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Chapter 1

Introduction

1.1 Some books

• F.Reif: Fundamentals of Statistical and Thermal Physics

• L.E.Reichl: A Modern Course in Statistical Physics

• C.Kittel: Elementary Statistical Physics

• J.Sethna Statistical Mechanics,mEntropy, Order Parameters and Complex-
ity (free on internet)

• R.K.Pathria: Statistical Mechanics

• Gould, Tobochnik: Thermal and Statistical Physics (free on internet)

• S.K.Ma: Statistical Physics

• MIT Open course project (http://ocw.mit.edu/OcwWeb/Physics/index.htm)

• J.M.Yeomans Statistical Mechanics of Phase Transitions
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Chapter 2

Supplements to the probability
theory

2.1 Some definitions

Probability density

p(a < x < b) =

∫ b

a

%(x)dx

Mean value
f(x) =

∫
f(x)%(x)dx

Independent variables
%(x, y) = %1(x)%2(y)

Marginal distribution

%1(x) =

∫
%(x, y)dy

Function of random variable
y = f(x)

g(y) =

∫
g(f(x))%(x)dx =

∫
g(y)δ(y − f(x))%(x)dxdy =

=

∫
g(y)%(f−1(ξ))δ(y − ξ) 1

f ′(f−1(ξ))
dydξ =

∫
g(y)%̃(y)dy

%̃(y) =

∫
δ(y − f(x))%(x)dx = %(f−1(y))

1

f ′(f−1(y))

Sum of two independent variables

z = x+ y
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%(z) =

∫
δ(z − (x+ y))%1(x)%2(y)dxdy =

∫
%1(x)%2(z − x)dx

It is a convolution

Characteristic function

f(k) = 〈exp(ikx)〉 =

∫
dx exp(ikx)%(x) =

∑ (ik)n

n!
〈xn〉

%(x) =
1

2π

∫
dk exp(−ikx)f(k)

〈xn〉 = (−i)nd
nf

dkn

Characteristic function of a function of a random variable

y = ϕ(x)

%(y) =

∫
%(x)δ(y − ϕ(x))dx

f(k) =

∫
dyeiky%(y) =

∫
dxdyeiky%(x)δ(y − ϕ(x))

f(k) =

∫
eikϕ(x)%(x)dx

For the sum of two variables the density function is a convolution, so the charac-
teristic function is a product, since the Fourier transform of a convolution is a the
product of Fourier transforms.

∫
eikzδ(z−(x+y))%1(x)%2(y)dxdydz =

∫
dxeikx%1(x)

∫
dyeiky%2(y) = f1(k)f2(k)

Cumulants

ln(f(x)) =
∑ (ik)n

n!
Cn

C1 = 〈x〉

C2 = 〈x2〉 − 〈x〉2 ≡ 〈x2〉C
C3 = 〈x3〉 − 3〈x〉〈x2〉+ 2〈x3〉3 ≡ 〈x3〉C
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Cumulant expansion

〈x1x2x3x4〉 = 〈x1x2x3x4〉C + 〈x1x2x3〉C〈x4〉C + 3 terms +

+〈x1x2〉C〈x3x4〉C + 2 terms + 〈x1x2〉C〈x3〉C〈x4〉C + 5 terms +

+〈x1〉C〈x2〉C〈x3〉C〈x4〉C

Normal distribution

%(x) =
1√

2πσ2
exp(− x2

2σ2
)

f(k) = exp(−k
2σ2

2
)

ln(f(k)) = −k
2σ2

2

only second cumulant non-zero, so all higher moments are expressible through
the second cumulant.

Variance
σ2 = 〈x2〉C

Covariance
cov(x, y) = 〈xy〉 − 〈x〉〈y〉

Correlation function

cor(x, y) =
cov(x, y)

σxσy

Multivariant Gauss distribution

%(x1, . . . , xn) =

√
det(g)

(2π)n
exp(−1

2
x>gx)

f(k1, . . . , xn) = 〈exp(i(k1x1 + . . .+ knxn))〉

〈x1x2x3x4〉 = (−i)4 ∂

∂k1

∂

∂k2

∂

∂k3

∂

∂k4

f(k1, . . . , kn)
∣∣
ki=0

=

= 〈x1x2〉〈x3x4〉+ 〈x1x3〉〈x2x4〉+ 〈x1x4〉〈x2x3〉

Wick theorem
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Generating function

f(u) =

√
A

2π

∫
dx exp(−1

2
Ax2 + ux)

to be compared with characteristic function with u = ik

Technique: shift of variables
x = x′ − u

A

f(u) = exp
( u2

2A

)
Taylor series generates moments

Another technique to calculate moments: Euler Gamma function

Γ(z) =

∫ ∞
0

tz−1 exp(−t)dt

Γ(n) = (n− 1)!

Γ(z + 1) = zΓ(z)

Γ(1/2) =
√
π

Γ(
n

2
) =
√
π

(n− 2)!!

2(n−1)/2
for odd n

∫
dxxn exp(−1

2
Ax2) =

(A
2

)−n+1
2

∫
dξξn exp(−ξ2) =

=
( 2

A

)n+1
2

∫
1

2
t−1/2tn/2 exp(−t) =

1

2

( 2

A

)n+1
2

Γ(
n+ 1

2
)

2.2 n-dimensional sphere

(
√
π)n =

∫
dx exp(−

∑
x2
i ) =

∫
exp(−r2)Sn(r)dr

from here one easily calculates the surface of the n-dimensional spehere Sn(r)
assuming the form

Sn(r) = Cnr
n−1
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Sn(r) =
2πn/2rn−1

Γ(n/2)

and then also the volume of an n-dimensional spehere Vn(r) via

Vn(r) =

∫ r

0

Sn(r)dr

Vn(r) =
πn/2rn

Γ(n/2 + 1)

2.3 Laplace method

Also called steepest descent method or saddle point method is an approximation
scheme which is used to evaluate the integral∫

exp(Mf(x))dx for M →∞

Let f(x) has only one maximium at x0, then the integral is dominated by this
maximum

f(x) = f(x0) +
1

2
f ′′(x0)(x− x0)2

∫
exp(Mf(x))dx = exp(Mf(x0))

∫
dx exp(−1

2
M |f ′′(x0)|(x− x0)2) =

= exp(Mf(x0))

√
2π

M |f ′′(x0)|

The logarithm is dominated by the maximum

ln(f(x)) = Mf(x0)

Stirling formula
N ! =

√
2πNNNe−N

N ! = Γ(N + 1) =

∫
xNe−xdx =

∫
e−Nz(Nz)NNdz =

= NN+1

∫
dze(−Nz+N ln z) = NN+1

∫
eN(ln z−z)dz

Laplace method with
f(z) = ln z − z
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f ′(z) =
1

z
− 1 maximum for z = 1

f ′′(z) = − 1

z2

N ! = NN+1e−N
√

2π

N

2.4 Central limit theorem

Let us investigate what happens with a general function by repeating convolutions.
Expressed in the language of probabilities: if the probability distributions of the
random variables xi (i = 1, . . . , N ) are given by the same function f(xi), what is
the probability distribution of the sum of those variables. The question is answered
by the central limit theorem, according to which in the limit n→∞ the variable

Xn =

∑n
i=1(xi − µ)√

nσ

is distributed according to the standard normal distribution N (0, 1). Here µ <∞
is the mean of xi, σ <∞ is the root mean squared of (xi − µ).

We shall now prove (not completely rigorously) the central limit theorem. The
characteristic function for the probability distribution f(x) is given by the follow-
ing relation

ϕf (t) =
〈
e itx
〉
≡
∫
D(f)

f(x)e itx dx,

for t ∈ R. We see that ϕf (t) is actually the Fourie transform of the probability
density f(x). An important formula holds

〈
xn
〉

= − inϕ
(n)
f (0) ≡ − in

dn

dtn
ϕf (t)

∣∣∣
t=0
.

Using this relation, we can write the Taylor series of the characteristic function of
the probability density f(x) with a mean 0 and variance 1 in the form

ϕf (t) = 1− t2

2
+ o(t2) (t→ 0).

We define new random variables yi = (xi − µ)/σ.These variables have the mean
value 0 and variance 1.

By convolution the characteristic functions get multiplied (they are the Fourie
transforms). Since Xn =

∑
i yi/
√
n, the characteristic function of its distribution
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g(Xn) is the product of the characteristic functions of the distribution f(y/
√
n)

and can be written as[
ϕg(t/

√
n)
]n

=
[
1− t2

2n
+ o(t2/n)

]n n→∞−−−→ e−t
2/2.

The last function is the characteristic function of the standard normal distribution
N (0, 1), we have proved that the distribution g(Xn) converges to the standard
normal distribution N (0, 1).

The prove (on our level of rigor) was not complicated However, the proof does
not show, that the convergence to the normal distribution is in many cases really
very fast. An example of a different behavior of slow convergence is the Poisson
distribution with a small mean, e.g. λ = 10−3.

The central limit theorem can be generalized for the sum of random variables
distributed according to different distributions from which no one dominates by
its variance to their sum. Having in mind that many random variables around us
are given by a simultaneous influence of many random contributions, it is clear
why the normal distribution is exceptionally important1. In this respect we remind
here the standard lectures on experimental data processing, where the normal dis-
tribution is used to characterize measurement errors of practically all physical
quantities.

Finally, we shall discuss so called law of large numbers We begin by deriving
the Thebyshev inequality which relates the variance of a distribution σ2 with the
probability that the corresponding random variable will differ from the mean value
by ε > 0. The variance is defined as

σ2 =

∫ ∞
−∞

(
x− 〈x〉

)2
f(x) dx.

If we leave out from the domain of integration the region |x − 〈x〉| < ε, we can
write

σ2 ≥
∫ 〈x〉−ε
−∞

(
x− 〈x〉

)2
f(x) dx+

∫ ∞
〈x〉+ε

(
x− 〈x〉

)2
f(x) dx.

Since |x − 〈x〉| ≥ ε, we can replace the expressions (x − 〈x〉)2 by ε2 while the
inequality still holds. We get

σ2 ≥ ε2
[ ∫ 〈x〉−ε
−∞

f(x) dx+

∫ ∞
〈x〉+ε

f(x) dx
]

= ε2 P
(
|x− 〈x〉| ≥ ε

)
.

1Just a small terminological footnote. We see that the normal distribution had so many excep-
tional properties, that the attribute ”normal” is rather inappropriate. Its another name, the Gaussian
distribution, is also not very appropriate, because it was formulated already by de Moivre and its
properties were studied by Laplace, when Gauss was six years old. Gauss own work from 1809,
however, contained a simple derivation of the central limit theorem and the distribution itself be-
came therefore popular.
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This is the Tchebyshev inequality. It is usually written as

P
(
|x− 〈x〉| ≥ ε

)
≤ σ2

ε2
.

Now let us consider the sum of N independent identically distributed random
variables yN = (x1 + · · · + xN)/N . Clearly 〈y〉 = 〈x〉. Since σ2

y = σ2
x/N (the

reader can easily check this himself) the Tchebyshev inequality gives

P
(
|yN − 〈x〉| ≥ ε

)
≤
σ2
y

ε2
=

σ2
x

Nε2
.

Assuming σx <∞ it is clear that for any chosen value ε we get

lim
N→∞

P
(
|yN − 〈x〉| ≥ ε

)
= 0.

The probability that the arithmetic average yN of independent identically dis-
tributed random variables xi difference from 〈x〉, in the limit N →∞ declines to
zero.

This fact justifies the experimental procedure to measure the probability as a ratio
of the number favorable events to the total number of events. This ratio according
to the law of large numbers converges to a certain value and this value we call the
probability of the studied phenomenon.

Exercise
a) Show that in the limit n → ∞ assuming pn = const. ≡ λ, the binomial
distribution approaches the Poisson distribution

f(k) =
λk

k!
e−λ,

where λ is the mean value of the random variable k.
b) Show that in the limit λ → ∞ the Poisson distribution approaches the normal
distribution N (λ,

√
λ).

• a) Using the assumptions n� 1, p� 1 and denoting np ≡ λ we get

P (k) =

(
n

k

)
pk(1− p)n−k ≈ n(n− 1) . . . (n− k + 1)

k!
pk(1− p)n =

=
n(n− 1) . . . (n− k + 1)

k!
pk(1− λ

n
)n ≈ nkpk

k!
e−np =

λk

k!
e−λ.

The fact that λ is also the mean value for the variable k, follows from the relation
λ = pn (since pn is the mean value of the binomial distribution). One can also
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prove this fact by explicit substitution of P (k) into the definition of the mean
value. We get

〈k〉 =
∞∑
k=0

kP (k) =
∞∑
k=1

k
λk

k!
e−k = λ

∞∑
k=1

λk−1

(k − 1)!
e−k = λ

∞∑
l=0

P (l) = λ.

b) We shall investigate the limit λ� 1. Using the Stirling formula lnn! ≈ n lnn−
n+ 1

2
lnn+ ln

√
2π and the expansion ln(1 + y) ≈ y − y2/2 (y � 1) we get

lnP (k) ≈ k lnλ− λ− k ln k + k − 1
2

ln k − ln
√

2π =

= (λ+ x) lnλ− λ− (λ+ x) ln
[
λ(1 + x/λ)

]
+ λ+ x− 1

2
ln
[
λ(1 + x/λ)

]
−

− ln
√

2π ≈ −(λ+ x)
(x
λ
− x2

2λ2

)
+ x− ln

√
λ− x

2λ
+

x2

4λ2
− ln
√

2π ≈

≈ −x
2

2λ
− ln
√

2πλ = ln

{
1√

2π
√
λ

exp
[
− (k − λ)2

2λ

]}
.

Here we have denoted k = λ + x (we assume x � λ) and at the end of the
calculation we neglected the terms x/λ, x2/λ2 a x3/λ2. We see that the Poisson
distribution in the limit λ→∞ approaches the normal distribution N (λ,

√
λ).

Exercise
The matrix elements xij of the matrix X of the dimension n × n are equal to +1
or −1 with the same probability 1/2, the matrix elements values are independent
of each other. What is the mean value of the square |X|2 of the determinat of that
matrix?

2.5 Random numbers

Generic random number generator

i:= (i*k) mod N
r:=i;
r:=r/N; //this is real number arithmetic
return(r)

Typically the procedure is called as a parameterless function like RND(). The
value of i is kept locally inside the procedure for the next call, so each time the
function is called a different value r is returned.

The initial value of i is called seed. The seed can be set during the initialization
of the generator and this enables to get identical sequences of pseudo-random
numbers.

10



Present day random number generator are more sophisticated then our generic
example. But some features remain true

• existence of starting ”seed value”

• finite number of generated numbers, random generators show cyclic behav-
ior: our generic example can generate at most N different random numbers,
then it cycles. Modern generators have extremely large cycles.

Default random number generators produces uniformly generated random num-
bers in the interval (0, 1). If one needs random numbers distributed according to
some non-uniform probability density %(x), one has to perform a suitable software
transformation.

The key is Monte Carlo integration

f =

∫ b

a

f(x)dx

The mean value can be determined ”experimentally”

f =
1

N

N∑
1

f(a+RND() ∗ (b− a))

this is a default Monte Carlo integration algorithm.

We want to calculate by Monte Carlo the integral∫ ∞
−∞

f(x)%(x)dx

but we want to use random generator generating x distributed according to %(x)
The key is the substitution to integral using ”inverse to primitive”

x = F−1(ξ)

where
F (x) =

∫ x

−∞
%(x′)dx′

is the primitive function to probability density, so it is the cumulative probability
distribution function. Its inverse is therefore defined on the interval

ξ ∈ (0, 1)

The substitution is
dx =

1

F ′
dξ =

1

%(F−1(ξ))
dξ
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and we get∫ ∞
−∞

f(x)%(x)dx =

∫ 1

0

dξf(F−1(ξ))%(F−1(ξ))
1

%(F−1(ξ))
=

∫ 1

0

dξf(F−1(ξ))

We see that the integral can be calculated by the following Monte Carlo∫ ∞
−∞

f(x)%(x)dx ==
1

N

N∑
1

f(F−1(RND()))

So random variable x distributed according tho the probability density %(x) is
generated by the algorithm

x = F−1(RND())

This, however, requires that we can analytically calculate the primitive function
and its inverse, what is not always possible. In such a case we have to use nu-
merical methods. The above described method is usually called ”importance sam-
pling”. An obvious method is that we numerically tabulate the primitive function
choosing some suitable set of points {xi}:

yi = F (xi) =

∫ xi

−∞
%(x′)dx′

and we use some suitable interpolation method between the points. Now the pro-
cedure is as follows

• generate randomly ξ = RND()

• find i such that yi < ξ < yi+1

• find by inverse interpolation the value x, xi < x < xi+1 corresponding to ξ.
That is the generated random number x.

Another method which can be used if %(x) is defined on the finite interval (a, b) if
we know, that %(x) is majorized by some value M :

∀x ∈ (a, b) : 0 < %(x) < M

Then the algorithm for generating random numbers x distributed according to
%(x) proceeds as follows

• we generate randomly a point (ξ, η) in the ”bounding rectangle” that is ξ =
a+ (b− a)×RND() and η = M ×RND()

• if the generated point (ξ, η) is below the curve %, that is if η < %(ξ) we
accept value ξ as the generated value x
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• otherwise we repeat the process by generating a new point (ξ, η)

It is obvious that we can in this way ”experimentally” determine the area below
the curve %(x) (what percentage of the bounding rectangle it occupies) and so the
method correctly generates the points distributed according to density %

Exercise
Design the random number generator for the normally distributed numbers using
the uniformly distributed random number generators. (This can be done exactly
even the normal distribution does not have cumulative distribution function which
could be expressed analytically.)

• We cannot directly express analytically the primitive function to the most im-
portant probability distribution, the normal distribution (the primitive function to
normal distribution is called the error function erf(.). Fortunately, it is possible to
perform the importance sampling analytically for the two-dimensional Gauss dis-
tribution and then generate the one dimensional distribution as a projection of the
two dimensional one.

The two-dimensional normal distribution has the form

ρ(x, y) =
1

2πσ2
exp(−x

2 + y2

2σ2
)

The trick is to use the radial coordinates r, ϕ. The probability density expressed
in these variables factorizes into two marginal distributions. For both of them we
know the corresponding primitive function and also its inverse2

In the cylindrical coordinates we get

ρ̃(r, ϕ) =
1

σ2
r exp(− r2

2σ2
)

1

2π

The marginal distribution in the variable r is

ρr(r) =
1

σ2
r exp(− r2

2σ2
)

The marginal distribution of the variable ϕ is

ρϕ(ϕ) =
1

2π

2The distribution factorizes also in Cartesian coordinates, but the marginal distributions are
the one-dimensional normal distributions for which the primitive functions cannot be analytically
expressed.
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The primitive function to the marginal distribution ρr(r) is

Fr(r) =

∫ r

0

dr′
1

σ2
r′ exp(− r′2

2σ2
) = 1− exp(− r2

2σ2
)

and so the generator for of r will be its inverse

r =
√
−2σ2 ln(1− RND())

The variable defined as (1 − RND()) is just another random variable uniformly
distributed in the interval (0, 1), so we can rewrite the last expression as

r =
√
−2σ2 ln(RND())

The generator for the variable ϕ is trivial

ϕ = 2πRND()

So the one-dimensional normally distributed variable can be generated as

x =
√
−2σ2 ln(RND()) cos (2π RND())

.

Exercise
Bertrand’s paradox
Seemingly well defined task may be to find the probability that the length of a
randomly chosen circle chord is greater than the side of a equilateral triangle in-
scribed into that circle. Paradox is hidden in the fact, that the statement ”randomly
chosen circle chord” is not well defined. Different specification of its exact mean-
ing lead to different results. Do find at least two such different specifications.

• If we randomly choose the chord by randomly choosing the angle between
two points on the circle, the the result is p1 = 1/3. If we randomly choose a point
from the disk as a center of the chord the result is p2 = 1/4.

Exercise
Benford’s law
Let us consider a set of some data like lengths of rivers in the world, actual stock
market prices, thermal capacities of different substances etc. Benford (1938) no-
ticed that the probability distribution of a value of the first digit within the data set
is not uniform as one would naively expect. The digits 1 to 9 appear with the prob-
abilities {0.301, 0.176, 0.125, 0.097, 0, 079, 0.067.0.058, 0.051, 0.046}. The key ob-
servation is that this distribution has to be invariant with respect to the change of
scale (for example the unit length in which the lengths are expressed or the cur-
rency in which the prices are expressed). Find the appropriate probability distri-
bution.
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• The probability distribution has to be scale invariant what means that chang-
ing x 7→ kx has to lead to P (kx) = f(k)P (x) (the distribution P (x) has the same
shape). Since

∫
P (x) dx = 1, that the constrain P (kx) d(kx) = 1 leads immedi-

ately to f(k) = 1/k. Differentiating scaling expression with respect to k and set-
ting k = 1 we get xP ′(x) = −P (x). This equation has the solution P (x) = 1/x.
This is not a correct probability distribution, sice the integral

∫
P (x) dx diverges.

However, one cannot take the expression literally, since in real situations each data
set has a natural cut-offs both at high and at low values of x.

Now the probability of the digit C to be the first digit is

PC =

∑
n

∫ (C+1)×10n

C×10n P (x) dx∑
n

∫ 10×10n

1×10n P (x) dx
= log10

(
1 +

1

C

)
,

what corresponds to Benford observations.

2.6 Selected items from statistics

We start with a normally distributed variable x.

%(x) =
1√
2π

exp(−x
2

2
)

Now we form a new random variable

y = x2

Its probability density is

%y(y) =

∫
%(x)δ(y−x2)dx = Θ(y)(

1√
2π

exp(−y
2

)
1

2
√
y

+term with the negative root)

%y(y) =
1
√
y

1√
2π

exp(−y
2

)

This is a special case of a more general ”χ2 distribution with n degrees of free-
dom”

%χ2(x) =
1

2n/2Γ(n
2
)
x

n
2
−1 exp(−x

2
)

So we see that the square of a gaussian variable is distributed according to the χ2

distribution with 1 degree of freedom.

15



Now we look for the characteristic function of the χ2 distribution.

fχ2(k) =

∫
eikx

1

2n/2Γ(n
2
)
x

n
2
−1 exp(−x

2
)dx =

=
1

2n/2Γ(n
2
)

∫
x

n
2
−1 exp(−x(

1

2
− ik))dx =

=
1

2n/2Γ(n
2
)

1

(1
2
− ik)n/2

∫ (1/2−ik)∞

0

dξξn/2−1 exp(−ξ) =

=
1

(1− 2ik)n/2

In the derivation a manipulation with integration path in the complex ξ-plane was
needed.

We see that the characteristic function is a n-fold product, so it is a Fourier trans-
form of a n-fold convolution. So it is clear, that the probability density corresponds
to n-fold sum of squares of gaussian variables.

If x1, x2, . . . , xn are independent draws from a normal N(0, 1) distribution, then
the random variable

yn =
∑
i

xi

is distributed as χ2 with n degrees of freedom.

This fact is used to test statistical hypotheses. The model example looks as fol-
lows.

Suppose we have a container of random values x said to be distributed according
to normal distribution N(µ, σ). We want to verify the fact experimentally. The
procedure is

• We formulate a null-hypothesis according to which the assumed fact is true:
that is we assume that the random values in the container are really dis-
tributed according to N(µ, σ).

• We perform an experiment: draw n independent samples x1, . . . , xn.

• We calculate the statistics

χ2 =
n∑
1

(x− µ)2

σ2

According to the null-hypothesis this variable should be distributed as chi-
squared with n degrees of freedom.
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• The value of χ2 obtained in the previous step is checked for probability.
That is we evaluate the probability p that a chi-squared distribution can give
value as observed or higher

p =

∫ ∞
χ2

%χ2(x)dx

• It the obtained value p is very small (like / 0.001) we say that it is very
improbable that we have such a bad-luck that we observe such a big devi-
ation form the expected null-hypothesis-behaviour. So we reject the null-
hypothesis. If the value p is not small enough, we say that it may be that
the value χ2 we have observed is due to a fluctuation and we keep the null
hypothesis as valid.

Another use of chi-squared distribution for statistical testing is given by the fol-
lowing Pearson theorem.

We have r histogram bins, and the expected probabilities for a random event to
fall into the i-th bin are pi. We observe n random events and the actual number of
hits in the i-th bin are ni. Then the statistics

χ2 =
r∑
1

(ni − npi)2

npi

is distributed as chi-squared with (r − 1) degrees of freedom.

The use of this theorem for test is obvious.

• We assume we know the expected probabilities pi and as the null hypothesis
we assume they are true.

• We perform the experiment and observe the actual number of hits ni and
calculate the statistics χ2.

• We calculate what is the probability p to observe the value χ2 as observed
or even higher.

• If p is reasonably small we reject the null hypothesis and say that the true
probabilities are different from those expected.

What we have just described is the use of the Pearson theorem for a goodness-
of-fit test. The other often used possibility is the test-of-independence. We shall
present the idea on the following example.
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W consider a a clinical study (experiment) the aim of which is to test which of
the two available drugs (DRUG1, DRUG2) is better for treatment of a partic-
ular disease. The study is organized as follows. The patient having the disease
are randomized (chosen randomly) for treatment either with DRUG1 or DRUG2.
Then their health state is observed and classified into two categories RESPONSE
(these are patients whose disease positively reacted to the treatment) and NO RE-
SPONSE (those for whom the treatments did not have the required effect). Then
a ”contingency table” is created where number of patients of each category is en-
tered. The contingency table for our case is a 2 × 2 matrix and is defined by the
white fields in the following table

DRUG1 DRUG2 Totals
RESPONSE 15 8 23

NO RESPONSE 7 5 12
Totals 22 13 35

What we have is objects (patients) categorized according to two ”features”. The
first feature is ”type of drug” and can have two discrete values (DRUG1, DRUG2).
Two columns in the contingency table correspond to these two different values of
the feature 1. The other feature is ”type of response” and can also have two dis-
crete values (RESPONSE, NO RESPONSE). Two rows of the contingency table
correspond to two values of the feature 2. In a more general case we shall have
two features, so the table will be again two dimensional, but there may be more
values for both features, so the table can have more rows and/or columns. our aim
is to recognize whether one of the two drugs is more efficient then the other. This
is scientifically not quite well defined question. Science is methodologically more
about disproving things than about proving. So we formulate a null hypothesis: the
two drugs are equally efficient. In a more mathematical way the null hypothesis is
formulated as: The feature 1 and the feature 2 are statistically independent.

What it means for the contingency table?

There are four categories of patients in our table (number of rows times number
of columns). The actual number of entries in each category can be denoted as Nij .
So for example N21 is the observed number of patients in the second row and
first column, that is it is the number of patients treated by the DRUG1 with status
NO RESPONSE, so N21 = 7 in our table. The independence of features means
that the probability for a patient to enter a particular row is independent on what
column it enters and the probabilities to enter a particular cell factorize. If the null
hypothesis holds, then a set of parameters r1, r2, c1, c2 must exist which give the
probabilities to enter the rows 1 and 2 and columns 1 and 2, respectively. If there
were no statistical fluctuations then the observed numbers of hits should be

Nij = Nricj
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where N is the total number of patients. Now the task is twofold

• Estimate the optimal values of parameters r1, r2, c1, c2 which best describe
the observed data provided the null hypothesis holds

• Test whether the optimal parameters really describe the observed data well
or the description is so poor that we should abandon the null hypothesis.

To estimate the optimal parameters we introduce the following notation

Ni+ =
∑
j

Nij

N+j =
∑
i

Nij

These variables describe the number of hits of particular row (or column) and are
entered as ”totals” in the above contingency table. For the total number of patients
we get

N =
∑
i,j

Nij =
∑
i

Ni+ =
∑
j

N+j

Now it is intuitively clear3 that

ri =
Ni+

N
cj =

N+j

N

So the expected number of hits Eij in the cell (i, j), provided the null hypothesis
holds and fluctuations are zero, is

Eij = Nricj =
Ni+N+j

N

So we create another contingency table containing not the observed but rather the
expected numbers of hits. Here it is

DRUG1 DRUG2 Totals
RESPONSE 14.457 8.543 23

NO RESPONSE 7.543 4.457 12
Totals 22 13 35

Now the question reads: are the differences between the two contingency tables
(observed versus expected) so big, that it is improbable they are due to statistical
fluctuations? We construct an obvious statistics

χ2 =
∑
i,j

(Nij − Eij)2

Eij

3The argumentation can be based on maximizing the likelihood, we shall discuss this method
later in these lectures
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This variable (for large enough values of entries in the contingency tables) should
be distributed as chi-squared with (r − 1)× (c− 1) degrees of freedom4.

For our case the number of degrees of freedom is 1. The value of χ2 we get is
0.16. In the suitable tables of cumulative distribution function for the chi-squared
distribution we find that the probability to observe this value or greater is p = 0.69.
So we see that we cannot reasonably reject the hypothesis that the two drugs are
equally efficient, the number of patients is just not high enough to arrive at a
significant conclusion.

Actually, we do not need tables of cumulative chi-squared distributions. In Excell
there is a convenient statistical function CHITEST which returns the value of p,
the usage is well documented in Excell’s help.

We now describe without any details another common task of statistics which
comes under logo ”Student test”.

The Student distribution with n degrees of freedom is defined by the probability
density

%t(x) =
Γ(n+1

2
)

Γ(n
2
)
√
π
√
n

(
1 +

x2

n

)(n+1)/2

It can be shown that if we have (n+ 1) samples

x0, x1, x2, . . . , xn

from the normal N(0, 1) distribution, then the statistics

t =
x0√

1

n

∑n
1 x

2
i

is distributed according to the Student distribution with n degrees fo freedom

The generic example looks as follows. We have two containers said to contain
normally distributed samples of the same gaussian distributions N(µ, σ) with un-
known but equal values of the parameters µ and σ. We make n draws from the
first container, getting the sequence of random values

x1, x2, . . . , xn

and m draws from the second container getting the sequence

y1, y2, . . . , ym

4We did not prove the statement. it is just intuitively clear that the table with r rows and c
columns has just (r− 1)× (c− 1) independent degrees of freedom, since the sum of probabilities
in each row and column should be equal to 1.
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The null hypothesis is that the two containers are truly equivalent. The question is
can we rule out the null hypothesis on basis of the observed events?

The procedure is as follows

• Calculate the sample means

x =
1

n

∑
i

xi (y) =
1

m

∑
i

yi

• calculate sample variances

s2
x =

1

n− 1

∑
i

(xi − x)2 s2
y =

1

m− 1

∑
i

(yi − y)2

• calculate the statistics t

t =
x− y√

(n− 1)s2
x + (m− 1)s2

y

n+m− 2

√
1

n
+

1

m

• the random variable t should have the Student distribution with (n+m−2)
degrees of freedom. Usually it is |t| which matters and we ask what is the
probability that the absolute value of a student-distributed variable is greater
than the value we have observed. So we have to integrate both the left and
the right tail of the distribution to get the probability which we consider for
estimating the significance.

2.7 Bayesian statistics

See also [Jaynes], arXiv:hep-ph/9512295.

First works on mathematical statistics of authors as Gauss, Pascal, Bernoulli,
Bayes significantly differ in spirit from the present day approach of, say Fisher,
Pearson , and Neymann. The Bayesian statistics based on the Bayes relation for
the conditional probability is a sort of come-back to the original approach. Its
principle can be symbolically expressed by the following scheme

prior probability + data obtained −→ posterior probability

The prior probability here measures our complete knowledge obtained before the
experiment considered, the posterior probability corresponds to our knowledge
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after the proces of the considered data evaluation. The scheme looks rather mys-
teriously. To understand it better we have to discuss its different parts.

For example we said that the prior probability measure our complete knowledge.
How it is possible? If we understand the notion of probability as the ratio of the
number favorable events to the number of all events, it cannot measure knowl-
edge. As an alternative here we consider the probability to be the measure of our
confidence of a realization of a particular event. The limiting values are 0 for the
events we consider to be impossible and 1 for the events we consider to be cer-
tain. This approach seems to lack objectiveness, but otherwise it is reasonable that
a plausible definition of a ”measure of knowledge” fulfills the following axioms

• additivity for disjoint events: A ∩ B = ∅ =⇒ P (A ∪ B) = P (A) +
P (B)(more exactly one should consider here the countable additivity)

• normalization:P (Ω) = 1,

• nonnegativity: P (X) ≥ 0

• continuity at zero: if the set series X1 ⊇ X2 ⊇ X3 ⊇ . . . approaches the
empty set, then P (Xi)→ 0

These are, however the Kolmogorov axiom of probability theory5.

The advantage of understanding the probability as a measure of knowledge is the
possibility to use it also in situations where the repetition of experiments is not
possible, like the probability of the result of a particular football match. Moreover,
in physics we often need to set confidence intervals for various quantities (these
are intervals where the value lays with certain probability, like 95%). In this case
the probability understood as a rate of favorable events does not have sense: the
value either lays within the interval or not. What is questionable is our confidence
for both possibilities. So saying it again in a short way: the probability need not
be the result of a random process we model by it our knowledge (or ignorance).

The next reasoning is heavily based on the Bayes relation for the conditional
probability, so we start by deriving it. Let A be some event and {Bi} is a set
of disjoint events such that ∪Bi = Ω. The definition of conditional probabil-
ity leads to the equality P (A ∩ Bi) = P (A)P (Bi|A) and in the same time

5A small side note. A useful test of the correctness of the probability assignment is to inves-
tigate the fairness of a bet (that is to check whether the mean win on both sides is zero). If we
assign the probability of 20% to some event, we should be ready to bet 1$ for the possibility to
gain 1$/20% = 5$ when the event really happens. In a same way we should be ready to bet 1$ for
the possibility to gain 1$/80% = 1,25$ if that event does not happen

22



P (A ∩ Bi) = P (Bi ∩ A) = P (Bi)P (A|Bi). Comparing these two relations we
get

P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
.

The event A may happen so that some of the events Bi happens and then with
the probability P (A|Bi) also the event A. This statement can be mathematically
expressed as P (A) =

∑
i P (Bi)P (A|Bi). Inserting this into the above equation

we get

P (Bi|A) =
P (Bi)P (A|Bi)∑
i P (Bi)P (A|Bi)

.

Now we rename the entries in the Bayes formula to correspond more clearly to
the context in which we shall use it

P (Mi|D) =
π(Mi)P (D|Mi)∑
i π(Mi)P (D|Mi)

.

Here Mi denotes competing models, D the data obtained, π(Mi) the prior proba-
bility of the model Mi and P (D|Mi) the probability to observe the data assuming
validity of the Mi. The left side of the relation, P (Mi|D), is the posterior proba-
bility. We shall demonstrate the practical use of the formula by several examples.

Exercise
The basic exercise on conditional probability
We have two bags X a Y , both of them contain a large number of balls. The first
bag contains 20% of white balls, the second one 40%. Now we draw 9 balls out
of the same bag and it happens that 3 of them are white. What is the probability
that we have been drawing from the bag X?

• We have here two competing models, that is drawing from the bag X and
drawing from the bag Y . We denote the rations of white balls in the bags as n(X)
a n(Y ). Now the probabilities ow drawing 3 white balls out of 9 drawn are

P (9G, 3B|X) =
(

9
3

)
n(X)3

(
1− n(X)

)6 .
= 0.176,

P (9G, 3B|Y ) =
(

9
3

)
n(Y )3

(
1− n(Y )

)6 .
= 0.251

The random choice of the bag is described best by the prior probabilities π(X) =
π(Y ) = 0.5. Then

P (X|9G, 3B)
.
= 41%, P (Y |9G, 3B)

.
= 59%.

We see that the data obtained do not provide much information which bag was
chosen for drawing.

Exercise
Concerning conditional probability

23



The contestant in the TV competition is given the following task. He should
choose one of three boxes, knowing that the win is hidden in one of them, the
other two are empty. When he points to one box, the TV moderator (knowing
which box contains the reward) opens one of the remaining boxes which he is
sure is empty. Now he allows the competitor to make his mind again an change
his choice if he wants. What the competitor should do, should he change his choice
and point to the the closed box?

• At the first sight it seems that no relevant information was provided in the sys-
tem and so it is no sense in changing the choice. However, more careful reasoning
shows that the change of choice is really advantageous.

So at the beginning one box is chosen randomly. If the choice was a lucky one
(this is with the probability1/3), the change of the choice is bad, we loose the
win. However if the original choice was bad (and this is with the probability 2/3),
the change of choice leads to a sure win. So the strategy to change the choice leads
to a win with the probability 1/3 ·0+2/3 ·1 = 2/3. If we keep the original choice
we win only with the probability 1/3.

Exercise
We play a gambling game. If our opponent is fair, the probability of loosing the
game is P0 = 1/2. Before we start we estimate the prior probability that our opo-
nent would be cheating as π(C) The game begins and we loose in n consecutive
rounds. To what extent do we trust our oponent now.

• The event which happened (n consecutive loses) we denote by Ln, an hon-
est oponent will be denoted by Ȟ , cheater by C. The following relation holds
P (Ln|Ȟ) = (1/2)n, P (Ln|C) = 1. Then

P (C|Ln) =
π(C)× 1

π(C)× 1 +
(
1− π(C)

)
× (1/2)n

.

It is worth to notice that for arbitrary π(C) > 0 the limn→∞ P (C|Ln) = 1. On
the other hand if π(C) = 0 (it means that we absolutely trust our opponent) the
posterior probability P (C|Ln) = 0 for arbitrary n. That means we shall trust the
opponent whatever results we observe.

This example demonstrate in a very simplified way the development of knowl-
edge in physics. Obtaining more data leads to changes of our knowledge about
the observed system. However, we also see, that our prior knowledge is abso-
lutely essential. In the gambling game it determines how we evaluate our strategy:
it determines the number of lost rounds after which we accuse our oponent of
cheating.

The generalization of the Bayes relation for the case of continuous class of models
is obvious: we just substitute the sum by an integral.
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Let us investigate its use in the simple example of fitting the data by a straight line.
This simple example will also manifest better the relation between the classical
and Bayesian statistics.

We have results of some measurement, the set of data points {xi, yi} for i =
1, . . . , N . According to theory, the relation between x a y should be a linear one
y = Ax+B. What values of A a B correspond best to the observed data?

If we measured absolutely exactly, we should obtain for each xi the value y∗i =
Axi + B. Now let us assume, that the deviations from this value (measurement
errors) are distributed normally with the standard deviation σ and the mean µ = 0.
This assumption is essential and is usually justified by the central limit theorem.
The probability that for xi we obtain the value yi is

P (yi|A,B) =
1√
2πσ

exp

[
−(yi − Axi −B)2

2σ2

]
.

The probability to obtain the whole observed set of values {yi} is

P
(
{yi}|A,B

)
=

1

(
√

2πσ)N
exp

[
−

N∑
i=1

(yi − Axi −B)2

2σ2

]
.

This is so called likelihood function. Now let be non-Bayesian (frequentist) for a
moment. Then the likelihood function is all we need and we estimate the best
values for A a B by maximizing the likelihood function P (data|parameters).
The above expression shows that the maximum is achieved when the sum of the
squares of deviations is minimal. The estimates Â a B̂ are given as

Â, B̂ = argmin
A, B

{
N∑
i=1

(yi − Axi −B)2

}
.

So we have ended with the old good least squares method6.
6We have assumed, that we know the value of σ. For example, the value might be printed on

the apparatus we use for measuring the yi data values. It is easy to imagine, that we do dot know
σ a-priori. Then we can consider σ to be another parameter of the model describing the data, that
is we now have three unknown parameters A,B, σ. And we can determine sigma by maximizing
the likelihood

Â, B̂, σ̂ = argmax
A,B,σ

1
(
√

2πσ)N
exp

[
−

N∑
i=1

(yi −Axi −B)2

2σ2

]
Notice that in this case we did not get just the minimization of the square deviations, since the
parameter σ appears also in the gaussian normalization factors which are essential to get the rea-
sonable value for σ. Trying just to minimize the expression

N∑
i=1

(yi −Axi −B)2

2σ2

we would (wrongly) get σ =∞.
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Does this mean, that the least squares method is our golden calf? Not at all. We
should notice the hidden assumptions. At first it was the assumption on normal
distributions of the measurement errors. Within the Bayesian spirit, however, we
should also consider the prior probability π(A,B). Our main interest is not the
likelihood function, but the posterior probability of the values of A and B after
observing {yi}. According to the Bayes formula it is given as

f
(
A,B|{yi}

)
=

π(A,B)P
(
{yi}|A,B

)∫
π(A,B)P

(
{yi}|A,B

)
dAdB

=

=
π(A,B)

C(
√

2πσ)N
exp

[
−

N∑
i=1

(yi − Axi −B)2

2σ2

]
.

The denominator of the fraction plays no role for the further consideration and is
denoted simply by C. The maximum of the posterior probability differs in general
from the maximum of the likelihood function.

So we briefly repeat the basic scheme. The Bayes formula contains P (D|Mi),
what is the probability of observing the data assuming the model Mi is true. This
objet plays role also in classical statistics and is called the likelihood function.
Classical statistics then estimates the values of the unknown parameters Mi based
on the observed dataD by maximizing the likelihood function. In the case no prior
information is available such a strategy is natural. An equivalent result is obtained
within the Bayesian approach if we use equal prior probabilities for all models
(π(Mi) = C).

However, it must be stressed that for continuous probabilities the notion of ”equal
probabilities” is not well defined, since it is heavily dependent on the used parametriza-
tion. Using a specific parametrization is equivalent to using a specific prior prob-
ability. Changing the parametrization, say from x to y = x2, changes the location
of the likelihood function maximum.

Problems with prior probabilities lead many people to consider the Bayesian statis-
tic as inferior to the classical one. They do not like the ”additional freedom” rep-
resented by the prior probability. We have seen, however, that the same freedom is
implicitly hidden in the classical approach. The Bayesian approach just displays
this freedom fairly in explicit way On the other hand a certain relief of concern
can be found in the fact that asymptotically (for infinite amount of observational
data) the results do not depend on the prior probabilities7.

A final remark. The result of the Bayessian analysis is the posterior probability
of models (in the continuous case it is the probability density). This complete in-
formation is sometimes felt as superfluous: people prefer to get a specific number

7This is strictly true only if the prior probability is not equal to zero in some region. In that
case even a large amount of data cannot create a non-zero posterior probability in that region.
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rather then the probability distribution. The posterior probability is therefore often
used to get just its mean value or the point of its maximum, depending on a specific
situation. Of course, a lot of information is lost by such a process. When further
data gathering is expected, it is wise to keep the complete posterior probability
and use is as a prior probability for the later analysis.

Exercise
Data analysis for the experiment measuring the mass m of some particle lead to
the result m = −0.3 ± 1.0 eV. Later it was realized that the mass is a positive
quantity. What is the correct posterior probability distribution after including this
fact into the analysis? What is the mean mass value?

• We represent the initial data analysis by the formula f(D|m) ∼ exp[−(m +
0,3)2/2], the prior probability8 π(m) = ϑ(m) (ϑ(m) is equal to zero for negative
m and equal to 1for positive m). Then

f(m|D) =
ϑ(m) exp[−(m+ 0,3)2/2]∫
ϑ(m) exp[−(m+ 0,3)2/2] dm

=⇒ 〈m〉 .= 0,7 eV.

The last value is a numerical estimate.

Exercise
We are performing an experiment measuring a dimensionless quantity b. Accord-
ing to our prior knowledge the value of b is 10± 7 (Gauss distribution is assumed
here). We obtain two new experimental values b1 = 4 a b2 = 6. We assume our
measurement has Gaussian error distribution with σ = 4.
a) Express our final knowledge (?±?) about b
b) What would be the estimate for b in limiting cases σ → 0 a σ →∞?

• The parameter to be determined is the value of b Then

π(b) =
1√
2π 7

exp

[
− (b− 10)2

2× 72

]
.

The probability that by one measurement the value x is obtained is

P (x|b) =
1√
2π4

exp

[
− (x− b)2

2× 42

]
.

Notice the different values for the standard deviations in the prior probability of b
and in the probability describing the measurement process.

8More exactly we should use som normalized function for example by introducing cut-off at
very large values of m
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a) Using Bayes formula we get (with the normalization factors canceled out)

P (b|data) =
exp

[
− (b−10)2

2×72 − (4−b)2
2×42 − (6−b)2

2×42

]
∫∞
−∞ exp

[
− (b−10)2

2×72 − (4−b)2
2×42 − (6−b)2

2×42

]
db
.

The distribution P (b|data) is a normal distribution its maximum is in the same
point as the mean value and the median We therefore do not need to consider var-
ious possibilities for expressing the estimate the result is b̂ = 325/57

.
= 5.7. For

the root mean squared we get σ̂2 = 392/57 a b = 5,7± 2,6.
b) The limit σ → 0 means that the measurement is extremely precise, therefore
the final estimate should net depend on the prior probability. However, it is con-
tradictory to get two different values for the same quantity if the measurement is
absolutely precise. So this case is not self consistent. For the limit σ → ∞ the
new measurement has no significance at all and the posterior probability will be
equal to the prior one.

2.8 Best fit. Parameter error estimation

We add here a section on fit-parameter error estimation. To simplify the discus-
sion we consider a single parameter fit. If there are more parameters, parameter
correlations should be taken into account9. We shall consider just a simple single
parameter linear fit, but the linearity is not essential for the considerations here.
So suppose we have a set of data points

{yi, xi}

The values xi are supposed to be known precisely, the values yi are measured with
known error (variance) σ2

i . We want to find the best fit of the form

y = kx

with unknown parameter k to be determined by the fitting procedure. So in the
language of the previous section k represents ”the theory”, The likelihood function
(probability to obtain data for a given theory k) is

P ({yi}|k) =
∏
i

1√
2πσ2

i

exp(−
∑
i

(yi − kxi)2

2σ2
i

) = C exp(−1

2
χ2(k))

9Introductory discussion can be found in F. James, The Interpretation of Errors in Minuit
http://seal.cern.ch/documents/minuit/mnerror.pdf
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where C is a normalization constant10 and

χ2(k) =
∑
i

(yi − kxi)2

σ2
i

is the standard chi-squared statistics we would use for hypothesis testing were the
value of k given. See the correct normalization factor 1/2 in the exponent in front
of χ2. Now maximizing likelihood means minimizing chi-squared. So suppose we
performed the minimization and found the optimal value k0. We want to know the
precision of the fit parameter value k0, or said it differently, we want to know the
fit-parameter error.

We shall use the Bayesian argumentation here. So let us consder soam arbitrary
fit-parameter value k. The reation of posterior probabilities will be

P (k|{yi})
P (k0|{yi})

=
P ({yi}|k)π(k)

P ({yi}|k0)π(k0)

where π(k) and π(k0) are the prior probabilities of parameter values k, k0. If the
prior probability π(.) is reasonably flat in the vivinity of k0, than for k not too far
from k0 we have π(k) ≈ π(k0) and the prior probabilities cancel. We get

P (k|{yi})
P (k0|{yi})

=
P ({yi}|k)

P ({yi}|k0)
=

exp(−1
2
χ2(k))

exp(−1
2
χ2(k0))

= exp(−1

2
4χ2(k))

Now suppose we assume that the posterior probability is gaussian. Then

P (k|{yi})
P (k0|{yi})

= exp(−(k − k0)2

2σ2
k

Comparing the two formula we see that

σ2
k = (k1 − k0)2

where k1 is the parameter value for which

4χ2(k1) = 1

This is the reason for the general wisdom: 4χ2 = 1 corresponds to one standard
deviation. The critical values for ”more standard deviations” are found accord-
ingly.

10Actually we are slightly cheating here. The gaussians are probability densities, not probabil-
ities. We assume that the values yi are dot continuous variables. We consider y to be a binned
(discretized) variable, the yi are the central values of the corresponding bin and the bins have size
4y. We stress that 4y has nothing to do with the measurement errors σ2

i . We assume that the
value4yis small enouhg so that the gaussians are reasonably flat within the bins. The normaliza-
tion constant C then comprises also a power of4y.
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2.9 Competition of two models

In physics we often meet situations when we have to choose between two alter-
native models. For example for the set of data points {xi, yi} we have to decide
whether the data support the two-parameters linear model

yi = A+Bxi

or an alternative three-parameters quadratic model

yi = A+Bxi + Cx2
i

This is a question from the methodology of physics and within the Popper-like
spirit it seems to be wrongly stated. Our basic belief is that in physics we cannot
prove hypotheses, we can just disprove (reject) them. Here we have two hypothe-
ses, linear and quadratic. If one of them can be rejected (by suitable statistical test)
then we favor the other hypothesis. But what if neither of them can be disproved?

Then we usually use ”The Occam razor”. William of Ockham was the 14th century
Franciscan friar who formulated a famous statement ”entities should not be mul-
tiplied beyond necessity” which in physics is usually paraphrased as ”All other
things being equal, the simplest solution is the best”. So in case neither of two
competitive models can be rejected by statistics, we favor the simpler one. And
we stay at the simpler one until, eventually, more precise data disprove it; then we
switch to some alternative description.

This requires that we recognize which of the two models is the simpler one. We
shall be more rigorous shortly, for the moment the intuitive view is enough. An it
tells us that the linear model is simpler than the quadratic one.

So the ”standard folklore” (non-Bayesian, frequentist) is the following.

• Choose the simplest model (here the linear one). Adjust its parameters (A,B)
by maximizing the likelihood

• Having fixed the parameters of the model perform a statistical test. For ex-
ample you can calculate the χ2 statistics

χ2 =
∑ (yi − A−Bxi)2

σ2

and calculate the probability to observe the value obtained if the null hy-
pothesis (linear model is true) holds

• If you get a reasonable probability, accept the model until new analysis is
forced by new data.
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• If you get too small a probability, reject the model and repeat the analysis
with a more complicated model

Now, the Bayesian approach to the same problem would be:

• Estimate the prior model probabilities π(M1) and π(M2). (M1 is the lin-
ear model, M2 is the quadratic model.)The model prior probabilities might
depend on the model parameters.

• Express the posterior model probabilities through the model parameters for
both models

• Maximize both posterior probabilities choosing the optimal values of the
model parameters.

• Compare the two posterior model parameters calculating their ratio (so that
the normalization factor from the denominator drops out)

P (M1|data)

P (M2|data
=
π(M1)P (data|M1)

π(M2)P (data|M2)

• Accept the model for which the posterior probability is higher

It is clear that the Bayesian results heavily depends on the choice of the prior prob-
abilities. This is the reason of bitter fights between Bayesians and frequentists. It
is true, that the Bayesian approach goes somewhat beyond the Popper ”reject phi-
losophy” accepting the model out of two candidates whose posterior probability is
perhaps only slightly higher than that of the other candidate. On the other hand the
Popper approach can be taken literally only in situations where one of the mod-
els is considered as established (a paradigm in the Khun’s sense) which should
be first rejected and than only the alternative should be considered. And this can
be well modeled by the Bayesian approach giving the paradigm model very high
prior probability with respect to the alternative. Then the data must really disfa-
vor the paradigm model for the alternative to win. The Bayesian approach can be,
however, used also in the heuristic phase of ”establishing the first paradigm” when
no model has a large preference.

Anyhow, the difference between the Bayesians and the frequentists is not that big
as one could naively think. The frequentist (in the heuristic phase of reasoning)
also compare the models prior to considering the data. They just qualitatively es-
timate one of the models as ”more simple” with respect to the other one. Bayesian
prior probabilities do the same, in more explicit and quantitative way. The fre-
quentists results can be always reproduced by the Bayesians if the choose the
prior probabilities in a suitable way.
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2.10 Model as data compression

According to the discussion in the previous section one might conclude, that the
prior probabilities are completely arbitrary subjective measure. It is not quite so.
There exist sound ideas how to give prior probabilities of models rather objective,
even rigorous foundations. The key observation here is the idea that, an a very
abstract level, model (or theory) is just a way of data compression.

Let us for the moment discuss the descriptive aspect of a physical model (or the-
ory), forgetting about its predictive aspects.

Suppose we have some measured data. The data is represented by set of numbers.
In a computer language the data nothing but a (perhaps very large) string of zeros
and ones. At an abstract level a model is just a way hod to describe the corre-
sponding data. Here the word ”describe” is not a rigorous term. Speaking again a
computer language we can say we have a model if we have a program which is
able to reproduce (to write down, to print) the data string. By ”program” we mean
here program which does not need any ”input data”, just produces output by itself,
out of nothing. This is no restriction. Actually we can hide any ”input data” inside
the program in the form of ”initial value” of some string variable.

Understanding programs in this broad sense, we can always find (construct) a pro-
gram (”model”) which reproduces some particular observed data. We just hide the
data string inside the program as the initial value of a string and then write just a
single line statement ”Print that string”. And that is, the program reproduces the
data string. Of course, there is no use for such a ”model”. The model being a pro-
gram is just a string of zeros and ones. And this particular ”copy model” is a string
even a few bits longer than the ”data string” it describes. So it all seems to be a
trivial nonsense. Just wait a moment. There exists many programs: as many as are
(finite, but perhaps large) strings of zeros and ones. It may well happen, that some
of the programs, when started with a blank list of output, ends its run with just our
”data string” printed at the output. And the program may be significantly shorter
that the data string it outputs. We all know that it happens. The data string can be
at least ”zipped” into a shorter string, included into an unzip program and voila:
here is the program shorter than the data string, which prints out the complete data
string. This is called ”data compression”. Sometimes the data compression can be
extremely efficient. The string of billion digits looking like

010101010101010101010101010101010101010101010101 . . . ,

Can be reproduced by a very short program

for(i=0;i<10^9;i++) print("01");
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Such a strong compression can indeed be called ”the theory” of the observed data

To summarize: there might exist many (even infinitely many) programs printing
the desired data string. However, one of them must be the shortest. This program
can be called ”the theory” of the observed data. Actually the considerations must
be a bit more precise taking into account different computers and different pro-
gramming languages, but all this is just inessential complication: the basic idea
was reproduced here quite well.

So is there an end for theoretical physics? For any data string let the computer
finds the shortest program capable to print the string down and we have got the
theory. Fortunately (or unfortunately?) this ida cannot be realized. One can prove,
that there is no universal computational (computer based) way how to find the
shortest program capable to produce a given string.

This might sound surprising since a simple idea to accomplish the task seems to
be obvious.

• Programs are just finite strings of zeros and ones. This is a countable set.
This set can be even ordered according to the length of the string represent-
ing the program. So the set of all programs can be numbered giving number
1 to the shortest program, 2 to the next one etc.

• Begin with program No 1. Run it. Wait until it stops. If it prints the de-
sired data string, you have found the shortest program, the ”theory”. If not,
continue with program No.2. And so on.

• Some program eventually prints the desired data string, at least the ”copy
program” must do so.

• The first program (found in this way) which prints the data string is the
shortest one doing so.

• So we can computationally find ”the theory” for every ”observed data string”

Nice but wrong. There is a flaw in the above argumentation. The flaw is in the
words ”Wait until it stops”. We all know there are programs which never stop. For
example programs which contain infinite loops. First program which starts but
never ends breaks our ”theory finding algorithm”.

So we need a modification of the algorithm. Like the following. If you consider to
run the program No.n, first check whether it stops after started. If not, do not start
it and go to the next program in row.
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Easy said, difficult to do. One should just by inspection (not running it) recognize
whether some program stops after it starts. One needs an algorithm to do the in-
spection. An algorithm means a program. But there is so called halting theorem. It
says such a program does not exist. So our ”theory finding” search for the shortest
program reproducing data cannot work11.

It is quite instructing to prove the halting theorem. So far we considered only pro-
grams which do not need any inputs. Let us now consider more general programs
which read some input string at their start, then run, stop and produce output
string.

Input strings are again just sequences of zeros and ones. Without loss of gen-
erality we can say that each such string starts with one12. So it is just a binary
representation of some integer number, we shall denote it by m. Programs can
be also denoted by numbers, say n. The output string of a program n given the
input string m is again a binary number, let us denote it as T (n,m). Well, with
one exception. Maybe the program n given the input string m never stops, then it
does not produce any number. In this case we define

T (n,m) = �

So in principle we can imagine an infinite table with all the results of all the
programs given all the possible input strings13. This table is the matrix T (n,m).
(In the n-th row and m-th column is the output T (n,m). Some entries in the table
are, of course �.

We said ”in principle” because we are not sure whether the matrix can really be
constructed (computed). Well, the matrix is infinite, so it can never be constructed
(computed) in totality. But we can define the matrix be computable if we can
compute the entry in any given (n,m) position. Can we?

Yes if the halting problem can be solved. We need the program symbolically de-
noted as H which if given two14numbers (n,m) (that is some program and its
data) always halts and outputs 1 if the considered program n with data string m
stops and outputs 0 if the program n with data m does not stop. 15

With the help of the magic program H one can compute the matrix T (n,m). In-
deed: given the two numbers (n,m) we first run the H program with (n,m) as

11It can be proved that no other algorithm can work either.
12We can always start the program by a statement ”forget about the initial one from the input

string”.
13What about programs which do not need any input. We still can present them any input string,

they simply do not consider it and their result does not depend on the input string at all. For such
programs the result T (n,m) would be the same for all the m

15Any two numbers (strings) can be artificially written as one string, say with digits on odd
positions from the first string and on the even positions from the second string
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input. If it writes 0, we know T (n,m) = � and that is all. If the H program ends
with 1, it is safe to run the program n with data m and we get the result T (n,m).
So if the program H exists, the table T (n,m) is computable.

Now we are going to show, that the table T (n,m) cannot be computable. Suppose
it is. Then its diagonal T (n, n) is also computable. Then a vector V (n) defined16as
V (n) = T (n, n) + 1 is also computable. It means there exists a program which
computes this vector. There must be a number n0 such that T (n0,m) = V (m) but
then

T (n0, n0) = V (n0) = T (n0, n0) + 1 6= T (n0, n0)

We got contradiction. So the program H does not exist. The halting theorem is
proven.

2.11 Coding theory

In this section we start to investigate deep relation between probability and infor-
mation. We shall first need elements of the coding theory.

The goal of coding is to translate a given information into a sequence of symbols,
possibly a short one. The basic symbols used by computers are zero and one. On
the other hand the Morse code uses three symbols a dot, a dash and a gap. The last
mentioned symbol has a special meaning, it separates different letters from each
other.17 It is interesting to note, that it is possible to code a message by just using
two symbols. At the first sight one would say that one needs two symbols to code
for letters and something else to code gaps between letters. However it is possible
to construct codes for letters such that no sequence of symbols which is a true code
for some symbol appears as a prefix in the sequence of some other letter. Then a
sequence os symbols without any gaps can be cut into pieces representing indi-
vidual letters (the gaps can be introduced automatically). We read the sequence
from the beginning symbol by symbol. After reading a symbol we check whether
we already have a valid code for a letter. If not, we read the following symbol. If
yes we break the reading, introduce a gap and start reading further as if from the
first symbol. A code K having the described property is called prefix-free code,
sometimes shortly just a prefix code. The set of all letters is called alphabet A.
In what follows we shall assume that the symbols used are 0 and 1. Let us stress
again, that the alphabet can be in principle very reach, containing a large number
of letters.

16Well, some of the T (n, n) might be �. We define a ”rule” �+ 1 = 1
17In this section we shall use the word ”letter” in a general meaning of the smallest codable unit.

Practically it may be a letter (in the usual meaning of the word) or it may be a group of letters , a
word, or something representing a complicated prior agreed meaning. So a message would be just
a sequence of letters
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Let us denote the lengths of codes of letter of an m-letter alphabet as s1, . . . , sm.
Let the corresponding code is prefix-free. Then the following (Kraft inequality)
holds ∑

i

2−si ≤ 1.

The inverse is also true, that is if the lengths of m sequences s1, . . . , sm fulfill the
Kraft inequality, then a prefix-free code exists for an m-letter alphabet with the
code sequences of the corresponding lengths.

Let us prove the theorem. Without a loose of generality we assume that the lengths
are ordered and sm ix maximal. Any given prefix code can be represented by
an binary tree of depth sm where the branches from each node correspond code
symbols (0 and 1) and each codeword is represented by a path to a leaf at depth
si. This guarantees that no codeword is a prefix of another. For each leaf in such
a code tree, consider the set of descendents Ai the leaf considered would have at
depth sm in a full binary tree. Then

Ai
⋂

Aj = ∅, i 6= j

and
|Ai| = 2sm−si

Thus, given that the total number of nodes at depth sm is 2sm ,

|
m⋃
i=1

Ai| =
n∑
i=1

2sm−si 5 2sm

from which the Kraft inequality follows. For the converse, we just show the main
idea. Given any ordered sequence of n integer numbers s1, . . . , sm, satisfying the
Kraft’s inequality, one can construct a prefix code with codeword lengths equal to
si by pruning subtrees from a full binary tree of depth sm in the following way.
First choose any node from the full tree at depth s1 and remove all of its descen-
dants. Then iterate the procedure with the remaining nodes for i = 2, . . . ,m.

It is useful to demand that the message should have the total length as small as
possible. Let us denote the length of the code assigned to the letter x by L(x)
and the alphabet of all letter by A. The mean length assigned to a letter is 〈L〉 =∑
P (x)L(x). We assume here that the probabilities P (x) are known beforehand.

How to minimize this mean length? Clearly it is wise to assign short symbol
sequences to very probable letters and longer sequences to improbable letters.
(Morse himself went to a printing office to see how many pieces of different let-
ters they have at their disposal.) Mathematically it is a constrained optimization,
what are the optimal code lengths to minimize the mean length provided the Kraft
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inequality is satisfied. Using the Lagrange multiplier technique, we get the uncon-
strained optimization problem with the cost function

L =
∑
x∈A

P (x)L(x)− λ
(∑
x∈A

2−L(x) − 1
)
.

The solution is L(x) = − log2 P (x). The optimal mean code length per letter is

H = −
∑
x∈A

P (x) log2 P (x)

This expression is called the entropy of the information source (when coding in
the binary code). Since log2 x = ln 2·lnx,H differs only by a multiplicative factor
from the expression for entropy S = −k

∑
pi ln pi known in statistical physics.

We have so far neglected the problem that the expression L(x) = − log2 P (x)
leads to non-integer code lengths, what is nonsense. One possibility is to use the
ceiling function (rounding tho the nearest larger integer), such a coding is called
Shannon-Fano. However, in extreme situations like when coding a two letter al-
phabet A,B with the probabilities pA = 0.9, pB = 0.1, we get LA = 1 a LB = 4,
clearly a non-optimal solution with 〈L〉 = 1.3. The trivial assignment A→ 0 and
B → 1 gives 〈L〉 = 1. No better assignment exists, so the value of information
source entropyH .

= 0.47 cannot be achieved in this extreme situation. In practical
situations we can get close to the entropy value.

An optimal solution (coding individual letters) is the Huffman code18. We start
with two least probable letters and assign to them (as final symbols for their code
sequences) 0 and 1. We sum their probabilities and count them together as if one
letter the number of ”effective letters” of the alphabet decreases by one. We iter-
ate the procedure until all the letters have their code sequences assigned (see the
figure).

The code sequences for the example in the above figure are A 7→ 11, B 7→
10, C 7→ 01, D 7→ 001, E 7→ 000. Huffman code is used in many applications
like zip, mp3 a mpeg.

Of course there might be better solution then coding the message letter by letter,
as we demonstrate in the following exercise. Exercise

18In early times of the coding theory finding the optimal code was a prestigious challenge. The
winner was (in 1952) an MIT student David Huffman who worked on the problem within a project
related to the lecture on coding theory.
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Let the probability of letter A be pA = 0.999, the probability of the letter B be
pB = 0.001. Suggest a practically useful way to code messages of typically mil-
lion letters. (Giving the typical message length just helps to estimate the efficiency
of the coding scheme, asymptotically the efficiency does not depend on this num-
ber.)

• A message of the given length contains typically 1000 B letters sparsely dis-
tributed among the A letters. Therefore it is better not to code letter by letter, but
tho code the long sequences of A’s. A useful code may look as follows. We first
give the total number of B’s in the message. Then we give the length of the first
A-sequence, then the second sequence and so on. All the numbers used in the
scheme are of the order of 1000, that is 11 binary digits. We shall need roughly
1000 such numbers, so 11000 binary digits. Actually we shall solve the problem
of coding the delimiter between the numbers, but this dos not change the order of
magnitude of the estimate. Having a million letters, we need roughly 0.011 bit per
letter. The information source entropy in this case is H .

= 0.011, so our code is
very good.
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Chapter 3

Supplements to the foundations of
statistical physics

3.1 Density matrix

Let us have an arbitrary macrostate of some system and the ensemble of mi-
crostates representing this macrostate. The macrostate considered need not be sta-
tionary. The ensemble is a set of microstates |x〉 and the set of their probabilities
p(x). Then the mean value of any physical quantity is

A =
∑
x

p(x)〈x| Â|x〉

This can be written in a more compact form when we introduce the operator (den-
sity matrix)

ρ̂ =
∑
x

|x〉p(x)〈x|

as
A = Tr(ρ̂Â)

Indeed, using any base |n〉 on can write

Tr(ρÂ) =
∑
n

〈n| ρ̂Â|n〉 =
∑
n

〈n|
∑
x

|x〉p(x)〈x| Â|n〉 =

=
∑
n

∑
x

〈n | x〉 p(x)〈x| Â|n〉 =

=
∑
n

∑
x

p(x)〈x| Â|n〉 〈n | x〉 =

=
∑
x

p(x)〈x| Â|x〉 = A
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The density matrix is evidently a hermitian operator, it can be expressed in any
base (in general it would not be diagonal) as

ρ̂ =
∑
m,n

|m〉ρmn〈n|

The time evolution of a macrostate will be described by a time dependent density
matrix

ρ̂(t) =
∑
x

|x(t)〉p(x)〈x(t)| =

=
∑
x

exp(− i
~
Ĥt)|x〉p(x)〈x| exp(

i

~
Ĥt)

Differentiating with respect to time we get the equation of motion

i~
∂

∂t
ρ̂(t) = [Ĥ, ρ̂]

If the macrostate is stationary, then it will be described by a time independent
density matrix. According to the equation of motion we see that such a density
matrix commutes with the Hamiltonian. Therefore there exists a base of stationary
states in which the density matrix will be diagonal having the form

ρ̂ =
∑
n

|n〉ρnn〈n|

This is the reason why in statistical physics of stationary macrostates we can limit
ourselves to the ensembles composed of stationary states.

In the case of a canonical ensemble we get for the density matrix

ρ̂ =
∑
n

|n〉 1

Z
exp(−En

kT
)〈n|

which can be formally written as

ρ̂ =
1

Z
exp(− Ĥ

kT
)

3.2 Entropy

We want to discuss now the notion of information. Information concerns knowl-
edge. More specifically information can change the state of knowledge. Informa-
tion can change a complete unawareness to a partial or even complete knowledge.
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One of the main messages of this section is the idea that the level of unawareness
can be described (modeled) by the concept of probability. When the dice was
thrown, but I do not know the result yet, then there is no genuine probability to
speak about. The result is fixed, jut I do not have the knowledge about it. However,
I can measure the level of my unawareness by the probabilities of various events
before they happen.

If the dice is thrown and somebody tells me the result, he communicates me some
information. How to measure the quantity of information? The starting point is the
requirement that the message saying an improbable event happened carries more
information then a message reporting that a probable event happened. The quan-
tity of information is therefore related to the probability of the message carrying
the information. Information about the event is related to the probability of that
event before it happened.

Now we require that the information can be communicated in parts. For example
I can first announce that the unknown number is odd, and then only the number
itself. It is natural to require that the information from partial messages should be
added to get the total information. Having in mind that the probability of indepen-
dent events combine multiplicatively, but the corresponding independent pieces of
information should be combined additively it is natural to assume that the amount
of information is given by the logarithm of the corresponding probability.

I = − log(p)

Let us now consider a communication channel communicating the pieces of infor-
mation. Each piece of information is a message that some event happened. Let the
events are denoted by the index i and their probabilities pi. Then the mean amount
of information contained in one message is

S = −
∑
i

pi log(pi)

This expression is called the entropy of the information channel.

We have seen this expression in the previous section when we discussed the op-
timal coding. We came to the conclusion the having events with probabilities pi
it is optimal to assign to them codewords with the lengths − log2(pi) so that the
mean message length would be

S = −
∑
i

pi log2(pi)

Using the logarithms of different bases just changes the units in which we measure
the amount of information. (Changing the base just multiplicatively renormalizes
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the logarithm.) The unit corresponding to binary logarithm is called bit, the unit
corresponding to natural logarithm is called nat.

Now we prove that the expression for entropy has the following important opti-
mality property. Considering arbitrary sequences of positive numbers qi satisfying
the condition

∑
i qi = 1 the following inequality holds

−
∑
i

pi log(qi) ≥ −
∑
i

pi log(pi)

We shal prove it for natural logarithms, but the generalization to arbitrary loga-
rithm base is trivial

log(x) ≤ x− 1

log(
qi
pi

) ≤ qi
pi
− 1

pi log(qi)− pi log(pi) ≤ qi − pi∑
i

(pi log(qi)− pi log(pi)) ≤
∑
i

(qi − pi) = 0

−
∑
i

pi log(pi) ≤ −
∑
i

pi log(qi)

q.e.d. By the way we have proved again the optimal coding theorem, that is that
one should use the codewords of the length log(qi) = log(pi).

Now, why all this is relevant to statistical physics?

A macrostate in statistical physics is represented by a statistical ensemble of mi-
crostates i, whose probabilities are pi. Statistical entropy (of the macrostate) is
defined as

S = −
∑
i

pi log(pi)

So we see that the statistical entropy can be interpreted in the following way.

Let us imagine that somebody gives us a sample of some macrostate. A macrostate
is a virtual notion, he must actually give us some specific microstate. He just does
not tell us which specific microstate from the corresponding ensemble he gave us.
So our knowledge about the system considered just corresponds to its macrostate,
we are completely unaware of the microstate actually delivered. Now imagine
that someone tells us which particular microstate was actually delivered. Then
our original unawareness is changed to a complete knowledge. The amount of
information contained in the message was −log(pi) where pi is the probability
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assigned in the statistical ensemble to the microstate actually delivered. So the
mean amount of information needed to complete our knowledge from macrostate
to microstate level is

S = −
∑
i

pi log(pi)

In statistical physics we use natural logarithm, therefore the units for entropy
should be nats. Actually, however, a slightly different definition of entropy is used
in physics, containing the Boltzmann constant k

S = −k
∑
i

pi log(pi)

and so we express entropy in units of energy/temperature (J/K).

Exercise
Information source entropy
We study the particle velocity in one-dimensional gas.
a) What is the probability density distribution ov velocity f1(v) which maximizes
entropy S = 〈ln f1〉f1 , provided mean absolute value of a particle velocity is given
〈|v|〉 ≡ u?
b) How the result changes if the mean kinetic energy of a particle is given 〈mv2/2〉 =
mu2/2?
c) Which of these two specifications (mean absolute value of the velocity or mean
kinetic energy) provides more information on the particle velocity.(Here we are
interested, in fact in the difference of corresponding entropies.)

• a) We shall use the technique of Lagrange multipliers. The optimized function
will be

L = −
∫ ∞
−∞

f1(v) ln f1(v) dv+α

(
1−

∫ ∞
−∞

f1(v) dv

)
+β

(
u−

∫ ∞
−∞

f1(v)|v| dv
)
.

Now we calculate the functional derivative1 (sometimes called variation deriva-
tive) δL/δf1 and put it equal to zero.

δL
δf1(v)

= 0 =⇒ ln f1(v) = −1− α− β|v| =⇒ f1(v) =
1

2u
exp

(
−|v|
u

)
.

b)We proceed similarly as in the previous case and we get f2(v) = exp(−v2/2u2)/
√

2πu2.
The lesson is that the Maxwell distribution maximizes entropy at given mean ki-
netic energy.
c) More information is contained in the mean kinetic energy, the entropy differ-
ence is (1 + ln 2− lnπ)/2 ln 2

.
= 0,4 bits.

1If functional derivative is too abstract for the reader he/she can imagine a discretized problem
and its continuum limit
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Exercise
Weighting golden marbles

We have 9 golden marbles, 8 of them are from true gold, 1 is fake, therefore
weighing less then the others. We have ordinary equal arms beam balance to find
the fake marble. How many weighing we need?

One can find the solution by trial and error method, but there is a nice way using
the concept of information. Any weighing on a beam balance can lead to one of
three results (the load on the left pan is equal the one on the right pan, the left
is heavier then the right, or the right is heavier then the left) L < P, L =
P, L > P . Now haw much information can we gain by one weighing. The mean
information obtained in one weighing is is

S = −
3∑
i=1

pi log(pi)

where the probabilities (of the three possible outcomes) satisfy the normalization
condition. p1 + p2 + p3 = 1. Finding the maximum is a constrained optimization
problem and can be solved but the Lagrange multiplier method and look for an
unconstrained optimum of the function

F (p1, p2, p3) = −
3∑
i=1

pi log(pi) + λ
3∑
i=1

pi

Differentiating with respect to pi we get

− log(pi)− 1 + λ = 0

So the value of pi does not depend on the index i, so all the prior probabilities
should be equal

pi =
1

3
It is useful for the case considered to use the base 3 for the logarithms, the corre-
sponding unit of information is called one trit. Optimally we can gain one trit of
information for one weighing since

S = −
3∑
i=1

1

3
log3(

1

3
) = 1

How much information we need to identify the fake marble. It can be any of the 9
marbles, so the probability to randomly point to a fake one is 1/9. The information
needed is therefore

−log3(
1

9
) = 2

We need 2 trits of information, we can obtain maximally 1 trit per weighing, so we
need at least 2 weighings to identify the fake marble. Actually it can be done. We
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start by taking randomly three marbles and put them on the left pan and another
random three marbles and put them on the right pan. If the pans are balanced,
the fake marble is one of the remaining three marbles. Otherwise it is one of the
three marbles with the smaller weight. So in the next weighing we have to identify
as fake one of three marbles. We take randomly one and one, if they have equal
weight the fake is the remaining on, otherwise the fake one is that with smaller
weight.

3.3 Variation principles

We have already met the inequality

−
∑
i

pi log(qi) ≥ −
∑
i

pi log(pi)

in terms of the density matrix it can be written in the following form

−Sp(ρ ln(ρ)) ≤ −Sp(ρ ln(ρ′))

This inequality holds for arbitrary density matrixρ′.

Let us consider the Hilbert space of some physical system and a subspace of this
space corresponding to vectors with a given fixed energy. Let this subspace have
the dimension N. This subspace corresponds to microcanonical ensemble with the
density matrix given as

ρ =
1

N

∑
n

|n〉〈n|

For arbitrary density matrix defined in the energy subspace we get (according to
the above inequality)

S ′ = −Sp(ρ′ ln(ρ′)) ≤ −Sp(ρ′ ln(ρ)) = −Sp(ρ′ ln(
1̂

N
)) = lnN

On the right hand side there is the entropy of the microcanonical distribution.
We see that the microcanonical distribution has the largest entropy from all the
distributions defined in the energy subspace considered.

Now let us consider the canonical density matrix

ρ =
1

Z
exp(−βĤ)
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and an arbitrary density matrix ρ′ (defined on the whole Hilbert space). We get the
inequality

S ′ = −Sp(ρ′ ln(ρ′)) ≤ −Sp(ρ′ln(ρ))

S ′ ≤ −Sp(ρ′(− ln(Z)− Ĥ

T
) = + ln(Z) +

1

T
E ′

E − TS ≤ E ′ − TS ′

F ≤ F ′

We have got the variation principle which we formulate also in words now. If we
have a system in contact with a heat reservoir at temperature T. The equilibrium
(macro)state of the system is described by the canonical density matrix ρ. If the
system is in (macro)stat described by some other density matrix ρ′, then it is in a
non-equilibrium (macro)state. The mean energy in this non-equilibrium sate is

E ′ = Sp(ρ′Ĥ)

and its entropy is
S ′ = −Sp(ρ′ ln(ρ′))

We can define free energy in this (non-equilibrium macro)state as

F ′ = E ′ − TS ′

According to the above inequality this non-equilibrium free energy is smaller then
the equilibrium entropy.

We can use the theorem in the following way. In the trial density matrix ρ′ we
introduce som free parameter α, and we tune it so that the corresponding non-
equilibrium free energy F ′(α) is at minimum.

Practically we use this variation principle in a special way. There are more the
one "canonical density matrices" in the sense that the macrostates corresponding
to them are macroscopically undistinguishable from each other. In the standard
definition of the canonical density matrix

ρ =
1

Z
exp(−βĤ)

we assume that calculating the traces (which we do to get physical predictions) we
sum over the complete Hilbert space. However we can modify the density matrix
that we do the traces only over some subspace of the complete Hilbert space.
Formally we can write

ρ =
1

Z
P̂ exp(−βĤ)P̂

where P̂ is the projection operator projecting to the subspace considered. Usually
we choose the subspace as the subspace on which all the states have specific value
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A of some (macroscopically measurable) variable Â. We denote the corresponding
projection operators symbolically as

P̂Â=A

and we get

ρA =
1

ZA
P̂Â=A exp(−βĤ)P̂Â=A

we mean by this notation that, for example

ZA =
∑
i,Ai=A

exp(−βHi)

We know that for a macroscopical system all sums are saturated by the subspace
on which the value of some variable is equal to the macroscopical equilibrium
value of that variable. In other words ρ is equivalent to ρA if A = 〈A〉 = Tr(ρA).

Now we can use the value A as the variation parameter in the above described
variation principle. So among the subspaces having specific fixed value A of the
variable Â we look for the subspace for which the corresponding free energy is
minimal. The value Amin for which the minimum is achieved is the equilibrium
value of the quantity Â

Amin = 〈A〉 = Sp(ρA)

This is the way how equilibrium values are often calculated in statistical physics.
We minimize the non-equilibrium free energy corresponding to a general non-
equilibrium value of the quantity of interest. The value of this quantity for which
the minimum is achieved is its equilibrium value.

So far we have considered a variation procedure based on the inequality saying
that the non-equilibrium free energy is greater then the equilibrium free energy of
the same system.

Now we formulate an alternative variation principle based on comparing two equi-
librium free energies. We start from the previous inequality but now as a trial den-
sity matrix we shall choose canonical (equilibrium) matrix corresponding, how-
ever, to different Hamiltonian Ĥ ′. We keep the notation

E ′ = Sp(ρ′Ĥ)

so that E ′ is the mean energy corresponding to the original Hamiltonian Ĥ in the
trial state ρ. Now we introduce a new quantity

E ′′ = Sp(ρ′Ĥ ′)

it is the mean energy corresponding to the trial Hamiltonian Ĥ ′ in the trial state
ρ′. Adding and subtracting the same term E ′′ to the previous inequality we get

E − TS ≤ E ′ − E ′′ + E ′′ − TS ′

F ≤ (E ′ − E ′′) + F ′′
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where F ′′ is the canonical (equilibrium) free energy of a trial system with the
Hamiltonian Ĥ ′ Variation technology proceeds in a standard way. We introduce a
free parameter α into the trial Hamiltonian Ĥ ′ and we get a variable upper estimate

F ≤ (E ′(α)− E ′′(α)) + F ′′(α)

We choose then the value of α so that the right hand side is at minimum.

The difference between the two alternatives of the variation principle is the fol-
lowing. The non-equilibrium free energy of a system is the upper estimate of the
equilibrium free energy of the same system. However, the equilibrium free energy
of som other system has no direct relation to the equilibrium energy of our system
of interest. To get the upper estimate, we have to add to the trial equilibrium free
energy the term

E ′ − E ′′

3.4 Classical and quantum statistics

We have seen in the section on density matrix that the statistical ensembles de-
scribing the equilibrium macrostates can be formed just from stationary states.
Then all the calculations are (in principle) simple, because for discrete sets their
elements can be just counted.

A different situation emerges in the classical physics. The microstate there is a
point in a continuous phase space. Simply there are ”too many points” in the
continuum. We cannot speak about their probabilities, we have to use probabil-
ity densities. We need for that, however, to introduce a suitable measure, in other
words, we have to know how to integrate in the space considered. There is no prior
(canonical) measure on a general manifold. Different measures, however, lead to
different probabilities assignment. In particular, the notion of uniform probability
(maximally unbiased probability) crucially depends on the choice of the proba-
bility measure. So ”complete lack of knowledge” cannot be uniquely modeled on
a general manifold. However, to build the statistical physics we desperately need
the notion of unbiased probability, that is ”the most democratic” probability which
”gives a same importance” to everybody. It is easy to define the ”democratic prob-
ability” on a discrete space: every state is assigned the same probability and the
normalization condition than makes it unique. It a continuous space we run into
difficulties. Sets which have equal measures for a particular integration measure,
might get different measures for a different choice of the integration measure.
There is no canonical prior probability on a general manifold.

Fortunately enough, we do not ran into this problem in classical statistical physics,
since we speak about a measure in phase space. Introducing different measure
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essentially means introducing new coordinates in the space considered. And, in
a phase space, we ”are not allowed” to introduce new coordinates arbitrarily. We
can limit ourselves to use only canonical coordinates, that is coordinates which
do not change the form of Hamilton equations of motion. There are infinitely
many sets of canonical coordinates in a phase space. WE shall show, however,
that a substitution changing one canonical set of variables to another canonical
set has the Jacobian equal to one, that is the two sets of coordinates lead to the
same measure in the phase space. It means a phase space has the same measure in
any canonical coordinates and the maximally unbiased (prior) probability can be
canonically defined: it is the probability density which is uniform when expressed
in (any) canonical coordinates.

So to the problem of canonical transformations.

Let us have canonical coordinates p, q. We shall omit indexes everywhere, so p, q
can represent many (1023) variables with indexes. We have Hamiltonian H(p, q)
and the equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p

We introduce new variables P,Q by transformations P (p, q), Q(p, q). The new
coordinates P,Q are called canonical, if

Ṗ = −∂H̃
∂Q

Q̇ =
∂H̃

∂p

where
H̃(P,Q) = H(p(P,Q), q(P,Q))

We get from definition of P

Ṗ =

(
∂P

∂q

)
p

q̇ +

(
∂P

∂p

)
q

ṗ =

(
∂P

∂q

)
p

(
∂H

∂p

)
q

+

(
∂P

∂p

)
q

(
∂H

∂q

)
p

We should get

Ṗ = −∂H̃
∂Q

=

(
∂H

∂p

)
q

(
∂p

∂Q

)
P

+

(
∂H

∂q

)
p

(
∂q

∂Q

)
P

Comparing the two expressions we get two conditions of canonicity(
∂P

∂q

)
p

= −
(
∂p

∂Q

)
P(

∂P

∂p

)
q

=

(
∂q

∂Q

)
P

The two other conditions of canonicity can be get similarly considering Q̇.
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Now the Jacobian can be calculated by dividing the total canonical transformation
into two subsequent canonical transformations

J =
∂(Q,P )

∂(q, p)
=
∂(Q,P )

∂(q, P )

∂(q, P )

∂(q, p)

J =

(
∂Q

∂q

)
P

(
∂P

∂p

)
q

Substituting the second condition of canonicity we get

J =

(
∂Q

∂q

)
P

(
∂q

∂Q

)
P

= 1

So the volume of a certain region of the phase space is invariant with respect to
canonical transformation. So the notion of uniform probability distribution in the
phase space is invariant with respect to canonical transformation.

We shall show now that the volume of the phase space is also invariant with respect
to time development according to the equations of motion. So let we have initial
point p, q, and the final point p′, q′ which is reached after an infinitesimal time
development during the time dt.

q′ = q +
∂H

∂p
dt

p′ = p− ∂H

∂q
dt

The Jacobian will be

J =

∣∣∣∣∣∣∣
∂p′

∂q

∂p′

∂p
∂q′

∂q

∂q′

∂p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−∂

2H

∂q2
dt 1− ∂2H

∂p∂q
dt

1 +
∂2H

∂q∂p
dt

∂2H

∂p2
dt

∣∣∣∣∣∣∣∣
|J | = 1 +O(dt2)

And so
dJ

dt
= 0⇒ |J | = 1 = const

Therefore the volume of a region of the phase space does is constant with respect
to the flow according to equations of motion. This is so called Liouville theorem.

Now suppose we define a probability density in the phase space, which generally
depends explicitly on time

%(t, p, q)
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Since probability has to be conserved, the continuity equation should be satisfied

∂%

∂t
+

∂

∂p
(%ṗ) +

∂

∂q
(%q̇) = 0

Substituting from the equations of motion we get

∂%

∂t
− ∂

∂p
(%
∂H

∂q
) +

∂

∂q
(%
∂H

∂p
) = 0

The mixed derivatives drop out and we get

∂%

∂t
+

∂

∂p
ṗ+

∂

∂q
q̇ = 0

That means that if we insert into % the solutions of the equations of motion

%(t, p(t), q(t))

we get the total time derivative is zero

d

dt
%(t) = 0

This equation is also called the Liouville theorem.

If we just speak about probabilities, the choice of canonical coordinates makes
things unique. If we want to introduce entropy we arrive at a problem of choosing
the unit for the volume of the phase space. The discrete formula for the entropy

S = −
∑
i

ln(pi)pi

can be generalized to the case of continuous space and probability density as

S = −
∫

ln(ρ)ρdΦ

where dΦ denotes the element of the phase space volume. However ρ is the prob-
ability density, that means probability divided by the phase space volume. So the
normalization of the probability density depends on the choice of a unit for the
phase space volume. In the integrals defining probabilities we get something like

P (subset) =

∫
subset

ρdΦ

and the unit of the volume of the space, being in the numerator in dΦ and in the
denominator in ρ cancels. In the integral defining the entropy, the phase space vol-
ume unit is present also in ρ under the logarithm ln(ρ) and does not cancel in the
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integral. Moreover, the phase space volume is not dimensionless, in one particle
mechanics it has the dimension of distance times momentum what in the usual
units is Js. The logarithm is, however, well defined only for dimensionless quan-
tities. So we have to express the phase space volume in some prescribed unit and
take for ρ just the numerical factor. Changing the unit of the phase space volume
does not change the values of probabilities, but it does change the value of entropy.
Since changing the volume unit renormalizes the probability density ρ multiplica-
tively, and ρ appears under logarithm, the entropy gets additively renormalized.
So classical entropy is well defined up to an arbitrary additive constant.

To choose the unit for the phase space volume we look for something with the
dimension Js. The obvious candidate is the Planck constant ~ = 1.055× 10−34Js.

In quantum statistics we have discrete space of stationary states, their number can
be counted in a unique way and it is a dimensionless quantity, so the quantum
entropy is absolutely defined, without any additive arbitrariness2.

We can ask whether we can choose the phase space volume unit in such a way
that we get for the entropy in the classical case the same number as in the classical
limit of quantum statistical physics. The answer is positive, the matching unit of
the phase space can be found. We demonstrate it on the example of ideal gas.

In the classical limit of the quantum statistics of the ideal gas we get for entropy
the well known Sackur-Tetrode formula

Sq = kN ln
V

N
+ kN

3

2
ln kT + kN

3

2
ln

m

2π~2
+

5

2
kN

In classical statistical physics we get the expression3

Sk = −k
∫

1

N !

∏
i

d3xid
3pi

N !

V N
C3N/2 exp(−

∑
i

p2
i

2mkT
) ln(

N !

V N
C3N/2 exp(−

∑
i

p2
i

2mkT
))

where
C = (

1

2πmkT
)

2The only free choice is in the base of the logarithm (like natural versus binary logarithm). The
base is arbitrary, but its change just renormalizes entropy multiplicatively, what means change of
entropy units (nats versus bits). This has nothing to do with the classical arbitrary additive constant

3The N ! factor is the ”Gibbs paradox” factor: we have to sum only through different (distin-
guishable) states, therefore we integrate over the whole phase space but divide by N !. But then the
probability density must be properly normalized so we require that∫

1
N !

∏
i

d3xid
3pi

1
Z

exp(−
∑
i

p2
i

2mkT
) = 1

and the factor N ! will appear in Z and therefore under the logarithm as well.
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Then

Sk = −kN lnN + kN + kN lnV +
3kN

2
ln(2πmkT ) +

3kN

2

Sk = kN ln
V

N
+ kN

3

2
ln kT + kN

3

2
ln(2πm) +

5

2
kN

The classical calculation and the classical limit of the quantum calculation differ
by an additive term

Sq = Sk − 3kN ln(2π~)

The results will be identical if we write the integration measure as∫ ∏
i

d3xid
3pi

(2π~)3

The natural unit of the one-particle phase space therefore is

(2π~)3

3.5 Volume of an n-dimensional sphere and the num-
ber of states of a classical ideal gas

In the previous section we were calculating the entropy of an ideal gas using the
classical canonical distribution. In this section we will discuss the classical mi-
crocanonical distribution of an ideal gas. We start with a mathematical detour:we
derive the formula for the volume of an n-dimensional sphere. We need the inte-
gral

Vn =

∫
. . .

∫
∑

i x
2
i<R

dx1 . . . dxn.

Actually, because of dimensional reasons, we know, that the result will have the
form

Vn = CnR
n

so we just need the unknown4 factor Cn. The trick is that we shall instead calcu-
late a Gaussian integral in n-dimensional space both in Cartesian and in spherical
coordinates. In Cartesian coordinates

I =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn exp
[
− x2

1 − . . .− x2
n

]
=
(√

π
)n

= πn/2.

Now to write it in spherical coordinates we need a volume of a spherical layer

dVn = Sn(R) dR

4We of course know that C2 = π, C3 = 4π/3
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where Sn(R) is a surface of an n-dimensional sphere with radius R. From

Vn = CnR
n

we get
dVn = nCnR

n−1 dR

and the Gaussian integral in the spherical coordinates can be written as5

I =

∫ ∞
0

exp
[
−R2

]
dVn =

∫ ∞
0

exp
[
−R2

]
nCnR

n−1 dR =

=
nCn

2
Γ(n/2) = CnΓ(n/2 + 1).

Comparing the two expressions we get Cn and

Vn =
πn/2

Γ(n/2 + 1)
Rn

High dimensional spaces behave quite opposite to intuitive expectation. Let us
investigate n-dimensional spheres with radius 1 and calculate what part of their
volume is contained in a thin surface spherical layer of the thickness δ << 1. we
get

Vn(1)− Vn(1− δ)
Vn(1)

=
Cn − Cn(1− δ)n

Cn
= 1− (1− δ)n.

So for large enough n the layer contains practically all the volume of the sphere.

In statistical physics we work with the phase space ofN particles whereN is very
large, of the order 1023. The number of dimensions of the corresponding phase
space is proportional to N , so we work with spaces of a really large number of
dimensions.

Let us consider now an ideal classical gas and calculate the ”number of states”
with the total energy less then the given value E. Here the notion ”number of
states” has to be understood in the classical limit of the quantum mechanics. Clas-
sically we have in mind the phase space volume expressed in units of (2π~)3N .
The condition we consider is ∑

i

p2
i /2m < E

what in the space of momenta is a 3N-dimensional sphere. Calculating the phase
space volume, the spatial integral gives just V N , where V is the volume of the

5A brief reminder of the Gamma function: Γ(z) =
∫∞
0
tz−1e−t dt, Γ(1) = 1, Γ(1/2) =

√
π,

Γ(z + 1) = zΓ(z), Γ(z)Γ(z + 1/2) = 21−2z
√
π Γ(2z).

54



container. Using the formula for the volume of n-dimensional sphere we get for
the ”number of states” with energy less then E

Ω(E) =
1

N !

π3N/2
(
2mE

)3N/2
V n

Γ(3N/2 + 1)h3N
≈
(

4πemE

3N

)3N/2
(V/N)N

h3N
.

Let us stress that Ω ∼ E3N/2 is (for macroscopic number of molecules) extremely
rising function ofE. Also if the maximal energy isE and the number of states is∼
E3N/2 then the typical difference between the energies of two states is extremely
small (∼ e−N ). So it is not possible to make a rigorously isolated system: it would
require that we shield the system from interactions with a typical value of energy
exchange of the order (∼ e−N ).

Exercise
Vertices of the n-dimensional cube (hypercube) (there is 2n of them)have coor-
dinates given by n-dimensional vectors ~ri = (±1, . . . ,±1). Let us take a pair of
normalized orthogonal vectors ~ex and ~ey. The projection of the vector ~ri into the
plane xy is

rix = ~ri · ~ex, riy = ~ri · ~ey.

Draw a projection of a 3-dimensional cube so that no projections of two vertices
overlap. Draw projections of a 4- and 5-dimensional cube. The pictures can pro-
vide some imagination on spaces of higher dimensions.
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Chapter 4

Numerical methods

4.1 Metropolis algorithm

The goal of statistical physics is to calculate mean values of physical quantities.
The mean value of a quantity A in the macrostate representing by the statistical
ensemble of microstates i whose probabilities are p(i) is given as

Ā =
∑
i

Aip(i)

where Ai is the value (quantum mechanical mean)of the quantity A in the mi-
crostate i. In the canonical distribution the microstate probability is

p(i) =
1

Z
exp

(
− Ei
kT

)
The mean value of any quantity could be in principle calculated numerically by
the Monte Carlo method if we constructed a generator uniformly generating mi-
crostates in the microstate space. Let us denote such a generator symbolically as
rg(). Then the mean value of the quantity A can be calculated as

Ā =
∑
i=rg()

Aip(i)

Such a program is unrealistic. The function p(i) is rapidly changing in the sub-
space of microstates and so one has to look for an importance sampling generator,
generating the states according to the probability p(.).

An efficient algorithm was invented as is known under the name Metropolis al-
gorithm. It is a stepping algorithm generating (in an infinite loop) a sequence of
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states. One step of the algorithm consists of generating a new microstate from the
”current” state. The method is of the ”accept-reject” type. At first a trial state is
generated out of the actual state and then a decision is made whether the trial state
is accepted as a new actual state or the trial state is rejected and a new trial is
generated instead. The details can be symbolically written as

repeat{
ξtrial := Generate_trial_state_near_to_the_actual_state(ξcurrent)
if (E(ξtrial) < E(ξcurrent))

then ξcurrent := ξtrial

elseif (rnd() < exp(−E(ξtrial)−E(ξcurrent)
T

))
then ξcurrent := ξtrial

print(ξcurrent)
}

So we see, that the algorithm generates in principle infinite sequence of states.
In the sequence one can generate identical states following each other. This cor-
responds to the situation where the trial state was rejected and the actual state is
kept as the actual state for the next step. Since a random number generator is used,
the process is a (discrete)random process.

”Random process” is a notion used to describe a function of one variable, ”time”,
whose function values are random. One can imagine a random process that in
each time moment a random value is drawn. The result of the process is a function
which for each time moment gives a specific value of some random variable. This
function is called ”realization of a random process”.

There is an alternative view on the whole thing. One can see a random process as
an infinite-dimensional random variable whose components are indexed by (con-
tinuous or discrete) time index t. One realization of a random process corresponds
then to one draw of such a infinite-dimensional random variable. Using the lan-
guage of functions instead of the language of indices is something similar to the
variational calculus as a generalization of the differential calculus of many vari-
ables.

It should be stressed that speaking about a random variable in each time moment
might be misleading. There is nothing like a probability density of a variable f(t)
for each time moment. In general the probability density for the time t might
depend on values which were realized in previous time moments (and strictly
speaking even for the following time moments). Mathematically it means, that the
probability density for that multi-dimensional variable does not factorize into a
product of probability distributions for different time moments.

The Metropolis algorithm is a stepping algorithm, so it is a discrete-time random
process. In quantum statistics also the random values for the process are discrete:
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we are living in the space of discrete microstates.

The Metropolis algorithm is a special case of a Markov process. This is a name
given to a random process where the probability distribution relevant for the n-th
step depends only on the value drawn in the (n−1)-th step, and (generally) on the
value n. If the probability does not depend on n, we speak about a homogenous
Markov process.

The dynamics of a homogenous Markov process in discrete space is completely
given by a transfer matrix

Pij

The matrix element Pij denotes1 the probability that the actual state j is (in the
actual step) changes into the state i. It is the probability of the transition j → i.

The matrix elements Pij are non-negative and satisfy the normalization condition∑
i

Pij = 1

In the course of elementary statistical physics the a classical Markov process
”drunken sailor” random walk is usually investigated. We shall analyze the gen-
eral Markov process using the same procedure: we shall investigate a statistical
ensemble of various realizations of the Markov process By that we mean various
realizations of the same random process (the process with the same dynamics,
given by the same transfer matrix). We can imagine that all the realizations in the
ensemble are performed in parallel, performing the n-th step synchronously in the
same time moment. We can then statistically analyze the states drawn in different
processes in the same moment for example by calculating various means ”through
the ensemble”.

The ensemble probability that in the n-th step the i state will be generated we
denote by pni. Then from the definition of the transfer matrix it is clear that the
following relation holds.

pn(i) =
∑
j

Pijpn−1(j)

This recurrence relation can be explicitly solved and ensemble probability after n
steps can be written in terms of the ensemble probability at the beginning2.

pn(i) =
∑
j

(P n)ijp0(j)

1Here we use a physical notation, the right index gives the initial state. In mathematics often a
reversed notation is used with the left index denoting the initial state.

2If one does not start with a random state described by some initial ensemble probability but
rather from a fixed specific state, then the initial ensemble probability is given by the Kronecker
delta
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As usual in matrix linear algebra, investigation of the properties of the expression
is based on the technique of eigenstates and eigenvalues. We shall not do a gen-
eral analysis, we just demonstrate the procedure on the simple two-dimensional
case. So let us have two states ”1” and ”2” with energies E1 a E2, where the no-
tation is chosen so thatE1 < E2. Then the Metropolis algorithm is given by the
probabilities

p(2→ 1) = 1 = P12

p(2→ 2) = 0 = P22

p(1→ 2) = p = exp(−E2 − E1

kT
) = P21

p(1→ 1) = 1− p = P11

The corresponding transfer matrix is

P =

(
1− p 1
p 0

)
Notice that the matrix is not symmetric, therefore the left eigenvactors are not
equal to the right eigenvectors. We clearly need the right eigenvectors, they are
easily found in this simple case. They are( p

1+p
1

1+p

)
with eigenvalue 1

and (
1
−1

)
with eigenvalue − p

Notice, that the first eigenvector has positive components and we have normalized
it to the sum 1. So this vector can be interpreted as the ensemble probability vec-
tor. The second eigenvector does not have non-negative components, their sum is
equal to zero. It is a ”non-physical” vector, its components cannot be interpreted
as ensemble probabilities. However, the vector is useful, since it is linearly inde-
pendent from the first one and they together form a base in the space of ensemble
probabilities. Each ”physical” vector of ensemble probabilities can be written as
a linear combination of the two eigenvectors.(

p(1)
p(2)

)
= c1

( p
1+p

1
1+p

)
+ c2

(
1
−1

)
The coefficients are easily found

c1 = 1

c2 =
p(1)− pp(2)

1 + p
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So we express the initial ensemble probability in the base of the eigenvectors and
after n steps we get(

pn(1)
pn(2)

)
= 1n

( p
1+p

1
1+p

)
+ c2(−p)n

(
1
−1

)
In the limit n→∞ we get (

p∞(1)
p∞(2)

)
=

( p
1+p

1
1+p

)
The ensemble probability distribution therefore converges to a limiting distribu-
tion. Taking into account the definition of the parameter p we easily see that the
limiting distribution is the Boltzmann distribution. So if we start the Metropolis
algorithm from any ensemble distribution then after enough long time we generate
a (micro)state which is a good representative of the canonical Boltzmann distri-
bution. If we repeat the procedure, we get, always after enough long time, another
(independent) microstate representing the canonical distribution. In this way we
can gather enough representative microstates and we can calculate the mean value
of the physical quantity of interest The potential problem is hidden in the words
”enough long time”.
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Chapter 5

Supplements to thermodynamics

5.1 Basic notions and laws of thermodynamics

In thermodynamics the state of the system is what we call the macrostate in sta-
tistical physics.

We intuitively understand the notion of isolated system.

First postulate: an isolated system spontaneously changes its (macro)state until
it arrives at a steady state which we call the equilibrium state. The typical time
needed to arrive to the equilibrium state is called the relaxation time. In equilib-
rium state all the (macroscopic)parameters of the system are constant with time.
Sometimes the equilibrium time to reach the true equilibrium state is unrealisti-
cally high, the system might for a very long time stay in a metastable state (like
glass).

We have the notion of external parameters (like volume or external magnetic
field). Intuitively these are parameters which can be externally set by the experi-
mentalist.

Going beyond the thermodynamics these are the parameters which set the en-
ergy levels of the (quantum) system. The energy of the system in the microstate
i depends on the value of some external parameter V like Ei(V, . . .). Then the
conjugate force is

pi = −∂Ei
∂V

and the corresponding macroscopic parameter is

p = 〈pi〉
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where the average is done over the statistical ensemble of microstates representing
the macrostate considered.

Staying at the level of phenomenological thermodynamics we have to identify
the macroscopic parameter conjugate to the external parameter V for example by
observing it as a force to be applied to the system from outside to keep the external
parameter V constant at the set value. Then the work done by an external agent
changing the set value of V by dV is

δA′ = −p dV

and the work done by the system upon the external agent is

δA = p dV

Now we need the notion of thermal contact. It is a way of interaction of two
systems such that non of their (individual) external parameter is changed (but
they still can exchange energy. We shall discuss energy in detail when we shall
speak on the first law of thermodynamics.

Then we need the notion of ”two systems being in thermal equilibrium with each
other”. We say the two systems are in thermal equilibrium with each other when,
after bringing them to thermal contact, nothing macroscopic happens, that is the
compound system is immediately in thermal equilibrium.

Then there is the zeroth law of thermodynamics, definition of temperature. We
experimentally find and then postulate: The notion of of ”being in thermal equi-
librium with each other” is transitive.

The properties of reflexivity and symmetry are automatic by definition, so the
zeroth law of thermodynamics effectively says ”being in thermal equilibrium is
equivalence (in mathematical sense). So all the systems can be classified into (not-
overlapping) classes of equivalence. And the classes can be labeled. The label is
called ”the temperature”. Temperature defined in this way is not unique: the only
requirement is that different classes have different labels. We, however, usually
require more, we need property of continuity in labeling the classes. We need to
find some practical (experimental method) to label the classes.

To do that we had to choose a suitable ”thermoscope”. By that we mean some
system which can be find in many equivalence classes (in each class the system is,
of course, in a different (macro)state. Ideally the system should be found in states
having the same values of external parameters, differing by the value of some in-
ternal parameter (like pressure) in different equivalence classes. The system (and
its chosen external parameter) can be used as thermoscope: bringing it to thermal
contact with any other system and reading the value of pressure we can recognize
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to which equivalence class the ”measured” system belongs. We can do more, we
can use the readings of our thermoscope to label the classes: so we use it effec-
tively as a thermometer. Most often we first choose some (arbitrary) calibration
to define our temperature scale. Like this: we take the thermoscope of a defined
prescribed size, put it into contact with a melt of ice and water and label the pres-
sure reading by zero. Then we put it to contact with boiling water and label the
pressure reading as 100. The other pressure readings are simply linearly interpo-
lated or extrapolated. The temperature defined in this way is rather arbitrary but
can serve our purposes and is ”continuously defined”. Topology is introduced into
the space of equivalence classes: the two classes are considered to be close to each
other if the thermoscope readings are close to each other.

Now we should recognize, that the macrostate (and its energy) can be changed by
external influence even if no external parameter is changed and so no macroscopic
work is done. We conclude some other form of work can be performed and we call
it heat. In general we get the first law of thermodynamics

δQ = dE + δA

Going beyond the phenomenological thermodynamics the interpretation is easy,
from the notion of microstate we now what are the external parameters and the
corresponding conjugate variables and we know (from mechanics, say) what is
the energy of the microstate, and therefore we also know what is the macroscopic
energy E being the average over microstates

E = 〈Ei〉

.

Staying at the level of phenomenological thermodynamics the situation is more
complicated. We can macroscopically well identify the macroscopic work, but we
do not have direct access to neither macroscopic energy nor heat. We need more
assumptions and usually we assume that we intuitively feel in which situations
δQ = 0. More specifically we believe we can force the heat to be zero by applying
suitable thermal insulation to the system. Then energy can be changed only at the
cost of macroscopic work and we can in principle determine energy differences
by measuring the external macroscopic work. The energy is defined only upon
an additive constant, we have to choose some (macro)state of the system and set
its energy to arbitrary reference value. Then applying the thermal insulation and
going from the reference state to any state, we measure the required work to be
done for that and we calculate the energy of the final state.

However, the situation is more subtle. we cannot use just quasistatic (reversible)
processes to perform the program. The point is that an arbitrary final state cannot
be reached from the reference state via the quasi-static adiabatic curve. At least
a part of the process bust be done irreversibly. That is not a serious problem, the
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energy conservation law holds for irreversible processes as well. So we can mea-
sure in principle the energy of any macrostate. Then we can get rid of the thermal
insulation and can determine the amount of heat for any process measuring the
work and calculating the energy difference.

Historically the process was different, one determined the energy (better to say
identified the notion of energy)by measuring heat. The idea is as follows. We first
go from the reference state by adiabatic proces to the state which has the same
values of the external parameters as the desired final state, but is still a different
state differing for example by the value of the conjugated parameters (practically
it means by temperature). Now we keep the external parameters constant and per-
form heat to get to the desired final state. We perform ”produce” heat by an irre-
versible process (Joule) performing mechanical work on some other (macroscopic
but very small with respect to our system of interest) auxiliary system which is in
contact with our system and exchanges heat with it, with the auxiliary system per-
forming an irreversible process where external work is performed upon it. The
auxiliary system is small, so even if its temperature is gradually increasing its en-
ergy increases by negligible amount. All the work performed on it is transferred as
output heat to our system until it reaches the desired final state. Measuring the ex-
ternal work on the auxiliary system we effectively measure heat performed on our
system of interest. Using this method we automatically measure heat in units of
energy. Now the important point is that if we sum the mechanical work performed
on our system and the heat performed we get some value, which we interpret as the
increase of the energy between the initial and the final state. But this interpretation
is possible only after we observe the fact that the sum of heat and work performed
between two states is always the same irrespective of the specific path we choose.
This independence of the sum of heat and work on the path is, in fact, the state-
ment of the first law of thermodynamics. In phenomenological thermodynamics
the statement is far less trivial then in the statistical thermodynamics. In statisti-
cal thermodynamics the "internal energy" of the system is the primary notion and
is interpreted the (mechanical) energy of the microstate. We have the concept of
energy conservation formulated before we start to speak of some macrostates. So
in Statistical thermodynamics the first law of thermodynamics is rather trivial an
can be, in fact, used as a definition of the concept of heat: We now what is energy
and what is the macroscopic work and the difference of those two is heat.

Historically in fact the procedure was still different from the procedure using the
Joule irreversible (work to heat transfer) process as described above.

The notion of heat was older then the fact that it can be measured using the units
for work. The notion of heat developed in calorimetric measurements. A calorime-
ter is a device which enables us to bring two systems into thermal contact with
each other without being in thermal contact with external surroundings. We also
assume that both the systems in thermal contact have all their external parameters
fixed so that no mechanical (macroscopic) work is performed on them. We have
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already the notion of phenomenological temperature and the thermometer. We
measure the initial temperatures of the two systems (t1, t2), then the irreversible
process of achieving the common equilibrium state starts and afterwards we mea-
sure the common final temperature t. Performing experiments with various pairs
of systems we arrive at the empirical notion of heat capacity. Each system is char-
acterized by unique quantity, the heat capacity c, so that the calorimetric equation
holds

c1(t1 − t) = c2(t− t2)

the heat capacities can (and do) depend on temperature, so the statement concerns
only infinitesimally close initial temperatures t1, t2. The heat capacities defined in
this way are, however, determined up to unknown multiplicative constant. Fixing
the value of the heat capacity of some system (like one kilogram of water) at some
chosen temperature, the system of heat capacities is fixed. We first determine the
heat capacity of ”water” at slightly higher temperature referring to the defined
heat capacity at the reference temperature. Repeating the proces we slowly go to
higher and higher temperatures each time fixing the heat capacity of ”water” at
the higher temperature. Now we call the quantity c1(t1 − t) as heat, measured,
say, in kilocalories when the heat capacity was defined in kilocalories per degree
of temperature. We now have a reference system with heat capacity defined in the
whole energy range and use it ”to measure heat” (in arbitrary units kilocalories).

Now the point is that we gen get from one equilibrium state to an arbitrary other
equilibrium state by various combinations of reversible adiabatic (thermal insu-
lation) and irreversible isochoric (fixed external parameters) processes. For the
adiabatic process we measure the performed work (in Joules), the irreversible iso-
choric proces we perform in a calorimeter bringing our system into thermal con-
tact with ”hot water” of a suitable temperature (find by the trial and error method)
such that the final temperature would be just the desired temperature of the final
state. And we calculate heat in kilocalories. Choosing different paths we obtain
different number of Joules and different number of kilocalories. Now the state-
ment of the first law of thermodynamics would be

There exist a universal multiplicative constant by which we can multiply all the
values expressed in the kilocalories with the property that when we sum Joules for
work with ”modified kilocalories”for heat we always get the same sum irrespec-
tive of the path between the same initial and final states. So we have every good
reason to name the ”modified kilocalories” as Joules and measure heat in Joules.
And then get the statement that the sum of work and heat independent of the path.
So we get a new state-characterizing quantity, the energy.

Well al is was a rather long characterization of the various aspects of the zeroth
and the first law of thermodynamics just to demonstrate ”the art or reasoning” in
phenomenological thermodynamics where it is strictly forbidden to speak about
molecules.
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We shall not continue within this spirit with the second or third law of thermody-
namics We refer to their statistical thermodynamics versions defined in the intro-
ductory course of statistical physics.

5.2 Properties of thermodynamic potentials

The first thermodynamic potential is the entropy. It has the property that for an iso-
lated system the equilibrium state has the largest entropy from all the macrostates
satisfying the external constraints. Practically it means that the entropy is the func-
tion of energy and the external parameters.

We now investigate the situation when all the parameters are extensive quantities,
we shall generically call them E and V . We are going to prove that the entropy

S(E, V )

is a concave function of its parameters.

Let us suppose, that we have the system of total energy 2E and total volume 2V
and we divide the system into two equal subsystems with energies E and volume
V. Let us suppose that the ”piston” which separates the two systems is diathermic
(not adiabatic, it means it allows for transfer of heat) and non-fixed (it can move
to allow for the redistribution of volume between the two subsystems. Then the
homogenous situation as described above when the two subsystem have same
energies and volumes is (by experience) the equilibrium one. The total equilibrium
entropy would be

2S(E, V ) = S(E, V ) + S(E, V )

Now suppose that we fix the position of the piston, so the volumes remain to
be equal, but we somehow arrange redistribution of energy, so that one of the
subsystem will have the energy E − ∆E and the other the energy E + ∆E. By
that we obtain a non-equilibrium overall state, which should have smaller entropy,
so we get

S(E −∆E) + S(E + ∆E) ≤ 2S(E)

this is just the definition of the concave function of one variable.

Now let us suppose that the piston is not only diathermic but it can also move, so
that the volume can be redistributed between the two subsystem. Reasoning in a
similar way we get

S(E −∆E, V −∆V ) + S(E + ∆E, V + ∆V ) ≤ 2S(E, V )

Expanding into Taylor serie we get

∂2S

∂E2
(∆E)2 +

∂2S

∂V 2
(∆V )2 + 2

∂2S

∂E∂V
∆E∆V ≤ 0
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The condition says, that the matrix ∂2S

∂E2

∂2S

∂E∂V
∂2S

∂E∂V

∂2S

∂V 2


must be negative definite, so we get the conditions for the concavity

∂2S

∂E2
≤ 0,

∂2S

∂V 2
≤ 0,

(
∂2S

∂E∂V

)2

− ∂2S

∂E2

∂2S

∂V 2
≤ 0

These conditions are also called conditions of stability.

Now the same way as entropy must be maximal for given fixed energy and volume,
energy must be minimal for given fixed entropy and volume. Since entropy and
volume are again extensive quantities, we can repeat the trick with piston dividing
the system into two subsystem and we can derive conditions for the convexity of
energy as a function of entropy and volume.

The Gibbs potential is defined by the Legendre transformation

G = E − TS + pV

and since the Legendre transformation written in this order changes convexity
to concavity, we have the statement: Gibbs potential is a concave function of its
variables p and T .

We remind the ”statistical thermodynamics definitions”

1

T
=

(
∂S

∂E

)
V,N

p

T
=

(
∂S

∂V

)
E,N

µ

T
= −

(
∂S

∂N

)
E,V

differentiating the first equation by T we get

− 1

T 2

(
∂T

∂E

)
V,N

=

(
∂2S

∂E2

)
V,N

≤ 0

where we used the condition of concavity so we get(
∂T

∂E

)
V,N

≥ 0
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So we proved that energy is an increasing function of temperature.

Now we go to prove that energy spontaneously flows from the hotter system to
colder system.

Let us consider two systems (S1, E1, T1) and (S2, E2, T2). Let put them into ther-
mal contact, however with the wall between them that is only slightly diathermic,
so the energy flow between the two system is small. Then, even the global process
is irreversible, both subsystems individually are in equilibrium state. So the total
entropy can be calculated as the sum of two equilibrium entropies. The system
as a whole is isolated so the total energy is conserved. Therefore for the energy
changes of the subsystems we get

dE1 = −dE2

The change of the total entropy will be

dS =
∂S1

∂E1

dE1 +
∂S2

∂E2

dE2 =

(
∂S1

∂E1

− ∂S2

∂E2

)
dE1 =

(
1

T1

− 1

T2

)
dE1 > 0

If T2 > T1 then dE1 > 0 so the energy flows from the hotter subsystem to the
colder one.

Similarly one can prove, that the volume of the subsystem with bigger pressure
increases.

Now about the derivation of the equation of state.

We start with the equation
1

T
=

(
∂S

∂E

)
V,N

In the first equation the condition of convexity gives(
∂2S

∂E2

)
V,N

< 0

so the first equation can be inverted and the energy can be expressed in terms of
temperature and volume. This expression then can be inserted into the equation

p

T
=

(
∂S

∂V

)
E,N

Energy is eliminated and we get p in terms of V, T , that is the equation of state.

W remind here the definition of thermodynamic potentials

F = E − TS
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G = E − TS + pV

Ω = E − TS − µN

In the last equation we have introduced so called grand potential, which is relevant
for the grand-canonical distribution: the grand statistical sum can be expressed in
terms of the grand potential

Z =
∑

exp(
µNi − Ei

kT
) = exp(− Ω

kT
)

The first and second law of thermodynamics give (for general, even irreversible)processes

TdS ≥ dE + pdV − µdN

dE ≤ TdS − pdV + µdN

dF ≤ −SdT − pdV + µdN

dG ≤ −SdT + V dp+ µdN

dΩ ≤ −SdT − pdV −Ndµ

The Gibbs potential is a function of intensive variables p, T and one extensive
variable N . So scaling the system by λ we get

λG(p, T,N) = G(p, T, λN)

Differentiating by λ and putting λ = 1 we get (for equilibrium potential)

G = N
∂G

∂N
= Nµ

and
dG = dNµ+Ndµ = −SdT + V dp+ µdN

and we get finally the Gibbs Duham relation

Ndµ+ SdT − V dp = 0

Many useful relations between thermodynamic variables can be obtained using
the fact, that, for example

∂2G

∂p∂T
=

∂2G

∂T∂p

Since

S = −
(
∂G

T

)
p,N

V =

(
∂G

p

)
T,N
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we get by the commutativity of second derivatives

−
(
∂S

∂p

)
T,N

=

(
∂V

∂T

)
p,N

This relation is called the Maxwell relation and similar Maxwell relations can be
obtained doing the second derivatives of other potential.

The second derivatives of the thermodynamic potentials are usual and often easily
measurable physical quantities, so they often get a special name.

For example

−T
(
∂2F

∂T 2

)
V

= T

(
∂S

∂T

)
V

=

(
δQ

∂T

)
V

= CV

So we get for the specific heat at constant volume

CV = −T
(
∂2F

∂T 2

)
V

Other useful definitions

Expansion coefficient

α =
1

V

(
∂V

∂T

)
p

Coefficient of isothermal compressibility

κT = − 1

V

(
∂V

∂p

)
T

Coefficient of adiabatic compressibility (for constant entropy)

κS = − 1

V

(
∂V

∂p

)
S

In addition to Maxwell relations we also often use the following properties of
partial derivatives

(
∂x

∂y

)
z

(
∂y

∂x

)
z

which is simply the theorem about the derivative of inverse function.
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(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

This property can be easily derived considering

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

Now we put dy = and we get

0 =

(
∂y

∂x

)
z

+

(
∂y

∂z

)
x

(
∂z

∂x

)
y

which is just the required relation if we invert the partial derivative
(
∂y
∂x

)
z
.

As a demonstration of usage of the Maxwell and other relations we derive the
general form of the Mayer relation (the relation between Cp and CV .

We start with the entropy expressed as a function of (non/natural) variables p, T .

dS =

(
∂S

∂T

)
p

dT +

(
∂S

∂p

)
T

dp

TdS = CpdT + T

(
∂S

∂p

)
T

dp

Now we use the Maxwell relation(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

and we get

TdS = CpdT − T
(
∂V

∂T

)
p

dp

Now we use the above general equation for a isochoric process at constant V . We
get

T

(
∂S

∂T

)
V

= Cp +−T
(
∂V

∂T

)
p

(
∂p

∂T

)
V

So we get

Cp = CV + T

(
∂V

∂T

)
p

(
∂p

∂T

)
V

Now we substitute from the general relation(
∂p

∂T

)
V

+

(
∂V

∂T

)
p

(
∂p

∂V

)
T
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and using the definition od expansion coefficients we get the final formula

Cp − CV =
TV α2

κT

We shall now investigate the consequences of the concavity of G, we get so called
stability conditions. The concavity conditions are

∂2G

∂T 2
≤ 0,

∂2G

∂p2
≤ 0,

(
∂2G

∂p∂T

)2

− ∂2G

∂T 2

∂2G

∂p2
≤ 0

From the first equation we get

∂

∂T

(
∂G

∂T

)
p

= −
(
∂S

∂T

)
p

= − 1

T
Cp ≤ 0

and so we get the stability condition

Cp ≥ 0

From the second concavity condition we get

∂

∂p

(
∂G

∂p

)
T

= V
1

V

(
∂V

∂p

)
T

= −V κT ≤ 0

And we get another stability condition

κT ≥ 0

what means that increasing pressure must decrease the volume.

From the third concavity condition we get(
∂2G

∂p∂T

)2

− ∂2G

∂T 2

∂2G

∂p2
≤ 0

(
∂2G

∂p∂T

)2

− (−Cp
T

)(−V κT ) ≤ 0

CpV κT
T

−

((
∂V

∂T

)
p

)2

≥ 0

Cp −
α2V T

κT
≥ 0

So we get another stability condition

CV ≥ 0
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5.3 Applications of thermodynamic relations

5.3.1 Free expansion

We consider isoleted system of a gas performing free expansion into vacuum. It
is an irreversible process during which the volume is increased V 7→ (V + dV ).
Since the system is isolated, its energy remains constant dU = 0. Both the initial
and the final state are equilibrium states, for which we can write

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂T

)
T

dV

we put dU = 0 and get (
∂T

∂V

)
U

= −

(
∂U

∂V

)
T(

∂U

∂T

)
V

The l.h.s. is called the Joule coefficient and describes how much the temperature
is changed during free expansion.

From molecular consideration it is clear, that for ideal gas(
∂U

∂V

)
T

= 0

since for fixed temperature the kinetic energies of molecules remain the same
while increasing the volume and there is no potential energy in the game. But we
can prove this relation on the phenomenological level as well. Starting with the
first law of thermodynamics

TdS = dU + pdV(
∂S

∂V

)
T

=
1

T

(
∂U

∂V

)
T

+
p

T

Now we use the Maxwell relation (derived from the F potential)(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

and get (
∂p

∂T

)
V

=
1

T

(
∂U

∂V

)
T

+
p

T(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p
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The trick was that using the Maxwell relation we got rid of the calorical variables
and everything on the r.h.s. can be evaluated just from the equation of state. If we
use the equation of state for the ideal gas

pV = RT

we finally get (
∂U

∂V

)
T

= 0

IF we consider the Van der Waals gas(
p+

a

V 2

)
(V − b) = RT

p = − a

V 2
+

RT

V − b(
∂p

∂T

)
V

=
R

V − b(
∂U

∂V

)
T

= 0 =
TR

V − b
+

a

V 2
− RT

V − b
=

a

V 2
> 0

to evaluate the Joule coefficient for the Van der Waal gas we still need(
∂U

∂T

)
V

what is the specific heat at constant volume. To get it we first prove, that the
specific heat for the Van der Waals gas does not depend on volume at fixed tem-
perature.

We start with the Maxwell relation(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

Differentiating by T (
∂

∂V

)
T

(
∂S

∂T

)
V

=

(
∂2p

∂T 2

)
V(

∂

∂V

)
T

T

(
∂S

∂T

)
V

= T

(
∂2p

∂T 2

)
V(

∂CV
∂V

)
T

=

(
∂2p

∂T 2

)
V
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Since the Van der Waals equations give

p = − a

V 2
+

RT

V − b

we get (
∂2p

∂T 2

)
V

= 0

and (
∂CV
∂V

)
T

= 0

So the specific heat at constant volume does not depend on volume, it can be
evaluated for large volume where the gas is sufficiently dilute and behaves like
ideal gas, so we get

CV =

(
∂U

∂T

)
V

=
3

2
R

For the Joule constant we finally get

(
∂T

∂V

)
U

= −

(
∂U

∂V

)
T(

∂U

∂T

)
V

= −

a

V 2

3

2
R

= − 2a

3RV 2

5.3.2 Throttling

Joule - Kelvin process (or throttling) is a process where gas is expanding through a
porous membrane (or through a valve, the throttle) from a region oh high pressure
p1 to the region of low pressure p2. The porous membrane has the effect that
each of the two gas compartments is by itself in equilibrium state. The process is
adiabatically isolated, so no heat is performed on either of the compartment. On
the other hand the devices which keep the pressure constant on each side perform
mechanical work.

Suppose that initially we have a volume V 1 of gas in the left compartment at pres-
sure p1 and no gas in the right compartment. At the end we shall have the volume
V2 in the right compartment at pressure p2 and no gas in the left compartment. The
total work performed by the gas during the process will be

A = p2V2 − p1V1

Since heat is zero the following energy conservation law must hold

E2 − E1 = −A
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and we get
E1 + p1V1 = E2 + p2V2

So the process is isenthalpic. For infinitesimal process we get

dH = TdS + V dp

Now let us consider entropy being a function of T, p, so that

dS =

(
∂S

∂T

)
p

dT +

(
∂S

∂p

)
T

dH = T

(
∂S

∂T

)
p

dT +

(
V + T

(
∂S

∂p

)
T

)
dp

from the Maxwell relation (for G)(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

dH = T

(
∂S

∂T

)
p

dT +

(
V − T

(
∂V

∂T

)
p

)
dp

dH = CpdT +

(
V − T

(
∂V

∂T

)
p

)
dp

putting dH = 0 we get for the Joule Kelvin coefficient(
∂T

∂p

)
H

=
1

Cp

(
T

(
∂V

∂T

)
p

− V

)

For the ideal gas we get zero Joule Kelvin coefficient.

5.3.3 Maxwell construction

5.3.4 Osmosis
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Chapter 6

Simple statistical systems

6.1 Density of states

First we remind the way we calculated the density of states in the energy space in
the Introductory course.

We started with one-particle states in a box, which are sinus waves with zeros
at the box boundaries. The states are labeled by three positive integer numbers
n1, n2, n3 and their energy is

ε =
π2~2

2mL2
(n2

1 + n2
2 + n2

3)

States correspond to points with integer-valued coordinates in positive octant of
the n-space, so the total number of one-particle states with energy less then ε is

ϕ(ε) =
1

8

4

3
π

(
2mL2

π2~2
ε

)3/2

And the density of states in the ε-space is

ϕ′(ε) =
2πV

(2π~)3
(2m)3/2ε1/2

An alternative way is to use periodic boundary conditions in the box of size V =

L3, so we use exp(i
−→
k .−→x ) waves with wave vectors

ki =
2π

L
ni where ni = 0,±1,±2, . . .
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So the density of states in the k-space is

V

(2π)3

and in p-space
V

(2π~)3

To switch to the ε-space one needs the dispersion relation, which for free particles
reads

ε =
p2

2m
=

~2k2

2m

and the substitution in the integrals reads

V

(2π)3
d3−→k =

V

(2π)3
4πk2 dk =

V

(2π)3
4πk2 dε

dε

dk

Substituting from the dispersion relation we get the same density of states in the
ε-space as before.

6.2 Ideal Bose gas

We calculate grandcanonical distribution for one one-particle state. The ”state of
the state j” is given by the occupation number nj and the relevant grandcanonical
sum is

Zj =
∑
nj

exp(
µ

kT
nj −

εj
kT

nj) =
1

1− exp(
µ− εj
kT

)

We introduce fugacity z by
z = exp(

µ

kT
)

So we get

Zj =
1

1− z exp(−βεj)
The one-particle states are independent, so the total grandcanonical sum is given
by the product

Z =
∏
j

Zj

lnZ = −
∑
j

ln(1− z exp(−βεj))
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We remind that
(Z) = exp(

pV

kT
)

and so
pV

kT
= −

∑
j

ln(1− z exp(−βεj))

We pretend to know the value of µ, but experimentally we rather know the number
of particles

N =
∑
j

N j =
∑
j

1

exp(
εj − µ
kT

)− 1
=
∑
j

1

z−1 exp(βεj)− 1

This equation should be inverted: one should calculate µ in terms of N and T ,
substitute it to the previous equation and get the equation of state.

To perform this program, we need to replace the summations by integration in the
energy space, using the known expression of the density of states in the ε-space.
We get

p

kT
= − 2π

(2π~)3
(2m)3/2

∫ ∞
0

ε1/2 ln(1− z exp(−βε))dε

N

V
=

2π

(2π~)3
(2m)3/2

∫ ∞
0

ε1/2

z−1 exp(βε)− 1
dε

We switch to dimensionless integration variable

p

kT
= − 2√

π

(2πmkT )3/2

(2π~)3

∫ ∞
0

x1/2 ln(1− z exp(−x))dx

N

V
=

2√
π

(2πmkT )3/2

(2π~)3

∫ ∞
0

x1/2

z−1 exp(x)− 1
dx

We introduce the notation (de’Broglie thermal length)

λ =
2π~

(2πmkT )1/2

and using the relation

Γ(
3

2
) =

√
π

2
we get

p

kT
= − 1

λ3

1

Γ(3/2)

∫ ∞
0

x1/2 ln(1− z exp(−x))dx
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N

V
=

1

λ3

1

Γ(3/2)

∫ ∞
0

x1/2

z−1 exp(x)− 1
dx

Since similar integrals are often met in statistical physics, new special functions
are introduced (called Einstein functions) as

gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1 exp(x)− 1
dx

which can be expanded into Taylor series as

gν(z) =
∞∑
k=1

zk

kν

The expression for N?V is already written in terms of an Einstein function, the
expression for p

kT
has to be transformed by the per partes method

1

Γ(3/2)

∫ ∞
0

x1/2 ln(1− z exp(−x))dx =
1

Γ(3/2)

∫ ∞
0

2

3
x3/2 −z exp(−x)

1− z exp(−x)
dx =

= −2

3

1

Γ(3/2)

∫ ∞
0

x3/2

z−1 exp(−x)− 1
= − 1

Γ(5/2)

∫ ∞
0

x3/2

z−1 exp(−x)− 1
= −g5/2(z)

So we get
p

kT
=

1

λ3
g5/2(z)

N

V
=

1

λ3
g3/2(z)

Now the idea is we should calculate z from the second equation and substitute it
to the first one to get the equation of state, formally

pV

NkT
=
V

N

1

λ3
g5/2(g−1

3/2(λ3N

V
))

The problem is we do not know how to invert the Einstein function g3/2(z). We
know only its Taylor series expansion. What we can do is to find the Taylor series
expansion for its inverse function by the method of ”series reversion”1. We get

1If we haw series
y = a1x+ a2x

2 + a3x
3 + . . .

we can look for it inverse in the form

x = A1y +A2y
2 +A3y

3 + . . .

Plugging the second equation into the first one one gets

y = a1A1y + (a2A
2
1 + a1A2)y2 + . . .

Comparing coefficients on both sides one gets

A1 = a−1
1 , A2 = −a−3

1 a2, . . .
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the equation of states in the form of series

pV

Nkt
=
∞∑
l=1

Al

(
λ3

N/V

)l−1

where the coefficients Al have to be found by the series inversion.

In the classical limit we have z � 1, so to get the first correction we expand to
the second order in z

λ3N

V
= z +

z2

23/2

We look for z in the form

z = λ3N

V
+ c

(
λ3N

V

)2

We find
c = − 1

23/2

And we subsequently get

pV

NkT
=
V/N

λ3

(
z +

1

25/2
z2

)
=
V/N

λ3

(
λ3

V/N
− 1

23/2

(
λ3

V/N

)2

+
1

25/2

(
λ3

V/N

)2
)

pV

NkT
= 1− 1

4
√

2

λ3

V/N

6.3 Van der Waals gas

we consider gas of molecules which interact via pairwise interaction:

U(r1, r2, . . . , rN) =
∑
pairs

u(ri, rj)

Statistical sum

Z =
1

N !

∫
1

(2π~)3N

∏
i

d3pid
3ri exp


∑

j

p2
j

2m
+ U(r1, r2, . . . , rN)

kT


Z =

1

N !

1

(2π~)3N
(2πmkT )3N/2 ZU

where

ZU =

∫ ∏
i

d3ri exp

(
−U
kT

)
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We calculate ZU using the following trick with the mean potential energy

Ū = − d

dβ
lnZU(β)

and since ZU(0) = V N we get

lnZU(β) = N lnV −
∫ β

0

Ū(β′)dβ′

Now we assume that we can neglect correlations between pairs of particles and
we get

Ū =
1

2
N(N − 1)ū

where

ū =

∫
d3r1d

3r2u(r1, r2) exp

(
−u(r1, r2)

kT

)
∫
d3r1d

3r2 exp

(
−u(r1, r2)

kT

)
Using substitution

r1, r2 7→ R =
r1 + r2

2
, r = r1 − r2

we get

ū =

∫
d3R

∫
d3r u(r) exp

(
−u(r)

kT

)
∫
d3R

∫
d3r exp

(
−u(r)

kT

)
ū = −d

β
ln

∫
exp(−βu)d3R∫

exp(−βu)d3r =

∫
[1 + (exp(−βu)− 1)]d3r = V + I = V (1 +

I

V
)

where

I(β) =

∫
(exp(−βu)− 1)d3r =

∫ ∞
0

(exp(−βu)− 1) 4πr2 dr

and
I(0) = 0

ū = − d

dβ
[lnV + ln(1 +

I(β)

V
)] ≈ − d

dβ

I(β)

V
= − 1

V

dI(β)

dβ

Ū(β) = −1

2

N2

V

dI(β)

dβ

lnZU(β) = N lnV +
1

2

N2

V

∫
dI(β)

dβ
= N lnV +

1

2

N2

V
I(β)
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For the equation of state we get

p

kT
=
∂ lnZU
∂V

=
N

V
− 1

2

N2

V 2
I(β)

u(r) =∞ for r < r0

u(r) = f(r) for r > r0

I(β) = −4π

∫ r0

0

r2dr+4π

∫ ∞
r0

(exp(−βf)−1)r2dr = −4

3
πr3

0−
4π

kT

∫ ∞
r0

f(r)r2dr

I(β) = −2b+
2a

kT

where we have denoted
b =

2π

3
r3

0

a = −2π

∫ ∞
r0

f(r)r2dr

So for the equation of motion we get

p

kT
=
N

V
+
N2

V 2
(b− a

kT

(p+ a
N2

V 2
) =

N

V
kT (1 + b

N

V
) ≈

N

V
kT

1− bN
V

(p+ a
N2

V 2
)(V − bN) = NkT

what is Van der Waal equation.
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Chapter 7

Critical phenomena

7.1 Spin-spin interaction

See also [ZK] (p. 455), [Noga] (p. 172), or Feynmann (Statistical Physics, p. 198).

Our goal is to understand - qualitatively - the phenomenon of ferromagnetism.
Our feeling is that the good working hypothesis is that the ”elementary magnets”
in the solid get aligned and the summary effect of their magnetic field is the strong
observed magnetic field of the ferromagnet. The nature of ”elementary magnets”
in the solid is assumed to be the magnetic moment of a (charged) particle with
spin. Spin is the internal angular momentum of the particle and it is natural to
expect that it is related to the particle (internal) magnetic moment. The reason is,
that for the orbital angular momentum we are aware of such a relation between
the angular momentum and the magnetic moment of a charged particle.

Classically the magnetic moment of a current loop is given as m = IS (where I
is the current, and S the surface of the loop). One can generalize this to a classical
case of a point particle with charge q moving with a velocity v. We get m =
(q/2m)L, where L is the particle (orbital) angular momentum L = mrv. If we
expect that a similar relation holds for the internal angular momentum, spin, we
get for the electron (having spin ~/2 the magnetic moment e~/4m. Experiment
(Einstein, de Haas) however shows that the electron (internal) magnetic moment
is µB = e~/2m (this value is called Bohr magneton). This value of the electron
magnetic moment (the ”mysterious factor 2”) is explained by the Dirac equation.

Now back to the question of magnetic moment alignment in a ferromagnet. The
first guess might be, that it is the interaction of magnetic moment with each
other, which is responsible for the alignment. A quick order-of-magnitude esti-
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mate shows, that it is most probably not so.

Here is the brief sketch of the estimate. The magnetic field induced by a (point-
like) magnetic moment is

B =
µ0

4π

(
3r(m · r)

r5
− m
r3

)
.

So B ≈ µ0m/4πr
3, therefore the interaction energy of a magnetic moment with

its neighbours in a lattice is W ≈ zµ0m
2/4πr3 (z is the number of nearest neigh-

bours (In a cubic lattice z = 6). Numerically µB
.
= 9,27 · 10−24 Am2. So the in-

teraction energy for r = 2 · 10−10 m is roughly 10−4 eV, what in temperature units
means roughly 1 K. So we expect that at temperatures above 1 K the spin orienta-
tions would be randomized by thermal fluctuations and the ferromagnetism could
not be observed at room temperatures. The solution of the puzzle is the effect of
an electrostatic interaction combined with the Pauli exclusion principle.

Let us consider two non-interacting electrons in states with quantum numbers a
and b, The state Ψa has energy Ea, the state Ψb energy Eb. The electron coordi-
nates are denoted as x1 a x2, spins S1 a S2. If we consider two particle states, let
us first forget about the fact that the two electrons are identical (indistinguishable).
We can construct two states, the first will be Ψab(x1,x2) = Ψa(x1)Ψb(x2) ≡ Ψab

and the second one will be Ψba(x1,x2) = Ψb(x1)Ψa(x2) ≡ Ψba The ener-
gies of these two states (as of any of their linear combinations) are the same
E(Ψab) = E(Ψba) = Ea + Eb For interacting electrons changes the situation
considerably The interaction potential between two electrons must be symmetric
V (x1,x2) = V (x2,x1) 6= 0, the Hamiltonian of the system is H1 + H2 + V . We
can construct two different two-particle states, a symmetric and an antisymmetric
one

ΨS =
1√
2

(
Ψab + Ψba

)
, ΨA =

1√
2

(
Ψab −Ψba

)
.

Their mean energies we calculate as〈Ψ|H1 + H2 + V |Ψ〉. As a result we get two
different energies

ES = Ea + Eb + I − J, EA = Ea + Eb + I + J,

where I and J denote the integrals (J is called the exchange integral)

I =

∫
Ψ∗abVΨab =

∫
Ψ∗baVΨba, J = −

∫
Ψ∗abVΨba = −

∫
Ψ∗baVΨab.

Now let as consider spins and the fact that the electrons are identical particles.
The complete state Ψχ (χ is a spinor describing the spin part of the state) must be
antisymmetric, since electrons are fermions It is wise first to combine individual
electron spin states into the total spin states. From two spins 1/2 we can make 3
symmetrical total spin states, which correspond to total spin 1 (with different spin
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projections (+1, 0,−1) and one antisymmetric state, corresponding to total spin
0.

The total antisymmetry of the state requires that we combine the symmetrical
spin function with the antisymmetrical spatial function and the antisymmetrical
spin function with the symmetrical space function. So legal two-particle states are
ΨSχ

(0) and ΨAχ
(1). When we denote the total spin as s we get for the correspond-

ing mean energy values

Es=0 = ES

Es=1 = EA

We can combine these two expression formally into one

E = ES + (EA − ES)
s(s+ 1)

2
=⇒ H = ES + (EA − ES)

S · S
2
.

The first expression here is just ”artificial” expression which holds for the two
possible values of s which are s = 0 and s = 1. In the second expression we have
introduced a ne ”effective” energy operator giving the same mean energy values
for the two two-particle states considered. The formal Hamiltonian contains the
total spin operator S = S1 + S2. The eigenvalue of the square of this operators is
just the required s(s+ 1). We can further simplify the expression as follows

S · S = (S1 + S2) · (S1 + S2) = S1 · S1︸ ︷︷ ︸
1
2

( 1
2

+1)

+ S2 · S2︸ ︷︷ ︸
1
2

( 1
2

+1)

+2S1 · S2 =
3

2
+ 2S1 · S2,

and so

H = ES + (EA − ES)
(3

4
+ S1 · S2

)
= Ea + Eb + I +

J

2
+ (EA − ES)︸ ︷︷ ︸

2J

S1 · S2.

So we have found that the splitting of the energies caused by the exchange integral
(and the Pauli principle) can be formally rewritten as if caused by some effective
spin-spin interaction. Since the size of the effect is given by the value of the ex-
change integral, the effect is significant only for spatially close electron states,
otherwise the overlap of the wave function in the exchange integral is small.

Summarizing: the exchange Coulomb potential combined with the Pauli exclu-
sion principle leads to effective spin-spin interactions which we consider to be
responsible for the ferromagnetic effect observed in some materials.

Since we shall investigate this effect in more detail, let us summarize here basic
phenomenological facts about magnetic properties of amterials

1. Diamagnetism is a result of influence of external magnetic field on electron
orbitals. This effect is present in all materials, however in many of them it
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is overshadowed by stronger paramagnetic or ferromagnetic properties. The
magnetic susceptibility of these materials is negative, so these materials are
repulsed by the magnetic field. No magnetization is present without external
magnetic field. Some examples: water(χ = −9 · 10−6), mercury(χ = −29 ·
10−6) a bismuth(χ = −166 · 10−6).

2. Paramagnetism is caused by the interaction of (permanent) magnetic mo-
ments of atoms or molecules with the external magnetic field. Paramagnets
do not retain any magnetization at zero external field (the magnetic mo-
ments of the atoms are oriented randomly) The magnetic susceptibility is
positive χ > 0. Some examples aluminium (χ = 22·10−6), magnesium(χ =
12 · 10−6).

3. Ferromagnetism is observed for some materials for which χ� 1 (the mag-
netic susceptibility for special alloys can reach the value 106). Ferromag-
netic materials have permanent magnetic moments of molecules as param-
agnets. However there local magnetic moments interact with each other with
the tendency to align the moments to be parallel. Ferromagnetic materials
retain their magnetization at zero field (at temperatures below Curie point).
Their material parameters depend on temperature, and the relation between
the magnetic flux density (B) and magnetic field strength (H) is nonlinear,
what formally looks like dependence of the magnetic susceptibility on the
magnetic field. Some examples: iron, nickel, cobalt.

4. Antiferromagnetism: oppositely to ferromagnetic materials the interaction
of local magnetic moments tends to align them to be antiparallel (under the
temperature point called Néel temperature) thus canceling each other and
the material shows diamagnetic properties. Above the Néel temperature the
material behaves like paramagnet.

Exercise
Langevin theory of paramagnetism
Study a "classical spin" (magnetic moment). Its state is given by spatial angles
ϑ, ϕ, its energy in external magnetic field is

E = −µB ·B = −µBB cosϑ,

where µB je the Bohr magneton e~/2m. The volume density of spins in the mate-
rial is denoted as N/V ≡ n.
What is the mean magnetization of the material in unit volume m = N |〈µB〉|/V ?
How the magnetic susceptibility χ = ∂m/∂H depends on temperature T ? What
are its limit values for small and large temperatures?

• One has to calculate the statistical sum in classical approximation and calcu-
late 〈cosϑ〉. We get

Z1 =

∫ 2π

0

dϕ

∫ π

0

dϑ eβµBB cosϑ sinϑ
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and to find that the mean magnetic moment can be calculated by a suitable deriva-
tive of it. We get

M = nµB L(βµBB), L(x) = coth x− 1

x
.

From there the susceptibility follows directly(x = βµBB, n = N/V )

χ = nβµ2
B(x−2 − 1/ sinh2 x).

For T → ∞ we get χ → nβµ2
B/6 (in accordance to Curie law, χ ∼ 1/T ). For

T → 0 we get χ→ nkT/B2.

7.2 Ising model

A simple model with interaction between (classical) spins is the Ising model,
where the interaction is limited to nearest neighbours. As already said the model
is classical, what means, that in the hamiltonian there are no operators, just vari-
ables, which, however, can have only discrete values −1, 1. Energy of the system
is given by the following formula

E({s}) = −J
∑
i∼j

sisj − µBB
∑
i

si,

where i ∼ j means summation over the different pairs of neighbouring spins. The
first author who formulated the model was Wilhelm Lenz (1920). Ernest Ising
was his student who in his thesis described the first exact solution in the one-
dimensional case (1924). The two-dimensional model (for zero external field) was
solved by Lars Onsager (1944). For higher dimensions we do not know (up to
now) an exact solution, we have just numerical simulations.

Below there are three web pages with useful information on Ising model. The first
web page contains many on-line simulations, the second page contains an exe-file
with the Metropolis algorithm and the third page contains many demonstrations
of thermodynamical calculations with the program Mathematica.

1. http://stp.clarku.edu/simulations
2. http://www.iasbs.ac.ir/faculty/langari/courses/stat-mech-2
3. http://www.physics.umd.edu/courses/Phys603/kelly

Exercise
Calculate the statistical sum for the Ising model on a square 2 × 2 (four spins)
for periodic boundary conditions. What is the mean energy value at zero external
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field. What is the value of the magnetic susceptibility for zero field in the limits
T → 0, T →∞?

• L:et us denote βJ ≡ j, βµBB ≡ b. The statistical sum will be

Z = 2e8j cosh(4b) + 8 cosh(2b) + 2e−8j + 4.

For zero external field b = 0 and we get Z = 12 + 4 cosh(8j). The mean energy is

〈E〉 = −J 1

Z

∂Z

∂j
= −8J

sinh(8j)

3 + cosh(8j)
.

Note that 〈E〉 ∈ (−8J, 0).

For b 6= 0 the mean sum of the spins equals (Z = exp[j
∑
sisj + b

∑
si])〈∑

si

〉
=

1

Z

∂Z

∂b
= 4

e8j sinh(4b) + 2 sinh(2b)

e8j cosh(4b) + 4 cosh(2b) + e−8j + 2
.

The mean spin value is 〈s〉 = 〈
∑
si〉/4. The susceptibility for zero field is easily

calculated, since for x→ 0 coshx ≈ 1 and sinhx ≈ x. We get

χ =
∂
(
µB〈s〉

)
∂H

= µB
〈s〉b→0

B/µ0

= 16βµ0µ
2
B

e8j + 1

e8j + 6 + e−8j
.

The required limiting values are χ = 16βµ0µ
2
B for T → 0, and χ = 4βµ0µ

2
B for

T →∞.

There is no phase transition in the one-dimensional Ising model. The lowest en-
ergy state is the state with no excited links. By excited links we mean here a link
for which the spins on its two sites are oppositely oriented. In one-dimensional
model the state closest to the lowest energy state is a state with exactly one link
excited, the energy difference being 2J . For such a state roughly one half of the
spin is oriented ”up” and the other half is oriented ”down”. The magnetization for
most of such states is equal to zero. A finite lattice with N sites has (roughly, for
large N ) N links. One excited link can be therefore chosen in N ways, so there
are N states with energy larger from the lowest energy by 2J . The entropy of the
”macrostate” with the energy E0 + 2J is therefore proportional to ln(N), so the
free energy of such a state is

F = E0 + 2J − T ln(N)

For a non-zero temperature the state with higher energy has lower free energy and
so for a non-zero temperature the mean magnetization is zero.

The Ising model in one dimension is explicitly calculable. Let us fix the boundary
conditions so that the first spin from left has value s1 = 1. Then the state of every
other spin is given if we know about every link whether it is excited or not.
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Let us introduce a dual lattice which correspond to the original lattice in such a
way that to every link of the original lattice there corresponds a site of the new
lattice with a spin having value q with value q = 1 if that link is not excited and
q = −1 if that link is excited. The states of the dual lattices exactly correspond
to each other If we require, that the energies of the corresponding states are equal
then the energy of the new lattice should be given as

H =
∑
link

−Jqi

This, however, describes the model of independent spins, the statistical sum is
easily calculated as

Z = (exp(J/kT ) + exp(−J/kT ))N−1

and we see there is no singularity in the thermodynamic limit and so there is no
phase transition.

7.3 Mean field theory

The statistical physics of a classical ideal gas can be expressed in two ways.

• As a canonical distribution for the whole gas

• As a Boltzmann distribution for one selected molecule

In the case of the Boltzmann distribution, the other molecules play the role of a
thermal reservoir characterized by the macroscopic parameter temperature. The
second way (Boltzmann distribution) is possible because the molecules do not
feel each other. the change of state of the selected molecule does not influence
(for large total number of molecules) the characteristics of the reservoir.

In the Ising model we have a different situation, the ”one-particle approach” can
not be realized. It is however possible to try an approximative one-particle solu-
tion, introducing an effective Hamiltonian of one spin in the ”external space” of
the other spins.

H1(s) =
∑

neighbour

−Jssneighbour

The formally external (and therefore ”given”) states of the neighbouring spins
are not really given by the macroscopic parameters of the whole system. We can,
however look for an approximation, where the states of the neighbouring spins are
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given by a suitable macroscopic parameter. The clear candidate is the mean spin
value, and the effective Hamiltonian

H ′1(s) =
∑
sused

−Js〈s〉 = −Jn〈s〉s

where n si the number of nearest neighbours. Because of the symmetry reasons,
the mean values for all the spins are equal. We have got the Hamiltonian of one
spin in an external field B = Jn〈s〉. This problem is easily solvable, and for the
mean spin value we get a self-consistent equation1

〈s〉 = tanh(B/kT ) = tanh(Jn〈s〉/kT )

The solution of this selfconsistent equation can be looked for graphically It is
clear that for

Jn

kT
< 1

there exists just one solution 〈s〉 = 0, while for

Jn

kT
> 1

there exist three solutions. The change happens in the critical point

Jn

kTc
= 1

1Let us discuss now an alternative argumentation, which, however, is wrong and leads to wrong
answer. Let us try to solve the Ising model approximately, so that the real Hamiltonian is replaced
by new (approximate) Hamiltonian

H ′ =
∑
link

−Jsi〈sj〉

so one of the spins on the considered link is replaced by its mean value. Because of the symmetry
reasons all the spins have the same mean value and we get

H ′ =
∑
link

−Jsi〈s〉

The sum over the links can be replaced by the sum over the spins if we realize that each link has
two spins on its ends and so each link can be assigned to one of its spins as ”being owned” by that
spin. The lattice determines the number of nearest neighbours n. Each spin therefore ”owns” n/2
links. We get

H ′ =
∑

i

−J n
2
si〈s〉 =

∑
i

−Bsi

where B = Jn〈s〉/2 is the effective mean field felt by each spin. This is an easy problem of
independent spins, with the (selfconsistent) solution

〈s〉 = tanh(B/kT ) = tanh(Jn〈s〉/(2kT ))

So we again got a selfconsistent solution, however, different from the correct one, with twice
smaller the selfconsistent field.
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Note that in the mean field approximation we get the phase transition also for one-
dimensional model. In this case the mean field method does not correspond to the
true solution even qualitatively.

7.4 Mean filed method as a variation problem

In the previous section we used the AnsatzB = Jn〈s〉. This Ansatz was guided by
our intuition. Had we not the relevant insight into tho problem, we could use more
blind variation technique. Even more, as it was discussed in the footnote, we could
have two different ”insights”, one of them being wrong. We even did not argument
properly which of the two possible approaches was really correct. This section,
and the variation method described here, can be seen as such argumentation.

We begin by constructing a trial Hamiltonian

H ′ =
∑

i

−Bsi

where B is so far unknown parameter. The free energy for the model with the
Hamiltonian H ′ is

F ′ = −kT lnZ = −kT ln((2 cosh(B/kT ))N) = −NkT ln(2 cosh(B/kT ))

The variation method still needs the mean value of the true Hamiltonian averaged
over the canonical ensemble generated my the trial Hamiltonian (we denote this
as 〈H〉′), and we also need the mean value of the trial Hamiltonian averaged over
the same canonical ensemble generated by the same trial hamiltonian (we denote
this as 〈H ′〉′. We get

〈H〉′ = 〈
∑
link

−Jsisj〉′ =
∑
link

−J〈sisj〉′ = −
n

2
JN〈s〉′2

because the spins are independent in the trial ensemble and the lattice with N
spins has nN/2 links.

〈H ′〉′ = 〈
∑

i

−Bsi〉′ = −BN〈s〉′

Variation function is

〈H〉′ − 〈H ′〉′ + F ′ = −n
2
JN〈s〉′2 +BN〈s〉′ −NkT ln(2 cosh(B/kT ))

The value of the variation parameter B is found by the minimization of the varia-
tion function. Differentiating with respect to B we get

−nJN〈s〉′d〈s〉
′

dB
+N〈s〉′ +BN

d〈s〉′

dB
−N tanh(B/kT ) = 0
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On the other hand the following relation holds

〈s〉′ = tanh(B/kT )

and so we get

−nJN〈s〉′d〈s〉
′

dB
+BN

d〈s〉′

dB
= 0

B = nJ〈s〉′

We got the same expression es in the intuitive Boltzmann-like approach2.

7.5 Bethe approximation

See also [GuT] (pp. 355-358).

The mean field method assumes, that each spin ”feels” just the mean spin values of
its neighbours. This rather crude assumption leads to results that are in some cases
too far from the exact results.
Bethe approximation represents an improvement of the mean field
method which takes into account not individual spins but rather
cluster of spins. A simple cluster of spins for the square lattice is
presented in the figure.

2So we have solved the question which of the two intuitive approaches in the mean field method
was the correct one. However the variation method does really show why the Boltzmann/like ap-
proach is correct. We therefore add here another, not quite rigorous, but more transparent argument.

Something similar can happen also in classical mechanics. Let us consider a two-body problem
with the Hamiltonian

H =
p2
1

2m1
+

p2
2

2m2
+ U(x1, x2)

The Hamiltonian is the sum of the two kinetic energies and the potential energy of interaction.
The potential energy is there ”in one copy only”. Let us imagine now that we want to solve the
problem by an iteration technique We start with some approximate solutions, that means with
explicit functions x̃1(t) a x̃2(t) and we want to find an iterative procedure which would improve
the solutions step-by-step. The iteration step can be looked for by solving the equations of motion
resulting from the Hamiltonian

Hiter =
p2
1

2m1
+

p2
2

2m2
+ U(x1, x̃2) + U(x̃1, x2)

In this Hamiltonian the ”previous iterations” play the role of external fields, but now the interaction
energy must appear twice: as the potential energy of the first particle in the external field of the
second particle and also as the potential energy of the second particle in the external field of the
first one. (This is the factor two which played the role in our intuitive mean field approach.) And
we look for a selfconsistent solution.
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We shall, however, for simplicity reasons, consider just a one-
dimensional Ising model and the cluster of one spin and its two
nearest neighbours s0,1,2. During the calculation we shall assume,
that the edge spins of the cluster (s1, s2) interact with the ”mean values” of the
spins outside the cluster. Inner spins of the cluster interact with the true values of
the spins in the cluster.

It is important to note that we shall not directly use the mean spin values of the
spins outside the cluster. The interaction of the edge spins will be with an effective
mean fieldBeff . If we used directly the mean spin val.ues, we would get the result
〈s0〉 6= 〈s1,2〉, what is not acceptable because of the translational invariance of the
problem.The use of the effective field Beff will provide the necessary freedom
required to get 〈s0〉 = 〈s1,2〉.

The statistical sum for the considered cluster has the form

ZC(T,B) =
∑
0,1,2

e−βEC , EC(T,B) = −J
∑
1,2

s0si − µBBeff

∑
1,2

si − µBBs0

Here we have added also the external field B what enables us to calculate easily
the mean spin value 〈s0〉 by differentiating with respect to B. Let us stress that
the interaction of the external field B with the spins s1 and s2 is not missing in
the formula: the field B is included in the value of the effective field Beff ). Let us
denote µBBeff ≡ be. So we have

ZC(T,B) = eβµBB
[
e2β(J+be) + 2 + e−2β(J+be)

]
+

+ e−βµBB
[
e2β(−J+be) + 2 + e−2β(J−be)

]
=

= 4
[
eβµBB cosh2 β(J + be) + e−βµBB cosh2 β(J − be)

]
.

For the d-dimensional lattice (d = 2 for the square lattice etc.) the powers of cosh2

will change into na cosh2d and the factor 4 would change into 4d (the reader can
check this). Differentiating with respect to B we get

〈
s0(T,B)

〉
=

∂ ln ZC
∂(βµBB)

∣∣∣∣
B=0

=
4d

ZC

[
cosh2d β(J + be)− cosh2d β(J − be)

]
,

〈
s1(T,B)

〉
=

1

2d

∂ ln ZC
∂(βbe)

∣∣∣∣
B=0

=
4d

ZC

[
sinh β(J + be) cosh2d−1 β(J + be)−

− sinh β(J − be) cosh2d−1 β(J − be)
]
.

The (translational symmetry) requirement 〈s0〉 = 〈s1〉 gives for be, the equation

cosh2d−1 β(J + be)

cosh2d−1 β(J − be)
= e2βbe .

94



This is again a selfconsistent equation which cannot be solved explicitly. It si
obvious that it always has a trivial solution be = 0. Let us investigate when the
equation has also a non-trivial solution. The right hand side increases with be
without limitation, the left hand side approaches a constant exp[2βJ(2d − 1)]
independent of be. Therefore if the slope of the left hand side at be = 0 is greater
then the slope of the right hand side the nontrivial solution exists for sure. If the
slopes ar of the opposite relation, the non-trivial solution does not exist. A critical
point is the situation when the slopes are equal Differentiating with respect to be
we get for the critical value βc

coth βcJ = 2d− 1.

For d = 1 we get coth βcJ = 1, therefore βc = ∞, and so Tc = 0. So the Bethe
approximation correctly gave (by a happy accident) the exact value of the critical
temperature for the one-dimensional Ising model. In the following table 3 we see
that the Bethe approximation results approach the exact results with increasing
dimension.

lattice 1D 2D 3D 4D
exact result 0,0 2,269 4,512 6,682

Bethe approximation 0,0 (0 %) 2,885 (27 %) 4,933 (9 %) 6,952 (4 %)
mean field 2,0 (∞) 4,0 (76 %) 6,0 (33 %) 8,0 (20 %)

The fact that the mean spin is not equal to the mean field acting on the spins of
the cluster seems to be surprising. It is difficult to imagine the reasons for it. (it is
only the failure of the naive expectation which forces us to consider the case more
carefully.) One of the possible reasons might be a sort of ”screening” of the mean
spin value by the fluctuations. Close to the critical point the spin fluctuations are
so important (big and ”quick”) that the cluster spins do not feel the mean value
but something smaller.

This is documented by the following graph showing the dependence of the fraction
µBBeff/J on TBc /T (here TBc denotes the critical temperature as given by the
Bethe approximation. If the effective field were given by the mean spin value, this
ratio would be equal to the number of neighbours of the spins from the cluster (3
in our case). It is clear that it is not so. For the temperatures much smaller than
TBc it is approximately so. For temperatures approaching TBc the value of Beff

decreases, for T = TBc we get Beff = 0.

3The data in the table are obtained from the web page
http://www.hermetic.ch/compsci/thesis/chap7.htm.
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We shall now describe an alternative formalism to the mean field theory and the
the Bethe approximation.

The Ising model takes into account only the interactions with nearest neighbours
(their number we denote as z). Now let us denote the number of positively oriented
spins as N+, the number of negatively oriented spins as N−. The neighbouring
spin pair can happen to be in three different states, let us denote the number of
corresponding pairs as N++, N−− and N+−. The total energy of the system can
be calculated as

E(N+, N−, N++, N−−, N+−) = −J(N++ +N−− −N+−)− µBB(N+ −N−).

However the 5 used numbers are not independent of each other. One condition is
trivially clear N+ +N− = N . Now let us consider a particular spin configuration.
If to every ”+” spin we draw lines connecting it to all its neighbours, we draw
zN+ lines. By that there will beN++ double lines andN+− single lines. Therefore
zN+ = 2N++ + N+−. By similar argument we get the relation zN− = 2N−− +
N+−. So only two of the 5 N-numbers are independent We usually take them to
be N+ and N++, the system energy will then be

E(N+, N++) = −4JN++ + 2(zJ −BµB)N+ − (zJ/2−BµB)N.

The statistical sum can be written as

ZN(T,B) = eβN(zJ/2−µBB)

N∑
N+=0

e−2β(zJ−µBB)N+

N∑
N++=0

g(N+, N++)e4βJN++ ,

where g(N+, N++) is the number of different spin state leading to the same given
numbers N+ a N++. This, however, is a complicated function, we shall need a
suitable simplification

One possible approximation is

N++

1
2
zN

=

(
N+

N

)2

,
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this approximation is equivalent to the mean field theory. This is understandable:
the approximation assumes that the number of positively oriented neighbours (left
hand side) is given by random distribution of positively oriented spins in the lattice
(right hand side). It reminds the mean field theory where we assumed the influence
on the neighbouring spins given only by the mean number of N+ in the whole
system.

This approximation can be characterized so that it totaly neglects correlations be-
tween neighbouring spins. Said differently: the energy of the system does not
depend on that whether the positively oriented spins are close to each other or are
randomly distributed. This is nonphysical, but simple enough for the calculation.

Now in the expression for ZN one should change g(N+, N++) for g(N+), which is
given by the standard combination numbers. It is also useful to change the variable
N+ for L ≡ (N+−N−)/N (N+ = N(L+ 1)/2). L is called the order parameter.
Then

ZN(T,B) =
+1∑

L=−1

N ![
1
2
N(1 + L)

]
!
[

1
2
N(1− L)

]
!
eβN(zJL2/2+µBBL) ≈

≈
+1∑

L=−1

eβN(zJL2/2+µBBL)

√
2πN

(
1−L

2

)N(1−L)/2+1/2(1+L
2

)N(1+L)/2+1/2
≡

+1∑
L=−1

C(L)√
N
ANL .

The corresponding free energy is

F (T,B) = lim
N→∞

[
− kT

N
ln ZN(T,B)

]
.

Similarly as we have seen it in the calculation of the transfer matrix, only the
largest term (from the terms AL) in the sum contributes (one can easily check,
that the term C(L)/

√
N does not play a significant role). Let the maximum is

reached for Lm (clearly then Lm = 〈L〉). According to the expression for ZN the
following relation holds for Lm

ln
1 + Lm
1− Lm

= 2β (µBB + zJLm) =⇒ Lm = tanh
(
βzJLm + βµBB

)
.

This is exactly the result of the mean field theory.

In the similar way an approximation corresponding to the
Bethe approximation can be formulated. In the fiure the
graphs for the heat capacity for the 2D Ising model kare
presented for the exact solution (ξ0), Bethe approxima-
tion (ξ1) and the mean field theory (ξ2).

Exercise
Use the Bethe approximation and calculate the critical temperature for the hexag-
onal lattice. For simplicity use the smallest possible 4-spin cluster
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• One can easily find the solution substituting d = 3/2 into the already known
result for the hypercubic lattice (one should think a while why the trick works).
Without the trick one can directly calculate

Z = 4
[

cosh(3j) cosh(3b) + 3 cosh(j) cosh(b)
]
,

〈s0〉 = 1
Z

[
sinh(3j) sinh(3b) + 3 sinh(j) sinh(b)

]
,

〈s1〉 = 1
Z

[
cosh(3j) sinh(3b) + cosh(j) sinh(b)

]
.

The requirement 〈s0〉 = 〈s1〉 leads to an equation from which, after putting b = 0
(do think what is the reason for this) follows sinh(3jc) + sinh(jc) = cosh(3jc) +
cosh(jc)/3, odkial’ cosh jc = 2/

√
3 (numerically kTc

.
= 1.52J). The result for the

triangle lattice and the smallest triangle cluster is kTc
.
= 3.43J (the exact solution

is kTc
.
= 3.64J). For the diamond structure (3D) we get kTc

.
= 2.70J and for

hexagonal lattice and the smallest 4-spin cluster kTc
.
= 1.82J .

We can again investigate how large is the effective field generated for different
temperatures Tc/T . For the hexagonal lattice and 4-spin cluster the results are
presented in the table.

Tc/T 1.0 1.01 1.1 1.2 1.5 2.0 3.0 ∞
µBBeff/J 0.00 0.33 0.96 1.27 1.66 1.88 1.98 2

7.6 Landau theory of the phase transitions of the
second kind

The essence of the Landau phenomenological approach is the idea where the non-
analytic behaviour of the thermodynamic potentia can come from. Let us assume
that we have an order parameter M like magnetization. In the equilibrium state
this order parameter assumes some equilibrium value. One can calculate this value
when one first deals with the non-equilibrium thermodynamic potential, which, in
addition to its standard variables (p and T for the Gibbs potential) depends also on
the (non-equilibrium) value of the order parameter M . Now we look for the mini-
mum of the thermodynamic potential. The value of M for which the minimum is
reached is just the equilibrium value of the order parameter.

Landau idea is now the following. He assumes that the non-equilibrium thermody-
namic potential is an analytic function of its variables (and of the order parameter
as well). Looking for the minimum one has to differentiate with respect to the or-
der parameter and put the derivative equal to zero. Thus one gets the equation for
the equilibrium value of the order parameter. All the expressions in the equations
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are analytic functions but its solution need not be analytic. The solution when sub-
stituted into the thermodynamic potential leads co non-analytic expression for the
potential.

Let us consider a case where the system is symmetric with respect to the change
of sign of the order parameter

M → −M

The pramater is chosen so that it assumes the value zero at the critical point.
According to the assumption of analyticity we can expand the non-equilibrium
potential (per one molecule) into the Taylor series in M in the form

G(p, T,M) = G0(p, T ) +G2(p, T )M2 +G4(p, T )M4

The odd powers are missing because of the symmetry, and we assume that the
expansion up to the fourth order is enough. In this case the fourth order term
should be positive, otherwise there would be no minimum.

The sign of the quadratic terms is not constrained by any general principles, it can
be both positive and negative. The behaviour of the function G(p, T,M) around
the pointM = 0 significantly depends, however, on the sign of the quadratic term.

For G2 < 0 the function has two minima symmetrically positioned wit respect
to M = 0 for G2 > 0 the function has just one minimum at M = 0. It is clear
that G2 > 0 corresponds to the situation above the critical temperature (without
magnetization), while G2 < 0 corresponds to situation below the critical point. In
this way the critical point happened just when the parameter G2 changes its sign,
therefore in the vicinity of the critical point we can write

G2(p, T ) =
a(p)

Tc
(T − Tc)

where we introduced the (constant) critical temperature Tc into the denominator
just for aesthetic reasons to get a dimensionless parameter

t =
T − Tc
Tc

Then the order parameter below the critical temperature will assume the value

M = (
−at
2G4

)
1/2

In the presence of an external (magnetic) field the (non-equilibrium) thermody-
namic potential will be

G(p, T,M) = G0(p, T )−HM +G2(p, T )M2 +G4(p, T )M4
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The critical isotherm (a graph showing dependence of M on H for constant T =
Tc) will be

M ∼ H1/3

The magnetic susceptibility (
∂M

∂H

)
T=Tc

∼ H−2/3

diverges at the critical point.

7.7 Transfer matrix

See also [Yeo] (str. 67-75).

The transfer matrix method (Kramers a Wannier, 1941) is a useful tool to solve
the Ising model. Its use in the one-dimensional case is easy and illustrative. In
more complicated situations we usually arrive at many-dimensional (or infinitely-
dimensional) matrices where only numerical analysis is possible.

So let us investigate the one-dimensional Ising model with N spins in external
magnetic field. The energy of the system is given as

EN = −J
N−1∑
i=0

sisi+1 − µBB
N−1∑
i=0

si,

with si = ±1. Let us assume periodic boundary conditions sN = s0 (topologically
the spins are distributed along a circle) We expect that in the thermodynamic limit
N →∞ this choice will not influence the result.

The trick consists in suitable rewriting of the statistical sum

ZN =
∑
{s}

exp
[
βJ(s0s1 + . . .+ sN−1sN−1) + βµBB(s0 + s1 + . . .+ sN)

]
=

=
∑
{s}

exp
[
βJs0s1 + βµBB

s0 + s1

2

]
· exp

[
βJs1s2 + βµBB

s1 + s2

2

]
· . . .

. . . · exp
[
βJsN−1s0 + βµBB(sN−1 + s0)/2

]
≡
∑
{s}

T0,1T1,2 . . .TN−1,0

where summing over {s} is meant as summing over all possible spin configura-
tions what means a multidimensional sum over s0, s1, . . . , sN−1. We have intro-
duced a matrix T, with matrix elements Tsi,si+1

≡ Ti,i+1 (so the matrix rows are
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numbered by the values of the spin si, the columns are numbered by values of the
spin si+1 In our specific case the matrix is

T =

(
eβ(J+µBB) e−βJ

e−βJ eβ(J−µBB)

)
.

The expression for ZN can be simplified when we notice that summing over the
spins effectively means matrix multiplication. What is left is only summation over
s0:

ZN =
∑
s0=±1

(
TN
)

0,0
= Sp(TN) =

n∑
i=1

λNi .

Here we have used the fact that the matrix trace TN is not dependent on the choice
of base and can be evaluated in the base for which the matrix is diagonal. Let us
stress that the result is fairly general, the model details influence the form of the
transfer matrix (and the specific values of its eigenvalues). The reader can ponder
how the transfer matrix looks for more complicated cases (like when each spin
can assume more then two values or when the interactions is not only between
nearest neighbours).

Now let us assume that the eigenvalues λi are ordered in descending order λ0 >
λ1 > · · · > λN−1 (for the simple case of a 2 × 2 matrix we, of course, have only
two eigenvalues. The statistical sum ZN gives the free energy F = −kT ln ZN .
The free energy per spin is then f = F/N and for the thermodynamic limit we
get

f = −kT · lim
N→∞

1

N
ln ZN = −kT · lim

N→∞

1

N
ln

[
λN0
(
1 +

N−1∑
i=1

(λi/λ0)N
)]

= −kT lnλ0.

The usefulness of the expression through the eigenvalues is manifested in the
case of large matrices, since only the largest eigenvalues play a significant role
in the thermodynamic limit. It is more feasible to find numerically just a few
largest eigenvalues then the whole spectrum. Also note that according to Perron-
Frobenius theorem we know that each matrix with positive matrix elements has a
non-degenerate positive eigenvalue r, for which ∀i : |λi| < r.

Now we shall evaluate the mean value of spin 〈sk〉. We could proceed by differ-
entiating the free energy with respect to the external field, but it is illustrative to
calculate the mean spin value using the transfer matrix technique directly. We start
with the expression

〈sk〉 =
1

ZN

∑
{s}

ske
−βHN =

1

ZN

∑
{s}

T0,1 . . .Tk−1,kskTk,k+1 . . .TN−1,0 =

=
1

ZN

∑
s0, sk

(
Tk
)

0,k
sk
(
TN−k)

k,0
=

1

ZN

∑
sk

sk
(
TN
)
k,k
.
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Let us denote the eigenvector of the matrix T corresponding to the eigenvalue
λi as |ui〉. Now we formally introduce the eigenvectors of the ”spin operator” sk
denoting them |sk〉. This formal ”spin operator” is diagonal, so its eigenvectors
are |sk〉 = (0, . . . , 0, 1, 0, . . . , 0)T . What we did is that we have formally wrrittren
the matrix elements using the formal Dirac notation. Using this notation we can
write

T =
∑
i

|ui〉λi〈ui| , Tm =
∑
i

|ui〉λmi 〈ui| ,
(
Tm
)

0,m
= 〈s0|Tm|sm〉,

If we use this notation in the expression for the mean spin value we get (after
dividing both the numerator and denominator by λN0 máme

〈sk〉 =
[
1 +

N−1∑
i=1

(λi/λ0)N
]−1∑

k

sk

(
|u0〉〈u0| +

N−1∑
i=1

. . .
)
k,k

=
∑
k

sk
(
|u0〉〈u0|

)
k,k

=

=
∑
k

sk〈sk|u0〉〈u0|sk〉 = 〈u0|
(∑

k

|sk〉sk〈sk|
)
|u0〉 = 〈u0| ŝ|u0〉.

This is again a very simple expression. For the correlation length we would get
ξ−1 = ln(λ0/λ1).

Exercise
Use the obtained results to calculate the free energy p;er spin f = F/N for one-
dimensional Ising model. What is its limit for T → 0? Is the result plausible?

• The explicit form of T is presented above. The eigenvalues are easily found

λ0,1 = eβJ cosh(βµBB)±
√

e2βJ sinh2(βµBB) + e−2βJ .

and the calculation of the mean energy is then straightforward. In the limit β →
∞, we get f = −J − µBB. Since F = E − TS, for T = 0 only the E term
matters. And the energy of the ground state per spin is really a ten je −J − µBB.

Exercise
Using the obtained results calculate the mean spin value for the one dimensional
Ising model. Evaluate
limT→0 limB→0〈s〉 and also limB→0 limT→0〈s〉? What is the meaning of the ob-
tained results.

• We need now also the eigenvectors of the transfer matrix

〈u0| = (α+, α−), 〈u1| = (α−,−α+), α2
± =

1

2

(
1±eβJ sinh(βµBB)

/√
. . .
)
.

Then

〈s〉 =
eβJ sinh(βµBB)√

. . .
.
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Noninteracting spins have J = 0, then 〈s〉 = tanh(βµBB) (a typical result for
the paramagnet). If B = 0, then 〈s〉 = 0 for any temperature and so also in the
limit T = 0. If we, however, make the limits in different order (first T → 0, then
B → 0±), we get different result what signalizes the phase transition for T = 0,
as expected.

Exercise
Find the unitary matrix which diagonalizes the symmetric matrix

(
a b
b c

)
?

• It is enough to find the eigenvectors of the matrix and normalize them. Then
form a matrix out of those vectors, just laying one by the other.

Exercise
Using the transfer matrix scheme find the free energy F for the one-dimensional
Ising model with free boundary condition (that is without the interaction Js1sN ).
Show that in the thermodynamic limit the result is the same as for the case with
periodic boundary conditions.
Hint: one does not need to find explicitly the matrix which diagonalizes the trans-
fer matrix T. It is enough to assume that such a matrix U exists.

• The statistical sum ZN can be written (using notation b = βµBB, j = βJ) as

ZN =
∑
{s}

exp[b
s1

2
] · exp[js1s2 + b

s1 + s2

2
· . . . · exp[jsN−1sN + b

sN−1 + sN
2

]·

· exp[bsN/2] =
∑
{s}

W1,1T1,2T2,3 . . .TN−1,NWN,N =

=
∑
s1

∑
sN

W1,1(TN−1)1,NWN,N =

=
∑
s1

∑
sN

(
W TN−1 W

)
1,N

In comparison with the case with the periodic boundary conditions we have at the
ends the matrix

Wij = δij exp[bsi]

Another difference is that we do not make a trace of the matrix but we rather
sum its elements Let the matrix diagonalizing T is denoted as U and UTUT ≡ D,
UWUT ≡ Z. Then

W TN−1 W = UT
(
ZDN−1Z

)
U

The above matrix product need not be evaluated explicitly. It is enough to realize,
that the resulting sum of the matrix elements will have the form

λN−1
0 ·X + λN−1

1 · Y
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Here the eigenvalues of T were denoted as λ0 > λ1 and X, Y are suitable ”sums
of products”of the matrix elements of U and Z. In the thermodynamic limit we get

lim
N→∞

F

N
= −kT lim

N→∞

1

N
ln ZN = −kT lim

N→∞

1

N
lnλN−1

0

(
X + Y

(
λ1/λ0)N−1

)
=

= −kT lnλ0.

The result is the same as for the periodic boundary conditions.

Exercise
Solvable transfer matrix larger then 2× 2
Solve the Potts model with the help of transfer matrix. The Hamiltonian is

H = −K
N−1∑
i=1

δsi,si+1
−KδsN ,s1 ,

where si = 0, 1, . . . , q. What is its heat capacity in the thermodynamic limit?
What is the correlation length ξ
Hint: there is no need to solve the equation of the (q + 1)-th order to find the
eigenvalues. The eigenvectors can be simply guessed after thinking a while.

• The transfer matrix has the dimension (q + 1)× (q + 1) with matrix elements
eβK on the diagonal,everywhere else are ones. It is easy to guess the eigenvec-
tor (1, . . . , 1)T, with corresponding eigenvalue λ0 = eβK + q. The next guess
is the eigenvector (1,−1, 0, . . . , 0)T (it is easy to check), with the eigenvalue
λ1 = eβK−1 < λ0. This eigenvector is a template to construct other eigenvectors,
each of them having the form (0, . . . , 0, 1,−1, 0, . . . , 0)T with the same eigenvalue
λ1. Now we haveq+ 1 eigenvectors, a complete set. Therefore Z = λN0 + λN1 , and
in the thermodynamic limit only the term with λ0 survives. The heat capacity is
CV = ∂E/∂T , where E = −∂ ln Z/∂β. We get

CV =
qkN(βK)2eβK

(eβK + q)2
,

There are no singular points in this function

Exercise
Let us consider the one dimensional Ising model with interaction between the
nearest neighbours (with coupling constant J), but also next to nearest neighbours
(with coupling constant j). Find the relevant transfer matrix.
Hint: For the case with the interaction of nearest neighbours it was useful to write
the energy as

E = E(s1, s2) + E(s2, s3) + . . .+ E(sN , s1).

Now it will be useful to write

E = E(s1, s2, s3) + E(s2, s3, s4) + . . .+ E(sN , s1, s2).
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Do take care that the indexing of the objects exp[−βE(. . .)] in the expression for
the statistical sum has to lead to matrix multiplication A square matrix is obtained
when all the possible states of a spin pair are properly numbered. These numbers
will then label the rows and columns of the transfer matrix.

• We have
E = . . .+ E(si, si+1, si+2) + . . .

, where

E(si, si+1, si+2) = −µBB
si + si+1 + si+2

3
− J sisi+1 + si+1si+2

2
− jsisi+2.

The statistical sum is

Z =
∑
{s}

e−βE(s1,s2,s3)·e−βE(s2,s3,s4)·. . . e−βE(sN ,s1,s2) ≡
∑
{s}

T12,23T23,34 . . .TN1,12.

Now we number the spin-pair states as (1, 1) = 1, (1,−1) = 2, (−1, 1) = 3,
(−1,−1) = 4, the transfer matrix will be

T =


A B 0 0
0 0 C E
B D 0 0
0 0 E F

 ,

lnA = βµBB + βJ + βj,

lnB = 1
3
βµBB − βj,

lnC = 1
3
βµBB − βJ + βj,

lnD = −1
3
βµBB − βJ + βj,

lnE = −1
3
βµBB − βj,

lnF = −βµBB + βJ + βj.

The matrix contains some zeros because some combinations of pair states are
inconsistent.

7.8 Ising model on a square lattice

The statistical sum for the Ising model can be written as

Z =
∑
states

∏
links

exp(Jsisj)

where the temperature was hidden into (the only) interaction constant J . The ex-
pression is not written in a completely rigorous way, but the meaning should be
clear. The sum is over all the possible spin states. Each term in the sum is a prod-
uct of factors for each link of the lattice. In the exponentials for each links are the
spins which sit on the two sites belonging to the considered link.

We shall start with the high-temperature expansion that means the expansion valid
for small J . Naively we would start with expanding all the exponentials and then
combining the powers from the product of factors, a fairly complicated proce-
dure. Fortunately, it can be reasonably simplified, since we do not need the exact
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exponential for arbitrary continuous argument, we need just its two values for two
specific values of its argument

exp(J), exp(−J)

and these two values can be expressed using a suitable small variable, using the
identity

exp(Jsisj) =
exp(J) + exp(−J)

2
+ sisj

exp(J)− exp(−J)

2

which holds for
sisj ∈ {1,−1}

We have
exp(Jsisj) = cosh(j)(1 + sisjt)

where
t = tanh(J)

and the statistical sum will be

Z = cosh2N(J)
∑
states

∏
links

(1 + sisjt) = 2NZ ′ cosh2N(J)

where
Z ′ =

1

2N

∑
states

∏
links

(1 + sisjt)

Expanding the product we get

Z ′ =
1

2N

∑
s1=±1

∑
s2=±1

· · ·
∑
sN =±1

{1 + t
∑
links

sisj + t2
∑

link pairs

(sisj)(smsn) + . . . }

The structure of the expression in the square brackets is such that the power tL

is multiplied by a sum of all the products of L pairs of the type sisj . Those L
pairs correspond to L links. The sum at tL has as meny terms as is the number of
possibilities how L links can be highlighted on a square lattice.

Now one has to realize that after summing over the spin states all the products
where at least one spin is presented odd number of times (as a factor) give zero. If
the spin appears in the product even number of times the product is equal to one
and the sum over all the spin states gives 2N .

So we get
Z ′ =

∑
L

g(L)tL

where
g(L)
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denotes the number of possibilities how L links can be highlighted on a square
lattice in such a way that every site is highlighted even number of times (zero
count as even number here). Expressed differently, g(L) is the number of graphs
which can be drawn on a square lattice in such a way that each site on the graph
is connected with the remaining sites by even number of edges.

Now we proceed form the side of low temperatures, we make a low-temperature
expansion. We have the same statistical sum as before, but we have different (low)
temperature, what we denote by using a different coupling constant j.

Z =
∑
stavy

∏
linky

exp(jsisj)

At low temperatures the spins prefer to be oriented in parallel if they sit on the
same link. So we expect that at low temperatures those links contribute which
have ”their spins” oriented in parallel (both having value +1 or −1).

For a given spin state each link with parallelly oriented spins contributes to the
statistical sum by the factor

exp(j)

On the other hand each link with antiparallel spins contributes by the factor

exp(−j)

The statistical sum can be expressed as

Z =
∑
stavy

exp((2N − L)j) exp(−Lj)

Z =
∑
stavy

exp(2Nj)(exp(−2j))L

where 2N is the total number of links (for N sites) and the number L depends on
the particular spin states and gives the number of links with antiparallel spins on
their sites.

Let us imagine that (for a particular spin state) we highlight (colour) all the links
with antiparallel spins, so that L links would be highlighted for the particular spin
state. To each state there corresponds a graph with exactly L links highlighted.
The statistical sum can be then rewritten as

Z = exp(2Nj)
∑
L

m(L)(exp(−2j))L
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where m(L) is the number of states to which (after highlighting) correspond a
graph with exactly L links highlighted. Rephrased differently m(L) je is the num-
ber of possibilities how a graph with L edges can be drawn on a lattice in such a
way that a certain spin state corresponds to it (having those L links occupied by
antiparallel spins. Let us stress that not to any graph correspond a real spin state.
For example if we highlight just one link then no state correspond to it. Such a
state should have the two spins of that link oriented in parallel. But all the other
spins should be parallel with one as well as with the other spin of that pair, since
there is no other highlighted link. This is a clear contradiction.

Let us note, that we have got series expansion in powers of the expression

exp(−2j)

This is a low value for low temperatures, so it is effectively a low-temperature
expansion.

Now let us ponder how looks the graph corresponding to the lowest possible value
of L > 0. Obviously it will be the state, with all the spins oriented parallelly just
one spin being reversed. Four highlighted links come out of that reversed-spin site
in the form of a cross. So the lowest non-zero L is equal to 4.

Bigger L values we obtain if we reverse more spins. Those reversed spins will
form a sort of islands in the overall sea of other parallel spins. Let us imagine one
such island (fig.7.1 with 8 spins oriented oppositely to the sea of other spins. That
particular configurations requires to highlight 12 links as it is shown in the figure.
Now let as demarcate the island of ”reversed spins” by the boundary line going
through the centers of the lattice plaquettes. It is clear that the boundary crosses
each of the highlighted link and so it is 12 lattice units long. We could draw the
boundary in such a way that we orthogonally cross each if the highlighted link by
a boundary element connecting the centers of the two plaquettes which have as a
common edge the considered highlighted link.

Now we can imagine that into the original lattice we insert a new, dual, lattice
such that the centers of the plaquettes of the original lattice are the sites of the
new lattice. The new (dual) lattice is again a square lattice. We see, that the ”is-
land boundaries” coincide with edges (links) of the new dual lattice. So to each
”low temperature” diagram of L highlighted edges on the original lattice there
corresponds a graph on the dual lattice. It is important to realize, that the ”bound-
ary graph” on the dual lattice Let us notice now, that the graph which originated
as the island boundary and sits on the dual lattice is exactly the same as one of
the graphs originated at the high temperature expansion on the original lattice.
So there is ono-to-one correspondence between the graphs originating at the high-
temperature and the low-temperature expansions. Therefore the following relation
holds

m(L) = g(L)
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Figure 7.1: Diagram with L = 12

So we have got the high-temperature expansion

Z(J) = 2N cosh2N(J)
∑
L

g(L)tL

where
t = tanh(J)

and the low-temperature expansion

Z(j) = exp(2Nj)
∑
L

g(L)(exp(−2j))L

Up to now we have two arbitrary independent coupling constants J and j. We
assume however that J is large and j is small. Let us now choose j related to J as

exp(−2j) = tanh(J)

Then we get a selfconsistent relation for the statistical sum

Z(J) = 2N cosh2N(J) tanhN(J)Z(j)

where
j = −1

2
ln(tanh(J)

Let us suppose now that in the thermodynamic limit N → ∞ the free energy per
site (only intensive variable can have thermodynamic limit) has a singularity at
some temperature Tc. Let us also suppose that there is just one temperature value
for which there is such a singularity. The selfconsistent formula for the statistical
sum does not introduce any new singularity. So if there is only one singularity, it
must be both at j and at J and the two values must be equal, that is j = J and we
get the relation

Jc = −1

2
ln(tanh(Jc)

The solution gives for the critical value

Jc =
1

2
ln(1 +

√
2)
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7.9 Renormalization group

See also [GaT] (chapter9), [Yeo] (pp. 8-14, 105-119).

We shall not go much into technical details about the renormalization group tech-
nique. we shall just present a few illustrations to get the feeling what this all is
about, since renormalization and renormalization group are two very frequent
terms in modern physics.

We start with a model which is more geometrical then physical (there is no tem-
perature nor statistical sum involved). It is, however, very useful, since it is very
illustrative. We shall investigate the percolation model. The lives on a lattice of
square cells. Each cell can be ”empty” or ”occupied”. The probability p of a cell
being occupied is independent on the occupation of any other cell. We introduce
the notion of cluster: a set of occupied cells which are touching each other by at
least one edge. Now we shall investigate a problem whether there exists a span-
ning cluster: a cluster which reaches from the top side of the lattice continuously
to its bottom side. If yes, the lattice is considered to be percolative (imagine that
the spanning cluster provides a path for water to percolate from top to bottom.
The figure shows examples of possible lattice states for different values of p.

We shall investigate the limit for the size of the lattice going to infinity. We expect
that there exists a critical probability pc above which the lattice is percolative.
(The reader can easily make computer experiments for large lattices.) Our goal
is to find the critical probability pc, as well es some relevant critical exponents
characterizing some interesting variables like the correlation length ξ(”percolative
length”).

The main idea is that in the critical point the correlation length goes to infinity.
The correlations between cells are present for any distances between them. We
expect that the system looks qualitatively the same irrespective what zoom we
ese to observe it. (So we expect a fractal like behaviour.) The key notion here is
”selfsimilarity”. The renormalization technique looks for the selfsimilar behaviour
by averaging the image at some scale it hopes to find a selfsimilar image.

Let us combine the cells of the original lattice into larger square cells, containing
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b × b original cells. The new squares are cells of a new, renormalized lattice.
Now we design a rule to specify which of the new larger cells are considered
as occupied. There are many possible rules to be considered (those which have
majority of the original cells occupied, those large cells which are percolative
horizontally, or vertically, or in both directions . . . ).

Let us take b = 2 and the rule: the renormalized cell is considered to be occupied
if at least three of its original cells are occupied. Let the probability that the new
renormalized cell is occupied is denoted as p′. Clearly

p′ = p4 + 4p3(1− p) ≡ R(p).

If the original lattice had p = 0,5 we get p′ = 0.3125. By next renormalization
we would get p′ .

= 0.0934. The fix point of these iterative transformations is
p = 0 what means an empty lattice.So in this specific case the selfsimilarity is not
realized. The selfsimilarity requires to get p′ = p. A numerical solution of this
simple algebraic equation gives p∗

.
= 0.7676 (the true value is je pc

.
= 0.5927).

To find the critical exponent for the correlation length ξ, one has to realize that all
the corresponding lengths in the renormalized lattice are reduced b-times. There-
fore ξ′ = ξ/b. In the vicinity of the critical point we expect ξ ∼ |p − pc|−ν .
Comparing the two expressions we get

|p′ − p∗|−ν =
1

b
|p− p∗|−ν

We have replaced here the true value pc with our fix point p∗, because for our
choice of the renormalization rule the singular behaviour is expected for p∗. Now
we have to find the relation between p and p′ int the vicinity of the critical point

p′ − p∗ = R(p)−R(p∗) ≈ (p− p∗)
dR

dp

∣∣∣∣
p=p∗

≡ λ(p− p∗).

Substituting into the previous relation we get

λ−ν |p− p∗|−ν =
1

b
|p− p∗|−ν =⇒ λ−ν = b−1 =⇒ ν =

ln b

lnλ
.

In our case b = 2 a λ .
= 1.6432, so ν .

= 1.40 (the exact result is ν = 4/3).

Just for reference here are the critical probabilities on hypercubic lattices: for 2D
pc = 0.592745 for 3D pc = 0.407355 and for 4D pc = 0.168. For the triangular
lattice pc = 1/2.

Now we shall demonstrate the use of renormalization technique for the one-dimensional
Ising model.
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We consider the periodic boundary condition, so we have the Hamiltonian

H = −J
N∑
i=1

sisi+1 −
1

2
µBB

N∑
i=1

(si + si+1).

Let us denote βJ ≡ j and βµBB ≡ b. We get

ZN =
∑
{s}

exp
[ N∑
i=1

(
jsisi+1 +

1

2
b(si + si+1)

)]
,

Let us first simplify the model putting b = 0. Then we can write

Z(j,N) =
∑
{s}

ej(s1s2+s2s3)ej(s3s4+s4s5) . . . =

=
∑
{s′}

[
ej(s1+s3) + e−j(s1+s3)

]
︸ ︷︷ ︸

got by summing over s2

·
[
ej(s3+s5) + e−j(s3+s5)

]
︸ ︷︷ ︸

got by summing over s4

· . . . ,

where the sum over {s′} is the sum over the the spins with even indices So it is the
sum over the states of system with N/2 spins. we get a selfsimilar expression if
this sum can be written as the statistical sum for the Ising model with N/2 spins.
In order this to be true, the following should hold

ej(s1+s3) + e−j(s1+s3) = A(j)ej
′s1s3 ,

where A(j) je some function independent of the spin states and j′ is a suitable
constant. The relation should hold just for the possible spin values s1 a s3.

s1 = s3 =⇒ A(j) exp[j′] = exp[2j] + exp[−2j],

s1 = −s3 =⇒ A(j) exp[−j′] = 2.

The solution is

j′ = ln cosh(2j)/2, A(j) = 2 cosh1/2(2j), Z(j,N) = A(j)N/2 Z(j′, N/2).

In the limit N →∞ we expect ln Z ∼ N . Let us denote therefore ln Z = Nf(j).
Using the above relations we get

f(j′) = 2f(j)− lnA(j).

The relation j′ = R(j) je is reversible. Therefore we
can use the last relation and by inverse renormalization
to move from the value ji = 0, where we know the exact
solution (T = ∞, therefore Z(j) = 2N and f(j) =
−kT ln Z(j)), to an arbitrary state at jf 6= 0.

The relations j′ = R(j) and Z′ = N
(
2f(j)−lnA(j)

)
≡

Ng(j) are the basic equations of the renormalization
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analysis. In the present case this analysis is very simple The relation j′ =
ln cosh(2j)/2 has one stable fix point (see the figure) j = 0 (what means T =∞).
There is an unstable fix point T = 0 (j =∞), any small deviations from it lead to
j = 0. It all means that for non-zero temperature there is no phase transition.

The relation j′ = R(j) is the motivation for the notion renormalization group. As
we shall see the notion is not a happy one. The group operation here is meant the
composition of consecutive scale transformation steps formally Rb (b is the scale
size)

Rb1 ◦ Rb2 = Rb1b2 , since the following holds Rb1b2(j) = Rb2

[
Rb1(j)

]
.

The renormalization operation naturally generates a dynamical flow in the space
of parameters (where the ”constants” like j live / see the figure).

From the mathematical point of view we do not have inverse scale transformation,
so the more appropriate notion would be a semigroup.

Exercise
Show, that for the one-dimensional percolation pc = 1 and ν = 1 (the critical
exponent related to the correlation length).

• We renormalize at the scale b: b of the neighbouring cells we substitute by just
one which we consider to be filled if all the corresponding original cells are filled
Then p′ = R(p) = pb. For the fix point pc we get pc = pbc, with the solution pc = 1.
For the correlation length we get ξ′ = ξ/b and in the vicinity of the critical point
ξ ∼ |p− pc|−ν . Combining the two relations we get

|p′ − pc|−ν =
1

b
|p− pc|−ν .

It remains to find p′ expressed in terms of p in the vicinity of pc. With the help of
the Taylor series we get

dp′

dp

∣∣∣∣
p=pc

= b =⇒ p′ = pc + b(p− pc) =⇒ |b(p− pc)|−ν =
1

b
|p− pc|−ν .

From there we get ν = 1.

Let us demonstrate the independence on the details of the renormalization condi-
tion. As before b cells are substituted by just one cell, which will be considered as
occupied when at most one of the original corresponding cells was empty. So we
get p′ = pb + b(1 − p)pb−1. The fix point equation cannot be solved exactly, but
we expect pc to be close to 1. So let us try the substitution p = 1 − x (where we
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expect small value of x for large b values The solution is x = 2/b(b− 3), so really
for large b we get x close to zero. So in the limit of b→∞ we get the same result
as for the original renormalization scheme.

Exercise
Find the critical value for the hexadimensional percolation lattice.

• We shall investigate percolation in the direction NE-SW. The renormalization
cell will consit from 4 cells. Out of its 24 configurations 6 are percolative. The
renormalization equation will be R(p) = 2p2(1− p)2 + 4p3(1− p) + p4. The fix
point solutions of R(p) = p are p = 0, 1, (

√
5− 1)/2. The third solution is clearly

the critical point we are looking for.
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Chapter 8

Boltzmann kinetic equation

8.1 Cross sections

See also [LL1] (str. 56-60), [Huang] (str. 59-64).

Scattering experiments are important source of knowledge in particle physics.
However the experiment is never done with a single projectile particle and a single
target particle. We use a beam of projectile particles which is characterized by the
current density j (number of particles per unit of time per unit of area. The pro-
jectile particles scattered on target are detected by set of detectors which provide
us with the statistics how many particles was scattered into a particular direction.
Let us assume that the detector covers certain space angle dΩ and registers dN
particles per unit of time. The scattering process is then characterized by the ratio
dN/j ≡ dσ (this ratio is independent on the beam current density). It is clear that
dσ has the dimension of area and is called differential cross section.

The spherical coordinates are introduced so that the angle ϑ is the
angle ϑ between the direction of the projectile (scattering angle, po-
lar angle). The angle ϕ which measures rotation around the beam
axis is called azimuthal (axial) angle. Let the detector covers dϕ
around axial angle ϕ and dϑ around polar angle ϑ.Let us assume,
that there is a one-to-one relation between the impact parameter b
and the scattering angle ϑ. and let the interval dϑ corresponds to the interval db in
the impact parameter b. Number of particles registered by the detector will be

dN = j dS = jb db dϕ =⇒ dσ = b db dϕ = b(ϑ)

∣∣∣∣db(ϑ)

dϑ

∣∣∣∣ dϑ dϕ.

The absolute value is introduced here because the derivative db/dϑ can be (and
usually is) negative. The space angle interval can be written as dΩ = sinϑ dϑ dϕ
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so we finally can write the above formula as

dσ

dΩ
=
b(ϑ)

sinϑ

∣∣∣∣db(ϑ)

dϑ

∣∣∣∣ .
To find the relation between b and ϑ one has to solve the corresponding equation
of motion. To simplify the notation, we shall often write just σ(Ω) instead of
dσ/dΩ. The total cross section (differential cross section integrated over the full
solid angle) will be denoted as σ.

The exact shape of σ(Ω) depends on the shape of the interaction potential How-
ever, there are some symmetry relations which are generally valid. We assume
that the interactions considered here are of electromagnetic nature, therefore the
symmetries of the cross section are those of the electromagnetic interaction. Dis-
cussing the symmetries we shall use instead of σ(Ω) the notation1 σ′(v,v1 →
v′,v′1). Ω is the angle between v1 − v and v′1 − v′ (see the left figure).

The first obvious property is the invariance with respect to time inversion

σ′(v,v1 → v′,v′1) = σ′(−v′,−v′1 → −v,−v1).

Next obvious property is the invariance with respect to rotations and reflections.

σ′(v,v1 → v′,v′1) = σ′(v∗,v∗1 → v′∗,v′1
∗),

where v∗ denotes the vector obtained from v by space rotation or space reflection

Now we introduce a new notion of inverse scattering which we get from the orig-
inal proces by exchanging the initial and final state. We shall prove that for the
molecular collisions considered the following invariance holds

σ′(v,v1 → v′,v′1) = σ′(v′,v′1 → v,v1).

Let us first note that it is not obvious that the relation is true. For example for the
collision of the two macroscopic objects in the figure it is not true.

The proof proceeds (for spinless particles) as follows

v & v1 → v′ & v′1
T−→ −v′ & − v′1 → −v & − v1

R(n,180◦)−−−−−→

v′∗ & v′1
∗ → v∗ & v∗1

Z(τ)−−→ v′1 & v′ → v1 & v.

1Actually σ(Ω) depends only on two final state variables ϑ and ϕ and in the notation
σ′(v,v1 → v′,v′1) there are 6 final state variables. Not all of them are independent since the
conservation laws should be fulfilled. So the function σ′ hides several delta functions inside.
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Here R is the rotation by 180◦ around the axis n perpendicular to the total mo-
mentum of the system, Z is the reflection with respect to the plane τ ⊥ n (see the
next figure).

Exercise
Calculate dσ/dΩ a σ for the collision of two billiard balls with the same radius R
Assume for simplicity that one of the balls is fixed with respect to the table (has
the infinite mass)

• The collision can be understood as a scattering on a fixed ”hard core” potential
V (r) = 0 for r > R and V (r) = ∞ for r < R. The scattering angle is ϑ. Now
ϑ = π − 2α, where sinα = b/2R. So

b = 2R sinα = 2R sin
π − ϑ

2
= 2R cos

ϑ

2
.

Differentiating and substituting to the differential cross section formula we get
dσ/dΩ = R2 and σ = π(2R)2. It is just the cross section of a sphere with the
radius 2R.

Exercise
Do the billiard ball calculation for two identical balls (the target ball is at rest
initially, but is not fixed to the table)

• Denote the projectile ball velocity as v0. Then the centre-of-mass frame moves
with respect to the laboratory frame with the velocity v0/2. At the moment of im-
pact, the balls have common tangential plane. We can decompose the ball veloci-
ties to components parallel to that plane and perpendicular to it. The kinematics is
such that the balls exchange the normal components of the velocities, the parallel
components will remain the same as before the collision. In the centre-of-mass
frame the velocity of the projectile ball was (v0/2, 0), its decomposition is

v‖ = (v0/2) sinα, v⊥ = (v0/2) cosα.

Here again sinα = b/2R. After the collision the velocity will be vx, vy, where

vx = v‖ cos(90◦ − α)− v′⊥ cosα = −(v0/2) cos(2α),

vy = v‖ sin(90◦ − α) + v′⊥ cosα = (v0/2) sin(2α).
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Now we have to transform back into the laboratory frame, it increases vx by v0/2.
The scattering angle of the projectile particle is therefore tanϑL = vy/(vx+v0/2),
and from there

tanϑL =
sin(2α)

1− cos(2α)
= cotgα =

√
(2R/b)2 − 1 =⇒ b = 2R sinϑ.

For the differential cross section we get

dσ/dΩ = (2R)2 cosϑ

and by integration σ = π(2R)2. One just has to be careful not to integrate over
the regions where the differential cross section is negative (these are of course
unphysical regions). This is more transparent in the relation tanϑ =

√
. . . . From

there on can for b ∈ 〈0; 2R〉 never get ϑ > 90◦.

We add a note concerning the relation between the differential cross sections in
the laboratory and the center-of-mass frames Since the number of particles reg-
istered by the detector is independent of the frame we use for the description the
foillowing relation must hold

j dσ′(ϑ′) sinϑ′ |dϑ′| = j dσ(ϑ) sinϑ |dϑ| =⇒

σ′(ϑ′) = σ(ϑ)
sinϑ

sinϑ′

∣∣∣∣ dϑ

dϑ′

∣∣∣∣ = σ(ϑ)
d(cosϑ)

d(cosϑ′)
.

More detailed discussion (including the case for unequal masses) can be found in
[Iro] (pp. 153-157 and 165), and also in [LL 1] (p. 58).

Exercise
Show that in the collision of two molecules the following holds

dv1 dv2 = du dV ,

where u is the relative velocity and V is the centre of mass velocity.

• The transformation rules between the two sets of variables are

v1 = V +
µ

m1

u, v2 = V − µ

m2

u.

where µ is the reduced mass 1/µ = 1/m1 + 1/m2. We have to find the Jacobian
For the x components we get

dv1x dv2x =

∣∣∣∣∂(v1x, v2x)

∂(Vx, ux)

∣∣∣∣ dVx dux =

∣∣∣∣1 µ
m1

1 − µ
m2

∣∣∣∣ dVx dux = dVx dux,

waht proves the formula.
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8.2 Boltzmann equation

Up to now we have investigated only equilibrium statistical systems. Here we start
investigating non-equilibrium system. We shall not present any general theory, we
limit ourselves to investigating dilute gas not far from equilibrium in classical
(non-quantum) approximation.

We consider a classical dilute gas consisting of just one type of molecules. Clas-
sically, we know the state of the gas if wee know the position and the velocity
of each of the molecules. If we consider an ensemble of microstates representing
some (in general non-equilibrium) macrostate we should describe it by a proba-
bility density which is the function of 6N variables. We shall limit ourselves to a
drastic approximation: a one-particle description.

So let us look to an infinitesimal region of space around the vector r and ask what
is the mean density of molecules at r at time t: let us denote it as n(r, t). Then we
ask what is the probability distribution of the velocities of individual molecules in
this region. We arrive at the function

f(r,v, t)

whose meaning is the following. f(r,v, t) d3r d3v is the mean number of molecules
present at time t in the infinitesimal region around r and having velocities in the
infinitesimal neighbourhood of vector v. The following (normalization condition)
holds

n(r) =

∫
f(r,v, t) d3v

What we have is in fact a non-equilibrium Boltzmann distribution, however, nor-
malized not to unity but to molecular density. Boltzmann one-particle probability
density ρ(r,v, t) is the probability density to find a selected particle in the neigh-
bourhood of the phase space point r,v. It is a well defined function and does not
contain any approximation (if the gas is classical and it is possible to select one
specific particle and follow it). The function we consider now, f(r,v, t), is related
to ρ(r,v, t) as

f(r,v, t) = Nρ(r,v, t)

where N is the total number of particles in the gas. The relation is intuitively clear
but not completely trivial. Some discussion is shifted to the appendix 10.1.

The function f(r,v, t) can always be introduced, it has a well defined mean-
ing and by itself is does not mean and approximation. It becomes to be the one-
particle approximation when we say that it contains whole statistical informa-
tion. By that we mean, that all statistical results (like mean values of all the phys-
ical variables)can be obtained just from function f(r,v, t). This is, of course not
true in general. Only means of one-particle variables can be correctly calculated
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from this function. Those are the variables whose values can be obtained experi-
mentally by attaching the measurement apparatus to a single particle. (The mean
is then experimentally obtained by repeating measurements on a randomly cho-
sen single particles.) Already the two-particle quantities (like the potential energy
between two particles) cannot be exactly statistically evaluated from f(r,v, t).
To do that we would need two-particle densities f2(r1,v1, r2,v2, t). We can just
approximately express the two-particle densities with the help of one particle den-
sities in a so called molecular chaos approximation as

f2(r1,v1, r2,v2, t) = f(r1,v1, t)f(r2,v2, t)

Let us note, that here we follow the classical Boltzmann choice of variables r a
v. It would be more appropriate to use canonical pair of variables the position and
momentum. When we consider a classical gas with no magnetic fields it would be
just a formal difference.

Let us assume we have an ideal classical gas whose particles do not feel each
other. Each molecule moves only under the influence of (possible) external force
field. Such a molecule follows in the phase space a (one particle) trajectory which
we can find by solving the equation of motion. For example for molecules in a
constant force field the phase-space trajectory of the particle which at t = 0 was
at the phase-space point r0,v0 is given by the relations

v(t) = v0 +
F

m
t (8.1)

r(t) = r0 + v0t+
1

2

F

m
t2 (8.2)

Figure 8.1: Fázové trajektórie

In the figure 8.1 we sketched several such trajectories: the small circles denotes
point of equal time intervals. In general the force field need not be constant and
we would obtain more complicated formulas then (8.1). But the formal characters
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of the equations would be the same. The formulas would contain the initial point
parameters r0,v0 and they would express the coordinates r(t),v(t) of the phase-
space-trajectory point at time t.

Let us imagine now a set of neigbouring points in the phase space, which fill a
region Ω0. Let these points are the initial states of a set of phase-space trajectories
originating in the region Ω0 at time t = 0 and let the end points of those trajectories
at time t fill the region Ωt.

If we imagine, that we are describing an ideal gas, then the particles are not feel-
ing each other, neither scatter on each other. They all move on the phase-space
trajectories (8.1). All the particles which at time t = 0 were in the phase-space
region Ω0 will at time t be in the region Ωt. No other particles will be present in
the region Ωt at time t The reason is the T-invariance of the equations of motion.
All the particles, which at time t are in the region Ωt must have got there some-
how so they are the end points of some phase space trajectories. These trajectories
we find by back-solving the equations of motion. Because of T-invariance those
backward trajectories are the same as the forward trajectories and so at time t = 0
the backward trajectories end in the region Ω0.

This fact has consequence for the Boltzmann distribution function∫
Ω0

f(r,v, t = 0)d3rd3v =

∫
Ωt

f(r,v, t)d3rd3v

The integration variables at the right-hand side can be denoted arbitrarily, so let
us denote them as rt,vt and we write∫

Ω0

f(r,v, t = 0)d3rd3v =

∫
Ωt

f(rt,vt, t)d
3rtd

3vt

In the integral at the right-hand side we perform a substitution. The variables rt,vt
will be substituted by variables r0,v0. The substitution relations will be those of
(8.1),

vt = v0 +
F

m
t

rt = r0 + v0t+
1

2

F

m
t2

When the ”old” variables rt,vt run through the region Ωt, the ”new” variables
r0,v0 run through the regionΩ0 and we get∫

Ω0

f(r,v, t = 0)d3rd3v =

∫
Ω0

f(rt,vt, t)J d
3r0d

3v0
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It is understood that the variables rt,vt are expressed through the integration vari-
ables r0,v0 and J is the Jacobian of the substitution transformation

According to the Liouville theorem

J = 1

a so we get ∫
Ω0

f(r,v, t = 0)d3rd3v =

∫
Ω0

f(rt,vt, t) d
3r0d

3v0

Now we change the notation of the integration variables on the left-hand side for
r0,v0 and we get∫

Ω0

f(r0,v0, t = 0)d3r0d
3v0 =

∫
Ω0

f(rt,vt, t) d
3r0d

3v0

This relation holds for an arbitrary region of integration Ω0 thus the integrands
must be equal

f(r0,v0, t = 0) = f(rt,vt, t)

This relation holds for arbitrary t, therefore

d

dt
f(rt,vt, t) = 0

From there we get the ”Boltzmann equation without the right-hand side”

∂

∂t
f + v.

∂

∂r
f +

F

m
· ∂
∂v

f = 0

This equation holds for ideal gas when we neglect collisions between molecules.
In a general case the following equation holds

∂

∂t
f + v.

∂

∂r
f +

F

m
· ∂
∂v

f = Dcf

where at the right-hand side one writes so called collision term, which we shall
discuss later. The differential operator at the left-hand side is usually denoted as
D

D =
∂

∂t
+ v.

∂

∂r
+
F

m
· ∂
∂v

And the Boltzmann equation is then written in a compact form

Df = DCf
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8.3 Boltzmann equation in the relaxation time ap-
proximation

Molecules in gas collide with each other. Let us suppose that the collisions are
independent and express the probability that a given particle collides with some
other particle in the next infinitesimal time interval dt as

1

τ
dt

We denote as P(t) the probability that the given particle does not collide in the
time interval t from the present moment. Then

P(t+ dt) = P(t)(1− 1

τ
dt)

This differential equation has the solution

P(t) = exp(−t/τ)

Now let us denote as P (t)dt the probability that the given particle collides for the
first time (from now) at the time interval(t, t+ dt). Then

P (t)dt =
1

τ
exp(−t/τ)dt

This probability is (of course) correctly normalized as∫
dtP (t) = 1

The mean time up to the next collision is given as

〈t〉 =

∫
dt tP (t) = τ

This time is also called ”mean time between two collisions” and one can easily
check that the notion is correct. Indeed, due to independence of collisions the
”mean time between two collisions” and the ”mean time from now to the next
collision” is the same. If the collisions are independent, then the two notions ”from
now” and ”from now, when the particle just collided” have the same meaning what
concerns future.

Now we shall describe a simple approximate way how to include collisions into
the Boltzmann equation. To simplify the explanation, let us assume the gas con-
sidered lives in a one-dimensional world without external field. In such a world
the molecules between collisions move uniformly (and linearly, but everything is
linear in a one-dimensional world).
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The expression
f(x, v, t)dxdv

gives the number of molecules which in the time moment t are in the position
interval (x, x + dx) and have velocities from the interval (v, v + dv). Let us ask
where these molecules were in past in the time moment t − t′, t′ > 0. If there
are no collisions then during the time t′ they moved uniformly and so at the time
moment t− t′ they had velocity v′ = v and were positioned in the neighbourhood
of the point x′ = x− vt′. Using the Liouville theorem we get

dx dv = dx′ dv′

and thus the identity

f(x, v, t) = f(x− vt′, v, t− t′)

If particles collide, then every particle which at the time t is at the phase-space
point (x, v) sa collided somewhere sometimes the last time before the arrival to
the point (x, v). After that last collision the particle moved uniformly. So in that
last collision the particle has to obtain just the velocity v and if the last collision
happened at the time t− t′, then the collision must have happened at the position
x′ = x − vt′. Each particle comes from the point of its last collision, so we can
write

f(x, v, t) =

∫
dt′f̃(x− vt′, v, t− t′) exp(−t

′

τ
)

Where f̃(x, v, t)dx dv dt gives the number of particles which at time t are in the
interval (x, x + dx), have velocity from (v, v + dv) and in the infinitesimal time
interval (t − dt, t) they just collided, so the velocity v was obtained just in that
collision. Other molecules which at the time t are present in the interval (x, x+dx)
with velocity from (v, v+dv) are those which did not just collide and their number
is

f(x, v, t)dxdv

The normalization is the following

dt dx

∫
dvf̃(x, v, t) =

dt

τ
dx

∫
dvf(x, v, t)

Now the question is how f̃ depends on velocity. Here we make a strong assump-
tion that the distribution f̃ , describing those particles which have just collided
is Maxwellian By that we assume that the particles which just collided are ther-
malized, so they are a sample from some equilibrium distribution, which is the
Maxwell distribution.

We get the expression for the Boltzmann distribution in the form of integral through
the trajectory

f(x, v, t) =

∫
dt′

1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
)
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where the index 0 denotes, that the function is Maxwellian what means

f0(x, v) = n(x)

(
mβ(x)

2π

)3/2

exp(−1

2
β(x)v2)

If the functions β(x), n(x) were known, then the above integral would explic-
itly define the Boltzmann distribution function. These function, however, are not
known a priori. That means that the integral represents a selfconsistent equation,
which determines the function f my through β(x) a n(x), but these functions are
determined through f via the consistency equations

n(x) =

∫
dv f(x, v)

1

2

1

β(x)
=

∫
dv

1

2
mv2f(x, v)

Now we derive a differential equation satisfied by the Boltzmann function as de-
fined by the integral through the trajectory. We write the expression defining f for
two close points in the phase space which are connected by a particle trajectory.
We shall assume the external field is zero, to get simple solutions for the trajectory.

f(x, v, t) =

∫
dt′

1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
)

f(x+ v dt, v, t+ dt) =

∫
dt′

1

τ
f0(x− vt′ + v dt, v, t+ dt− t′) exp(−t

′

τ
)

In the second expression we make the substitution t′′ = t′ − dt and we get

f(x+ v dt, v, t+ dt) =

∫ ∞
−dt

dt′′
1

τ
f0(x− vt′′, v, t− t′′) exp(−t

′′ + dt

τ
)

We expand the exponential up to the first order and write t′ instead of t′′. We get

f(x+ v dt, v, t+ dt) =

∫ ∞
−dt

dt′
1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
) +

+

∫ ∞
−dt

dt′
1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
)
dt

τ

In the second integral the integrand is of the first order in dt so we can shift the
lower limit infinitesimally and get

f(x+ v dt, v, t+ dt) =

∫ ∞
−dt

dt′
1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
) +

−dt
τ

∫ ∞
0

dt′
1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
)
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We subtract the expression for f and get

f(x+ v dt, v, t+ dt)− f(x, v, t) =

∫ 0

−dt
dt′

1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
) +

−dt
τ

∫ ∞
0

dt′
1

τ
f0(x− vt′, v, t− t′) exp(−t

′

τ
)

=
dt

τ
f0(x, v, t)− dt

τ
f(x, v, t)

We have got the equation

Df = −f − f0

τ

Boltzmann equation with this choice of the collision term at the right-hand side
is called Baltzmann equation in the approximation of relaxation time and is usu-
ally just postulated after presenting a few more-or-less plausible arguments. Our
approach presented here is taken from Reif.

8.4 Heat conduction in the approximation of relax-
ation time

As an illustration we present here the problem of energy (”heat”) conduction in
a pipe filled with gas, which is inserted between two thermal reservoirs, one at
temperatureT1, the other at temperature T2. After certain time a stationary regime
is established: a constant energy current will flow from the hotter end towards
the colder end. Along the pipe a time-constant temperature distribution will be
formed, with temperature linearly decreasing from the hotter end towards the
colder one.

We shall be looking for the Boltzmann distribution function f(x,−→v ), which is
stationary, that is it does not depend on time explicitly. Non-trivial spatial distri-
bution develops only along the pipe axis, in the direction of the energy flow. We
select the x-axis to be in this direction.

We look for the solution of the equation

f(x,−→v ) =

∫
dt′

τ
exp(−t

′

τ
)f0(x− vxt′,−→v )

where f0 has the form of the Maxwell distribution

f0(x,−→v ) = n(x)

(
mβ(x)

2π

)3/2

exp(−1

2
β(x)−→v 2)
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β(x) and n(x) are unknown functions which should be found while solving for f .
They correspond to the distribution function f(x,−→v ) as follows

n(x) =

∫
d3−→v f(x,−→v )

3

2

1

β(x)
=

∫
d3−→v 1

2
m−→v 2f(x,−→v )

The trick leading to the solution is to do the per-partes transformation

f(x,−→v ) = f0(x,−→v ) +

∫
df0

dt′
exp(−t

′

τ
)dt′

Next one has to realize that formally we are integrating through the region (0,∞),
but practically only through the interval of the order (0, τ). Outside this interval
the integrand is exponentially small Performing the differentiation with respect to
t′ we get

f(x,−→v ) = f0(x,−→v )

+

∫ (
− dn

ndx
vx −

3

2

dβ

βdx
vx +

1

2
m−→v 2dβ

dx
vx

)
f0(x,−→v ) exp(−t

′

τ
)dt′

All the terms in the bracket are proportional to the mean free path vxτ , there-
fore the variable x in the integrand in functions n, β, f0 is no more shifted by
−vxt′.Such a shift would lead to corrections of higher order in τ .

The integration is therefore trivial and we get

f(x,−→v ) = f0(x,−→v ) + τ

(
− dn

ndx
vx −

3

2

dβ

βdx
vx +

1

2
m−→v 2dβ

dx
vx

)
f0(x,−→v )

We are interested only in the stationary situation, when there is no flow of particles
along the pipe. So we want a distribution function satisfying the relation

〈vx〉 =
1

n

∫
d3−→v vxf(x,−→v ) = 0

The distribution function is expressed through a Maxwell-like distributions, so all
the momenta will be expressed through the Maxwellian momenta which are

〈vx〉0 = 0

〈v2
x〉0 =

1

mβ

〈v4
x〉0 =

3

(mβ)2

〈v6
x〉0 =

3× 5

(mβ)3
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Using these relations we get

0 = 〈vx〉 = τ

(
− dn

ndx
〈v2
x〉0 −

3

2

dβ

βdx
〈v2
x〉0 +

1

2
m
dβ

dx
〈v4
x + v2

xv
2
y + v2

xv
2
z〉0
)

=
τ

mβ

(
− dn

ndx
+

dβ

βdx

)
From there

dn

ndx
=

dβ

βdx
nkT = const

This condition requires constant pressure along the pipe. So we do not have two
unknown functions β(x) and n(x),but only one. The second one is related to the
first one by the condition of constant pressure. By the way, from the external phys-
ical insight we also know the function β(x), since we know, that the temperature
will be a linear function of the coordinate x.

Let us now calculate the density of energy flow, which is given by the relation

jE =
1

2
nm〈−→v 2vx〉

jE =
1

2
nmτ

(
− dβ

βdx
〈−→v 2v2

x〉0 −
3

2

dβ

βdx
〈−→v 2v2

x〉0 +
1

2
m
dβ

dx
〈−→v 2−→v 2v2

x〉0
)

=
1

2
nmτ

(
−25

2

1

(mβ)2

dβ

βdx
+

1

2
m
dβ

dx
〈v6
x + 2v4

xv
2
y + 2v4

xv
2
z + v2

xv
4
y + v2

xv
4
z + 2v2

xv
2
yv

2
z〉0
)

=
5τ

(mβ)2

dβ

dx

=
5

2

τk2Tn

m

(
−dT
dx

)
So the coefficient of the heat conduction is

κ =
5

2

τk2Tn

m

8.5 More examples

See also [Reif] (str. 494-513), [Huang] (str. 96-98, 107).

Exercise
Calculate the viscosity coefficient for dilute gas from the Boltzmann equation in
the relaxation time approximation.
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• Let us denote the chaotic velocities of molecules as
vx, vy, vz. Let only the vx has a non-zero mean (drift) value
Vx. Let us denote the velocities from which the drift (mean
value) is subtracted as ux, uy, uz. Let us suppose, that the drift
velocity is a function of the z coordinate (see figure). Phe-
nomenologically we know, that the tangential tension (force acting tangentially
on a unit area) is Fx = −η ∂Vx/∂z. The coefficient η is called viscosity.

The viscosity force is generated by molecules which,
due to their random motion in perpendicular (to the di-
rection of drift) direction move between the layers of
gas having different drift velocities. Molecules from
a fast layer come to a slow layer bringing with them
their high drift momentum and therefore they accelerate the slow layer. Oppo-
sitely, molecules from a slow layer come to a fast layer thus decelerating the fast
layer. An effective tangential tension between the slow and the fast layer develops.

According to the Newton law, the tension is given by the transfer (in the direction
of z) of the x-coordinate of momentum per unit of time and unit of area.

So we have to calculate how many molecules cross the tangential unit area per
unit of time and how much longitudinal momentum they transfer. According to
the figure at right the number ddN molecules which cross the area ddS at the
point mbmr during the time ddt is given as

dN = dS dt

∫
(n · v)f(v) dv = n〈n · v〉 dS dt.

Here n =
∫
f dv. In our case n · v = vz = uz. Each molecule which crosses the

area carries its longitudinal momentum with it, so the net longitudinal momentum
transfer we get by summing contributions from each individual molecule. One just
has to have in mind, that one needs the transfer across the area which is comov-
ing (with the drift velocity Vx(z)) with the gas layer. So the momentum Preto je
m(vx − Vx(z)) = mux is relevant. In this way we get

F ′x = mn〈uxuz〉 = m

∫
uxuzf dv ≡ m

∫
uxuz

(
f (0) + g

)
dv,

where the Boltzmann distribution was written as a sum of the the equilibrium
distribution f (0) and a small correction g. The momentum transfer driven by the
correction g, the transfer would be zero for equilibrium distribution. The non-
equilibrium correction g should be obtained from the Boltzmann equation in the
relaxation time approximation. The external forces are zero and we are looking for
the stationary situation, therefore there is no explicit time dependence. Therefore
the left-hand size of the Boltzmann equation has only one term and we get

v · ∇f =
f (0) − f

τ
=⇒ v · ∇f (0) .= −g

τ
.
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The equilibrium distribution is a Maxwell distribution with velocity drift

f (0)(r,v, t) = n
( m

2πT

)3/2

exp
[
−1

2
βm
(
v − V (z)

)2
]
.

Differentiating with respect to z we get

g = τβmvz(vx − Vx)
∂Vx
∂z

f (0) = τβmuzux
∂Vx
∂z

f (0).

Here vz = uz since Vz = 0.

F ′x =
∂Vx
∂z

βτm2

∫
u2
xu

2
zf

(0) dv =
∂Vx
∂z

βτm2

∫
u2
xu

2
zf

(0) du.

Viscosity η is just the coefficient at the velocity gradient. The integral can be done
explicitly. Denoting f (0) = C exp[. . .] we get

η = Cβτm2

∫
u2
xu

2
z exp

[
−mβ(u2

x + u2
y + u2

z)/2] du =

= Cβτm2
(∫

u2
x exp[−mβu2

x/2] dux

)2

×
(∫

exp[−mβu2
y/2] duy

)
=

= Cβτm2

(
∂

∂a

√
π/a

)2√
π/a = n

(
mβ

2π

)3/2

βτm2 1

4
πa−3

√
π/a =

nτ

β
.

where we used the notation a ≡ mβ/2.

Combining the result just obtained with the result for heat conduction λ = 5cvnτ/2β
(where cv = Cv/M ) we can check the validity of the relaxation time approxima-
tion. The point is that the value of τ we can estimate just very roughly, but the
ratio λ/ηcv = 2,5 is independent on τ . This ratio is compared with experimental
values in the following table ([McQ])

látka Ne Ar Kr N2 CO2 CH4 C2H6

λ/ηcv 2,5 2,5 2,5 1,89 1,67 1,89 1,45

Exercise
In the relaxation time approximation calculate the electric conductivity of gas.
Calculate also the electric conductivity of electrons in metal.

• Let us consider the gas of molecules with the mass m charge e in uniform
external electric field ε in the direction of the z-axis. Since everything is homoge-
nous and stationary, the distribution function f will be independent of position
and time. The force acting on molecules has only the z-component different from
zero, so the Boltzmann equation will be

eε

m

∂f (0)

∂vz
= −g

τ
=⇒ g =

eετ

m

∂f (0)

∂vz
= −eετvz

∂f (0)

∂E
.
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Here E je the energy of the particle. For Maxwell distribution we get ∂Ef (0) =
−βf (0).

So we have got the non-equilibrium distribution function; now we need to calcu-
late the corresponding transfer process. Clearly

jz = e

∫
fvz dv = e

∫
gvz dv.

Then σel = jz/ε. The final result is σel = ne2τ̄ /m.

Now the second part of the exercise, the conduction electrons in a metal. The
difference from a dilute classical gas is, that the equilibrium distribution is not the
Maxwell distribution but the Fermi Dirac.

f (0) ∼
(
eβ(E−µ) + 1

)−1
.

We need the derivative ∂Ef (0). The electron gas is highly degenerate, the Fermi
distribution function is practically constant with respect to energy except of the
region around the Fermi energy µ. The conduction is therefore caused only by
electrons whose energy is close to µ. The relevant relaxation time is therefore
that, corresponding to Fermi energy of electrons. The final result therefore is

σel = −e2τF

∫∫
dvx dvy

∫ ∞
−∞

∂f (0)

∂vz

vz
m

=

= −e
2τF
m

∫∫
dvx dvy

{[
f (0)vz

]∞
−∞ −

∫ ∞
−∞

f (0) dvz

}
=
ne2

m
τF .

Exercise
Show that the Maxwell-Boltzmann distribution is stationary solution of the Boltz-
mann equation.

8.6 Collision term

Without collisions the particles move on Newtonian trajectories and Boltzmann
equation without the right-hand side holds.

Df = 0

D =
∂

∂t
+ v.

∂

∂r
+
F

m
· ∂
∂v
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With collisions on the right-hand side there is the collision term

Df = DCf

To derive its shape we proceed as follows.

Let us imagine two infinitesimally close regions of the phase space such that they
are connected by Newtonian trajectories. If the regions have equal volumes, then
each trajectory which begins in the first region ends in the second region and
vice versa. When collision take place, the particles do not follow the Newtonian
trajectories. Some particles which start in the first region fall out of their trajectory
before arriving to the second region and never arrive at the second region. On the
other hand, some particles arrive to the second region which never started in the
first region. They change the velocity in a collision and get onto a trajectory which
leads to the second region somewhere between the two regions. The two regions
we are speaking about are infinitesimal regions around the phase space point r,v.

Let us firs consider a particle which collides in the point r which before the colli-
sion had velocity v. It collided with a particle which was present i the same space
point r and had before the collision velocity v1.

The definition of the collision cross section says that the number of such collisions
within a time interval dt in the volume element d3r is

D
(−)
C f(r,v, t)d3rd3vdt = rd3vdt

∫ ∫ ∫
d3v1d

3v′d3v′1

|v − v1|f(r,v, t)f(r,v1, t)σ(v,v1;v′,v′1)

We have integrated over the velocities after the collisions and also over the veloc-
ity v1, since we are just interested in the fact, that there was a particle with the
velocity v which escaped from the phase space point irrespective what happened
to it and its collision partner.

On the other hand, the number of collisions in the considered space volume ele-
ment such that one of the particles gained the velocity v after the collision is

D
(+)
C f(r,v, t)d3rd3vdt = rd3vdt

∫ ∫ ∫
d3v1d

3v′d3v′1

|v′ − v′1|f(r,v′, t)f(r,v′1, t)σ(v′,v′1;v,v1)

The energy momentum conservation gives

|v − v1| = |v′ − v′1|

and P,T invariance of the collision process gives

σ(v,v1;v′,v′1) = σ(v′,v′1;v,v1)
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The total collision term will be

DC = D
(+)
C −D(−)

C

and so

DCf(r,v, t) =

∫ ∫ ∫
d3v1d

3v′d3v′1

|v′ − v′1|(f(r,v′, t)f(r,v′1, t)− f(r,v, t)f(r,v1, t))σ(v′,v′1;v,v1)

The notation is usually make shorter as

DCf(r,v, t) =

∫ ∫ ∫
d3v1d

3v′d3v′1|v′ − v′1|(f ′f ′1 − ff1)σ

when we added to the symbol f the index and/or prime sign according to what
velocity is to be inserted into the function f as the velocity variable.

8.7 Conservation laws

Let us consider som one-particle physical quantity χ(r,v, t). By that we mean a
quantity which has the value χ when a particle is found at the time t in the phase-
space point r,v. Then the mean value of the quantity χ in the space point r atr
time t will be

〈χ(r, t)〉 =
1

n(r, t)

∫
d3vf(r,v, t)χ(r,v, t)

where
n(r, t) =

∫
d3vf(r,v, t)

Let us start from the Boltzmann equation

Df = DCf

We get ∫
d3vχDf =

∫
d3vχDCf

At the left-had side we get several term which we rewrite as follows∫
d3vχ

∂f

∂t
=

∫
d3v[

∂

∂t
(fχ)− f ∂χ

∂t
] =

∂

∂t
(n〈χ〉)− n〈∂χ

∂t
〉

∫
d3v v · ∂f

∂v
χ =

∫
d3v vα

∂f

∂xα
χ =

∂

∂xα
(n〈vαχ〉)− n〈vα

∂χ

∂xα
〉
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The third term we rewrite assuming that external forces are independent of veloc-
ities ∫

d3v
F

m
· ∂f
∂v

χ =

∫
d3v [

∂

∂vα
(
Fα
m
fχ)− Fα

m
f
∂χ

∂vα
]

Here the first term after the integration gives zero on the integration boundaries
and so we get ∫

d3v
F

m
· ∂f
∂v

χ = −Fα
m
n〈 ∂χ
∂vα
〉

Now we look at the right-hand side of the Boltzmann equation.∫
d3vχDCf =

∫ ∫ ∫ ∫
d3vd3v1d

3v′d3v′1(f ′f ′1−ff1)|v−v1|σ(v,v1;v′,v′1)χ(r,v, t)

We change the notation for the integration variables v ↔ v1 and v′ ↔ v′1. We get∫
d3vχDCf =

∫ ∫ ∫ ∫
d3vd3v1d

3v′d3v′1(f ′f ′1−ff1)|v1−v|σ(v1,v;v′1,v
′)χ(r,v1, t)

This change of notation, however, does not change the values neither of the rela-
tive velocity, nor of the cross section, so we get∫

d3vχDCf =
1

2

∫ ∫ ∫ ∫
d3vd3v1d

3v′d3v′1(f ′f ′1 − ff1)|v1 − v|σ(χ+ χ1)

where for the quantity χ we used the same short notation as for f , that is we
used indices to denote what velocity should be used as the variable in the function
evaluation.

Let us use further symmetry of the above relation: we change variables v ↔ v′

and v1 ↔ v′1. This gives the inverse collision which has the same cross section
and we finally get∫
d3vχDCf =

1

4

∫ ∫ ∫ ∫
d3vd3v1d

3v′d3v′1(f ′f ′1−ff1)|v1−v|σ(χ′+χ′1−χ−χ1)

The result is particularly interesting when the quantity χ is conserved in collisions.
Then

χ′ + χ′1 − χ− χ1 = 0

and so ∫
d3vχDCf = 0

We get the equation

∂

∂t
〈nχ〉+

∂

∂xα
〈nvαχ〉 = n〈Dχ〉

where D is the same differential operator as appears in the left-hand side of the
Boltzmann equation.

In general, three conservation laws hold for particle collisions
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• conservation of mass χ = m

• conservation of momentum χ = mvα, α = 1, 2, 3

• conservation of kinetic energy χ = 1
2
mv2

The mass conservation gives the equation

∂

∂t
〈nm〉+

∂

∂xα
〈nmvα〉 = 0

The quantity n is independent of velocities, so it can be taken in front of the
averaging angle brackets and we get

∂ρ

∂t
+

∂

∂xα
ρ〈vα〉 = 0

If the mean velocity (drift) is denoted as

u = 〈v〉

we get the equation of continuity

∂ρ

∂t
+∇.(ρu) = 0

The momentum conservation gives the equation

∂

∂t
〈nmvγ〉+

∂

∂xα
〈nmvαvγ〉 = 〈nm Dvγ〉 = nm〈Fα

m

∂vγ
∂vα
〉

If the external force does not depend on velocity we get

∂

∂t
(ρuγ) +

∂

∂xα
(ρ〈vαvγ〉) =

Fγ
m

We separate now the chaotic and the drift velocity

v = u+U

then
(〈vαvγ〉 = uαuγ + 〈UαUγ〉

We introduce the tensor of tensions as

Pαγ = ρ〈UαUγ〉

and we get the Euler hydrodynamic equation

∂

∂t
(ρuγ) +

∂

∂xα
(ρuαuγ) = −∂Pαγ

∂xα
+
Fγ
m
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8.8 H-theorem

Let us consider the Boltzmann distribution function satisfying the Boltzmann
equation with the collision term on the right-hand side.

Df = DCf

where
Df =

∂

∂t
f + v.

∂

∂r
f +

F

m
· ∂
∂v

f

and
DCf =

∫
d3v1d

3v′d3v′1|v − v1|(f ′f ′1 − ff1)σ(v,v1;v′,v′1)

Let us now investigate the expression

H(t) =

∫
d3rd3vf(r,v, t) ln(f(r,v, t))

Let us study its dependence on time

d

dt
H(t) =

d

dt

∫
d3rd3vf(r,v, t) ln(f(r,v, t))

Before we apply the differential operator on the integrand we make a simple trick.
We change the notation for integration variables

H(t) =

∫
d3rtd

3vtf(rt,vt, t) ln(f(rt,vt, t))

where we introduced a formal index t. Now we make a substitution in the inte-
gral so that instead of variables rt,vt we introduce new variables r0,v0 via the
relations

rt = R(r0,v0, t)

vt = V (r0,v0, t)

where the functions R(r0,v0, t) and V (r0,v0, t) denote solutions of the Newton
equations of motion with initial conditions r0,v0. The Jacobian of this transfor-
mation is equal to unity, the integration region is again the whole phase space, so
we get

H(t) =

∫
d3r0d

3v0f(R(r0,V (r0,v0, t), t),vt, t) ln(f(R(r0,V (r0,v0, t), t),vt, t))

Now we pull in the time differential operator under the integral and we get the
Boltzmann operator D

d

dt
H(t) =

∫
d3r0d

3v0(Df) ln(f) +

∫
d3r0d

3v0Df
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The second integral is zero, since it represents the time derivative of the total
number of particles. In the first integral we use the Boltzmann equation and we
get

d

dt
H(t) =

∫
d3r0d

3v0 ln(f)DCf

Now we make the ”inverse trick” and we go over to integration variable r,v and
we get

d

dt
H(t) =

∫
d3rd3vd3v1d

3v′d3v′1 ln(f)|v − v1|(f ′f ′1 − ff1)σ(v,v1;v′,v′1)

Now we proceed the same way as we did while deriving the continuity equation
we get

d

dt
H(t) =

1

4

∫
d3rd3vd3v1d

3v′d3v′1 ln(
ff1

f ′f ′1
)|v−v1|(f ′f ′1−ff1)σ(v,v1;v′,v′1)

d

dt
H(t) = −1

4

∫
d3rd3vd3v1d

3v′d3v′1|v−v1|ff1 ln(
f ′f ′1
ff1

)(
f ′f ′1
ff1

−1)σ(v,v1;v′,v′1)

The logarithmic function satisfies the inequality (draw the graph of the function)

ln(x)(x− 1) ≥ 0

and so we get
d

dt
H(t) ≤ 0

The function H(t) monotonically decreases with time and when 9it reaches the
minimum it stays constant. This is the statement of so called Boltzmann theorem.
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Chapter 9

Kinetic equations

9.1 Langevin equation

The Langevin equation describes movement of a classical particle in the field of a
random force.

m
dv

dt
= F + f(t)

where F is deterministic external force and f(t) is a random force describing
for example influence of the collisions of the observed particle with surrounding
molecules. The typical correlation time for that force is of the order 10−13s.

We investigate the problem by introducing statistical ensembles. So let as imagine
an ensemble where v̄ is the same for all the ensemble members and the ensemble
averages of the fluctuating force is f̄ So we have

f = f̄ + f ′

If v = 0 then f̄ = 0 because there is no preferred direction. Therefore in the
lowest approximation tho following must hold

f̄ = −αv

and we get the Langevin equation

m
dv

dt
= F − αv + f ′

To simplify the calculations let us consider one-dimensional case without external
deterministic force. We get

m
dẋ

dt
= −αẋ+ f ′
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mx
dẋ

dt
= −αxẋ+ xf ′

m[
d

dt
(xẋ)− ẋ2] = −αxẋ+ xf ′

Averaging we get (since 〈f ′〉 = 0 independently ox x and ẋ

m〈 d
dt

(xẋ)〉 = 〈mẋ2〉 − α〈xẋ〉

d

dt
〈xẋ〉 =

kT

m
− α

m
〈xẋ〉

Denoting

ϕ(t) = 〈xẋ〉 − kT

α

we get the equation
ϕ̇(t) = − α

m
ϕ(t)

〈xẋ〉 = C exp(−γt) +
kT

α

where
γ =

α

m

Let us suppose, that all the particles in the ensemble start at x = 0, ẋ = 0. Then

0 = C +
kT

α

〈xẋ〉 =
kT

α
(1− exp(−γt))

d

dt
〈x2〉 =

kT

α
(1− exp(−γt))

〈x2〉 =
2kT

α
(t− 1

γ
(1− exp(−γt)))

This means that for t < 1
γ

〈x2〉 =
kT

m
t2

and for t� 1
γ

〈x2〉 =
2kT

α
t

For strong dumping we can neglect in the Langevin equation the inertial term and
we get a Aristotle type of equation

0 = −αẋ+ f ′
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ẋ =
1

α
f ′

x(t) = x(0) +

∫ t

0

dτ
f ′(τ)

α

For the initial condition x(0) = 0 we get

〈x2(t)〉 =
1

α2

∫ t

0

dτ1dτ2〈f ′(τ1)f ′(τ2)〉

Now the correlation depends only on the time difference and we get

〈x2(t)〉 =
1

α2

∫ t

0

d
τ1 + τ2

2
d(τ1 − τ2)〈f ′(0)f ′(τ1 − τ2)〉

〈x2(t)〉 =
t

α2

∫ ∞
−∞

dτ〈f ′(0)f ′(τ)〉

where we extended the region of integration formally to (−∞,∞) since the cor-
relation function is different from zero only on a very small interval and so the
integration region does not play any role.

We, however, know from previous calculation that

〈x2〉 =
2kT

α
t

and comparing the two results we get

α =
1

2kT

∫ ∞
−∞

dτ〈f ′(0)f ′(τ)〉

So the dissipation coefficient α is given by the correlations of the fluctuation force.
This is so called fluctuation-dissipation theorem.

Now we return back to the expression

x(t) =

∫ t

0

dτ
f ′(τ)

α

The integral is the sum of many random variables, so x(t) must be normally dis-
tributed with zero mean and variance

〈x2〉 =
2kT

α
t

so the distribution is

ρ(x, t) =
1

4πDt
exp(− x2

4Dt
)

where
D =

kT

α
This is called Einstein dissipation theorem. The distribution density satisfies the
diffusion equation

∂ρ

∂t
= D4ρ
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Chapter 10

Appendix

10.1 Mean particle density

Now we shall discuss the fact, that it is quite trivial to speak about the density of
particles around some space point r but there are some quite non-trivial things
hidden behind.

Let us consider gas consisting of N particles. We cannot know the microstate of
the gas but we can use the technique of statistical ensemble. So let us consider an
ensemble of equal systems each system being in some particular microstate. The
ensemble we describe statistically, with the help of some N -particle probability
density

ρN(r1, r2, . . . , ri, . . . , rN)

We shall assume that the particles are identical but distinguishable, so we can
index them. We shall not consider the particle velocities (we have integrated over
the velocities). The probability density to find particle 1 in the point r is given by
the marginal distribution

ρ1(r) =

∫
ρN(r1, r2, . . . , ri, . . . , rN) d3r2 d

3r3 . . . d
3rN

Since all the particles are identical the probability density for the second particle
is given by the same one-particle distribution function ρ1(r).

Now we argue that the mean particle density around the point r will be

n(r) = Nρ1(r)

This statement is almost obvious, a formal prove needs some work.
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Figure 10.1: Integration regions

Let us divide the whole volume containing the gas to two regions I, and II, as seen
in the figure 10.1. Let us ask what is the mean number of particles in the region
I. Let us introduce the characteristic function χ(r). This function is equal to one
inside the region I and equal to zero in region II. The characteristic function χ̃(r)
of region II is then χ̃(r) = 1− χ(r)

For simplicity let us consider a gas with just three particles. Then the mean number
of particles in region I can be expressed as

N I =

∫
d3r1 d

3r2 d
3r3[0× ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ̃(r3) +

+ 1× ρ3(r1, r2, r3)χ(r1)χ̃(r2)χ̃(r3) +

+ 1× ρ3(r1, r2, r3)χ̃(r1)χ(r2)χ̃(r3) +

+ 1× ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ(r3) +

+ 2× ρ3(r1, r2, r3)χ(r1)χ(r2)χ̃(r3) +

+ 2× ρ3(r1, r2, r3)χ(r1)χ̃(r2)χ(r3) +

+ 2× ρ3(r1, r2, r3)χ̃(r1)χ(r2)χ(r3) +

+ 3× ρ3(r1, r2, r3)χ(r1)χ(r2)χ(r3)]
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Let us introduce not an auxiliary variable t and then set it to one. We get

N I =

∫
d3r1 d

3r2 d
3r3

[ 0× ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ̃(r3) +

+ 1 t0 × ρ3(r1, r2, r3)χ(r1)χ̃(r2)χ̃(r3) +

+ 1 t0 × ρ3(r1, r2, r3)χ̃(r1)χ(r2)χ̃(r3) +

+ 1 t0 × ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ(r3) +

+ 2 t1 × ρ3(r1, r2, r3)χ(r1)χ(r2)χ̃(r3) +

+ 2 t1 × ρ3(r1, r2, r3)χ(r1)χ̃(r2)χ(r3) +

+ 2 t1 × ρ3(r1, r2, r3)χ̃(r1)χ(r2)χ(r3) +

+ 3 t2 × ρ3(r1, r2, r3)χ(r1)χ(r2)χ(r3)] for t = 1

N I =
d

dt
{
∫
d3r1 d

3r2 d
3r3

[ t0 × ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ̃(r3) +

+ t1 × ρ3(r1, r2, r3)χ(r1)χ̃(r2)χ̃(r3) +

+ t1 × ρ3(r1, r2, r3)χ̃(r1)χ(r2)χ̃(r3) +

+ t1 × ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ(r3) +

+ t2 × ρ3(r1, r2, r3)χ(r1)χ(r2)χ̃(r3) +

+ t2 × ρ3(r1, r2, r3)χ(r1)χ̃(r2)χ(r3) +

+ t2 × ρ3(r1, r2, r3)χ̃(r1)χ(r2)χ(r3) +

+ t3 × ρ3(r1, r2, r3)χ(r1)χ(r2)χ(r3)]} pre t = 1

N I =
d

dt
{
∫
d3r1 d

3r2 d
3r3

[ ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)χ̃(r3) +

+ ρ3(r1, r2, r3)tχ(r1)χ̃(r2)χ̃(r3) +

+ ρ3(r1, r2, r3)χ̃(r1)tχ(r2)χ̃(r3) +

+ ρ3(r1, r2, r3)χ̃(r1)χ̃(r2)tχ(r3) +

+ ρ3(r1, r2, r3)tχ(r1)tχ(r2)χ̃(r3) +

+ ρ3(r1, r2, r3)tχ(r1)χ̃(r2)tχ(r3) +

+ ρ3(r1, r2, r3)χ̃(r1)tχ(r2)tχ(r3) +

+ ρ3(r1, r2, r3)tχ(r1)tχ(r2)tχ(r3)]} for t = 1

N I =
d

dt

∫
d3r1 d

3r2 d
3r3ρ3(r1, r2, r3)(tχ(r1)+χ̃(r1))(tχ(r2)+χ̃(r2))(tχ(r3)+χ̃(r3))

pre t=1
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Now explicitly differentiate under the integral ant set t = 1. We get

nI =

∫
d3r1 d

3r2 d
3r3ρ3(r1, r2, r3)(χ(r1) + χ(r2) + χ(r3))

Where we used the equality
χ(r) + χ̃(r)

We can integrate over two variables and we get

N I = 3

∫
d3r1ρ1(r1)χ(r1)

If we are interested in mean density and not in mean number of particles, we have
to divide by the volume of the region I and we get

nI = 3

∫
d3r1ρ1(r1)χ(r1)∫

d3r1χ(r1)

For infinitesimal region around r we get

χ(r1)∫
d3r1χ(r1)

→ δ(bmr − r1)

and so
n(r) = 3ρ1(r)

The generalization to arbitrary N is trivial.
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