On the other hand,
if a; actually is zero, that degree of freedom does not appear in the energy
expression and cannot contribute to U.

This nonanalytic behavior is a consequence (like Gibbs’ paradox; see
Section 9.4) of the internal inconsistency of classical statistical mechanics.
Quantum theory resolves this paradox, since as a; becomes smaller, the
corresponding quantum levels become further and further apart, so that a
higher and higher temperature is needed for the assumption of continuous
energy levels to be valid and for equipartition to hold. As a; tends to
zero, the required temperature tends to infinity.
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4.6 Entropy of Mixing

The fact that dS = ‘% in a reversible transfer of heat might suggest that
entropy change is exclusively associated with heat transfer, but the irre-
versible processes illustrated in Figure 2.2 and discussed in the previous
section shows that this is not the case. In general, there are contributions
to the entropy that have nothing directly to do with heat. For example,
suppose we have two pure crystals’ of different elements A and B at a very
low temperature, where thermal vibrations can be neglected. Every atom
is in its place, so that there is only one microstate and the entropy is zero.

Now suppose that we melt these two crystals (containing N, and N atoms,
respectively) together and allow the resulting alloy to recrystallize, forming
a crystal of N = N, + N, atoms. We then return the crystal to its original
temperature. In many cases, it i1s found that the different atoms are dis-
tributed at random over the possible sites in the new crystal, so that the
probability of finding an A atom In any arbitrarily chosen site is x = ENE
and the probability of finding a B atom is 1 — z. If we neglect thermal

vibrations, the multiplicity of this macrostate is, from Equation (D.1)
N

= A=




If N > 1 the entropy is, from Stirling’s formula in the form given in

Equation (D.6):
S=—Nkglzlnz + (1 —2)In(1 — z)] (4.16)
(note that 0 < & < 1, so that both logarithms are negative and the entropy

is positive).

If N, = Np, so that x =

. S has 1ts maximum value

(] =

S = Nkgln?2. (4.17)

Thus, the entropy is greater than that of the separate pure crystals by an
amount of order Nkg. This entropy increase is called the entropy of mizing
and an increase of this order occurs whenever two distinct substances mix
irreversibly; see Problem 4.5(c) for the case of two ideal gases mixing.

The entropy of mixing 1s not small; for £ ~ 0.5 it 1s of the same order
as the increase in the entropy of an ideal gas with N molecules when its
absolute temperature is doubled (see Chapter 9).



energy (which is negative) is reduced in magnitude. Interfaces between
different substances also have energy and contribute to G; for example, the
large interfacial energy of the oil-water boundary is responsible for the fact
that o1l and water do not mix even though their entropy would be increased
by mixing. A detergent reduces the interfacial energy, thus lowering the
free energy of the mixed state and allowing mixing to occur. Further exam-



Consider the process illustrated by Figure 2.2, where an ideal gas, initially
contained in a volume V7, is allowed (by the removal of a partition) to
expand irreversibly to a volume Vo = V; + Vp. No work 1s done and no heat
flows, so that U, and therefore T' and ny, remain constant. For simplicity,
we take Vo = 2V;. The number of gas molecules N is fixed, so that the
density is halved, and Equation (9.14) gives for the increase in entropy

AS = NkgIn?. (9.17)

Now suppose that instead of a vacuum, we start with a different gas in
the righthand volume. at the same pressure, also with N molecules. When

the partition i1s removed, this gas also expands to twice its volume, and 1ts

entropy increases by the same amount. so long as the gases do not interact

with each other. Thus, the total entropy of the system has increased by

2NkpIn2. This extra entropy is an example of entropy of mixing (see
(4.17) and Problem 4.5 (c)). Note that this increase in entropy involves
no heat flow; as we have said, mixing is an irreversible process so that the
relation dS = ‘% (Equation (4.14)) does not apply.

sures, 1s unchanged. What if both gases are the same? Then nothing 1s
changed by the removal of the partition; the entropy before and after 1its
removal must be the same. In classical theory this result is a paradox. since
one could imagine the two gases being made more and more alike, until it
became impossible to distinguish them by their properties: yet the increase
in entropy due to mixing is independent of how different the two gases are.






9.9 1Ideal Solutions and Osmotic Pressure

When you drop an ionic solid such as potassium chloride into water, it
dissolves; that is, the positive and negative ions that make up the solid
separate and move freely in the liquid. If you measure the temperature
of the water carefully while the solid is dissolving you will find that it
drops; this is because energy (the heat of solution) is needed to separate
the ions.'? However, although the energy of the ions is higher in solution,
their entropy is much greater, so that their free enthalpy is lower and they
dissolve.

An ideal solution is one in which the dissolved molecules or ions do not
interact with each other, so that the only contributions to the free enthalpy
difference between the solid and solution are the heat of solution and the
entropy of mixing, which is from Equation (4.16)

S=—Nkg[zlnz + (1 —z)In(1 — 2)],

where x 1s the concentration of the solute. We label the solute x and solvent
s, writing Ny = Nz for the number of dissolved particles and Ny = N(1—x)

12The heat of solution of KCl is about 0.18 eV per K™ — Cl~ pair; this energy is
less than the cohesive energy of the crystal because the dissolved ions attract the highly
polarizable H> O molecules.



for the number of solvent particles. The free enthalpy difference between
the solution and the pure materials is then

AG = Nye+ kgT [NyInz + N, In(1 — z)] (9.43)

where € is the heat of solution per solute atom and the quantity in square
brackets is negative since x < 1. Note that however large € is, AG is
negative for sufficiently small z, since Inz — —o0 as x — 0. It follows that
a small amount of material will always dissolve. In this limit of large e,
the solubility (defined as the value of = for which AG = 0) increases with
temperature according to Arrhenius’ law, with activation energy e.

We will now examine the remarkable phenomenon of osmosis. If a so-
lution is separated from the pure solvent by a membrane permeable to the
solvent but not to the solute, the solvent will diffuse through the membrane
until a sufficient pressure difference, called the osmotic pressure Ap, has
built up in the solution to prevent any further diffusion. This happens be-
cause the chemical potential of the solvent, (s, is decreased by the presence
of the solute, but increases with pressure. The solvent will diffuse until the
pressure difference equalizes (s on both sides of the membrane.



To make this quantitative, we assume that the solution is dilute, that
is # < 1, so that In(1 — z) = —z. Then

AG = Nye + kT [NxInx — Nyz|. (9.44)

The presence of the solute thus reduces the chemical potential of the solvent

by

OAG
AC. = = —kpTx. 9.45
5 ( ON, )T,p,_wx 5 ( )

There is a Maxwell relation (see Problem 9.12(a))

3@-) ( oV ) _1
— [ —— —n . 0.46
( op T,N;: ON, T.p e ( )

so that an increase in pressure Ap increases (; by %E, where n is the particle
density of the solvent.
Hence, equilibrium is achieved when

A
AC = —kpTz + —2 = 0.
n

Hence,

Ap = n kgT (9.47)



where n, = nz is the particle density of the solute and we have neglected
x relative to 1.

Equation (9.47) is known as van’t Hoff's!® law, and is identical to the
ideal gas law (Equation (9.11)), with the osmotic pressure substituted for
the actual pressure of the gas. This is not a coincidence, since the density
dependence of the chemical potential of the solute has the same form as
that of an ideal gas (see Problem 9.12(b)). Since kinetic theory cannot
possibly apply to a solution, where motion of the solute molecules is severely
restricted by the solvent, this result shows that it is a mistake to think of
the ideal gas law as merely a consequence of kinetic theory.



Example 9.4. (Lowering of the freezing point by a solute.) Solubilities
are usually much lower in solids than in hquids, and for the purpose of this
example, we will assume that the solute 1s not soluble in the solid solvent.
Then, while the chemical potential of the liquid solvent containing solute
15 lower than that of pure liquid by A(., given by Equation (9.45), that
of the solid 1z unaffected. If we start at a temperature above the freezing
pomnt and reduce 1t, freezing becomes possible when the chemical potential
of the solid drops below that of the hiquid. Since the presence of the solute
reduces the chemical potential of the liquid, the hiquid remains at the stable
phase to a lower temperature and the freezing point 1s depressed. Find the
change AT 1in temperature, to first order in

Besides the reduction A({; due to the solute, we also need to know
how the chemical potential difference between the pure iquid and the solhd
varies with temperature. If this difference 15 A(p(T), freezing will occur
when

Al + Al =10

A(p can be calculated from the Gibbs-Helmholtz relation for G (Equation
(4.45)), which can be written

9 (¢\ H
OT \T ]~ NAT?’

where H 1z the kmolar enthalpy, the derivative 1s at constant pressure, and
we have used G = N( (Equation (7.10)).
The change in temperature AT 1s small, and A(yp = 0 when AT = 0,

(9.48)

so that 5 [ AC LAT
o 0 _
Alp = Tﬁ (?) AT = NaT (9.49)

H=c-T(5F)

oT

H ¢

N C—T(a—T)
o ¢, 1. 18
ar\ ) = Tt Ty

ﬂ@; = (8&0) = —kBT$.
T,p,N,

IN;



where L 1s the latent heat (defined as the difference in kmolar enthalpy
between the pure liquid solvent and the sohd).
Substituting Equations (9.45) and (9.49) into Equation (9.48) we find

RyT?

AT = —
L

. (9.50)

Note that, so long as the assumption of 1deality holds, ‘ﬁ;c—T 15 the same
for all solutes. depending only on the latent heat of the pure solvent. An
analogous calculation shows that the presence of a nonvolatile solute raises

the boiling point (see Problem 9.13(b)). &
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WHAT IS LIFE?

THE PHYSICAL ASPECT OF THE LIVING CELL

Based on lectures delivered under the auspices of the Dublin Institute for
Advanced Studies at Trinity College, Dublin, in February 1943

Like so many works that have had a great impact on human
thinking, 1t makes points that, once they are grasped, have a
ring of almost self-evident truth; yet they are still blindly
ignored by a disconcertingly large proportion of people who
should know better. How often do we still hear that quantum
effects can have little relevance in the study of biology, or even
that we eat food in order to gain energy? This serves to
emphasize the continuing relevance that Schrodinger’s What is
Life? has for us today. It is amply worth rereading!

Roger Penrose
8 August 1991




WHY ARE THE ATOMS SO SMALL?

Clearly, the question is an evasion. For it is not really aimed
at the size of the atoms. It is concerned with the size of
organisms, more particularly with the size of our own corporeal
selves. Indeed, the atom is small, when referred to our civic unit
of length, say the yard or the metre. In atomic physics one 1s
accustomed to use the so-called Angstrém (abbr. A), which is
the 10"°th part of a metre, or in decimal notation 0.0000000001
metre. Atomic diameters range between 1 and 2A. Now those
civic units {in relation to which the atoms are so small) are
closelv related to the size of our bodies. There 1s a story tracing

THE WORKING OF AN ORGANISM REQUIRES

EXACT PHYSICAL LAWS
PHYSICAL LAWS REST ON ATOMIC STATISTICS

AND ARE THEREFORE ONLY APPROXIMATE

THEIR PRECISION IS BASED ON THE LARGE
NUMBER OF ATOMS INTERVENING.

THE\/H RULE



The Hereditary Mechanism

THE HEREDITARY CODE-SCRIPT (CHROMOSOMES)

THE NECESSITY OF MUTATION BEING A RARE
EVENT

PERMANENCE UNEXPLAINABLE BY
CLASSICAL PHYSICS

faced with the question: How can we, from the point of view of
statistical physics, reconcile the facts that the gene structure
seems to involve only a comparatively small number of atoms
(of the order of 1,000 and possibly much less), and that
nevertheless it displays a most regular and lawful activity —
with a durability or permanence that borders upon the
miraculous?



EXPLICABLE BY QUANTUM THEORY

QUANTUM THEORY — DISCRETE STATES —
QUANTUM JUMPS

THE APERIODIC SOLID

THE VARIETY OF CONTENTS COMPRESSED IN THE
MINIATURE CODE



Order, Disorder and Entropy

LIVING MATTER EVADES THE DECAY TO
EQUILIBRIUM

IT FEEDS ON “NEGATIVE ENTROPY’

What then is that precious something contained in our food
which keeps us from death? That is easily answered. Every

On Determinism and Free Will

that in my opinion, and contrary to the opinion upheld in
some quarters, quantum indeterminacy plays no biologically
relevant role in them, except perhaps by enhancing their



	AdvStPh20190219
	AdvStPh20190221
	AdvStPh20190226
	AdvStPh20190228
	AdvStPh20190305
	AdvStPh20190307
	AdvStPh20190311
	AdvStPh20190314
	AdvStPh20190319
	AdvStPh20190321
	AdvStPh20190326
	AdvStPh20190328
	AdvStPh20190402
	AdvStPh20190404
	AdvStPh20190409
	AdvStPh20190411
	AdvStPh20190416
	AdvStPh20190425
	AdvStPh20190430
	AdvStPh20190502
	AdvStPh20190507
	AdvStPh20190509
	AdvStPh20190514
	AdvStPh20190516



