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Binomial distribution

𝐾 successes from 𝑛 trials











Numerically

Importance sampling



accept - reject



Importance sampling for normal distribution











Expected 𝜒2 value is of the order of  𝑛.

































THEORY



The argumentation was wrong. Halting theorem!







It is possible  to construct codes for letters such that no sequence of symbols which is a 
true code for some symbol appears as a prefix in the sequence of some other letter. 
Then a sequence of symbols without any gaps can be cut into pieces representing 
individual letters (the gaps can be introduced automatically).



















How to measure the quantity of information? 

The starting point is the  requirement that the message saying an improbable event 
happened carries more information then a message reporting that a probable event 
happened. The quantity of information is therefore related to the probability of the message 
carrying the information. Information about the event is related to the probability of that 
event before it happened.

Now we require that the information can be communicated in parts. For example
I can first announce that the unknown number is odd, and then only the number
itself. It is natural to require that the information from partial messages should be
added to get the total information. Having in mind that the probability of independent events 
combine multiplicatively, but the corresponding independent pieces of
information should be combined additively it is natural to assume that the amount
of information is given by the logarithm of the corresponding probability.



Information is, in fact, measured by the price of telex carrying that 

information. If telex is priced by some amount of money per letter.

Using the logarithms of different bases just changes the units in which we measure the 
amount of information. (Changing the base just multiplicatively renormalizes the 
logarithm.) The unit corresponding to binary logarithm is called bit, the unit 
corresponding to natural logarithm is called nat.



By the way we have proved again the optimal coding theorem, that is that
one should use the codewords of the length log(qi) = log(pi).



So we see that the statistical entropy can be interpreted in the following way.
Let us imagine that somebody gives us a sample of some macrostate.  A macrostate is a 
virtual notion, he must actually give us some specific microstate. He just does not tell us 
which specific microstate from the corresponding ensemble he gave us.

So our knowledge about the system considered just corresponds to its macrostate,
we are completely unaware of the microstate actually delivered. Now imagine
that someone tells us which particular microstate was actually delivered. Then
our original unawareness is changed to a complete knowledge. The amount of
information contained in the message was −log(pi) where pi is the probability
assigned in the statistical ensemble to the microstate actually delivered. 



So the mean amount of information needed to complete our knowledge from macrostate to 
microstate level is

In thermodynamic:

therefore thermodynamical entropy is measured in J/K







Entropy is maximal



Free energy is minimal

𝐹′ is different from canonical, so it is non-equilibrium free energy



How to calculate a non-equilibrium free energy at a given temperature 









Problem: how to define microcanonical ensemble in classical physics, which is 

continuous. For continuous system we generally cannot define uniform probability, 

since this notion does not survive a change of continuous variables.

Solution: only canonical transformations are allowed.











Entropy for a classical system









Blind Monte Carlo

Importance sampling needed

Nature:



















Zeroth law of thermodynamics





Reversible processes in gas – experimental setup

The first dwarf (piston-pusher) can set any 𝑉
value (in the vicinity of the current value) by 
moving carefully the piston by small amount. 
He has to act by a proper force on the piston: 
a bit higher then corresponding to the gas 
pressure (if he wants to decrease 𝑉) or a bit 
lower then corresponding to gas pressure (if 
he wants to increase 𝑉).
The second dwarf (boiler attendant) can set 
any pressure 𝑝 (in the vicinity of the current 
value) indirectly by increasing or decreasing
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the current temperature of the gas. To control temperature in a reversible manner is a tricky 
task. Here it is how it can be done. The boiler attendant control roughly the water 
temperature (by manipulating the valves with hot and cold water) in an external boiler which 
serves as a heat exchanger. The boiler is in thermal contact with the gas through an interface 
with low coefficient of heat transfer. If the boiler water is a bit hotter then the gas,  energy 
slowly flows from the boiler to the gas thus increasing its temperature. If the boiler is colder 
then the gas, energy slowly flows from  the gas into the boiler thus decreasing slowly the gas 
temperature. The energy exchange between the boiler and the gas is an irreversible process 
(the boiler and the gas are not in the state of mutual equilibrium), but the gas remains in 
internal equilibribrium because the energy transfer is slow.



Calorimetry

Quantitative experiments about heating or cooling were 
done using calorimeters.
A calorimeter is a thermally isolated vessel. Inside the 
vessel we bring into contact two physical objects having 
initially different temperatures. Typically one object is a 
liquid like water, the other may be some solid body.
After some time the thermal equilibrium is established, 
both object having the same temperature which we 
measure.

So the experiment looks like this
Water: mass 𝑚1, initial temperature 𝑡1. Solid body: mass 𝑚2, initial temperature 𝑡2 > 𝑡1.
The final temperature is 𝑡. 
Empirical facts show that there is a material constant for water 𝑐1 and for the body 𝑐2, so 
that a following calorimetric equation holds

The material constants 𝑐1, 𝑐2 are called specific heat constants.



Calorimetric equation as a conservation law

Calorimetric equation can be rewritten as:

Inspecting that equation it looks like a conservation law. Some quantity calculated like 𝑚𝑐𝑡 is 
the same at the beginning an at the end of the process. This something looks like to be hidden 
inside the objects but distributed differently between the two objects during the process,  the 
total sum being conserved.

We certainly cannot resist the temptation to introduce a new physical quantity: the heat. The 
heat is hidden inside the objects, can be transferred between the objects, the total amount of 
heat is conserved. More heat inside the object means higher temperature. It lead to 
terminology like heat transfer, loss of heat, “heat is transferred through conduction, flow or 
radiation”. All this was found to be wrong!

The crucial point was, that the first calorimetric measurements were done using fluids or solid 
bodies both having the property that they change their volumes with temperature only 
slightly. The situation is dramatically different with gases.

We have seen during a qualitative discussion of an adiabatic process that we can change the 
temperature of some gas just by changing its volume by the “piston pusher” who is acting 
by fore on a moving piston therefore performing mechanical work.

So the lesson is simple, to change the temperature, we do not need to increase the “heat 
content” of the body, we can just perform mechanical work.
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Phenomenological units of heat

Historically, when people defined heat as “something that is conserved according to the 
calorimetric equation

it was obvious, that there is not any “natural” physical unit of heat, The content of heat in  
a body defined as 𝑚𝑐𝑡 is not well defined until we define the physical unit for the heat 
capacity.

It is obvious, that if we multiply the heat capacities of all materials by the same constant, 
the calorimetric equation would still hold, That means the unit for heat capacity can be 
arbitrary, since the heat capacity and/or heat itself is (at this level of physics knowledge) 
not directly connected to any other  physical quantity (with already defined physical unit).

So the unit of heat was chosen arbitrarily to be one calorie  “cal” defined as the amount of 
heat needed to increase the temperature of one gram of water by one degree.

Therefore the specific heat of water was defined as 1 cal/g/K. The specific heat of any 
other material can then be measured by a suitable calorimetric measurement.
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Mechanical equivalent of heat

Benjamin Thompson, Count Rumford, had observed the frictional heat generated by 
boring cannon at the arsenal in Munich, Germany circa 1797. More prcecise
measurements were done by James Prescott Joule in the 1840s.

Finally it was found that the same 
increase of temperature of some 
object as achieved by “transfer of 
heat” of 1 cal can be achieved by 
performing a mechanical work of
4186 J.

So it was found that the “amount od 
heat” can be more naturally measured 
by the units of work, Joules. In this way 
a “mechanical equivalent of heat” was 
found. Calories can be universally 
converted to Joules by the conversion 
constant 4186 J/cal.



We have found that the work performed by the “piston-pusher” during a reversible 
process changing the state of gas from the state “1” to the state “2” can be calculated as

and this work depends on “the trajectory” of the process between the initial and final 
states, as it is clearly seen from the figure below.
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Work and heat for reversible processes in gas

The obvious question is how much heat is to be provided by the boiler attendant on a 
particular process (trajectory). A careful investigation of this problem has lead to precise 
specification of the concept of energy formulating the law called “first law of 
thermodynamics”. 
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First law of thermodynamics

For any process between the two states “1” and “2” we can calculate the work 
performed by the piston pusher

and we can measure the heat “transferred” to the gas by calorimetric consideration of 
the actions performed by the boiler attendant.  The following empirical law was 
established.

The sum of mechanical work and heat (converted to Joules) depends  only on the initial 
and final states of the system and so this sum is the same for any (reversible) process 
(trajectory) between those two states. 

Let us stress again: the work by itself and the heat by itself depend on the specific 
trajectory, their sum does not.

This means that the sum of work and heat must be calculable from the characteristics 
of the initial and final states only. 

This means that we can define a physical quantity of state in such a way, that the 
difference of this quantity between the two states is equal to the sum of work and heat 
performed during (any reversible) process between the two states.
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First law of thermodynamics

Repeating: the first law of thermodynamics says, that there must be a physical quantity of 
state such that the sum of work and heat is calculable as a difference of this quantity 
between the final and initial state.

This quantity was given a name: energy. More precisely, the phenomenological 
thermodynamics used the name internal energy. The reason perhaps was, that it was not 
obvious that the state function “energy” as found by thermodynamical considerations has 
anything common with the quantity “energy” as found in the studies of Newtonian 
mechanics of particles.

Of course, there was a connection: the internal energy can be changed at the expense of 
mechanical work, the same work as found in classical mechanics.

Only after molecules were discovered, it was clear that the “internal energy” is just a 
“standard” mechanical energy of molecules, just macroscopically “not directly visible”.

In what follows we shall just use the terminology “energy”, without the attribute internal.
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First law of thermodynamics

The obvious task for a phenomenologist is to find the formula for energy as a function of 
quantities defining the macrostate.  

Obviously, the first law of thermodynamics can determine only the difference of 
energies of twos states, so energy in thermodynamics is defined up to an arbitrary 
additive constant. 

The phenomenologist has to define some arbitrary reference macrostate whose energy 
is set to 0 by definition. Then he has to measure the sum of work and heat going from 
the reference state to an arbitrary macrostate. Based on experimental data he has to 
“guess” a formula for energy.

A theoretician, who already knows that behind the macrostate there is some microstate 
of molecules can in principle calculate the (mechanical) energy of molecules in the 
chosen representing microstate and, based on statistical considerations, express the 
energy of the microstate through the macroscopic quantities defining the macrostate 
considered.



The problem is that an arbitrary final state cannot be reached from the reference 
state via the quasi-static adiabatic curve. 



Energy conservation law holds for irreversible processes as well. So we can measure in 
principle the energy of any macrostate. 

We first go from the reference state by adiabatic process to the state which has the same
values of the external parameters as the desired final state, but is still a different
state differing for example by the value of the conjugated parameters (practically
it means by temperature). Now we keep the external parameters constant and perform heat 
to get to the desired final state. We perform (”produce”) heat by an irreversible process 
(Joule) performing mechanical work on some other (macroscopic
but very small with respect to our system of interest) auxiliary system which is in
contact with our system and exchanges heat with it, with the auxiliary system performing an 
irreversible process where external work is performed upon it. The
auxiliary system is small, so even if its temperature is gradually increasing its energy increases 
by negligible amount. 

Historically the procedure was still different from the procedure using the Joule
irreversible (work to heat transfer) process as described above.
The notion of heat was older then the fact that it can be measured using the units
for work. The notion of heat developed in calorimetric measurements. 



Problem: heat capacity may depend on temperature, so the more realistic 

calorimetric equation is

Idea: parametrize heat capacity by a function with a few free parameters, 

then perform a fit.

measure work

measure heat

How to measure heat. 

Fixed volume, no work. 

Contact with hot water 

until desired temperature 

reached. Measure heat 

exchanged by  measuring 

the hot water the hot 

water final temperature.



Historical problem: work and heat measured by different units.

First law of thermodynamics:

there exists a universal unit converting constants that the sum lof work and 

converted calories to get from an initial state to a final state does not depend 

on trajectory

Therefore there exists a state function E, which can be determined as

thus the energy conservation law was discovered: any energy change is 

balanced by the work (mechanical work + heat). To perform work there must 

be an agent. The work performed by an agent on the system is the same but 

with an opposite sign as the work performed by the system on the agent. 

Therefore the energy change of the agent is just opposite to the energy 

change of the system and the overall energy of system + agent is 

conserved.



Second law of thermodynamics:

does not depend on the trajectory. So entropy is a state function.

Cyclic reversible engine: 







What was essential to derive the concavity property was that the 

parameters were extensive.

Other thermodynamic potentials do not have extensive natural 

parameters. However, they are derived by Legendre transformation. And 

the Legendre transformation preserves (or changes the sighn) of 

concavity. So we get concavity property for other thermodynamic 

potentials as well.









































So the specific heat at constant temperature does not depend on volume, it can be
evaluated for large volume where the gas is sufficiently dilute and behaves like
ideal gas, so we get









na izoterme

















grupová rýchlosť

Ak rátam balistický prúd v nanofyzike, hustotu stavov treba vynásobiť 

grupovou rýchlosťou a ostane univerzálny vzorec nezávislý na tom, o akú 

tuhú látku ide.













































𝑁2 spins

Domain boundary is like a 

random walk from top to 

bottom.

At each step 3 possibilities

Each line typically 𝑁2 steps

3𝑁
2

dividing lines

Energy difference

2𝐽𝑁2

Entropy 

𝑁2ln3

Δ𝐹 ≈ 2JN2 − TN^2ln3

Neither energy nor entropy 

is a clear winner

Phase transition possible





















Fázový prechod druhého druhu: nespojité (divergujúce)druhé 

derivácie termodynamického potenciálu









Small 𝑡 means large 𝑇. High temperature expansion.







Low temperature expansion



Dual latices





















Fluctuation – Response Theorem

This is how one calculate 𝐶𝑉 numerically, since calculating it via
ത𝐸 𝑇 + 𝑑𝑇 − ത𝐸(𝑇) is numerically intractable

Note: cumulant



Fluctuation – Response Theorem for arbitrary quantity

Note: if 𝐴 is extensive, then 𝜒𝐴 is extensive, so 



𝑍 𝐽 is a generating function of moments of 𝐴
ln(Z(J)) is a generating function of cumulants of 𝐴.



Fluctuation – Response Theorem for arbitrary quantity

Note: if 𝐴 is extensive, then 𝜒𝐴 is extensive, so 



𝑍 𝐽 is a generating function of moments of 𝐴
ln(Z(J)) is a generating function of cumulants of 𝐴.



Probability of fluctuations



Be careful:

but



Sometimes we can reasonably guess the dependence of

on M. Like in the Landau model of phase transitions. Then we can have a 

phenomenological effective theory like

Then 𝑍 need not be calculated from the original microscopic Hamiltonian, 

but as a normalization of an effective theory



It looks like a canonical physics of a simple system with one degree of freedom, 

𝑀, with a Hamiltonian

The (nonequilibrium) free energy of the microscopic theory effectively becomes 

a Hamiltonian of the effective theory. This is why people in textbooks suddenly 

switch the language and start to speak about “Hamiltonian”.

This happens even more in effective field theories, when one introduces a 

nonequilibrium field

The nonequilibrium free energy of the microscopic theory is then a functional



External field ℎ Ԧ𝑟

𝑍 is then a functional of ℎ and is a generating functional of moments of 𝑚(Ԧ𝑟).

All moments and correlations can be calculated as certain variational

derivatives of the generating functional.

Phenomenological hamiltonian
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𝑗 particles/cm-2/s

𝑛 detector_clicks/s

Scattering cross section
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Assumption: all collision events are independent of each other

This may not be true. If a collision destroys the target particle, the target 
particle is no more available for colliding with the next beam particles, so 
there would be only one click of the detectors eventually. 
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𝐿 luminosity   s-1cm-2 

𝐿𝑖𝑛𝑡 integrated luminosity      cm-2 (inverse milibarns)

Luminosity is difficult to measure directly, beam profile not 
uniform, fluctuates in time

Solution: calibrate by a well known process with well known 
cross section
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Colliders

for head-on collisions
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𝜎 may be differential cross section or even may contain 𝛿-functions like

If detectors measure                     they measure with certain precision 
(discrete histograms, not points). So the number of detector counts is 
the integral over the sensitivity volume, the delta functions for energy 
momentum conservation get integrated-out. 
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It becomes to be the oneparticle approximation when we say that it contains whole 
statistical information. By that we mean, that all statistical results (like mean values of 
all the physical variables) can be obtained just from function 
f(r, v, t). 
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Ideal gas, no collisions
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1

Mean time between collisions
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Thought experiments

• catch a molecule. Ask her to send you the time of the next 
collision from now

• catch a molecule. Ask her to tell you the time of the last 
collision before now

• catch a molecule. Ask her to tell you the time of the last 
collision and then the time of the next collision. Subtract the 
two numbers

• catch a molecule. Ask her to give you the recordings of the 
times of collisions. Subtract always the two consecutive 
times
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Tlak:

Note: even power of 𝑣! Nonzero also for Maxwell (equilibrium) 
distribution. How it is possible to have non-zero flux of some quantity 
in equilibrium. Symmetry prohibits equilibrium flux for a scalar 
quantity, but for a vector quantity like momentum it is possible. Look 
to the glass of water in equilibrium
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Tlak:

Note: even power of 𝑣! Nonzero also for Maxwell (equilibrium) 
distribution. How it is possible to have non-zero flux of some quantity 
in equilibrium. Symmetry prohibits equilibrium flux for a scalar 
quantity, but for a vector quantity like momentum it is possible. Look 
to the glass of water in equilibrium
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Tlak:

Note: even power of 𝑣! Nonzero also for Maxwell (equilibrium) 
distribution. How it is possible to have non-zero flux of some quantity 
in equilibrium. Symmetry prohibits equilibrium flux for a scalar 
quantity, but for a vector quantity like momentum it is possible. Look 
to the glass of water in equilibrium
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Total outflow of 𝑝𝑥 from 
the blue box is zero, box 
does not move in the 𝑥-
direction
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Equilibrium distribution

Maxwell



22



23



24



25



26



27



28



29



30



31



1



2



3



4



5



6



7



8



9



10



11



12



13



14



15

detailed balance



Decoherence, 
quantum measurement, 

master equation, exponential decay 
and all that



Quantum mechanics and measurement

• states (pure states) are vectors in Hilbert space 
• measuring devices correspond to Hermitian operators
• superposition states

• measuring devices are classical devices, described by classical, not quantum mechanics
• quantum system state collapses to an eigenstate of the measuring device’s operator    

Stern-Gerlach shows “up”

Stern-Gerlach shows “down”

Problem of measurement in QM:
We would like to describe the measuring device also by quantum mechanics (by 
Schrodinger equation), but this is incompatible with state collapse as shown by von 
Neuman because state collapse is a non-unitary operation



Density matric, statistical





Density matric, subsystem

Compound system (S,E)

Suppose we have a measuring device which measures some quantity of the system S. It 

means that its operator መ𝐴 operates just in the subspace of the compound Hilbert space. 
This subspace is spanned on vectors          . It means it is completely determined by the 
matrix elements

the mean A value is then calculated as  



So we see that all information about the state is hidden in the expression

Density matric, subsystem

We can introduce a density matrix operator

and the mean A value can be written as

This is similar to what we had for the statistical density matrix. A big difference 
between the two matrices is that the time evolution of the subsystem density matrix is 
not given just by the system Hamiltonian ෡𝐻𝑠. To calculate the time evolution of a 
subsystem density matrix is not simple.



The time evolution of a subsystem density matrix can clearly be calculated by keeping 
the pure state of the overall system SE:

Using the total Hamiltonian
we calculate its time development (using the Schrödinger equation)

and then calculate the subsystem density matrix in each time instant anew:

Density matric, subsystem

If at some time instant 𝑡0 system S becomes decoupled from E, then its state is given by 
the subsystem density matrix            which becomes the statistical density matrix at time 
𝑡0, and its further time development is unitary corresponding to the Hamiltonian ෡𝐻𝑆. 

The time development of the subsystem density matrix is clearly non-unitary.



Measurement, wave function collapse, 
statistical density matrix

Suppose we have a pure quantum state of some system S given as a superposition of 

eigenstates          of a Hermitian operator መ𝐴

We perform the measurement of the quantity 𝐴 and the measuring device shows the 
value 𝑎𝑘 (it always shows one of the eigenvalues 𝑎𝑖). The wave function collapse 
happens immediately after the measurement the system wave function becomes         . 
The probability of this to happen is          .
If we repeat the identical measurement experiment many times, we get various vales 𝑎𝑖

with probabilities           leading the wave function collapse into the state         .
So repeating the measurement experiment we get a statistical ensemble of states 
described by the statistical density matrix



Measurement, wave function collapse, 
statistical density matrix

So a measurement of a quantity 𝐴, leads to the non-unitary wave function collapse, the 
state of the system after the measurement can be described by a statistical density matrix

Problem of measurement in QM:
We would like to describe the measuring device also by quantum mechanics (by 
Schrodinger equation), but this is incompatible with state collapse as shown by von 
Neuman because state collapse is a non-unitary operation

Our aim is to show that a process of quantum decoherence can 
lead to “effective” wave function collapse and thus can “mimic” a 
measurement process. 



is a set of some vectors in the subspace of the environment, indexed by 𝑖. 

These vectors do not form a base in the environment subspace: the environment has much 
more degrees of freedom. We can introduce normalized vectors in the environment 
subspace as                                                                  We get

Decoherence due to interaction with environment

System and environment.           is an arbitrary base in system subspace,               is a base 
in environment subspace. Time development is given by the total Hamiltonian (via 
Schrödinger equation) 

Suppose we have a physical quantity which from the system subspace (not sensitive to the 
state of environment. Then 



Now we can introduce a subsystem density matrix:

Compaer this with the wave function collapse after measurement

Decoherence: collapse to diagonal density matrix



Decoherence: collapse to diagonal density matrix

For a different choice of the basis          we would get different accompanying environment 
vectors          .  So even if for some choice of          we get                                     , for a 
different choice           , the accompanying environment vectors will not converge to 
diagonal matrix

It means that we can have a decoherent collapse for some choice of basis states of the 
system and not have a decoherent collapse for some other choice. Or perhaps a bit 
weaker: for some choice we could observe a decoherence collapse after just a small time 
of interaction with environment and for other choice of basis states the decoherence 
time would be much larger



Decoherence: collapse to diagonal density matrix

Do notice that the definition of the density matrix does not depend at all on what 

operator መ𝐴 we have chosen for the derivation of the density matrix. 

If the density matrix is diagonal, it means that all measurements on the system S can 
discover superpositions of the basis states. 
Be careful: we cannot deduce from the results of any measurement, that the system S was 
in some superposition of states         before the measurement was performed. Of course 
after  the measurement the system would be in an eigenstate of the measured quantity,  
which can be a superposition of the states         . 

Be careful: we did not prove that decoherence exists. We did not prove that

We just said that “perhaps it may happen”.



Decoherence and quantum kinetics:
master equation

The following is a snippet from Reif: Fundamentals of statistical and thermal physics



Decoherence and quantum kinetics:
master equation

The following is a snippet from Reif: Fundamentals of statistical and thermal physics



Decoherence and quantum kinetics:
master equation

Reif stresses the fact of time irreversibility of the master equation used to describe the 
kinetics of a quantum object.
For me, reading the book, a more important question is this: where are the superposition 
states?

The master equation deals only with probabilities, not with amplitudes! How this can 
be justified for a quantum object?

The answer may be this:

Consider the time steps in the differential master equation as not infinitesimally small. So 
net derivatives in a strict mathematical sense. Just small time denominators (Newton had 
no 𝜀 , 𝛿 , just fractions of small quantities). If the small time increments are larger than 
decoherence time due to continuous interaction with environment, we get it!
In this way an exponential decay is acceptable, which otherwise can hardly be justified in 
“orthodox” quantum mechanics.
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detailed balance
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=B
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E.S.Abers, B.W.Lee, Phys.Rep. 9,1 (1973). Je tam urobená základná filozofia 
integrálov po trajektóriách v QM a prechod do euklidovskej formulácie ako 
analyt. predĺženie. Odtiaľ to odpísal a trochu okomentoval Amit

D.J.Amit, Field theory, renormalization group and critical phenomena, 
McGrawHill 1978

Trochu matematickejší je Vasiliev: A.N.Vasiliev, Funkcion. metody v kvantovoj
teorii polja, Izd. Leningradskogo Universiteta 1976

B. de Wit, Functional methods in quantum field theory, NIKHEF-H/81-27



7

Logika je taká: Od Feynmana vieme, že (pre jednoduchosť v jednorozmernom 
prípade) platí

Teda, že nejaký maticový element prechodu sa ráta cez funkcionálny integrál. 
Táto vec potrebuje komentár. je Heisenbergovský stav, ktorý označuje 
stav s touto vlastnosťou: keď urobíme v čase 𝑡 meranie súradnice na tomto 
stave, dostaneme ostrú hodnotu 𝑞.

Treba si uvedomiť, že stav            ako vektor v Hilbertovom priestore nezávisí 
na čase. Symbol 𝑡 nie je časová závislosť vektora ale časť mena toho stavu 
(časť hieroglyphu).

Časová závislosť je potom schovaná v časovej závislosti operátora súradnice
ො𝑞(𝜏). (𝑡 je fixná hodnota, 𝜏 je premenná, označujúca čas, v ktorom sa systém 
vyvíja.). Platí teda
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Všimnime si ešte maticové elementy typu
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Teraz by bolo treba dosadiť vyjadrenia tých maticových elementov cez 
kontinuálne integrály. Ukázalo by sa, že súčin tých integrálov je to isté ako jeden 
kontinuálny integrál cez trajektórie z 𝑞 do 𝑞′, ale len cez také trajektórie, ktoré v 
čase 𝑡2 idú cez bod 𝑞3 a v čase 𝑡1 cez bod 𝑞1 .
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a po preintegrovaní cez 𝑞1, 𝑞3 sa dostanú ľubovoľné trajektórie spájajúce 𝑞 a 𝑞′.
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keby sme rátali

teda to, čo T produkt nepustí, dostali by sme v obdobnom medzikroku

toto sa ale nedá spojiť do jednej trajektórie, lebo tá by v časti išla v čase 
dozadu
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Preto kontinuálny integrál

ráta obloženú hodnotu T-produktu, hoci to z tohto výrazu vôbec nevidno. Je to 
schované v tom, že uvažujeme len trajektórie idúce v čas stále len dopredu.

Pomocou kontinuálnych integrálov teda vieme rátať amplitúdy (a s prípadne 
vloženými T-produktmi) typu

Často nás ale viac zaujíma amplitúda (prípadne s vloženými T-produktmi )typu

kde označuje základný stav. Všetci vieme, že (**) aj (***) sa rátajú 
pomocou výrazov typu (*). Ibaže (**) a (***) sú rôzne veci, tak sa musia rátať 
dajako odlišne
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V málo starostlivých textoch sa v kontinuálnych integráloch nepíšu integračné 
hranice. Ale v rôznych hraniciach práve spočíva trik rozlišujúci (**) a (***).

Povieme najprv výsledok, potom bude komentár
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(A)

(B)
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Integrál (B) sa myslí tak, že najprv sa urobí v reálnych časoch

a potom sa nájde analytické predĺženie funkcie 𝐹(𝑡, 𝑡′) do bodu 𝐹(+𝑖∞,−𝑖∞)
v komplexnej časovej rovine. To čo sa takto dostane je maticový element 

až na nejaký triviálny faktor, o ktorom bude reč neskôr.
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Samozrejme, vec ako
by nebola zaujímavá,  keby         bol základný stav celého Hamiltoniánu, lebo 
potom by bola tá časová závislosť v maticovom elemente triviálna. To, čo máme 
naozaj na mysli je

Teda vonkajší zdroj zapnutý v (reálnom) čase 𝑡1 < 𝜏 < 𝑡2 a        je základný stav 
príslušný k hamiltoniánu bez vonkajšieho zdroja. Zaujímame sa teda o 
pravdepodobnosť toho, že základný stav prejde na základný stav, ak zapneme a 
potom zas vypneme vonkajší zdroj 𝐽. 
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Dobré je to na to, že si tak vyrábame generujúci funkcionál greenových funkcií, 
napr.

Nakoniec sa zaujímame len o connected greenove funkcie, ktoré sa dostanú 
predelením faktorom

Neznámy faktor, o ktorom sme sa zmieňovali takto z hry vypadne.
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Chceme mať reálne časové argumenty pri ො𝑞(𝑡) v T-produktoch, preto 𝐽 musí byť 
funkcia reálneho argumentu, preto časová krivka na obrázku musí ísť po reálnej 
osi v tých časoch, keď je zapnuté 𝐽.
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Je výpočtovo nepraktické prehupnúť sa ku koncom z reálnej časovej osi na 
imaginárnu. Jednoduchšie je mať celú trajektóriu na imaginárnej časovej osi, tam 
zrátať veci ako

a potom urobiť analytické predĺženie v 𝜏1, 𝜏2 naspäť k reálnym časom. To je idea 
Wickovej rotácie a prechodu k Euklidovskej teórii poľa.

Zistili sme teda, že pre počítanie v kvantovej teórii môže byť užitočné rátať nejaké 
integrály v Euklidovskej oblasti. Má to byť len matematický trik pre uľahčenie 
výpočtov s tým, že nakoniec urobíme analytické predĺženie k fyzike v normálnej 
Minkovského teórii.

Prirodzená je však otázka, či tie Euklidovské kontinuálne integrály majú aj nejaký 
fyzikálny význame „samé o sebe, tak ako sú“.

Odpoveď je taká: majú a dokonca dva úplne rôzne významy.
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Pozrime sa, čo urobí Wickova rotácia v podintegrálnej funkcii

Napr. pre harmonický oscilátor
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Tu sme definovali, čo nazývame Euklidovským lagranžiánom. Fór je v tom, že 
Euklidovký lagranžián je vlastne energia pôvodného kvantového systému.

Nešpecifikovali sme hranice integrálov, lebo zatiaľ sa len tak hrajkáme, robíme 
heuristickú investigatívu.

To že sme dostali v exponente energiu so záporným znamienkom znamená že 
začíname tušiť súvis so štatistickou fyzikou.
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Vráťme sa k otázke hraníc

Po Wickovej rotácii

bude to zrejme greenova funkcia zrotovanej rovnice
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keby tam v exponente namiesto 𝜏′ − 𝜏 bolo 𝛽, tak by išlo o maticové elementy 
nenormalizovanej (bez 𝑍) „matice hustoty“

„Matica hustoty“ je zjavne operátor časového posunutia v rovnici (*), preto sa 
netreba diviť, že to tak vychádza.
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Teda: ak urobíme Wickovu rotáciu v generujúcom funkcionáli a zoberieme 
časový interval

dostaneme element matice hustoty

kde 𝑞, 𝑞′ sú fixované koncové body trajektórií v kontinuálnom integráli. 
Ak chceme dostať štatistickú sumu

To sa dá urobiť rovno v kontinuálnom integráli tak, že zoberieme trajektórie 
začínajúce a končiace v tom istom bode 𝑞 (s periódou 𝛽) a potom ešte 
preintegrujeme aj cez 𝑞.
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Záver: Ak chcem spočítať štatistickú sumu nejakého kvantoveho fyzikálneho 
systému pri inverznej teplote 𝛽, potom
• tvárim sa ako keby som chcel ten klasický systém kvantovať, teda robiť 

kvantové maticové elementy prechodu
• ale namiesto toho urobím v kontinuálnom integráli Wickovu rotáciu
• zoberiem všetky periodické trajektórie s periódou 𝛽
• preintegrujem cez všetky body trajektórií, teda nič nedržím fixné

Existuje ale ešte úplne iná štatistická fyzika, ktorá súvisí s tým kvantovým 
systémom a získamu je z Wickovsky zrotovaných hieroglyfov.
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Na integrál

Sa dá dívať ako na štatistickú sumu nejakého fiktívneho nekvantového systému, 
ktorý nijako nesúvisí s tým pôvodným nekvantovým systémom, ktorý sme chceli 
kvantovať pomocou kontinuálneho integrálu.

Ten fiktívny klasický objekt je čosi ako „struna“. Mikrostav tej struny je daný 
funkciou 𝑞(𝜏),  pričom krajné body tej struny sú vo všetkých mikrostavov 
zafixované v bodoch 𝑞, 𝑞′. Energia struny v každom mikrostave je daná integrálom 
Euklidovského lagranžiánu pôvodného klasického systému.
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2

Statistical physics of electromagnetic field



Physics manifesto

• Find how to describe “current” state of the animal
• Find the equation of motion
• Predict future states
• If you cannot write down current state in sufficient details do statistical 

physics instead

3

State of electromagnetic field: two vector fields
What are the equations of motion, how to predict future? 

We have a new physical system: electromagnetic field. It is a new animal in the physics 
ZOO. So we have to show how the physics manifesto works for this new animal.

Suppose we know the state 𝐸 𝑡, Ԧ𝑟 , 𝐵(𝑡, Ԧ𝑟). The state after time 𝑑𝑡 should be
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Note: boundary conditions

These equations can in principle be used to predict the state after a small time interval 
𝑑𝑡 knowing the current state at the time 𝑡. And then iterate to further future, next 𝑑𝑡, 
and next 𝑑𝑡 an d so on. We can try to do it at least numerically on a computer. However, 
we meet two problems:
• numerical instabilities. We either have be very careful with the choice of steps in 

time and space or we have to choose more sophisticated numerical methods. This is 
not a sign of some essential problem

• we will not be able to numerically approximate the rotations in points at the 
boundaries. We have to use boundary conditions for the boundary points instead. 
This is essential and it helps us to understand why the partial differential equations 
force us to specify the boundary conditions. To know the initial state is not enough 
to predict the future.
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If you cannot write down current state in sufficient details do statistical physics instead

Heating stove: even if the fuel is burned out, no fire there, if you open the door you see 
red light. There is electromagnetic field inside heated to temperature 𝑻. This is all we 
know about the field inside. We do not know the detailed state (microstate). We just have 
very reduced information:

There is radiation in the box of volume 𝑽, having temperature 𝑻. This sentence describes 
the current macrostate. We assume that some relaxation time has already passed, so it is 
an equilibrium macrostate. A priori we do not know if 𝑉, 𝑇 specify the equilibrium 
macrostate sufficiently, so that we can start statistical physics machinery. Just assume that 
yes and we shall see later that 𝑉, 𝑇 is really enough.
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Statistical physics machinery

One macrostate can be realized by tremendously high number of detailed microstates. 
Those microstates we denote just symbolically as 𝑖. Each microstate has well defined 
energy 𝐸𝑖 . Statistical physics machinery looks like this
• Calculate

• Rewrite it as

• You can calculate anything of interest from 𝐹(𝑉, 𝑇) by suitable derivatives. For 
example radiation pressure
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Statistical physics machinery

Looks easy, if you know hot to calculate sums over all possible microstates

for the new physics animal: the electromagnetic field.
The states are given by fields. It is a field theory. The sum is a sum over all possible 
fields! 

Wiener functional integrals !?  

A way out: write down the states differently in a simpler but equivalent way. At least for a 
free electromagnetic field in a box (possibly of arbitrary shape).
The first thing is to find what the states of the field look like.
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We have all learned in quantum mechanics how to handle such equation. First we find 
Laplacian eigenfunctions

We need solutions inside the box satisfying the boundary conditions and an additional 
condition

We find that good solutions exist only for a discrete set of 𝑘 values. Let denote them 𝑘𝑗. 𝒋

might be a multiindex. We assume, that the eigenfunctions Ψ𝑗(Ԧ𝑟) form a complete set of 

functions, therefore the solutions of the wave equation  satisfying the boundary 
conditions and the zero divergence condition can be looked for as superpositions

Free field in a box

make rot rot
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Free field in a box, states, discrete formulation

Inserting this into the wave equation (equation of motion) we get

These are equation of motion for independent harmonic oscillators whose “names” are 𝑗.

We see that the state of the free field in a box can be given by writing down the states of 
a (discrete) set of independent harmonic oscillators as

The frequency of the oscillator 𝑗 is 𝜔𝑗 = 𝑐𝑘𝑗. The frequencies are directly given by the 

spectrum of the Laplacian corresponding to the shape of the box and the boundary 
conditions.
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Free field in a box: how to do statistical physics

We have retold the whole story about our physics animal: the electromagnetic field in a 
box.
• its state is given as a set of states of independent harmonic oscillators with frequencies  

𝜔𝑗
• its future can be predicted by predicting the time development of the set of 

independent harmonic oscillators starting with their initial states. This is trivial.
• statistical physics can be done by creating a canonical ensemble for the set of 

harmonic oscillators. This is trivial once the spectrum 𝝎𝒋 is found. However, we have a 

choice:
The oscillators can be considered as classical or quantum objects

There is no general formula for the complete spectrum of the Laplacian. It has to be 
determined anew for each box shape and each boundary conditions. However, there is the 
Weyl theorem describing the asymptotic distribution of 𝝎𝒋 for large frequencies. 

First let us investigate what we can say without knowing the spectrum in details.
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Calculating mean energy
We shall not do complete statistical physics, we shall just calculate the mean energy at 
temperature 𝑇. Since wee have a system of independent harmonic oscillators, the key 
point is to calculate the mean energy of a harmonic oscillator having frequency 𝜔 at the 
temperature 𝑇. Let us denote this as ҧ𝜀 𝜔, 𝑇 . Then the mean total energy of the radiation 
in the cavity will be given by a sum over spectrum

It is more convenient to rewrite the sum as an integral introducing Laplacian spectral 
density 𝝆(𝝎) with the meaning that 𝜌 𝜔 𝑑𝜔 is the number of oscillators (𝑗′𝑠) having 
frequencies 𝜔𝑗 in the interval 𝑑𝜔 around 𝜔. The integral is certainly a good approximation 

to the sum for large enough 𝜔. If one wants to be more precise one can consider 𝜌(𝜔) to 
be a distribution consisting of delta functions for small 𝜔 plus an ordinary smooth 
function for large 𝜔. Thus we get

From there we get for the spectral energy density (energy per unit volume per unit 
frequency interval) 
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Energy spectral density

• For classical oscillator we have

• For quantum oscillator we have

This is disaster: there is no dependence on 𝜔.  The portion of energies carried by very high 
frequencies relative to small frequencies does not depend on 𝑇!!! If you open the door on 
your stove, you get irradiated by deadly ultraviolet, roentgen and gamma radiation.
WRONG !

If the Laplacian 
spectral density is not 
exponentially rising, 
the large 𝜔 asymptotic 
may be correct
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Energy spectral density

You can experimentally determine the Laplacian spectrum for your cavity:
• Measure the energy spectral density
• Divide by

• You get the Laplacian spectrum 𝜌(𝜔) for your cavity ! (For the boundary conditions 
relevant for the electromagnetic field inside.)
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Free electromagnetic field in a conducting box
Free electromagnetic field in  a conducting box (like 
microwave) satisfies wave equation inside the box. The 
more difficult part of the problem are the boundary 
condition.
Let us investigate  the 𝑥-component of the electric field 
𝐸𝑥(𝑥, 𝑦, 𝑧) in a cube-like conducting box 𝑎 × 𝑎 × 𝑎.

Tangential components on the boundary have to be 
zero

where 𝑓-s are so far unknown functions 

The electric field has to satisfy the condition div 𝐸 = 0 also in points with 𝑥 = 0, 𝑥 = 𝑎. 
There the 𝑦 and 𝑧 field components do not contribute since their sinuses are 0 there, 
therefore we get the condition for the derivative of 𝑓

so the derivatives of 𝒇 can be constructed from sinuses, so  𝒇 from cosines.

Example of boundary conditions

According to Fourier: function 𝐸𝑥(𝑥, 𝑦, 𝑧) satisfying such conditions can be constructed from 
the set of functions (cyclically for other components)
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Free electromagnetic field in a conducting box

We have found that the electric field automatically satisfying the boundary conditions 
can be looked for in the form

where 𝐸𝑥;𝑚𝑛𝑙 𝑡 , 𝐸𝑦;𝑚𝑛𝑙 𝑡 , 𝐸𝑧;𝑚𝑛𝑙(𝑡) are so far unknown functions. Actually not all these 

functions are independent, because of the zero divergence condition, which gives the 
conditions

so for any 𝑚𝑛𝑙 only two of these functions are independent (for example the 𝑥 and 𝑦
component). The third one can be expressed from the other two. We have got the 

Laplacian spectrum: 𝑗 = 𝑚, 𝑛, 𝑙 , 𝑘𝑗 =
𝑚𝜋

𝑎
,
𝑛𝜋

𝑎
,
𝑙𝜋

𝑎
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Laplacian spectral density

The states (𝑚, 𝑛, 𝑙) can be visualized in an abstract (𝑚, 𝑛, 𝑙)-space as points with integer 
coordinates in the positive octant. To each unit cube belongs on average one its vertex, 
so number of integer-coordinate points for which 𝜔𝑗 < 𝜔 denoted as 𝜑(𝜔)is 1/8 of the 

volume of a sphere with radius 𝑟𝜔 = 𝑚2 + 𝑛2 + 𝑙2 =
𝑎

𝑐𝜋
𝜔

The pre-factor 2 is for 2 “polarizations” for each 
(𝑚, 𝑛, 𝑙).
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Energy spectral density

We have got this for a special case cube-like box cavity with perfectly 
conducting walls
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How to measure 𝒖 𝝎 : make hole into the cavity

spectral energy density flow (energy per unit of the hole 
area per unit of time per unit of frequency

Easy argument using photons: photons have velocity 𝒄, averaging over angles 
gives 1/4. 

How photons enter the game ? Be patient, we come to it soon
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Kirchhoff Sommerfeld thermodynamic universality proof
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Total 𝒖(𝝎) universality cannot be true

If 𝑢 𝜔 is universal, then 𝜌 𝜔 is universal as well, that is Laplacian spectrum is universal 

for a cavity of arbitrary shape. This cannot be true for small 𝝎.

So there is a flow in the thermodynamic argument as was presented .

Small frequencies mean large wave lengths, which do not get through a small hole.
Everybody knows that: you can look into running microwave oven through net full of small

holes. Visible light gets out, 15 cm microwaves do 
not: our eyes are not burned.
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Kirchhoff Sommerfeld thermodynamic universality proof

The thermodynamic universality proof survives only for frequencies for which the 
formula 

is a good approximation, that is for large frequencies. Conclusion:

Laplacian spectral density 𝝆(𝝎) is asymptotically universal.

This is roughly what Weyl’s theorem says.
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We have presented a thermodynamic proof of the Weyl theorem
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We have presented a thermodynamic proof of the Weyl theorem

Well, no.

There is another flow in the thermodynamic argument

Actually the thermodynamic conclusion is correct, just the argumentation is not 
clean enough.

We have first to learn more about photons.
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We have retold the whole story about our physics animal: the electromagnetic field in a 
box.
• its state is given as a set of states of independent harmonic oscillators with frequencies  

𝜔𝑗

Stupid naive question: the oscillators run out from the hole?

Electromagnetic field in a box

is
a set of harmonic oscillators

What is electromagnetic field?
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What is electromagnetic field? Alternative 
formulation

Electromagnetic field in a box

is
a set of stationary waves

Stupid naive question: why standing waves run out from the hole?

Easy answer: a superposition of standing waves can give you a running wave, which gets 
out. Il si muove.

Never formulate statements of ontological character in physics.
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Easy answer: a superposition of standing waves can give you a running wave, which gets 
out.

But

Where are the superposition microstates in the statistical physics calculation of the 
statistical sum?

?
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Free electromagnetic field: 
still another alternative description - photons

mnl,s excit.number

111,x 𝑛111𝑥

111,y 𝑛111𝑦

112,x 𝑛112𝑥

112,y 𝑛112𝑦

121,x 𝑛121𝑥

121,y 𝑛121𝑦

… …

The complete (micro)state of the electromagnetic field we have represented by the 
table  where the excitation numbers are any integers. If you see the table do you recall 

that you have already met a similar table in  a very different 
context? Here it is: The state of non-interacting  
indistinguishable spinless bosons was given by the list of one-

one particle 
state

occup. 
number

1,1,1 1

1,1,2 3

1,2,1 0

1,2,2 2

2,1,1 0

2,1,2 0

2,2,1 12

2,2,2 4

⋮ ⋮

particle states each with its occupational 
number which could be any integer. The 
total energy  was

For the electromagnetic field the total 
energy is

The same (almost) description of the states, the same formula for the total 
energy.
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Free electromagnetic field: 
still another alternative description - photons

Now to the problem of “spin labels”. The particles we 
want to “invent and introduce” must be bosons, since 
the excitation numbers interpreted as occupational 
numbers are any integers. The bosons should not be 
spinless since we have to interpret the labels 𝑥, 𝑦 as 
some spin-state labels. So far we do not know any 
bosons which would have just two spin states. Spin 1 
bosons should have 3 “spin projections”. Two spin

projections suggest spin 1/2, but spin 1/2 particles are fermions! 
However, the above mentioned classification is valid if we consider only nonrelativistic 
particles. Relativistic particles with the mass equal to zero with the total spin 1 have only 
two spin-projection states +1 and -1. Projection 0 is not possible. The reason is hidden 
deeply in relativistic quantum mechanics (better: field theory).  We skip the detailed 
argumentation, just take it as a fact.
So there is a chance for a particle-like alternative description of the states of the 
electromagnetic field introducing relativistic mass=0 particles with spin 1 named 
photons. The “spin-projection labels” for photons do not necessarily mean true spin 
projections: other quantum mechanical base of “spin states” can be used equally well. 
For photons we most other use the “polarization basis”.
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Free electromagnetic field: photons

We found that the energy and momentum formulas for photons should be

This gives us the following relation between energy and momentum

Such a relation is expected for relativistic massless particle because of the general 
relativistic formula for the particle rest mass

For photons this gives the rest mass 0. The general formula for the relation between the 

energy, rest mass and velocity of a particle is

To get non-zero energy, the zero-mass particle velocity must always be v = 𝑐. So 
photons always move with the velocity 𝑐.

We have discovered photons !!!
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Thermal radiation in a cavity as a photon gas

We have arrived at a conclusion that we can consider the electromagnetic field in a cavity 
as a photon gas. So we can try to calculate the properties of the thermal radiation by 
calculating the properties of a photon  gas in equilibrium with the cavity walls at the 
temperature 𝑇.

How to do that? we certainly do not know a priori the total number of photons in the 
cavity so we try to work within the grand canonical technology pretending to know the 
chemical potential of photons, calculate with it as with a symbolical abstract number 𝜇 and 
finally find the correct value of it by adjusting this value to get the correct thermal radiation 
results which we already know.

So we have a the photon gas with one-particle-states 𝑚𝑛𝑙s. The mean occupational 
number a one-particle-state will be (Bose-Einstein)

The total energy of the photon gas will be
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Thermal radiation in a cavity as a photon gas

Let us compare the formula we have just got with the formula we have got for 
“equivalent oscillators” where we had “mean excitation numbers” instead of “mean 
occupational numbers”

The formula for 𝜔𝑚𝑛𝑙 is the same in both cases, the only difference is that there is 𝜇 in 
the formula on the left. The conclusion is: we get exactly the same results for the 
thermal radiation if calculated as for oscillators and if calculated as for photons if we set 
𝝁 = 𝟎.

We discovered a new law of nature: chemical potential of photons is (always) zero.

Putting 𝜇 = 0 we continue in exactly the same way as we did for the “equivalent 
oscillators”: we replace the sum by an integral using formula for the density of one-
particle-states which would be for photons the same as was the formula for the 
density of oscillators and we will get the same result 
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Kirchhoff Sommerfeld thermodynamic universality proof
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Kirchhoff Sommerfeld thermodynamic universality proof
applied to ordinary ideal gas. Why not, particles like particles

Two containers with monoatomic ideal gas, same temperatures, common hole with filter 
allowing to go through only to particles with  specified                 that is with specified 
kinetic energy. 

Let  the energy density per unit of absolute velocity will be denoted as              than the 
spectral energy flow through the hole would be   

If the energy density is not the same on both sides, them net energy flow would result, 
changing temperatures originally equal ! Forbidden by thermodynamics. Conclusion:
the energy density in an ideal gas is a universal function of temperature. That is grossly 
wrong! But the logical syntax is the same as in Kirchhoff Sommerfeld proof, just 
semantics is different.
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Kirchhoff Sommerfeld thermodynamic universality proof
applied to ordinary ideal gas

Where is the error?

For standard ideal gas there is additional independent parameter: particle density. The 
containers can have the same temperature but different particle densities (different 
pressures). After making the hole pressures will be equalized, the temperatures will not 
change. 
The energy flow does not necessarily change the temperature for ordinary gas
For radiation Sommerfeld calls the energy flow as heat flow (wärmestrahlung).
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What is the difference between 
the ordinary gas and the photon gas?

Why is there no independent parameter like photon density for the photon gas?

Because photons have zero chemical potential.

Actually the logic is reverse: photon have zero chemical potential because there is 
no independent parameter like photon (spatial) density

mnl,s excit.number

111,x 𝑛111𝑥

111,y 𝑛111𝑦

112,x 𝑛112𝑥

112,y 𝑛112𝑦

121,x 𝑛121𝑥

… …

one particle 
state

occup. 
number

1,1,1 1

1,1,2 3

1,2,1 0

1,2,2 2

2,1,1 0

2,1,2 0

⋮ ⋮

Ordinary gas                         Oscillators

No state independent 
sum here
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What is the role of the number of photons in a box?

Parameter of non-equilibrium 

Start with empty box at 𝑇 = 0. Heat the walls suddenly to 𝑇. 
No photons inside, so the system is not in equilibrium.
Observe relaxation to equilibrium: 𝑁 𝑡
Number of photons finally reaches the equilibrium value ഥ𝑁 .

How to recognize equilibrium at a given temperature:
Free energy is minimal

Close to equilibrium

Landau: 
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After the final common equilibrium is established the total entropy will be

The final values of energies will be the same as in the case when we have considered 
just a thermal contact. The only unknown value in this relation is 𝑁1

′, since 𝑁2
′ is given 

by the total number of particles conservation 𝑁2
′ = 𝑁1 + 𝑁2 − 𝑁1

′.

Chemical potential definition
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Photon strange stoichiometry
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What is the difference between 
the ordinary gas and the photon gas?

mnl,s excit.number

111,x 𝑛111𝑥

111,y 𝑛111𝑦

112,x 𝑛112𝑥

112,y 𝑛112𝑦

121,x 𝑛121𝑥

… …

one particle 
state

occup. 
number

1,1,1 1

1,1,2 3

1,2,1 0

1,2,2 2

2,1,1 0

2,1,2 0

⋮ ⋮

Ordinary gas                         Oscillators

No state independent 
sum here

Bose-Einstein distribution is derived 
by grand canonical technology. 
Needs conservation of the total 
number of particles!

No grand canonical calculations for 
photon gas!

Well, you can do grand canonical 
calculations but then you have to 
understand well why you can do it.
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Kirchhoff Sommerfeld thermodynamic universality proof

We conclude that 𝑢 must be asymptotically a universal function of 𝜔 and 𝑇 .

If 𝑢 𝜔 is asymptotically universal, then 𝜌 𝜔 is asymptotically universal as well, that is 
Laplacian spectrum is asymptyotically universal for a cavity of arbitrary shape. 
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The end
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Integral runs only through a very short correlation time interval, so to get finite 
𝛼 the correlation function must be very large at 𝜏 = 0, it is approximately a 
delta function.
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The last two formulas are known as Wiener-Khinchin theorem
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Indukčnosť v elektrickom obvode

Skontrolujme ešte, či tento postup dáva správne znamienko „prídavného 
napätia“ samoindukovaného cievkou. Ak prúd rastie, prídavné napätie ako 
sme ho napísali bude kladné a bude mať smer k nemu nakreslenej šípky. 
Zjavne pôsobí „proti snahám batérie“ a teda bude sa snažiť zmenšovať 
prúd pretláčaný batériou. To je OK. Ak by prúd klesal, bude nami napísané 
„prídavné napätie“ záporné. Bude mať smer opačný ako nakreslená šípka 
a bude teda „pomáhať batérii“ pretláčať prúd, teda snažiť sa ho 
zväčšovať. To je znovu OK.
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Nyquist theorem
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Všimnite si na videu, ako sa vlna na koncoch odráža
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Prechodom do spojitej limity dostaneme odtiaľ okrajovú podmienku
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pre x=L (na konci kábla) platí:

mimo okrajov kábla platí :
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Zvoľme:

Dostaneme g = const, takže žiadne šírenie zľava doprava

Po dosadení typických hodnôt pre ethernetový koaxiálny kábel 
dostaneme R = 50 Ω, televízny koaxiálny kábel dáva R = 70 Ω.
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