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Pravidlá

Maximálny počet bodov za semester 40, za skúšku 60 (písomka 35, ústna 25)
Hodnotenie: >85 A, >75 B, >65 C, >55 D, >45 E, inak Fx
Súčet bodov za semester plus skúšková písomka musí byť > 45 pre pripustenie 
k ústnej skúške. To znamená, že za semester treba získať >10 bodov !!! pre 
pripustenie ku skúške.

Na každom cvičení krátka písomka, spolu 20 bodov/semester
Z každého cvičenia domáca úloha, nezapočítava sa, ale nepodceňujte to !!!! 
Krátke písomky spravidla budú súvisieť s úlohami zadanými na 
predchádzajúcom cvičení.
Midterm písomka 10 bodov
Endterm písomka 10 bodov
Sú aj dobrovoľné výberové cvičenia ako samostatný predmet.
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Strašenie

• Nepodceňujte prácu počas semestra

• Dôraz je na pochopenie, nie na naučenie

• ale Rátajte veľa drilovacích príkladov

• Dodatkové výberové cvičenia

• S malým počtom bodov za semester sa skúška nedá urobiť

http://davinci.fmph.uniba.sk/~cerny1/

Na tej stránke budú postupne pribúdať prednášky pre tento semester. Ale sú 

tam všetky prednášky, tak ako odzneli v minulom roku v zimnom aj letnom 

semestri. Sú tam aj .pptx s originálnym záznamom zvuku, ako naozaj 

odznel na prednáške. 

http://davinci.fmph.uniba.sk/~cerny1/
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• okamih (stav systému) možno zaznamenať a na základe záznamu 
ho zrekonštruovať

• časový vývoj systému je časová postupnosť stavov (okamihov)
• časový vývoj systému je možné predpovedať, vychádzajúc zo 

znalosti počiatočného stavu. 
• Technológiou predpovede budúcnosti sú matematické pohybové 

rovnice. Časový vývoj hľadáme ako riešenie pohybových rovníc, 
ktoré spĺňa počiatočnú podmienku (stav na začiatku je známy 
počiatočný stav)

Programové vyhlásenie fyziky

Systém, stav, zmena stavu, časový vývoj
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Častica (hmotný bod) ako fyzikálny systém

Stav častice: (možno zadať aj pomocou dvoch vektorov)

• poloha 
• rýchlosť

Stav častice (hmotného bodu) viem zaznamenať pomocou šestice čísel 

x

y

vx

vy
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Nerovnomerný pohyb (po priamke)

rýchlosť ?
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Newtonov trik

Ak sa pozrieme na dostatočne 
malý úsek grafu pri vhodnom 
zväčšení, vyzerá ako priamka

Opakovanie
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Výpočet urobíme vo veľmi 
maličkom okienku: zvolíme Δt 
tak malé, aby sa do toho okienka 
zmestilo, nájdeme príslušné Δx a 
vypočítame podiel, to čo 
dostaneme nazveme
okamžitá hodnota rýchlosti
lebo okienko „pokrýva len 
okamih“ 8

x 
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]
v 
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]



Neskôr exaktní matematici vybabrali s Newtonom, kritizujúc: čo to je za 
neexaktnú reč „tak malé Δt ako je rozumné“, to treba formulovať 
matematicky presne a definovali:
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Záver tejto dlhej diskusie:

Poloha častice je „jednookamihová záležitosť“, v každom 
okamihu častica „niekde je“.

Okamžitá rýchlosť častice je „dvojbodová“ (dvojokamihová) 
záležitosť, ale prakticky pripísateľná k jednému okamihu



Zovšeobecnenie pojmu rýchlosť
Rýchlosť narastania hocijakej veličiny

Newton: ako definovať pojem 
okamžitá rýchlosť zmeny nejakej veličiny

V okolí želaného okamihu zvolím tak malé Δt ako je rozumné a urobím 
podiel

potom I sa nazýva okamžitá rýchlosť zmeny veličiny Q, matematická 
definícia znie

Opakovanie
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zrýchlenie: 
rýchlosť s akou sa mení rýchlosť

Zrýchlenie



Súradnicový trpaslík (má 6 rúk a hodinky)
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Súradnicová sústava
vznikne tak, že trpaslíkov pomenujeme. Každý trpaslík 
dostane trojslovné meno
Najjednoduchšie mená sa trpaslíkom vytvoria 
pomocou trojice čísel. Jeden trpaslík (počiatok 
súradnicovej sústavy) dostane meno (0,0,0). Jeho 
pravý sused "v smere x" bude (1,0,0), ľavý (-1,0,0).
Horný sused bude (0,0,1) dolný (0,0,-1). Atď.
Mená trpaslíka udávajú súradnice "bodu v priestore"
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Súradnicová sústava
Mená trpaslíkov sme urobili celočíselné, ale môžeme si 
ich predstaviť veľmi maličkých, napríklad že vzdialenosti 
medzi nimi budú 10-12 m. Takže súradnice vyjadrené v 
metroch budú reálne čísla s 12 platnými desatinnými 
miestami, čo postačuje pre veľa fyzikálnych problémov.

Trpaslíci vzdialení od seba 10-35 m, to už nie je dobrý 
nápad. Máme dôvody domnievať sa, že vlastnosti 
nášho priestoru na tak malých vzdialenostiach sú 
radikálne iné
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Synchronizácia hodín
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Každý trpaslík ktorý vidí tesne okolo seba preletieť časticu (to je pre neho 
udalosť) urobí o tom záznam na lístok, na ktorý napíše svoje meno (x,y,z) a 
uvedie čas, ktorý ukazovali jeho hodiny pri tom prelete. Lístok pošle do 
ústredia, kde lístky zhromaždia a vyhodnotia

Prelet častice súradnicovou sústavou
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Ústredie dostalo lístky:
(1,2,7; 12:47)
(2,3,14; 12:48)
(3,4,21; 12:49)
(4,5,28,12:50)
...

t t t

x y z

12:48
18



t t t

x y z

12:48

Pohyb častice nazveme rovnomerný priamočiary, ak trpaslíkovské záznamy sa dajú 
„fitovať“ tak, že existujú tri konštanty také, že záznamy vyhovujú 
vzťahom
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t t t

x y z

12:48

Pohyb častice nazveme rovnomerný priamočiary, ak trpaslíkovské záznamy sa dajú 
„fitovať“ tak, že existujú tri konštanty také, že záznamy vyhovujú 
vzťahom

?

Hop, niečo sme zabudli! Podarí sa to takto, iba keď trpaslíci budú mať „dobré“ hodinky,
teda také, ktoré rovnomerne (pravidelne) tikajú. 20



Čo sú to dobré (rovnomerné, pravidelne tikajúce) hodinky

Také, že uplynie rovnako dlhý čas medzi tým čo ukážu 12:47 a potom 12:48,  ako medzi 
tým, čo ukážu 12:54 a potom 12:55

Ale čo je to „uplynie rovnako dlhý čas“?
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Čo sú to dobré (rovnomerné, pravidelne tikajúce) hodinky

Také že uplynie rovnako dlhý čas medzi tým čo ukážu 12:47 a potom 12:48,  ako medzi 
tým, čo ukážu 12:54 a potom 12:55

Ale čo je to „uplynie rovnako dlhý čas“?
• mám návod na výrobu hodín, ktoré majú gombík štart
• vyrobím dvojo hodín, dám ich vedľa seba
• jedny naštartujem, začnú tikať
• v okamihu, keď ukazujú číslo 1000, naštartujem druhé hodiny
• sledujem, či synchrónne ukazujú dvojice (1000, 0), (1001,1),

(1002,2), (1003,3), ...
• Ak áno, budem hovoriť, že idú rovnomerne, lebo tisíci tik trvá 

rovnako dlho ako prvý. Lebo „verím“ že prvý tik hodín 
naštartovaných v pondelok bude trvať rovnako dlho ako prvý 
tik hodín naštartovaných v stredu, ak sú vyrobené podľa 
rovnakého návodu
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Už vieme, čo to znamená „rovnomerne“ a „priamočiaro“

Skontrolujme teda naučenú stredoškolskú vetu:

Hmotný bod (častica), na ktorý nepôsobí žiadna sila, sa pohybuje rovnomerne 
priamočiaro alebo stojí.

Už vieme, čo tým hovoríme, ale zjavne to nie je pravda:

Trpaslíci, navzájom pochytaní za ruky, ktorí sedia v električke práve zahýbajúcej 
doľava a pozorujú guľu položenú na sedadle, uvidia, že guľa sa rozbehne doprava 
bez toho, že by na ňu niekto aktívne pôsobil silou. Trpaslíci, stojaci na zastávke a 
nazerajúci cez okno uvidia, že guľa pekne pokračuje v rovnomernom priamočiarom 
pohybe, ibaže električka pod ňou „uhla doľava“.

Záver: zákon zotrvačnosti sme zatiaľ sformulovali zle. Správne má byť takto:
Existuje súradnicová sústava, voči ktorej sa voľné hmotné body pohybujú 
rovnomerne priamočiaro (prípadne nulovou rýchlosťou). Taká sústava sa volá 
inerciálna.
Logický dôsledok: ak existuje jedna inerciálna sústava, potom je inerciálna i každá 
sústava, ktorá sa voči už identifikovanej inerciálnej sústave pohybuje (ako celok) 
rovnomerne priamočiaro.
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Ak chcete robiť fyziku a nenarobiť si 
zbytočné komplikácie, používajte len

inerciálne sústavy.
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Poznám priebeh rýchlosti v čase          , chcem určiť 

Dráha prejdená od času 𝑡 = 0 až po čas 𝑡 je

• opak derivácie funkcie 

• plocha pod krivkou 

Matematický poznatok: plocha pod krivkou sa dá vypočítať pomocou „opaku 

derivácie“.



Vyšetrime jednorozmerný pohyb, hmotný bod sa kĺže po osi x, 

ak je (by bol) v mieste x, 
pôsobí (pôsobila by) naň sila Fx(x)
funkcia Fx(x) je známa (máme nejakú teóriu)

x

Q>0
q<0Fx(x)

Príklad
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Ako mi znalosť funkcie Fx(x) umožňuje predpovedať budúcnosť

• Poznám počiatočný stav v čase t=0
• Poznám hodnotu
• Teda podľa Newtona poznám zrýchlenie v čase 0

• Zo známej rýchlosti viem vypočítať polohu za krátky okamih

• Zo známeho zrýchlenia viem vypočítať rýchlosť za krátky okamih

• V novej polohe viem vypočítať aké bude zrýchlenie v čase 
• Viem teda stav v budúcom čase dt a pokračujem rovnako do ešte budúcejšieho 

času 
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Reťazenie predpovedí budúcnosti
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Skladanie posunutí

Posuňme časticu, ktorá sa pôvodne nachádza v bode 𝑥, 𝑦, 𝑧 vektorom Ԧ𝑎 do bodu

𝑥′, 𝑦′, 𝑧′ a odtiaľ vektorom 𝑏 do bodu (𝑥′′, 𝑦′′, 𝑧′′).
Vektory posunutí sú

Celú operáciu môžeme vykonať jediným posunutím z bodu 𝑥, 𝑦, 𝑧 priamo do bodu 

(𝑥′′, 𝑦′′, 𝑧′′) pomocou vektora posunutia 

pričom platí

Vidno to hneď po dosadení súradníc.

Záver: 

Skladaniu posunutí zodpovedá súčet 

príslušných vektorov posunutia
To je tiež dôvod (ba možno hlavný), prečo bol súčet 

vektorov definovaný, ako bol. Teda cez súčet zložiek.

Pozor! Písmenom a tu neoznačujeme zrýchlenie ale posunutie. Písmen je málo! Pri 

čítaní treba rozmýšľať, nie fotografovať text do mozgu. 30



Alternatívne označenie

kde

Zavedieme symbol
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Majme teda výraz typu

Treba to vnímať takto. Na vstupe (na pravej strane) je vektor Ԧ𝑎 a pomocou matice 

𝐴𝑖𝑗 z neho vyrobíme nový vektor 𝑏. Hovoríme, že matica 𝐴𝑖𝑗 transformuje vektor Ԧ𝑎

na vektor 𝑏. Rozpíšme pre istotu ako vypočítame prvú zložku vektora 𝑏:

32

Zapíšme teraz všetko v maticovom (tabuľkovom) tvare

V zápise sme použili akoby znamienko súčinu, bodku. Tým sme akoby definovali 

„ako sa násobia matice“. Všimnite si ukazováky na obrázku. Ukazujú ako vznikne 

prvý riadok výsledného vektora. Môžem si to predstaviť tak, že ukazovákom ľavej 

ruky postupne ukazujem prvky v prvom riadku matice a ukazovákom pravej ruky 

postupne prvky vektorového stĺpca tak že ukazováky posúvam synchrónne. Červená 

ruka ukazuje prvú synchrónnu polohu, modrá druhú a zelená tretiu. Vynásobím   

vždy prvoky, na ktoré ukazujú synchronizované prstu a vzniknuté súčiny sčítam. 



Rovnaký vektor vyjadrený v dvoch bázach

keď sme označili 

Transformačná matica         je matica smerových kosínusov 
zvieraných bázovými vektormi starej a novej bázy

33
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Poopravme si predstavu („definíciu“), čo je to vektor. Doteraz sme sa tvárili, že vektor 

sú tri čísla. Presnejšia predstava je že pri zadanej ortogonálnej báze je vektor daný 

troma číslami, pričom pri prechode k inej báze sa tá trojica čísel transformuje 

pomocou matice „smerových kosínusov“. Teda trojica čísel „sa stáva vektorom“ až 

po doplnení pravidla transformácie prechodu k inej báze. Transformačné pravidlo je 

kľúčová vec aby objekt mal vlastnosť „vektorovosť“.

Tieto vety sú len slabým odvarom toho, čo všetko si predstaví matematik pod pojmom 

vektor. Ak si chcete spraviť o tom predstavu, otvorte si knižku
M.Fecko:Diferenciálna geometria a Lieove grupy pre fyzikov, ISBN:9788089256204



Vektor a otočený vektor v tej istej báze

keď sme označili 

predtým bolo

Rotačná matica R a matica O sú navzájom transponované
35



Newtonove zákony mechaniky

1. Zákon zotrvačnosti

2. Zákon sily

3. Zákon akcie a reakcie

36



Rovnomerný pohyb po kružnici

Je zjavné, že vektor rýchlosti je v každom okamihu kolmý na sprievodič, lebo 

skalárny súčin tých vektorov je nulový, má teda smer dotyčnice ku kruhovej 

trajektórii.

Uhol sprievodiča narastá rovnomerne s časom, za kladný smer rotácie sa 

považuje pohyb proti smeru hodinových ručičiek, uhol sa meria v radiánoch, 𝜔 sa 

volá uhlová rýchlosť

𝜔 je rýchlosť narastania 

uhla 𝜑, preto termín 

uhlová rýchlosť

37



Rovnomerný pohyb po kružnici

Prostým porovnaním zložiek polohového vektora a zrýchlenia vidno, že zrýchleniae 

má smer do stredu kružnice (teda rovnobežný ale opačný ako sprievodič). Volá sa 

to dostredivé zrýchlenie. Zrýchlenie je teda nenulové, hoci veľkosť rýchlosti je 

konštantná. Rýchlosť ako vektor však nie je konštantná, smer vektora rýchlosti sa 

stále mení. 

Uhol sprievodiča narastá rovnomerne s časom, za kladný smer rotácie sa 

považuje pohyb proti smeru hodinových ručičiek, uhol sa meria v radiánoch, 𝜔 sa 

volá uhlová rýchlosť

𝜔 je rýchlosť narastania 

uhla 𝜑, preto termín 

uhlová rýchlosť
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Nerovnomerný pohyb po kružnici

Uhol sprievodiča závisí ľubovoľne na čase.
uhol je ľubovoľnou (aj 

nelineárnou) funkciou 

času, uhlová rýchlosť nie 

je konštantná

Ԧ𝜏 je jednotkový vektor v smere dotyčnice, rýchlosť má smer dotyčnice ku kruhovej 

trajektórii, 𝑛 je vektor v smere normály, teda kolmý na Ԧ𝜏, 𝑛. Ԧ𝜏 = 0

Zrýchlenie má zložky tangenciálnu a dostredivú. Tangenciálna je „zodpovedná“ za 

zmenu veľkosti rýchlosti, normálová je známe dostredivé zrýchlenie, „zodpovedné“ 

za zmenu smeru rýchlosti 39

uvedomme si že
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Nerovnomerný pohyb po ľubovoľnej krivke

Uvažujme všeobecný pohyb častice daný časovým priebehom

Rýchlosť v čase 𝑡 bude

Ԧ𝜏 je jednotkový vektor v smere rýchlosti 

v bode Ԧ𝑟(𝑡). Otázka je, v akom vzťahu 

je vektor Ԧ𝜏 ku trajektórii v bode Ԧ𝑟(𝑡). 
Tvrdíme, že vektor 𝝉 má smer 

dotyčnice k trajkektórii.

Naozaj: pre výpočet vektora rýchlosti 

sú dôležité dva (infinitezimálne) blízke 

body trajektórie, vektor rýchlosti a teda 

aj Ԧ𝜏 má smer spojnice tých dvoch 

bodov

Definícia dotyčnice ku krivke je:

Je to priamka prechádzajúca dvoma 

infinitezimálne blízkymi bodmi krivky
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Oskulačná kružnica

Uvažujme všeobecnú krivku a na nej tri (infinitezimálne) blízke body. Krivka vo 

všeobecnosti neleží v jednej rovine. Ale tri nejaké body určujú rovinu a súčasne v 

tej rovine jednoznačne nejakú kružnicu, ktorá sa nazýva oskulačná kružnica tej 

krivky v jednom jej bode (v strednom z tých troch bodov).  Polomer oskulačnej 

kružnice sa nazýva polomer krivosti krivky v uvažovanom bode.

Súčasne je zrejmé, že krivka a jej oskulačná kružnica majú v uvažovanom bode 

spoločnú dotyčnicu.

Prijmime intuitívne bez rigorózneho dôkazu, že v limite, keď uvažované tri body budú 

nekonečne blízko pri sebe, postupnosť nimi tvorených kružníc sa bude blížiť k limitnej 

oskulačnej kružnici v uvažovanom bode. V matematickej limite je teda oskulačná 

kružnica „bodový pojem“, fyzikálne je to „trojbodový pojem“ (v tom zmysle ako sme sa 

bavili, že rýchlosť je „dvojbodový pojem“ a zrýchlenie „trojbodový“
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Vektor 𝑛0 je jednotkový vektor normály trajektórie v bode Ԧ𝑟0, je kolmý na dotyčnicu 

Ԧ𝜏0, leží v rovine oskulačnej kružnice a má smer od stredu oskulačnej kružnice von.

Znamienko − v rovnici potom znamená že normálová zložka smeruje do stredu

oskulačnej kružnice, hovoríme o dostredivom zrýchlení. 

Tangenciálne zrýchlenie teda vypovedá o zmene veľkosti rýchlosti, normálové 

(dostredivé) zrýchlenie o zmene smeru rýchlosti. Zapamätajte si vzorec pre veľkosť 

dostredivého zrýchlenia

Zdôraznime ešte, že dotyčnica ku krivke je väčšine ľudí intuitívne zrejmý pojem aj 

pri priestorovej krivke, ktorá neleží v nejakej rovine. Ale normálový vektor kolmý k 

dotyčnici vlastnosťou kolmosti nie je určený jednoznačne, musíme ešte určiť, v 

ktorej rovine leží. Je to práve rovina oskulačnej kružnice. Teda vektor normály ku 

krivke „je trojbodový pojem“, kým vektor dotyčnice ku krivke je „je dvojbodový 

pojem“.
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Dostredivá sila

Ak sa častica pohybuje po zakrivenej dráhe, má 

dostredivé zrýchlenie a teda naň musí pôsobiť 

dostredivá sila

kde 𝑟 je polomer krivosti trajektórie.

Keby nepôsobila dostredivá sila, častica by pokračovala zotrvačným 

rovnomerným priamočiarym pohybom v smere dotyčnice, ako to napríklad vidno 

na odbrúsených časticiach kovu pri brúsení:



Transformácia: otočenie fyzikálneho systému

Najme systém častíc, polohy ktorých v nejakom okamihu sú dané sústavou 

polohových vektorov

poznamenajme, že symbol 𝑛 nie je zložka vektora ale index vektora, teda čísluje 

jednotlivé častice.

Predstavme si teraz, že celý systém častíc otočíme do nových polôh tak, že každý 

z polohových vektorov otočíme o rovnaký uhol voči zvolenej (rovnakej osi) 

otáčania. Po otočení sa častice budú nachádzať v nových (transformovaných) 

polohách

Vykonaná transformácia sa volá „otočenie fyzikálneho systému“. Transformácia 

otočenia je zadaná rotačnou maticou (spoločnou pre všetky vektory) 𝑅𝑖𝑗
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Ako sme videli, prvky rotačnej matice sú vlastne skalárne súčiny nejakých 

jednotkových vektorov, teda vlastne kosínusy uhlov, ktoré tie jednotkové vektory 

zvierajú. Nazývame ich „smerové kosínusy“. Naša intuícia si spravidla nevie 

predstaviť „ako vyzerá“ otočenie, zadané 9 smerovými kosínusmi. Každé otočenie sa 

ale dá vyjadriť ako otočenie okolo nejakej fixnej osi o nejaký uhol. To je intuitívne 

oveľa prijateľnejšie.

Takže pohrajme sa s otočeniami okolo osí.

Začneme otočením okolo osi z. Pri takom otočení sa z-ové súradnice častíc 

nemenia, menia sa len x-ové a y-ové súradnice, takže je to rovinný problém, na ktorý 

sa môžeme pozrieť v rovine xy. Sledujme jednu časticu ležiacu v rovine xy na obr.

Os z smeruje od nákresnej roviny smerom „k 

čitateľovi“, kladný smer otočenia o uhol 𝜑, je 

daný prstami pravej ruky ak palec ukazuje smer 

osi z. 
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Zapamätajte si, ako vyzerajú vzorce pre rotáciu v dvoch rozmeroch!

Súradnice otočeného vektora sú „zmiešaniny“ súradníc pôvodného vektora. 

Pomocou kosínusu a sínusu. Pri sínuse je jedno znamienko kladné druhé záporné.

Na to, kde je sínus a kde kosínus prídete z úvahy o limite veľmi malého otočenia. 

Pri malom otočení sa súradnice „moc nezmenia“, takže v limite malého uhla musí 

byť 𝑥′ ≈ 𝑥, 𝑦′ ≈ 𝑦. Pre malé uhly cos𝜑 ≈ 1, sin 𝜑 ≈ 0, taže je to jasné.

To, pri ktorom sínuse je záporné znamienko vidím z obrázku: 𝑥′ < 𝑥.
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Rotačná matica pre otočenie okolo  osi z

Po nejakých pokusoch a omyloch by sa vám malo podariť napísať, ako 

vyzerá rotačná matica pre takúto transformáciu. Dostanete

Overte si maticovým násobením, že je to dobre.
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Skladanie otočení okolo tej istej osi

Urobme najprv otočenie okolo osi z o uhol 𝜑 a následne ďalšie otočenie zase okolo 

osi z o uhol 𝜗. Takže bude

Dve po sebe nasledujúce otočenia, ktorým prislúchajú rotačné matice 𝑅 a ෨𝑅 sa dajú 

chápať ako jedna (výsledná) rotácia s rotačnou maticou 𝑅′
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Všimnime si štruktúru výrazu. Na ľavej strane je dvojindexová matica, teda 

vlastne je to 9 rovníc, každá pre nejakú kombináciu hodnôt indexov ij. V súčte je 

jeden nemý index, teda je to súčet troch súčinov. V súčinoch sú prvky z dvoch 

matíc, pričom sa sčíta tak že druhý index (stĺpcový) prvku prvej matice je rovnaký 

ako prvý index (riadkový) prvku druhej matice. V maticovom zápise je to 

Na obrázku konkrétne vidíme, ako sa vypočíta prvok 𝑅23
′ . Ukazujeme synchrónne 

ukazovákom ľavej ruky prvky v druhom riadku ľavej matice a ukazovákom pravej 

ruky prvky v treťom stĺpci pravej matice.

Analogicky získame všetkých 9 prvkov výslednej matice.

Spoľahlivo si nacvičte techniku násobenia dvoch matíc!



Vektorový súčin

Definícia

Pravidlo pravej ruky: prsty pravej ruky 

postavíme tak, aby ukázali stáčanie vektora  Ԧ𝐴

smerom k vektoru 𝐵 a palec potom ukáže smer 

vektorového súčinu Ԧ𝐴 × 𝐵
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Tu sme využili distributívnosť vektorového súčinu, ktorá z definície, ktorú sme 
uviedli triviálne nevyplýva. Záujemcov od dôkaz odkazujeme na doplnkovú 
Powerpoint prezentáciu o vektorovom súčine

Platí v pravotočivej 
báze
Osi x,y,z nemôžeme 
pomenovať 
ľubovoľne,  ale tak, 
aby toto platilo

Prsty otáčajú od "x" k "y", palec ukáže "z".
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prirodzené poradie - neprirodzené poradie

Levi-Civitov antisymetrický ε-symbol

52

𝜀-symbol je totálne antisymetrický

všetky hodnoty s aspoň dvoma 

rovnakými indexami  musia byť nulové

Toto je konvencia: pre prirodzené poradie je 

hodnota 1, pre neprirodzené -1
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Nápad: uhlová rýchlosť a uhol otočenia ako vektory

Infinitezimálne otočenia sa konajú ako postupnosť v čase okolo fixnej osi, vždy 

každé infinitezimálne otočenie za malý (infinitezimálny) čas 𝑑𝑡. 
Infinitezimálny uhol otočenia bude d𝜑 = 𝜔 𝑑𝑡 a význam 𝜔 je zrejmý: je to rýchlosť 

narastania uhla otočenia v čase

Vyrobme teraz vektor 𝜔 tak, aby v ňom bola zakódovaná nielen uhlová rýchlosť 

otáčania ale aj smer osi, okolo ktorej sa otáča. Kódovanie je jednoduché:

Vektor 𝜔 má smer osi otáčania a takú orientáciu, aby prsty 

pravej ruky ukazovali smer otáčania ak palec ukazuje 

orientáciu vektora 𝜔. Veľkosť toho vektora je veľkosť uhlovej 

rýchlosti 

Potom je prirodzené zaviesť aj infinitezimálny uhol otočenia ako vektor 𝛿𝜑

Je to vektor v smere osi otáčania a jeho veľkosť je uhol otočenia 



Overte si explicitným výpočtom podľa pravidla pre počítanie 

zložiek vektorového súčinu

že platí
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Zmena polohového vektora pri infinitezimálnom otočení

Zistili sme, že súradnice polohového vektora 

sa pri infinitezimálnom otočení okolo osi z 

menia takto:

Infinitezimálny vektor otočenia        má zložky 

Zmena polohového vektora

má zložky 
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Zmena polohového vektora pri infinitezimálnom otočení

Tento vzťah sme si odvodili pre rotáciu okolo osi z, teda vektor        mal smer osi 

z. Ale dostali sme vzťah medzi vektormi, ktorý nemôže záležať na to, ako sú 

zvolené osi. Teda je to univerzálne platný vzťah. Hovorí toto:

Ak       je vektor infinitezimálnej rotácie okolo ľubovoľnej osi (teda má smer osi 

rotácie a veľkosť infinitezimálneho rotačného uhla), potom zmena 

polohového vektora je určená takto

resp.
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Pokúsime sa lepšie „precítiť“, čo tá rovnica znamená, upravíme preto výraz pre 

celkovú hybnosť

Označme celkovú hmotnosť sústavy ako 𝑚, teda

a zaveďme označenie 

Symbol 𝑅∗ môžeme zjavne chápať ako polohový vektor čohosi, otázka je čoho. 

Je to vážená suma polohových vektorov jednotlivých častíc. Je to čosi ako 

stredný polohový vektor systému, ale jednotlivé častice v ňom nezavážia 

rovnako. Váha, ktorou častica prispieva do tej sumy, je σ𝑖𝑚𝑖/𝑚. Teda výsledný 

vektor je „bližšie k častici  veľkou hmotnosťou ako k častici s malou hmotnosťou.

Je to polohový vektor bodu, ktorý sa (definitoricky) nazýva hmotný stred

sústavy.

Hmotný stred



Prepíšeme teraz rovnicu

využijúc polohový vektor hmotného stredu:
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Práve sme odvodili vetu o hmotnom strede:

Hmotný stred sústavy sa pohybuje akoby to bol hmotný bod, v ktorom je 

sústredená celá hmotnosť systému a pôsobila by naň sila rovná 

vektorovému súčtu všetkých vonkajších síl pôsobiacich na sústavu.

Poznamenajme, že túto rovnicu sme odvodili súc motivovaný záujmom o pohyb 

tuhého telesa, ale v tomto odvodení sme tuhosť systému nijako nevyužili. Vnútorné 

sily vypadli kvôli univerzálnemu princípu akcie a reakcie takže veta o hmotnom 

strede je univerzálne platná pre hocijaký systém.
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Nulová vonkajšia sila, zachovanie hybnosti

Pre nulovú celkovú vonkajšiu silu dostaneme

Dostali sme zákon zachovania hybnosti: Pri nulovej sumárnej vonkajšej sile sa 

celková hybnosť sústavy častíc zachováva. Prakticky to znamená, že ak pre takú 

sústavu vypočítame v nejakom okamihu jej celkovú hybnosť a potom v neskorom 

okamihu znovu, dostaneme tú istú hodnotu (ten istý vektor). Platí to všeobecne, 

nielen pre tuhé teleso.

Môže sa stať, že celková vonkajšia sila nie je nulová, ale má nulovú len niektorú 

zložku (napríklad priemet na os x). v takom prípade dostaneme

V tomto prípade sa zachováva x-ová zložka hybnosti sústavy.
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Tu je klasický príklad na použitie zákona 

zachovania hybnosti.

Na začiatku máme nabitý kanón v pokoji. Jeho 

hybnosť je nulová.

Kanón je na kolieskach ako zvýraznenie faktu, že 

zanedbávame trenie pri pohybe kanóna vo 

vodorovnom smere.

Vo vodorovnom smere nepôsobí na kanón ani na 

náboj v ňom žiadna vonkajšia sila.

Preto sa zachováva vodorovná zložka hybnosti.

Akt výstrelu náboja je aktom pôsobenia vnútorných síl systému, nie je ovplyvnený 

vonkajšími silami. Preto po výstrele bude celková hybnosť systému kanón + náboj 

nulová. Keďže náboj má po výstrele zjavne hybnosť v smere dopredu, musí mať 

kanón po výstrele hybnosť v smere dozadu. Vojaci tomu hovoria, že kanón dostane 

spätný ráz. Pre hmotnosti a rýchlosti kanóna a náboja po výstrele teda platí

Rýchlosti sme nepísali ako vektory, lebo sú to len vodorovné zložky rýchlosti. Pre 

rýchlosť kanóna 𝑉 tak dostaneme záporné číslo, čo znamená, že sa pohybuje v 

zápornom smere, teda doľava.



60

Nulová vonkajšia sila, veta o hmotnom strede

Ak je celková vonkajšia sila nulová, hmotný stred sa pohybuje akoby hmotný bod 

podľa zákona zotrvačnosti, teda rovnomerne priamočiaro alebo stojí (voči 

inerciálnej sústave). Platí to všeobecne, nielen pre tuhé teleso.

Znamená to, že hmotný stred systému, ak na počiatku stojí, sa nemôže len 

pôsobením vnútorných síl posunúť a teda ani začať posúvať.

Ľudovo povedané i keby vnútri sústavy boli trpaslíci vybavení slobodnou 

vôľou, nemôžu vykonať, bez podpory zvonku sústavy, nič, čo by posunulo 

polohu hmotného stredu. 

Pre nulovú celkovú vonkajšiu silu dostaneme

Vyjadrené cez rovnicu pre pohyb hmotného stredu dostaneme
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Moment hybnosti

Uvažujme časticu, jej pohyb popisovaný voči inerciálnej sústave. Počiatok 

inerciálnej sústavy berme ako referenčný bod, voči ktorému budeme popisovať 

polohu častice pomocou polohového vektora Ԧ𝑟(𝑡). Okamžitá rýchlosť častice v 

okamihu 𝑡 bude

Pre časticu v stave              sme už definovali veličinu hybnosť (anglicky 

momentum) vzťahom 

Definujeme teraz novú veličinu, moment hybnosti (anglicky angular

momentum), vzťahom

Presnejšie by sme mali hovoriť moment hybnosti voči zvolenému 

referenčnému bodu. Ak zvolíme iný referenčný pod, potom i keď 

nezmeníme smery osí súradnicovej sústavy, moment hybnosti častice 

bude vo všeobecnosti iný než voči pôvodnému referenčnému bodu.
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Moment hybnosti vzhľadom na priamku

Aby sme podobné veci mali na jednom mieste, definujme ešte moment hybnosti 

vzhľadom na priamku. Myslíme orientovanú priamku, teda čosi ako priamku, ktorej 

smer a orientácia je daná nejakým jednotkovým vektorom 𝑛.

Moment hybnosti vzhľadom na priamku, je priemet momentu hybnosti 

definovaného vzhľadom na referenčný bod ležiaci na tej priamke na tú 

priamku. Trochu krkolomná veta, ale obsahuje všetko dôležité, aby definícia bola 

korektná. Na prvý pohľad sa to nezdá, lebo sa nepovedalo, kde na uvažovanej 

priamke sa má umiestniť referenčný bod, ale, ako hneď uvidíme, môže to byť 

ľubovoľný bod na osi.
Priemet momentu hybnosti na priamku označme 𝑀 (je to 

skalárna hodnota, môže byť aj záporná, lebo os má 

orientáciu). 

Keby sme za referenčný bod na priamke zvolili namiesto 

bodu 𝑂 bod 𝑂′, (a 𝜉 také číslo také, aby platilo )

dostali by sme 

Druhý člen súčtu vypadol, pretože vektorový súčin v ňom je 

kolmý na vektor 𝑛, a teda jeho skalárny súčin s vektorom 𝑛 je 

nulový. Priemet momentu hybnosti na priamku teda nezávisí 

na voľbe referenčného bodu na nej. 
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Moment hybnosti vzhľadom na priamku

Poznamenajme, že niektorí autori zavádzajú moment hybnosti vzhľadom na 

priamku ak vektor, ktorý má smer jednotkového vektora tej priamky 𝑛, takto
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Vypočítajme teraz, ako závisí moment hybnosti častice na čase, ak sa častica 

pohybuje v súlade so zákonom sily.

Definujme moment sily (vzhľadom na referenčný bod) ako

(anglický termín torque alebo momentum of force) 

potom teda platí

Pre moment hybnosti a moment sily platí teda čosi ako analógia zákona pre 

hybnosť a silu

Zatiaľ to vyzerá ako hromadenie nových definícií, ale postupne uvidíme, načo je 

to všetko dobré.

Moment sily
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Moment sily vzhľadom na priamku

V analógii s momentom hybnosti vzhľadom na priamku definujeme aj moment 

sily vzhľadom na priamku:

Moment sily vzhľadom na priamku, je priemet momentu sily definovaného 

vzhľadom na referenčný bod ležiaci na tej priamke na tú priamku.

Priemet momentu sily na priamku označme 𝑁 (je to skalárna hodnota, môže byť 

aj záporná, lebo priamka má orientáciu). 

Poznamenajme, že niektorí autori zavádzajú moment sily vzhľadom na 

priamku ak vektor, ktorý má smer jednotkového vektora tej priamky 𝑛 takto

Ak je sila kolmá na uvažovanú priamku, zavádzame pojem 

rameno sily presne analogicky ako sme to robili pri momente 

hybnosti a dostaneme

teda veľkosť momentu sily vzhľadom na priamku je súčin 

ramena sily a veľkosti sily.
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Moment hybnosti: jedna častica v centrálnom poli

Ako ukážku užitočnosti pojmov moment hybnosti a moment sily uvažujme jednu 

časticu, ktorá sa nachádza vo vonkajšom silovom poli vyjadrujúcom pôsobenie 

vonkajšieho telesa fixovaného v referenčnom bode.

Uvažujme centrálne silové pole, t.j. že sila medzi vonkajším telesom  v 

referenčnom bode a uvažovanou časticou má smer spojnice (polohového vektora 

častice). Príklad je Zem ako hmotný bod v gravitačnom poli Slnka ako centrálneho 

telesa v referenčnom bode.

Moment hybnosti častice vzhľadom na referenčný bod 

bude

Sila na časticu má podľa predpokladu smer 

polohového vektora, teda

kde 𝛼(Ԧ𝑟) je ľubovoľná skalárna funkcia polohy častice. 

Moment tej sily vzhľadom na centrálny bod bude 

nulový

takže dostaneme
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Moment hybnosti: jedna častica v centrálnom poli

Moment hybnosti sa teda zachováva, je to konštantný vektor počas celého 

pohybu častice

Z definície vektorového súčinu je teda zrejmé, že vektory          sú trvalo kolmé 

na konštantný vektor 𝐿 , teda stále ležia v rovine, kolmej na  vektor 𝐿, teda 

ležia v konštantnej rovine. Pohyb častice v centrálnom poli nejakého telesa je 

teda rovinný pohyb, prebieha v konštantnej rovine, ktorá je kolmá na vektor 

momentu hybnosti. Nakreslime si časť trajektórie v tej rovine, spolu s vektormi

Platí

Veľkosť vektorového súčinu               je 

zjavne rovná ploche zeleného 

trojuholníka, takže je to plocha opísaná 

polohovým vektorom (sprievodičom) za 

čas 𝑑𝑡.

Konštantnosť momentu hybnosti potom znamená, že sprievodič opíše 

počas pohybu častice za rovnaké časové úseky rovnaké plochy. Keplerov 

zákon.
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Suma na ľavej strane je celkový moment hybnosti sústavy, na ľavej strane je 

súčet momentov síl, teda celkový moment vonkajších síl

Upozornime, že túto rovnicu sme dostali za predpokladu, že vnútorné 

medzičasticové sily sú centrálne.

Zopakujme si:

Pre translačný pohyb telesa ako celku (pohyb ťažiska) sme dostali „Newtonovu

rovnicu sily“

Ako uvidíme neskôr, rovnica

je analógom Newtonovej rovnice pre rotačný pohyb telesa ako celku.
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Prípad nulového momentu síl

V prípade nulového momentu vonkajších síl ( Ԧ𝜏 = 0) dostaneme vzťah

To je zákon zachovania momentu hybnosti.

Aby nám rovnice obsahujúce moment hybnosti boli na niečo užitočné, 

musíme sa naučiť vypočítať moment hybnosti aspoň v nejakých typických 

situáciách.

Najjednoduchší prípad je tuhé teleso upevnené tak, že môže ľubovoľne 

rotovať okolo fixnej osi.
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Tuhé teleso rotujúce okolo fixnej osi

jednotkový vektor v smere osi je 𝑛, uhlová rýchlosť má smer osi 𝜔 = 𝜔𝑛.

Problém si značne zjednodušíme, keď budeme rátať moment hybnosti voči osi, 

teda 𝐿. 𝑛.

Bez ujmy na všeobecnosti môžeme stotožniť os z nehybnej inerciálnej vzťažnej 

sústavy za totožnú s osou rotácie telesa. Uvažujme malý objemový element 

telesa 𝑑𝑉, ktorého okamžité súradnice (voči pevnej vzťažnej sústave) sú (𝑥, 𝑦, 𝑧).
Ten bod v dôsledku rotácie telesa okolo osi sa bude pohybovať po kružnici

polomerom                   a to je súčasne i 

rameno hybnosti. 

Veľkosť rýchlosti toho elementu bude 

Preto pre moment hybnosti toho objemového 

elementu vzhľadom na os (chápaný ako vektor) 

bude platiť („rameno krát hybnosť“)

Hmotnosť uvažovaného objemového elementu sme označili 

𝑑𝑚. Súčasne si treba uvedomiť, že smer vektora momentu 

hybnosti voči referenčnému bodu 𝑂 je naozaj 𝑛 a teda aj 𝜔.
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Celkový moment hybnosti telesa vzhľadom na os 

otáčania teda dostaneme ako súčet cez všetky 

objemové elementy telesa.

Označili sme

veličina 𝐼 sa volá moment zotrvačnosti telesa 

voči osi z . V definícii momentu zotrvačnosti nie 

je dôležité, že za os otáčanie sme zvolili práve os 

z. Moment zotrvačnosti tuhého telesa je 

definovaný voči akejkoľvek osi otáčania vzťahom

kde 𝜚 je vzdialenosť hmotného elementu telesa od osi otáčania. 

Zopakujme teda: moment hybnosti tuhého telesa rotujúceho okolo fixnej osi 

uhlovou rýchlosťou 𝜔 je



Moment zotrvačnosti valca rotujúceho okolo svojej osi

hmotnosť LEGO 

kocky

kvadrát 

vzdialenosti 

LEGO kocky 

od osi

hmotnosť „medzivalčia“ (𝑅 je polomer valca, ℎ výška)

príspevok  „medzivalčia“ k momentu zotrvačnosti
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Tuhé teleso rotujúce okolo fixnej osi

• Systém: teleso rotujúce okolo fixnej osi

• Okamžitý stav: momentálny uhol otočenia voči 

zvolenej štandardnej polohe (natočeniu) a uhlová 

rýchlosť, teda stav je dvojica ( Ԧ𝜗, 𝜔). Napísali sme to 

ako dva vektory, ale oba ležia v osi otáčania, takže na 

zadanie stavu stačia dve čísla. Vektorové označenie 

sme použili pre zvýraznenie faktu, že tie čísla môžu 

byť kladné aj záporné

• Pohybová rovnica: V každom stave musíme poznať 

moment síl voči osi otáčania, ktorými vonkajší svet 

pôsobí na to teleso, teda 𝑁. Je to opäť vektor ležiaci v 

osi, takže zase je to iba jedno číslo (kladné alebo 

záporné). Pohybová rovnica sa dostane zo 

všeobecnej rovnice

jej priemetom na os otáčania
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Tuhé teleso v homogénnom gravitačnom poli.

Na hmotnostný element telesa 𝑑𝑚 pôsobí v jeho ľubovoľnej polohe sila 

𝛿 Ԧ𝐹 = −𝛿𝑚 𝑔 𝑘.

Prvým dôsledkom je, že vektorový súčet všetkých síl sa počíta veľmi jednoducho:

𝑚 je celková hmotnosť telesa. Dostali sme teda celkovú tiaž telesa. Upozornime, že 

tento vzorec nič nehovorí o nejakom „pôsobisku tiaže“. Je to jednoducho vektor, 

teda čosi, čo má tri zložky a žiadne pôsobisko.
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Vypočítajme celkový moment hybnosti tiažových síl pôsobiacich na tuhé teleso. 

Zvoľme si ľubovoľný okamih a stav natočenia telesa. Uvažujeme hmotný element 

telesa 𝛿𝑚(Ԧr). Týmto označením chceme povedať, že uvažujeme hmotný element, 

ktorý sa pre dané natočenie telesa nachádza v polohe Ԧ𝑟. Celkový moment hybnosti 

získame sčítaním cez všetky hmotné elementy telesa. Dostaneme

Druhý činiteľ vo vektorovom súčine je konštantný vektor, môžeme ho „vyňať 

pred zátvorku“, teda von z integrálneho súčtu a dostaneme

Vo vzorci vystupuje polohový vektor hmotného stredu telesa. Slovne vyjadrené: 

moment tiažových síl pôsobiacich na tuhé teleso ja taký istý, aký by bol moment 

tiažovej sily pôsobiacej na hmotný bod, ktorý „by sedel“ v hmotnom strede telesa a 

jeho hmotnosť by bola  rovná celkovej hmotnosti telesa. To je dôvod, prečo sa 

hmotný stred nazýva často „ťažisko“ a kreslia sa ľudové obrázky, že „tiaž telesa 

pôsobí v ťažisku“. Zdôraznime, že referenčný bod sme nevolili nijako špeciálne!

Ťažisko
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Upozornime, že ľudové obrázky o tiaži pôsobiacej v ťažisku sú dostatočne mätúce 

napríklad v situáciách ako je tiaž železnej obruče, ktorá má ťažisko v svojom 

geometrickom strede (kde nie je ani kúsok železa):

Obrázok sám o sebe nie je zlý, ak ho chápeme tak, že vyjadruje vzorec 

mätúca je len naivná ľudová interpretácia toho obrázka.
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Neinerciálne sústavy

Sústava (Ԧ𝑖, Ԧ𝑗, 𝑘) je inerciálna, 

sústava (Ԧ𝑖′, Ԧ𝑗′, 𝑘′) je neinerciálna.

Uvažujme hmotný bod. Jeho polo-

hový vektor voči inerciálnej 

sústave je Ԧ𝑟, voči neinerciálnej 

sústave Ԧ𝑟′. Polohový vektor 

počiatku neinerciálnej sústavy 

voči inerciálnej je Ԧ𝑟0.

Neinerciálna sústava je ako tuhé 

teleso, jeho stav (voči inerciálnej 

sústave je v každom okamihu 

zadateľný ako

Keď sme bez ujmy na všeobecnosti považovali počiatok neinerciálnej sústavy za jej 

ťažisko. Platí teda, že 𝜔 je uhlová rýchlosť pohybu neinerciálnej sústavy a
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Neinerciálne sústavy

Pozorovateľ v neinerciálnej sústave sa nad touto rovnicou zamyslí a povie si:

Veď ja vlastne môžem robiť fyziku v neinerciálnej sústave, len Newtonov zákon sily 

bude mať u mňa iný tvar. Urobím to takto:

• zmeriam si zrýchlenie počiatku mojej neinerciálnej sústavy Ԧ𝑎0 voči inerciálnej

• zmeriam uhlovú rýchlosť rotácie 𝜔(𝑡) mojej sústavy voči inerciálnej

• vypočítam aj uhlové zrýchlenie 
𝑑𝜔 𝑡

𝑑𝑡

• potom si poviem, že v mojej neinerciálnej sústave okrem naozajstnej sily Ԧ𝐹
pôsobia ešte ďalšie mystické zotrvačné sily neznámeho pôvodu, a to

zotrvačná sila postupného zrýchlenia:

Coriolisova sila:

odstredivá sila:

zotrvačná sila rotačného zrýchlenia:

• a napíšem akoby  Newtonovu rovnicu s pridaním zotrvačných síl
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Trenie (šmykové)

Teleso stojí napriek ťažnej sile Ԧ𝐹.

Kolmá tlaková sila Ԧ𝐹

Trenie 𝑇

Ak teleso stojí, celková sila naň 
pôsobiaca je nulová

Trenie „akurát“ vyrovná ťažnú silu

Ale trenie nie je schopné vyrovnať 
akokoľvek veľkú ťažnú silu, pri istej 
kritickej veľkosti sa teleso dá do 
pohybu

f je koeficient (statického) trenia
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Ak teleso stojí, celková sila naň pôsobiaca je nulová Trenie „akurát“ vyrovná ťažnú silu

Statické trenie je menšie ako jeho maximálna kritická hodnota

Ak už sa teleso hýbe (šmýka po podložke), trecia sila je v podstate rovná kritickému 
treniu

Trenie (šmykové)

Dynamické trenie je spravidla menšie než kritické statické trenie, teda ťažná sila, 
ktorá je schopná uviesť teleso do pohybu je väčšia ako sila, ktorá je potom 
schopná udržiavať teleso v rovnomernom priamočiarom pohybe (𝑓𝑑< 𝑓).

𝒇𝒅 je koeficient dynamického trenia
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Trenie (šmykové)

• Ak teleso prešmykuje voči podložke, trecia sily je „dopredu určená čo do veľkosti 

aj smeru. Smer trecej sily je proti smery preklzovania

• Ak teleso neprešmykuje, potom ani smer ani veľkosť trecej sily nevieme určiť 

dopredu, vyjde nám to až pri riešení Newtonových pohybových rovníc

Preklzujúci valec
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Kto poháňa chodca? Trenie.

Chodec tlačí na topánku smerom dozadu, ako keby chcel, aby sa topánka 
šmýkala dozadu. Trenie tomu bráni silou, ktorá smeruje dopredu. Na chodca 
nepôsobí vo vodorovnom smere žiadna vonkajšia sila okrem trenia. Trenie teda 
poháňa chodca dopredu. Nie je teda pravdou, že trenie vždy pôsobí proti 
pohybu.
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Statika tuhého telesa

Pripomeňme si rovnice dynamiky tuhého telesa

Statika: 𝑃 = 0, L = 0.

Často stačí len požadovať len nulovosť (priemetu) momentu 
hybnosti na nejakú os otáčania.
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Príklad: Kritický uhol opretého rebríka

Pre kritický uhol, keď rebrík práve začne 
šmýkaním padať sú obe trecie sily práve 
kritické

moment síl vzhľadom na os v spodnom 
bode rebríka
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Gravitačný zákon

Newtonov gravitačný zákon možno zhrnúť do jednoduchého vzorca. Dve 
hmotné telesá zanedbateľných rozmerov (hmotné body) vo vzdialenosti 𝑟 sa 
priťahujú silou

= 6.673×10−11 N·(m/kg)2 je gravitačná konštanta

Vektorový zápis toho istého znie takto: teleso 1 pôsobí na teleso 2 silou

Znamienko − hovorí, že sila je 
príťažlivá, teda má smer opčný ako 
vektor Ԧ𝑟2 − Ԧ𝑟1.
Newtonov zákon je univerzálny, hovorí 
že ľubovoľné telesá na seba takto 
gravitačne pôsobia.
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Vo vektorovom tvare (sila je vektor, takže okrem veľkosti má aj smer) silu, ktorou 
teleso „1“ pôsobí na teleso „2“ vyjadríme takto

Pre pochopenie tohto vzorca si treba uvedomiť, že výraz                               je

jednotkový vektor v smere Ԧ𝑟2 − Ԧ𝑟1 a znamienko − pred vzorcom hovorí, že sila je 
príťažlivá,  smeruje ku častici „1“, teda opačne, ako je orientovaný vektor Ԧ𝑟2 − Ԧ𝑟1. 
Trik so zápisom jednotkového vektora si zapamätajte, bude sa často používať.
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Ak na teleso v bode Ԧ𝑟 pôsobí viac gravitujúcich telies, potom celková gravitačná
sila pôsobiaca na to teleso bude vektorovým súčtom gravitačných síl od 
jednotlivých telies. Pre situáciu na obrázku to teda bude

V tomto vzorci môžeme zvýrazniť (pridaním argumentu Ԧ𝑟 do symbol sily), že sila, 
ktorú počítame, pôsobí na teleso umiestnené v polohe Ԧ𝑟.
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Gravitačné pole

Vzorec svojím zápisom evokuje myšlienku, že sa môžem zaujímať nielen o to, aká sila 
pôsobí na teleso 𝑚 ak je (naozaj) umiestnené v polohe Ԧ𝑟, ale aj o virtuálne možnosti: 
že aká sila by na teleso pôsobila, keby bolo umiestnené v (rôznych) polohách Ԧ𝑟, pri 
fixných polohách gravitujúcich telies Ԧ𝑟1, Ԧ𝑟2.

Pri takejto virtuálnej interpretácii si dokonca môžeme predstaviť, že teleso 𝑚 sa 
(zatiaľ) nenachádza nikde a aj tak vzorec vyjadruje aká sila by na teleso pôsobila, keby
bolo umiestnené v (rôznych) polohách Ԧ𝑟, pri fixných polohách gravitujúcich telies Ԧ𝑟1, Ԧ𝑟2.
Vyvoláva to predstavu, že v priestore v okolí gravitujúcich telies 𝑚1, 𝑚2 je „čosi ako 
skrytá možnosť, že keby sme do toho priestoru vložili teleso 𝑚 do bodu Ԧ𝑟, pôsobila by 
naň gravitačná sila, daná tým vzorcom. Zavádzame preto pojem „gravitačné pole“. V 
našom vzorci ale explicitne vystupuje hmotnosť 𝑚. Gravitujúce telesá „vytvárajúce 
gravitačné pole“ môžu ale pôsobiť na teleso akejkoľvek hmotnosti, preto je 
rozumnejšie charakterizovať gravitačné pole samotné bez odvolávania sa na hmotnosť 
telesa, na ktoré to pole bude pôsobiť.
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Gravitačné pole
Gravitačné pole v priestore charakterizujeme vektorom intenzity gravitačného 
poľa Ԧ𝑔. Vektor intenzity je definovaný v každom bode priestoru ako podiel 
gravitačnej sily, ktorá by v tom bode pôsobila na teleso hmotnosti 𝑚 a tej 
hmotnosti 𝑚. Teda

Všimnime si, že intenzita gravitačného poľa je vlastne gravitačné zrýchlenie, 
ktoré pole udeľuje telesám v uvažovanom bode.

Intenzita gravitačného poľa v mieste Ԧ𝑟 budeného jedným (bodovým) telesom o 
hmotnosti 𝑀 umiestneným v počiatku súradnicovej sústavy je

Intenzita gravitačného poľa v mieste Ԧ𝑟 budeného viacerými bodovými telesami 
o hmotnostiach 𝑀𝑖 umiestnenými v bodoch Ԧ𝑟𝑖 je



90

Gravitačné pole

Poznamenajme, že slovo pole v pojme „gravitačné pole“ sa vo fyzike štandardne 
používa na pomenovanie faktu, že niečo (nejaká fyzikálna veličina) je definovaná v 
každom bode priestoru. V prípade gravitačného poľa hovoríme špeciálne, že je to 
vektorové pole, lebo intenzitu gravitácie definuje v každom bode vektor.

Ak chceme zistiť (zmerať, zmapovať) gravitačné pole (intenzitu gravitačného poľa) 
v nejakom priestore, potom to v princípe môžeme urobiť pomocou nejakého 
bodového testovacieho telesa ľubovoľnej hmotnosti 𝑚. S týmto telesom musíme 
„navštíviť“ v princípe každý bod uvažovaného priestoru, zmerať (vhodným 
silomerom) gravitačnú silu, ktorá na tom mieste na testovacie teleso pôsobí. 
Potom intenzita gravitačného poľa v tom bode bude

Bodov v priestore je nespočítateľne veľa, preto „navštíviť testovacím telesom“ každý 
bod je nemožné. Prakticky mapujeme pole tak, že zmeriame pole v nejakej 
diskrétnej sieti meracích bodov a v ostatných bodoch v prípade potreby dopočítame 
hodnotu poľa vhodnou matematickou interpoláciou nameraných bodov. Existujú 
komerčne dostupné meracie prístroje na meranie gravitačného poľa, gravimetre.
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Práca v gravitačnom poli
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Práca nekonštantnej sily po krivej trajektórii
Uvažujme časticu, ktorá sa pohybovala po trajektórii 

Ԧ𝑟(𝜉), pričom v bode Ԧ𝑟 na ňu pôsobila sila Ԧ𝐹 Ԧ𝑟 . Sila vo 
všeobecnosti nie je rovnobežná s príslušným úsekom 
dráhy 𝑑 Ԧ𝑟. Prijmime (momentálne, dôvod si povieme 
neskôr) bez dlhého zdôvodňovania, že práca vykonaná 
silou pôsobiacou na úseku dráhy 𝑑 Ԧ𝑟 je daná skalárnym 
súčinom

Celková práca vykonaná na trajektórii od bodu Ԧ𝑟1 až po bod Ԧ𝑟2 bude

Symboly integrálov neoznačujú žiadne „opaky derivácií“, sú to označenia pre súčty 
veľkého množstva malých čísel. Najlepšie je predstaviť si to ako numeriku na počítači. 
Rozkúskujem dráhu na malé úseky. Na každom úseku vypočítam skalárny súčin
Ԧ𝐹 Ԧ𝑟 . 𝑑 Ԧ𝑟 a takto vzniknuté číselká sčítam.
Všimnite si, že sme pre malý element vykonanej práce použili symbol  𝛿𝐴 a nie 𝑑𝐴.
Apriórne totiž nevieme, či existuje nejaká funkcia 𝐴(Ԧ𝑟), pre ktorú by 𝛿𝐴 bolo 
diferenciálom a zaslúžilo by si to označenie 𝑑𝐴, takže by platilo
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Môžme sa pýtať prečo sa nám zachcelo definovať fyzikálnu prácu tak, aby práca v 
gravitačnom poli po dráhe AC vyšla rovnako ako práca po dráhe BC. Akej fyzike to 
zodpovedá? Tá otázka znamená: „Akej našej skúsenosti to zodpovedá?“ Nuž takej, 
že sa nedá spraviť perpetuum mobile. Neexistencia perpetua mobile sa nedá 
„dokázať z ničoho“, nie je to logická nutnosť. Len celá doterajšia skúsenosť ľudstva 
hovorí, že sa to (asi?) nedá spraviť. Príkladu s prácou na naklonenej rovine 
zodpovedá nasledujúci (nefungujúci!) návrh na konštrukciu perpetua mobile
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Trpaslík premiestňuje teleso v gravitačnom poli. Koná pritom prácu. Má na 
výber dve trajektórie, obe vedú z bodu Ԧ𝑟1 do bodu Ԧ𝑟2. Ak by práca vykonaná 
trpaslíkom nebola po rôznych trajektóriách rovnaká, dalo by sa skonštruovať 
perpetuum mobile. Ak veríme, že to nie je možné potom musí platiť tvrdenie: 
Práca v gravitačnom poli po ľubovoľnej trajektórii spájajúcej dva fixné body je 
rovnaká, nezávislá na zvolenej trajektórii.
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Potenciálna energia

Uvažujme trpaslíka, ktorý v gravitačnom poli bodovej 
častice premiestňuje časticu s hmotnosťou 𝑚 z miesta 
Ԧ𝑟1 na miesto Ԧ𝑟2. Vypočítali sme prácu na to potrebnú

Pozrime sa teraz na tento vzorec z iného pohľadu. Práca, ktorú musí vykonať 
trpaslík, aby premiestnil teleso o hmotnosti 𝑚 z bodu Ԧ𝑟 hocikam do nekonečnej 
vzdialenosti je

Zaviedli sme tak veľmi užitočnú funkciu 𝑈(Ԧ𝑟), pomocou ktorej vieme vypočítať 
prácu trpaslíka medzi dvoma ľubovoľnými bodmi

Toto je práca, ktorú musí vykonať trpaslík ako konateľ práce.
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Potenciálna energia

Pozrime sa teraz na prácu, ktorú naopak koná pri tom istom premiestňovaní 
gravitačné pole ako konateľ nad trpaslíkom ako trpiteľom, dostaneme

Ak 𝐴′ > 0, potom trpaslík zarobil čosi na úkor gravitačného poľa a získanú prácu 
môže využiť na niečo užitočné, napríklad dobiť si baterky (ak je to trpaslík 
fungujúci na elektrinu). Prenášaná častica vykonala prácu 𝐴′ nad trpaslíkom, 
takže častica v gravitačnom poli má schopnosť vykonať pri premiestnení nejakú 
prácu. Asi ste sa stretli s vyjadrením, že schopnosť telesa konať prácu súvisí s 
jeho energiou, takže je prirodzené nazvať funkciu 𝑈(Ԧ𝑟) potenciálnou energiu 
častice v mieste Ԧ𝑟. Ak častica má na začiatku presunu (v bode Ԧ𝑟1) väčšiu energiu 
ako na konci presunu (v bode Ԧ𝑟2) vykoná pri presune kladnú prácu. 
Všimnime si, že sme dostali

takže sme mohli písať namiesto 𝛿𝐴 diferenciál 𝑑𝐴, lebo vykonaná práca je v 
prípade gravitačného poľa diferenciálom potenciálnej energie, čo sme na 
začiatku našich úvah s istotou nevedeli.
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Potenciálna energia

Pre prácu vykonanú na infinitezimálnej trajektórii 𝑑 Ԧ𝑟 dostaneme

Potenciálna energia je funkciou polohy, jej argumentom je vektor Ԧ𝑟 = (𝑥, 𝑦, 𝑧).
Potenciálnu energiu môžeme preto chápať aj ako funkciu troch skalárnych 
premenných 𝑥, 𝑦, 𝑧. Dostaneme teda rovnicu

na pravej strane urobíme rozvoj do prvého rádu pomocou parciálnych derivácií 
a dostaneme
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Potenciálna energia

Gravitačné pole teda pôsobí na časticu v mieste (𝑥, 𝑦, 𝑧) silou

kde 𝑈(𝑥, 𝑦, 𝑧) je potenciálna energia častice. Všimnime si, že potenciálna energia je 
skalár a troma parciálnymi deriváciami z tohto skalára vyrobíme vektor (gravitačnú 
silu). Aby sa zvýraznila túto skutočnosť, matematici zaviedli osobitný symbol 
vektorovej povahy

Tri symboly parciálnej derivácie sme zapísali, ako keby to boli zložky nejakého 
vektora.
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Operátor nabla

Poznamenajme, že abstraktný symbol 𝛻 (čítaj „nabla“) reprezentuje 
matematický objekt typu „operátor“. Operátorom v matematike nazývame 
nejaký predpis (operáciu), ktorý z jedného matematického objektu vyrobí 
nejaký iný matematický objekt vo všeobecnosti aj iného typu ako bol pôvodný 
objekt. Zvykneme hovoriť, že operátor „pôsobí“ na objekt a vyrobí z neho iný 
objekt.

Príkladom je operátor derivácie 
𝑑

𝑑𝑥
, ktorý vyrobí z nejakej funkcie jej deriváciu.

Operátor nabla vyrobí zo skalárnej funkcie polohy vektorovú funkciu polohy. 
Vyrobí teda tri funkcie polohy, ktoré tvoria tri priemety výslednej vektorovej 
funkcie, v našom prípade 

Často sa používa ešte „vektorovejší“ zápis tvaru
a dostaneme



Operácia pôsobenia nabla na skalárnu funkciu typu

sa volá gradient. Uvedený vzorec potom čítame takto:
Gravitačná sila pôsobiaca na časticu sa vypočíta ako  záporný gradient 
potenciálnej energie tej častice v gravitačnom poli.
Formuláciu „záporný gradient“ si treba zapamätať, patrí to do štandardnej 
výzbroje fyzika.

100

Gradient
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Gravitačný potenciál

Potenciálna energia (testovacej) častice v gravitačnom poli je úmerná jej 
hmotnosti, teda necharakterizuje len gravitačné pole samotné ale aj časticu, 
ktorou ho testujeme. Preto zavádzame nový pojem gravitačný potenciál 𝜑(Ԧ𝑟)
poľa v bode Ԧ𝑟 vzťahom

Fyzikálne je to práca, ktorú musíme vykonať, aby sme premiestnili testovaciu 
časticu jednotkovej hmotnosti z bodu Ԧ𝑟 do nekonečna.
Intenzita gravitačného poľa sa potom dá vypočítať podľa vzťahu

Naša doterajšia diskusia o potenciálnej energii sa týkala gravitačného poľa 
budeného jednou bodovou časticou. Všeobecne môžeme uvažovať gravitačné 
pole budené viacerými bodovými časticami

alebo spojitým rozložením gravitujúcej hmotnosti
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Gravitačný potenciál

Všetky vzťahy pre potenciál, ktoré sme diskutovali boli lineárne, preto 
zovšeobecnenie na prípad viacerých zdrojov gravitačného poľa je triviálne. 
Gravitačný potenciál poľa budeného viacerými bodovými zdrojmi je teda

a pre  spojité rozloženie

explicitným derivovaním sa možno presvedčiť o tom, že  intenzita poľa sa dá 
vypočítať ako záporný gradient potenciálu

teda že platí

Poznamenajme, že ak chceme pre dané rozloženie gravitujúcej hmoty priamu 
vypočítať intenzitu gravitačného poľa, musíme pracovať s vektormi a teda „dávať 
pozor na kosínusy“. Spravidla je jednoduchšie vypočítať najprv skalárnu veličinu 
potenciál a potom vypočítať intenzitu ako záporný gradient potenciálu.



Harmonický oscilátor
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V ďalšom, pokiaľ budeme študovať jednorozmerný oscilátor, nebudeme písať pri 

sile index. Budeme proste písať 𝐹 = −𝑘𝑥 a budeme mať na mysli priemet sily na 

os 𝑥. (Preto nech niekoho neprekvapí záporné znamienko.)



Práca pri napínaní pružiny

Sila, ktorou pôsobí pružina:  𝐹𝑥 = −𝑘𝑥
Sila, ktorou pôsobia burlaci: ෨𝐹𝑥 = 𝑘𝑥
Práca, ktorú vykonajú burlaci pri napínaní pružiny z rovnovážneho stavu o 

vzdialenosť 𝑥:

Potenciálna energia pružnosti 



Oscilátor

x

Rovnovážna poloha nech je x = 0

Pružina: 

Pohybová rovnica:

Uhádneme riešenie:

Naozaj:

Ale rovnako dobré je aj riešenie 
105



Pri zadaných počiatočných podmienkach

dopočítame najprv rýchlosť
a dostaneme jednoznačne

Rovnica                               je tzv. lineárna, čo znamená, že súčet jej 

dvoch riešení je tiež riešením, teda aj riešenie

pohyb je periodický s periódou

naozaj:
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porovnaním s (#) dostaneme
odtiaľ zrejme

Potom treba nájsť také δ, aby platilo

Pri ľubovoľných počiatočných podmienkach vieme teda jednoznačne  
predpovedať budúcnosť, takže sme zrejme našli v tvare

všetky riešenia pohybovej rovnice. Lebo ak by boli nejaké ďalšie, potom by 
budúcnosť už nebola jednoznačná. Čo fyzikálne neočakávame. Je na 
matematikoch, aby naozaj dokázali, že sú to všetky riešenia. Tým sa tu 
zaoberať nebudeme. Riešenia sme proste uhádli a našli sme ich tak dosť.
Ešte trochu iné ekvivalentné vyjadrenie v tvare (budeme hľadať 𝑋0 a 𝛿)

(#)
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porovnaním s (#) dostaneme
odtiaľ zrejme
Potom treba nájsť také δ, aby platilo
teda

Pri ľubovoľných počiatočných podmienkach vieme teda jednoznačne  
predpovedať budúcnosť, takže sme zrejme našli v tvare

všetky riešenia pohybovej rovnice. Lebo ak by boli nejaké ďalšie, potom by 
budúcnosť už nebola jednoznačná. Čo fyzikálne neočakávame. Je na 
matematikoch, aby naozaj dokázali, že sú to všetky riešenia. Tým sa tu 
zaoberať nebudeme. Riešenia sme proste uhádli a našli sme ich tak dosť.
Ešte trochu iné ekvivalentné vyjadrenie v tvare (budeme hľadať 𝑋0 a 𝛿)

(#)
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atan2 je programátorské značenie, ktoré matematici nepoznajú, 
obor hodnôt funkcie atan2 je totiž (-π, π), kým obor hodnôt 
inverznej funkcie k tangensu,  arctan() je (-π/2, π/2)
Funkcia atan2 je totiž definovaná nie ako inverzná funkcia k 
tangensu ale ako polárny uhol ϕ bodu s kartézskymi súradnicami 
(x,y), teda taký uhol, že platí



Parametre 𝑋0 a 𝛿 vo vyjadrení

sa nazývajú „amplitúda“ a „fáza“. Poznamenajme, že v literatúre (učebniciach) nie 

je zhoda v definícii pojmu „fáza“. Môžete stretnúť vyjadrenia

Parameter 𝛿 vo všetkých vyjadreniach sa môže volať „fáza“. Pre niekoho 

uprednostnenie „kosínusovky“ pred „sínusovkou“ je často motivované tým, že 

kmitavý pohyb sa dá vnímať ako priemet rotujúceho vektora „na os 𝑥“. Ten 

rotujúci vektor sa niekedy zvykne nazývať „fázor“. Dĺžka fázora je rovná 

amplitúde 𝑋0.



Vizualizácia kmitavého pohybu pomocou rotujúceho fázora je užitočná najmä pri 

porovnávaní dvoch kmitavých pohybov s rovnakou frekvenciou ale rôznymi 

amplitúdami a fázami. Používa sa potom intuitívne veľmi rukolapný pojem „fázový 

rozdiel“ alebo „fázový posun“ (𝛿2 − 𝛿1) medzi dvoma kmitaniami, čo je proste uhol, 

ktorý zvierajú tie dva fázory.



Technika vizualizácie kmitavého pohybu pomocou rotujúcich fázorov má 

elegantné vyjadrenie pomocou komplexných čísel. Komplexné čísla 

prinášajú okrem intuitívne priezračnej vizualizácie aj, ako uvidíme neskôr, 

značné technické zjednodušenie niektorých výpočtov.

Rotujúci vektor v rovine si totiž ľahko môžeme predstaviť ako (rotujúce) 

komplexné číslo v komplexnej rovine.

Komplexné číslo 𝑧 = 𝑎 + 𝑖𝑏 môžeme vždy vyjadriť v tvare

kde 𝑧 = 𝑎2 + 𝑏2 a 𝛼 = atan2(
𝑏

𝑎
). V komplexnej rovine sa to vizualizuje 

takto



Je teda zrejmé, že rotujúci fázor príslušný ku kmitaniu

môžeme vyjadriť ako komplexnú funkciu reálnej premennej „čas“ takto

a kmitavý pohyb potom ako reálnu časť

Užitočné je použiť vo vyjadrení komplexnú „amplitúdu“ tak že do nej zahrnieme 

aj fázu takto

Využívame tu Eulerov vzťah

Pravidlo o „násobení exponent“ potom pracuje namiesto nás (oslobodí nás od 

používania goniometrických vzťahov), keď dostaneme

Pri práci s komplexným vyjadrením kmitavého pohybu často nepíšeme 

symbol pre reálu časť a chápeme ho implicitne, keď na konci výpočtu 

zoberieme len reálnu časť výsledku.



Stav harmonického oscilátora v ľubovoľnom okamihu je určený polohou a 

rýchlosťou oscilátora. Funkciu polohy sme našli

rýchlosť v ľubovoľnom čase určíme derivovaní, teda

Zachovanie energie

Kinentická energia oscilátora v čase 𝑡 bude

potenciálna energia (pružnosti) bude

Využijeme vzťah 𝑚𝜔2 = 𝑘 a dostaneme pre celkovú energiu

Vidno, že celková energia oscilátora je na čase nezávislá, teda energia sa zachováva.



a hľadajme riešenie v tvare

Odkiaľ sa berie taká genialita? Nuž ak trenie je malé, očakávame, že to 
bude kmitať podobne ako oscilátor, ale trenie spôsobí, že kmity budú 
postupne zanikať, teda že ich amplitúda bude klesať a vo vzdialenej 
budúcnosti klesne až na nulu. Jediná funkcia, ktorú poznáme a má také 
„klesavé vlastnosti“ je exponenciála.

Všimnime si, že v pohybovej rovnici sú dve časové škály: konštanty 𝜔0

aj 𝑏 majú rovnaký fyzikálny rozmer s-1. 

Nech proti pohybu pôsobí odpor prostredia úmerný rýchlosti ale proti 
smeru rýchlosti, teda sila v tvare             (bodka nad písmenom značí 
prvú deriváciu podľa času, dve bodky druhú deriváciu podľa času).
Pohybová rovnica potom bude

Predpokladajme
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Lineárny oscilátor s tlmením



Všimnime si ale, že v navrhovanom riešení

máme nejaké parametre (𝜏, 𝜔, 𝛿), ktoré v rovnici

nevystupujú. Robíme niečo, čomu sa hovorí „hľadajme riešenie v tvare“, čo 

občas privádza študentov alebo čitateľov do zúfalstva. Ale často stačí len 

nepodceniť sám seba a zamyslieť sa, čo viedlo k takému návrhu na hľadania. 

Niečo som sa pokúsil naznačiť v predchádzajúcom odstavci „odkiaľ sa berie 

taká genialita?“. Možno že nepochopíme na prvýkrát úplne všetko, ale na 

niečo sa prísť dá. Napríklad, že prečo geniálny autor nazval parameter v 

exponenciále 𝜏. Lebo potreboval v argumente exponenciály čas 𝑡, aby mu to 

postupne klesalo. Ale v argumente exponenciály nemôžu byť sekundy, lebo 

nevieme, ako by sa číslo umocňovalo na sekundy. V argumente musí byť 

fyzikálne bezrozmerná vec, teda sekundy v argumente treba zlikvidovať. 

Najlepšie dať tam zlomok kde v menovateli budú tiež sekundy, aby sa to 

vykrátilo. Takže neznámy parameter 𝜏 bude v sekundách, má čosi spoločné s 

nejakým časom, preto označenie 𝜏, lebo to je grécke písmeno pre t. Naučte 

sa to vnímať okamžite, keď vidíte zápis exp −
𝑡

𝜏
, tak hneď máte vidieť 

sekundy v menovateli. Snažte si pri učení sa klásť otázky „Prečo?“



Máme teda rovnicu

a jej riešenie „hľadáme v tvare“

Robí sa to tak, že robíme „ako keby“ skúšku správnosti. Dosadíme navrhované 

riešenie do rovnice a vyskúšame, či je splnená. A zistíme, že aj môže byť 

splnená, ale to by sme museli voliť zatiaľ neznáme parametre 𝜏, 𝜔, 𝛿 nie 

ľubovoľne, ale nejako konkrétne.

Tak dosaďme, dostaneme



Máme teda rovnicu

a jej riešenie „hľadáme v tvare“

Robí sa to tak, že robíme „ako keby“ skúšku správnosti. Dosadíme navrhované 

riešenie do rovnice a vyskúšame, či je splnená. A zistíme, že aj môže byť 

splnená, ale to by sme museli voliť zatiaľ neznáme parametre 𝜏, 𝜔, 𝛿 nie 

ľubovoľne, ale nejako konkrétne.

Tak dosaďme, dostaneme



Znamienko rovnosti má platiť stále, teda v každom čase. Tlo je možné len tak, 

že koeficienty pri sínuse aj pri kosínuse sú rovné nule. Aby vypadol sínus, 

musíme voliť

a aby vypadol kosínus, musíme voliť 

Parameter 𝛿 môže myť ľubovoľný (v podstate iba hovorí kedy začneme počítať 

čas)



Lineárny oscilátor s tlmením

Pohybová rovnica tlmeného oscilátora

má teda riešenie

Parameter 𝛿 je ľubovoľný 

Predpokladáme pritom, že trenie je dostatočne malé, teda že platí 𝜔0
2 > 𝑏2.

V prípade, veľkého trenia, teda pri 𝜔0
2 ≥ 𝑏2 pohyb nemá kmitavý charakter, treba 

hľadať iné riešenie, ale nebudeme sa tým zaoberať.
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Graf pre hodnoty:
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Čo je to perióda (frekvencia) neperiodického signálu?

Napočítam 8 píkov za 5 sekúnd 
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Čo je to perióda (frekvencia) neperiodického signálu?

Napočítam 8 píkov za 5 sekúnd 

?
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Čo je to perióda (frekvencia) neperiodického signálu?

Napočítam 8 píkov za 5 sekúnd 

?

O poslednom píku nemám istotu, preto

Keby som rátal píky nie počas 5 sekúnd ale počas 50 sekúnd, naivne 
by som čakal, že dostanem
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Skúste určiť počet píkov za 50 sekúnd signálu!
Nedá sa to, lebo čas 50 sekúnd je pridlhý voči tomu ako rýchlo klesá 
oná exponenciála
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Ako rýchlo klesá exponenciála?

Za dobu             exponenciála už viditeľne poklesne, za dobu
poklesne tak, že sa už píky ďalej rátať nedajú
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Chyba (nepresnosť) určenia frekvencie je teda

Rádovo teda platí čosi, čo sa zvykne volať „princíp neurčitosti“

Absolútna chyba určenia frekvencie krát doba prítomnosti 
signálu je rádovo rovná jednej 127



Graf pre 𝜔 = 10, 𝑏 = 0.5
Plotované je 

Využijeme:

Disipácia energie tlmených kmitov



Budený oscilátor s tlmením

Špeciálny prípad

Možná realizácia:

Nabité teliesko na nevodivej pružine v 

homogénnom striedavom elektrickom 

poli



Budený oscilátor s tlmením

Použijeme trik s komplexnými fázormi a pokúsime sa najprv nájsť aspoň jedno 

riešenie pohybovej rovnice. Zapíšeme ju v komplexných číslach

Skúsime hľadať komplexné riešenie v tvare

Po dosadení do rovnice dostaneme

Dostali sme komplexný fázor ෤𝑥0 s nejakým fázovým posunom voči reálnemu 

fázoru 𝑓0. Vypočítame veľkosť a fázu fázora ෤𝑥0.



Budený oscilátor s tlmením

Zjavne platí 𝛿 = −𝛼.  Fázu menovateľa určíme ľahko, takže dostaneme



Budený oscilátor s tlmením

Vrátiac sa k reálnym číslam môžeme tvrdiť, že sme našli jedno nejaké špeciálne 

riešenie pohybovej rovnice

kde

Pohybová rovnica je lineárna, takže ak k nájdenému špeciálnemu riešeniu 

pripočítame ľubovoľné riešenie pohybovej rovnice bez pravej strany, dostaneme 

tiež nejaké riešenie. Rovnica bez pravej strany je rovnica tlmeného lineárneho 

oscilátora, jej riešenia poznáme, takže dostaneme

V tomto riešení sú parametre 𝑋, 𝛽 ľubovoľné parametere, ktoré treba určiť z 

počiatočných podmienok



Budený oscilátor s tlmením

V tomto riešení sú parametre 𝑋, 𝛽 ľubovoľné parametre, ktoré treba určiť z 

počiatočných podmienok. Ľahko sa dá presvedčiť o tom, že pre ľubovoľné 

počiatočné podmienky

sa dajú nájsť parametre 𝑋, 𝛽 tak, že riešenie spĺňa  tie počiatočné podmienky. 

Tým sme „fyzikálne“ dokázali (fyzika požaduje jednoznačnú predpoveď 

budúcnosti), že sme našli všetky riešenia pohybovej rovnice. Zapamätajte si 

poučku „ľubovoľné riešenie lineárnej rovnice s pravou stranou sa dá písať 

ako súčet všeobecného riešenia tej rovnice bez pravej strany a nejakého 

špeciálneho (parciálneho) riešenia tej rovnice s pravou stranou“

Pripomeňme ešte, že sa zaujímame iba o prípad malého trenia, teda 𝜔0
2 > 𝑏2.



Budený oscilátor s tlmením

Pozrime sa teraz, ako vyzerá kvalitatívny charakter nájdeného riešenia.

Pre dostatočne dlhé časy, teda 𝑡 ≫ 𝜏. Časť riešenia zodpovedajúca riešeniu bez 

pravej strany „exponenciálne vymrie“ (prakticky stačí čas 𝑡 niekoľkokrát 𝜏) a teda 

po dlhom čase nastane „vynútený pohyb“

Exponenciálneho vymretiu homogénneho riešenia hovoríme „prechodový jav“.

Amplitúda aj fáza vynútených kmitov závisia na vynucujúcej frekvencii, tak ako to 

ukazujú vzorce

Už prostý pohľad na tie vzorce s cieľom „vyšetriť priebeh funkcie v závislosti na 

𝜔" ukazuje, že sa môže diať niečo zaujímavé v oblasti 𝜔 ≈ 𝜔0, kde sú 

menovatele výrazne malé. Pozrime si najprv numerické obrázky.



Rezonancia

Amplitúda a fáza v 

závislosti na vynucujúcej 

frekvencii 𝜔 pre hodnoty 

𝜔0 = 10, 𝑏 = 0.5

Poznámka.

Obrázky boli nakreslené v 

programe Mathematica a pre 

zaujímavosť som do nich 

nakopíroval aj príslušný plotovací

príkaz. I keď nepoznáte jazyk 

programu Mathematica, prezrite si 

ten príkaz a zistíte, že 

porozumiete jeho štruktúru. 

Nebojte sa lúštiť neznáme veci, je 

to zábavné, poučné a často 

nevyhnutné, lebo návody a popisy 

funkčnosti sú často neúplné alebo 

dokonca chybné. Otázka „Ako to 

funguje?“ patrí do kompetencie 

fyzika. Všimnite si napríklad, že 

potrebná funkcia sa nevolá atan2 

ale ArcTan.



Amplitúda a fáza v 

závislosti na vynucujúcej 

frekvencii 𝜔 pre hodnoty 

𝜔0 = 10, 𝑏 = 0.1

Rezonancia



Rezonancia

Amplitúda a fáza v 

závislosti na vynucujúcej 

frekvencii 𝜔 pre hodnoty 

𝜔0 = 10, 𝑏 = 2.0



Rezonancia

Z prezentovaných grafov je zrejmé, že amplitúda vynútených kmitov má výrazné 

maximum v oblasti, keď frekvencia vynucujúcej sily je blízka k frekvencii vlastných 

kmitov oscilátora, teda kmitov zodpovedajúcich riešeniu „bez pravej strany“. Tento 

jav sa volá rezonancia. Vidno tiež, že rezonančný pík je veľmi úzky ak koeficient 

trenia 𝑏 je malý. Porovnaním obrázkov vidíme, že šírka rezonančného píku má 

rádovo veľkosť Δ𝜔 ≈ 𝑏

𝜔0 = 10, 𝑏 = 0.5

Na obrázku je „šírka píku“ 

naznačená zvislými červenými 

čiarami.

Nedefinovali sme presne, čo 

nazývame šírkou píku, každý 

pokus o presnú definíciu by bol 

značne ľubovoľný. Všimnime si 

tiež, že ani pojem „frekvencia 

vlastných kmitov tlmeného 

oscilátora“ nie je dosť exaktne 

definovateľná, videli sme, že 

taká frekvencia je rádovo 

definovateľná iba s presnosťou 



Rezonancia

Rezonancia je „ľudovo populárny“ jav. Spomeňme napríklad varovania o 

pochodujúcom vojsku, ktoré rozkmitá most a stým súvisiaci vojenský príkaz 

„Zrušiť krok!“ Je to trochu na úrovni ľudovej rozprávky, ale nasledujúce linky na 

videá na webe ukazujú, že niečo podobné naozaj exituje.

https://www.youtube.com/watch?v=j-zczJXSxnw

https://www.youtube.com/watch?v=eAXVa__XWZ8

https://www.youtube.com/watch?v=uWoiMMLIvco

Problém je v tom, že v učebniciach sa podobné príklady uvádzajú ako ilustrácia 

pri výklade vynútených kmitov lineárneho tlmeného oscilátora. Rozkmitaný most 

je matematicky riadne iná káva. I keď pravda je aj taká, že niekde v hlbinách 

matematiky sa dajú nájsť súvislosti medzi „matematikou oscilátora“ a 

„matematikou mosta“. Bez vysvetlenia uveďme len mystické zaklínadlo 

„analytické vlastnosti Greenovej funkcie“ (možno si na to spomeniete pri štúdiu 

teoretickej fyziky). Ani toto zaklínadlo nevysvetľuje všetko. V tých ukážkach most 

v Tahome spadol nie kvôli jednoduchému periodickému vynucovaniu ale kvôli 

vírom vyvolaným vetrom a Miléniový most v Londýne dostal bočné kmity najmä 

vďaka inžiniermi nepredpokladanej (psychologickej?) spätnej väzbe medzi 

pohybom davu a reakciami mosta.

https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=eAXVa__XWZ8
https://www.youtube.com/watch?v=uWoiMMLIvco
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Matematické kyvadlo

• Hmotný bod na nehmotnom závese dĺžky 

𝑙 (tyčke alebo lanku)

• Trajektóriou je kružnica

• V tangenciálnom smere pôsobí len zložka 

tiaže o veľkosti 𝑚𝑔sin 𝜑 .

• Výchylku hmotného bodu meriame dĺžkou 

dráhy pozdĺž kružnice

• Dráhu od rovnovážneho bodu doľava 

chápeme ako kladnú, doprava ako 

zápornú

• Tangenciálnme zrýchlenie vyjadruje 

zmenu rýchlosti v dotyčnicovom smere

• pohybová rovnica teda bude

• dráhja pozdĺž kružnice sa vyjadruje ako 

𝑠 = 𝑙𝜑, preto nakoniec dostaneme 

rovnicu



141

Matematické kyvadlo

Pre malé uhly platí sin 𝜑 ≈ 𝜑, takže 

nakoniec máme

Porovnaním s rovnicou harmonického 

oscilátora
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Fyzikálne kyvadlo

Pohybová rovnica tuhého telesa rotujúceho 

okolo fixnej osi (𝐿 je vzdialenosť ťažiska od osi)



1

Kmity zložitejších sústav. 

Vlny.



2

Dva viazané oscilátory

Uvažujme dva oscilátory, pre zjednodušenie výpočtov nech majú rovnaké 

hmotnosti 𝑚 a rovnaké tuhosti ich vratných pružín 𝐾.Oscilátory sú previazané 

pružinou tuhosti 𝑘. Na hornom obrázku sú oscilátory v rovnovážnych polohách, 

všetky pružiny považujeme za nedeformované. Na spodnom obrázku sú oba 

oscilátory vychýlené z rovnovážnych polôh. Polohu každého oscilátora určuje 

súradnica meraná od jeho rovnovážnej polohy.
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Pohybové rovnice majú tvar

Istý problém pri napísaní tých rovníc môže spôsobiť sila od väzbovej pružiny 𝑘. 

Treba si uvedomiť, že keby výchylky oboch oscilátorov boli rovnaké, pružina 𝑘 by 

vôbec nebola deformovaná, preto veľkosť sily, ktorou pružina pôsobí bude úmerná 

rozdielu |𝑥1 − 𝑥2|. Na každú časticu pôsobí tá pružina silou proti smeru výchylky tej 

častice. Preto vo výraze pre silu v pohybovej rovnici pre časticu 1 musí výchylka 𝑥1
vystupovať so záporným znamienkom, preto je tam člen −𝑘(𝑥1 − 𝑥2). A presne 

opačný člen bude v rovnici pre druhú časticu.

Dva viazané oscilátory
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Pri riešení tých rovníc použijeme „geniálny trik“, rovnice raz sčítame a raz 

odčítame a dostaneme iné dve rovnice

V tých rovniciach vystupujú hľadané funkcie len v kombináciách 𝑥1 + 𝑥2 v prvej 

rovnici a 𝑥1 − 𝑥2 v druhej rovnici. Tie rovnice sú navzájom nezávislé, možno ich 

riešiť každú samostatne. Zaveďme nové funkcie

Dostali sme dve nezávislé rovnice pre akoby dva harmonické oscilátory, všeobecné 

riešenie má tvar

Odtiaľ už ľahko vyjadríme pôvodné funkcie 𝑥1, 𝑥2.
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Všeobecné riešenie obsahuje 4 neznáme konštanty 𝐴, 𝐵, 𝐶, 𝐷. Určíme ich z 

počiatočných hodnôt  𝑥1 0 , 𝑥2 0 , ሶ𝑥1 0 , ሶ𝑥2(0).

Ako príklad vyšetrime, ako vyzerá riešenie pre prípad, že vychýlime jeden 

oscilátor, druhý ostane v rovnovážnej polohe

Riešením je zjavne 𝐴 = 𝐶 = 𝑋, 𝐵 = 𝐷 = 0 a dostaneme

Typický priebeh kmitov je na obrázku. Oscilátory kmitajú „na striedačku“
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Dva viazané oscilátory, normálne módy

Interpretačne zaujímavé riešenia dostaneme, ak vyberieme také počiatočné 

podmienky, aby

• 𝐶 = 𝐷 = 0 („𝜉“-mód, teda 𝜂 = 0)

• 𝐴 = 𝐵 = 0 („𝜂“-mód, teda 𝜉 = 0)

𝜉-mód: 𝐶 = 𝐷 = 0

Je to mód, v ktorom oba oscilátory kmitajú synchrónne rovnako, v každom čase 

majú rovnaké výchylky aj rýchlosti. Väzbová pružina je teda v každom okamihu 

nedeformovaná, nepôsobí teda silou, teda ako keby tam ani nebola. Oscilátory 

neinteragujú, každý si kmitá svojou vlastnou frekvenciou 𝜔𝜉 . Je zrejmé, ako 

naštartovať oscilátory, aby kmitali v tomto móde: Na začiatku ich vychýlime z 

rovnováhy rovnako a udelíme im rovnakú počiatočnú rýchlosť. Ak ich len pustíme 

bez udelenia rýchlosti, bude navyše 𝐵 = 0.
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Dva viazané oscilátory, normálne módy

𝜂-mód: A = 𝐵 = 0

Je to mód, v ktorom oba oscilátory kmitajú rovnakou frekvenciou ale s opačnou 

fázou, teda „proti sebe“. V každom čase majú opačné výchylky aj rýchlosti. 

Oscilátory ako keby neinteragovali, každý  kmitá frekvenciou 𝜔𝜂. Tá frekvencia je 

väčšia ako vlastná frekvencia oscilátorov. Väzbová pružina je oboma oscilátormi 

deformovaná rovnako, preto jej efekt je taký, že efektívne zvyšuje tuhosť „vlastných“ 

oscilátorových pružín. Je zrejmé, ako naštartovať oscilátory, aby kmitali v tomto 

móde: Na začiatku ich vychýlime z rovnováhy presne opačne a udelíme im opačné 

počiatočné rýchlosti. Ak ich len pustíme bez udelenia rýchlosti, bude navyše D = 0.
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𝜉-mód aj 𝜂-mód,  ktoré sme práve popísali, sa súhrnne nazývajú normálne módy 

a majú niekoľko spoločných charakteristík:

• normálne módy sú monofrekvenčné, teda ich časová závislosť je popísaná 

harmonickou funkciou s jedinou frekvenciou, všetky komponenty (naše 

oscilátory) kmitajú s tou istou frekvenciou

• normálne módy sú stacionárne, teda jednotlivé komponenty systému (naše 

oscilátory) sa pohybujú stále rovnako, nedochádza k presunom energie medzi 

komponentami

• normálne módy tvoria úplný systém, teda ľubovoľný iný pohyb uvažovanej 

sústavy sa dá vyjadriť ako superpozícia normálnych módov

Normálne módy sme našli „geniálnym trikom“. Prišli sme na to, že pôvodné 

pohybové rovnice môžeme sčítaním a odčítaním premeniť na nové navzájom 

nezávislé rovnice.

Ak by sme boli vedeli, že hľadáme „normálne módy“, mohli sme ich nájsť aj bez 

geniálnych trikov tak, že by sme hľadali špeciálne pohyby s práve popísanými 

vlastnosťami normálnych módov. Ukážeme si to.
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Pri hľadaní normálnych módov použijeme techniku komplexných čísel, ušetrí nám to 

námahu s trigonometrickými identitami.

Budeme hľadať stacionárne monofrekvenčné kmity, teda riešenia v tvare

Všimnime si, že všade je tá istá a jediná frekvencia 𝜔.Po dosadení do rovníc 

dostaneme

Trik s monofrekvenčnosťou prerobil sústavu lineárnych diferenciálnych rovníc na 

sústavu lineárnych algebraických rovníc. Mimochodom, dostali sme homogénne 

rovnice „bez pravých strán“:
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Takéto rovnice majú buď len jedno triviálne riešenie ෤𝑥1 = ෤𝑥2 = 0, alebo dve 

netriviálne riešenia, a to vtedy, ak tie dve rovnice nie sú nezávislé, ale každá hovorí 

„to isté“, takže máme vlastne iba jednu rovnicu. Bude to vtedy, keď jedna rovnica 

bude jednoducho násobkom druhej, teda ak existuje číslo c tak, aby platilo

odtiaľ
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Našli sme teda frekvencie normálnych módov a po dosadení tých 

frekvencií do rovníc

Dostali sme teda technikou „hľadania monofrekvenčných riešení“ rovnaké 

normálne módy ako tie, ktoré sme už videli.

V istom zmysle teraz možno lepšie vidíme, v akom zmysle sú normálne módy 

špeciálne riešenia. 

Predovšetkým vidíme, že ide o kolektívne koordinované pohyby jednotlivých 

zložiek celého systému, teda našich „pôvodných oscilátorov“, z ktorých sa 

uvažovaný systém skladá.

„Skladať sa z“ je dôležitý pojem pre chápanie okolitého sveta a na príklade 

viazaných oscilátorov si môžeme ukázať jemné nuansy tohto pojmu.
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Skladať sa z

Na príklade viazaných oscilátorov teraz chceme demonštrovať kúsok z metodiky 

fyziky, prístup k chápaniu reality technikou „skladať sa z“.

Povedali sme si niekedy na začiatku semestra:

Západná civilizácia:

nemusím mať ambíciu pochopiť „svet v jeho celostnosti“

Vymedzím nejakú časť sveta (fyzikálny systém) 

snažím sa analyzovať „ako funguje“ sám o sebe a tiež v kontakte s okolím. 

Potom postupne skladať z kúskov celý puzzle.
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Skladať sa z, čierna skrinka

Na začiatku máme pojem harmonický oscilátor. Ten sme dostatočne preskúmali 

ako samostatný fyzikálny objekt. Teraz máme nový systém, „čiernu skrinku“, o 

ktorej nám niekto povedal, že sú tam dva oscilátory, teda „skladá sa z“ dvoch 

oscilátorov. Takže je prirodzené, predstaviť si „vnútro skrinky“ takto:

Ibaže „naozaj“ vyzerá vnútro takto:

Sú tam dva oscilátory, ale interagujúce, previazané.
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Nevidím dovnútra čiernej skrinky, ale dostanem úlohu zistiť (bez jej rozbitia), čo je 

vnútri a mám informáciu že „sú tam dva oscilátory“. Môžem napríklad skrinkou 

zahrkať a potom počúvať, aký zvuk sa odtiaľ šíri. Keby to bola tá skrinka vľavo,

mal by som počuť zvuk jedinej frekvencie                         , ak to je tá skrinka 

vpravo budem počuť zvuk skladajúci sa z dvoch frekvencií
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Je to ale naozaj tak, že ak počujem pri rôznom zahrkaní rôzne zvuky, ale 

vždy len zmes dvoch frekvencií

potom môžem usúdiť, že vnútri sú dva viazané oscilátory?

Pozor! Nik mi nepovedal, že sú tam dva rovnaké oscilátory!  Ak som 

nepredpojatý a uprednostňujem jednoduché hypotézy, potom možno 

prirodzenejšia hypotéza bude, že v skrinke sú dva rôzne nezávislé oscilátory,

jeden s vlastnou frekvenciou                  a druhý s frekvenciou
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Ako mám experimentami bez rozbitia skrinky zistiť, či „konštrukčne“ ide o 

skrinku vľavo alebo tú vpravo. Ak ide o „nerozbitnú“ skrinku a jediné, čo 

môžem použiť sú vydávané zvuky, potom nijako. Ale vadí to?

Načo je fyzika? Aby mi pomohla prežiť v džungli okolitého sveta. Ak 

prístupné sú len zvuky, potom ma skrinka ani inak neovplyvňuje, iba 

zvukmi. Pre moje prispôsobenie sa a pre prežitie sú obe skrinky úplne 

rovnocenné. Mám plné „právo“ prehlásiť, že v skrinke „sú“ dva nezávislé 

nerovnaké oscilátory. Že sa skrinka „skladá“ z dvoch oscilátorov 𝜉 a 𝜂. 

Ba dokonca je to tak pre praktické rozhodovanie o mojom prežití 

jednoduchšie, než povedať, že „sa skladá z dvoch rovnakých oscilátorov 

ale previazaných“.

Oscilátor previazaný s nejakým iným sa chová inak, než izolovaný 

oscilátor, takže dokonca prísne filozoficky naladený človek sa môže pýtať 

„Je to ešte stále ten oscilátor, ktorý som študoval ako izolovaný, keď je 

zviazaný s iným podobným?“
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Skladať sa z

Všetci sme sa už ako malí učili, že „látky sa skladajú z atómov a tie sa skladajú z 

protónov, neutrónov a elektrónov“. Ale ak začnem študovať osamotený izolovaný 

neutrón, zistím pozoruhodnú vec: je to nestabilná častica a zhruba po štvrťhodine sa 

rozpadne.

Ako sa môžeme „skladať z“ niečoho, čo sa po štvrťhodine rozpadne? Veď 

nepozorujeme, že by sme sa po štvrťhodine rozpadli! Nuž tak, že neutrón v jadre 

atómu „sa chová inak“ (a niekto možno povie „je iný“) ako izolovaný neutrón. Dnes 

rozumieme celkom dobre, ako to funguje, ale treba na to kvantovú teóriu. Takže si 

len „po škôlkarsky“ povieme, že protóny v jadre „kvantovomechanicky nedovolia“ 

neutrónu, aby sa rozpadol. Ale ilustruje to ťažkosti pri používaní metodológie 

„skladať sa z“. 
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Dilema

Dilemu „ako je to skonštruované naozaj“ je prípustné prerozprávať i takto.

Naozaj sú tam dva viazané rovnaké oscilátory, ale pre účely výpočtov je 

jednoduchšie, keď sa budeme tváriť, že sú tam dva nezávislé nerovnaké oscilátory.

Priam sa núka historická paralela. Na mnohých stredovekých poslucháčov a čitateľov 

Galilea a Koperníka sa dnes dívame ako na hlupákov, lebo tvrdili, že „naozaj“ sa 

Slnko točí okolo Zeme, kým  heliocentrický systém je len taký výpočtársky trik. Ale v 

čom sa to líši od nášho príkladu s viazanými oscilátormi?

Iná, možno menej známa paralela je takáto. Chemici už v čase okolo Francúzskej 

revolúcie prišli na to, že chemickým reakciám sa dá jednoducho rozumieť, keď 

prijmeme vážne atómovú hypotézu a naraz vedeli, že „voda“ je 𝐻2𝑂. A zistili, že tlak 

plynu sa dá predstaviť ako bombardovanie steny nádoby molekulami, že teplota 

plynu súvisí s kinetickou energiou chaotického pohybu molekúl (niekedy kolo r. 

1860). Ale stále bolo veľa profesorov fyziky, ktorí hovorili „to sú len také výpočtárske 

triky, naozaj nie sú žiadne atómy“.  Až keď Einstein a Smoluchowski kvantitatívne 

vysvetlili Brownov pohyb pochybovači povedali, že už „veria“ na atómy.
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Vráťme sa ešte k obrázku pohybu „dvoch viazaných oscilátorov“

na tom obrázku ešte vieme identifikovať dva „harmonické oscilátory, ktoré si 

striedavo vymieňajú energiu“. Je to preto, že perióda „výmen energie“ je oveľa dlhšia 

ako perióda „vlastných kmitov“ jednotlivých oscilátorov. Takže každý z našich 

viazaných oscilátorov „sa ešte stále dosť podobá na seba v stave, keď bol 

izolovaný“. Ten obrázok sme ale zámerne nakreslili pre situáciu, v ktorej to tak 

vyzerá, konkrétne pre „slabé previazanie 𝑘 ≪ 𝐾. Pre prípad 𝑘 ≈ 𝐾 to dopadne takto:

V tomto prípade je už naozaj ťažké priznať intuitívnu 

hodnotu  popisu „dva rovnaké viazané oscilátory.

Poučenie z celého je také: ak podsystémy, z ktorých sa 

celý systém skladá, interagujú slabo, je terminológia 

podsystémov a „skladania sa z nich“ často užitočná pre 

intuitívne prijateľný popis a porozumenie. V prípade silnej 

interakcie je technológia „skladať sa z“ debatovateľná.



Čo mám garantovane vedieť

• frakvencia matematického kyvadla

• napísať pohybové rovnice dvoch viazaných oscilátorov

• uveďte nejaké charakteristiky normálnych módov



Retiazka oscilátorov
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a:

b:

c:

d:

Hlasujte, čo sú správne pohybové rovnice

cernyv.com                     l/pwd fmph/fmphedu



Retiazka oscilátorov
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Systém pohybových rovníc pre retiazku oscilátorov sa neskôr naučíme riešiť, ale 

najprv budeme riešiť úlohu v spojitej limite. Riešenie je v spojitom prípade intuitívne 

prijateľnejšie.



Malá matematická vsuvka

V matematike mávame funkcie aj niekoľkých premenných, 
ako tu

Takúto funkciu môžeme derivovať podľa niektorej z jej 
premenných, pričom ostatné premenné, podľa ktorých 
nederivujeme, budeme považovať  za konštantné (akoby za 
parametre) teda napríklad definujeme

Aby sme upozornili na to, že derivujeme len podľa jednej 
premennej, kým ostatné sú konštantné, používame v 
symbole derivácie znak 𝜕 namiesto d. Volá sa to parciálna 
derivácia. Analogicky budeme značiť vyššie parciálne 
derivácie. 23



x=Δ x=2Δ x=iΔ x=(N-1)Δ

L=NΔ
24
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x

x+u(x)

u(x)

V limite vznikne  nový typ fyzikálneho objektu: deformovateľná tyč

26
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Čo sme to stvorili? Nové fyzikálne "zviera“!

x

x+u(x)

u(x)

V limite vznikne  nový typ fyzikálneho objektu: deformovateľná tyč

nedeformovaná tyč

deformovaná tyč

Tyč sa skladá z častíc, ale tie sú malé a sú nahusto,  takže ich nevidíme. 
Možno ani netušíme, že tie častice existujú. Tyč sa nám môže javiť ako 
osobitný fyzikálny objekt "kus kovu". Javí sa nám ako spojité 
prostredie, „kontinuum“, z ničoho elementárnejšieho sa neskladajúce. 
Dokonca historicky to bolo práve tak.  Naša deformovateľná tyč sa 
môže nachádzať v rôznych stavoch podľa toho, ako je pozdĺžne, teda v 
smere tyče, vychýlený bod (rez) tyče zo svojej kľudovej polohy x. 29



Takže pozor:
zadať stav častice v nejakom okamihu vieme pomocou (iba) 6 čísel: tri 
zložky vektoru polohy a tri zložky vektoru rýchlosti

Na zadanie stavu tyče potrebujeme "dvakrát spojite nekonečne veľa 
čísel" teda potrebujeme zadať hodnoty funkcie

a aj jej prvej časovej derivácie

Budúcnosť budeme predpovedať pomocou rovnice, ktorú sme našli, 
teda

toto je vlastne spojite nekonečne veľa diferenciálnych rovníc, po 
jednej pre každé Rovnice ale nie sú navzájom nezávislé. 
Cez pravé strany sa cítia. 

30



Zdanlivo sú rovnice nezávislé, veď v každej rovnici je len „jedno x“. Takže 
sa to zdanlivo podobá na pohybové rovnice Newtonovho typu

Ibaže výraz na pravej strane                         sa týka nie jedného bodu x ale 

troch infinitezimálne blízkych bodov                            Druhá derivácia

„cíti“ zakrivenie grafu funkcie. Na to potrebuje poznať hodnotu funkcie v 
troch infinitezimálne blízkych bodoch (kým prvá derivácia, ktorá „meria“ 
strmosť dotyčnice potrebuje hodnoty funkcie v dvoch infinitezimálne 
blízkych bodoch). Vidno to z pôvodne diskrétneho výrazu

Rovníc (#) je teda spojite nekonečne veľa a každá z nich „cíti“ aj 
predchádzajúcu rovnicu aj nasledujúcu rovnicu. Nemôžeme ich riešiť 
jednu po druhej, riešime ich ako „jednu parciálnu diferenciálnu rovnicu“.

31

(#)



x

x+u(x)

u(x)

Predstierajme teda, že nevieme, že sa tyč skladá z častíc a naučme sa 
robiť fyziku tyče ako osobitného druhu fyzikálneho objektu. Volá sa to 
"efektívna teória" alebo efektívny prístup.

Efektívne teórie používame vlastne denne, len si to neuvedomujeme. 
Hovoríme, že z vodovodu tečie "voda", ako keby "voda" bol osobitný 
fyzikálny systém (objekt). V skutočnosti nič také ako "voda" vlastne 
neexistuje. Z vodovodu tečie kopa protónov, neutrónov a elektrónov. 
Ale keby sme chceli stavať priehradu a tečenie "vody" chceli popisovať 
ako presúvanie protónov, elektrónov a neutrónov, asi by sme sa zbláznili.
Namiesto toho používame efektívny pojem "voda" a popisujeme jej 
vlastnosti pomocou pojmov ako "hustota" alebo "viskozita". 32



x

x+u(x)

u(x)

Takže budeme skúmať tyč v priblížení efektívnej teórie, považujúc ju za 
jednorozmerné kontínuum
Ako s každým fyzikálnym systémom, musíme sa naučiť
• ako sa popíše okamžitý stav systému
• ako sa predpovedá budúcnosť, teda časový vývoj stavov

Stav nášho jednorozmerného kontínua  v istom okamihu poznáme ak 
zadáme funkciu deformácie (posunutia každého bodu tyče)

a ešte aj jej prvú časovú deriváciu v uvažovanom okamihu

Že treba zadávať aj časovú deriváciu uvidíme z toho, že pohybová rovnica je 
druhého rádu podobne ako Newtonova. 33



34

• napíšte pohybové rovnice retiazky oscilátorov

• akú rovnicu dostaneme z rovníc retiazky v spojitej limite

• napíšte vlnovú rovnicu

• čo musíme zadať, aby sme zadali okamžitý stav pozdĺžne kmitajúcej tyče
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Hľadáme riešenia vlnovej rovnice

Poučení príkladom dvoch viazaných oscilátorov hľadáme najprv špeciálne riešenia, 

normálne módy. Mali by mať takéto vlastnosti

• normálne módy sú monofrekvenčné
• normálne módy sú riešenia, takže spĺňajú okrajové podmienky
• normálne módy sú stacionárne
• normálne módy tvoria úplný systém, t.j. že hocijaké iné riešenie  sa 

dá napísať ako ich superpozícia
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Hľadajme monofrekvenčné riešenia v tvare v tvare ( zatiaľ nedbáme na 
okrajové podmienky):

Dosadíme do vlnovej rovnice:

Riešenia tejto rovnice poznáme:

Teraz zohľadníme okrajové podmienky: 𝑤 0 = 𝑤 𝐿 = 0. Zistíme, že musí platiť 

𝐵 = 0 a že 𝜔 nemôže byť hocijaké, ale iba a niektoré číslo z diskrétnej množiny
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Zistili sme, že existuje celá množina monofrekvenčných riešení, sú to

kde

Tieto riešenie sú zatiaľ napísané ako komplexné, my, samozrejme potrebujeme 

reálne, takže monofrekvenčné reálne riešenia budeme písať ako

Všeobecné riešenie vlnovej rovnice, spĺňajúce okrajové podmienky potom bude

kde 𝐴𝑛, 𝐵𝑛 sú konštanty, ktoré treba nájsť tak, aby boli splnené aj počiatočné 

podmienky
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Tu je video experimentu demonštrujúce ako možno presúvaním 
prstov pozdĺž tyče vzbudiť pozdĺžne deformácie, ktorých časový 
vývoj sa potom prejaví ako zvuk.

Všimnite si koniec videa. Plastový pohár fungujúci ako rezonátor, 
nezosilní zvuk tyče, ak je k tyči priložený priečne, ale zosilní zvuk pri 
pozdĺžnom priložení. To dokazuje, že zvukové vlny šíriace sa v tyči sú 
pozdĺžne.



Vlnová rovnica: ako predpovedáme budúcnosť
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Máme zadaný stav  v okamihu t=0, teda poznáme funkciu deformácie 
(posunutia každého bodu tyče)

a ešte aj jej prvú časovú deriváciu v uvažovanom okamihu

Úlohou je nájsť funkciu

Pre (všetky) neskoršie časy t. 

Zaveďme ešte prirodzené označenie 

Konce tyče sa nehýbu, teda „navyše“ chceme, aby v každom čase platilo



Vlnová rovnica: jednoduché numerické riešenie
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Toto sú rovnice, ktoré ukazujú ako sa u(t,x), v(t,x) budú po malých 
krokoch posúvať dopredu v čase, porovnaj s Newtonom

Posunutie o krok 𝛿 dopredu v čase (druhú deriváciu nahradím 
jej približným numerickým vyčíslením):

Pri numerickom riešení Δ nebude infinitezimálne, bude to malý krok v 𝑥.
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Máme teda nápad, ako sa posúvať dopredu po malých časových krokoch.

Diskretizujeme úsečku (0, 𝐿) na veľa malých intervalov Δ a budeme vyčísľovať 

posunutia a rýchlosti len v diskrétnych bodoch

Začneme tak, že poznáme v čase 𝑡 = 0 hodnoty posunutí a rýchlostí

z počiatočných podmienok a potom sa posunieme o malý krok v čase

Ukážeme si program pre jednoduché numerické riešenie v Pythone. Počiatočné 

posunutia a rýchlosti zvolíme v tvare

Tento konkrétny počiatočných podmienok nie je pre numerické riešenie nijako 

dôležitý, motivácia pre takú voľbu sa ukáže, až budeme riešiť vlnovú rovnicu 

analyticky.
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Jednoduché numerické riešenie: program



43

Jednoduché numerické riešenie: program

Všimnite si, prečo musíme „opracovať“ hraničné body osobitne!

Posúvanie v čase vyžaduje, aby každý posúvaný bod mal ľavého aj pravého 

suseda, a to hraničné body nemajú. Preto hraničné body nevieme posúvať v čase 

podľa toho, ako to vyžaduje pohybová parciálna diferenciálna rovnica. Preto 

potrebujeme definovať hraničné podmienky v každom čase.



Zapamätajte si !

Pre fixovanie jednoznačného riešenia parciálnej diferenciálnej rovnice (a teda pre 

predpovedanie budúcnosti) je treba okrem tej diferenciálnej rovnice definovať 

aj okrajové podmienky. Dôvod sme videli pri pokuse o numerické riešenie: 

okrajové body nemajú všetkých potrených susedov, preto diferenciálna rovnica 

samotná nešpecifikuje, čo s tými bodmi urobiť.

Pohybová parciálna diferenciálna rovnica sa „odvodzuje“ pre skúmaný systém 

fyzikálnou analýzou. Okrajové podmienky treba stanoviť osobitnou rovnako 

starostlivou fyzikálnou analýzou problému. Na to sa často zabúda. Fyzik je 

šťastný, že sa mu „podarilo odvodiť“ pohybovú rovnicu a v návale radosti zabudne, 

že bez okrajových podmienok je mu nanič.

My sme v našom probléme kmitajúcej tyče mali také jednoduché okrajové 

podmienky, že sme si takmer ani nevšimli, že nejaké podmienky vyrábame. 

Uvažovali sme tyč „votknutú“ medzi dva múry, a teda bolo jasné, že „konce tyče sa 

nehýbu“. Bolo trivialitou zapísať tie podmienky matematicky

Veľmi často analýza a odvodenie okrajových podmienok dá viac roboty ako 

odvodenie samotnej pohybovej rovnice. 44
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Matematická vsuvka: Fourierov rozvoj

Veta: Každú "slušnú" funkciu 𝑈(𝑥), definovanú na intervale 0, 𝐿 ktorá 
spĺňa okrajové podmienky 𝑈 0 = 𝑈 𝐿 = 0 možno vyjadriť v tvare 
nekonečného Fourierovho radu

Pre Fourierove sinsusovky platí

preto možno pre zadanú funkciu 𝑈 𝑥 koeficienty 𝑐𝑛 vyjadriť v tvare

Teraz budeme vlnovú rovnicu riešiť analyticky. Pomocou Fourierovho radu.
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Vlnová rovnica: analytické riešenie

Geniálny Fourierov nápad: hľadajme riešenie v tvare 

Po dosadení do vlnovej rovnice dostaneme

Porovnaním koeficientov na ľavej a pravej strane dostaneme rovnice

Sú to rovnice ako keby pre  harmonické oscilátory
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všeobecné riešenie má tvar

teda všeobecné riešenie vlnovej rovnice na intervale 0, 𝐿 je

Teraz musíme nájsť koeficienty 𝑎𝑛, 𝑏𝑛 tak, aby boli splnené 
počiatočné podmienky
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Stačí si uvedomiť, že zadané funkcie 𝑈 𝑥 , 𝑉(𝑥) tiež môžeme vyjadriť v 
tvare Fourierovho radu
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a potom už ľahko vyjadríme riešenie vlnovej rovnice so zadanými 
okrajovými a počiatočnými podmienkami ako

Štandardne sa ešte zavádza označenie
takže dostaneme
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• Ako vyzerá Fourierov rozvoj funkcie na úsečke dĺžky 𝐿, ktorá má na 

konci úsečky nulové hodnoty

• Integrál zo súčinu Fourierových sinusoviek na úsečke

• Ako sa nájdu koeficient rozvoja funkcie do sinusoviek na úsečke

• Ako vyzerajú frekvencie normálnych módov vlnovej rovnice na úsečke
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Vlnová rovnica: charakter riešení

Vyšetrime vlastnosti najjednoduchšieho riešenia
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Pozor,  tyč nekmitá v priečnom smere, ostáva stále rovná. Graf ukazuje 
veľkosť posunutia v pozdĺžnom smere miesta so súradnicou x v 
rozličných časoch
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Toto je animácia pozdĺžnych posunutí rezov tyče
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Video ukazuje, že každý rez tyče kmitá ako oscilátor, stále rovnakou 
frekvenciou a amplitúdou. Niektoré rezy tyče nekmitajú vôbec, to sú 
takzvané uzly. Riešenie

popisuje tzv. stacionárne kmity tyče (stojatú vlnu). Slovom stojatý 
máme na mysli to, že po tyči sa nepremiestňuje energia ani amplitúda 
oscilácií. Všimnime si, že stojatá vlna je monofrekvenčná, všetky body 
kmitajú jednou a tou istou frekvenciou
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Index 𝑛 pri určuje počet priestorových polperiód kmitov,
súvis s vlnovou dĺžkou je

𝑐 má rozmer rýchlosti !
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Ukážka nestacionárneho vlnenia
Na videu je pohybujúca sa vlna
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Ukážka nestacionárneho vlnenia
Na videu je pohybujúca sa vlna

Pri špeciálnej počiatočnej podmienke tvaru Fourierovej sínusovky 
vznikne stojaté (stacionárne) kmitanie. Pri všeobecnej počiatočnej 
podmienke vznikne postupné (šíriace sa) vlnenie
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Všimnime si, že platí

Posunutie bodu 𝑥 v čase 𝑡 Posunutie bodu 𝑥 + 𝑐𝜏 v čase 𝑡 + 𝜏=

Bod vzdialenejší vpravo o 𝑐𝜏 má také isté posunutie v čase neskoršom o 𝜏
teda popisuje to vzruch (vlnu) šíriacu sa zľava doprava rýchlosťou  𝑐. 
Obdobne prvá sínusovka popisuje vlnenie šíriace sa sprava doľava.
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Fourierova stojatá vlna vzniká teda superpozíciou dvoch postupných 
vĺn, jednej šíriacej sa zľava doprava a druhej šíriacej sa sprava doľava.
Tie postupné vlny majú v tomto prípade veľmi špeciálny tvar, takže sa 
poskladajú na stojatú vlnu.

Použitím identít pre súčiny trigonometrických funkcií možno 
ľubovoľné riešenie vlnovej rovnice napísať ako superpozíciu dvoch 
postupných vĺn, jednej šíriacej sa zľava doprava a druhej šíriacej sa 
sprava doľava. Tie postupné vlny ale všeobecne nemajú taký špeciálny 
tvar, aby sa poskladali na stojatú vlnu. Spravidla sa poskladajú na 
vlnenie striedavo sa pohybujúce zľava doprava, po odraze od konca 
sprava doľava a po ďalšom odraze zase zľava doprava ... Videli sme to 
na videu.



Vlnová rovnica všeobecne

Majme ľubovoľnú funkciu jednej premennej

a vyrobme z nej funkciu dvoch premenných 𝑡, 𝑥 takto

Rovno vidím, že takáto funkcia spĺňa vlnovú rovnicu  a 
podobne ju spĺňa aj funkcia

kde          je (iná) ľubovoľná funkcia jednej premennej

61



Nemôžem si ale myslieť, že mnou hľadanú funkciu deformácie

budem písať ako

Lebo funkcia deformácie musí okrem vlnovej funkcie spĺňať aj 
okrajové podmienky

Skúsme ale hľadať riešenie v tvare

a nájdime, aké podmienky musia spĺňať (inak ľubovoľné) 
funkcie          , aby boli identicky splnené okrajové podmienky
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Dostaneme

Takže funkcie f a g spolu súvisia takto

máme teda

teraz podmienka

Zjavne je treba použiť periodickú funkciu s periódou                 , 
napríklad
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Potom dostaneme

Vo všeobecnosti môžeme použiť ľubovoľnú superpozíciu takých 
riešení (v časovej závislosti môže byť aj kosínus), takže dostávame 
inou cestou to, čo už poznáme.
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Zhrňme naše poznatky o vlnovej rovnici

s okrajovými podmienkami

Všeobecné riešenie môžeme písať v tvare superpozície špeciálnych 
stacionárnych riešení

Stacionárne riešenia sú
• monofrekvenčné
• tvoria úplný systém, teda každé riešenie sa dá písať ako ich 

superpozícia
• sú „ortogonálne“, takže platí                                                                   

túto vlastnosť využívame pri hľadaní koeficientov rozvoja z 
počiatočných podmienok                                 
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• Zapíšte všeobecné riešenie vlnovej rovnice na úsečke (s nulovými 

okrajovými podmienkami) ako superpozíciu stacionárnych kmitov

• Uveďte charakteristiky stacionárnych kmitov



Diskrétna retiazka oscilátorov

67

Po tom, čo sme sa potrápili so spojitou vlnovou rovnicou, vráťme sa k diskrétnej 

retiazke oscilátorov
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Spojitý prípad, ktorý sme riešili bol limitou diskrétnej retiazky, takže skúsime 

predpokladať, že riešenia diskrétneho modelu budú v niečom podobné na riešenia 

spojitého modelu. Skúsme teda postupovať tak, že nájdeme najprv špeciálne 

monofrekvenčné stacionárne riešenia, ktoré sú navyše faktorizované, teda vyzerajú 

ako súčin funkcie času a funkcie priestorovej premennej, ktorej úlohu hrá index 𝑖.

Priestorová časť spojitých monofrekvenčných riešení boli sínusovky, takže skúsime 

čosi ako diskretizovavé sínusovky. Hľadajme teda špeciálne riešenia v tvare
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Vyskúšame teda riešenie v tvare (komplexnú jednotku píšeme ako    , aby sa to 

neplietlo s indexom 𝑖.
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Našli sme teda riešenia

Pre spojitý prípad sme potrebovali takéto riešenia pre ľubovoľné celé číslo 𝑛, teda bolo 

nekonečne veľa takýchto špeciálnych riešení.

Vzniká otázka, či aj pre diskrétnu retiazku oscilátorov budeme využívať nájdené 

špeciálne riešenia pre ľubovoľné prirodzené číslo 𝑛, teda nekonečne veľa špeciálnych 

riešení. Navyše sme dostali vyjadrenie pre kvádráty frekvencií, otázka je, či budeme 

potrebovať aj „záporné omegy“.

Tieto otázky si zodpovieme, keď si dobre uvedomíme, načo tieto špeciálne riešenia 

potrebujeme. 

Potrebujeme ich na predpovedanie budúcnosti. Pri zadaných počiatočných 

podmienkach

chceme príslušné riešenie písať ako

Zatiaľ nevieme, po aké veľké 𝑛 pobeží tá suma.
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Namiesto otáznika sme ako hornú hranicu v sume písali zatiaľ neznáme číslo ෩𝑁.

Poznamenajme, že index 𝑖 v týchto rovniciach prebieha hodnoty 1,2,3, … (𝑁 − 1).
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Máme teda 2 𝑁 − 1 rovníc o 2෩𝑁 neznámych 𝑎𝑛, 𝑏𝑛. Rovnice pre 𝑎𝑛 a 𝑏𝑛 sú ale 

nezávislé, takže máme dve sady rovníc. Prvá je (𝑁 − 1) rovníc o ෩𝑁 neznámych 

𝑎𝑛, druhá sada je (𝑁 − 1) rovníc o ෩𝑁 neznámych 𝑏𝑛.

Sú to systémy lineárnych rovníc s pravou stranou. Koeficienty pri neznámych sú 

v oboch sadách rovnaké, sú to čísla

Takže prvá sada rovníc znie

Skúsme si tipnúť, ako to celé dopadne. Vo fyzike očakávame jednoznačnú 

predpoveď budúcnosti, teda jednoznačné riešenie pre koeficienty 𝑎𝑛. 

Najjednoduchšie by to bolo tak, že ෩𝑁 = 𝑁, teda rovnaký počet rovníc ako 

neznámych, pričom, aby to fungovalo, tie rovnice musia byť nezávislé.



73

Veľmi sa to všetko podobá na spojitý prípad, kde sme robili Fourierove rozvoje a 

tam kľúčom k tomu, že to bolo ľahké, bol vzťah ortogonality

Integrál je suma infinitezimálnych malých čísel. Skúsme si tipnúť, že v 

diskrétnom prípade by sa to mohlo modifikovať na diskrétnu sumu

Nevediac ako ďalej, začal som na Wikipédii, kde som našiel elegantnú 

Lagrangeovu trigonometrickú identitu

jej dôkaz som si tiež vygooglil
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Múdreho toto malo napadnúť hneď, že suma tých kosínusov je v 

komplexných číslach geometrická postupnosť! Eulerova formula je sila!
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Vrátiac sa k nášmu problému

dostaneme

Koeficienty riešenia z počiatočných podmienok potom dostaneme ľahko
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K ľubovoľným počiatočným podmienkam sme teda našli riešenie, čím sme 

nepriamo dostali odpoveď na otázky, ktoré sme sformulovali takto:

Vzniká otázka, či aj pre diskrétnu retiazku oscilátorov budeme využívať nájdené 

špeciálne riešenia pre ľubovoľné prirodzené číslo 𝑛, teda nekonečne veľa 

špeciálnych riešení. Navyše sme dostali vyjadrenie pre kvadráty frekvencií, otázka je, 

či budeme potrebovať aj „záporné omegy“.

Na nájdenie riešenia nám stačilo 𝑁 − 1 špeciálnych riešení. To znamená, že tie 

riešenia tvoria úplný systém a všetky ostatné špeciálne riešenia, ktoré sme našli nie 

sú už nezávislé, dajú sa vyjadriť pomocou prvých 𝑁 − 1 špeciálnych riešení. Ako to 

vieme? Nuž, sú to riešenia, zodpovedajú im nejaké počiatočné podmienky a teda 

vieme ich zostaviť pomocou prvých 𝑁 − 1 riešení. Tento „dôkaz“ nebol matematický, 

ale fyzikálny. Viera v predpovedateľnosť sveta zo znalosti počiatočného stavu žiada 

jednoznačnosť riešenia pohybových rovníc pri určitých počiatočných podmienkach. 

Je na matematikoch, aby dokázali, že Newtonove rovnice spĺňajú takú podmienku 

jednoznačnosti. Fyzikálni prvolezci sa musia starať o matematický dôkaz 

jednoznačnosti. My, ktorí lezieme už za nimi sme uverili, že vytýčená cesta je 

preverená a môžeme fyzikálne technológie používať, zatĺcť fyzikálnu skobu a 

zveriť sa jej. Keby to náhodou s nami spadlo, znamená to, že fyzikálna cesta 

potrebuje korekcie. Párkrát to v histórii spadlo a noví geniálni prvolezci našli 

lepšie skoby, doplnili napríklad Newtonovu mechaniku o kvantovú mechaniku 

a teóriu relativity. Staré skoby sme nezahodili, len upresnili v akých skalách ich 

možno s dôverou používať a v akých skalách treba nové skoby.
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Súčasne vidíme, že nepotrebujeme ani riešenia so „zápornými omegami“. 

Ľubovoľné počiatočné podmienky sme dokázali splniť len pomocou riešení s 

kladnými omegami, teda riešenia so zápornými omegami sú vyjadriteľné 

pomocou riešení skladnými omegami.

Všetky tieto poznámky vyžadujú poriadne premyslenie. Keď ich čítate a 

rozumiete po slovensky, to ešte neznamená, že aj chápete.

Vari hlavnou úlohou prvej fyzikálnej prednášky magisterského kuru je 

„pochopiť, čo to znamená pochopiť. Nepodceňujte to. Odmenou je 

radosť z pochopenia.



Látka ako kontinuum

1



Čo presne nazývame „látka“ nie je dobre definované. V slovenskej terminológii 

pretrvávajú zvyklosti zavedené niekedy v rámci ideologického „newspeaku“, keď sa 

hovorilo, že fyzikálne objekty sú vo všeobecnosti „hmotnej povahy“, kde slovo „hmota“ 

sa vymedzovalo ako označenie pre „objektívnu existenciu“ v protiklade k „vedomiu“. 

Slovo látka sa potom používa(lo) na značenie čohosi uchopiteľného, viditeľného,.... v 

protiklade napríklad k „fyzikálnemu poľu“ (napríklad elektromagnetickému).

V anglickej terminológii sa používa jeden spoločný pojem „matter“ a to aj vo vyššie 

uvedenom význame hmota (ako filozofická kategória) aj ako látka.

Pozrite si wikipédiu, tak slovenskú ako aj anglickú verziu a trošku sa oboznámte s 

celým tým zmätkom. Vôbec to nie je pre „chápanie fyziky“ potrebné: terminologickí 

puristi sú často najmä tí, ktorí fyzike rozumejú iba na najnižších leveloch. Ale je dobré 

o tom počuť, lebo sa s tým určite stretnete. Tak aby ste to nebrali vážne.  

Rozdiel medzí látkou a ne-látkou mi pripomína problém, ktorí sme riešili s deťmi v 

škôlke, keď mali vysvetliť rozdiel medzi ovocím a zeleninou. Ja som to určite 

nedokázal a, popravde, bolo mi to jedno. Hoci v živote sú tie dva pojmy niekedy aj 

užitočné. Podobne stolička je prakticky dobrý pojem, ale neviem rigorózne vysvetliť, čo 

všetko sa nazýva alebo naopak nenazýva stolička.

Objekty okolo nás sú spravidla „látkovej povahy“. 

2



Látka ako efektívny objekt
Dnes fyzika hodne pokročila v porovnané so začiatkom 19. storočia, keď „zverinec“ 

fundamentálne rôznych fyzikálnych objektov bol veľmi bohatý. Objekty ako „voda“, 

„vzduch“, „meď“ boli osobitné „zvieratá“, ktoré spolu nijako nesúvisleli.

Úlohou fyziky ako prírodopisu bolo kvantitatívne popísať vlastnosti látok ako sú 

(hmotnostná) hustota, teplotná rozťažnosť, moduly pružnosti, tvrdosť, koeficient 

trenia, farba (spektrálna pohltivosť svetla) a podobne. Ďalej rozhodnúť, ako sa 

zadáva „stav v danom okamihu“. Pre kus medi to môže byť napríklad tvar objektu v 

nedeformovanom stave, miera deformácie v každom bode, rýchlosť zmeny tejto 

deformácie, teplota. 

V druhom koku pristupuje „prorocká úloha fyziky“: úloha nájsť (pre daný prípad 

interakcie s vonkajším prostredím) pohybové rovnice a potom sa naučiť ich riešiť.

Toto boli nezávislé úlohy pre každú látku.

V 19 storočí objavili chemici atómy a molekuly a pohľad na fyzikálne zverinec sa 

razom zmenil. Fundamentálne zvieratá boli atómy a vzniklo presvedčenie, že ak 

fyzikálne zvládneme prírodopis i predpovedanie budúcnosti pre atómy, budeme 

vedieť vypočítať i vlastnosti všetkých látok.

Látky sa stali iba „efektívnymi kolektívnymi zvieratami“. Pre jednoduchosť hovoríme 

vzduch, ale vieme, že ide o množstvo istých molekúl.
3



Látka ako efektívny objekt

Tuhú látku a jej vlastnosti teda vnímame ako efektívny popis objektu, ktorý 

mikroskopicky vyzerá nejako takto

Reakciu tuhej látky na vonkajší silový podnet potom chápeme ako efektívny 

výraz pre reakciu mriežky atómov na ten silový podnet, nejako takto

4



Látka ako efektívny objekt

V praxi ale často s vodou pracujeme stále akoby s osobitným „zvieraťom“ voda. 

Keď inžinier pri návrhu priehrady počíta prúdenie vody v nej, nevníma vec ako 

pohyb molekúl vody ale ako zmenu stavu zvieraťa „voda“. Píše rovnice „tečenia 

vody“, ktoré v sebe obsahujú všelijaké mystické „látkové konštanty“ ako hustota, 

viskozita, koeficient stlačiteľnosti. V princípe by mohol písať rovnice pre všetky 

molekuly vody. Tie rovnice by obsahovali zákon silového pôsobenia medzi 

molekulami vody. Ibaže pohybových rovníc by bolo rádovo 1036, lebo toľko je 

molekúl vody v takej priehrade. Musel by použiť techniku štatistickej fyziky a tá by 

mu dala v istom priblížení zasa len efektívne rovnice tečenia nového zvieraťa 

„voda“.

Navyše „molekula vody“ a silové pôsobenie medzi molekulami sú iba efektívne 

pojmy zjednodušujúce popis správania jadier a elektrónov pomocou kvantovej 

mechaniky. 

A ani to nie je koniec. Jadro je len efektívny pojem pre systém protónov e 

neutrónov, ktorý treba popísať pomocou jadrovej fyziky.

A ani to nie je koniec, lebo protón a neutrón sú len efektívne pojmy pre systémy 

kvarkov. Nevieme, či toto je už koniec, alebo nájdeme aj ďalší level.

5



Látka ako efektívny objekt

Porozumenie okolitému svetu sa nám teda hierarchizuje na viacero efektívnych 

úrovní, pričom na istej úrovni spravidla vystačíme s efektívnou teóriou danej 

úrovne.

Nie vždy a nie celkom. Efektívny popis atómu vodíka je kvantová mechanika a 

Coulombov zákon pôsobenie dvoch efektívnych bodových častíc (protónu a 

elektrónu na seba). Ale keby sme energetické hladiny atómu vodíka chceli rátať 

príliš presne (na mnoho desatinných miest), musíme poznať rozmery protónu, a 

keby sme aj tie chceli vedieť veľmi presne, nevystačíme s efektívnym pojmom 

„protón“ ale potrebovali by sme teóriu štruktúry protónu nižšej (kvarkovej) úrovne.

V praxi teda obvykle vystačíme pracovať s efektívnymi teóriami, ale postup 

poznania fyziky nám umožní vnímať napríklad „mystické konštanty“ v efektívnych 

rovniciach ako vypočítateľné v teórii hlbšej úrovne. Tak napríklad v treťom ročníku 

sa naučíme vypočítať viskozitu vzduchu výpočtom na molekulovej úrovni.

Kŕčovité snaženie sa o výpočet z najhlbších princípov nemusí byť vždy dobrý 

nápad. Podobne ako prvoprincípový kompliment typu „Slečna, vy ste najkrajšia hrča 

kvarkov a elektrónov, akú som doteraz poznal!“ nemusí vyvolať pozitívnu reakciu.6



Pružnosť – efektívny popis deformácie tuhej 

látky

reakcia podložky, nosník 

stojí, teda reakcia podložky 

musí byť rovnako veľká ako 

zhora pôsobiaca sila

7



+ predpoklad linearity (lineárny vzťah medzi silou a deformáciou sa volá 

Hookov zákon):

relatívna deformácia je úmerná sile 8



Relatívna deformácia je úmerná napätiu (sila na plochu).

V tomto prípade je sila kolmá na uvažovanú plochu, takému 

napätiu sa hovorí tlak. Keby sila mala opačný smer, hovorili 

by sme ťah.
9



Na tom to obrázku je príklad namáhania nosníka ťahom. Napätie sa prenáša 

dovnútra nosníka. Ak si ho predstavíme ako zložený z dvoch častí, potom celková 

sila na hornú časť musí byť nulová, lebo objekt stojí, preto sa vnútorné sily ustália 

tak, že spodná časť pôsobí na hornú rovnakým ťahom ako  je vonkajší ťah na hornú 

podstavu. Podľa akcie a reakcie preto aj horná časť musí pôsobiť na spodnú 

rovnakým ťahom, teda takým istým ako je ťah na hornú podstavu. Napätie sa teda v 

látke prenáša, na myslenú plochu vnútri nosníka pôsobí rovnaké napätie ako je 

vonkajšie napätie. 10



Hovoriť o napätí na vnútornej ploche v nosníku nie je len teoretická abstrakcia, 

to napätie sa dá naozaj merať vhodným tenziometrom.

Tenziometer môže pracovať napríklad na báze piezoelektrického javu (ale aj na 

iných princípoch).

Ak piezoelektrický kryštál umiestnime medzi dve kovové 

platne akoby dosky kondenzátora a podrobíme tlaku, na 

doskách môžeme namerať napätie úmerné tlakom vyvolanej 

relatívnej deformácii. Tenziometer teda vlastne meria 

deformáciu ale tá je úmerná mechanickému napätiu.

Na fotografii sú komerčné tenziometre. Taký tenziometer 

môžeme v princípe umiestniť vnútri nejakého objektu, 

napríklad zaliať do betónu a na vyvedených vodičoch merať 

elektrické napätie a teda relatívnu lokálnu deformáciu či 

mechanické napätie. 11



senzor napätia pred zaliatím do 

železobetónovej konštrukcie

senzory napätia pred zaliatím do 

experimentálneho úseku diaľnice
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To, že spomíname možnosť merania vnútorného napätia 

má dôležitý význam. Ak chceme naozaj rozumieť pojmom, 

ktoré sa učíme, je dobré položiť si veľa kontrolných otázok, 

overiť si, či naozaj rozumiem, čo tie pojmy znamenajú.

Vážna otázke je takáto: ako by som to meral?

Hovorili sme, že v zaťaženom nosníku sa šíri napätie. 

Overme si, či rozumieme. 

Tu je obrázok zaťaženého nosníka a v ňom 

zamurované dva tenziometre tlaku

Čo nameria tenziometer A a čo B?

Tenziometer A nameria napätie 𝜎 = 𝐹/𝑆.

Tenziometer B nameria nulu. Na plôšku, 

ktorú predstavuje tenziometer B nepôsobí 

žiadna sila na ňu kolmá. Toto je trošku 

didaktický podvod. Napätie vo vodorovnom 

smere je naozaj nulové, ale ako ho naozaj 

merať si treba lepšie premyslieť.
13



Zapamätajme si rozdiel medzi pojmami „tlakové napätie na nejakej ploche v tuhej 

látke“ a „tlak v kvapaline". V kvapaline oba tenziometre namerajú rovnakú hodnotu 

𝜎 = 𝐹/𝑆. (Pascalov zákon!) Poriadne premyslenie toho, v čom je rozdiel dvoch 

situácií naznačených na obrázkoch je dosť ťažké, nebudeme sa tu do toho púšťať.  

v tuhej látke v kvapaline

piest
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Relatívna deformácia je úmerná napätiu.

Konštanta úmernosti v tomto vzťahu je dôležitá materiálová konštanta, nazýva sa 

Youngov modul pružnosti 𝐸 (modul pružnosti v tlaku) a vo vzťahu pre súvislosť 

relatívnej deformácie a mechanického napätia vystupuje v tvare

15



Pre namáhanie ťahom a príslušné relatívne 

predĺženie platí analogický vzťah

V tomto vzťahu vystupuje Youngov modul 

pružnosti v ťahu a obvykle býva prakticky 

rovnaký ako modul pružnosti v tlaku.

Všetky vzťahy sme písali tak, že relatívne deformácie i napätia v tlaku i ťahu sme 

považovali za kladné veličiny. V teoretickejších prístupoch sa postupuje tak, že 

skrátenie sa považuje za záporné predĺženie a ťah za záporný tlak a všetky 

definície potom treba písať starostlivejšie pre orientované plochy.
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Poznámky o linearite

Vo fyzike sa často stretáme s lineárnymi závislosťami, z nich lineárna teória 

pružnosti a Ohmov zákon sú asi najznámejšie. 

V oboch prípadoch ide o vzájomný súvis dvoch veličín, čo vo všeobecnosti je 

vyjadriteľné funkčnou závislosťou.

Vo všeobecnosti teda očakávame nejakú funkčnú závislosť medzi relatívnou 

deformáciou a mechanickým napätím. Pre daný materiál tú závislosť môžeme 

experimentálne vyšetrovať: experimentálna závislosť pre namáhanie ocele ťahom 

je (trochu symbolicky), znázornená na obrázku.

Závislosť teda nie je lineárna v celej 

experimentálnej oblasti. Na druhej strane v 

dostatočne malej oblasti sa každá funkcia dá 

aproximovať priamkou a teda závislosť je vždy 

lineárna pre dosť malú oblasť. To je trivialita. To 

čo nie je triviálne, je, že niektoré závislosti sú 

pre dosť veľkú prakticky zaujímavú oblasť 

„dostatočne lineárne“. Až tak, že sa to učí ako 

„zákon“. 17



Pre mnohé látky je závislosť dostatočne 

lineárna takmer v celej oblasti pružnosti (to 

je oblasť, v rámci ktorej sa látka vráti do 

pôvodného tvaru keď sa vypne deformujúca 

sila).

Youngov modul pružnosti v ťahu a tlaku býva v podstate rovnaký, ale charakter 

závislosti mechanického napätia na relatívnej deformácii môže byť za oblasťou 

pružnosti veľmi iný pre ťah a tlak. Typickým prípadom je betón, ktorý má podstatne 

inú hodnotu medze pevnosti pre tlak a ťah. Betón dobre znáša namáhanie tlakom aj 

pri vysokých hodnotách tlaku, ale má malú hodnotu medze pevnosti v ťahu. Betónové 

konštrukcie sa preto konštruujú ako železobetónové: železná výstuž je v betóne na to, 

aby odolávala namáhaniu v ťahu. Často sa používa takzvaný predpätý betón, keď 

výstuž je podrobená ťahu pred zabetónovaním. Taký betón je namáhaný tlakom od 

predpätej výstuže aj v „nedeformovanom“ stave. Deformácia, ktorá by normálne 

viedla už k ťahu vyvolá len pokles námahy tlakom od železnej výstuže a betón nie je 

nikdy namáhaný na ťah.
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Stručne sa zmienime o ďalších druhoch deformácie a napätí. Okrem tlaku a ťahu 

bývajú objekty často namáhané na šmyk, keď sila pôsobí v rovine uvažovanej 

plochy a nie kolmo na ňu ako v prípade ťahu alebo tlaku.

Aj v tomto prípade býva relatívna deformácia úmerná šmykovému napätiu

V tomto prípade hovoríme o šmykovom alebo tangenciálnom napätí. 

Konštanta úmernosti 𝐺 sa volá modul pružnosti v šmyku.

19



Iný dôležitý spôsob namáhania je všestranný tlak. Najľahšie sa realizuje tak, že 

objekt ponoríme do kvapaliny, v ktorej podľa Pascalovho zákona pôsobí tlak 

všetkými smermi rovnako. Všestranný tlak vyvolá zmenu objemu telesa. 

Relatívna deformácia je opäť úmerná všestrannému tlaku 𝑝.

Konštanta úmernosti 𝐾 sa volá modul objemovej pružnosti.

Často sa opakuje taká poučka, že „kvapaliny sú málo stlačiteľné“. Preto možno 

niekoho prekvapí, že modul objemovej pružnosti vody je 2,2.109 Pa, kým modul 

objemovej pružnosti ocele typicky 16.1010 Pa, takže oceľ je oveľa menej stlačiteľná 

ako voda. To vyvoláva otázku ak to, že oceľ sa dá dobre lisovať tlakom? Odpoveď 

je, že pri lisovaní sa nejedná o všestranný ale jednostranný tlak a kým oceľ sa v 

smere tlaku zmršťuje, v kolmom smere sa rozťahuje. 20



Deformácia v priečnom smere

Pri namáhaní ťahom sa tyč predĺži o Δ𝐿, ale v 

priečnom smere sa rozmer skráti o Δ𝑑. Relatívne 

skrátenie v priečnom smere súvisí s relatívnym 

predlžením v smere ťahu pomocou Poissonovho 

koeficientu (materiálová konštanta) 𝜈

Upozornime, že v priečnom smere sa síce tyč 

skráti, ale nie pod vplyvom nejakého priečneho 

tlaku. Vnútri tyče je stále len pozdĺžny ťah 𝜎, ktorý 

by nameral tenziometer A, ale v priečnom smere 

nie je žiaden tlak, tenziometer B nenameria nič. 

Platí teda

Pri namáhaní tlakom sa pozdĺžne tyč skráti a 

priečne predĺži, príslušné vzťahy sú rovnaké. 21
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Diera v dutom valci sa pri stlačení

a) rozšíri

b) zúži

Budeme hlasovať



23

V texte sme spomenuli niekoľko materiálových konštánt charakterizujúcich 

elasticitu: Youngov modul pružnosti v ťahu a tlaku 𝐸, modul objemovej pružnosti 

𝐾, modul pružnosti v šmyku 𝐺, a Poissonov pomer 𝜈. Teoreticky sa pre lineárnu 

pružnosť dá dokázať, že homogénna izotropná látka má len dva nezávislé 

koeficienty pružnosti, medzi štyrmi uvedenými teda platia nejaké vzťahy, ako 

ukazuje tabuľka (tie vzťahy sa neučte!, v prípade potreby si ich vyhľadáte 

https://en.wikipedia.org/wiki/Bulk_modulus )

K [GPa]          E [GPa] G [GPa] 𝜈

oceľ 160 200 80 0,3

meď 140 110 48 0,34

voda 2,2

Typické hodnoty

porozmýšľajte, prečo pri vode neuvádzame 𝐸, 𝐺, 𝜈.

https://en.wikipedia.org/wiki/Bulk_modulus
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Moduly pružnosti sú parametre efektívnej teórie látky 

ako kontinua.

Keby sme úplne poznali molekulárnu štruktúru látky a mali kvantovmechanicky

zrátané energetické zmeny pri deformáciách štruktúry, vedeli by sme vypočítať 

hodnoty modulov pružnosti  „z prvých princípov“.
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Ďalším dôležitým parametrom je objemová hustota hmotnosti látky 𝝔, krátko 

nazývaná len hustota.

Uvažujme nejaké látkové teleso v jeho vnútri v okolí bodu Ԧ𝑟
malý (infinitezimálny) priestorový objem 𝑑𝑉. Hmotnosť látky 

obsiahnutej v tom objeme označme 𝑑𝑚. Potom hustotou látky v 

bode Ԧ𝑟 nazývame hodnotu

Zápis nie je celkom korektný, lebo by sa mohlo zdať, že ide o 

deriváciu nejakej funkcie 𝑚 podľa premennej 𝑉. Naozaj ide len 

o podiel dvoch malých hodnôt, aby sme mohli hovoriť o 

lokálnej hustote v danom bode a nie o priemernej hustote 

telesa danej ako podiel celkovej hmotnosti a celkového 

objemu. Ak látke je homogénna, potom hustota nezávisí 

od polohy a je v celom telese rovnaká.

Z definície je zrejmé, že jednotkou hustoty je kg m-3.

Hustota
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Predstavme si, že poznáme lokálnu hustotu hmotnosti ako funkciu 

polohy 𝜚(Ԧ𝑟). Ako sa vypočíta celková hmotnosť telesa?

Operačný postup vyzerá takto. Predstavíme si, že objem telesa je 

vyplnený „infinitezimálnymi“ kockami s malým objemom 𝑑𝑉. 

Poloha každej kocky môže byť identifikovaná napríklad polohou 

ľavého predného spodného vrcholu. Potom hmotnosť celého 

telesa je zjavne

Problém pri výpočte sumy môžu robiť kocky, ktoré sú pri hranici telesa, takže nie sú 

celé vnútri telesa. Keď sú objemy kociek naozaj veľmi malé, matematici vedia 

dokázať, že ak započítame hmotnosť celej kocky, hoci trčí trochu von z telesa, 

celková chyba výpočtu bude zanedbateľná.

Celý výpočet môžeme robiť napríklad numericky na počítači niekoľkokrát, pričom 

pri každom ďalšom výpočte zmenšíme objem každej malej kocky a zväčšíme teda 

ich počet. Keď budeme sledovať čísla, ktoré tak budeme postupne dostávať, 

zistíme, že sa blížia k nejakej konkrétnej hodnote, ktorú budeme považovať za 

vypočítanú hmotnosť telesa. Formálne ide o limitu takých súm a voláme ju 

„objemovým integrálom“ a značíme
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Integrál, ktorý sme napísali nie je apriórne nijakým „opakom derivácie“ je to suma 

nekonečného počtu nekonečne malých čísel. 

Naznačili sme si, ako by sme takú sumu počítali numericky. Niekedy sa nám môže 

podariť vypočítať tú sumu aj analyticky. Vyžaduje to istú invenciu ako transformovať tú 

sumu na „niekoľko opakov derivácií“

Okrem objemovej hustoty hmotnosti sa často používa aj plošná hustota hmotnosti pri 

objektoch, ktoré sú z praktického hľadiska dvojrozmerné. Napríklad list papiera. Plošná 

hustota kancelárskeho papiera býva 80 g m2. Celková hmotnosť plošného objektu sa 

ráta tak, že objekt „vyštvorčekujeme“ a zrátame integrál (𝑑𝑆 je plôška malinkého

„infinitezimálneho“ štvorca)

Používa sa aj dĺžková hustota hmotnosti pri objektoch, ktoré sú z praktického hľadiska 

jednorozmerné. Napríklad drôt. Celková hmotnosť jednorozmerného objektu sa ráta 

tak, že krivku popisujúcu jeho tvar „vyúsečkujeme“ a zrátame integrál (𝑑𝑠 je dĺžka 

jednej „infinitezimálnej“ úsečky na krivke)
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Poznamenajme, že fyzici v storočiach, keď „kontinuum“ bolo naozaj kontinuom, 

mohli v princípe vyhovieť matematikom a deliť priestor, plochu  alebo krivku na 

„naozaj infinitezimálne“ kocky, štvorčeky alebo úsečky.

Ale odkedy veríme, že nejaké fyzikálne kontinuum je len „efektívne zviera“ v 

skutočnosti zložené z molekúl, nemôžeme s rozmermi delenia „ísť až do nuly“.

Efektívna teória totiž stráca zmysel pre veľmi malé priestorové rozmery.

Ak by sme napríklad objemíky  robili príliš malé, mohlo by sa stať, že sa v nich 

niekedy nachádza len jedna molekula a niekedy ani jedna. Pojem „objemová 

hmotnostná hustota látky“ potom stráca dobrý zmysel. Takže  aplikácia 

diferenciálneho a integrálneho počtu na „fyzikálne kontinuum“ je možná iba ak pri 

požadovanej presnosti vystačíme s „objemíkmi“ tak malými, že napríklad hustotu 

látky v rámci jedného objemíku možno už považovať za prakticky konštantnú, ale 

objemík je pritom dosť veľký, aby stále ešte obsahoval veľmi veľký počet molekúl.
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Tu je pre inšpiráciu jednoduchý program v Pythone rátajúci plochu polkruhu. Pri 

rátaní hmotnosti by bolo treba každú plôšku ešte vynásobiť plošnou hustotou.
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Hmotnostná hustota je parameter efektívnej teórie látky 

ako kontinua.

Ak by sme poznali molekulárnu štruktúru látky, mohli by sme hustotu látky vypočítať. 

V skutočnosti to nie je veľmi zložitá úloha. Ako ukážku vypočítame hustotu 

kuchynskej soli. Chemické zloženie kuchynskej soli je NaCl. 

Molekulárna štruktúra vyzerá ako kocková mriežka. 

Vo vrcholoch kociek sú na striedačku atómy Na a 

Cl. Z röntgenovej štruktúrnej analýzy vieme, že 

vzdialenosť Na – Cl je 0,282 nm. 

Atómová hmotnosť Na je 22,99

Atómová hmotnosť  Cl je 35,45

Jeden vrchol je spoločný ôsmim kockám, takže jednej kocke pripadá ½ atómu Na a ½ 

atómu Cl, takže „molekulárna hmotnosť jednej kocky o objeme 𝑑3 je (22,99+35,45)/2 = 

29,22 Jedna atómová hmotnostná jednota zodpovedá  1g/(6,022.1023) = 1,66.10-24 g. 

Jedna elementárna kocka soli má teda hmotnosť 29,22 x 1,66.10-24 g =48,51. 10-24 g a 

objem (0,282 nm)3. To  dáva hustotu 2160 kg m-3. Experimentálna hodnota je 2165. 

Rozdiel je daný zaokrúhľovaniami v údajoch a výpočtoch.
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Kontinuum: stav a pohybová rovnica

Po prípravných prácach si teraz ukážeme, ako sa pracuje v rámci efektívnej teórie s 

kontinuom – látkovým objektom.

Ukážka bude o kovovej tyči votknutej medzi dve pevné steny vo vzdialenosti 𝐿 od 

seba.

Pripomeňme si slajd, aká je úloha fyziky:
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Prvou úlohou je popísať okamžitý stav tyče.

To, čo chceme popisovať sú zmeny stavu tyče, pričom sa obmedzíme na také 

mechanické zmeny, ktoré ponechajú tyč rovnú, ale budeme vyšetrovať deformácie 

materiálu tyče v pozdĺžnom smere. 

x

Uvažujme myslenú plochu (prierez) tyče, ktorá sa v základnom (kľudovom stave) 

nachádza v polohe danej súradnicou 𝑥. Pri deformácii sa tento prierez posunie do 

polohy so súradnicou 𝑥 + 𝑢(𝑥).

32

x
u(x)

kľudový stav

deformovaný stav
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Súčasťou zadania stavu tyče v istom okamihu bude teda zadať funkciu,

udávajúcu posunutie prierezu tyče, ktorý sa v kľudovom stave nachádza v 

mieste 𝑥.
Očakávame, že stav tyče sa bude v čase meniť, takže v istom okamihu 𝑡 bude 

stav zadaný funkciou

Pretože ide o mechanický problém a Newtonove rovnice sú druhého rádu, 

očakávame, že pre úplné zadanie stavu tyče je potrebné ešte zadať aj 

„rýchlosti“, teda pre každý prierez rýchlosť, s ktorou sa jeho posunutie mení:

Záver: deformačný stav tyče je v každom okamihu zadaný dvoma funkciami
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Ďalšou úlohou je nájsť pohybovú rovnicu pozdĺžne deformovateľnej tyče.

34
34

kľudový stav

deformovaný stav

Uvažujme malý objemový element tyče (označený červeno), ktorý sa v kľudovom 

stave nachádza v intervale súradníc (𝑥, 𝑥 + 𝑑𝑥). Dĺžka tohto objemového elementu 

v kľude je zjavne 𝑑𝑥. 

V deformovanom stave sa ľavý okraj uvažovaného elementu dostane do bodu 𝑥 +
𝑢(𝑥) a pravý okraj do bodu 𝑥 + 𝑑𝑥 + 𝑢(𝑥 + 𝑑𝑥). Jeho dĺžka po deformácii teda 

bude 𝑥 + 𝑑𝑥 + 𝑢 𝑥 + 𝑑𝑥 − 𝑥 + 𝑢 𝑥 = 𝑑𝑥 + 𝑢 𝑥 + 𝑑𝑥 − 𝑢 𝑥 . Nárast dĺžky 

oproti pôvodnej dĺžke 𝑑𝑥 teda bude Δ(x) = 𝑢 𝑥 + 𝑑𝑥 − 𝑢 𝑥 a relatívne predĺženie 

toho objemového elementu bude

deriváciu sme písali ako parciálnu, aby sme zdôraznili, že momentálne sa síce 

úvaha týka iba istého časového okamihu, ale všeobecne 𝑢 závisí aj od času.
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Len tak mimochodom: dá sa rozumieť, prečo relatívne predĺženie v mieste 𝑥 vyšlo 

takto:

Kvalitatívne dá. Keby posunutie 𝑢(𝑥) nezáviselo na 𝑥, potom by sa ľavý okraj a 

pravý okraj každého elementu tyče posúvali rovnako a vzdialenosť medzi nimi by sa 

pri posunutí nemenila, teda by nedošlo k predĺženiu alebo skráteniu. Vzdialenosti sa 

deformujú, iba keď je nenulová derivácia, v prvom priblížení teda deformácia je 

úmerná derivácii.

Ešte zdôraznime, že na rozdiel od nášho úvodného výkladu o pružnosti, tu sa už 

„hráme so znamienkami“. 𝜀(𝑥) môže byť kladné aj záporné. Ak si pozorne 

prezrieme odvodenie, zistíme, že kladné 𝜀 zodpovedá predĺženiu objemového 

elementu, záporné skráteniu. Uvedomme si teraz, čo to znamená pre znamienko 

deformačného napätia vnútri tyče v mieste 𝑥. 

Prečítajte si nasledujúci slajd pozorne, aby ste sa nielen naučili naspamäť že 

„toto sa odvodzuje takto“ ale naozaj odvodeniu rozumeli a vedeli presvedčiť 

kolegu, ktorý prípadne nerozumie, že znamienka majú byť naozaj tak, ako sa 

tam píše a nie naopak.
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kľudový stav

deformovaný stav

Predpokladajme, že

Znamená to, že červený element sa predĺžil, na mieste 𝑥 je teda deformácia ťahom. 

Na prierez v mieste 𝑥 teda červený element ťahá predchádzajúci zelený element, 

podobne na mieste 𝑥 + 𝑑𝑥 nasledujúci zelený element ťahá červený element. 

Teda sila, ktorá pôsobí z pravej strany na prierez v mieste 𝑥, je kladná a podobne aj 

sila, ktorá z pravej strany na prierez v mieste 𝑥 + 𝑑𝑥.

Napätie vnútri objektu v mieste 𝑥 budeme definovať ako určené silou, ktorá pôsobí 

sprava na prierez v mieste x, teda silou, ktorou pôsobí nasledujúci element na 

predchádzajúci element. V prípade 𝜀 𝑥 > 0 táto konvencia bude hovoriť, že 

𝜎 𝑥 > 0. Vzťah medzi napätím a deformáciou je daný Hookovým zákonom 

pomocou Youngovho modulu pružnosti
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Skontrolujme ešte znamienka. Kladné znamienko deformácie znamená ťah, teda 

nasledujúci element musí ťahať predchádzajúci, sila má smer doprava v smere osi 𝑥, 

teda je kladná. Záporné znamienko deformácie znamená tlak, nasledujúci element 

musí tlačiť na predchádzajúci, sila má smer proti osi 𝑥, teda je záporná. Znamienka 

deformácie a napätia teda majú byť rovnaké, ako to hovorí aj napísaný vzorec.

Napíšeme teraz Newtonov pohybový zákon pre červený objemový element

37
37

Ak prierez tyče je 𝑆, červený element pôsobí na 

predchádzajúci silou 𝜎 𝑥 𝑆, teda naň pôsobí 

zľava sila −𝜎 𝑥 𝑆. Sprava naň pôsobí sila od 

nasledujúceho elementu 𝜎 𝑥 + 𝑑𝑥 𝑆. 

Celková sila pôsobiaca na červený element je teda

Ak použijeme vzťahy                            ,                           , dostaneme pre celkovú 

silu pôsobiacu na červený element

Hmotnosť červeného element je 𝜚Sdx a jeho zrýchlenie je

Newtonova rovnica teda bude 
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Dostali sme teda rovnicu

Čo sme to dostali? Zistili sme že tyč s hustotou 𝜚 a modulom pružnosti 𝐸 pri 

pozdĺžnych deformáciách musí spĺňať uvedenú rovnicu. To je hľadaná pohybová 

rovnica, umožňuje predpovedať budúcnosť. Takto:

Máme zadané v čase 𝑡 = 0 počiatočné podmienky 

Pripomeňme, že

Použijeme okrajové podmienky

čo zodpovedá nepohyblivým koncom tyče votknutej medzi dve pevné steny.

Potom vieme pohybovú rovnicu jednoznačne riešiť a teda predpovedať deformáciu 

v budúcnosti. Vieme? Vieme, veď je to naša známa vlnová rovnica. Práve sme 

teda zistili že v kontinuu sa môže šíriť zvuková vlna rýchlosťou 



Retiazka oscilátorov
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Systém pohybových rovníc pre retiazku oscilátorov sa naučíme riešiť, ale najprv 

budeme riešiť úlohu v spojitej limite. Riešenie je v spojitom prípade intuitívne 

prijateľnejšie.

Pripomienka
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Pripomienka

Limita kontinua bola                                              vyšlo:

Chápme to ako kvazimikroskopický model kontinua. Aké budú jeho parametre 𝜚, 𝐸?

Ak prierez guličky je 𝑆, potom jedna gulička s hmotnosťou 𝑚 pripadá na objem 𝑆Δ a 

bude 𝜚 = 𝑚/(𝑆Δ). Ak sa pružina predĺži o 𝑢, treba na to silu 𝐹 = 𝑘𝑢. Dĺžka 

nedeformovanej pružiny je Δ, relatívne predĺženie 𝑢/Δ, napätie 𝐹/𝑆 a dostaneme

V modeli s guličkami vyšlo

a tak to vyšlo aj v efektívnej teórii bez odvolávania sa na „guličky“. Hurá!
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Rýchlosť zvuku v deformovateľnom médiu odvodil už Newton v Princípiách. Médium 

bolo chápané ako kontinuum, lebo o molekulárnej štruktúre sa ešte nič nevedelo.

V našom výklade sme si trochu naznačili ako môžu súvisieť mikroskopická 

molekulová a makroskopická kontinuová teória. Retiazka guličiek nie je realistický 

model tuhej látky, ale veľmi zjednodušený štruktúrny model. Skutočný svet je 

technicky oveľa ťažšie zvládnuteľný, ale náš primitívny model dostatočne naznačil 

ako „to funguje“.

Poznamenajme, že sme videli len pozdĺžne zvukové vlny, ktoré sú dominantné v 

objektoch ako dlhá úzka tyč. 

V trojrozmerných objektoch sú v tuhých látkach dôležité aj priečne zvukové vlny, 

keď látka je lokálne namáhaná nie na tlak a ťah ale na šmyk. Vo vzťahu pre rýchlosť 

zvuku potom vystupuje modul pružnosti v šmyku. Priečne aj pozdĺžne vlny treba 

uvažovať napríklad pri analýze zemetrasení.



Práca a energia

1

Pri skúmaní pohybu častice v homogénnom gravitačnom poli (voľný pád a šikmý 

vrh) sme spozorovali, takmer ako „náhodnú kuriozitu“, že platí zákon

Ukazuje sa, že to nie je len kuriózna vlastnosť pohybu v gravitačnom poli ale 

špeciálny prípad fundamentálneho fyzikálneho zákona o zachovaní energie. V tejto 

časti preskúmame viacero situácií z hľadiska toho, ako tam zákon zachovania 

energie funguje. Začneme dvoma telesami v gravitačnom poli a zistíme, že si naše 

predstavy musíme poriadnejšie upratať. Pri tom upratovaní spoznáme viacero 

zaujímavostí o práci, energii a ich súvise.



Energia a práca v sústave dvoch telies
Nepíšeme vektory, len veľkosti

Energia každého telesa osobitne nie je konštantná.

Súčet energií telies, celková energia je konštantná, 

zachováva sa.

2

Lano spôsobí, že rýchlosti a teda aj 

zrýchlenia sú rovnaké 𝑎1 = 𝑎2 = 𝑎
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Lano ako „prenášač sily“

Červeno nakreslené sily, sú sily, ktorými 

lano pôsobí na telesá, ku ktorým je pripnuté. 

Pri výpočte sme použili predpoklad, že tie 

sily sú rovnako veľké, teda, že „lano 

prenáša silu nemeniac je veľkosť, iba 

prípadne jej smer“.

Tento predpoklad je správny, pokiaľ lano i 

kladka sú nehmotné a lano po kladke 

nepreklzuje. Ukážeme si argumentáciu.

Predovšetkým dokreslime nejaké chýbajúce 

sily, ktorými lano pôsobí na kladku a potom 

aj všetky reakcie k čereným silám.

Je zrejmé, že zelené sily, ktoré pôsobia na 

časť lana natiahnutého medzi telesom 1 a 

kladkou sú rovnaké. Celková sila pôsobiaca 

na tú časť lana je totiž nulová podľa 

Newtonovho zákona sily, lebo lano má 

nulovú hmotnosť.
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Ak zelené sily pôsobiace na šikmú časť lana sú rovnaké, potom sú rovnaké aj ich 

reakcie, teda príslušné červené sily. Jedna z nich pôsobí na kladku. Na kladku 

pôsobí ešte druhá červená sila, reakcia na zelenú silu zvislej časti lana. Dve červené 

sily pôsobiace na kladku musia mať rovnakú veľkosť, lebo kladka má nulový moment 

zotrvačnosti a podľa pohybovej rovnice pre rotujúce teleso teda na kladku pôsobí 

nulový moment síl voči osi rotácie. Dve zelené sily pôsobiace na zvislú časť lana 

musia byť rovnaké, lebo lano je nehmotné, teda podľa Newtona celková naň 

pôsobiaca sila je nulová. Preto sú rovnaké aj príslušné reakcie teda červené sily. 

Záver je taký: všetky červené aj zelené sily na obrázku majú rovnakú veľkosť.

Odporúčam: Prečítajte a poriadne predumajte celú argumentáciu. Je dosť 

jemná, ale nevyhnutná, ak chcem rozumieť, že príklad bol správne vypočítaný. 

Nepodceňte to mávnutím ruky, že hlavne že viem, ako sa počíta ten konkrétny 

príklad. Argument, že každý „cíti“ že všetky tie sily sú rovnaké, neobstojí. Sam

Hawkens hovoril, že cítenia majú iba staré sqaw.
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Energia každého telesa osobitne nie je konštantná.

Súčet energií telies, celková energia je konštantná, 

zachováva sa.

Zistili sme toto:

Uvažujme prípad 𝑚2 > 𝑚1 sin 𝛼,  teda 𝑎 > 0, teleso 1 stúpa, teleso 2 klesá. 

Začínajú z kľudu, s nulovou kinetickou energiou. Energia telesa 1 sa teda zväčšuje, 

lebo rastie aj jeho kinetická aj potenciálna energia. To je vyjadrené vzťahom

Energia telesa 2 klesá. Jeho kinetická energia síce rastie ale potenciálna klesá 

zrejme viac, takže sumárne
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Uvedomme si dôležitú vec. Energiu každého telesa osobitne vieme vypočítať v 

každom okamihu, ak poznáme stav toho telesa v tom okamihu. Ak poznáme polohu a 

rýchlosť telesa v danom okamihu, teda            dosadíme tieto „stav určujúce veličiny“ 

do vzorcov pre kinetickú a potenciálnu energiu, teda  

a celkovú energiu v danom stave určíme ako súčet

Ak uvažujeme zložitejší systém (v  našom prípade to boli dve telesá), potom 

okamžitý stav je daný väčším počtom „stav určujúcich veličín“                      . 

Celkovú energiu v danom okamihu však vždy vieme pomocou týchto veličín 

vypočítať, teda

Poučenie: energia je stavová veličina, čo znamená to, že ak poznáme okamžitý 

stav systému, potom hodnoty stav určujúcich veličín dosadíme do všakových 

vzorcov pre energiu, výsledky sčítame a dostaneme to, čo sa volá energia 

systému v danom stave. Výpočet energie v danom stave teda nezávisí napríklad 

od histórie „ako sa systém do daného stavu dostal“, energia systému je stavom 

úplne určená. To nás oprávňuje hovoriť, že systém v danom stave má energiu. 

Energia systému je atribútom stavu systému.
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Pre tento uvažovaný systém dvoch telies sme dokázali že platí

Energia celého systému je teda konštantná, zachováva sa. Povedané „polopatisticky“ 

to znamená, že keď vyčíslim energiu systému v nejakom čase a potom v neskoršom 

čase, dostanem tú istú hodnotu. To je zákon zachovania energie.

Všetci poznáme zákon: „Energia sa zachováva“. Ale táto veta je málo starostlivo 

sformulovaná. Takto to jednoducho neplatí. Ak chceme rozvažovať, či platí zákon 

zachovania energie, musíme predovšetkým špecifikovať aký fyzikálny systém máme 

na mysli. Ak máme na mysli systém „teleso 1“, tak sme videli, že jeho energia sa 

nezachováva. Ani energia systému „teleso 2“ sa nezachováva. Ale energia systému 

„teleso 1 plus teleso 2“ sa zachováva.

Takže pozor: vo fyzike nestrieľajte od boku nejaké klišé. Rozvažujte. Presne 

formulujte. Aby ste aj vy aj váš poslucháč vedeli čo a o čom hovoríte.
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Všimnime si, že zákon zachovania energie „je skrytý“ už v pohybových 

rovniciach. Prezrite si ešte raz odvodenie

Nikde sme nevyužili konkrétny tvar riešenia, teda výraz pre zrýchlenie 𝑎. Iba sme 

použili výraz pre silu rovno z pohybových rovníc a bolo to hotové. 
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Práca a energia

Uvažujme prípad 𝑚2 > 𝑚1 sin 𝛼,  teda 𝑎 > 0, teleso 

1 stúpa, teleso 2 klesá. Začínajú z kľudu, s nulovou 

kinetickou energiou. Energia telesa 1 sa teda 

zväčšuje, lebo rastie aj jeho kinetická aj potenciálna 

energia. To je vyjadrené vzťahom

Pozrime sa o koľko narastie energia telesa 1 za čas 𝑑𝑡.

Vidno, že prírastok energie telesa 1 je rovný práci, ktorú vykoná lano, keď ho ťahá 

po dráhe 𝑑𝑠. Naopak, energia telesa 2 sa zmení za ten čas o

Lano koná nad telesom 2 zápornú prácu a energia telesa klesá.

Ak sa na lano pozeráme iba ako na „prenášač sily“, potom lano možno vynechať z 

hry a tvrdiť, že práce, ktoré sme uvažovali, konajú tie telesá. Teda nad telesom 1 

koná kladnú prácu teleso 2, čo súčasne (podľa princípu akcie a reakcie) znamená, 

že nad telesom 2 koná zápornú prácu teleso 1.
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Povedali sme si, že energia je stavová veličina. V danom stave uvažovaný fyzikálny 

systém má nejakú hodnotu energie. Ako keby v danom stave bola v tom systéme 

„uložená“ energia o hodnote prislúchajúcej tomu stavu. Ak sa v uvažovanom procese 

energia zachováva, potom to v onej terminológii znamená, že „uskladnená hodnota 

energie“ sa nemení.

Ak energia rastie, potom to v onej terminológii znamená, že niekto do skladu prináša 

ďalšiu energiu. Ako sa dá uskladnená hodnota energie zvýšiť? Náš príklad hovorí, že 

vykonaním kladnej práce nad uvažovaným systémom. Naopak vykonaním zápornej 

práce sa energia systému znižuje. Prácu, ktorá mení hodnotu energie systému, 

musí vykonať nejaký „vonkajší (voči systému) externý objekt“.

Energia aj práca sa vyjadrujú v J (Joule). Ale všimnite si rozdiel: energia sa týka stavu, 

práca sa týka nejakého deja. Ak dej skončí, práca už neexistuje, to slovo proste nemá 

význam pre jeden okamih.

Na zmenu energie treba nejaký proces, v priebehu ktorého sa koná práca. 

Energia je charakteristika stavu, práca je charakteristika deja. Hodnota energie 

sa pritom zmení o hodnotu vykonanej práce, ktorá môže byť tak kladná ako aj 

záporná.

Práca a energia



11

Práca a energia

Videli sme situáciu, že v systéme pozostávajúcom z dvoch telies sa energia 

zachovávala, ale nezachovávala sa separátne energia každého telesa. Energia 

jedného telesa sa zvyšovala, energia druhého telesa sa znižovala, súčet energií 

ostával konštantný.

Vyjadrujeme to aj tak, že dochádzalo k prenosu (transferu) energie medzi tými 

telesami.

Pritom stratená alebo získaná (teda prenesená) energia bola rovná práci, ktorú 

telesá konali.

Zapamätajte si tento pohľad na prácu: konaním práce dochádza k transferu 

energie medzi fyzikálnymi systémami. Práca je spôsob transferu energie. 

Práca sama nie je druh energie, hoci sa meria v jednotkách energie.

Teleso nemôže konať nad iným telesom prácu „len tak zadarmo“, ak koná kladnú 

prácu, stráca pritom toľko svojej energie, koľko práce vykoná. Samozrejme, jeho 

energia môže byť naopak dopĺňaná, ak súčasne nejaký ďalší externý objekt koná 

nad tým telesom kladnú prácu. Vtedy to teleso funguje ako keby bolo iba 

sprostredkovateľom práce. V našom príklade to bolo lano spájajúce telesá.
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Práca a energia

• energia je stavová veličina, dá sa pre daný stav vypočítať, ak poznáme 

hodnoty „stav určujúcich veličín“

• práca nie je stavová veličina, teleso v sebe neobsahuje „skrytú prácu“. Práca 

sa týka nejakého deja. Práca „sprostredkuje“ transfer energie medzi dvoma 

objektami, ktoré jeden nad druhým konajú prácu. Práca nie je druh energie.

• Vážna poznámka, veľmi predčasná, uvádzaná bez podrobnej diskusie: 

Teplo nie je “druh energie“, teplo je „druh práce“. Je to práca konaná 

mikroskopickým (makroskopicky  neviditeľným) spôsobom. Teplo nie je 

stavová veličina. Nie je pravda, že teleso v sebe obsahuje nejaké „teplo“. 

Keďže teplo „nikde nie je“, nedá sa ani prenášať. Prenášať sa dá čosi ako 

kufor, ktorý je najprv tu a potom tam. Teplo sa koná. V praxi sa (žiaľ) užíva 

veľmi často pojem „prenos tepla“, alebo „dodali sme vám teplo“ a podobne. 

Celá táto poznámka je len varovanie do budúcnosti.
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Čo je to tá energia?

Študenti majú radi definície. Tie sa dajú zapísať a naučiť. A na skúške očakávajú 

otázku typu: povedzte mi definíciu energie. Takúto otázku na skúške z mechaniky 

nedostanete.

Nedostanete preto, lebo nepoznám žiadnu rozumnú formuláciu definície pojmu 

energia.

Voľakedy v škole som sa učil definíciu: „Energia je miera schopnosti telesa konať 

prácu“. Nebudem teraz diskutovať, čo je na tej definícii nie dosť dobré alebo dosť 

presné. Len zdôrazním, že v tej definícii sa pojem práca kladie hierarchicky nad 

pojem energia. Je pravdou, že to zodpovedá histórii fyzikálneho poznania. Už 

Archimedes de facto vedel, že práca je na oboch stranách páky rovnaká, hoci to tak 

asi nevolal. Pojem energie sa ustálil oveľa neskôr, v termodynamike, keď sa prišlo na 

to, že teplo „nie je energia“.

Môže vzniknúť námietka, ako môžem pracovať s pojmom energia, keď neviem, čo to 

je. Môžem, lebo síce nebudem vedieť, čo je energia, ale môžem sa jednoducho 

naučiť „pravidlá používania toho pojmu.

Ľudia dlho nevedeli „čo je to teplota“ ale ten pojem prakticky používali. Na chladničku 

pripínali odkazy typu „Večeru máš v chladničke, zohrej si ju!“ a manžel napodiv vedel, 

čo má robiť.
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Čo je to tá energia?

Energia je dnes považovaná za jeden z najfundamentálnejších fyzikálnych pojmov. 

Naozaj nevieme, čo je to tá energia? Nuž, máloktorý prednášateľ má guráž povedať 

explicitne, že nevie. Feynman bol fyzikálny VIP, mohol si to dovoliť povedať bez obáv, 

za čo ho budú považovať. Tu je pár originálnych viet:

There is a fact, or if you wish, a law governing all natural phenomena that are known to 
date. There is no known exception to this law – it is exact so far as we know. The law is called 
the conservation of energy.

It states that there is a certain quantity, which we call “energy,” that does not change in the 
manifold changes that nature undergoes. That is a most abstract idea, because it is a 
mathematical principle; it says there is a numerical quantity which does not change when 
something happens.

It is important to realize that in physics today, we have no knowledge of what
energy is. We do not have a picture that energy comes in little blobs of a definite
amount. It is not that way. However, there are formulas for calculating some
numerical quantity, and when we add it all together it gives "28"'—always the
same number. It is an abstract thing in that it does not tell us the mechanism or
the reasons for the various formulas.
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Čo je to tá energia?

Tu je stručné zhrnutie toho, ako „definuje“ energiu Feynman.

Energia je také oné, že máme sadu vzorcov pre energiu. Vyberieme z nich tie, ktoré 

sú pre daný systém a jeho daný stav relevantné. Dosadíme do nich hodnoty „stav 

určujúcich veličín“, čísla získané pomocou jednotlivých vzorcov sčítame a dostaneme 

hodnotu energie v danom stave.

V škole sme sa všetci učili, že definícia musí byť poriadna a „vedecká“ a slová „také 

oné“ sú už úplne zakázané. Nedajte sa tým zmiasť. Ak sa vám to nepáči, skúste 

vymyslieť niečo lepšie. Tromfnete Feynmana.

Zákon zachovania energie hovorí, že keď vypočítame energiu podľa relevantných 

vzorcov v dvoch rozličných okamihoch, dostaneme tú istú hodnotu.
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Zákon zachovania energie

V škole nás učia, a hovorí to aj vyššie uvedený 

citát z Feynmana, že zákon zachovania energie 

je fundamentálny zákon prírody, z ktorého 

nepoznáme výnimku.

No a my sme videli, že energia telesa 1 sa 

nezachováva. Tak ako to je?

Zovšeobecnený zákon zachovania energie

Pre teleso 1 sme zistili, že platí

Poučenie: zákon zachovania energie možno zovšeobecniť takto:

Každá zmena energie systému musí byť krytá prácou, 

konanou externým objektom, ktorý je mimo uvažovaného 

systému. 



17

Čo je to tá práca?

Poznamenajme, že vo fyzike máme viac vzorcov pre prácu, nielen 𝐹. 𝑠.

Parafrázujúc Feynmana o energii: Práca, to je také oné, že máme sadu 

vzorcov pre jej výpočet a keď pomocou nich spočítame prácu konanú 

vonkajšími externými objektmi nad systémom v nejakom procese, zistíme, 

že celková vykonaná práca kryje zmenu energie systému v uvažovanom 

procese.

Poznamenajme, že „dobré vzorce“ pre energiu a pre prácu nehľadáme len tak 

hádaním naslepo. V teoretickej mechanike sa budete učiť postupy, ako sa tie 

vzorce „hľadajú“ resp. dokonca „odvodzujú“.

Zákon zachovania energie v podstate hovorí, že „doteraz sa nám vždy podarilo 

nájsť chýbajúci vzorec“ tak, že zdanlivé nezachovanie energie počítanej 

pomocou dovtedy známych vzorcov sa zmenilo na zachovanie po pridaní nového 

vzorca do zbierky „vzorcov pre energiu a prácu“

Výkon
Popri práci sa v mechanike zavádza i užitočná veličina výkon, definovaný ako 

práca pripadajúca na jednotku času. Ak sa za čas 𝑑𝑡 vykoná práca 𝛿𝐴, potom 

výkon definujeme vzťahom
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Výkon sily na dráhe

Ak na teleso pôsobí sila Ԧ𝐹 a teleso zmení polohu o 𝑑Ԧ𝑟, potom sila vykoná 

prácu

Výkon tej sily bude

Vzorec                      si držte v pamäti  rovnako ako vzorec „𝐹𝑠“.  

Pridajme poznámku, že malú vykonanú prácu sme zámerne značili 𝛿𝐴 a nie 

𝑑𝐴, lebo „malá práca nie je rozdiel dvoch prác“, práca všeobecne môže 

závisieť na ceste. Takže vzorec pre výkon

nehovorí, že výkon je derivácia práce. Napísali sme tam proste zlomok ako 

podiel dvoch veľmi malých čísel. Symbol 𝛿 nás na to upozorňuje
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Pokúsme sa finalizovať poučenie z doterajších úvah:

Uvažujme nejaký systém. Ak nevidíme externé objekty, ktoré by konali prácu 

nad tým systémom, potom energia toho systému sa zachováva. Ak také 

externé objekty existujú, potom platí zovšeobecnený zákon, zmena energie je 

krytá prácou vonkajších externých objektov.

Príklad: Uvažujme systém „teleso 1“. Je tam 

vonkajší externý objekt „lano“. Energia telesa 

1 sa nezachováva, jej zmena je ale krytá 

prácou externého objektu 

Príklad: Uvažujme systém „teleso 1 plus teleso 2“. Jeho energia sa zachováva

lebo nie sú vonkajšie externé objekty, ktoré by konali prácu.

ZLE ?!
Veď tam je vonkajší externý objekt!!! Zem, ktorá koná 

prácu. Nevidíte tie zelené sily?! Veď tie konajú 

prácu!
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Prečo sa energia zachováva, keď externé 

objekty konajú prácu?

Nápad : Nie je to náhodou tak, že celková 

práca konaná externými objektmi je nulová?

Budeme hlasovať

a)   celková práca zelených síl je nulová

b)   celková práca zelených síl nie je nulová
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Prečo sa energia zachováva, keď externé 

objekty konajú prácu?

Nápad : Nie je to náhodou tak, že celková 

práca konaná externými objektmi je nulová?

Celková práca konaná zelenými silami:

To sa nerovná nule, lebo keď sčítam pohybové rovnice

dostanem

Záver: Poučka, ktorú sme sformulovali

Ak nevidíme externé objekty, ktorá by konali prácu nad tým systémom, potom 

energia toho systému sa zachováva. Ak také objekty existujú, potom platí 

zovšeobecnený zákon, zmena energie je krytá prácou externých objektov.

JE ZLE !!! 

Otázka je, prečo. Skúste najprv chvíľu podumať!
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Niečo je zle. Naše poučky boli zjavne zle sformulované. Prezradíme dopredu , 

prečo bola naša úvaha zlá.

Pretože prácu externého objektu – Zeme, sme už zohľadnili vo vzorci 

pre potenciálnu energiu telesa.

Pre výpočet energie telies sme (používajúc Feynmanovu terminológiu) totiž 

použili „zbierku“ dvoch vzorcov

Nejako sa nám to (treba povedať, že schválne) zamotalo. Aby sme to rozmotali, 

začneme úvahy o energii znovu od začiatku. Musíme si ozrejmiť, ako postupne 

„pridávame vzorce do Feynmanovej zbierky energetických vzorcov”.
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Začnem prvým vzorcom pre energiu, kinetickou energiou.

Ako ľudstvo vyhútalo vzorec pre kinetickú energiu? 

Neviem historicky verne odpovedať. 

Ale viem argumentovať, ako to prípadne mohlo byť. 

Ako ľudstvo mohlo vyhútať prvý a možno hlavný vzorec pre energiu, na 

ktorom všetko  ďalšie stojí: vzorec pre kinetickú energiu

Ako sa tvorí Feynmanova „zbierka vzorcov“ pre energiu?
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Ľudia už dávno vyhútali nástroje na dosiahnutie veľkej sily, od pästného klinu cez 

Dávidov prak, kladivá, baranidlá až po buchare na zatĺkanie pilót. Objavili trik: 

zobrať ťažké teleso, urýchliť ho na veľkú rýchlosť a potom ho nárazom do 

cieľového objektu na krátkej dráhe rýchlo zastaviť (napríklad na Goliášovej 

hlave). 

Ako ľudstvo vyhútalo vzorec pre kinetickú energiu
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Lis: dopad telesa hmotnosti 𝑚 rýchlosťou     

spôsobí, že predmet pôvodne výšky 𝐻 sa 

zlisuje na zanedbateľnú hrúbku. 

Odhadneme silu, ktorá to spôsobí.

Teleso sa zastaví na dráhe dĺžky 𝑠 = 𝐻. Sila 

bude  na dráhe premenlivá, jej graf môže 

vyzerať napríklad takto. Priemerná sila na 

dráhe H sa vypočíta takto

S tým výrazom sa trochu pohráme:

Zistili sme, že pri danej hrúbke lisovaného materiálu jej dôležitý výraz

Ak chcem lisovať rôzne materiály rovnakej 

hrúbky, potrebujem niekedy väčšiu a inokedy 

menšiu silu. Mám k dispozícii voľbu  𝑚 𝑎 𝑣.



V histórii fyziky nejakú dobu súťažili medzi sebou dva vzorce. Leibnizov vzorec 

pre „vis viva“           a Newtonov a Descartesov pre „mieru pohybu“        .              

Žiaden nevyhral, lebo oba sa týkajú zachovávajúcich sa veličín, rôznych, s 

rôznym významom: energie a hybnosti. Zrejme prvý, kto použil termín energia v 

modernom zmysle bol T.Young v roku 1807 (ten Young po ktorom je pomenovaný 

modul pružnosti a ten, ktorý pretláčal vlnovú teóriu svetla oproti Newtonovej

korpuskulárnej).

Faktom ostáva, že lepšou mierou schopnosti urýchleného telesa rozbíjať orechy 

(alebo hlavy) je kinetická energia, definovaná voči Leibnizovej vis vitalis navyše s 

faktorom ½, aby to sedelo so vzorcom pre prácu F.s.
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Takže prvý a základný vzorec do „Feynmanovej zbierky vzorcov“ pomocou ktorých 

sa počíta energia je
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Jednou z techník, ako vyrobiť veľkú kinetickú energiu je postiť teleso z výšky 

voľným pádom.

Externé teleso, Zem, pôsobí pri páde na teleso silou 𝑚𝑔, ktorá spôsobuje 

zrýchlenie 𝑔 a teleso pri páde z výšky ℎ dosiahne kinetickú energiu (spočítateľnú 

podľa Newtonovho zákona sily)

Pri vyšetrovaní pohybu telesa v homogénnom gravitačnom poli (šikmý vrh) sme si 

všimli, že riešenia pohybových rovníc majú „kurióznu vlastnosť“, že je splnený zákon 

zachovania

a nazvali sme výraz 𝑚𝑔𝑧 potenciálnou energiou, pridajúc ho do „zbierky 

Feynmanových vzorcov“. V amerických učebniciach býva zvykom neskočiť hneď na 

zákon zachovania energie ale upozorniť, že teleso pri pohybe v gravitačnom poli 

získava energiu (myslí sa kinetickú, lebo iný vzorec sa v danej chvíli nepozná) tým, 

že Zem koná prácu. (Viď napríklad odporúčaná učebnica Halliday, Resnick alebo 

MIT Open course na webe.) Získavanie energie konaním práce má dokonca 

„oficializovaný názov“ work energy theorem. V tomto prístupe sa výraz 𝑚𝑔ℎ číta ako 

𝑚𝑔. ℎ = 𝐹. ℎ, teda ako „sila-krát-dráha“, čo sa volá práca.
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Takže prvé, s čím sa študent mechaniky v Amerike zoznámi nie je zákon 

zachovania energie ale „work energy theorem“, ktorý hovorí, že

Zmena (kinetickej) energie telesa je krytá prácou externého objektu.

V našich zemepisných šírkach sa na takúto zovšeobecnenú formu zákona 

zachovania energie „s prácou na pravej strane“ (presnejšie možno zákona o 

„bilancii energie“) často neupozorňuje.

Didakticky aj konceptuálne je tu problém, či „prvotné je vajce alebo sliepka?“. 

Hovorím o pojmoch energia a práca.

Často sa za prvotný pojem volí práca a potom sa energia „pseudodefinuje“ ako 

miera schopnosti telesa konať prácu. Alebo sa ako prvá definuje energia 

(kinetická, vis vitalis) a potom sa všimne, že sila-krát-dráha mení energiu a nazve 

sa to prácou.

Môj názor je taký, že debatovať o prvotnosti vajca je neužitočné, lebo „fyzika sa 

neodvodzuje“ ako matematika z nejakých primárnych axióm typu „Euklides“. 

Fyzika sa objavuje „po celých navzájom prepletených kusoch“ ako krajina videná z 

vrcholu kopca, keď sa rozptýli hmla. V prípade energie a práce je to napred hranie 

sa s nejasne definovanými koncepciami v rozličných situáciách, keď zrazu 

dostanem akýsi „aha-pocit“, že veď to všetko krásne funguje dokopy. Skúsenosťou 

vycizelovaný pojem energie porodí pojem práce a skúsenosťou vycizelovaný 

pojem práce porodí pojem energie. Teória sa neodvodzuje, ale „zrazu sa zjaví“. 

Najlepšie to vystihuje anglický termín „emergence“ (nepliesť s emergency!).
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Spomenuli sme niekedy na začiatku našich diskusií o fyzike, že fyzika si nekladie 

za úlohu „všetko alebo nič“. Teda že neskúma svet v celostnosti ale je spokojná s 

cestou chápať svet po kúskoch. 

Prakticky to znamená vyčleniť nejakú časť sveta, nazvať to „skúmaný fyzikálny 

systém“ a snažiť sa pochopiť, ako funguje. Taký systém spravidla nežije vo svete 

sám, pôsobia naň (interagujú s ním) externé objekty. Takže „pochopiť systém ako 

funguje“ spravidla znamená pochopiť ho v nejakom vonkajšom kontexte v interakcii 

s vonkajšími objektami.

Keď teda chcem pochopiť „padajúci kameň“, potom to chápem v kontexte 

gravitačného pôsobenia Zeme ako vonkajšieho objektu. V tomto prípade je to 

značne uľahčené tým, že síce je pravda, že nielen vonkajší objekt Zem pôsobí na 

kameň, ale aj kameň pôsobí na Zem. Ibaže Zem je taká ťažká, „že si pôsobenie 

kameňa na seba ani nevšimne“, takže pri skúmaní kameňa môžem Zem považovať 

za statický nemenný objekt.

Pri padajúcom kameni alebo všeobecnejšie pri „šikmom vrhu“ to umožňuje 

„vyčarať“ v zákone o energetickej bilancii prácu externého objektu „na pravej 

strane“ za vzorec pre potenciálnu energiu kameňa „na ľavej strane“ a písať 

alenie
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V prípade gravitačného pôsobenia Zeme navyše v oblasti s homogénnym poľom je 

odvodenie správneho vzorca 𝑚𝑔𝑧 ľahká vec. Sú ale situácie, kde sa ľahšie pomýlime, 

tak si ukážeme „odvodzovaciu techniku“, ktorá by mala triviálne omyly ustrážiť.

Ide o to, že pri pohybe skúmaného objektu sa pôsobením síl mení rýchlosť a kinetická 

energia tohto objektu. Preto si privoláme na pomoc „trpaslíka-brzdára“, ktorý bude 

silovo pôsobiť naskúmaný objekt „navyše“ a to tak, že bude strážiť, aby sa kinetická 

energia objektu nemenila. 

Trpaslík-brzdár zapichne do nášho objektu svoju brzdiacu kopiju, 

pomocou ktorej bude silovo na objekt pôsobiť (silou ľubovoľnej 

potrebnej veľkosti aj smeru, teda nielen „v smere kopije“) a tom tak, aby 

sa pri pohyboch objektu nemenila jeho rýchlosť a teda ani kinetická 

energia. Teda ku všetkým silám pôsobiacim na objekt pridá svoju silu 

tak, aby celková sila bola nulová a teda zrýchlenie (ako vektor!) nulové.

Teraz do hry vstúpim ja ako „veľký šéf“, opatrne chytím objekt a môžem ho s 

vynaložením nulovej sily infinitezimálne pomaly premiestňovať kam chcem, lebo 

trpaslík adaptívne brzdí. Premiestnim objekt rôznymi cestami z polohy „1“ do polohy 

„2“ a vždy sa spýtam brzdára akú prácu  musel pri mojom premiestňovaní vykonať. 

Ak hodnota práce, ktorú brzdár musel vykonať, nezávisí na zvolenej ceste, potom 

viem, že brzdárova práca sa dá vypočítať ako rozdiel dvoch hodnôt akejsi funkcie, 

vyčíslenej v polohe „2“ mínus hodnota v bode „1“. Ak určitý bod zvolím za 

referenčný, potom môžem zmeraním brzdárovej práce zmapovať hodnoty tej funkcie 

v ľubovoľnom bode. 
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V homogénnom gravitačnom poli musí brzdár pôsobiť konštantnou silou

a pri premiestnení telesa z bodu Ԧ𝑟1 do bodu Ԧ𝑟2 vykoná prácu

Práve som do Feynmanovej zbierky vzorcov získal vzorec 𝑚𝑔𝑧.

Vzniká otázka, prácu ktorého silového pôsobenia už nebudem teraz zarátavať 

„na pravej strane“ zovšeobecneného zákona o zachovaní energie (teda „work

energy“ teorému). Odpoveď je jednoduchá: nebudem rátať prácu žiadnej sily, 

ktorú sa mi podarilo „vyčarať“ a dostať „na ľavú stranu“ ako rozdiel dvoch hodnôt 

šikovnej funkcie, ktorej vzorec pridám medzi Feynmanove vzorce pre energiu.

Čo ak ale zistím, že brzdárova práca závisí na ceste. Jednoduché, vtedy sa 

nedá „vyčaraním“ pridať vzorec do zbierky a musím používať zovšeobecnený 

zákon o zachovaní energie  s prácou „nevyčaranej sily“ na pravej strane.

Môže to byť aj tak, že mám viacero vonkajších objektov silovo pôsobiacich na 

môj objekt. Vtedy môžem najať viacerých brzdárov, z ktorých každý stráži len 

silu jedného z vonkajších objektov.
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Príklad na jednu „vyčarateľnú silu“ a jednu nevyčarateľnú silu: teleso na naklonenej 

rovine s trením

Nakreslil som silu trenia pre prípad, že teleso sa pohybuje nadol. Pri pohybe nahor 

bude mať trenie opačný smer. Ľavý brzdár kompenzuje silu Zeme, pravý silu trenia. Ak 

budem hýbať telesom z jedného bodu do druhého, existujú aj cesty typu najprv kúsok 

smerom dole, potom kúsok smerom hore, potom zase dolu až prídem do želaného 

cieľa. Problém s brzdárom, ktorý kompenzuje trenie, je taký, že práca, ktorú vykoná je 

pre rôzne cik-cakovité cesty rôzna. Preto práca ktorú on vykoná sa nedá napísať ako 

rozdiel dvoch hodnôt funkcie na konci a na začiatku. Práca trenia sa nedá vyčarať. Ale 

prácu Zeme môžem vyčarať ako predným pomocou vzorca 𝑚𝑔𝑧.



33

Do príkladu, ktorý sme riešili pridáme trenia 

na šikmej ploche. Pohybové rovnice budú 

(nepíšeme vektory, len veľkosti)

Lano spôsobí, že rýchlosti a teda aj 

zrýchlenia sú rovnaké 𝑎1 = 𝑎2 = 𝑎

Súčet energií dvoch telies nie je (na rozdiel od prípadu bez trenia) konštantný, na 

pravej strane je práca sily trenia. Pridajme, že „energia sveta“ sa neničí, iba 

sme nezarátali energiu tepelného pohybu molekúl, ktorá primerane narastie.
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Potenciálna energia

Uvažujme trpaslíka, ktorý v gravitačnom poli bodovej 
častice premiestňuje časticu s hmotnosťou 𝑚 z miesta 
Ԧ𝑟1 na miesto Ԧ𝑟2. Vypočítali sme prácu na to potrebnú

Pozrime sa teraz na tento vzorec z iného pohľadu. Práca, ktorú musí vykonať 
trpaslík, aby premiestnil teleso o hmotnosti 𝑚 z bodu Ԧ𝑟 hocikam do nekonečnej 
vzdialenosti je

Zaviedli sme tak veľmi užitočnú funkciu 𝑈(Ԧ𝑟), pomocou ktorej vieme vypočítať 
prácu trpaslíka medzi dvoma ľubovoľnými bodmi

Toto je práca, ktorú musí vykonať trpaslík ako konateľ práce.

OPAKOVANIE: nezávislosť práce trpaslíka na ceste sme už skúmali pri 

gravitačnom zákone
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Potenciálna energia

Niekoľko „prípadových štúdií“

Odvodiť správny vzorec pre potenciálnu energiu môže myť niekedy dosť ťažké, 

najmä ak ešte nemáme poznatky z abstraktnejšej teoretickej mechaniky (naučí 

vás to kolega Fecko). 

Preto sa tu nepokúsim sformulovať nejaké rigorózne postupy „ako vyrábať 

Feynmanovu zbierku vzorcov pre energiu“

Namiesto toho rozoberiem niekoľko špeciálnych prípadov, možno to prinesie 

nejaké poučenie.
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Potenciálna energia na pružine

hodnoty na obr. 

sú 𝑧-zložky síl

Poloha 𝑧 = 0 je poloha nedeformovanej 

pružiny. To nie je rovnovážna poloha 

guličky, lebo pružina sa predĺžia pod 

vplyvom tiaže guličky. Gulička môže ostať v 

kľude v bode, keď sila pružiny vyrovná silu 

tiaže, teda keď

Rovnovážna poloha guličky má teda 

súradnicu

Voľme bod 𝑧0 za referenčný bod a 

vypočítajme prácu, ktorú vykoná trpaslík, 

keď guličku potiahne za lano tak, aby sa 

prakticky nulovou rýchlosťou presunula do 

ľubovoľného bodu 𝑧 < 𝑧0. V bode z teda 

musí pôsobiť silou, ktorej 𝑧-zložka bude

lebo práve vtedy celková sila na guličku 

bude nulová a gulička nebude zrýchľovať. 
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Potenciálna energia na pružine

hodnoty na obr. 

sú 𝑧-zložky síl

Všimnime si, že na skúmaný fyzikálny 

systém, guličku, pôsobia dva externé 

objekty. Zem tiažovou silou a pružina 

silou z deformácie. Trpaslík, ktorého sme 

použili, je vlastne náš známy trpaslík-

brzdár, tentokrát nepoužívajúci kopiju ale 

lano. Vypočítame jeho prácu a 

dostaneme súhrnnú potenciálnu energiu, 

v našom prípade

Výraz 𝑚𝑔𝑧 poznáme. Výraz 
1

2
𝐾𝑧2 je 

nový vzrec do „Feynmanovej zbierky“, 

potenciálna energia pružnosti.
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Potenciálna energia na pružine

hodnoty na obr. 

sú 𝑧-zložky síl

Analýzou práce jedného trpaslíka sme 

vyčarali  prácu dvoch externých 

objektov za dve zložky potenciálnej 

energie častice. Celková energia 

guličky teda bude

Pohybová rovnica guličky je

Overme, že celková energia guličky sa 

zachováva

Po dosadení za 𝑚𝑎𝑧 z pohybovej 

rovnice dostaneme

Energia je konštantná, zachováva sa.
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Potenciálna energia pružiny

Pozrime sa teraz na situáciu z iného uhla 

pohľadu. Za fyzikálny systém, ktorý 

študujeme budeme považovať pružinu, 

ktorá nech má zanedbateľnú hmotnosť. 

Teda nemá ani kinetickú energiu, i keď sa 

prípadne bude hýbať (deformovať). 

Súradnica 𝑧 = 0 znamená nedeformovanú 

pružinu. Trpaslík, keď chce pružinu 

deformovať, musí pôsobiť silou Fz = 𝐾𝑧 a 

vykoná pritom prácu (štartujúc z 

referenčného bodu 𝑧 = 0)

Potenciálna energia deformovanej pružiny teda je

Všimnime si, že tu sme „nečarali“ prácu nejakého 

externého objektu za potenciálnu energiu pružiny. Táto 

energia pružnosti je „naozaj obsiahnutá vnútri“ pružiny.
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Potenciálna energia pružiny

verzus

potenciálna energia guličky na pružine

Všimnime si, že keď sme ako systém uvažovali 

guličku a pružina bol len externý objekt, tiež sme 

odvodili výraz 

Aj ten výraz sme odvodzovali pomocou trpaslíka, 

ale bol tu výrazný rozdiel oproti „čistej pružine“. Pri 

guličke sme potenciálnou energiou nahradili 

(vyčarali) prácu externého objektu, pružiny. A 

potom sme povedali, že do energetickej bilancie 

už nebudeme rátať prácu pružiny, hoci „zelená 

sila“ stále pri pohybe guličky pracuje. 

Energia pružnosti „čistej pružiny“ je v akomsi 

zmysle „poctivejšia energia“ než potenciálna 

energia „guličky od pružnosti“, ktorá je len 

„vyčaraná práca“. 
Celé to zdĺhavo popisujeme najmä preto, že Feynmanovu zbierku 

energetických vzorcov nemôžme používať bez rozmýšľania, musíme vedieť, 

ktorý z tých vzorcov je „len vyčaraná práca“, a potom prácu „vyčaraných 

objektov“ už nezarátavať do energetickej bilancie.
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Vyčaraná energia verzus nevyčaraná energia

Vo Feynmanovej zbierke energetických vzorcov teda môžeme mať vzorce dvoch 

typov: vyčarané vzorce a nevyčarané vzorce. Medzi nimi je rozdiel.

• hociktorý vyčaraný vzorec môžem zo zbierky vynechať, ale potom musím do 

energetickej bilancie zarátať (na pravú stranu) prácu príslušného externého 

objektu. Zákon zachovania energie bude fungovať v zovšeobecnej forme s 

prácou na pravej strane.

• nevyčaraný vzorec nemôžem zo zbierky vynechať, prestal by fungovať zákon 

zachovania energie. Nevyčaraný vzorec sa nedá rozumne nahradiť „prácou 

čohosi na pravej strane“. Lebo príslušnú prácu nekonajú externé objekty ale 

vnútorné komponenty, napríklad molekuly, v pružine.

Nevyčaraná energia pružnosti pružiny sa prejaví aj tak, že v istom zmysle sa dá 

identifikovať, „kde sa tá energia nachádza (miestne), teda že „v tej pružine“. Dalo by 

sa to overiť aj takým pokusom. Stlačím pružinu a fixujem jej deformáciu nejakým 

špagátom. Potom ju stlačenú hodím do kyseliny, špagát sa rozpustí. Aký bude 

rozdiel oproti pokusu, keď do kyseliny hodím nestlačenú pružinu? Teplota kyseliny, v 

ktorej sa rozpustila stlačená pružina sa zvýši oproti pokusu s nestlačenou pružinou.
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Potenciálna energia pružiny

Pre nehmotnú pružinu neviem rozumne napísať 

pohybovú rovnicu, takže neviem skontrolovať či sa 

zachováva v čase jej energia. Ale odvodený výraz

je zjavne energiou, lebo ak zavesím na deformovanú 

pružinu teleso a uvoľním ho, vie ho pružina vytiahnuť 

vyššie a vykonať prácu a keď tú prácu spočítam, 

zjavne to bude sedieť s nájdeným vzorcom pre jej 

energiu.

Priateľskejší objekt na skúmanie zachovania energie, 

ktorej časťou je energia pružnosti, je kmitajúca tyč, s 

ktorou sme sa už zoznámili, takže v ďalšom budeme 

skúmať energetickú bilanciu kmitajúcej tyče ako „iného 

fyzikálneho zvieraťa“.
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Opakovanie: pozdĺžna deformácia pružnej tyče

Deformácia tyče v nejakom okamihu 

je zadaná funkciou 𝑢(𝑥), ktorá 

udáva posunutie prierezu tyče, ktorý 

sa pôvodne nachádzal v mieste 𝑥.

Malý objemový element tyče dĺžky 

𝑑𝑥 pri deformácii zmení svoju dĺzku, 

jeho nová dĺžka bude

Takže relatívne predĺženie voči pôvodnej dĺžke 𝑑𝑥 bude

Funkcia 𝜀(𝑥) udáva relatívne predĺženie tyče v mieste 𝑥. Ak Na prierez tyče v 

mieste 𝑥 pôsobí napätie 𝜎(𝑥) (napätie je sila/plocha), potom platí Hookov zákon

Predstavme si teraz, že máme zadanú deformáciu tyče ako funkciu 𝑢(𝑥) a chceme 

vypočítať potenciálnu energiu tyče v dôsledku tej deformácie. Ľahšie sa „to odvodí“ 

v diskrétnom modeli pružiniek, lebo deformačnú energiu jednej pružinky poznáme.
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Pripomienka

Limita kontinua bola                                              vyšlo:

Chápme to ako kvazimikroskopický model kontinua. Aké budú jeho parametre 𝜚, 𝐸?

Ak prierez tyče je 𝑆, potom jedna gulička s hmotnosťou 𝑚 pripadá na objem 𝑆Δ a 

bude 𝜚 = 𝑚/(𝑆Δ). Ak sa pružina predĺži o 𝑢, treba na to silu 𝐹 = 𝑘𝑢. Dĺžka 

nedeformovanej pružiny je Δ, relatívne predĺženie 𝑢/Δ, napätie 𝐹/𝑆 a dostaneme

V modeli s guličkami vyšlo

a takto to vyšlo v efektívnej teórii bez odvolávania sa na „guličky“. Hurá!
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Posunutia koncov 𝑖-tej pružiny sú 𝑢(𝑥𝑖−1) a 𝑢(𝑥𝑖), pôvodná dĺžka tej pružinky bola

Δ, deformovaná dĺžka je Δ + 𝑢 𝑥𝑖 − 𝑢 𝑥𝑖−1 , predĺženie pružinky teda je 

𝑢 𝑥𝑖 − 𝑢 𝑥𝑖−1
Potenciálna energia 𝑖-tej pružinky teda je

Vzťah konštánt 𝐸 spojitého modelu a 𝑘 diskrétneho modelu je

a teda energia pružnosti celej tyče je
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Vzorec

prejde v spojitom modeli na integrál 

Potenciálnej energie pružnosti v pozdĺžne deformovanej tyči je teda

kde 𝐸 je Youngov modul pružnosti a uviedli sme explicitne aj časový okamih 𝑡.
Kinetickú energiu tyče nájdeme ľahko. Hmotnosť objemového elementy tyče je 

𝜚𝑑𝑉, jeho okamžitá rýchlosť je 𝜕𝑢(𝑡, 𝑥)/𝜕𝑡 a teda

Celková energia tyče teda je
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Energia deformácie tyče bez aproximácie diskrétnymi 

pružinami

Chceme zistiť deformačnú energiu tyče. Tyč rozdelíme na elementy dĺžky 𝑑𝑥, jeden 

taký element je nakreslený červeno. Zavoláme na pomoc trpaslíkov – brzdárov, 

každý dostane na starosť jeden element tyče. Zapichne si do toho elementu svoju 

brzdiacu kopiju a dáva pozor, aby zrýchlenie elementu počas nasledujúcich 

manipulácií bolo stále nulové. Preto sleduje sily, ktorými okolité elementy pôsobia na 

jemu zverený element a neustále ich vyrovnáva, aby celková sila pôsobiaca na 

element a teda aj jeho zrýchlenie bolo nulové.
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Energia deformácie tyče bez aproximácie diskrétnymi 

pružinami

Element susediaci s červeným elementom zľava naň pôsobí silou

element susediaci sprava silou

Trpaslík – brzdár teda musí vyvíjať silu
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Energia deformácie tyče bez aproximácie diskrétnymi 

pružinami

Mám rozostavených trpaslíkov. Nech aktuálny stav deformácie tyče je daný 

funkciou ෤𝑢(𝑥). Konečná deformácia, ktorú chcem dosiahnuť je 𝑢(𝑥). Dosiahnem to 

tak, že ako „veľký šéf“ postupne posúvam trpaslíkov o malé kúsky 𝛿 ෤𝑢 𝑥 . Tieto malé 

pridávané deformácie sú pri rôznych 𝑥 navzájom nezávislé, rôznej veľkosti a 

vykonávané v ľubovoľnom poradí. Všetko kvôli tomu, aby som sa presvedčil, že 

výsledná deformačná energia „nezávisí na ceste“, teda na detailnom postupe ako 

som z referenčného stavu 𝑢 𝑥 = 0, prišiel k stavu 𝑢(𝑥). Keďže trpaslíci 

vyrovnávajú všetky sily na nulu, ja ako veľký šéf nekonám pri manipuláciách žiadnu 

prácu, ale zato trpaslíci pri malom posunutí 𝛿 ෤𝑢 𝑥 vykonajú prácu
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Energia deformácie tyče bez aproximácie diskrétnymi 

pružinami

Celková práca, ktorú vykonajú pri mojich manipuláciách trpaslíci pri zmene

bude

Použijem per partes, uvedomím si, že okraje neprispejú, lebo tam sú všetky 

deformácie stále nulové a dostanem
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Energia deformácie tyče bez aproximácie diskrétnymi 

pružinami

Teraz sčítam cez všetky malé prídavky deformácií 𝛿 ෤𝑢(𝑥) a dostanem pre celkovú 

prácu trpaslíkov

A toto je presne deformačná energia pružnej tyče.

Poriadne si predumajte, ako sčítaním 

(integrovaním) cez 𝛿 vznikla ½!
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Vlnenie tyče – zachovanie energie

Pohybová rovnica tyče je vlnová rovnica

Dokážeme, že ak deformácia 𝑢(𝑡, 𝑥) spĺňa pohybovú rovnicu, energia sa zachováva. 

Počítajme časovú deriváciu energie

keď sme dosadili za druhú časovú deriváciu pravú stranu pohybovej rovnice
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Máme zatiaľ

Na prvý člen použijeme per partes (podľa premennej integrovania, teda 𝑥) a 

dostaneme

Člen v hranatých zátvorkách je nulový, lebo na hraniciach je deformácia nulová. 

Sčítance  v integráli sú rovnaké ale s opačným znamienkom, takže celkovo 

dostávame nulu.

Časová derivácia energie je teda nulová, energia je konštantná, zachováva sa.

Pre naše „nové fyzikálne zviera“, pružnú tyč, sme našli výraz pre energiu (do 

Feynmanovej zbierky vzorcov) a ukázali sme, že aj pre toto zviera platí zákon 

zachovania energie.
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Keď sme vyšetrovali guličku na pružine z 

energetického hľadiska, za fyzikálny systém sme 

považovali guličku a pružina bola vonkajší objekt. 

Prácu sily od pružiny sme „vyčarali“ za potenciálnu 

energiu guličky

Potom sme vyšetrovali samostatne pružinu ako 

fyzikálny objekt a našli sme, že jej potenciálna energia 

(nič „vyčaraného“!) je 

To, čo by sme radi videli, je vyšetrovať „spojený fyzikálny systém „pružina plus 

gulička“ z hľadiska zákona zachovania energie. Neurobili sme to, lebo sme nemali 

pohybovú rovnicu pre pružinu (nemali sme ani vzorec pre kinetickú energiu pružiny). 

Nahradíme teraz pružinu pružnou tyčou, o ktorej vieme všetko a vyšetríme pohyb a 

zákon zachovania energie pre systém „gulička nalepená na tyči“
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x

x+u(x)

u(x)

Gulička na pružnej tyči

kľudový stav

deformovaný stav

𝜉 súradnica guličky, meraná od konca nedeformovanej tyče. Tyč (nedeformovaná) 

má dĺžku 𝐿. 𝑥 identifikuje prierezy tyče (je to vzdialenosť prierezu od začiatku tyče 

v nedeformovanom stave). 𝑥 je vlastne „meno“ prierezu tyče. 𝜉-súradnica prierezu 

tyče s menom 𝑥 v deformovanom stave je 𝜉 𝑥 = −𝐿 + 𝑥 + 𝑢(𝑥). Koniec tyče má 

súradnicu 𝜉 𝐿 = 𝜉, lebo to je súčasne súradnica guličky, teda 𝑢 𝐿 = 𝜉.

Napätie na konci tyče je

Sila, ktorou gulička pôsobí na tyč je 𝐹 = 𝜎 𝐿 𝑆, tyč na guličku silou −𝜎 𝐿 𝑆.
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x

x+u(x)

u(x)

Gulička na pružnej tyči

kľudový stav

deformovaný stav

Pohybové rovnice teda budú

Newtonova pohybová rovnica guličky

Vlnová pohybová rovnica tyče

Okrajové podmienky tyče
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Energetická bilancia samotnej pružnej tyče

Napravo je výkon sily, ktorou externý objekt, gulička, pôsobí na tyč, takže 

energetická bilancia tyče je v poriadku. Energia samotnej tyče sa nezachováva, 

ale jej zmena je krytá prácou externého objektu guličky. Super!
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Energetická bilancia samotnej guličky

−𝐹 je sila, ktorou tyč pôsobí na guličku, 𝑑𝜉/𝑑𝑡 je rýchlosť konca tyče a aj guličky), 

takže napravo máme výkon sily, ktorou tyč pôsobí na guličku. Takže zmena energie 

guličky je krytá prácou externého objektu, tyče. Super! Všimnime si, že za energiu 

guličky sme považovali len jej kinetickú energiu. Nemali sme žiadnu „potenciálnu 

energiu pružnosti“ ako pri guličke na pružine. Práca tyče sa totiž „nedá vyčarať“ za 

akúsi efektívnu potenciálnu energiu guličky. Práca tyče totiž nie je daná len 

začiatočným a koncovým stavom guličky, lebo medzitým vnútorné vlnenie tyče mohlo 

vyzerať od prípadu k prípadu všelijako, takže práca vykonaná vonkajším objektom 

„závisí na ceste“.
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Energetická bilancia sústavy tyč plus gulička

Dajúc dokopy výsledky získané pre samotnú tyč a pre samotnú guličku dostaneme

Celková energia sústavy tyč plus gulička sa teda zachováva!
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Môže vzniknúť otázka, prečo sa to pri pružine dá vyčarať a pri tyči nie. V čom 

sú tyč a pružina odlišné?

Nuž, musí to byť tak, že pri pružine sme švindľovali. Vedeckejšie povedané, 

dačo sme zanedbávali. Zanedbávali sme dynamiku pružiny. Pre pružinu sme 

nepísali žiadnu pohybovú rovnicu!

Pritom aj po pružine sa zjavne môže šíriť akési vlnenie, čo sme neuvažovali. 

Pružina instantne reagovala na pohyb guličky rovnomerným roztiahnutím.

Rigoróznejšou analýzou, čo a ako sme pri pružine zanedbávali, sa pre istotu 

zaoberať nebudeme.

Výsledkom zanedbaní bolo, že práca pružiny nad guličkou nezávisela na ceste 

a mohli sme prácu vyčarať za efektívnu potenciálnu energiu guličky.
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Energia a interakcia na diaľku

Uvažujme dve častice pôsobiace na seba gravitačne. 

Pohybové rovnice sú

Pre časticu majme zatiaľ len jeden vzorec v zbierke: kinetickú energiu

Separátne pre každú časticu je to ok, lebo zmena energie prvej častice  je krytá 

výkonom sily, ktorou druhá častica pôsobí na prvú a podobne zmena energie druhej 

častice je krytá výkonom sily, ktorou na ňu pôsobí prvá častica.

Problém nastane, pre systém oboch častíc: sumárna energia sa nezachováva, ako to 

bolo pri kontaktnej interakci. Podľa zákona akcie a reakcie majú síce sily opačné 

znamienko, ibaže častice nemusia mať rovnakú rýchlosť, ako mali objekty v prípade 

kontaktnej interakcie (ktoré sa dotýkali), takže suma pravých strán sa nevynuluje. 

Pritom žiadny ďalší vonkajší objekt nepôsobí!

Záver: buď sa energia nezachováva, alebo sme na niečo zabudli.
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Energia a interakcia na diaľku

Vyšetrime podrobnejšie, ako je to z energiou sústavy dvoch častíc

Všimnime si ale, že výraz na pravej strane sa dá písať ako časová derivácia akejsi 

funkcie polôh dvoch častíc. (Geniálne sa pozriem na ten vzťah a vidím !)

Takže platí

Našli sme nový vzorec do Feynmanovej zbierky! Ale pozor. Náš systém sa skladá z 

dvoch častíc, ale nepribudol vzorec aplikovateľný na každú časticu zvlášť! 

Pribudol vzorec pre „dvojčastičie“. Až dve častice chápané ako jeden systém majú 

nový vzorec.
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Energia a interakcia na diaľku

Zákon zachovania energie pre dve gravitujúce častice teda zachránil nový vzorec

Hovoríme tomu interakčná energia dvoch gravitujúcich častíc, nachádzajúcich sa v 

polohách Ԧ𝑟1, Ԧ𝑟2.

Máme ale problém s interpretáciou práce ako spôsobu transferu energie. Pre 

energiu prvej častice platí

čo hovorí, že energia častice narastá (uvažujeme teraz približujúce sa častice) 

„pritekaním“ energie, ako hovorí výkon na pravej strane. Ibaže energia druhej 

častice neklesá, ale tiež narastá. Kto to platí? Formálna odpoveď je jednoduchá, 

kinetické energie oboch častíc narastajú na úkor ich interakčnej energie, ktorá klesá 

(stáva sa viac zápornou). Ibaže akosi necítime, že by interakčná energia bol 

fyzikálny objekt, z ktorého „odteká energia“ tak, že by konal prácu nad časticami. 

Viac by sa nám páčilo, keby sme energetické náklady mohli „zosobniť“, ako keď 

firma hodí na krk stratu konkrétnemu zamestnancovi. Čo keby tak existoval

tretí objekt, ktorý by tú prácu „naozaj konal“?
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Pole ako spôsob interakcie nablízko a jeho energia

Trik je v tom, že vhodný tretí objekt si môžeme vyšpekulovať: volá sa gravitačné 

pole. Silové pôsobenie dvoch telies navzájom na diaľku popíšeme alternatívne 

tak, že častice vytvárajú v priestore gravitačné pole, popísané v každom bode 

vektorovou intenzitou poľa Ԧ𝑔 Ԧ𝑟 tak, že sila pôsobiaca na bodovú (testovaciu) 

časticu s hmotnosťou 𝑚 v bode Ԧ𝑟 bude

Teraz budeme trochu čarovať, lebo bodová častica vytvára v mieste, kde sa 

nachádza formálne nekonečnú intenzitu a vzniká problém so self-energiou. Preto 

bodové častice nahradíme spojitým rozložením hmotnosti v priestore s hustotou

𝜚 Ԧ𝑟 . Potom intenzita poľa bude 

a vzorec pre interakčnú energiu nábojov

zovšeobecníme takto

Slajdy o energii gravitačného poľa presahujú úroveň úvodného kurzu, ale 

uvádzame ich tu pre úplnosť, aby sa dalo k tomu prípadne neskôr vrátiť.
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Vzorec pre interakčnú energiu rozloženia hmotnosti prepíšeme s použitím 

gravitačného potenciálu budeného tým rozložením hmotnosti

teraz si uvedomíme, že pre potenciál poľa platia tieto dva vzťahy

Všimnime si, že interakčnú energiu častíc (látky) sme prepísali ako objemový 

integrál z kvadrátu intenzity gravitačného poľa. Častice (látka) zo vzorca zmizla, je 

tam len pole. Preto je prirodzenejšie nazvať ten nový vzorec nie interakčná energia 

látky ale energia poľa. 

Pole ako spôsob interakcie nablízko a jeho energia
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Energia poľa

Zmeníme preto aj označenie a píšeme

Zákon zachovanie energie, ktorý sme pre dve gravitujúce častice písali v tvare

Môžeme teraz zapísať v tvare

Vytvorenie nového objektu „pole“ reštauruje aj význam spojenia  „práca ako spôsob 

transferu energie“. Kinetická energia častíc (látky) sa mení, lebo pole nad nimi koná 

prácu a tým energia prechádza z poľa do látky alebo naopak. Energia zavedením 

poľa „niekde je“. Vzorec pre energiu poľa evokuje predstavu, že pole a jeho energia 

sú rozložené v priestore, pričom hustota energie poľa pripadajúca na objemovú 

jednotku priestoru je
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Elektrické pole a jeho hustota energie

Poslednú prípadovú štúdiu ponechávame na usilovnosť čitateľa. Uvažujme čosi 

ako nabitý kondenzátor, dve veľké paralelné nabité kovové dosky v malej 

vzdialenosti od seba, ale neupevnené, takže sa môžu hýbať. Medzi doskami je 

elektrické pole. Dosky na seba pôsobia silou. Ak napíšem pohybové rovnice pre 

dosky, zistím, že kinetická energia dosiek sa nezachováva. Zákon zachovania 

energie zachránim, ak zavediem pojem interakčná energia dosiek. Alternatívna 

záchrana je také, že poviem, že kinetická energia dosiek sa mení, lebo sa mení 

energia „uskladnená“ v elektrickom poli medzi doskami a zistím, že správny 

vzorec pre objemovú hustotu energie elektrického poľa je

Odvodenie v tomto špeciálnom prípade je oveľa menej matematicky náročné ako 

pre prípad gravitačného poľa.
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Bonbónik na záver

Chôdzu umožňuje trenie, ktoré udeľuje 

chodcovi hybnosť dopredu.

Koná pri tom trenie prácu?
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Kto poháňa chodca? Trenie.

Chodec tlačí na topánku smerom dozadu, ako keby chcel, aby sa topánka 
šmýkala dozadu. Trenie tomu bráni silou, ktorá smeruje dopredu. Na chodca 
nepôsobí vo vodorovnom smere žiadna vonkajšia sila okrem trenia. Trenie teda 
poháňa chodca dopredu. Nie je teda pravdou, že trenie vždy pôsobí proti 
pohybu. Na obrázku červená sila je trecia sila, ktorou teniska pôsobí na 
podložku, žltá sila je reakcia podložky, trecia sila, ktorou podložka pôsobí na 
tenisku a „poháňa“ chodca dopredu.

OPAKOVANIE
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Kto poháňa chodca? Trenie.

Vieme, že platí veta o ťažisku: ak nepôsobí vonkajšia 

sila, ťažisko sa nemôže zrýchľovať. Pre zrýchlenie 

ťažiska platí Newtonova rovnica

kde Ԧ𝐹 je celková vonkajšia sila. 

Ak bežec zrýchľuje (napríklad dáva so zo stoja do pohybu), potrebuje na to, aby 

niekto zvonku pôsobil vodorovnou silou dopredu. Zvonku ale nik nepôsobí, iba 

podložka pod nohami, a to len trením medzi podošvami tenisiek a podložkou. Ibaže 

to nie podložka si „zmyslí“, že potlačím chodca dopredu. Trenie v smere dopredu je 

len reakcia podložky na chodcovu nohu tlačiacu dozadu. Všimnime si to 

rozfázované na obrázku. 

Chodec odľahčil pravú nohu a zaťažil ľavú. Potom začal na 

ľavú nohu tlačiť aj vodorovne dozadu, akoby ju chcel šmýkať 

po podložke. Trenie ale nedovolí nohe prešmyknúť, vyvinie 

protisilu dopredu, tá dopredná sila je vonkajšia sila, ktorá 

chodca posunie dopredu. Pravá noha vpredu dokročí , chodec 

ju zaťaží aby sa nešmýkala (toto už nie je na siluetovom 

obrázku), odľahčí dovtedy zaťaženú ľavú nohu a prisunie ju 

dopredu. Práve dokončil jeden krok.
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Kto poháňa chodca? Trenie.

Práve sme sa presvedčili, že chodca posúva 

dopredu trenie. Ale ak chodec pritom 

zrýchľuje alebo kráča do kopca, rastie jeho 

energia. Musí sa teda niekde konať práca. 

Prirodzené by bolo povedať, že trenie nielen 

udeľuje chodcovi zrýchlenie, ale aj koná 

prácu a tým chodec získava energiu.

Ale to asi nie je pravda, tu sú dva argumenty:

• odkiaľ by na to podložka brala energiu. Navyše všetci vieme, že ak chceme 

kráčať, potrebujeme na to zjesť nejaké tie sendviče. Chemickú energiu v jedle v 

tele nejako premeníme na mechanickú. Ale asi sotva tak, že premenenú energiu 

nejako napumpujeme do podložky a tá ju potom použije na prácu a zvýšenie 

našej mechanickej energie

• Dopredná sila trenia zjavne nekoná žiadnu prácu, lebo pôsobí na tenisku vtedy, 

keď tá sa nehýbe, neposúva sa po nejakej dráhe. Teda práca, sila krát dráha, je 

nulová.

Záver: je to nejako tak, že pomocou vnútorných síl systém nemôže zvýšiť 

svoju hybnosť, potrebuje na to pomoc vonkajšej sily. Ale zrejme konaním 

práce vnútorných síl vnútri objektu, môže zvýšiť svoju (napríklad) kinetickú 

energiu, vonkajšie sily pritom nemusia  konať prácu. Ukážeme si to na 

jednoduchom modeli „robotického jednorozmerného chodca“.
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Jednorozmerný robotický chodec, popis konštrukcie.

Základom sú dva od seba oddelené vozíky „Telo“ a „Noha“, ktoré sa na kolieskach 

pohybujú po podložke bez trenia. Oba vozíky majú na sebe namontovaný 

„mechanizmus trecej podošvy“. Ovládaný je elektromagnetom (hnedá kocka), ktorý 

„podošvu“ buď nadvihne nad podložku, alebo naopak pritlačí na podložku. 

Podložka má veľký koeficient trenia, takže ak je pritlačená, daný vozík sa nemôže 

hýbať, bráni mu v tom trecia sila medzi podložkou a „podošvou“

Na „Tele“ je nalepený hydraulický valec, v ňom sa pohybuje piest s piestovou 

tyčou, ktorej vonkajší koniec je nalepený na „nohe“. Na hydraulike je olejové 

čerpadlo, ktoré môže pumpovať olej sprava doľava a naopak a tlačiť tak na piest 

raz zľava a inokedy sprava. 

Takýto robot vie „kráčať“, odstrkávať sa nohou dopredu. Jeden krok je zložený zo 

štyroch fáz, ukážeme si ich.

Toto je originálna konštrukcia vytvorená pre túto prezentáciu.
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Jednorozmerný robotický chodec, stav 0

„Podošva“ na Nohe je pritlačená na podložku. Noha sa nemôže hýbať, bráni jej v 

tom trenie. Telo sa môže hýbať bez trenia. Piest je v ľavej krajnej polohe.

V tomto stave spustíme hydraulické čerpadlo, ktoré bude prečerpávať olej z ľavej 

strany valca na prvú, posúvať piest doľava, vysúvať piestnu tyč, ktorá sa zaprie do 

nohy, ale keďže tá je nehybná, musí hydraulický valec odtlačiť telo doprava.
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Jednorozmerný robotický chodec, stav 1

Skončilo prečerpávanie oleja, Telo sa posunulo oproti pôvodnej polohe dopredu, 

Noha ostala na pôvodnom mieste, vzdialenosť Nohy od Tela sa teda zväčšila.

Ťažisko systému Telo+Noha sa posunulo akoby pod vplyvom sily piesta, ale posun 

ťažiska zabezpečila podložka trecou silou pôsobiacou dopredu na podošvu Nohy.

Ak cesta smeruje do kopca, potom Telo získalo potenciálnu energiu prácou 

hydraulického čerpadla. Trenie nekonalo žiadnu prácu.

V tomto stave „prenesieme váhu“ z Nohy na Telo, teda odľahčíme podošvu nohy a 

pritlačíme podošvu Tela
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Jednorozmerný robotický chodec, stav 2

Pritlačila sa podošva Tela, odľahčila sa podošva Nohy. Noha sa môže hýbať voľne. 

Telo sa nemôže hýbať, bráni mu v tom trenie.

Teraz spustíme hydraulické čerpadlo, bude prečerpávať olej  sprava doľava, piest sa 

bude posúvať smerom  k telu a ťahať za sebou nohu smerom k telu.
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Jednorozmerný robotický chodec, stav 3

Skončilo sa prečerpávanie oleja, Noha sa prisunula k Telu. Ťažisko systému 

Noha+Telo sa zase posunulo dopredu, umožnilo to trenie podošvy Tela. 

Predumajte ako vzniká. Olej tlačí na piest v smere dopredu ale aj na ľavé veko 

hydraulického valca smerom dozadu. Valec je prilepený na Telo a snaží sa ho 

ťahať dozadu. Tomu bráni trenie podošvy Tela, podložka vyvinie silu smerom 

dopredu!  (Aby zabránila posunu Tela dozadu.) Ak to bolo do kopca, hydraulické 

čerpadlo vykonalo prácu na zvýšenie potenciálnej energie nohy, trenie žiadnu 

prácu nekonalo!

V tomto stave „prenesieme váhu“ z Tela na Nohu, teda odľahčíme podošvu Tela a 

pritlačíme podošvu Nohy.
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Jednorozmerný robotický chodec, stav 4

Zaťažená je podošva Nohy. Noha je !prisunutá k Telu. Celý systém je v rovnakom 

vnútornom stave ako bol v stave 0, ibaže je posunutý dopredu ako celok, urobil krok! 

Ak to bolo do kopca, potrebnú prácu dodalo v dvoch fázach vnútorné hydraulické 

čerpadlo. Silu potrebnú na posunutie ťažiska „dodala“ podložka ako trenie.

Na ďalšom slajde sú pre porovnanie ukázané oba stavy, 0 aj 4
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Jednorozmerný robotický chodec, stavy 0 a 4

Poznámka: Ak podložka je príliš klzká, magnety by namiesto pritláčania trecích 

podošiev mohli ovládať vysúvacie ihly, ktoré sa zabodnú do položky a znehybnia 

Nohu alebo Telo. Takto v podstate funguje chodec na ľade, kde je malé trenie. 

Obuje si mačky.

Robot urobil krok dopredu!
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• Zdôvodnite, prečo kladivo vyvinie väčšiu silu pri zatlčení klinca o rovnakú 

hĺbku, ak bude mať väčšiu kinetickú energiu.

• Ukážte, že nemožnosť zostrojiť perpetuum mobile vyžaduje, aby práca 

potrebná na zdvihnutie telesa po naklonenej rovine bola rovnaká akol práca 

pri jeho zdvihnutí kolmo hore.

• Prečo, keď už do energetickej bilancie zahrniem potenciálnu gravitačťnú

energiu telesa typu mgh, tak už nesmiem do bilancie zahrnúť aj prácu 

gravitačnej sily.

• Odvoďte potenciálnu energiu guličky na pružine pri výchylke x.

• Vysvetlite, čo je to potenciálna energia interakcie na príklade dvoch telies 

pôsobiacich na seba gravitačne.

• Dokážte, že pri šikmom vrhu bez trenia sa energia zachováva

• Ako sa modifikuje zákon zachovania mechanickej energie ak teleso, ktoré sa  

šmýka pod vplyvom gravitácie dolu po naklonenej rovine pôsobí aj šmykové 

trenie.



1

Tekutiny

Tekutiny (anglicky fluids) sú látky, ktoré tečú. Ale vieme, čo o znamená tiecť? 
Najprv príklady
• voda tečie
• med tečie (trochu „horšie“ ale tečie)
• kus železa netečie
• plyn tečie: toto treba trošku priblížiť. Ak napríklad praskne termoska s 

tekutým argónom, robí sa na zemi mláka tekutého argónu. Ten sa rýchlo 
vyparí a vznikne na tom mieste plyn v zásade pri zemi, lebo argón je ťažký. A 
ten plyn sa bude ďalej „roztekať do strán“, ako keby to bola dajaká 
kvapalina. Pravda po čase sa bude aj miešať do vyšších vrstiev vzduchu ale v 
„prvej aproximácii“ sa môžme tváriť, že sa rozteká viac-menej pri zemi.
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Teraz čo odlišuje tekutiny od iných látok. Keď nakloním nádobu s tekutinou, bola v nej 
pôvodne vodorovná hladina. Prudkým naklonením vznikne najprv šikmá hladina ale 
tekutina sa roztečie tak, že sa znovu vytvorí vodorovná hladina ale v šikmej nádobe

Keby vrchná vrstva kvapaliny mala ostať nie vodorovná ale šikmá, musela by vrstva 
tesne pod ňou kompenzovať silu tiaže, ktorá sa snaží vrchnú vrstvu šmýkať po 
vrstve pod ňou sťaby po naklonenej rovine. Preto nižšia vrstva by musela pôsobiť 
na vyššiu tangenciálnou silu na rozhraní tých dvoch vrstiev podobne ako trenie na 
naklonenej rovine bráni hranolu šmýkať sa dolu po  naklonenej rovine. Keďže vrstva 
tekutiny „neustojí“ byť šikmo na spodnej vrstve, znamená to, že tekutina nevie na 
styku dvoch vrstiev vyvinúť tangenciálnu silu, prinajmenej keď je už všetko v kľude. 
Vieme ale, že med „stečie“ pomaly, kým voda rýchlo. Takže v mede sa vie vyvinúť 
tangenciálna brzdiaca sila, ale len keď sa vrstvy navzájom pohybujú. Ten jav sa volá 
viskozita: vznik tangenciálnej sily na rozhraní navzájom sa pohybujúcich vrstiev. 
Tekutina však nevie vyvinúť tangenciálnu silu na rozhraní dvoch navzájom sa 
nepohybujúcich vrstiev.
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Môže sa zdať divné, prečo dávame „do jedného vreca“ plyny a kvapaliny. Majú síce 
vlastnosť tekutosti spoločnú, ale zdajú sa nám tak rozdielne ako sú rozdielne napríklad 
kvapaliny a tuhé látky. Už škôlkarov učia, aký je rozdiel medzi kvapalinami a plynmi. Ibaže 
ich to učia zle.

Niet principiálneho rozdielu, ktorý by umožňoval v absolútnom zmysle rozoznať, či ide o 
plyn alebo kvapalinu. Len ak máme naraz „pri sebe“ dve fázy vo vzájomnej tepelnej  
rovnováhe, panuje všeobecná dohoda, ktorú z nich nazveme kvapalinou a ktorú plynom. 
Kvapalinou nazveme tú, ktorá za rovnakých podmienok je napríklad hustejšia alebo menej 
stlačiteľná. To sú tie rozdiely, ktoré učí deti pani učiteľka v škôlke. Ale učí to ako rozdiely, 
používajúc „porovnávacie“ prídavné mená. Treba si ale uvedomiť, že „porovnávacie 
prídavné meno“ sa nedá použiť na jeden objekt, musím ho vzťahovať na objekty dva. 
Povedať že „kvapalina je málo stlačiteľná“ v snahe zrušiť porovnávací charakter vlastnosti 
kvapaliny je rovnaký nezmysel ako povedať že číslo 1 je „malé“. Isto je malé voči miliónu ale 
nie voči milióntine.

Odlíšiť tuhú látku od kvapaliny sa dá v absolútnom (neporovnávacom) zmysle. Z hľadiska 
štruktúry sú tuhé látky na molekulárnej úrovni usporiadané: polohy jednotlivých atómov či 
molekúl sú navzájom korelované na makroskopických vzdialenostiach (teda oveľa väčších 
ako sú nanometre). Je to v dôsledku kryštalickej štruktúry tuhých látok. Námietka, že kus 
železa nevyzerá ako kryštál neobstojí. Na mikroskopickej úrovni tisícov nanometrov je tuhá 
látka kryštalická, ibaže jednotlivé kryštalické zrná nie sú viditeľné na úrovni milimetrov. 
Pravda, existujú „amorfné tuhé látky“, ktoré dlhodosahové usporiadanie nemajú, ale tie 
nazývame aj „podchladené kvapaliny“. Striktne vzaté ide o nerovnovážny stav získaný 
prudkým zmrazením.
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Meranie lokálneho šmykového napätia

Naznačíme jeden možný princíp merania šmykového napätia. Meracia sonda 
vlastne meria lokálnu deformáciu v šmyku, ktorú zo znalosti modulov pružnosti 
možno prepočítať na šmykové napätie. Principiálna schéma sondy je na 
obrázku. Ide o dve paralelné plochy na jednej je zdroj svetla, na druhej 
svetlocitlivý chip. Medzi plochami je priehľadný elastomérový („ako guma“) 
materiál. Keď sa plochy voči sebe posunú, svetelný signál registrovaný chipom 
sa zmení a zmenu možno prepočítať na posunutie.

Viem si predstaviť, že ak je tenká sonda „vlepená“ medzi dve vrstvy vzájomne 
namáhané šmykom v dutine zaoberajúcej malú plochu veľkých „klzných“ plôch, 
potom by sa tým malo dať efektívne odmerať šmykové napätie
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Tekutiny

Záver: tekutina je látka, ktorá na rozhraní navzájom sa nepohybujúcich 
vrstiev má nulové tangenciálne sily.

V praxi skôr používame vyjadrenia o tangenciálnom napätí, čo je tangenciálna 
sila pôsobiaca na jednotku plochy rozhrania.

V stojacej tekutine teda na ľubovoľnú myslenú plochu môže pôsobiť len 
normálový tlak (krátko sa hovorí len tlak). Platí pritom, že na danom mieste v 
kvapaline je tlak na ľubovoľnú myslenú plochu nezávislý na orientácii tej 
plochy: „tlak je vo všetkých smeroch rovnaký“ (toto je jedno z dvoch tvrdení 
Pascalovho zákona).
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Uvažujme malý objemový element kvapaliny v 
rovnováhe (nehýbucej sa) tvaru trojbokého hranola.
Na obrázku sú naznačené tri kolmé tlaky na tri zo 
stien. Kvapalina sa nehýbe, preto všetky zložky 
celkovej sily pôsobiacej na objemový element musia 
byť nulové. Zdôraznime, že výrazy 𝜎𝑦, 𝜎𝑧 , 𝜎𝛼 nie sú 

vektory ale veľkosti kolmých tlakov. Veľkosť 
príslušných síl je potom „tlak krát plocha“.
Plochu ľavej steny označme 𝑆. Potom plocha šikmej 
steny je zjavne 𝑆/ sin𝛼 a plocha spodnej steny je 
priemet šikmej plochy, teda 𝑆 cos 𝛼/ sin𝛼 .
Zložka 𝑦 celkovej sily preto bude

Zložka 𝑧 celkovej sily bude

Tlaky na ľubovoľne orientované plochy na danom mieste v 
tekutine sú teda rovnaké (lebo uhol 𝜶 bol ľubovoľný).

Dôkaz Pascalovho zákona (o smeroch tlaku)
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The basic configuration of the fiber-optic sensor system incorporates a mesh. (Note that 
pressure sensors typically measure a force over a known area and pressure is subsequently 
calculated. As such, our sensor measures force as well; thus, all our data are in Newtons.) This 
mesh comprises two sets of parallel fiber planes (Figure 1). The two fiber planes are configured 
so that the parallel rows of fibers of the top and bottom planes are perpendicular to one 
another. The planes are sandwiched together, creating one sensing sheet. Information from 
the orthogonal fibers corresponds to information on a set of orthogonal axes. This information 
creates a two-dimensional (2-D) plot of the pressure distribution on the mesh. For bend loss, 
both sets of fibers are illuminated. We can determine 2-D information by measuring the loss of 
light from each fiber. Knowing which fiber along the x-axis dims and which one along the y-axis 
dims, one can determine the x- and y-coordinates of the pressure point. 

http://www.rehab.research.va.gov/jour/05/42
/3/wang.html
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The shear sensor is constructed of two layers of bend-loss mesh sensors (Figure 2). The basic 
design is a multilayered sensor in which the top and bottom layers are composed of a sensor 
mesh embedded in a high-shear-compliant shoe insole. The coordinates of the pressure 
points are taken from the top and bottom mesh sensors. With this method of determining 
shear, we assume that the pressure points are originally directly above and beneath one 
another. The pressure points will be shifted out of alignment because of shearing forces, and 
the amount of misalignment determines the amount of shear. 
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Atmosférický tlak

1 torr = 1 mm Hg =1/760 atm = 133.3 Pa

1 Pa = 1 N/m2

Hustota vzduchu 1.23 mg/cm3

Hustota ortuti 13.6 g/cm3

Výška vzduchu, ktorá vyváži 760 mm 
ortuti, teda má byť rádovo 10 km, čo 
nie je zlý rádový odhad výšky atmosféry

Prečo sa voda nedá vysať do výšky 
viac ako 10m?
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Budeme hlasovať

Toricelli vykonal pokus s ortuťou. Hustota ortuti 13.6 g/cm3

Akú dlhú trubicou (približne) by bol potreboval, keby chcel vykonať ten 

pokus s vodou

a)3 m

b)5 m

c)10 m

d)30 m
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Magdeburské pologule



12

Krvný tlak

Krvný tlak 120/80  je udávaný v torroch.
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Interpretácia Toricelliho pokusu ako dôsledku 
atmosférického tlaku invokuje Pascalov zákon: Tlak sa 
prenáša do každého miesta v kvapaline rovnako.
Váha stĺpca vzduchu, ktorú „drží hladina ortuti“ v 
miske je rovnaká ako váha stĺpca ortuti od úrovne 
hladiny až po hranicu vákua

vákuum

Demonštrácia Pascalovho 
zákona: tlak vody vo vysokej 
trubici roztrhne sud

Toricelli a Pascal

Teoretický dôkaz Pascalovho zákona si uvedieme neskôr.
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Archimedov zákon

Teleso ponorené do kvapaliny je nadľahčované silou, ktorá sa rovná váhe 
kvapaliny telesom vytlačenej.

Tenučké polyetylénové vrecko plné vody sa dá pod hladinou presúvať 
pomocou infinitezimálnej sily. Vznáša sa (stojí) pod hladinou, Newton teda 
hovorí, že súčet síl od okolitej kvapaliny na povrch vrecka (alebo mysleného 
objemu vody) musí byť rovný (vektorovo) váhe uvažovaného objemu 
kvapaliny. Ak objem kvapaliny nahradíme nejakým telesom, dá sa 
predpokladať, že tlakové sily na povrch od okolitej kvapaliny sa nezmenia:
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Archimedov zákon ako dôsledok hydrostatického tlaku

hydrostatický tlak

Podľa Archimeda platí:
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Dynamika ideálnej kvapaliny
Ideálna kvapalina:
• nestlačiteľná (hustota hmotnosti kvapaliny je vo všetkých bodoch rovnaká)
• neviskózna (nulové tangenciálne napätia nielen v kľude ale i pri pohybe)

Reálne kvapaliny sú málo stlačiteľné a majú nenulovú viskozitu

Nenulová viskozita znamená, že dve vrstvy kvapaliny, ktoré sa navzájom 
pohybujú na seba pôsobia tangenciálnou silou: pomalšia vrstva „sa snaží“ 
rýchlejšiu vrstvu spomaliť, naopak rýchlejšia vrstva „sa snaží“ pomalšiu vrstvu 
urýchliť.

Žltou šípkou je znázornené tangenciálne napätie ktorým vo viskóznej kvapaline pôsobí 
vrstva „1“ na vrstvu „2“, zelenou šípkou tangenciálne napätie, ktorou vrstva „2“ 
pôsobí na vrstvu „1“. Experimentálne poznatky hovoria, že veľkosť „žltého“ napätia je 
úmerná gradientu rýchlosti (𝜂 sa volá koeficient viskozity)
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Chaotická a driftová rýchlosť molekúl v objemovom elemente

V našom kurze sme sa už stretli s pojmom „vektorové pole“ a ako príklad sme 
uvádzali pole rýchlostí prúdiacej tekutiny. Ak hovoríme o rýchlosti tekutiny „v 
nejakom bode“ nemáme na mysli ideálny matematický bod a ani nie jednu 
molekulu tekutiny. Máme na mysli „malú LEGO-kocku“ kvapaliny. Teda malý 
objem (tzv. objemový element), ktorý je zanedbateľne malý voči rozmerom 
napríklad potrubia, v ktorom tekutina prúdi ale stále dosť veľký, takže obsahuje 
veľké množstvo molekúl tekutiny. Jednotlivé molekuly v objemovom elemente 
sa pohybujú chaoticky všetkými smermi, ale tento mikroskopický pohyb 
nevnímame. Nám sa pohyb elementu javí tak, ako by sa „ako celok“ pohyboval 
nejakou „rýchlosťou prúdenia“. Z mikroskopického hľadiska ide o strednú 
rýchlosť mikroskopického chaotického pohybu molekúl, tzv. driftovú rýchlosť. 
Ak tekutina neprúdi (teda makroskopicky sa nehýbe) potom stredná driftová 
rýchlosť molekúl je nulová“ molekuly sa hýbu náhodne všetkými smermi s 
rovnakou pravdepodobnosťou, čo v strednom dá nulu. Ak tekutina prúdi, teda 
napríklad ak „fúka vietor“, znamená to, že molekuly sa pravdepodobnejšie 
pohybujú v jednom smere oproti smeru opačnému, priemerná driftová rýchlosť 
je nenulová. Pre názornosť: typická náhodná chaotická rýchlosť molekúl 
vzduchu za obvyklých podmienok býva rádovo 500 m/s, kým driftová rýchlosť 
(teda rýchlosť vetra) býva rádovo 10 m/s.



Vektorové pole

V každom bode  priestoru je definovaný vektor, máme teda 
vektorovú funkciu polohy (a prípadne aj času)

Predstavme si prúdiacu vodu a rýchlosť prúdenia v každom bode
18

opakovanie
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Pole rýchlosti merajú napríklad hydrológovia

Zmerajú profil rýchlosti v rieke, tvar riečneho 
profilu (hĺbka, šírka) a potom určia prietok 
vody.
Napríklad typický prietok vody v Dunaji v 
Bratislave je 2000 m3/s = 2.106 kg/s

Hustota prúdu vody v jednotkách
kgm-2s-1 je daná vzorcom

Ak ma zaujímajú prietoky, môžem namiesto vektorového poľa rýchlosti 
uvažovať rovno vektorové pole hustoty prúdu Ԧ𝑗(Ԧ𝑟).

opakovanie



Laminárne a turbulentné prúdenie

vektorové pole rýchlostí prúdnice poľa rýchlostí

Prúdnice sú trajektórie, ktoré opisujú objemové elementy tekutiny pri svojom 
pohybe driftovou rýchlosťou. Ľavý obrázok predstavuje „snímku“ poľa rýchlostí v 
jednom časovom okamihu. Na pravom obrázku nie je zachytený jeden časový 
okamih: jednotlivé úseky prúdnice opisuje objemový element v rozličných po sebe 
nasledujúcich časoch.  Na našom obrázku sa však zdá, že prúdnice ako keby 
kopírovali smery rýchlostí rozličných objemových elementov v rovnakom čase. 
Prúdnice, ktoré má takýto „pekný tvar“ vznikajú vtedy, ak rýchlosti dvoch 
objemových elementov  na tom istom mieste v rozličných časoch nie sú od seba 
príliš odlišné a ani rýchlosti objemových elementov v tom istom čase v blízkych 
miestach nie sú príliš odlišné. Ak to tak nie je, hovoríme o turbulentnom prúdení, 
ktoré intuitívne vnímame ako prúdenie „plné lokálnych nestabilných vírov“.
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Laminárne a turbulentné prúdenie
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Prúdová trubica, rovnica kontinuity

Predstavím si myslenú plochu (𝑆1) a všetky 
prúdnice, ktoré ňou prechádzajú. Objemové 
elementy ideálnej kvapaliny, ktoré sa pohybujú po 
tých prúdniciach po nejakom čase prechádzajú 
plochou 𝑆2. Všetky tieto prúdnice vytvárajú 
objekt, ktorý sa volá prúdová trubica. 

Z konštrukcie prúdovej trubice je jasné, že žiadny objemový element z nej nevyteká 
„obvodovými stenami“, elementy, ktoré do trubice vtiekli cez plochu 𝑆1 zase vytiekli 
cez plochu 𝑆2.
Uvažujme teraz stacionárne prúdenie, teda také, keď sa vektorové pole rýchlostí 
objemových elementov nemení z časom. Na tom istom mieste v priestore je teda 
rýchlosť objemového elementu, ktorý sa na tom mieste práve nachádza, stále 
rovnaká. Prúdová trubica je potom v čase konštantná a dá sa predstaviť akoby to bol 
kus pevného potrubia, cez steny ktorého kvapalina netečie. Keďže uvažujeme 
nestlačiteľnú kvapalinu, potom celkové množstvo kvapaliny, ktoré sa v nejakom 
čase v tomto „potrubí“ nachádza, nezávisí na čase. Preto množstvo kvapaliny, ktoré 
za nejaký čas do „potrubia“ vtečie cez plochu 𝑆1 musí byť rovné množstvu kvapaliny, 
ktoré za ten istý čas vytečie cez plochu 𝑆2.
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Prúdová trubica, rovnica kontinuity
Predpokladajme, že rýchlosť všetkých objemových 
elementov na ploche 𝑆1 je rovnaká a podobne, že aj 
rýchlosť všetkých objemových elementov na ploche 
𝑆2 je rovnaká (ale vo všeobecnosti iná než na 
ploche 𝑆1).  Uvažujme ešte, že obe plochy sú kolmé 
na prúdnice, ktoré nimi prechádzajú.

Všetko to môže byť pravda aj pre dosť veľké plochy. Ak to tak nie je, môžeme 
vždy uvažovať iba prúdové trubice vymedzené veľmi malými priečnymi 
plochami. Na dostatočne malej ploche už možno považovať rýchlosti za rovnaké 
a plochu voliť kolmo na prúdnice. Pre nestlačiteľnú kvapalinu potom platí

Uvedená rovnica sa volá rovnica kontinuity, presnejšie jej špeciálny tvar za daných 
podmienok. Všeobecnejšie možno pre ľubovoľnú myslenú uzavretú plochu v 
prúdovom poli rýchlostí vyjadriť pre nestlačiteľnú kvapalinu rovnicu kontinuity v 
tvare: výtok nestlačiteľnej kvapaliny z uzavretej plochy je nulový, teda 
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Bernouliho rovnica

Uvažujme stacionárne prúdenie ideálnej 
kvapaliny v prúdovej trubici na obr. Sú tam 
znázornené dva okamihy oddelené časovým 
intervalom Δ𝑡. Za ten čas do trubice natiekla 
tmavomodro označené množstvo kvapaliny a 
vytieklo zeleno označené množstvo kvapaliny. 
Objemy tmavomodrého a zeleného množstva 
kvapaliny sú rovnaké (nestlačiteľnosť). 
Uvažujme infinitezimálne úzku trubicu, potom 
všetka modrá kvapalina má rovnakú súradnicu 
𝑦1 a rovnakú rýchlosť a analogicky to platí aj 
o zelenej kvapaline. Kvapalina uzavretá v trubici 
v intervale označenom ako 𝑎 je v rovnakom 
stave na oboch obrázkoch. Pri zvažovaní

zachovania energie treba teda kalkulovať len s energiou tmavomodrej a zelenej 
kvapaliny. Do energie zarátame kinetickú energiu a potenciálnu energiu gravitácie.
Energia tmavomodrej kvapaliny bude

energia zelenej kvapaliny bude 
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Bernouliho rovnica
Zákon zachovania energie hovorí

kde 𝛿𝐴 je práca vykonaná kvapalinou vľavo 
od tmavomodrej kvapaliny a kvapalinou 
vpravo od zelenej kvapaliny
Kvapalina vľavo od tmavomodrej tlačí silou 
𝑝1𝑆1 a vykoná kladnú prácu

Kvapalina vpravo od zelenej je tlačená silou 
𝑝2𝑆2 a vykoná teda zápornú prácu

Celková vykonaná práca „vonkajšou 
kvapalinou“ teda bude

Po dosadení do zákona zachovania energie dostaneme

pre nestlačiteľnú kvapalinu dostávame (rovnica kontinuity)
a výsledkom bude vzťah
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Bernouliho rovnica

Pre stacionárne prúdenie sme dostali Bernouliho rovnicu, ktorá hovorí, že 
pozdĺž prúdnice platí

Všimnime si, že sme vlastne získali nový vzorec do „Feynmanovej zbierky“ 
vzorcov pre energiu, a to „vyčaraním“ za vonkajšiu prácu tlakových síl. Vzorec 
hovorí, že objem nestlačiteľnej kvapaliny ΔV, vystavený tlaku 𝑝 má potenciálnu 
tlakovú energiu 𝑊𝑝 = 𝑝Δ𝑉. Bernouliho rovnica je potom vlastne zákonom 

zachovania energie a hovorí, že súčet kinetickej, gravitačnej potenciálnej a 
tlakovej potenciálnej energie objemového elementu kvapaliny pozdĺž 
prúdnice je konštantný.
Doplňme bez dôkazu, že v prípade tzv. bezvírového prúdenia ideálnej kvapaliny 
platí Bernouliho rovnica nielen pozdĺž prúdnice ale v celom objeme. Rovnica 
sa dá zovšeobecniť v istých prípadoch aj pre stlačiteľnú kvapalinu, potom v nej 
nevystupuje priamo tlak ale tzv. tlaková funkcia. Záujemcom od podrobnosti 
odporúčam napríklad Ilkovičovu učebnicu.
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Bernouliho rovnica v nehomogénnom poli

Bernouliho rovnicu

sme odvodili pre kvapalinu v homogénnom gravitačnom poli. V podstate rovnaké 
odvodenie sa dá aplikovať aj pre prípad nehomogénneho poľa ak ide o 
potenciálové pole. Pre kvapalinu v gravitačnom poli s potenciálom 𝜑 Ԧ𝑟 bude 
platiť 



V statickom prípade keď kvapalina neprúdi, ide automaticky o „bezvírové 
prúdenie“, takže v celom objeme kvapaliny platí

Z uvedenej rovnice okamžite vyplýva aj rovnica pre hydrostatický tlak 𝑝 = ℎ𝜚𝑔.

Ak rozdiely v hodnotách gravitačného potenciálu sú voči hodnotám tlaku 
zanedbateľné potom dostaneme zjednodušenú formu Pacalovho zákona

teda pri zanedbaní gravitácie je tlak v celom objeme stojacej ideálnej 
kvapaliny rovnaký.

Ak hydrostatický tlak je nezanedbateľný, potom dostaneme Pascalov zákon v 
tvare: navýšenie tlaku nad hodnotu hydrostatického tlaku je v celom objeme 
stojacej ideálnej kvapaliny rovnaké. 
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Bernouliho rovnica pre neprúdiacu kvapalinu
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Pascalov zákon, hydraulika

Tlak v nestlačiteľnej kvapaline v uzavretom priestore sa šíri do všetkých miest 
a vo všetkých smeroch rovnako
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Pascalov zákon, hydraulika
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Bernouliho rovnica
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Chybné vysvetlenie!!!
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• Čo je to vektorové pole
• Dokážte ľubovoľným spôsobom Archimedov zákon
• Vzorec pre tangenciálne napätie v prúdiacej viskóznej kvapaline
• Ako znie Pascalov zákon (obe jeho časti)
• Súvis Pascalovho zákona a hydraulických strojov
• Napíšte Bernouliho rovnicu
• Ako sa meria rýchlosť prúdiacej tekutiny využijúc Bernouliho rovnicu
• Čo je to laminárne a turbulentné prúdenie



Ako sme objavili, že svet sa skladá 
z atómov a molekúl



Intuitívne vnímanie sveta okolo nás hovorí, že svet okolo nás je „látkovej povahy“. 
Objekty okolo nás sa skladajú z rozličných látok. Účelné využívanie okolitých objektov 
ako nástrojov alebo surovín vyžadovalo zhromažďovať poznatky o štruktúre, 
vlastnostiach a premenách látok.

Poznatky tohto typu sa zhromažďovali nie celkom systematickým (dnes by sme povedali 
nevedeckým) spôsobom najmä medzi alchymistami.

Nedostatok vedeckých postupov viedol k tomu, že poznatky o rozličných 
alchymistických procedúrach boli často nereprodukovateľné, obsahovali veľa 
nepodstatného balastu a mystiky.

Vedecká metodológia sa vo všeobecnosti začala formovať okolo roku 1600, ako prvý 
pokus o systematický výklad vedeckej metodológie sa uvádza spis René Descartes: 
Discours de la méthode z roku 1637.

Premena alchýmie na chémiu bola postupná a zdĺhavá. So systematickým uplatňovaním 
vedeckých postupov sa spomína najmä meno Robert Boyle (1627–1691, objavil 
napríklad zákon izotermických dejov v plynoch 𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡). Ak sa má pomenovať 
jeden otec modernej chémie, uvádza sa Antoine-Laurent de Lavoisier. Je dobré si ho 
časovo zaradiť do obdobia francúzskej revolúcie, ktorej neskôr padol za obeť
pod gilotínou. Jeho hlavná zásluha je zavedenie presných kvantitatívnych meraní pri 
rozličných „chemických receptúrach“.

Prerod alchýmie na chémiu



Chemické receptúry

Kvantitatívne údaje o hmotnostiach a objemoch látok vstupujúcich do alebo vystupujúcich z 
chemických reakcií umožnili sformulovať významné kvalitatívne zákonitosti chemických 
reakcií.

• Zákon stálych zlučovacích pomerov (Proustov zákon), hovorí, že chemická zlúčenina 
obsahuje vždy presne rovnaký podiel prvkov látok vstupujúcich do reakcie. Toto tvrdenie 
prvýkrát vyslovil Joseph Proust, na základe niekoľkých experimentov vykonaných v 
rokoch 1798 a 1804.

• Daltonov zákon (1808) o násobných zlučovacích pomeroch potom bezprostredne viedol 
k formulovaniu atómovej hypotézy o mechanizme chemických reakcií:  Ak dva prvky 
tvoria viac ako jednu zlúčeninu, potom pomery hmotností druhého prvku, ktoré sa 
kombinujú s rovnakou hmotnosťou prvého prvku, budú pomery malých celých čísel.

• Všimnime si najmä výrazný rozdiel medzi "chemickými receptami" a „kuchárskymi 
receptami“. Ak chemický recept hovorí „vezmi 1g vodíka + 7,94 g kyslíka a horením 
dostaneš vodu“, potom nie je možné „vziať 1g vodíka + 10 g kyslíka“ a dúfať, že 
dostanem napríklad "hustejšiu vodu". Vznikne toľko „štandardnej vody“ ako predtým a  
2,06 g  kyslíka ostane nevyužitých. Oproti tomu ak kuchársky recept hovorí „vezmi 4 
vajcia a 200 g múky a urob palacinky“, môžeš omylom vziať 220 g múky a stále urobiť zo 
všetkého palacinky, ibaže budú trochu tvrdšie.



Atómová hypotéza rieši záhadu, prečo platí "Zákon stálych zlučovacích pomerov" 
(prečo chemické recepty sú tak prísne v porovnaní s kuchynskými). Ak  "chemické 
varenie", je len zlučovanie (kombinovanie) diskrétnych nedeliteľných atómov, potom je 
možné, že sa 2 atómy vodíka zlúčia s 1 atómom kyslíka, ale to nie je možné, aby sa 1 
atóm vodíka zlúčil s 2,12 atómami kyslíka. Tým sa automaticky tiež rieši aj záhada, 
prečo "zákon množných zlučovacích pomerov“. Ak všetky atómy určitého prvku sú 
identické, majú teda rovnakú hmotnosť ale atómy rozličných prvkov nemajú rovnakú 
hmotnosť, potom pre „výrobu vody“ dostaneme stále pomery (škálovanie receptúr)

a pre výrobu peroxidu v porovnaní s vodou

experiment: toto nie je celočíselný
1g vodík +  7.94 g kyslík = 8.94 g voda                                          pomer
5g vodík + 39.68 g kyslík = 44.68 g voda

Experiment: toto je celočíselný
1g vodík +  15.87 g kyslík = 16.87 g peroxid                              pomer

Všimnime si, že pomery hmotností pre jednu reakciu nie sú presne celočíselné, ale 
pomery pomerov hmotností pre dve reakcie sú presne celočíselné. Predumajte si tento 
fakt a jeho súvis s chápaním reakcií ako kombinovania diskrétnych atómov.



Atómová hypotéza bola schopná vysvetliť pozorované charakteristiky chemických 
receptúr. V období francúzskej revolúcie teda atómová hypotéza dostala konkrétne 
„vedecké“ črty. Hypotéza sama, ako „nie dosť vedecká špekulácia“ je staršieho dáta, 
spomínajú sa starí Gréci, najmä Demokritos.

Na starogrécku atómovú hypotézu sa niekedy dívame trochu s 
úškľabkom. Bertrand Russell to komentoval, že to bola len šťastná 
nepodložená hypotéza.
Myslím, že to je trochu priprísne hodnotenie. To, čo motivovalo 
starých Grékov bol „filozofický“ predpoklad že svet by mal byť 
založený na jednoduchých princípoch.  A to bolo v prinajmenej 
zdanlivom protiklade s pozorovanou rôznorodosťou okolitého sveta. 
Nápad, ako skonzistentniť tieto dva protichodné aspekty, bol v 
podstate LEGO-nápad: kombinatorický „výbuch“. Trik je v tom, že 
niekoľko málo typov základných stavebných kameňov 
(reprezentujúcich základné princípy) v dostatočnom množstve 
umožňuje bohatstvom kombinácií vytvoriť obrovské množstvo 
veľmi rôznorodých konštrukcií. To nebol ani hlúpy ani úplne lacný 
nápad.



LEGO: kombinatorický princíp



Atómová hypotéza objasnila princípy „kombinatorickej stavby“ látok z atómov, ale 
bezprostredne nezodpovedala ako konkrétne vyzerajú „registrované partnerstvá“ 
atómov v rozličných látkach, teda či je to „jeden z jedným“, „jeden s dvoma“, „dva s 
tromi“ alebo ako. Súčasne nepovedala priamo aký je pomer hmotností rozličných typov 
atómov, teda vlastne ani aká je absolútna hmotnosť jedného konkrétneho atómu.

Netrúfam si presne zrekonštruovať historickú cestu, ako sa postupne nachádzali 
odpovede na tieto otázky. Ale principiálne sa to dá odhadnúť. Určite to nie je 
jednoznačné riešenie nejakých rovníc. Viac sa to podobá na „puzzle“ o mnohých 
neznámych a skúšanie rozličných hypotéz. Treba totiž uhádnuť chemické 
stechiometrické vzorce tak, aby to bolo konzistentné s hmotnosťami v chemických 
receptoch. Napríklad recept na výrobu vody hovorí

experiment:
1g vodík +  7.94 g kyslík = 8.94 g voda 

Môžem skúsiť najjednoduchšiu hypotézu „jeden s jedným“, teda že stechiometrický
vzorec vody je HO. Hmotnosti v chemickom recepte potom  i tak neumožňujú určiť 
absolútne hmotnosti atómov vodíka a kyslíka, ale relatívny pomer hmotností atómu 
vodíka a atómu kyslíka áno. Pri predpoklade „HO“ recept zjavne hovorí

(Pre istotu pripomeňme, že dnes vieme, že toto je zle, ale starí chemici to pôvodne 
takto vyhútali.)



Experiment:
100 g železo +  28.65 g kyslík = 128.65 g oxidu (dnes nazývaného železnatý)
100 g železo + 42.98  g kyslík =  142.98 g oxidu (dnes nazývaného železitý)

Preto najjednoduchšia stechiometrická hypotéza je
oxid železnatý je FeO, oxid železitý Fe2O3. Keďže už máme hypotézu, že

potom jednoduchá trojčlenka povie, že

Postupne skúšam skladačku dopĺňať o ďalšie prvky a stále to dopadá tak, že atóm 
vodíka je najľahší. Preto neprekvapí nápad, že keďže nemôžem z receptov určiť 
absolútne hmotnosti atómov (v jednotkách kg), zvoliť si pre atómový svet inú 
nezávislú jednotku: hmotnosť jedného atómu vodíka a relatívne k tejto jednotke 
vyjadrovať všetky atómové hmotnosti.



Experiment:
10g kyslík +  7.50 g uhlík = 17.50 g oxid uhlíka, ktorý dnes voláme oxid uhoľnatý
10g kyslík +  3.75 g uhlík = 14.75 g oxid uhlíka ktorý dnes voláme oxid uhličitý

Najjednoduchšia stechiometrická interpretácia: oxid uhoľnatý CO, oxid uhličitý CO2

Odtiaľ dostaneme

Takto môžem v princípe pokračovať zahrnutím ďalších chemických receptov a tvorením 
ďalších hypotéz o stechiometrickom zložení látok. 
Zdôraznime ale, že stechiometrické hypotézy nie sú jednoznačné a môžeme sa dostať na 
scestie. Ako sme sa dostali aj tu, keď sme použili nesprávnu hypotézu pre vodu ako HO a 
dostali sme atómové hmotnosti
H ...1, O...7.94, C...5.96
Dnes už všetci vieme, že sú to nesprávne čísla, hoci chemici im spočiatku verili.
Cesta k získaniu správnych atómových hmotností bola zložitá.



Celé trápenie pri hľadaní správnych vzorcov a atómových hmotností trvalo prvým chemikom 
dosť dlho. Nebudeme to tu rekonštruovať. Hlavná chyba bola v zlom určení atómovej 
hmotnosti kyslíka.

Vlastne chyba bola v predpoklade, že jednoduché chemikálie, ktoré dnes voláme prvky, sú 
zložené z nedeliteľných atómov. Bližšia logická analýza povie, že predpoklad o absolútnej 
nedeliteľnosti je prisilný. Chemické receptúry zakazujú len nekonečnú deliteľnosť na 
infinitezimálne kúsky, deliteľnosť na malý počet čiastočiek je v poriadku. No a v tom to bolo, 
že plyny ako vodík a kyslík a ďalšie sú „zlúčeniny“, presnejšie skladajú sa z dvojatómových 
molekúl z rovnakých atómov.

Cestu k riešeniu otvorili kvantitatívne chemické receptúry pre plyny, vyjadrené nie v 
hmotnostiach reagentov ale v objemoch reagentov. Presnejšie v objemoch meraných za 
rovnakých tlakových a teplotových podmienok. A tu čakalo prekvapenie.
Kým pomery hmotností v receptoch na konkrétne chemikálie nie sú celočíselné, až pomery 
pomerov hmotností sú celočíselné, ukázalo sa, že pre objemové receptúry už pomery 
objemov plynných reagentov v jednej reakcii sú celočíselné.

Pomery hmotností neboli celočíselné, lebo hmotnosti rôznych atómov nie sú rovnaké. 
Celočíselnosť pomerov objemov ako keby hovorila, že objemy atómov sú rovnaké. Ale je i iné 
riešenie záhady: celočíselnosť pomerov dostaneme aj vtedy, ak vlastné objemy všetkých 
atómov sú zanedbateľné, objemy plynov sú väčšinou tvorené prázdnym priestorom, pričom 
objem prázdneho priestoru pripadajúci na jeden atóm plynu je pre rôzne atómy rovnaký. 



Analýza objemových receptov teda viedla k formulácii 

Avogadrov zákon (1811)

Rovnaké objemy rôznych plynov za rovnakého tlaku a teploty obsahujú rovnaký počet 
častíc (atómov alebo molekúl)

Experimentálna objemová receptúra pre „uvarenie vody“ hovorí

1 liter of vodíka + 0.5 liter kyslíka dáva 1 liter vodných pár

Podľa Avogadra výsledný počet častíc v parách vody je rovnaký ako bol počet častíc 
vodíka. Preto každá častica (molekula) vody spotrebuje jednu časticu vodíka. Ale v 
polovičnom objeme kyslíka je len polovičný počet častíc kyslíka. Každá molekula vody 
teda nemôže zožrať celú časticu kyslíka, kyslíkov je primálo. Preto musíme pridať 
hypotézu, že kyslíkové častice sú v reakcii roztrhané a každá molekula vody zožerie iba 
polovicu pôvodnej častice kyslíka. Odtiaľ hypotéza, že plyny sú dvojatómové a správna 
stechiometrická rovnica bude

2H2 +O2 = 2H2O



Správna stechiometrická rovnica pre vznik vody z vodíka a kyslíka potom už vedie k 
správnej interpretácii hmotnostného receptu a dá pre atóm kyslíka atómovú hmotnosť 16. 
Prehodnotenie všetkých receptov potom dá správne atómové hmotnosti ako ich poznáme 
z Mendelejevovej tabuľky



V Mendelejevovej tabuľke na predchádzajúcom slajde sú už použité dnešné jednotky pre 
atómové hmotnosti. Pôvodná voľba starých chemikov bola, že jednotkou atómovej 
hmotnosti bude hmotnosť atómu vodíka. Dnešná voľba je, že jednotkou atómovej 
hmotnosti je 1/12 hmotnosti atómu uhlíka, presnejšie izotopu 𝐶6

12.

V týchto jednotkách je potom atómová hmotnosť „bežného atómu vodíka“ (o chvíľu 
prezradíme, čo tým myslíme) 1.008.



Hmotnostné pomery v chemický receptúrach nie sú celočíselné, kým pomery 
hmotnostných pomerov sú presne celočíselné.

Ale bližší pohľad ukáže, že aj samotné hmotnostné pomery sú „takmer celočíselné“. 
Napríklad receptúra pre vodu
1g vodík +  7.94 g kyslík = 8.94 g voda
to je takmer
1g vodík +  8 g kyslík = 9 g voda

To vedie k tomu, že atómové hmotnosti veľa atómov v tabuľke sú „takmer celé čísla“. 
Čo by sme usúdili, keby platilo, že atómové hmotnosti sú „presne celé čísla“, hoci 
niekedy aj dosť veľké? Prirodzená interpretácia by bola taká, že atómy sú tiež zložené 
objekty, skladajúce sa z LEGO-tehličiek rovnakej hmotnosti



Až v 20.storočí sa ukázalo, že atómy sú naozaj zložené z elementárnejších častíc, z protónov, 
neutrónov a elektrónov. Protóny a neutróny sú v atómovom jadre, elektróny tvoria 
„elektrónový obal“. Pôvodná predstava o elektrónoch bola, že elektróny „obiehajú okolo 
jadra“, čosi ako malá slnečná sústava. Táto predstava sa ukázala byť chybná, správnu teóriu 
stavby atómu objasnila až kvantová mechanika, presne sformulovaná v dvadsiatych rokoch 
20.storočia. Ukázala, že pre častice mikrosveta neplatí mechanika založená na Newtonových 
zákonoch ale konceptuálne úplne nový typ zákonitostí, ktoré na tejto úrovni nemôžeme ani 
len priblížiť.

Pojmy hmotnosti častice a elektrického náboja však ostávajú zachované aj v kvantovej 
mechanike a to je momentálne jediné, čo potrebujeme. Takže zhrňme (ako fakty bez ukázania, 
ako sme sa k nim dopracovali) potrebné hodnoty pre protóny, elektróny a neutróny. 

Elektrón má záporný elektrický náboj o veľkosti -𝟏. 𝟔𝟎𝟐 × 𝟏𝟎−𝟏𝟗 C (náboj elektrónu má fyzik 
vedieť naspamäť). Elektrón voči protónu  má  zanedbateľnú hmotnosť (približne 2000-krát 
menšiu). Protón má kladný náboj v absolútnej hodnote rovnaký ako náboj elektrónu. Neutrón 
má nulový elektrický náboj, má hmotnosť málo väčšiu ako protón  Atómy sú elektricky 
neutrálne, takže musia mať rovnaký počet elektrónov ako protónov. Počet protónov v jadre 
atómu sa volá atómové číslo atómu

V Mendelejevovej tabuľke:

atómové číslo
atómová hmotnosť



Patrí sa, aby fyzik vedel naspamäť atómové a  atómové hmotnosti (niekedy nazývané aj 
hmotnostné čísla) s presnosťou na celé číslo aspoň vodíka, hélia, uhlíka, dusíka a kyslíka

Najjednoduchší atóm je atóm vodíka, ktorý sa skladá z jedného protónu a jedného 
elektrónu. Okrem toho existuje v prírode aj ťažký vodík (deutérium) ktorý má rovnaké 
atómové číslo (je to teda vodík) ale v jadre má okrem protónu aj neutrón. Hmotnostné číslo 
deutéria je približne 2. 
Atóm s rovnakým chemickým menom (chemické vlastnosti atómu sú dané počtom 
elektrónov, teda atómovým číslom) ale rôznym počtom neutrónov sa volajú izotopy (toho 
istého prvku).
Hlavný izotop uhlíka má 6 protónov a 6 neutrónov, teda atómové číslo 6 a atómovú 
hmotnosť (z definície !!!) presne 12. Fakt, že pri značke uhlíka je v tabuľke uvedená atómová 
hmotnosť 12.011 odráža skutočnosť, že v prírode sa vyskytujú aj izotopy uhlíka s väčším 
počtom neutrónov a necelé číslo odráža relatívne zastúpenie rôznych izotopov v prírode. 
Obyčajný vodík s jedným protónom a žiadnym neutrónom má dosť presne atómovú 
hmotnosť 1, hodnota 1.008 v tabuľke odráža relatívne prírodné zastúpenie deutéria, ktoré 
má v jadre jeden protón a jeden neutrón.



Prečo atómové hmotnosti nie sú celé čísla

• tabuľkové hmotnostné čísla odrážajú priemerné zastúpenie izotopov v prírode
• neutrón a protón nemajú rovnakú hmotnosť
• väzbová energia jadra sa prejaví úbytkom hmotnosti voči sume hmotností protónov a 

neutrónov
• hmotnosť elektrónu nie je celkom zanedbateľná



Mól
Chemické receptúry sme kvantitatívne vyjadrovali v jednotkách hmotnosti alebo 
objemu. Najprirodzenejšie by bolo vyjadrovať ich v celých číslach, v počtoch atómov 
alebo molekúl, tak ako sa to píše v stechiometrických vzorcoch, napríklad

2H2 +O2 = 2H2O

sotva však môžeme laborantovi povedať zober 2 molekuly vodíka a 1 molekulu kyslíka
a urob z nich vodu.

V praxi musíme experimentálne pracovať s makroskopickými množstvami molekúl, teda 
s veľmi veľkými počtami molekúl. Sme zvyknutí, že veľké čísla majú osobitné mená ako 
milión, miliarda, bilión. To sú stále primalé čísla na narábanie s počtami molekúl, 
ktorých prichádza do úvahy rádovo 1023.
Možná cesta by bola nazvať číslo 1023 ako “chem” a recept na vodu by znel „zober dva 
chemy molekúl vodíka a jeden chem molekúl kyslíka a urob z nich vodu. Problém je v 
tom, že „chem“ je pekná číslovka s ostrou hodnotou ale pre laboranta nepríjemná, lebo 
sotva môže rátať molekuly štýlom jedna, dve, tri, štyri,...,chem.

Ani predavač v železiarstve neráta klince po jednom, keď zákazník povie potrebujem 
2500 klincov. Naráta 100 klincov, odváži ich a potom odváži 25-krát väčšiu hmotnosť. Pri 
často predávanom počte klincov má už pripravenú tabuľku prepočtu hmotnosti na 
počet klincov. Takže aj chemici majú pripravenú tabuľku na taký prepopčet. Kľúčom je 
slovo mól.



Mól je jednotka látkového množstva, de facto je to číslovka, ktorá ešte donedávna bola 
definovaná takto:

1 mol častíc je taký počet častíc koľko je atómov v 12 g uhlíka .

Často potrebujeme vyjadriť hodnotu „číslovky“ mol aj numericky, zaviedol sa preto pojem
Avogadrova konštanta (Avogadrovo číslo) ako počet častíc v jednom móle. Fyzici sa dosť 
natrápili, kým experimentálne našli hodnotu Avogadrovho čísla

6.022140857(74)×1023 mol−1

Dve cifry v zátvorke je obvyklý spôsob ako uvádzať neurčitosť merania (jednu štandardnú 
odchýlku) na dve platné cifry na posledných uvedených desatinných miestach.

Všimnite si „fyzikálny rozmer“ mol−1. Je užitočné používať takýto rozmer, aby sme nestratili 
zo zreteľa, že „bezrozmerný výsledok“ nie je obyčajné číslo ale číslo vyjadrené v 
„jednotkách“ mol. Zdrojom chyby môže byť často fakt, že niekto používa väčšiu jednotku 
kmol (kilomol) a keď pomiešam v jednom vzorci mol a kmol, dostanem rádovo zlú 
hodnotu na konci. 

Dobrý zdroj informácií o tom, ako sa Avogadrova konštanta prakticky merala je Perrinova
nobelovská prednáška
http://www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html

Mól

http://www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html


Nová definícia mólu

V roku 2019 zažila sústava jednotiek SI dramatickú zmenu, už sme o nej hovorili. Po novom 
je teda mol definovaný inak. Definitoricky je určená hodnota Avogadrovho čísla. Uveďme 
oficiálnu definíciu v  angličtine

Avogadrovo číslo už teda nemôžeme merať, má definovanú hodnotu 
𝑁𝐴 =6.02214076×1023 mol−1

Jeden mol je potom definovaný ako také množstvo látky, ktoré obsahuje práve 𝑁𝐴 častíc.

Experimentálni fyzici už teda nemôžu merať Avogadrovo číslo, podobne, ako nemôžu 
merať rýchlosť svetla vo vákuu, lebo aj tá je definovaná. Čo môžu merať (stále presnejšie a 
presnejšie) aká je hmotnosť jedného mólu uhlíka 



• Aký je rozdiel medzi receptami pre pečenie a chemickými receptami, pokiaľ 
ide o nedodržanie presných hmotnostných pomerov

• Čo hovorí zákon o stálych zlučovacích pomeroch
• Čo hovorí zákon o množných zlučovacích pomeroch
• Avogadrov zákon
• Čo platí o pomeroch hmotnostných pomerov v chemických receptoch
• Prečo atómové hmotnosti nie sú celé čísla
• Čo je to mól
• Čo je to Avogadrovo číslo a akú má veľkosť
• Aký je typický rozmer jednej molekluly
• Uveďte atómové hmotnosti aspoň piatich prvkov
• Čo to je atómové číslo
• Uveďte atómové čísla aspoň piatich prvkov



Ako sme objavili, že svet sa skladá 
z atómov a molekúl



Intuitívne vnímanie sveta okolo nás hovorí, že svet okolo nás je „látkovej povahy“. 
Objekty okolo nás sa skladajú z rozličných látok. Účelné využívanie okolitých objektov 
ako nástrojov alebo surovín vyžadovalo zhromažďovať poznatky o štruktúre, 
vlastnostiach a premenách látok.

Poznatky tohto typu sa zhromažďovali nie celkom systematickým (dnes by sme povedali 
nevedeckým) spôsobom najmä medzi alchymistami.

Nedostatok vedeckých postupov viedol k tomu, že poznatky o rozličných 
alchymistických procedúrach boli často nereprodukovateľné, obsahovali veľa 
nepodstatného balastu a mystiky.

Vedecká metodológia sa vo všeobecnosti začala formovať okolo roku 1600, ako prvý 
pokus o systematický výklad vedeckej metodológie sa uvádza spis René Descartes: 
Discours de la méthode z roku 1637.

Premena alchýmie na chémiu bola postupná a zdĺhavá. So systematickým uplatňovaním 
vedeckých postupov sa spomína najmä meno Robert Boyle (1627–1691, objavil 
napríklad zákon izotermických dejov v plynoch 𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡). Ak sa má pomenovať 
jeden otec modernej chémie, uvádza sa Antoine-Laurent de Lavoisier. Je dobré si ho 
časovo zaradiť do obdobia francúzskej revolúcie, ktorej neskôr padol za obeť
pod gilotínou. Jeho hlavná zásluha je zavedenie presných kvantitatívnych meraní pri 
rozličných „chemických receptúrach“.

Prerod alchýmie na chémiu



Chemické receptúry

Kvantitatívne údaje o hmotnostiach a objemoch látok vstupujúcich do alebo vystupujúcich z 
chemických reakcií umožnili sformulovať významné kvalitatívne zákonitosti chemických 
reakcií.

• Zákon stálych zlučovacích pomerov (Proustov zákon), hovorí, že chemická zlúčenina 
obsahuje vždy presne rovnaký podiel prvkov látok vstupujúcich do reakcie. Toto tvrdenie 
prvýkrát vyslovil Joseph Proust, na základe niekoľkých experimentov vykonaných v 
rokoch 1798 a 1804.

• Daltonov zákon (1808) o násobných zlučovacích pomeroch potom bezprostredne viedol 
k formulovaniu atómovej hypotézy o mechanizme chemických reakcií:  Ak dva prvky 
tvoria viac ako jednu zlúčeninu, potom pomery hmotností druhého prvku, ktoré sa 
kombinujú s rovnakou hmotnosťou prvého prvku, budú pomery malých celých čísel.

• Všimnime si najmä výrazný rozdiel medzi "chemickými receptami" a „kuchárskymi 
receptami“. Ak chemický recept hovorí „vezmi 1g vodíka + 7,94 g kyslíka a horením 
dostaneš vodu“, potom nie je možné „vziať 1g vodíka + 10 g kyslíka“ a dúfať, že 
dostanem napríklad "hustejšiu vodu". Vznikne toľko „štandardnej vody“ ako predtým a  
2,06 g  kyslíka ostane nevyužitých. Oproti tomu ak kuchársky recept hovorí „vezmi 4 
vajcia a 200 g múky a urob palacinky“, môžeš omylom vziať 220 g múky a stále urobiť zo 
všetkého palacinky, ibaže budú trochu tvrdšie.



Atómová hypotéza rieši záhadu, prečo platí "Zákon stálych zlučovacích pomerov" 
(prečo chemické recepty sú tak prísne v porovnaní s kuchynskými). Ak  "chemické 
varenie", je len zlučovanie (kombinovanie) diskrétnych nedeliteľných atómov, potom je 
možné, že sa 2 atómy vodíka zlúčia s 1 atómom kyslíka, ale to nie je možné, aby sa 1 
atóm vodíka zlúčil s 2,12 atómami kyslíka. Tým sa automaticky tiež rieši aj záhada, 
prečo "zákon množných zlučovacích pomerov“. Ak všetky atómy určitého prvku sú 
identické, majú teda rovnakú hmotnosť ale atómy rozličných prvkov nemajú rovnakú 
hmotnosť, potom pre „výrobu vody“ dostaneme stále pomery (škálovanie receptúr)

a pre výrobu peroxidu v porovnaní s vodou

experiment: toto nie je celočíselný
1g vodík +  7.94 g kyslík = 8.94 g voda                                          pomer
5g vodík + 39.68 g kyslík = 44.68 g voda

Experiment: toto je celočíselný
1g vodík +  15.87 g kyslík = 16.87 g peroxid                              pomer

Všimnime si, že pomery hmotností pre jednu reakciu nie sú presne celočíselné, ale 
pomery pomerov hmotností pre dve reakcie sú presne celočíselné. Predumajte si tento 
fakt a jeho súvis s chápaním reakcií ako kombinovania diskrétnych atómov.



Atómová hypotéza bola schopná vysvetliť pozorované charakteristiky chemických 
receptúr. V období francúzskej revolúcie teda atómová hypotéza dostala konkrétne 
„vedecké“ črty. Hypotéza sama, ako „nie dosť vedecká špekulácia“ je staršieho dáta, 
spomínajú sa starí Gréci, najmä Demokritos.

Na starogrécku atómovú hypotézu sa niekedy dívame trochu s 
úškľabkom. Bertrand Russell to komentoval, že to bola len šťastná 
nepodložená hypotéza.
Myslím, že to je trochu priprísne hodnotenie. To, čo motivovalo 
starých Grékov bol „filozofický“ predpoklad že svet by mal byť 
založený na jednoduchých princípoch.  A to bolo v prinajmenej 
zdanlivom protiklade s pozorovanou rôznorodosťou okolitého sveta. 
Nápad, ako skonzistentniť tieto dva protichodné aspekty, bol v 
podstate LEGO-nápad: kombinatorický „výbuch“. Trik je v tom, že 
niekoľko málo typov základných stavebných kameňov 
(reprezentujúcich základné princípy) v dostatočnom množstve 
umožňuje bohatstvom kombinácií vytvoriť obrovské množstvo 
veľmi rôznorodých konštrukcií. To nebol ani hlúpy ani úplne lacný 
nápad.



LEGO: kombinatorický princíp



Atómová hypotéza objasnila princípy „kombinatorickej stavby“ látok z atómov, ale 
bezprostredne nezodpovedala ako konkrétne vyzerajú „registrované partnerstvá“ 
atómov v rozličných látkach, teda či je to „jeden z jedným“, „jeden s dvoma“, „dva s 
tromi“ alebo ako. Súčasne nepovedala priamo aký je pomer hmotností rozličných typov 
atómov, teda vlastne ani aká je absolútna hmotnosť jedného konkrétneho atómu.

Netrúfam si presne zrekonštruovať historickú cestu, ako sa postupne nachádzali 
odpovede na tieto otázky. Ale principiálne sa to dá odhadnúť. Určite to nie je 
jednoznačné riešenie nejakých rovníc. Viac sa to podobá na „puzzle“ o mnohých 
neznámych a skúšanie rozličných hypotéz. Treba totiž uhádnuť chemické 
stechiometrické vzorce tak, aby to bolo konzistentné s hmotnosťami v chemických 
receptoch. Napríklad recept na výrobu vody hovorí

experiment:
1g vodík +  7.94 g kyslík = 8.94 g voda 

Môžem skúsiť najjednoduchšiu hypotézu „jeden s jedným“, teda že stechiometrický
vzorec vody je HO. Hmotnosti v chemickom recepte potom  i tak neumožňujú určiť 
absolútne hmotnosti atómov vodíka a kyslíka, ale relatívny pomer hmotností atómu 
vodíka a atómu kyslíka áno. Pri predpoklade „HO“ recept zjavne hovorí

(Pre istotu pripomeňme, že dnes vieme, že toto je zle, ale starí chemici to pôvodne 
takto vyhútali.)



Experiment:
100 g železo +  28.65 g kyslík = 128.65 g oxidu (dnes nazývaného železnatý)
100 g železo + 42.98  g kyslík =  142.98 g oxidu (dnes nazývaného železitý)

Preto najjednoduchšia stechiometrická hypotéza je
oxid železnatý je FeO, oxid železitý Fe2O3. Keďže už máme hypotézu, že

potom jednoduchá trojčlenka povie, že

Postupne skúšam skladačku dopĺňať o ďalšie prvky a stále to dopadá tak, že atóm 
vodíka je najľahší. Preto neprekvapí nápad, že keďže nemôžem z receptov určiť 
absolútne hmotnosti atómov (v jednotkách kg), zvoliť si pre atómový svet inú 
nezávislú jednotku: hmotnosť jedného atómu vodíka a relatívne k tejto jednotke 
vyjadrovať všetky atómové hmotnosti.



Experiment:
10g kyslík +  7.50 g uhlík = 17.50 g oxid uhlíka, ktorý dnes voláme oxid uhoľnatý
10g kyslík +  3.75 g uhlík = 14.75 g oxid uhlíka ktorý dnes voláme oxid uhličitý

Najjednoduchšia stechiometrická interpretácia: oxid uhoľnatý CO, oxid uhličitý CO2

Odtiaľ dostaneme

Takto môžem v princípe pokračovať zahrnutím ďalších chemických receptov a tvorením 
ďalších hypotéz o stechiometrickom zložení látok. 
Zdôraznime ale, že stechiometrické hypotézy nie sú jednoznačné a môžeme sa dostať na 
scestie. Ako sme sa dostali aj tu, keď sme použili nesprávnu hypotézu pre vodu ako HO a 
dostali sme atómové hmotnosti
H ...1, O...7.94, C...5.96
Dnes už všetci vieme, že sú to nesprávne čísla, hoci chemici im spočiatku verili.
Cesta k získaniu správnych atómových hmotností bola zložitá.



Celé trápenie pri hľadaní správnych vzorcov a atómových hmotností trvalo prvým chemikom 
dosť dlho. Nebudeme to tu rekonštruovať. Hlavná chyba bola v zlom určení atómovej 
hmotnosti kyslíka.

Vlastne chyba bola v predpoklade, že jednoduché chemikálie, ktoré dnes voláme prvky, sú 
zložené z nedeliteľných atómov. Bližšia logická analýza povie, že predpoklad o absolútnej 
nedeliteľnosti je prisilný. Chemické receptúry zakazujú len nekonečnú deliteľnosť na 
infinitezimálne kúsky, deliteľnosť na malý počet čiastočiek je v poriadku. No a v tom to bolo, 
že plyny ako vodík a kyslík a ďalšie sú „zlúčeniny“, presnejšie skladajú sa z dvojatómových 
molekúl z rovnakých atómov.

Cestu k riešeniu otvorili kvantitatívne chemické receptúry pre plyny, vyjadrené nie v 
hmotnostiach reagentov ale v objemoch reagentov. Presnejšie v objemoch meraných za 
rovnakých tlakových a teplotových podmienok. A tu čakalo prekvapenie.
Kým pomery hmotností v receptoch na konkrétne chemikálie nie sú celočíselné, až pomery 
pomerov hmotností sú celočíselné, ukázalo sa, že pre objemové receptúry už pomery 
objemov plynných reagentov v jednej reakcii sú celočíselné.

Pomery hmotností neboli celočíselné, lebo hmotnosti rôznych atómov nie sú rovnaké. 
Celočíselnosť pomerov objemov ako keby hovorila, že objemy atómov sú rovnaké. Ale je i iné 
riešenie záhady: celočíselnosť pomerov dostaneme aj vtedy, ak vlastné objemy všetkých 
atómov sú zanedbateľné, objemy plynov sú väčšinou tvorené prázdnym priestorom, pričom 
objem prázdneho priestoru pripadajúci na jeden atóm plynu je pre rôzne atómy rovnaký. 



Analýza objemových receptov teda viedla k formulácii 

Avogadrov zákon (1811)

Rovnaké objemy rôznych plynov za rovnakého tlaku a teploty obsahujú rovnaký počet 
častíc (atómov alebo molekúl)

Experimentálna objemová receptúra pre „uvarenie vody“ hovorí

1 liter of vodíka + 0.5 liter kyslíka dáva 1 liter vodných pár

Podľa Avogadra výsledný počet častíc v parách vody je rovnaký ako bol počet častíc 
vodíka. Preto každá častica (molekula) vody spotrebuje jednu časticu vodíka. Ale v 
polovičnom objeme kyslíka je len polovičný počet častíc kyslíka. Každá molekula vody 
teda nemôže zožrať celú časticu kyslíka, kyslíkov je primálo. Preto musíme pridať 
hypotézu, že kyslíkové častice sú v reakcii roztrhané a každá molekula vody zožerie iba 
polovicu pôvodnej častice kyslíka. Odtiaľ hypotéza, že plyny sú dvojatómové a správna 
stechiometrická rovnica bude

2H2 +O2 = 2H2O



Správna stechiometrická rovnica pre vznik vody z vodíka a kyslíka potom už vedie k 
správnej interpretácii hmotnostného receptu a dá pre atóm kyslíka atómovú hmotnosť 16. 
Prehodnotenie všetkých receptov potom dá správne atómové hmotnosti ako ich poznáme 
z Mendelejevovej tabuľky



V Mendelejevovej tabuľke na predchádzajúcom slajde sú už použité dnešné jednotky pre 
atómové hmotnosti. Pôvodná voľba starých chemikov bola, že jednotkou atómovej 
hmotnosti bude hmotnosť atómu vodíka. Dnešná voľba je, že jednotkou atómovej 
hmotnosti je 1/12 hmotnosti atómu uhlíka, presnejšie izotopu 𝐶6

12.

V týchto jednotkách je potom atómová hmotnosť „bežného atómu vodíka“ (o chvíľu 
prezradíme, čo tým myslíme) 1.008.



Hmotnostné pomery v chemický receptúrach nie sú celočíselné, kým pomery 
hmotnostných pomerov sú presne celočíselné.

Ale bližší pohľad ukáže, že aj samotné hmotnostné pomery sú „takmer celočíselné“. 
Napríklad receptúra pre vodu
1g vodík +  7.94 g kyslík = 8.94 g voda
to je takmer
1g vodík +  8 g kyslík = 9 g voda

To vedie k tomu, že atómové hmotnosti veľa atómov v tabuľke sú „takmer celé čísla“. 
Čo by sme usúdili, keby platilo, že atómové hmotnosti sú „presne celé čísla“, hoci 
niekedy aj dosť veľké? Prirodzená interpretácia by bola taká, že atómy sú tiež zložené 
objekty, skladajúce sa z LEGO-tehličiek rovnakej hmotnosti



Až v 20.storočí sa ukázalo, že atómy sú naozaj zložené z elementárnejších častíc, z protónov, 
neutrónov a elektrónov. Protóny a neutróny sú v atómovom jadre, elektróny tvoria 
„elektrónový obal“. Pôvodná predstava o elektrónoch bola, že elektróny „obiehajú okolo 
jadra“, čosi ako malá slnečná sústava. Táto predstava sa ukázala byť chybná, správnu teóriu 
stavby atómu objasnila až kvantová mechanika, presne sformulovaná v dvadsiatych rokoch 
20.storočia. Ukázala, že pre častice mikrosveta neplatí mechanika založená na Newtonových 
zákonoch ale konceptuálne úplne nový typ zákonitostí, ktoré na tejto úrovni nemôžeme ani 
len priblížiť.

Pojmy hmotnosti častice a elektrického náboja však ostávajú zachované aj v kvantovej 
mechanike a to je momentálne jediné, čo potrebujeme. Takže zhrňme (ako fakty bez ukázania, 
ako sme sa k nim dopracovali) potrebné hodnoty pre protóny, elektróny a neutróny. 

Elektrón má záporný elektrický náboj o veľkosti -𝟏. 𝟔𝟎𝟐 × 𝟏𝟎−𝟏𝟗 C (náboj elektrónu má fyzik 
vedieť naspamäť). Elektrón voči protónu  má  zanedbateľnú hmotnosť (približne 2000-krát 
menšiu). Protón má kladný náboj v absolútnej hodnote rovnaký ako náboj elektrónu. Neutrón 
má nulový elektrický náboj, má hmotnosť málo väčšiu ako protón  Atómy sú elektricky 
neutrálne, takže musia mať rovnaký počet elektrónov ako protónov. Počet protónov v jadre 
atómu sa volá atómové číslo atómu

V Mendelejevovej tabuľke:

atómové číslo
atómová hmotnosť



Patrí sa, aby fyzik vedel naspamäť atómové a  atómové hmotnosti (niekedy nazývané aj 
hmotnostné čísla) s presnosťou na celé číslo aspoň vodíka, hélia, uhlíka, dusíka a kyslíka

Najjednoduchší atóm je atóm vodíka, ktorý sa skladá z jedného protónu a jedného 
elektrónu. Okrem toho existuje v prírode aj ťažký vodík (deutérium) ktorý má rovnaké 
atómové číslo (je to teda vodík) ale v jadre má okrem protónu aj neutrón. Hmotnostné číslo 
deutéria je približne 2. 
Atóm s rovnakým chemickým menom (chemické vlastnosti atómu sú dané počtom 
elektrónov, teda atómovým číslom) ale rôznym počtom neutrónov sa volajú izotopy (toho 
istého prvku).
Hlavný izotop uhlíka má 6 protónov a 6 neutrónov, teda atómové číslo 6 a atómovú 
hmotnosť (z definície !!!) presne 12. Fakt, že pri značke uhlíka je v tabuľke uvedená atómová 
hmotnosť 12.011 odráža skutočnosť, že v prírode sa vyskytujú aj izotopy uhlíka s väčším 
počtom neutrónov a necelé číslo odráža relatívne zastúpenie rôznych izotopov v prírode. 
Obyčajný vodík s jedným protónom a žiadnym neutrónom má dosť presne atómovú 
hmotnosť 1, hodnota 1.008 v tabuľke odráža relatívne prírodné zastúpenie deutéria, ktoré 
má v jadre jeden protón a jeden neutrón.



Prečo atómové hmotnosti nie sú celé čísla

• tabuľkové hmotnostné čísla odrážajú priemerné zastúpenie izotopov v prírode
• neutrón a protón nemajú rovnakú hmotnosť
• väzbová energia jadra sa prejaví úbytkom hmotnosti voči sume hmotností protónov a 

neutrónov
• hmotnosť elektrónu nie je celkom zanedbateľná



Mól
Chemické receptúry sme kvantitatívne vyjadrovali v jednotkách hmotnosti alebo 
objemu. Najprirodzenejšie by bolo vyjadrovať ich v celých číslach, v počtoch atómov 
alebo molekúl, tak ako sa to píše v stechiometrických vzorcoch, napríklad

2H2 +O2 = 2H2O

sotva však môžeme laborantovi povedať zober 2 molekuly vodíka a 1 molekulu kyslíka
a urob z nich vodu.

V praxi musíme experimentálne pracovať s makroskopickými množstvami molekúl, teda 
s veľmi veľkými počtami molekúl. Sme zvyknutí, že veľké čísla majú osobitné mená ako 
milión, miliarda, bilión. To sú stále primalé čísla na narábanie s počtami molekúl, 
ktorých prichádza do úvahy rádovo 1023.
Možná cesta by bola nazvať číslo 1023 ako “chem” a recept na vodu by znel „zober dva 
chemy molekúl vodíka a jeden chem molekúl kyslíka a urob z nich vodu. Problém je v 
tom, že „chem“ je pekná číslovka s ostrou hodnotou ale pre laboranta nepríjemná, lebo 
sotva môže rátať molekuly štýlom jedna, dve, tri, štyri,...,chem.

Ani predavač v železiarstve neráta klince po jednom, keď zákazník povie potrebujem 
2500 klincov. Naráta 100 klincov, odváži ich a potom odváži 25-krát väčšiu hmotnosť. Pri 
často predávanom počte klincov má už pripravenú tabuľku prepočtu hmotnosti na 
počet klincov. Takže aj chemici majú pripravenú tabuľku na taký prepopčet. Kľúčom je 
slovo mól.



Mól je jednotka látkového množstva, de facto je to číslovka, ktorá ešte donedávna bola 
definovaná takto:

1 mol častíc je taký počet častíc koľko je atómov v 12 g uhlíka .

Často potrebujeme vyjadriť hodnotu „číslovky“ mol aj numericky, zaviedol sa preto pojem
Avogadrova konštanta (Avogadrovo číslo) ako počet častíc v jednom móle. Fyzici sa dosť 
natrápili, kým experimentálne našli hodnotu Avogadrovho čísla

6.022140857(74)×1023 mol−1

Dve cifry v zátvorke je obvyklý spôsob ako uvádzať neurčitosť merania (jednu štandardnú 
odchýlku) na dve platné cifry na posledných uvedených desatinných miestach.

Všimnite si „fyzikálny rozmer“ mol−1. Je užitočné používať takýto rozmer, aby sme nestratili 
zo zreteľa, že „bezrozmerný výsledok“ nie je obyčajné číslo ale číslo vyjadrené v 
„jednotkách“ mol. Zdrojom chyby môže byť často fakt, že niekto používa väčšiu jednotku 
kmol (kilomol) a keď pomiešam v jednom vzorci mol a kmol, dostanem rádovo zlú 
hodnotu na konci. 

Dobrý zdroj informácií o tom, ako sa Avogadrova konštanta prakticky merala je Perrinova
nobelovská prednáška
http://www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html

Mól

http://www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html


Nová definícia mólu

V roku 2019 zažila sústava jednotiek SI dramatickú zmenu, už sme o nej hovorili. Po novom 
je teda mol definovaný inak. Definitoricky je určená hodnota Avogadrovho čísla. Uveďme 
oficiálnu definíciu v  angličtine

Avogadrovo číslo už teda nemôžeme merať, má definovanú hodnotu 
𝑁𝐴 =6.02214076×1023 mol−1

Jeden mol je potom definovaný ako také množstvo látky, ktoré obsahuje práve 𝑁𝐴 častíc.

Experimentálni fyzici už teda nemôžu merať Avogadrovo číslo, podobne, ako nemôžu 
merať rýchlosť svetla vo vákuu, lebo aj tá je definovaná. Čo môžu merať (stále presnejšie a 
presnejšie) aká je hmotnosť jedného mólu uhlíka 



• Aký je rozdiel medzi receptami pre pečenie a chemickými receptami, pokiaľ 
ide o nedodržanie presných hmotnostných pomerov

• Čo hovorí zákon o stálych zlučovacích pomeroch
• Čo hovorí zákon o množných zlučovacích pomeroch
• Avogadrov zákon
• Čo platí o pomeroch hmotnostných pomerov v chemických receptoch
• Prečo atómové hmotnosti nie sú celé čísla
• Čo je to mól
• Čo je to Avogadrovo číslo a akú má veľkosť
• Aký je typický rozmer jednej molekluly
• Uveďte atómové hmotnosti aspoň piatich prvkov
• Čo to je atómové číslo
• Uveďte atómové čísla aspoň piatich prvkov



Elementy teórie pravdepodobnosti



Náhodná udalosť

V bežnom živote ale aj vo fyzike používame slovo „udalosť“ na označenie „čohosi 

čo sa stalo v dobre definovanom čase a spravidla aj mieste“, o čom noviny môžu 

doniesť správu že „včera o 15:30 sa na križovatke Tomášikova Ružinovská zrazili 

dve autá“. Takéto „správy o udalostiach“ sú zaznamenávané aj vo fyzikálnych 

databázach ako „podľa včerajších pozorovaní konštatujeme, že v galaxii XY pred 

5 milión rokmi (určené podľa vzdialenosti)  vybuchla supernova. Alebo: na 

urýchľovači LHC sa bola v rune 243897 zaznamenaná produkcia 4-leptónového 

eventu  (anglické slovo event znamená udalosť) svedčiaca o produkcii Higgsovej

častice.        

Obe spomínané fyzikálne udalosti sú (alebo sa nám prakticky javia) ako 

„náhodné“, pretože sú „naozaj náhodné“ (Pánboh asi naozaj hrá kocky, hoci sa to 

Einsteinovi nezdá uveriteľné), alebo ich nemáme dostatočne pod kontrolou.

V každom prípade pre prácu s takými udalosťami prakticky potrebujeme 

matematický aparát teórie pravdepodobnosti.



Náhodná udalosť a náhodná veličina

Predovšetkým každú náhodnú fyzikálnu udalosť potrebujeme jednoznačne 

identifikovať, pomenovať, aby sme ju vedeli rozlíšiť od iných podobných udalostí.

Okrem toho u každej fyzikálnej náhodnej udalosti spravidla vieme zistiť (odmerať) 

viacero hodnôt rôznych fyzikálnych veličín, ktoré ju charakterizujú. Hodnoty tých 

veličín nemusia byť jednoznačné, teda môže existovať viac rôznych náhodných 

udalostí s rovnakou hodnotou nejakej fyzikálnej veličiny.

V dôsledku náhodnosti udalosti majú hodnoty s ňou spojených fyzikálnych veličín 

tiež náhodný charakter, hovoríme preto o náhodných veličinách.

V prípade, že hodnota nejakej náhodnej veličiny je jednoznačná, teda že 

jednoznačne identifikuje náhodnú udalosť, môžeme hodnotu tej veličiny použiť na 

pomenovanie (identifikáciu) náhodnej udalosti. Vo fyzike to aj spravidla tak 

robíme a preto v mnohých textoch sa nerozlišuje medzi pojmom „náhodná udalosť“ 

a „náhodná veličina“.



Príklad náhodných udalostí

Je dobré predstavovať si abstraktne popísané veci aj na konkrétnych príkladoch, tu 

sú dva typické:

Náhodná udalosť:

hod hracou kockou

Náhodná udalosť:

hod šípkou



Diskrétne a spojité udalosti a veličiny

Dva uvedené príklady sa v niečom fundamenálne líšia: 

• pre hod kockou existuje len 6 spôsbov ako môže hod dopadnúť, teda existuje len 6 

rozličných náhodných udalostí. Nepokúšame sa o úplnú rigoróznosť textu, takže 

naraz sa nám tu objavilo čosi také ako pre opakované hádzanie kockou „dve 

rovnaké udalosti, ktoré sa stali v rozličných časoch“ (padla 2-x 6-ka v rozličných 

časoch). Kľúčový nie je ani tak konečný počet rôznych udalostí ako fakt ich 

diskrétnosti, čo prakticky znamená pomenovateľnosť (identifikovateľnosť) 

pomocou celých čísel.

• pre hod šípkou na terč, ak má šípka nekonečne ostrý hrot, existuje „spojite 

nekonečne veľa výsledkov“ teda „spojite nekonečne veľa náhodných udalostí“.

• To neznamená, že udalosti sa nedajú jednoznačne pomenovať, ibaže sa to nedá 

pomocou diskrétnej množiny celých čísel. Musíme použiť nejakú „spojitú“ 

množinu. Napríklad terčom v hostinci v jednorozmernom svete je úsečka, 

udalosťou je ideálny geometrický bod dopadu na úsečke a menom udalosti 

napríklad súradnica bodu dopadu na úsečke (určená ako vzdialenosť bodu dopadu 

od ľavého krajného bodu terča).



Diskrétne udalosti sú pomenovateľné ale aj vymenovateľné, teda môžem 

pripraviť, aspoň v princípe, úplný zoznam možných udalostí, pričom zoznam 

môže byť aj nekonečný.

Spojité udalosti sú pomenovateľné ale nie vymenovateľné.

S tým súvisí ďalšia vec: spojité udalosti sú neopakovateľné. Každý hod 

nekonečne ostrou šípkou vedie na udalosť pomenovanú konkrétnym reálnym 

číslom, ale  žiadne dva hody nevedú na to isté reálne číslo (s teoretickou 

presnosťou na nekonečný počet desatinných miest).

Diskrétne a spojité udalosti a veličiny



Intuitívny pojem pravdepodobnosti diskrétnych udalostí

Nebudeme sa pokúšať o rigoróznu definíciu pojmu „pravdepodobnosť nejakej 

udalosti“. Pre diskrétne udalosti je to intuitívne zrejmý pojem. Diskrétne udalosti sú 

opakovateľné. Môžem si teda predstaviť situáciu, že opakujem „hody“ veľmi-veľa-krát 

(teoreticky nekonečne-veľa-krát), spočítam koľko bolo všetkých hodov a koľkokrát 

som pozoroval udalosť, ktorej pravdepodobnosť zisťujem.

Povedzme pri hode kockou počítam koľkokrát padla 5-ka. Nech celkový počet hodov 

bol N=12000 a z toho 5-ka padla N5=1852-krát. Povieme, že sme pozorovali, že 

pravdepodobnosť, že padne 5-ka bola

Ibaže, ak my alebo niekto druhý zopakuje „rovnaký experiment“, možno spozoruje, že 

5-ka padla iný-počet-krát, napríklad 2046-krát, čo sa vyhodnotí ako

Rozličné získané hodnoty interpretujeme tak, že ide o štatistické fluktuácie. Veríme 

pritom, že vplyv štatistických fluktuácií na výsledok klesá s rastúcim počtom „hodov“, 

takže existuje čosi ako „skutočná pravdepodobnosť“, ku ktorej získané čísla 

„konvergujú“ pri zvyšujúcom sa počte „hodov“. Toto považujeme za čosi ako „prírodný 

zákon“. Podobne ako pri iných prírodných zákonoch, ani tu nevieme dokázať že „je to 

pravda“, ale zákonu iba „veríme“.



Teoretické určenie pravdepodobnosti diskrétnych udalostí

Niekedy sme presvedčení („veríme“), že poznáme čosi ako „teóriu fyzikálneho 

procesu“ vedúceho k skúmaným náhodným udalostiam. Potom sa v rámci tej teórie 

môžeme pokúsiť „určiť teoreticky“ relevantné pravdepodobnosti. Povedzme ak pre 

danú hraciu kocku „veríme, že kocka nie je falošná“, potom tým vyjadrujeme, že 

„veríme, že pravdepodobnosť všetkých 6  možných udalostí je rovnaká“. Odtiaľ ale 

rovno vyplýva že teoretická pravdepodobnosť bude



Pravdepodobnosť spojitých udalostí

Spojité udalosti sú neopakovateľné, preto sa intuitívny model pravdepodobnosti 

založený na opakovaných „hodoch“ nedá použiť pre spojité udalosti. V skutočnosti 

nie je možné rozumne definovať pravdepodobnosť pre konkrétnu udalosť z 

množiny spojitých udalostí. To ale nevadí, lebo ani meraním sa nemožno 

presvedčiť, ktorá konkrétna udalosť nastala. Akýmkoľvek meraním nejakej veličiny 

môžeme určiť len niekoľko platných cifier z jej hodnoty a teda neidentifikujeme 

konkrétnu spojitú udalosť presne.

Použitie teórie pravdepodobnosti v priestore spojitých udalostí sa zakladá na 

vhodnej diskretizácii. Nemôžeme sa spýtať na pravdepodobnosť toho, že nastane 

nejaká konkrétna udalosť 𝜉, ale môžeme sa spýtať, či nastane nejaká udalosť z 

istého intervalu 𝜉 ∈ (𝑎, 𝑏). To, či nejaká udalosť „padla“ do intervalu je 

experimentálne testovateľné a opakovateľné, preto sa dá, aspoň principiálne, určiť 

pravdepodobnosť 𝑝(𝜉 ∈ 𝑎, 𝑏 ).



Matematický formalizmus pre diskrétne udalosti

Diskrétne udalosti je možné vymenovať, preto hodnoty pravdepodobností 

jednotlivých udalostí je možno jednoducho tiež vymenovať napríklad v tvare 

postupnosti (hoci v princípe nekonečnej). Ak teda jednotlivé udalosti identifikujeme 

pomocou celých čísel 𝑖, potom ich pravdepodobnosti zadávame ako členy 

postupnosti 𝑝 𝑖 , pričom

Suma (normalizácia „na jednotku“) vyjadruje fakt, že „pravdepodobnosť, že 

nastane hocičo“ musí byť rovná jednej.

Ak nás zaujímajú nielen udalosti ale aj hodnota nejakej veličiny 𝑥 charakterizujúca 

udalosť, potom označíme hodnotu tej veličiny v prípade, že nastala udalosť 𝑖 ako 

𝑥𝑖. Špecifikovanie pravdepodobnostného modelu potom vyžaduje, že okrem 

postupnosti pravdepodobností 𝑝(𝑖) musíme zadať i postupnosť hodnôt 𝑥𝑖, 
prípadne podobných postupností pre ďalšie veličiny.



Kompresia pravdepodobnostnej informácie

Predstavme si jednoduchý pravdepodobnostný model: predajňu topánok pre 

náhodných (nezazmluvnených) zákazníkov. Do predajne môže v princípe prísť 

ľubovoľný obyvateľ Zeme, to je náhodná udalosť. Náhodných udalostí je niečo 

okolo 6 miliárd. To, čo zaujíma majiteľa, je veľkosť potrebnej topánky pre 

konkrétneho zákazníka.

Majiteľ nemôže mať z každého vzoru všetky veľkosti, to by bol príliš veľký umŕtvený 

kapitál. Musí mať takú zbierku veľkostí, aby s vysokou pravdepodobnosťou obslúžil 

náhodného zákazníka. Nie je praktické, aby chcel mať zoznam všetkých ľudí na 

Zemi, k nim hodnotu pravdepodobnosti, že sa objavia v jeho obchode a ku každému 

veľkosť jeho topánok. To je 12 miliárd čísel, priveľa na zostavenie rýchlej objednávky 

u výrobcu. Potrebuje vhodne komprimovanú informáciu, ktorú si vie „v hlave“ 

predstaviť a dobre sa rozhodovať.



Kompresia pravdepodobnostnej informácie

V praxi sa osvedčilo niekoľko spôsobov kompresie informácie. Ak chcem maximálnu 

a pritom stále orientačne užitočnú informáciu, spravidla sa pýtam na jediné číslo

stredná hodnota veľkosti topánky náhodného zákazníka

Matematici vyhútali takúto definíciu strednej hodnoty

Toto číslo hovorí dosť málo pre praktického predajcu, ale niečo hej. Napríklad 

predajca v Taliansku, kam chodia väčšinou Taliani vie, že toto číslo je menšie ako 

podobné číslo, ktoré zaujíma predajcu na Slovensku, lebo Slováci majú v strednom 

väčšie nohy. Takže v talianskom obchode sú topánky v strednom o čosi menšie 

ako v slovenskom obchode. Preto nápad prvých podnikateľov „po revolúcii“ 

objednávať „moderné talianske kolekcie“ nebol najlepší nápad.

Zaujímať sa iba o strednú hodnotu, podľa toho sa nedajú objednávať topánky. 

Treba aj odhad „rozumného intervalu“ veľkostí okolo strednej hodnoty.



Kompresia pravdepodobnostnej informácie, rozptyl hodnôt okolo strednej

Matematici vyhútali takúto charakteristiku

Prečo taký komplikovaný výraz s odmocninou a kvadrátom. Lebo nefungoval „prvý 

nápad“ vypočítať strednú odchýlku

Vyjde totiž nula, lebo kladné a záporné odchýlky sa vyrušia na nulu.

Matematici vyhútali aj názvy

sa volá stredná hodnota

sa volá variancia alebo stredný kvadrát odchýlky

sa volá stredná kvadratická odchýlka alebo 

štandardná odchýlka



Kompresia pravdepodobnostnej informácie, rozptyl hodnôt okolo strednej

Matematici vyhútali takúto charakteristiku

Prečo taký komplikovaný výraz s odmocninou a kvadrátom. Lebo nefungoval „prvý 

nápad“ vypočítať strednú odchýlku

Vyjde totiž nula, lebo kladné a záporné odchýlky sa vyrušia na nulu.

Matematici vyhútali aj názvy

sa volá stredná hodnota

sa volá variancia alebo stredný kvadrát odchýlky

sa volá stredná kvadratická odchýlka alebo 

štandardná odchýlka



Všimnime si, že ak využijeme naivnú „experimentálnu definíciu 

pravdepodobnosti“, dostaneme pre strednú hodnotu výraz

Toto je presne to, čo sme sa naučili počítať v škole ako „priemernú 

známku“: ak máš 3 “jednotky” and 4 “dvojky“ tvoj priemer je

Uvedomme si ale, že neexistuje žiaden „prírodný zákon“ ktorý by hovoril, 

že „takto musíme rátať strednú hodnotu“. Príroda nič netuší, že sme si 

vymysleli definovať akúsi strednú hodnotu. To je čistý folklór, ale veľmi 

všeobecne akceptovaný a „všetci podľa neho tancujú“. Hoci je pravda, že v 

niektorých komunitách (folklórnych skupinách) uprednostňujú medián pred 

strednou hodnotou.

Nie celkom rigorózna (a preto nejednoznačná ale dostatočne názorná) 

definícia mediánu je, že je to hodnota, ktorá všetky udalosti delí na dve 

rovnako početné množiny: hodnota veličiny u udalostí v prvej množine je 

menšia a v druhej množine väčšia ako medián. 



Stredná hodnota a stredná kvadratická odchýlka v predajni obuvi

Ak sa vrátime k nášmu príkladu o predávaní obuvi, potom znalosť strednej hodnoty 

a strednej kvadratickej odchýlky veľkosti obuvi u očakávaných náhodných 

zákazníkov je už celkom dostatočná informácia o tom, ako objednať veľkostný 

sortiment obuvi. 

Jednoduché riešenie je objednať kolekciu s veľkosťami v intervale

Starostlivejší podnikateľ, ktorý si to môže dovoliť zafinancovať, objedná asi aj čosi 

menej obuvi v intervaloch až po odchýlku 2Δ𝑥.



Matematický formalizmus pre spojité udalosti

Použitie teórie pravdepodobnosti v priestore spojitých udalostí sa zakladá na 

vhodnej diskretizácii. Nemôžeme sa spýtať na pravdepodobnosť toho, že nastane 

nejaká konkrétna udalosť 𝜉, ale môžeme sa spýtať, či nastane nejaká udalosť z 

istého intervalu 𝜉 ∈ (𝑎, 𝑏). To, či nejaká udalosť „padla“ do intervalu je 

experimentálne testovateľné a opakovateľné, preto sa dá, aspoň principiálne, určiť 

pravdepodobnosť 𝑝(𝜉 ∈ 𝑎, 𝑏 ).

Nie je však praktické napríklad tabelovať hodnoty pravdepodobnosti pre rôzne 

intervaly (𝑎, 𝑏). Nie je to ani potrebné, ak si všimneme, že existuje čosi ako zákon

skladania pravdepodobností pre nadväzujúce intervaly

Potom stačí, ak tabelujeme (alebo vyhútame vzorec) pre funkciu jednej premennej

Funkcia 𝐹(𝑥) sa volá (kumulatívna) distribučná funkcia pravdepodobnosti. 

Hodnotu pravdepodobnosti pre ľubovoľný interval z nej ľahko vypočítame,

takže celá informácia o pravdepodobnostiach spojitých udalostí je zakódovaná do 

distribučnej funkcie.



Funkcia

typicky vyzerá ako “sigmoidná krivka”. Porozmýšľajte, prečo kumulatívna 

pravdepodobnosť nemôže klesať, keď premenná 𝑥 rastie a prečo pre 𝑥 → −∞
je  𝐹 𝑥 = 0 a pre 𝑥 → ∞ je  𝐹 𝑥 = 1.



Experimentálne určenie hodnoty 𝑭(𝒙)

Pre konkrétnosť si predstavme hádzanie šípkou na jednorozmernú priamku, každý 

hod bude charakterizovaný súradnicou dopadu 𝜉 ∈ (−∞,∞). Zvolíme si ľubovoľnú 

hodnotu 𝑥 a vykonáme 𝑁 hodov. Zistíme hodnotu 𝑁_𝑥 koľkokrát súradnica dopadu 

𝜉 bola menšia ako 𝑥, teda 𝜉 < 𝑥. Potom zrejme

Pri veľmi veľkom pokuse hodov 𝑁 môžeme hodnotu 𝐹 𝑥 takto určiť veľmi presne.

Takto určíme hodnotu distribučnej funkcie v ľubovoľnom bode 𝑥. Stále to ale nič 

nehovorí o tvare funkcie. Môžeme si ale zvoliť veľa diskrétnych bodov

a určiť hodnotu 𝐹(𝑥𝑖) v každom z tých bodov



Experimentálne dostaneme niečo takéto

Vyzerá to akonejaká sigmoidná funkcia, ale akási „zubatá“. Je to preto, že pri 

konečnom počte pokusov získané hodnoty 𝐹(𝑥𝑖) nie sú presné, sú tam štatistické 

fluktuácie. Typickú veľkosť fluktuácií možno odhadnúť takto

(pozri napríklad http://en.wikipedia.org/wiki/Empirical_distribution_function)

Máme teda diskrétne funkčné hodnoty spolu s odhadom ich neurčitostí (chýb) a 

ďalšou úlohou je „nafitovať namerané dáta“ pomocou šikovnej hladkej funkcie.

http://en.wikipedia.org/wiki/Empirical_distribution_function


Parametre treba v priebehu fitovania vybrať tak, aby krivka čo najlepšie prechádzala 

nameranými hodnotami. Pre každú špecifikáciu parametov 𝛼 vypočítame testovaciu 

hodnotu

Čím menšia bude pre nejaké 𝛼 táto testovacia hodnota            , tým lepšie popisuje 

funkcia 𝑓(𝑥, 𝛼) namerané dáta. Použijeme počítačový program, ktorý prehľadáva 

priestor hodnôt 𝛼, až narazí na dostatočne malú hodnotu           . Stručne uveďme, 

že za dostatočne dobrú hodnotu sa považuje

kde 𝑛 je počet experimentálnych bodov a  𝑝 je počet fitovacích parametrov 𝛼.

Fitovanie dát

Veľmi stručne tu naznačíme, ako sa vo fyzike 

prekladá hladká krivka nameranými bodmi. 

Fyzik to povie tak, že fituje dáta.

Máme k dispozícii sadu trojíc

kde 𝜀𝑖 sú experimentálne chyby nameraných 

hodnôt 𝑦𝑖 .
Vychádzame z hypotézy, že dáta by mali byť 

popísané hladkou krivkou 𝑓 𝑥, 𝛼 , kde 𝛼 sú 

nejaké parametre určujúce tvar tej krivky.

Ilustratívny príklad



Pravdepodobnosť v úzkom intervale: hustota pravdepodobnosti

Uvažujme úzky interval udalostí, potom

Fyzikálne spravidla veľmi plauzibilný je predpoklad, že distribučná funkcia je 

diferencovateľná a existuje jej derivácia

Potom platí pre dostatočne malý interval 𝑑𝑥:

Funkcia 𝜚(𝑥) sa volá hustota pravdepodobnosti. Názov je odvodený z analógie 

s hustotou hmotnosti (alebo s akoukoľvek inou hustotou): pravdepodobnosť sa 

počíta ako integrál z hustoty podobne, ako hmotnosť sa počíta ako integrál z 

hustoty. Keďže nejaká udalosť musí nastať, je hustota pravdepodobnosti 

normalizovaná na jednotku



Stredná hodnota a variancia

V diskrétnom prípade sme definovali strednú hodnotu

Preto strednú hodnotu ľubovoľnej veličiny 𝑓(𝑥) závislej na spojitej náhodnej 

udalosti 𝑥 definujeme

pre veličinu 𝑥 (ktorú využívame na pomenovanie udalosti) to znamená 

Variancia veličiny 𝑓 je potom

a variancia 𝑥



Matematický formalizmus pre spojité udalosti

Pred spojitý prípad máme teda dva ekvivalentné spôsoby „kódovania“ 

pravdepodobnostnej informácie

• pomocou kumulatívnej distribučnej funkcie

• pomocou hustoty pravdepodobnosti



Príklad: rovnomerné rozdelenie

Dá sa definovať iba na konečnom intervale 𝑎, 𝑏 :

Používame ho, ak chceme vyjadriť fakt, že žiadna z hodnôt nie je preferovaná 

(angl.: no bias). Treba byť opatrný. Pre diskrétne udalosti je zrejmé, ako vyjadriť 

nepreferovanosť

Naivne by sme sa mohli domnievať, že zovšeobecnenie na spojitý prípad znie

Ale treba byť veľmi opatrný. Spravidla nemáme dôvod na nejaké kanonickú „voľbu 

mena“ pre spojitú udalosť. V princípe môžeme ako meno použiť ľubovoľnú veličinu.

Ibaže hustota pravdepodobnosti, ktorá by bola rovnomerná voči jednej premennej, 

nebude vo všeobecnosti rovnomerná voči inej premennej.

Povedané obrazne: matka môže spravodlivo rozdeliť cukríky medzi svoje 

diskrétne deti, dá každému rovnako. Ale cukríky sa nedajú apriórne 

spravodlivo rozdeliť medzi „spojité deti“, ibaže by sme mali dôvod na nejakú 

kanonickú voľbu ich mien.



Predpokladajme, že máme hustotu pravdepodobnosti 𝜌(𝑥) premennej 𝑥. Definujme 

novú náhodnú premennú 𝑦 ako funkciou pôvodnej 𝑥 pomocou jedno-jednoznačnej 

transformácie 

a pre jednoduchosť predpokladajme, že funkcia 𝑓(𝑥) je rastúca. Chceme nájsť 

hustotu pravdepodobnosti premennej 𝑦, označme ju ෤𝜌(𝑦). Zrejme platí

V integráli použijeme substitúciu                              a dostaneme

Hustota pravdepodobnosti ෤𝜌(𝑦) je definovaná vzťahom

Porovnaním posledných dvoch vzťahov dostaneme 

Zámena premenných



Teda pozor! Nová hustota pravdepodobnosti śa nezíska jednoduchým dosadením 

inverznej transformačnej funkcie do pôvodnej hustoty pravdepodobnosti. Pribudne 

ešte Jakobián transformácie!

Takže napríklad ak pôvodná hustota pravdepodobnosti bola konštantná funkcia, 

Jakobián transformácie nemusí byť konštantný a nová hustota už nebude konštantná!

Rovnomerné rozdelenie pravdpodobnosti (no bias) sa preto vo všeobecnosti 

nedá kanonicky definovať!



Príklad: Gaussovo (normálne) rozdelenie

Je definované vzorcom

Ide vlastne o celú „rodinu hustôt pravdepodobnosti“, líšiacich sa špecifikáciou 

dvoch parametrov 𝜇 and 𝜎. Ich význam je takýto:

Typický tvar je na obrázku



Overme, že pre Gaussovo rozdelenie pravdepodobnosti 

naozaj platí

Najprv treba dokázať pomocné tvrdenie (tzv. Laplaceov integrál)

Gaussovské integrály

Škôlkarsky vtip hovoril, že jeden lev sa dá chytiť tak, že sa chytia dva a jeden sa 

pustí. Jeden taký integrál nevie zrátať nik, ale dva každý. V dvoch rozmeroch. 

Naozaj:

Po vhodných substitúciách je už ľahko overiť správnosť normalizácie



Overiť správnosť vzťahu

je triviálne, po substitúcii to prejde na integrál typu                                   ,

ktorý sa triviálne spočíta substitúciou 𝜉2 = 𝜂.

Gaussovské integrály

Overovanie vzťahu                                                                vedie na integrál typu

. Počíta sa pomocou „per partes“     



Gaussove krivky pre rozličné hodnoty parameterov 𝝁, 𝝈. 



Je dobré „mať v oku“ pravdepodobnosti niekoľkých štandardných odchýliek od 

strednej hodnoty

Príklad: Gaussovo (normálne) rozdelenie



Gaussovo rozdelenie

Gaussovo rozdelenie sa v praxi používa veľmi často, prirodzené je pýtať sa prečo.

• Niekedy máme dosť dobré teoretické dôvody, že hustota pravdepodobnosti je 

naozaj Gaussovská.

• Často ale dobrú teóriu nemáme a máme len pocit, že potrebujeme hustotu 

pravdepodobnosti v tvare akéhosi zvona, pričom často poznáme strednú 

hodnotu a varianciu a nič iné. Gaussovo rozdelenie je plne špecifikované 

strednou hodnotou a varianciou , preto je veľmi prirodzené použiť Gaussa.



Hustota pravdepodobnosti: experimentálne určenie

Tvar hustoty pravdepodobnosti môžeme určiť podobnou technikou ako sme to robili 

pri distribučnej funkcii

• diskretizujeme priestor premennej 𝑥 na podintervaly (hovorí sa im biny)

Biny sa zvyčajne nazývajú “underflow bin” and “overflow bin”, 

ostatné biny sa spravidla volia ako rovnako veľké.

• Vykonáme 𝑁 experimentov a získame tak 𝑁 náhodných eventov. Zaznamenáme 

hodnoty 𝑁𝑖 koľkokrát event zasiahol bin . 

• Výsledok celého experimentu sa dá vizualizovať ako histogram

• Potom necháme počítač nájsť hladkú krivku, 

ktorá dostatočne dobre reprezentuje tvar 

histogramu



Probability density: experimental determination

• Ak chceme urobiť rozumné kritérium, kedy 

nejaká krivka dobre reprezentuje histogram, 

musíme odhadnúť veľkosť štatistických 

fluktuácií a na to potrebujeme vedieť neurčitosti 

(štatistické chyby) hodnôt 𝑁_𝑖.
• Ak sú biny dostatočne malé, môžme

odhadnúť štatistické neurčitosti ako we can 

estimate the errors as

a teoreticky očakávané počty zásahov ako

• Vyberieme si nejakú formulu pre husstotu pravdepodobnosti a necháme v nej 

nejaké voľné parametre

• Potom testovacia funkcia kvality fitu bude

• Počítač nájde optimálne hodnoty voľných parametrov 𝛼 a dostaneme tak 

„experimentálne zistenú hustotu pravdepodobnosti“.



Viacrozmerné náhodné premenné

Často sa spojité náhodné eventy nedajú rozumne pomenovať jediným reálnym 

číslom. Žijú vo viacrozmernom abstraktnom priestore. Čo je to viacrozmerný priestor 

budeme tu chápať len veľmi intuitívne. Kto chce mať o tom serióznejšie vedomosti 

môže si to vyhľadať v literatúre o varietách, napríklad v knižke

M.Fecko, Differential Geometry and Lie Groups for Physicists, 

http://www.amazon.com/Differential-Geometry-Lie-Groups-Physicists/dp/0521187966

Máme teda spojité eventy pomenované viacrozmerne

a definujeme viacrozmernú hustotu pravdepodobnosti

tak, že pravdepodobnosť zasiahnuť nejakú podmnožinu 𝑆 ľubovoľného 

(„zemiakovitého“) tvaru bude daná vzťahom

http://www.amazon.com/Differential-Geometry-Lie-Groups-Physicists/dp/0521187966


Príklad viacrozmernej náhodnej premennej: 

rýchlosť molekuly

Ak náhodne vyberiem jednu molekulu v plyne a spýtam sa jej „akú máš rýchlosť“, 

molekula odpovie troma číslami

Rýchlosť molekuly je trojrozmerná náhodná veličina, je to trojrozmerný vektor 

definovaný priemetmi na tri ortogonálne osi.

Príslušnú hustotu pravdepodobnosti geniálne uhádol Maxwell (je to trojrozmerné 

Gaussovo rozdelenie)

V tomto vzťahu 𝑚 je hmotnosť jednej molekuly (normálne hmotnosť v kg) a 𝑇 je 

absolútna teplota plynu v Kelvinoch. 𝑘 je Boltzmannova konštanta.



Marginálne rozdelenie
Niekedy ma nezaujímajú všetky premenné, ktoré spolu tvoria „meno“ jednej 

viacrozmernej náhodnej udalosti. Napríklad môžem sa zaujímať iba o 

pravdepodobnostné rozdelenie 𝑥-ovej zložky rýchlosti molekúl. Ak poznám 

mnohorozmernú hustotu pravdepodobnosti, ako nájdem hustotu pravdepodobnosti 

pre podmnožinu zo všetkých jej premenných.

Napríklad poznám dvojrozmernú hustotu pravdepodobnosti             a zaujíma ma 

len hustota pravdepodobnosti ෤𝜌(𝑥) premennej 𝑥. Znamená to vlastne, že chcem 

poznať pravdepodobnosť 𝑝(𝑥, 𝑥 + 𝑑𝑥) nájsť premennú 𝑥 v malom intervale 

nezávisle na tom, kam „padla“ hodnota premennej 𝑦. V rovine 𝑥, 𝑦 to značí, že sa 

zaujímam o situáciu, kde dvojrozmerná premenná 𝑥, 𝑦 padne hocikam do úzkeho 

pásu, naznačeného na obrázku. Z definície dvojrozmernej hustoty 

pravdepodobnosti je zrejmé že platí

Z definície jednorozmernej hustoty pravdepodobnosti plynie

Porovnaním dostaneme

෤𝜌(𝑥) sa nazýva marginálne rozdelenie z rozdelenia 𝜌(𝑥, 𝑦).

Zabudnúť na 𝒚 znamená preintegrovať cez 𝒚.



Podmienená pravdepodobnosť

Uvažujme dvojdimenzionálnu hustotu pravdepodobnosti

Pravdepodobnosť nájsť 𝑥 v podmnožine 𝑋 a súčasne 𝑦 v podmnožine 𝑌 je

Pravdepodobnsť nájsť 𝑦 ∈ 𝑌 pričom 𝑥 je hocikde je

Potom podmienená pravdepodobnosť nájsť 𝑥 ∈ 𝑋 ak vieme, že 𝑦 ∈ 𝑌 je 

definovaná ako

Takto nejako sa to stručne definuje v knihách o pravdepodobnosti (pozrite si 

napríklad Wikipédiu). Je pravdou, že v matematike si môžem definovať, čo 

chcem (ak to nie je vnútorne protirečivé), a nazvať to môžem, ako chcem. 

Formálne sa definícia podmienenej pravdepodobnosti často považuje za jednu z 

nezávislých axióm teórie pravdepodobnosti. Ale potom je treba byť pripravený na 

otázku študenta, ktorý sa nechce len naučiť ale chce aj pochopiť: „Prečo toto 

nazývate podmienenou pravdepodobnosťou, ja to nijako nevidím“. Skúsim to 

vysvetliť lepšie, ale skúste najprv, či to nerozlúštite sami.



Podmienená pravdepodobnosť

Začnime tak, že definujeme v experimentálnom jazyku, čo by sme radi nazvali 

podmienenou pravdepodobnosťou.

Predstavme si, že v prírodovedeckom múzeu majú veľkú zbierku komárov. Pri 

každom komárovi majú dva údaje: dĺžku tela v mm a GPS súradnice miesta na 

Zemi, kde bol komár chytený. Potom môžem napríklad pravdepodobnostné 

rozloženie dĺžok komárov v celej zemskej populácii. Ale niekoho môže zaujímať 

iba rozdelenie dĺžok afrických komárov. Vyberie sa do Afriky zo sieťkou na komáre, 

nachytá komáre, ani si nepoznačí GPS, len dĺžku komára a analyzuje 

pravdepodobnostné rozdelenie dĺžky. 

Potom mu napadne, veď na to som nemusel chodiť do Afriky. Stačilo vytriediť v 

celosvetovom múzeu komáre, ktorých GPS súradnica je voľakde v Afrike a mať tak 

podzbierku afrických komárov a tú analyzovať na dĺžkové rozdelenie. Získam tak 

podmienenú pravdepodobnosť dĺžky komárov, ale len takých, ktoré boli chytené v 

Afrike. Podmienená pravdepodobnosť dĺžky je pravdepodobnosť dĺžky ak už viem, 

že komár má africkú GPS.

Ospravedlňujem sa za dadaistický príklad.



Podmienená pravdepodobnosť

Majme teraz dvojrozmerné eventy, ktoré žijú v dvojrozmernom priestore 𝑥, 𝑦. Ich 

rozloženie pravdepodobnosti je dané dvojrozmernou hustotou .

Ako sa tá dvojrozmerná hustota experimentálne získa. Vyberiem sa do roviny 𝑥, 𝑦 na 

„lov eventov“. Ulovím 𝑁, urobím dvojrozmerný histogram a nafitujem ho hladkou 

funkciou            .

Predpokladajme teraz, že nás zaujíma len 𝑥-rozdelenie eventov takých, ktorých 

hodnota 𝑦 padne do nejakej zvolenej množiny 𝑌 na osi 𝑦. Ako to získam? Zoberiem 

si „sieťku na eventy“ a potulujem sa s ňou len po podoblasti roviny 𝑥, 𝑦, takej kde 𝑦 ∈
𝑌 a chytám eventy. Všetky eventy, ktoré tak chytím budú mať hodnotu 𝑦 ∈ 𝑌 a 

nejaké dopredu neurčené 𝑥. Zoberiem si takto ulovené eventy a analyzujem v tejto 

množine rozdelenie premennej 𝑥. To čo dostanem je podmienená 

pravdepodobnosť premennej 𝒙 za predpokladu, že 𝒚 ∈ 𝒀 .

Teraz si uvedomím, že nemusím vždy nanovo loviť eventy v záujmovej oblasti 𝑌. 

Stačí, ak z pôvodne nalovených 𝑁 eventov, ktoré som lovil náhodne v celej rovine 

𝑥, 𝑦 vyberiem také, pre ktoré 𝑦 ∈ 𝑌 . Označme počet takých eventov 𝑁𝑌. Z týchto 

𝑁𝑌 eventov bude istý počet takých, ktorých súradnica 𝑥 bude v oblasti 𝑋, teda 𝑥 ∈ 𝑋. 

Označme tento počet ako 𝑁𝑋𝑌. Potom by už malo byť akceptovateľné nazvať číslo

že to je podmienená pravdepodobnosť 𝑥 ∈ 𝑋 ak už vieme (alebo „za predpokladu“), 

že 𝑦 ∈ 𝑌.



Podmienená pravdepodobnosť

Vypočítame teraz 𝑁𝑌, 𝑁𝑋𝑌.

Ak všetkých pokusov je 𝑁, potom z nich takých, kde 𝑦 ∈ 𝑌 je zrejme

Z týchto eventov sme potom vyberali také, kde súčasne bolo aj 𝑥 ∈ 𝑋. Ich počet 

sme označili 𝑁𝑋𝑌. Uvedomme si ale, že tie eventy nemusíme vyberať z tých 𝑁𝑌

eventov, rovnaké eventy dostaneme ak ich budeme vyberať rovno zo všetkých 𝑁
eventov, ak budeme vyberať eventy pre ktoré 𝑥 ∈ 𝑋 a súčasne 𝑌 ∈ 𝑌. Bude ich

Potom pre podmienenú pravdepodobnosť, ktorú sme  (dúfam že s plným 

pochopením) definovali ako

dostaneme

a to je presne ten vzorec, ktorý sa nám možno zdal málo pochopiteľným



Pravdepodobnosť ako technológia pre prácu s 

chýbajúcou informáciou

Jednu jemnosť sme v našich úvahách zamietli pod koberec. Keď sme sa bavili o 

pravdepodobnostnom rozdelení dĺžky afrických komárov, uvažovali sme dve 

techniky

• jedna bola ísť do Afriky, náhodne tam  naloviť komáre a analyzovať ich dĺžku

• druhá bola ísť do múzea, a zo zbierky tam uložených náhodne po celom svete 

nachytaných komárov vybrať tie, ktoré boli chytené v Afrike a potom určiť 

pravdepodobnostné rozdelenie tých afrických komárov.

Oná jemnosť spočíva v tom, že v druhom postupe už nehrá náhoda žiadnu aktuálnu 

rolu. Komáre už sú chytené a uložené v múzeu. Potom z nich vyberieme akúsi 

podmnožinu a pravdepodobnostne ju analyzujeme. O akej pravdepodobnosti to 

vlastne hovoríme, keď pri výbere podmnožiny muzeálnych komárov už náhoda 

nehrá nijakú rolu.

Lepšie tento pojmový paradox môžeme sledovať pri hre s dvoma hracími kockami, 

pri ktorej ich krupiér zamieša v pohári a pohár položí na stôl hore dnom, takže 

nevidno, aké čísla na kockách padli. A potom vyzve hráčov aby si vsadili, aké čísla 

padli. Hráč , keď chce vsadiť, prirodzene si položí napríklad otázku „Aká je 

pravdepodobnosť, že pod pohárom sú dve šesťky?“ O akej pravdepodobnosti to 

hovorí? Odkedy bol pohár položený, sa už nič náhodné nedeje. Kocky už „vedia“ 

ako padli, aj pohár už „vie“ ako padli, iba krupiér ani hráči nevedia. 



Pravdepodobnosť ako technológia pre prácu s 

chýbajúcou informáciou

Hráči už „nebojujú s náhodou“ bojujú s rozhodnutím pri nedostatku informácie.  A 

používajú pri tom jazyk teórie informácie. Motivujú to tak, že pri tom nedostatku 

informácie sa budú rozhodovať tak, že si predstavia, že kocky ešte nepadli, vyčíslia 

si pravdepodobnosti rôznych možností a podľa výsledkov sa rozhodnú ako vsadia.

Poučenie.

Ak musím nejako reagovať pri nedostatku informácie o nejakej udalosti, ktorá už 

v skutočnosti nastala, môžem si predstaviť, že ešte nenastala a odhadnem 

pravdepodobnosti rôznych možností „čo by mohlo nastať“. Potom budem reagovať 

ako hazardný hráč, podľa výsledkov vyčíslených pravdepodobností.

Technológia pravdepodobnosti sa teda dá použiť nielen na vyčíslenie 

pravdepodobností výsledkov náhodných procesov ale aj na prácu s 

nedostatkom informácie, ocenenie množstva potrebnej informácie, meranie 

veľkosti či hodnoty poskytnutej informácie.



Nezávislé premenné

Premenná 𝑥 sa nazýva nezávislá na premennej 𝑦, ak podmienená 

pravdepodobnosť

nezávisí na 𝑌 pre žiadne 𝑋. Znamená to, že ak poznáme nejakú informáciu o 𝑦, 

nijako to nezmení naše očakávania, týkajúce sa premennej 𝑥. Dokážeme že 𝑥 je 

nezávislé na 𝑦 práve vtedy, ak dvojdimenzionáln a hustota pravdepodobnosti sa 

faktorizuje, teda ak sa dá písať pomocou marginálnych distribúcií v tvare

Najprv postačujúca podmienka. Predpokladajme, že 𝜌(𝑥, 𝑦) sa faktorizuje, potom

výsledok zjavne nezávií na 𝑌.



Teraz nevyhnutná podmienka. Vyberme maličké intervaly okolo (ľubovoľne 

zvolených) hodnôt 𝑥0, 𝑦0. Označme ich 𝑑𝑥0, 𝑑𝑦0. Dostaneme

Podľa predpokladu podmienená pravdepodobnosť nezávisí na 𝑌, preto

Comparing the two results, we get

takže sme dokázali faktorizáciu.

Nezávislé premenné



Stredné hodnoty pre viac premenných

Majme dve náhodné premenné, potom vo všeobecnosti platí

Dôkaz:

Majme dve nezávislé náhodné premenné, potom platí

Dôkaz: z faktorizácie pre nezávislé premenné dostaneme

Poznamenajme, že ak platí                  ešte z toho nevyplýva, že premenné sú 

nezávislé. 



Majme zadanie: hodíme špagetu na nakreslenú kružnicu. Špageta kružnicu pretne v 

dvoch bodoch A,B. Označme dĺžku tetivy AB ako 𝜉. Nájdite hustortu

pravdepodobnosti premennej 𝜉. 

„Riešenie“ 1:

Bez ujmy na všeobecnosti môžeme 

predpokladať, že všetky hodené špagety sú 

rovnobežné, kolmé na bodkočiarkovanú čiaru

na obrázku. Náhodný event je potom plne 

špecifikovaný dĺžkou úsečky SM, označenou 

ako 𝑥. Predpokladajme rovnomerné 

rozdelenie 𝑥 ∈ −𝑟, 𝑟 .Dostaneme

Kontrapríklad: pri spojitých náhodných premenných 

nie je kanonické rovnomerné rozdelenie



“Riešnie” 2:

Bez ujmy na všeobecnosti môžeme 

predpokladať, že všetky hodené špagety 

pretnú kružnicu v tom istom bode A. 

Náhodný event je potom plne špecifikovaný 

uhlom ASB označeným ako φ. 

Predpokladajme rovnomerné rozdelenie φ ∈
(0,2𝜋) a dostaneme

Máme dve „riešenia“ obe sa zdajú 

rozumné, ale nedávajú rovnaký 

výsledok!

Kontrapríklad: pri spojitých náhodných premenných 

nie je kanonické rovnomerné rozdelenie



• aké sú hlavné rozdiely medzi diskrétnymi a spojitými náhodnými udalosťami

• ako sa experimentálne stanoví pravdepodobnosť nejakej diskrétnej udalosti

• definícia strednej hodnoty diskrétnej náhodnej veličiny

• variancia diskrétnej náhodnej veličiny

• stredná kvadratická odchýlka

• čo je to kumulatívna distribučná funkcia pravdepodobnosti spojitej náhodnej 

veličiny

• hustota pravdepodobnosti spojitej náhodnej veličiny a jej súvis s distribučnou 

funkciou

• normalizácia hustoty pravdepodobnosti

• ako sa vypočíta pomocou hustoty pravdepodobnosti pravdepodobnosť, že 

náhodná veličina 𝑥 padne do intervalu (𝑎, 𝑏)
• definícia strednej hodnoty náhodnej veličiny

• definícia strednej hodnoty funkcie 𝑓(𝑥) náhodnej veličiny 𝑥
• variancia spojitej náhodnej veličiny

• stredná kvadratická odchýlka pre spojitú náhodnú veličinu

• rovnomerné náhodné rozdelenie

• normálne (Gaussovo) rozdelenie

• ako súvisí 95% confidence interval so štandardnou odchýlkou pre Gaussovo

rozdelenie



• Látky sa skladajú z molekúl

• Molekuly na seba silovo pôsobia (silami elektromagnetickej povahy, lebo 
sa skladajú z nabitých častíc)

• Molekuly sa hýbu chaotickým tepelným pohybom

• Hýbu sa a pôsobia silovo, teda konajú prácu

• Práca je mikroskopickej povahy, „nevidíme ju“

• Prácu, ktorú koná trpaslík stláčaním piesta, vidíme: je to makroskopická 
práca

• Mikroskopicky konaná práca sa volá teplo. Teplo je druh práce, nie druh 
energie. Konaním práce sa vymieňa, prerozdeľuje energia

• Kontakt medzi dvoma objektami, pri ktorom sa koná len mikroskopická 
tepelná práca sa vola tepelný kontakt

• Dva objekty, ktoré boli makroskopicky statické, keď sa dajú do tepelného 
kontaktu, vo všeobecnosti sa začnú diať makroskopické zmeny ale 
napokon tie makroskopické zmeny ustanú. Hovoríme, že tepelný kontakt 
priviedol tie dva objekty do tepelnej rovnováhy.

Teplo ako mikroskopicky konaná práca



• Aj objekt  izolovaný od okolia sa nakoniec dostane do stavu, že ustanú 
všetky makroskopické zmeny, je sám o sebe v rovnováhe

• Niekedy dva objekty privedené do tepelného kontaktu nevyvolajú 
makroskopické zmeny, sú od začiatku navzájom v rovnováhe

• Otázka je, dá sa nejako zistiť, kedy dva objekty privedené do tepelného 
kontaktu budú hneď v rovnováhe. Odpoveď: keď majú rovnakú teplotu.

• Teplota to je také oné, ktoré keď je rovnaké, tak objekty privedené do 
tepelného kontaktu sú ihneď v rovnováhe bez makroskopických zmien.

• Neviem, čo je to teplota, ale vieme že to má vlastnosť testovania vzťahu 
„byť v rovnováhe“

• Dajme si menšiu úlohu, skonštruovať „termoskop“ teda prístroj, ktorý 
keď priložím k dvom objektom rozhodne, či po ich privedení do kontaktu 
budú v rovnováhe alebo nie.

• V zásade môžem ako termoskop použiť hocičo veľmi malé, aby jeho 
privedenie do rovnováhy s meraným objektom ten objekt veľmi 
neovplyvnilo

Tepelná rovnováha



Napríklad  sklenená rúročka so zatavenou ortuťou. Po privedení do tepelného 
kontaktu s meraným telesom sa objem ortuti začne meniť (to je ten makroskopický 
dej) až sa ustáli. Keď potom privediem tú rúročku do tepelného kontaktu s iným 
objektom a objem sa nezačne meniť, tak je v rovnováhe aj s tým druhým objektom, 
takže má rovnakú teplotu ako ten prvý objekt. Záver: dva objekty ak sa privedú do 
kontaktu budú okamžite v rovnováhe, keď je pravdou že otestovanie ortuťou 
naplnenou rúročkou ukáže rovnaký objem ortuti pri styku s oboma telesami. Na to 
ale musí byť ortuťová rúročka malá, aby tie objekty moc neovplyvnila.

Matka spravidla nemeria teplotu decka, ktoré nechce ísť do školy tak, že by ho 
ponorila do veľkého množstva studenej vody a nesleduje ako sa zmenil objem vody 
vo vani po privedení do kontaktu. Privedie to síce objekt decko a objekt voda do 
rovnováhy, ibaže decku veľmi klesne teplota a matka by ho vždy mohla poslať do 
školy

Termoskop



Vhodným okalibrovaním sa môže z termoskopu stať teplomer

Napríklad termoskop typu „rúročka s ortuťou“ vlastne meria úplne inú veličinu: objem 
ortuti. Ak predpokladám jednoznačnú závislosť medzi teplotou a objemom ortuti, potom 
môžem na sklenenú rúročku naniesť „čiarky“ označované v jednotkách teploty a nie 
jednotkách objemu po vhodnej kalibrácii.

Jedna známa kalibárcia pochádza od Celsia

Celsius zaviedol v roku 1742 stupnicu s dvomi pevnými bodmi pri tlaku vzduchu 
1 013,25 hPa, a to 100 °C pre teplotu tuhnutia vody a 0 °C pre teplotu varu vody. Carl Linné
stupnicu neskôr otočil a preto je dnes definovaná ako

0 °C pre teplotu tuhnutia vody
100 °C pre teplotu varu vody .

Po definovaní dvoch teplotných bodov nasleduje interpolácia pre teploty medzi tými dvoma 
bodmi ako lineárna interpolácia na 100 rovnakých dielikov. Tým sme vlastne definovali, že 
ortuť zväčšuje svoj objem lineárne s teplotou. Keďže nevieme, čo je to teplota, je nám to 
jedno. Všimnime si, že zatiaľ máme len okalibrovaný termoskop, teplotné rozdiely nemajú 
zatiaľ žiaden fyzikálny význam. Význam pre posúdenie rovnováhy má len fakt, že dva objekty 
majú rovnakú teplotu. Ale to, že jeden objekt má teplotu o 5 stupňov vyššiu ako druhý 
objekt nemá zatiaľ pre nás žiaden význam.
Ale stačí začať robiť nejaké experimenty pri rôznych teplotách a nejaký význam sa prejaví.

Teplomer



Teplota a teplo

Doteraz sme teplotu definovali iba takto:
Teplota to je také oné, ktoré keď je rovnaké, tak objekty privedené do tepelného 
kontaktu sú ihneď v rovnováhe bez makroskopických zmien. Keď to oné nebolo rovnaké 
pred privedením do kontaktu, tak sa začnú diať makroskopické zmeny, ktoré po nejakom 
čase ustanú, už sa nič makroskopicky nemení a vtedy to oné je už rovnaké pre oba 
objekty v tepelnom kontakte.

Trochu odbornejšie to vyjadrujeme tak, že pri tepelnom kontakte sa vyrovnajú teploty, a to 
tak, že teplota objektu s pôvodne vyššou teplotou poklesne a teplota objektu s pôvodne 
nižšou teplotou stúpne.

Oprávnene sa môžeme pýtať, čo sa to deje pri tom tepelnom kontakte.

Nedodržíme historický vývoj a prezradíme, o čo ide. Fyzikom trvalo veľmi dlho, kým tento 
problém správne vyriešili a veľa času strávili skúmaním „slepých uličiek“.

Kľúčom je molekulová hypotéza. Látky sa skladajú z molekúl. Pri tepelnom kontakte sa 
molekuly dvoch objektov k sebe priblížia a začnú na seba silovo pôsobiť. Keďže sa pri tom 
aj chaoticky pohybujú, funguje vzorec „sila krát dráha“ a teda molekuly kontaktu jedna nad 
druhou konajú prácu. Práca znamená prenos energie. Pri tepelnom kontakte sa teda 
prerozdeľuje energia medzi objektami v kontakte, konaním „neviditeľnej“ mikroskopickej 

práce. Tá mikroskopicky konaná práca sa volá teplo.



Teplo je druh práce, nie druh energie

Do nadpisu sme dali dôležitú poučku. Najmä preto, že ľudia to majú spravidla popletené.

Bežná predstava je, že teplo je forma (druh) energie. Že je to čosi, čo je „schované“ v 
jednom (teplejšom) objekte a pri tepelnom kontakte sa to čosi „preleje“ do druhého 
(chladnejšieho) objektu, ktorý sa tým zohreje.

Odtiaľ ďalšia chybná predstava: keď chcem niečo zohriať (zvýšiť tomu teplotu) musím do 
toho „dodať teplo“ .

To všetko je zle. Teplo nie je nikde uskladnené, je to charakteristika nejakého deja, pri 
ktorom sa to teplo koná. Podobne, ako sa koná bežná makroskopicky viditeľná práca typu 
„sila krát dráha“. Rozdiel je len v tom, že pri makroskopicky konanej práci „vidím“ tú silu aj 
tú dráhu, pri mikroskopicky (na molekulovej úrovni) konanej práci nevidím ani silu ani 
dráhu. Mnohým vadí formulácia „teplo sa koná“ ale úplne súhlasia s formuláciou „práca sa 
koná“. Opakujem znovu: teplo je druh práce, teda „sa koná“. Ak je na faktúre z teplárne 
napísané „dodali sme vám teplo“, je to nefyzikálny paškvil. Hoci je pravdou, že aj veľa 
fyzikov by v živote nepoužilo formuláciu „teplo sa koná“. Je to pozostatok historických 
slepých uličiek a zlých hypotéz, ktoré používali formulácie typu „teplo sa dodáva, prenáša“ 
a podobne. Trvanie na formulácii „teplo sa koná“ je taká moja privátna obsesia. Ak sa vám 
to nepáči, hovorte ďalej, že teplo sa dodáva. Ale naozaj sa zbavte predstavy, že teplo je 
druh energie. V ďalšom ešte budeme tieto poučenia hlbšie a dôkladnejšie diskutovať.



Práca sa nedá uskladniť, energia áno

Energia je stavová veličina. Teda keď mám nejaký fyzikálny objekt, dá sa spýtať, akú má v 
momentálnom stave energiu. Dôraz je na slovo mať, takmer vo význame „vlastniť“, často aj 
vo význame „mať ju v sebe uskladnenú“. Energia v momentálnom stave sa zistí tak, že mám 
sadu vzorcov pre výpočet energie (Feynman), dosadím do tých vzorcov hodnoty veličín 
definujúcich momentálny stav, sčítam a dostanem hodnotu energie. Teda nemusím poznať 
históriu, ako sa objekt dostal do stavu, v ktorom momentálne je, ani budúcnosť, čo bude o 
chvíľu robiť. Energia je záležitosť okamihu.
Práca charakterizuje prebiehajúci dej, počas ktorého sa koná. Neexistuje niečo ako „práca v 
danom okamihu“, existuje len „práca vykonaná v priebehu nejakého času, nejakého procesu“. 
Keď proces skončil, práca nemá zmysel, nikde nie je „uskladnená“. Je pravdou, že množstvo 
práce vykonané v priebehu nejakého procesu sa dá „spätne vystopovať“: ak máme záznam, 
akú energiu mal objekt na začiatku vyšetrovaného procesu a potom vypočítame jeho energiu 
na konci toho procesu, rozdiel je oná vykonaná práca. Práca je spôsob, ako môže dôjsť k 
transferu energie medzi dvoma objektami. Ak objekt A vykoná nad objektom B kladnú prácu, 
jeho energia pri tom klesne o hodnotu vykonanej práce a energia objektu B stúpne o 
hodnotu vykonanej práce. Energia uskladnená v objekte A sa preskladnila do objektu B.
Práca sa týka dvoch objektov, „konateľa“ a „trpiteľa“. Kto je konateľ a kto trpiteľ je vecou 
dohody, pomenovania možno vymeniť ak súčasne zmeníme znamienko vykonanej práce. Na 
trpiteľa, nad ktorým konateľ vykonal kladnú prácu sa dá nahliadať akoby na konateľa, ktorý 
nad originálnym konateľom, na ktorého sa začneme dívať ako na trpiteľa, vykonal zápornú 
prácu. Zvyknite si, že práce môže byť záporná, to v bežnom živote nepoužívame.



Energia, práca a autoservis

Na faktúre z autoservisu sú dva stĺpce
• náhradné diely
• vykonané práce

Náhradné diely boli v sklade, potom sú namontované do auta, a potom sú vo vašej 
garáži
Práce neboli v sklade a nemáte ich uložené vo vašej garáži po návrate zo servisu.
Práce sa konali a neboli ani nie sú nikde uložené
Súčiastky stále niekde sú.

Podobný rozdiel je vo fyzike medzi energiou a prácou.

Energia stále niekde je a týka sa okamžitého stavu. Je to stavová veličina.
Práca sa koná počas deja. Pred jeho začatím ani po jeho skončení nikde nie je.

Teplo je druh práce, nie energie. Nikde nie je schované. To bol len historický omyl.



Kalorimetria

Kalorimeter je tepelne izolovaná nádoba, čím je 
vylúčený tepelný kontakt s okolitým prostredím. Vnútri 
nádoby prebieha typicky experiment, v ktorom 
privedieme do tepelného kontaktu dva fyzikálne 
objekty, ktoré majú na začiatku nerovnaké teploty. Na 
obrázku jeden systém je voda, druhý nejaké tuhé teleso.

Po istom čase sa ustáli spoločná výsledná teplota

Experiment vyzerá teda takto
Voda: hmotnosť 𝑚1, počiatočná teplota 𝑡1. Teleso: hmotnosť 𝑚2, počiatočná teplota 
𝑡2 > 𝑡1.
Výsledná teplota je 𝑡. 
Súhrn experimentálnych skúseností je, že existujú materiálové konštanty pre vodu 𝑐1 a pre 
materiál telesa 𝑐2, tak, že pre experiment popísaného typu platí kalorimetrická rovnica:

Konštanty 𝑐1, 𝑐2 sa nazývajú merné teplá príslušných materiálov.



Kalorimetrická rovnica ako „zákon zachovania tepla“

Kalorimetrická rovnica sa dá prepísať takto:

Pozriem na tú rovnicu a vidím zákon zachovania. Niečo na začiatku vypočítané podľa vzorcov 
typu „𝑚𝑐𝑡“ je rovnaké ako na konci. A zjavne ma musí napadnúť, že „niečo je schované v 
zohriatom telese“, čo sa prelieva z teleso do telesa a celková suma sa zachováva. A vyhútam si 
čosi ako „zákon zachovania tepla“. A že teplo je také oné čo je zodpovedné za teplotu telesa a 
dá sa „mať v sebe teplo“, „premiestniť teplo“, vyhútam rovnicu pre „vedenie tepla“, potom 
„z izby uniklo teplo“, dom má „straty tepla“, „teplo sa šíri vedením, prúdením alebo 
sálaním“. A mnoho ďalších klišé. Všetko je to zle.

Celkom dobrá hypotéza o zachovaní tepla ale nepravdivá. Kalorimetrické merania na to priam 
navádzajú. Čo je na tom zle? To, že keď chcem meniť teplotu, dá sa to nielen (už to poviem 
„po novom“) konaním tepla ale aj konaním makroskopickej práce. Teplota súvisí s energiou 
uskladnenou v telese, nie s „teplom, uskladneným v telese“.

Ako vznikli také zmätky? Tak, že kalorimetrické merania sa prirodzene robili s kvapalinami a 
tuhými telesami, nie s plynmi. Kvapaliny a tuhé telesá majú malú tepelnú rozťažnosť, málo  
menia svoj a teda sa koná malá makroskopická mechanická práca. Koná sa prakticky len 
mikroskopická tepelná práca. Zmena energie v každom telese je potom celá rovná 
vykonanému teplu, je za tým zákon zachovania energie, nie tepla. Keď sa začnem hrať s 
plynmi, tak zistím že neplatí kalorimetrická rovnica tak, že by existovala pre každý plyn jedna 
hodnota „merného tepla“. Záleží, ako je experiment usporiadaný, napríklad, či prebieha v 
kalorimetri pri stálom objeme plynu alebo pri stálom tlaku alebo mnohými inými spôsobmi.



Prvá veta termodynamická

Uvažujme nejaký fyzikálny systém (objekt). Ten objekt má nejakú vnútornú štruktúru a 
predpokladajme, že v každom stave vieme vypočítať energiu toho objektu. 

Pôsobením vonkajších objektov uvažovaný objekt môže zmeniť svoj stav a teda aj svoju 
energiu o nejakú hodnotu Δ𝐸. Tá zmena energie je možná iba tak (ak veríme na zákon 
zachovania energie), že prebehol nejaký dej, počas ktorého vonkajšie objekty vykonali  
prácu nad uvažovaným objektom. Tá práca môže byť dvoch typov
• makroskopická, označme ju 𝐴′ (čiarkované označenie je historická konvencia)
• mikroskopická, čiže teplo, označme ho 𝑄.
Zákon zachovania energie hovorí, že zmena energie musí byť krytá zvonku vykonanou 
prácou, teda platí

Uvedené rovnica sa volá „prvá veta termodynamická“. Dôvod, prečo sa tomu nehovorí 
prosto zákon zachovania energie je historický. V dobe, keď sa na všetko toto postupne došlo 
neboli známe molekuly a teda nebolo zrejmé, že „vnútri telesa“ sa môže „schovávať“ nejaká 
energia napríklad ako kinetická energia neviditeľného pohybu molekúl. Dokonca nebol ani 
vycizelovaný pojem energie. Takže nebolo jasné, či a čo sa vlastne zachováva. Prvá veta 
termodynamická hovorila vlastne na začiatku len toľko, že ak k prechodu z jedného stavu do 
druhého dôjde dvoma rôznymi spôsobmi, potom súčet vykonanej makroskopickej práce a 
tepla je pri oboch procesoch rovnaký, pričom relatívna veľkosť práce a tepla môže byť pre 
rôzne procesy rôzna. Prvá veta termodynamická bol vlastne príspevok „tepelných vedcov“ 
(termodynamikov) k vycizelovaniu pojmu energie a zákona zachovania energie.



V plyne je tlak 𝑝. Piest je 
„zašprajcovaný“, objem je 
konštantný. Ak chceme meniť objem, 
musíme na pomoc zavolať 
„vonkajšieho agenta“ trpaslíka. Ten 
chytí piest a nastaví silu rúk tak, aby 
akurát vyrovnávala vnútorný tlak.
Takže piest stojí.
Teraz môže trpaslík trochu potiahnuť 
piest maličkým zmenšením sily rúk. 
Piest sa posunie o 𝑑𝑥.
Plyn vykoná prácu

Trpaslík vykoná prácu

Príklad makroskopickej práce



Budeme hlasovať

a) Každá práca je vždy kladná
b) Práca plynu je vždy kladná 
c) Práca trpaslíka vždy záporná
d) Keď je práca plynu kladná je práca trpaslíka záporná a naopak



Prvá veta termodynamická

Upozornime, že na ľavej strane je „delta“, čo označuje „zmenu“ presnejšie „prírastok“ 
energie. Technicky to znamená, že ide o rozdiel (diferenciu, preto delta) dvoch hodnôt 
energie: energia v koncovom stave mínus energia v počiatočnom stave.
Všimnime si, že na pravej strane nie sú žiadne „delty“. Práca je konaná počas nejakého 

procesu, nie je to „práca v koncovom stave mínus práca v počiatočnom stave“. Práca nie je 
stavová veličina. Napravo teda nemáme „prírastky prác“ ale „vykonané práce“. Preto žiadne 
„delty“.

Ukázaním prvej vety termodynamickej sme trochu predbehli logický aj historický vývoj, lebo 
sme chceli ukázať „na čo je to dobré“ a tak motivovať záujem dumať nad logickými a 
technickými jemnosťami, ku ktorým sa teraz ideme vrátiť.

Chceme používať pojem teplo ako mikroskopická práca, teda by sme ho mali merať v 
jednotkách Joule, ibaže nevieme ako. 



Jednotka tepla

Pojem teplo sa historicky zjavil v kalorimetrickej rovnici

kde sme hovorili že „existujú materiálové konštanty“ 𝑐1, 𝑐2. Ale nepovedali sme nič o 
jednotkách, v akých sa merné teplá vyjadrujú. Malo by to zjavne byť „čosi/(kg.stupeň)“.
A to „čosi“ by mala byť „jednotka tepla“.

Problém je v tom, že ak tie merné teplá nechceme používať inde ako v kalorimetrickej 
rovnici, potom tá jednotka nič neznamená.  Na voľbe jednotky „čosi“ vôbec nezáleží, len 
musí byť rovnaká pre merné teplá všetkých látok. Jednotka čosi sa totiž v rovnici vykráti, 
takže jej „veľkosť“ vlastne nič nehovorí (opakujem: ak to vystupuje len v kalorimetrickej 
rovnici – predumajte si to poriadne!)

Historicky takéto čosi bolo (ľubovoľne) definované tak, že sa definovalo, že merné teplo 
vody má hodnotu 1 kcal/(kg.stupeň) a teda teplo sa meralo v kilokalóriách.



Mechanický ekvivalent tepla

Názov tohto slajdu odráža fakt, že postupne sa vycizelovalo, že teplo je druh práce a teda by 
sa malo merať v jednotkách, v ktorých sa meria práca.
Bol to historicky zdĺhavý proces. 
Prvý kvalitatívny záver urobil zrejme Benjamin Thompson v roku 1797, ktorý si všimol, že 
objekt sa dá zahriať nielen tak, že ho privedieme do kontaktu s teplejším objektom ale aj tak 
že „sa niekde koná mechanická práca“. Konkrétne si všimol, že pri vŕtaní delových hlavní sa 
hlavne (aj vrtáky) zahrejú až do tej miery, že keď sa chladia vodou, tak voda až zovrie.
Kvantitatívne merania urobil najmä James Prescott Joule v roku 1843 a zistil (rôznymi 
experimentálnymi technikami), koľko mechanickej práce treba vykonať aby to viedlo k 
rovnakému zvýšeniu teploty ako pri „dodaní“ 1 jednotky tepla. Odtiaľ ten názov mechanický 
ekvivalent tepla.
Štandardná hodnota „mechanického ekvivalentu tepla“ je 

1 kcal = 4.186 kJ



Mechanický ekvivalent tepla

Ak trváme na „čisto mechanickej práci“ (čo pred sformulovaním zákona o zachovaní energie 
bolo určite treba), potom meranie bolo založené na rôznych rafinovanejších postupoch 
(trenie!!!) podľa princípu „vrtuľka sa točí vo vode v kalorimetri na úkor zmeny mechanickej 
energie závažia“. Dnes je oveľa jednoduchšie dať do vody v kalorimetri špirálu a pustiť do nej 
elektrický prúd a vypočítať prácu batérie podľa vzorca 𝑈𝐼𝑡 .



Mechanický ekvivalent tepla

Názov tohto slajdu odráža fakt, že postupne sa vycizelovalo, že teplo je druh práce a teda by 
sa malo merať v jednotkách, v ktorých sa meria práca.
Bol to historicky zdĺhavý proces. 
Prvý kvalitatívny záver urobil zrejme Benjamin Thompson v roku 1797, ktorý si všimol, že 
objekt sa dá zahriať nielen tak, že ho privedieme do kontaktu s teplejším objektom ale aj tak 
že „sa niekde koná mechanická práca“. Konkrétne si všimol, že pri vŕtaní delových hlavní sa 
hlavne (aj vrtáky) zahrejú až do tej miery, že keď sa chladia vodou, tak voda až zovrie.
Kvantitatívne merania urobil najmä James Prescott Joule v roku 1843 a zistil (rôznymi 
experimentálnymi technikami), koľko mechanickej práce treba vykonať aby to viedlo k 
rovnakému zvýšeniu teploty ako pri „dodaní“ 1 jednotky tepla. Odtiaľ ten názov mechanický 
ekvivalent tepla.
Štandardná hodnota „mechanického ekvivalentu tepla“ je 

1 kcal = 4.186 kJ



„Vedenie“ tepla

Spomenuli sme, že tepelná práca sa koná pri tepelnom kontakte medzi dvoma 
objektami. Kalorimetrická rovnica nám potom pri meraní zmien teploty, koľko tepla 
bolo v procese vykonané. 
Rafinovaniejšií spôsob kontroly nad konaným teplom spočíva v kontakte cez „takmer 
izolujúci medzikus“. Medzikus je z malého množstva látky, ktorá má veľmi nízke merné 
teplo, takže „pre seba si ukradne“ len zanedbateľnú energiu a zabezpečí len pomalý

„prenos tepla z objektu 1 do objektu 2“. Korektnejšia 
formulácia by bola takáto:
Na styku objekt 1 s medzikusom koná objekt 1 tepelnú 
prácu, čo zvyšuje energiu kontaktnej vrstvy materiálu 
medzikusa. Prvá vrstva medzikusa ale bude konať tepelnú 
prácu nad druhou vrstvou.  Energia prvej vrstvy ale podľa 
predpokladu vzrastie len málo, takže teplo konané prvou 
vrstvou nad druhou vrstvou je prakticky rovnaké ako 
teplo konané objektom 1 nad prvou vrstvou. A tak ďalej 
po vrstvách až po styk s objektom 2.

Po veľmi dlhom čase sa teploty objektov 1 a 2 vyrovnajú, ale môžeme sledovať ten proces 
postupne, takže v nejakom okamihu 𝜏 budú teploty tých objektov 𝑡1

′ , 𝑡2
′ . Vtedy bude platiť 

kalorimetrická rovnica                                                            . Celkové množstvo tepla, ktoré objekt 
1 vykonal za čas 𝜏 potom je



„Vedenie“ tepla

Toto je množstvo tepla vykonaného objektom 1 nad 
objektom 2 za čas 𝜏. Pri lepšie izolujúcom materiáli 
„medzikusa“ bude potom toto vykonané množstvo tepla 
menšie. Izolačné vlastnosti „medzikusa“ môžeme v 
takomto experimentálnom usporiadaní merať a zisťovať, 
od čoho závisí teplo vykonané za jednotku času.

Všetci „normálni“ ľudia tomu ale hovoria „teplo prenesené medzikusom“ za jednotku času. S 
vedomím, že sa neprenáša teplo ale de facto energia, si aj my nebudeme dávať paranoidný 
pozor na terminológiu a budeme hovoriť o „vedení tepla“.
Experimentálne sa pozoruje, že množstvo preneseného tepla je priamo úmerné času 𝜏, 
veľkosti styčnej plochy 𝑆, nepriamo úmerné hrúbke izolačného materiálu ℎ a priamo úmerné 
rozdielu teplôt na „vstupe“ a „výstupe“ (𝑡1−𝑡2). Vyjadrené matematicky

koeficient 𝜆 sa volá koeficient vedenia tepla a je materiálovou charakteristikou. Rovnica sa 
volá rovnica vedenia tepla. 



„Vedenie“ tepla

V učebniciach „rovnicu vedenia tepla“ častejšie 
nachádzame zapísanú v tvare

Veličina na ľavej strane sa volá hustota prúdu tepla a udáva, má význam prenosu tepla za 
jednotku času cez jednotku plochy. Udáva sa teda v jednotkách Js-1m-2. Zlomok

v rovnici vedenia tepla vyjadruje vlastne rýchlosť poklesu teploty so vzdialenosťou v smere 
𝑥, preto sme ho nahradili záporným gradientom (deriváciou) teploty podľa premennej 𝑥.
Záporným preto, že poradie v čitateli uvedeného zlomku je opačné ako  v definícii 
derivácie. Ak gradient teploty je záporný, dostaneme kladný „tok tepla“ v smere 𝑥, ako 
intuitívne očakávame, lebo „teplo tečie od teplejšieho telesa k chladnému“.  



Trpaslík „kurič“

Postupne budeme skúmať rôzne procesy, najmä v plynoch, pri ktorých sa bude kontrolovane 
meniť teplota, tlak, objem, bude sa konať mechanická práca a teplo. Najlepšie je predstaviť si 
pomocných laborantov, budem ich volať „trpaslíci“, ktorý dostanú presné inštrukcie pre 
sledovanie nejakých meracích prístrojov a ovládanie nejakých vonkajších objektov.

Prvý pomocník sa bude volať „trpaslík kurič“. Jeho úlohou bude vykonať nad vyšetrovaným 
systémom nejaké teplo 𝑄. Systém je dokonale tepelne izolovaný,  nemôže dôjsť k 
nekontrolovanému konaniu tepla. Ak úloha pre kuriča bude „dodať“ systému kladné 
množstvo tepla 𝑄, zoberie si nejaký externý objekt o hmotnosti 𝑚 a mernom teple 𝑐 zahriaty 
na teplotu vyššiu ako je teplota systému. Potom urobí do izolácie systému otvor a do otvoru 
presne nasadí slabo tepelne vodivý medzikus na ktorý priloží v tepelnom kontakte zahriaty 
objekt, ktorého teplotu sleduje kým poklesne oproti počiatočnej teplote o hodnotu Δ𝑡, pre 
ktorú platí 𝑄 = 𝑚𝑐|Δ𝑡|. Je zrejmé, že do systému „dodal“ požadované kladné teplo 𝑄.

Keby požiadavka bola dodať záporné teplo, zoberie 
si objekt chladnejší ako vyšetrovaný systém a 
dočká, až jeho teplota stúpne o hodnotu Δ𝑡, pre 
ktorú platí 𝑄 = 𝑚𝑐Δ𝑡.

Trpaslík kurič bude pre nás neskôr robiť aj ďalšie 
operácie. V technickej praxi sa zariadenie, ktoré 
obsluhuje trpaslík kurič volá výmenník tepla. 



Teplotná rozťažnosť látok

Ortuťový teplomer definoval, že ortuť sa rozťahuje 
lineárne s teplotou. To nie je prírodný zákon ale 
(zatiaľ) súčasť definície teploty. Potom môžeme 
skúmať, ako je to s objemom iných látok pri rôznych 
teplotách. A objavíme, že látky s rastúcou teplotou 
spravidla zväčšujú pri konštantnom vonkajšom tlaku 
svoj objem a to lineárne (resp. takmer lineárne) v 
prakticky zaujímavom intervale teplôt. Lineárna 
závislosť znamená že pre závislosť objemu na teplote 
platí vzťah (𝛽 sa volá koeficient objemovej 
rozťažnosti).

Všimnime si, že tu máme na mysli relatívnu objemovú 
rozťažnosť: väčší objem látky má väčší prírastok 
objemu pri tom istom zvýšení teploty. Vyplýva to z 
prirodzeného predpokladu, že „každý kubický 
centimeter“ tej látky sa roztiahne rovnako, preto 10 
cm3 sa roztiahne 10-x viac ako 1 cm3. Tento 
predpoklad je prirodzený, ale nie logicky nevyhnutný.
Premyslite si, prečo je prirodzený, ak látky sú zložené 
z molekúl.



Dĺžková rozťažnosť

Objemová teplotná rozťažnosť je vlastnosť všetkých látok. U tuhých látok (ktoré na rozdiel 
od tekutín majú svoj vlastný tvar neurčený nejakou nádobou) môžeme hovoriť aj o 
dĺžkovej rozťažnosti (v nejakom smere). Aj tu pozorujeme že v dosť veľkom intervale 
teplôt sa rozmery látok zväčšujú takmer lineárne, teda podľa zákona (𝛼 sa volá koeficient 
dĺžkovej rozťažnosti rozťažnosti).

Pre veľa tuhých látok je hodnota koeficientu rozťažnosti rádovo 𝛼 ≈ 10−5/°C.
Pri izotropných látkach sú koeficienty dĺžkovej rozťažnosti v každom smere rovnaké a teda 
pre objemovú rozťažnosť dostaneme 𝛽 ≈ 3𝛼.

Oceľové pravítko pri dvoch teplotách.  Stupnica, čísla, priemer vyrytého kruhu aj priemer 
kruhového otvoru sa menia v rovnakom pomere. 



Bimetalový teplotný vypínač



Deje v plynoch

V tejto prezentácii zhrnieme prevažne experimentálne poznatky historicky získané pred 
sformulovaním molekulovej hypotézy. Všetko sa bude týkať plynov, lebo to sú látky s 
jednoduchou štrukúrou. Dnes vieme, že sa skladajú z molekúl, ale tie sa v obvyklých 
podmienkach nachádzajú ďaleko (vyjadrené v rozmeroch typických pre svet molekúl) od 
seba a teda ich vzájomná interakcia sa dá väčšinu času zanedbať, s výnimkou zrážok 
molekúl. Preto makroskopické rovnice pre plyny sú dosť jednoduché a aj kvalitatívne 
pochopenie základných procesov je tiež jednoduché.

Takže väčšinou  budeme imitovať starých experimentátorov, teda, že nevieme, že plyny sa 
skladajú z molekúl. Ale často potom tam, kde to nebude príliš zložité, ozrejmíme si aj to, 
ako sa na diskutovanú vec díva dnešná fyzika „očami molekúl“.



Pre človeka, ktorý nevie o molekulách, je plyn „nové fyzikálne zviera“, ktorému sa nedá 
bezprostredne rozumieť ak rozumieme napríklad mechanike hmotných bodov. Je to 
„zviera“ vypĺňajúce nejaký objem priestoru, je to kontinuum a keď ho chceme ovládať, 
musíme nejako vyexperimentovať ako sa správa a potom naplniť základný fyzikálny 
program, 
• teda povedať ako sa zapíše momentálny stav plynu a 
• ako sa potom dá predpovedať budúcnosť, teda zmeny stavu pri interakcii s 

vonkajším svetom.

Vo všeobecnosti sú stavy plynu a deje v plyne veľmi komplikovaná vec (koniec koncov 
napríklad „počasie“ je  v istom priblížení „časový vývoj stavov vzduchu“).
Fyzici si ale skoro všimli, že istá podmnožina stavov plynu sú jednoduché stavy. Sú to tzv. 
rovnovážne stavy. 
Ide o toto. Ak plyn v ľubovoľnom stave dokonale izolujeme od okolia a „ponecháme ho 
samého na seba“, potom spravidla na začiatku sa s plynom dejú všakové aj dosť divoké deje 
ale po uplynutí istej doby deje utíchnu, plyn vyzerá staticky, nemení svoj „experimentálne 
pozorovateľný stav“. Takýto stav, ktorý sa už sám o sebe nemení, sa nazýva rovnovážny stav 
plynu. 
Zaregistrovali sme teda prírodný zákon: Izolovaný plyn samovývojom prejde do 
rovnovážneho stavu. 

Stav plynu. Rovnovážny stav.



Vratné deje

V našej ďalšej diskusii sa obmedzíme iba na rovnovážne stavy (budeme sa tváriť ako keby 
žiadne iné stavy ani neexistovali). Ak aj budeme skúmať nejaké deje, potom iba také, keď 
počas deja stav „neopustí množinu rovnovážnych stavov“. Keďže rovnovážny stav sa už 
samovoľne nemení, skúmané deje budú prebiehať vplyvom vonkajších objektov. Ak dej 
nemá opustiť podmnožinu rovnovážnych stavov, potom tie vonkajšie vplyvy musia byť 
dostatočne „opatrné“. Také, že keď sa vplyv preruší, dej už samovoľne nepokračuje ďalej, 
lebo predpokladáme, že sledovaný systém je stále v rovnovážnom stave. Prerušenie 
vonkajšieho vplyvu znamená okamžité zastavenie deja. 

Takto prebiehajúce deje nazývame vratné deje. Názov pochádza z toho, že ak taký dej 
prebieha pod nejakým vonkajším vplyvom, potom infinitezimálnou zmenou toho vplyvu 
možno dosiahnuť, že dej začne prebiehať „opačným smerom“.



Rovnovážne stavy plynu

Experimentálna skúsenosť hovorí, že ak uvažujeme nejaké fixné množstvo (hmotnosť, počet 
molekúl) nejakého plynu, potom rovnovážne stavy možno jednoznačne určiť definovaním len 
dvoch (makroskopických) veličín. Najčastejšie sa vyberá nejaká dvojica z trojice možností
• objem
• tlak
• teplota

Tlak plynu sa zistí tlakomerom, teplota teplomerom a objem spravidla výpočtom, z rozmerov 
kontajnera, v ktorom je skúmaný plyn uzavretý.
Ak chceme skúmať rovnovážne stavy toho istého plynu pri rôznych objemoch, je potrebné 
ľahko (a pri tom dosť opatrne, aby dej bol vratný) meniť objem kontajnera, v ktorom sa plyn 
nachádza. Zariadi to „variabilná stena“ kontajnera, technicky realizovaná ako utesnený piest



Deje v plynoch - experimentálne usporiadanie
Chceme sledovať vratné deje v plynoch, 
potrebujeme „zvonku“ ovládať (nastavovať) dva 
parametre. Zamestnáme trpaslíka kuriča, ktorý 
bude vykonávať tepelnú prácu a tým nejako 
ovplyvňovať parametre 𝑡, 𝑝. Bude mať zásobník 
na vodu, do ktorého môže pripúšťať horúcu a 
studenú vodu a tým nastaviť ľubovoľne teplotu 
zásobníka, čo ovplyvní „transport tepla“ do 
plynu v kontajneri. Poznamenajme, že miešanie 
vody v zásobníku nemusí byť vratný dej (netýka 
sa plynu v kontajneri). 

Vratnosť je zabezpečená tým, že transport tepla sa deje cez látku s malým koeficientom 
vedenia tepla, takže konanie tepla nad plynom v kontajneri je pomalý vratný dej.

Zjavne potrebujeme ešte jeden nezávislý vonkajší vplyv, lebo nemôžme nezávisle ovládať dva 
parametre 𝑡, 𝑝 kontrolou iba jedného parametra, vykonaného tepla 𝑄.

K piestu preto angažujeme druhého trpaslíka, budeme ho volať „tlačič“. On priamo ovláda 
parameter 𝑉. Koordinovaným úsilím sa po nejakom čase naučia nastaviť vratným spôsobom 
vychádzajúc z ľubovoľného rovnovážneho stavu nový stav dopredu zvolenými hodnotami 
ľubovoľnej dvojice parametrov z množiny 𝑝, 𝑉, 𝑡. V ďalšej diskusii potom uvidíme, ako to asi 
môžu robiť.



Stavový diagram p,V

Už sme povedali, že priestor rovnovážnych stavov plynu je dvojrozmerný, rovnovážny stav 
môžeme zadať nezávislou voľbou dvoch parametrov. Graficky potom môžeme vizualizovať 
priestor rovnovážnych stavov v rovinnom diagrame, často to býva 𝑝, 𝑉 diagram. 
Rovnovážnemu stavu potom zodpovedá bod na diagrame, vratnému deju nejaká čiara

Uvedomme si, že na tomto diagrame sa dajú 
jednoznačne zobraziť iba rovnovážne stavy a iba 
vratné deje. Nerovnovážny stav sa nedá jednoznačne 
zobraziť, lebo na jeho zadanie treba viac parametrov. 
Napríklad ak urobíme umelo nerovnováhu tak, že 
natlačíme molekuly iba do jednej polovice 
kontajnera, potom ten stav nie je charakterizovaný 
jedinou hodnotou tlaku. Tlak v polovici zaplnenej 
plynom je vysoký, v prázdnej polovici nulový: dva 
manometre ukážu rôzne hodnoty. Preto vizualizácii 
takého nerovnovážneho stavu nezodpovedá bod na 
𝑝, 𝑉 diagrame. Vratný dej je (hustá, spojitá) 
postupnosť rovnovážnych stavov, preto vratnému 
deju zodpovedá čiara na 𝑝, 𝑉 diagrame.



Izotermický dej (vratný)

Podumajme, aké príkazy dať tlačičovi a kuričovi, aby 
prebiehal izotermický dej, teda kontinuálna zmena 
stavu pri zachovaní konštantnej hodnoty teploty 
plynu. Stavy sa majú postupne meniť, takže sa bude 
meniť 𝑝, 𝑉 pri konštantnom 𝑡. Cieľom je napríklad 
zvýšiť objem z počiatočnej hodnoty 𝑉1 na objem 
𝑉2 > 𝑉1.

• Príkaz pre kuriča: „Sleduj teplomer plynu a pred začatím pokusu si namiešaj 
(prilievaním teplej a studenej vody) vo svojom „zásobníku tepla“ takú istú teplotu, aká 
je teplota plynu v kontajneri. Počas deja neustále sleduj teplomer. Keby teplota začala 
trochu klesať, prilej teplej vody do zásobníka, čo zvýši transport tepla do plynu v 
kontajneri, keby teplota mala tendenciu stúpať, podchlaď priliatím studenej vody 
zásobník pod teplotu plynu v kontajneri, čo spôsobí „opačný transport tepla z plynu do 
zásobníka“ a vráti teplotu na požadovanú hodnotu. Takto kurič primitívne realizuje čosi, 
čomu sa hovorí v technickej praxi termostat.

• Príkaz pre tlačiča: na začiatku tlač na piest silou F = 𝑝. 𝑆, ktorá akurát vyrovná aktuálny 
tlak plynu v kontajneri, piest bude stáť. Potom málinko zníž silu tvojich rúk, takže piest 
sa začne posúvať doprava a zväčšovať objem kontajnera. Ustúp doprava a postupne tak 
pokračuj, až kým nedosiahneš želaný výsledný objem. Rob to pomaly, aby kurič stačil 
udržiavať konštantnú teplotu. Priebežne zapisuj postupnosť hodnôt 𝑽, 𝒑.



Myšlienkové experimenty

Predchádzajúci „detinský“ popis experimentu s izotermickým dejom je možno sčasti odrazom 
postupného zdetinšťovania mysle starnúceho učiteľa. Ale chceným cieľom bolo ukázať na 
primitívnom príklade techniku „myšlienkového experimentu“. To je čosi ako „návod na 
skutočný experiment“ ktorý možno nikdy nevykonáme a často je to mierne zjednodušený 
návod s vynechaním podrobností, ktoré považujeme za nepodstatné pre principiálne 
fungovanie. (V skutočnom experimente napríklad môže dať veľa práce vyriešiť ako zatesniť 
výmenník tepla aby plyn ani neunikal ani sa nekontaminoval výparmi tesniacej vazelíny.) 
Myšlienkový experiment nás má zachrániť pred spakruky sformulovanými vetami typu „potom 
izotermicky zvýšime objem na hodnotu 𝑉2“, lebo by sa mohlo stať, že taká zmena nie je v 
princípe vykonateľná. Majstrami v technike myšlienkového experimentu boli Einstein a 
Feynman a veruže sa im to vyplatilo. Myšlienkové experimenty im pomohli vycizelovať úvahy, 
no a potom už len Štokholm (Feynman bol už chorý, Nobelovu cenu mu priniesli domov.) 
Cvičte si techniku myšlienkového experimentu rozpitvávaním vecí, ktoré počujete na 
prednáškach, možno budete prekvapení, keď pri tom objavíte, čomu všetkému nerozumiete.



Izotermický dej (vratný)

Takto nejako by mohol vyzerať graf so 
záznamami trpaslíka tlačiča o hodnotách 
𝑝, 𝑉 pri vratnom izotermickom deji

Keď už máme záznam o pároch hodnôt 𝑝, 𝑉
môžeme skusmo nájsť vzorec pre funkciu 𝑝(𝑉)
tak, aby si namerané hodnoty „ľahli“ na graf tej 
funkcie. V dnešnej dobe to počítač urobí za 
okamih, voľakedy to dalo zrejme viac roboty. 
Experimentálne sa našlo, že rovnica izotermy je

Boyle Mariottov zákon:



Izotermy ideálneho plynu
Boyle Mariottov zákon nie je absolútne presný, pre reálne plyny platí dosť dobre len v istej 
oblasti 𝑝, 𝑉 −diagramu a presne platí len pre hypotetické ideálne plyny. To sú také, ktorých 
molekuly sa navzájom „necítia“ (neinteragujú). Na 𝑝, 𝑉 −diagrame ideálneho plynu si môžeme 
dopredu nakresliť sústavu izoterm pre rôzne konštantné teploty. Bude to vyzerať ako na tomto 
obrázku pre teploty 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 < 𝑡5 < ⋯

Rovnovážnemu stavu stále zodpovedá bod na 𝑝, 𝑉 −diagrame, ale ak sú na diagrame 
predkreslené označené izotermy, potom pre znázornený bod môžeme odčítať nielen hodnoty 
𝑝, 𝑉 na osiach ale môžeme určiť aj teplotu toho stavu tak že zistíme medzi ktorými izotermami 
sa nachádza a potom interpoláciou zistíme teplotu aj trochu presnejšie Napríklad, len tak od 
oka, červený bod na obrázku leží približne v 1/3 vzdialenosti medzi izotermami 𝑡2, 𝑡3. Teplota 
teda bude približne 



Izobarický dej

Idea je zistiť, ako sa mení objem plynu s teplotou pri konštantnom tlaku, napríklad chcem 
zvýšiť teplotu z 𝑡1 na 𝑡2 > 𝑡_1. Experiment sa dá vykonať za pomoci tlačiča a kuriča. Kuričovi 
poviem, aby kontrolovaným prenosom tepla pomaly zvyšoval teplotu až na 𝑡2. A to tak, aby 
tlačič stíhal udržiavať konštantný tlak. 

Tlačičovi dám komplikovanejší príkaz: „Sleduj tlakomer a snaž sa udržať konštantný tlak počas 
toho ako bude kurič „kúriť“. Ak bude mať tlak tendenciu stúpať, máličko posuň piest doprava 
aby si zväčšil objem a tlak sa vrátil na požadovanú hodnotu. Ak naopak tlak začne klesať, 
potlač trošku piest doľava aby si zmenšil objem a tlak naspäť stúpol na požadovanú hodnotu.
V priebehu deja zapisujte dvojice hodnôt 𝑉, 𝑡.  Experiment na 𝑉, 𝑡 −diagrame  dopadne

nejako takto:



Izobarický dej

Idea je zistiť, ako sa mení objem plynu s teplotou pri konštantnom tlaku, napríklad chcem 
zvýšiť teplotu z 𝑡1 na 𝑡2 > 𝑡_1. Experiment sa dá vykonať za pomoci tlačiča a kuriča. Kuričovi 
poviem, aby kontrolovaným prenosom tepla pomaly zvyšoval teplotu až na 𝑡2. A to tak, aby 
tlačič stíhal udržiavať konštantný tlak. 

Tlačičovi dám komplikovanejší príkaz: „Sleduj tlakomer a snaž sa udržať konštantný tlak počas 
toho ako bude kurič „kúriť“. Ak bude mať tlak tendenciu stúpať, máličko posuň piest doprava 
aby si zväčšil objem a tlak sa vrátil na požadovanú hodnotu. Ak naopak tlak začne klesať, 
potlač trošku piest doľava aby si zmenšil objem a tlak naspäť stúpol na požadovanú hodnotu.
V priebehu deja zapisujte dvojice hodnôt 𝑉, 𝑡.  Experiment na 𝑉, 𝑡 −diagrame  dopadne

nejako takto:
Bodmi sa dá preložiť priamka

Gay-Lussacov zákon

Koeficient 𝛾 je koeficient objemovej rozťažnosti plynu.



Izobarický dej jednoduchšie

Bodmi sa dá preložiť priamka

Gay-Lussacov zákon

Koeficient 𝛾 je koeficient objemovej rozťažnosti plynu.

Jednoduchšie je dať tlačičovi voľno a zaťažiť piest 
závažím vypočítaným tak, aby v gravitačnom poli 
spolu s vonkajším atmosférickým tlakom 
udržiavalo „automaticky“ želanú hodnotu tlaku 
plynu.



Izochorický dej

Idea je zistiť, ako sa mení tlak plynu s teplotou pri konštantnom objeme, napríklad chcem 
zvýšiť teplotu z 𝑡1 na 𝑡2 > 𝑡_1. Experiment sa dá vykonať za pomoci tlačiča a kuriča. Kuričovi 
poviem, aby kontrolovaným prenosom tepla pomaly zvyšoval teplotu až na 𝑡2. A to tak, aby 
tlačič stíhal udržiavať konštantný objem. 

Tlačičovi dám komplikovanejší príkaz: „Konštantný objem sa nedá udržať tak, že budeš držať 
piest na mieste. Problém je v tom, že s meniacou sa teplotou sa menia aj rozmery kontajnera. 
Takže meraj neustále rozmery kontajnera a posúvaj piest tak, aby objem plynu pri zmenených 
rozmeroch ostával konštantný.“ 

V priebehu deja zapisujte dvojice hodnôt 𝑝, 𝑡.  Experiment na 𝑝, 𝑡 −diagrame  dopadne 
nejako takto:

Bodmi sa dá preložiť priamka

Gay-Lussacov zákon

Koeficient ෤𝛾 sa volá koeficient tepelnej rozpínavosti plynu.



Vratné deje v ideálnom plyne

Pre ideálny plyn sa našli jednoduché zákony
• izotermický dej 
• izobarický dej
• izochorický dej

Uvedené špeciálne deje sa „vyučujú v škole“. Okrem nich existuje veľa iných dejov. Ak 
vychádzam zo stavu 𝑝0, 𝑉0, môžem na 𝑝𝑉-diagrame nakresliť ľubovoľnú krivku a vyhútať 
príkazy pre kuriča a tlačiča tak, aby dej sledoval dopredu zvolenú krivku. A potom nájsť 
príslušný „zákon“. Ukážeme si, že netreba robiť žiadne ďalšie experimenty,  stačia dokonca už 
napríklad izotermický a izobarický zákon a môžem odvodiť zákon pre ľubovoľný dej, ak zvolím 
nejakú krivku. Nie je na tom nič záhadné, izotermy sú nakreslené podľa dopredu známych 
rovníc a ak zadám nejakú krivku závislosťou 𝑝(𝑉), potom čistá matematika (bez fyzikálneho 
experimentu)   už umožňuje vypočítať priesečníky tejto krivky s izotermami a teda nájsť 
rovnicu procesu typu 𝑇 𝑉 . Urobíme to všeobecne, ale najprv dodajme ďalšiu 
experimentálnu informáciu: koeficient teplotnej rozťažnosti plynu 𝜸 je pre všetky (ideálne) 
plyny pri rovnakej teplote 𝒕𝟎 rovnaký, pre 𝑡0 = 0°C má hodnotu 



Univerzálnosť koeficientu rozťažnosti plynov

už potom čisto matematicky vedie k tomu, že všetky grafy rozpínavosti (ideálnych) 
plynov lineárne extrapolované do záporných teplôt pretínajú os teplôt v jednom 
univerzálnom bode 

Absolútna teplota, Kelvin

Kelvina napadlo posunúť počiatok teplotnej stupnice do tohto univerzálneho teplotného 
bodu. Odvtedy meriame vo fyzike teplotu v Kelvinoch, pričom 0K zodpovedá                         .                       
Veľkosť „jedného stupňa“ sa nezmenila, teda teplotný rozdiel meraný v Kelvinoch a stupňoch 
Celzia má rovnakú číselnú hodnotu. Dnešná definícia Kelvinu vychádza z toho že teplotu 
trojného bodu vody definujeme ako 273.16 K.



Univerzálnosť koeficient rozťažnosti plynov

už potom čisto matematicky vedie k tomu, že všetky grafy rozpínavosti (ideálnych) 
plynov lineárne extrapolované do záporných teplôt pretínajú os teplôt v jednom 
univerzálnom bode 

Absolútna teplota, Kelvin

Kelvina napadlo posunúť počiatok teplotnej stupnice do tohto univerzálneho teplotného 
bodu. Odvtedy meriame vo fyzike teplotu v Kelvinoch, pričom 0K zodpovedá                         .                       
Veľkosť „jedného stupňa“ sa nezmenila, teda teplotný rozdiel meraný v Kelvinoch a stupňoch 
Celzia má rovnakú číselnú hodnotu. Dnešná definícia Kelvinu vychádzala donedávna z toho, že 
teplotu trojného bodu vody definujeme ako 273.16 K.



Kelvin, nová SI

Tým, že sa povedalo, že trojný bod vody má teplotu 273.16 K sa hodnota 1K stala 
nezávislou na jednom dieliku Celziovej stupnice. Teplota 0K, takzvaná absolútna nula, je 
totiž dobre a nezávisle definovaná hodnota teploty. Nie celkom abstraktne môžeme 
povedať, že absolútna nula je najnižšia teoreticky možná hodnota teploty. Jedným 
dychom treba dodať, že dosiahnuť presnú hodnotu 0K je experimentálne nemožné, 
majstri v dosahovaní nízkych teplôt sa však k absolútnej nule vedia priblížiť. Momentálny 
svetový rekord najnižšej dosiahnutej teploty z roku 1999 je 100 pK.

Od roku 2019 však veľkosť jedného Kelvinu nie je daná rozdielom medzi trojným bodom 
vody a absolútnou nulou ale tak, že Boltzmannova konštanta 𝑘 má definitoricky určenú 
hodnotu 1.380649×10−23 J⋅K−1 .



Stavová rovnica ideálneho plynu

Zákon pre izobarický dej
prepísané pomocou absolútnej teploty využijúc

Toto je Gay-Lussacov zákon prepísaný 
do absolútnych teplôt

Teraz prejdeme zo stavu 𝑝1, 𝑉1, 𝑇1 do ľubovoľného iného stavu daného pomocou 
𝑝2, 𝑉2 vypočítame jeho teplotu 𝑇2 a uvidíme ako stav „2“ súvisí so stavom „1“. 
Urobíme to tak, že najprv pôjdeme zo stavu „1“ izotermicky do pomocného stavu 
𝑝2, 𝑉

′, 𝑇1 a odtiaľ izobaricky do stavu 𝑝2, 𝑉2, 𝑇2. Postupne dostaneme

pri konštantnom 𝑇1, zákon Boyle Mariott

pri konštantnom 𝑝2, zákon Gay-Lussac

Neznáme sú tu 𝑉′, 𝑇2. Po vylúčení neznámej 𝑉′ dostaneme rovnicu

Dostali sme stavovú rovnicu ideálneho plynu ako logický dôsledok experimentálnych 
zákonov Boyle Mariottovho a jedného z dvoch Gay-Lussacových zákonov. Teraz už zo 
stavovej rovnice môžeme odvodiť Gay-Lussacov zákon pre izochorický dej, ktorý sme 
doteraz nepoužili. Takže izochorický experiment ani nemusíme robiť.



Ppri odvodení stavovej rovnice                                                sme nepoužili zákon pre 

izochorický dej, ktorý experimentálne vyzerá takto
Zo stavovej rovnice pre 𝑉1 = 𝑉2 dostaneme zákon

Toto je kompatibilné s „experimentálnym tvarom zákona“ ak sa dá aj v zákone pre 
izochorický dej prejsť k absolútnym teplotám presne rovnako, ako sme to urobili pre 
izobarický dej. A to bude len vtedy ak koeficient teplotnej rozpínavosti ෤𝛾 je rovný 
koeficientu teplotnej rozťažnosti 𝛾. Experimentálne je to naozaj tak.

Stavová rovnica ideálneho plynu

Gay-Lussacov zákon

Konštanta na pravej strane stavovej rovnice môže pre každé množstvo plynu a každý 
druh plynu iná. Ak si ale spomenieme na Avogadrov zákon
Rovnaké objemy rôznych plynov za rovnakého tlaku a teploty obsahujú rovnaký počet 
častíc (atómov alebo molekúl)
potom je zrejmé (predumajte si to a presvedčte sa, že je to tak!) že konštanta na pravej 
strane musí byť úmerná počtu molekúl plynu 𝑁 a konštanta úmernosti musí byť nejaká 
univerzálna konštanta. Nazýva sa Boltzmannova konštanta 𝑘.



Stavová rovnica ideálneho plynu s explicitným uvedením konštanty na pravej strane 
vyzerá takto:

𝑁 je počet molekúl (častíc) v uvažovanom množstve plynu, Boltzmannova konštanta má 
(od 2019 definitoricky) hodnotu   

𝑘 = 1.380649×10−23 J⋅K−1

Počet molekúl vieme ľahko vyjadriť pomocou (od 2019 definitorickej hodnoty0 
Avogadrovej konštanty

𝑁𝐴 = 6.02214076 × 1023 mol−1

kde 𝑚 je hmotnosť uvažovaného plynu a M molekulová hmotnosť.
Historicky sa stavová rovnica písala v tvare

Dôvod bol taký, že veľkosť konštánt 𝑘, 𝑁𝐴 dlho nebola známa s dostatočnou presnosťou, 
kým hodnota plynovej konštanty 

𝑅 = 𝑁𝐴𝑘 =8.3144598 J mol−1 K−1

sa dala zmerať priamo porovnaním experimentu so stavovou rovnicou.

Stavová rovnica ideálneho plynu



Deje v plynoch: 
práca, teplo, energia



Zaoberali sme sa dejmi v plynoch z hľadiska dobre merateľných stavových parametrov 
𝑝, 𝑉, 𝑇 a dospeli sme k stavovej rovnici ideálneho plynu

táto rovnica sa v termodynamike charakterizuje prívlastkom „termická“ pretože v nej 
vystupuje teplota (meraná v Kelvinoch) ale žiadna veličina typu práce alebo energie, čo sú 
veličiny merané v Jouloch.
Termodynamika je “náuka o teplote, teple, práci a energii”. Teplota je stavová veličina a 
vieme ju v danom stave priamo odmerať, máme na to teplomer (čo je trochu mätúci 
historický názov, možno by bolo lepšie hovoriť teplotomer). Práca a teplo nie sú stavové 
veličiny, takže ani nemá zmysel pýtať sa na nejaké meracie prístroje ktoré by ich „v danom 
okamihu zmerali“. 
Energia je stavová veličina, ale, napodiv, nemôžeme kúpiť energometer, ktorý by zmeral v 
danom okamihu a stave systému okamžitú hodnotu celkovej energie toho systému.
Energia v danom okamihu sa nemeria, energia sa počíta podľa vzorcov, o ktorých sme 
hovorili v súvislosti s Feynmanom. Rovnici, ktorá určí energiu systému v danom stave 
výpočtom z priamo merateľných stavových veličín sa hovorí kalorimetrická rovnica. Je to 
preto, že kalorimetrické merania zohrali historicky dôležitú úlohu pri spresňovaní pojmov 
teplo a energia. Takže ideme hľadať kalorimetrickú rovnicu ideálneho plynu.



Deje v plynoch: teplo konané kuričom

Trpaslíci dostali za úlohu vykonať vratný dej zo stavu 𝑝1, 𝑉1 do stavu 𝑝2, 𝑉2 presne po 
“zelenej ceste”.Obaja sledujú teplomer plynu a počítajú objem a prispôsobujú svoje 
manipulácie výmenníkom tepla a piestom tak, aby dej naozaj prebiehal po zvolenej ceste.
Trpaslík kurič zapisuje v krátkych časových úsekoch zmeny teploty výmenníka ǁ𝑡: každá taká 
malá zmena teploty zásobníka 𝑑𝑡 znamená vykonanie malej tepelnej práce (tepla) 𝛿𝑄.
Nakoniec kurič sčíta všetky hodnoty vykonaných (infinitezimálnych )  tepiel a dostane 
celkové vykonané teplo „po zelenej dráhe“

Ešte dôležitá poznámka k označovaniu. Zmenu teploty výmenníka sme označili písmenom 𝑑,
teda písali sme 𝑑𝑡, lebo sa to počíta ako rozdiel dvoch teplotných hodnôt, po cudzom 
diferencia, preto 𝑑. Zodpovedajúce vykonané malé teplo sa ale nepočíta ako diferencia 
dvoch hodnôt nejakého „momentálneho tepla“, symbol 𝜹𝑸 má len pripomenúť, že ide o 
malú hodnotu vykonaného tepla, preto 𝜹𝑸 a nie 𝒅𝑸.



Deje v plynoch: práca konaná tlačičom

Trpaslík tlačič pomaly mení objem kontajnera po malých kúskoch 𝑑𝑉. Túto hodnotu zisťuje 
meraním malého posunutia piesta 𝑑𝑥, pričom zjavne 𝑑𝑉 = 𝑆𝑑𝑥. (V zápise všetky „déčka“ 
znamenajú poctivé diferencie, sú to všetko rozdiely dvoch okamžitých hodnôt. Pritom tlačič 
tlačí na piest smerom doľava silou o veľkosti 𝐹 = 𝑝𝑆, kde 𝑝 je okamžitý tlak plynu. To preto, 
aby sa piest pohyboval pomaly. (Presnejšie povedané tlačí silou len infinitezimálne menšou 
ako 𝑝𝑆, aby sa piest predsa len pomaly pohyboval doprava. Všimnime si že smer sily a dráhy 
je opačný, takže pri zmene objemu plynu o 𝑑𝑉 vykoná tlačič zápornú prácu

Všimnime si symbol 𝛿, ktorý opäť znamená, že sa nejedná o rozdiel dvoch nejakých hodnôt 
ale proste o malú hodnotu. Tlačič nakoniec spočíta všetky infinitezimálne vykonané práce a 
dostane celkovú prácu, ktorú vykonal



Deje v plynoch: práca konaná plynom

Pripomeňme, že pri konaní práce sú spravidla prítomní dvaja (dva fyzikálne objekty), 
„konateľ“ a „trpiteľ“. Na predchádzajúcom slajde sme počítali prácu, ktorú konal trpaslík 
tlačič. Teda tlačič bol konateľ a plyn trpiteľ.
Ibaže nielen trpaslík pôsobí cez piest na plyn, ale aj plyn pôsobí cez piest na trpaslíka. Podľa 
princípu akcie a reakcie silou rovnako veľkou ale opačne orientovanou. Pritom ide o 
kontaktnú interakciu, preto dráha trpaslíka je rovnaká ako dráha piesta. Preto plyn ako 
konateľ vykoná nad trpaslíkom ako trpiteľom rovnako veľkú prácu iba opačného 
znamienka. Práca vykonaná plynom bude



Deje v plynoch: práca konaná plynom

Práca plynu ako konateľa sa v praxi nevyužíva na strkanie do trpaslíkov, ale na niečo 
užitočnejšie, napríklad na  pohon kolesa. Pretože primárny záujem o termodynamiku 
bol praktický, ustálil sa pohľad že na prácu pri dejoch v plynoch sa pozeráme ako na 
prácu plynu, nie trpaslíka a preto definujeme 𝐴 (nečiarkované) ako prácu konanú 
plynom a čiarkované označenie volíme pre prácu externého objektu nad plynom ako 
trpiteľom.

Naopak, plynové tepelné stroje nie sú na to, aby „dodávali teplo“, preto sa na teplo v 
súvislosti s plynom dívame primárne tak že plyn je trpiteľ a trpaslík kurič konateľ a 
nečiarkované označenie 𝑄 volíme pre teplo konané vonkajším objektom. Takže ešte raz:
• 𝑄: konateľom je trpaslík kurič, trpiteľom je plyn
• 𝐴: konateľom je plyn, trpiteľom je trpaslík tlačič



Deje v plynoch: práca a teplo súčasne

Kurič a tlačič môžu spoločným koordinovaným snažením vykonať akýkoľvek vratný dej, 
napríklad po zelenej trajektórii začínajúcej v rovnovážnom stave „1“ a končiacej v stave 
„2“. Pri tom deji si starostlivo zapisujú vykonané teplo a prácu, takže nakoniec môžu 
spočítať celkovú prácu i celkové teplo.

Historicky práca sa merala v mechanických jednotkách, dnes je tou mechanickou 
jednotkou Joule. Ale teplo sa meralo v jednotkách tepla, napríklad kalóriách, teda tie 
hodnoty 𝐴′ a 𝑄 boli (akoby) nezávislé. Potom prišiel Joule a našiel „mechanický ekvivalent 
tepla“, teda v dnešnom slovníku prevod kalórií na Jouly.



Deje v plynoch: práca a teplo súčasne

Na vzorcoch sa nič nezmenilo, ale teraz už prácu a teplo meriame v rovnakých jednotkách J. 
Preto teraz na chvíľu budeme pri veličine teplo písať index J aby sme explicitne zdôraznili 
jednotku J. Máme teda



Deje v plynoch: práca a teplo súčasne

Teraz kľúčová vec: trpaslíkom rozkážeme, aby vykonali iný dej, začínajúci a končiaci v tých 
istých stavoch, ale po inej trajektórii (červenej). Spočítajú prácu i teplo po novej trajektórii a 
dostanú:

Zistia, že hodnoty práce i tepla budú iné

Ale keď spočítajú celkovú prácu (makroskopickú plus mikroskopickú) , dostanú tú istú 
celkovú hodnotu, teda

Poučenie: súčet vykonanej makroskopickej práce a tepla je nezávislý na ceste, ak tie cesty 
majú spoločný počiatočný aj spoločný koncový stav ak práca a teplo sú merané v 
rovnakých (ekvivalentných) jednotkách 



Deje v plynoch: práca a teplo súčasne

Integrály                                                 sú oba definované pre nejakú trajektóriu a pre inú

trajektóriu dajú iné výsledné hodnoty. Ale súčet, teda integrál

dá na ľubovoľnej trajektórii tú istú hodnotu, ak tie trajektórie začínajú v tom istom stave 
aj končia v tom istom stave. Hodnota toho súčtu integrálov teda závisí len na tom, kde je 
počiatočný a kde koncový stav. Znamená to teda (toto si dobre premyslite sami !!!), že 
musí existovať stavová veličina, nazvime ju E, ten súčet integrálov sa dá vyjadriť ako

Takto termodynamici objavili novú stavovú veličinu a nazvali ju energia



Prvá veta termodynamická

Pre infinitezimálny prírastok energie po infinitezimálnej trajektórii, teda pre rozdiel 
energie medzi dvoma infinitezimálne blízkymi stavmi dostaneme

Tento zákonom sme už videli a nazvali sme ho „prvá veta termodynamická“. Všimnime si, 
že pre zmenu energie používame symbol 𝑑, lebo je to rozdiel dvoch hodnôt stavovej 
veličiny. Pre prácu a teplo musíme naďalej používať symbol 𝛿.

Vzniká otázka, či názov „energia“ je vhodný, lebo toto slovo sme už používali v mechanike 
na označenie akejsi veličiny. Otázka vlastne je, či je to „tá istá veličina“. Áno, je. Stručný 
náznak „dôkazu“ je napríklad tento. Zvolíme si také dva stavy, medzi ktorými sa dá 
vykonať dej pri tepelnej izolácii, teda „bez kuriča“. V takom prípade prírastok veličiny 𝐸
bude daný len veľkosťou makroskopickej mechanickej práce. A to je práve prírastok 
veličiny, ktorú sme nazvali v mechanike energia.
Pre termodynamikov bolo teplo „mystika“: je to také oné, čo treba pridať k práci aby sme 
dostali zákon zachovania. Po tom, čo sme „uverili, že látky sa skladajú z molekúl“ sa 
mystika tepla stratila: teplo je obyčajná mechanická práca konaná medzi molekulami na 
mikroskopickej úrovni, ktorú sme si predtým makroskopicky „nevšimli“. Takže E je
energia, jej zmena je krytá prácou (súčtom makroskopickej a mikroskopickej práce).



• Čo sú vratné deje
• Prečo na pV diagrame možno zobraziť iba rovnovážne stavy (body) a vratné deje 

(čiary)
• Čo je graf izotermického deja na pV diagrame
• Nakreslite čiaru izobarického a izochorického deja na pV diagrame
• Nakreslite čiaru izobarického a izochorického deja na na tp resp tV diagrame
• Zákon pre izotermický dej
• Zákony pre izochorický a izobarický dej
• Makroskopická práca pri izotemickom deji
• Makroskopická práca pri izochorickom deji
• Makroskopická práca pri izobarickom deji
• Prvá veta termodynamická
• Vzťah medzi prácou plynu a prácou „trpaslíka-tlačiča“



Kinetická teória plynov



Molekulová hypotéza o zložení látok a jej dôsledky

Ukázali sme si, ako analýza chemických receptúr viedla na vyslovenie hypotézy, že látky sa 
skladajú z atómov a molekúl a podarilo sa vyriešiť „puzzle“ o tom ako vyzerajú 
stechiometrické vzorce zlúčenín tak, aby to bolo konzistentné s priradenými atómovými 
hmotnosťami.
To, že sme dostali konzistentnú molekulárnu interpretáciu chemických receptúr ešte 
„nedokazuje“, že molekulová hypotéza zodpovedá skutočnosti, lebo vlastne sme ju vyhútali 
tak, aby to zodpovedalo receptúram. I keď nie je úplne triviálne, že taký model sa vôbec dá 
zostrojiť, je to málo na to, aby sme uverili, že model zodpovedá skutočnosti.
Ak ale prijmeme molekulovú hypotézu, potom môžeme skúmať jej ďalšie dôsledky a urobiť 
predpovede pre iné pozorovania, nielen pre chemické reakcie. Čím bude väčšie množstvo 
pozorovaní, ktorých výsledky sa budú zhodovať s predpoveďami molekulovej hypotézy, tým 
viac budeme nadobúdať presvedčenie, že tá hypotéza zodpovedá skutočnosti.

Podľa štandardnej metodológie fyziky však nikdy nebudeme tvrdiť, že „molekulová hypotéza 
už bola dokázaná“. Fyzika nedokazuje, fyzika vyvracia. Keby sme na základe molekulovej 
hypotézy urobili nejakú predpoveď, a tá by sa nepotvrdila, potom by sme povedali, že sme 
molekulovú hypotézu vyvrátili a museli by sme hľadať novú hypotézu, prinajmenej nejakú 
modifikáciu pôvodnej hypotézy, ktorá by už viedla k súhlasu so všetkými pozorovaniami.



Dôsledky molekulovej hypotézy: 
kinetická teória teploty a tlaku plynov

My si všimneme bližšie dva dôsledky molekulovej teórie, ktoré spadajú pod novú 
hypotézu s názvom: kinetická teória plynov. Táto hypotéza hovorí, že molekuly sú v 
neustálom chaotickom pohybe a dôsledkom tohto pohybu je
• teplota ako efekt spojený s kinetickou energiou chaotického pohybu molekúl
• tlak, ako prejav nárazov molekúl na stenu nádoby, v ktorej je plyn

Avogadrov zákon: „Rovnaké objemy rôznych plynov za rovnakého tlaku a teploty obsahujú 
rovnaký počet častíc (atómov alebo molekúl)“ sa dá pochopiť iba tak, že väčšina objemu v 
kontajneri s plynom je prázdna a len kde-tu sa nachádza molekula. Ale potom molekuly v 
rovnovážnom stave nemôžu stáť nemôžu stáť: vplyvom gravitácie by sa všetky museli usadiť 
na dne kontajnera a keby sme urobili dierku pri vrchnom veku, plyn by nevyfučal von. Takže 
plyn náhodne zapĺňa celý kontajner a molekuly sa musia, predpokladáme že chaoticky, hýbať. 
Ak je to stav rovnovážny, nič makroskopické sa v ňom už nemení, tak musia mať konštantnú 
strednú hodnotu veľkosti rýchlosti alebo aj konštantný stredný kvadrát rýchlosti.
Predstavme si teraz, že v kontajneri sú dva druhy molekúl, teda zmiešané dva plyny. V 
rovnovážnom stave musí byť stredný kvadrát rýchlosti molekúl každého plynu konštantný a 
teda stredná kinetická energia molekúl každého plynu konštantná. Z toho ale nič nevyplýva 
pre vzájomné porovnanie stredných kinetických energií rôznych molekúl. Ukážeme si teraz, že 
je rozumné predpokladať, že stredné kinetické energie postupného pohybu všetkých molekúl 
(aj navzájom rôznych) sú v rovnováhe rovnaké. Vedie k tomu analýza zrážok molekúl



Náhodná veličina: rýchlosť chaotického pohybu molekúl

Predstavme si, že náhodne vyberieme jednu molekulu v plyne a zmeriame jej vektor 
rýchlosti. S týmto meraním sú spojené tri náhodné veličiny

sústreďme sa na jednu z nich       . Ide o spojitú náhodnú veličinu, má zmysel pýtať sa na 
hustotu pravdepodobnosti, ktorá ju popisuje. Správny vzorec objavil v podstate teoretickým 
uvažovaním Maxwell, ktorý sformuloval vzorec (𝑚 je hmotnosť jednej molekuly v kg)

porovnajme tento vzorec so vzorcom abstraktnej gaussovskej hustoty pravdepodobnosti

z ktorého pre strednú hodnotu a stredný kvadrát gaussovsky rozdelenej veličiny platí:

Porovnaním s Maxwellovým rozdelením  dostaneme



Maxwellovo rozdelenie rýchlostí

Maxwell tiež zistil, že priemety rýchlosti náhodnej molekuly na rôzne osi sú navzájom 
nezávislé, čo znamená že zmeranie priemetu rýchlosti na nejakú os neprinesie nijakú 
informáciu o priemete jej rýchlosti na inú os. Všetky priemety rýchlosti náhodne zvolenej 
molekuly sú teda popísané rovnakými hustotami pravdepodobnosti

V týchto vzorcoch 𝑚 je hmotnosť molekuly (obyčajná hmotnosť v kg, teda nie relatívna 
molekulová hmotnosť v jednotkách 1/12 hmotnosti atómu uhlíka), 𝑇 je teplota v Kelvinoch a 
𝑘 je Boltzmanova konštanta. Všetky priemety majú teda rovnaký stredný kvadrát 

a teda stredná hodnota kinetickej energie častice je



Maxwellovo rozdelenie rýchlostí

Ako to mohol Maxwel vyhútať?
On bol naozaj geniálny a mal oveľa lepšie argumenty než teraz napíšem, ale mohol to urobiť aj 
takto:

Hľadám neznámu hustotu pravdepodobnosti           . Čo od nej čakám? Keď sa kontajner  s 
plynom nehýbe, pravdepodobnosť kladných a záporných priemetov rýchlosti bude rovnaká, 
takže funkcia             by mala byť párna                              a bude platiť              . Veľmi veľké 
rýchlosti (v limite nekonečné) budú mať zrejme zanedbateľnú pravdepodobnosť, hľadám teda 
párnu funkciu, ktorá pre veľké hodnoty premennej klesá dosť rýchlo k nule. Takáto funkcia má 
zjavne „zvonovitý tvar“. Bakalár fyziky pozná jediný vzorec, ktorý dá taký zvonový tvar

kde 𝐶, 𝛼 sú (zatiaľ) neznáme konštanty. Maxwell ale vedel ako vyzerá

„Gaussovo rozdelenie“ a vedel aj to, že má platiť
a to už mu dalo

Odkiaľ vedel, že by malo platiť                     ?

Lebo vyhútal kinetickú teóriu tlaku plynu, že tlak na stenu nádoby 
vzniká v dôsledku nárazov molekúl na tú stenu. Pozrime sa teraz na to.



Kinetická teória tlaku

Predstavme si, že molekuly nemajú žiaden chaotický pohyb 
a že všetky molekuly pred stenou sa hýbu rovnakou 
rýchlosťou     . Je tam teda čosi ako vietor, vanúci rýchlosťou 

.
Po dopade na stenu sa každá častica odrazí tak, že priemet 
jej rýchlosti vo vodorovnom smere zmení znamienko. Pri 
odraze molekuly od stenu sa teda zmení hybnosť každej 
častice o

Vypočítajme teraz počet častíc „vetra“, ktoré sa od steny 
odrazia v priebehu nejakého času 𝜏 . Zeleným je na obrázku 
nakreslený šikmý valec s podstavou plchy 𝑆 na stene s 
výškou       . 

Ak hustota častíc „vetra“ je 𝑛, potom v tom šikmom valci sa nachádza              častíc a sú to 
práve tie, ktoré za čas 𝜏 dopadnú na plochu 𝑆 steny. Celková zmena hybnosti všetkých 
častíc, ktoré dopadnú na stenu za čas 𝜏 bude

a teda priemerná sila, ktorou tieto častice pôsobia na stenu bude                          a priemerný 
tlak uvažovaného „vetra častíc“ bude



Kinetická teória tlaku

Ukázali sme si, že ak by sa častice nepohybovali chaoticky 
náhodnými rýchlosťami ale pohybovali sa ako ustálený vietor 
rýchlosťou    ,  pôsobili by na stenu tlakom

V kontajneri sa ale hýbu náhodnými rýchlosťami, takže pre tlak 
dostaneme čosi ako

Ibaže takto je to zle, lebo od samej horlivosti sme si neuvedomili 
že k nenulovému       prispievajú aj častice s                a tie sa 
pohybujú od steny a teda na stenu vôbec nenarazia!

Správny výraz pre tlak plynu na stenu v dôsledku chaotických nárazov molekúl teda je teda 
iba polovičný

Platí 𝑛 = 𝑁/𝑉 , preto nakoniec dostaneme                          . Porovnaním so stavovou rovnicou 
𝑝𝑉 = 𝑁𝑘𝑇 dostaneme, že ak tlak je dôsledok chaotických nárazov molekúl, tak musí platiť

Tak odtiaľto to Maxwell vedel.



Teraz už rozumieme fyzikálnemu objektu „ideálny plyn“ ako jeho vlastnosti vyplývajú z 
toho, že sa skladá z molekúl. 
Teplota je daná strednou kinetickou energiou postupného pohybu molekúl

Tlak plynu na steny nádoby je daný nárazmi molekúl v dôsledku ich chaotického pohybu

odtiaľ priamo vyplýva stavová rovnica ideálneho plynu
a špeciálne pre jeden mól plynu

Celková energia plynu je určená celkovou kinetickou energiou molekúl, lebo v ideálnom 
plyne „sa molekuly navzájom necítia“, preto potenciálna interakčná energia molekúl je 
nulová. Pri jednoatómových molekulách možno kinetickú rotačnú energiu zanedbať, 
preto celková kinetická energia je daná len kinetickou energiou postupného pohybu, 
preto pre jednoatómový plyn dostávame kalorickú rovnicu

pre dvojatómový plyn

pre troj a viacatómový plyn

Súhrnný vzorec:

𝑓 je „počet stupňov voľnosti“



Historické merania v kalorimetroch pre kvapaliny neodhalili, že teplo nie je stavová 
veličina, že teplo nie je „druh energie“ ale „druh práce“, pretože kvapaliny sú prakticky 
nestlačiteľné, nemenia svoj objem a teda sa pri „dejoch v kvapalinách“ nekoná 
makroskopická mechanická práca

pretože 𝑑𝑉 = 0.

Pozrime sa teda, čo dostaneme v analogickej situácii pre ideálny plyn. Aké teplo treba 
vykonať, aby sa zmenila teplota plynu pre izochorický dej, teda pri 𝑑𝑉 = 0.

Trpaslík tlačič drží piest zafixovaný, nekoná prácu. Trpaslík kurič vykoná teplo 𝛿𝑄, teplota 
plynu sa pri tom zmení o 𝑑𝑇. Prvá veta termodynamická (zákon zachovania energie) 
hovorí

Kalorimetrická rovnica hovorí 



na zvýšenie teploty ideálneho plynu o 𝑑𝑇 pri stálom objeme treba vykonať teplo

V analógii s kalorimetrickými meraniami definujme pojem 

𝑐𝑉 špecifické teplo plynu pri stálom objeme 

ako množstvo tepla, ktoré treba vykonať na izochorické zahriatie 1 kg plynu o jeden 
Kelvin. Na zahriatie plynu o hmotnosti 𝑚 treba

preto

Okrem špecifického tepla (teda na jeden kilogram) sa zavádza aj pojem mólové 
teplo pri stálom objeme (𝐶𝑉) ako teplo potrebné na zahriatie jedného mólu plynu o 
jeden Kelvin. Dostaneme



Všimnime si teraz, že celkovú energiu ideálneho plynu vyjadrujeme ako

porovnaním so vzorcom

vidíme, že celkovú energiu plynu vieme vyjadriť ako

Pozor! Energia plynu je stavová veličina. Nesúvisí s nijakým dejom. Napriek tomu sa dá 
pre ideálny plyn vyjadriť vzorcom, v ktorom vystupuje mólové teplo pri stálom objeme. To 
je len zhoda okolností. Energia plynu nie je daná nijakým „stálym objemom“. Je to len 
prakticky užitočný vzorec, lebo v ňom vystupuje merateľná charakteristika 𝐶𝑉, namiesto 
abstraktnej charakteristiky 𝑓 (počet stupňov voľnosti molekuly).



Mayerov vzťah

Experimentálne sa oveľa ľahšie zabezpečuje konštantný tlak plynu v porovnaní s 
konštantným objemom plynu. Pozrime sa preto, aké teplo treba dodať na zahriatie plynu 
pri konštantnom tlaku, tlačiča nahradíme „barostatom“. Aké teplo musí dodať kurič pre 
zvýšenie teploty o 𝑑𝑇 pre jeden mól plynu v takomto experimentálnom usporiadaní?

Zákon zachovania energie

Stavová rovnica

Odtiaľ pri stálom tlaku (teda pri 𝑑𝑝 = 0) dostaneme

Po dosadení do rovnice pre energiu jedného mólu

Vidíme, že pre mólové teplo pri stálom tlaku dostaneme Mayerov vzťah 



Neideálne (reálne) plyny

Kondenzácia



para (plyn)

para (plyn)

kvapalina

kvapalina

uvoľní sa latentné teplo skvapalnenia
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van der Waalsova rovnica



kritická teplota, kritická izoterma

Fázový diagram





voda - anomália



• Napíšte Maxwellovo rozdelenie, hustotu pravdepodobnosti pre priemet 
rýchlosti na os x. Normalizačnú konštantu nemusíte vedieť naspamäť.

• Napíšte, ako súvisí tlak ideálneho plynu so strednou kinetickou energiou 
postupného pohybu molekúl

• Napíšte, ako súvisí teplota plynu so strednou kinetickou energiou 
postupného pohybu molekúl

• Napíšte vzorce pre energiu ideálneho jednoatómového, dvojatómového 
a viacatómového plynu.

• Čo je to tlak nasýtených pár
• Čo je kritická teplota plynu
• Čo je skupenské teplo kondenzácie



Doplnok: adiabatický dej



Pre strmosť izotermy by sme dostali

adiabaty sú strmšie ako izotermy



Rovnica adiabaty

Poissonova konštanta



Kapilarita: povrchový jav

• V trojdimenzionálnom svete platí tvrdenie, že oveľa viac molekúl sa 

nachádza vnútri objemu nejakej látky než na povrchu tohto objemu.

• Molekuly na povrchu inakšie „cítia svoje okolie“ než molekuly vnútri objemu

• Medzimolekulové sily sú krátkodosahové, preto už v malej vzdialenosti od 

povrchu molekula „cíti svoje okolie“ rovnako ako molekula vo veľkej 

vzdialenosti od povrchu

• Len veľmi tenká vrstva molekúl na povrchu sa správa inak

• Molekula na povrchu „cíti“ jednostrannú príťažlivú silu od molekúl vnútri 

objemu, príťažlivé sily na molekulu vnútri objemu od okolitých molekúl sa 

rušia

• Ak sa chce molekula dostať na povrch, musí za to „niekto zaplatiť energiou“

• Látky majú „prídavnú energiu“ za molekulovú povrchovú vrstvu oproti tomu, 

akú by mali energiu, keby nebol povrch

• Tá prídavná energia je úmerná ploche povrchu, existuje teda 

hustota povrchovej energie



Hustota povrchovej energie vody je napríklad väčšia ako u mydlového roztoku. Preto 
ak na pokojnú hladinu vody v nejakej nádobe položíme opatrne slučku z bavlnenej 
nite a do stredu slučky kvapneme trošku mydlového roztoku, slučka sa roztiahne na 
presný kruh: systém „uprednostňuje“ aby povrch vody bol čo najmenší a povrch 
mydlového roztoku čo najväčší, vtedy bude celková povrchová energia minimálna.

Efekt optimalizácie povrchovej energie sa prejavuje tak, že na krivku − hranicu 

rozhrania pôsobí sila všade kolmá na dotyčnicu ku krivke. Veľkosť sily pôsobiacej 

na element rozhrania dĺžky 𝑑𝑠 je úmerná 𝑑𝑠. Konštanta úmernosti sa volá 

povrchové napätie. Označme ho na chvíľu 𝑜:

Ukážeme si, že povrchové napätie je rovné hustote povrchovej energie: 𝑜 = 𝜎.



Súvislosť povrchového napätia s plošnou hustotou povrchovej 
energie názorne vyplýva z nasledujúceho jednoduchého
pokusu. 
Keď do vodného roztoku mydla a glycerolu ponoríme obdĺžnikový 
rámček R s pohyblivou priečkou S, vytvorí sa v ňom tenká
kvapalinová blana s povrchovými vrstvami po obidvoch stranách. 
Preto, ak povrchové napätie použitého roztoku je o a dĺžka
priečky 𝑙, blana účinkuje na priečku silou 𝐹 = 2𝑜𝑙. Faktor 2 
pochádza z toho, že povrchy sú dva, po oboch stranách rámčeka.

Ak posunieme priečku o 𝑑𝑠 vykoná sa práca 
𝛿𝐴 = 2𝑜𝑙 𝑑𝑠

Táto práca sa spotrebuje na zväčšenie energie povrchov. Plocha 
povrchu na každej strane sa pri posunutí priečky zväčší o hodnotu

𝑑𝑆 = 𝑙 𝑑𝑠
Zvýšenie povrchovej energie teda bude

𝑑𝑊 = 2𝜎𝑙 𝑑𝑠
Porovnaním dostaneme 𝑜 = 𝜎.



Vzťah 𝑜 = 𝜎 je aj jednotkovo v poriadku.  Jednotkou hustoty povrchovej energie 

je J m-2, čo je to isté ako N m-1.

Príklad niekoľkých hodnôt povrchových napätí

kvapalina povrchové napätie v 
jednotkách 10-3 N m-1

alkohol 22

olivový olej 33

voda 73

glycerol 66

ortuť 500



Ako vieme z dennej skúsenosti, obyčajne ani za rovnováhy nie je hladina kvapaliny v 
nádobe všade vodorovná. Vo všeobecnosti je povrch kvapaliny pri stene zdvihnutý, alebo 
stlačený, a len vo zvláštnom prípade je až po stenu presne vodorovný. 

Tento jav môžeme vysvetliť jestvovaním 
povrchových napätí nielen na rozhraní 
dvoch kvapalín alebo kvapaliny a plynu, 
ale aj na rozhraní pevného telesa a 
kvapaliny a na rozhraní pevného telesa a 
plynu. Detaily rozoberať nebudeme.



Keď do kvapaliny v širšej nádobe ponoríme v 
zvislej polohe úzku rúrku s kruhovým prierezom, 
tzv. kapiláru, hladina kvapaliny bude v kapiláre v 
inej výške ako v širokej nádobe.

Kvapalina, ktorá zmáča steny kapiláry (napríklad 
voda v sklenej kapiláre), pôsobením povrchového 
napätia vystúpi v kapiláre nad úroveň hladiny v 
širokej nádobe; nastáva kapilárna elevácia a 
zakrivený povrch kvapaliny, tzv. meniskus, je dutý. 
Keď kvapalina steny kapiláry nezmáča, hladina 
kvapaliny v kapiláre je pod úrovňou hladiny
v širokej nádobe; nastáva kapilárna depresia a
meniskus je vypuklý.

Odhadnime rádovo do akej výšky vystúpi voda v 
kapiláre o polomere 𝑟 = 0.1 mm

𝜚 je hustota vody.
Po dosadení hodnôt dostaneme ℎ ≈ 15cm.

Hodnota elevácie nie je malá, ale určite nestačí napríklad na to, aby stromy dostali vodu na 
vrchol koruny kapilárnymi silami. V stromoch to musí byť niečo iné. Prezradíme: osmóza



Predstavme si, že sme na konci sklenej rúrky vyfúkli mydlovú bublinu s polomerom 𝑅. 
Pretože sa kvapalinová blana pôsobením povrchového napätia usiluje svoj povrch, zmenšiť, 
za rovnováhy je tlak 𝑝 vo vnútri bubliny väčší než tlak 𝑝0 na vonkajšej strane. Rozdiel 
obidvoch tlakov môžeme určiť pomocou zákona o zachovaní energie.
V zariadení podľa obr. posunutím piesta vykoná trpaslík posúvajúci piest prácu 𝑝𝑑𝑉
pričom 𝑑𝑉 je zväčšenie objemu bubliny. Plyn pritom vykoná prácu proti atmosférickému 
tlaku 𝑝0𝑑𝑉 Podľa zákona o zachovaní energie celková bilancia práce „je použitá“ na
zväčšenie povrchovej energie bubliny, teda p − p0 dV = 2𝜎𝑑𝑆, kde 𝑑𝑆 je zväčšenie 

povrchu bubliny 𝑑𝑆 = 𝑑 4𝜋𝑅2 = 8𝜋𝑅𝑑R, 𝑑𝑉 = 𝑑
4
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𝜋𝑅3 = 4𝜋𝑅2𝑑𝑅. Faktor 2 vo vzorci 

povrchovej energie pochádza z toho, že bublina má dva povrchy, vonkajší a vnútorný.
Po dosadení dostaneme pre rozdiel tlakov daných dvoma povrchmi

Pod rozhraním guľového tvaru o polomere 𝑹
medzi dvoma kvapalinami sa teda vytvorí 

kapilárny pretlak (daný len jedným povrchom)

Ak kozmonautom v bezváhovom stave unikne do 

vzduchu malé množstvo nejakej kvapaliny, vytvorí 

guličku (lebo gulička má minimálny povrch pri 

danom objeme) a kapilárny pretlak vnútri guličky 

je daný uvedeným vzorcom.



Kapilárny pretlak v bubline je teda nepriamo úmerný polomeru bubliny, preto ak 

spojím dve bubliny rozdielnych polomerov, bude menšia bublina nafukovať 

väčšiu. Všeobecnejší vzorec pre pretlak pod zakriveným povrchom neguľového 

tvaru je odvodený napríklad v Ilkovičovej učebnici.



Osmóza

Sú známe polopriepustné ( semipermeabilné ) blany, ktoré v niektorých 

prípadoch prepúšťajú len rozpúšťadlo, nie však aj rozpustenú látku.

V zariadení podľa obr. roztok neprchavej látky je oddelený od čistého 

rozpúšťadla polopriepustnou blanou. Podľa experimentálnej skúsenosti na strane 

roztoku musí účinkovať tlak väčší než na strane čistého rozpúšťadla, inak 

rozpúšťadlo bude prenikať cez polopriepustnú blanu do roztoku a zrieďovať ho. 

Rozdiel 𝑝 − 𝑝0 sa nazýva osmotický tlak. Dá sa ukázať, že osmotický tlak je 

práve taký veľký, ako keby rozpustená látka vyplňovala objem roztoku v plynnom 

stave





Reverzná osmóza

Osmotický tlak morskej vody je okolo 25 at.



Zrážky častíc

Rovnovážny stav plynu nastáva v dôsledku zrážok častíc. I v prakticky ideálnom 

plyne, keď typicky sa molekuly nachádzajú ďaleko od seba a pri počítaní energie 

plynu nemusíme zarátavať potenciálnu energiu vzájomnej interakcie molekúl, 

dochádza pri náhodnom blízkom priblížení molekúl k zrážkam.

Uvedieme si teraz niekoľko technických vecí, ktoré sa používajú pri teoretickom 

popise zrážkových procesov.

Postupne si priblížime pojmy

• stredná doba medzi zrážkami

• stredná voľná dráha

• účinný prierez zrážky









Stredná doba medzi zrážkami molekúl

Predstavme si taký škôlkarsky popísaný myšlienkový experiment. Dám jednej 

molekule malý zošitok a požiadam ju, aby si zapisovala časy, keď do nej narazí iná 

molekula. Po určitom dlhom čase si od nej vypýtam ten zošitok a popočítam časové 

rozdiely medzi po sebe nasledujúcimi okamihmi zrážok. Potom vypočítam strednú 

hodnotu tých časových rozdielov. To čo dostanem sa volá stredná doba medzi 

zrážkami. A je to rovné času 𝜏, ktorý sme videli v príklade o ruskej rulete: molekula si 

tiež môže vyčísliť pravdepodobnosť že do nej nejaká iná molekula narazí v 

nasledujúcom krátkom časovom intervale 𝑑𝑡, pričom tá pravdepodobnosť sa z 

rozmerových dôvodov musí dať vyjadriť pomocou nejakého časového parametra 𝜏 v 

tvare

Potom, keď do molekuly niekto naozaj narazí, môže sa spýtať aká je hustota 

pravdepodobnosť, že nasledujúci záznam o zrážke bude v intervale (𝑡, 𝑡 + 𝑑𝑡) od 

posledného zápisu a dostane hustotu pravdepodobnosti

a stredná doba medzi zrážkami bude práve 𝜏.



Stredná voľná dráha

V časových intervaloch medzi „záznamami o okamihoch zrážok v zošitku“ sa 

molekula pohybuje podľa Newtonovej pohybovej rovnice cítiac prípadne len silu od 

nejakého „vonkajšieho poľa“, napríklad gravitačného.

Dráha, ktorú ubehne medzi zrážkami sa volá voľná dráha a v strednom sa tomu 

hovorí stredná voľná dráha a označuje sa spravidla 𝑙. Ak poznáme strednú dobu 

medzi zrážkami 𝜏, potom stredná voľná dráha je rádovo rovná

kde     je typická rýchlosť chaotického pohybu molekúl. Zámerne sme povedali 

„rádovo“, lebo pri rigoróznom pokuse o definíciu strednej voľnej dráhy a jej závislosti 

na strednej dobe medzi zrážkami  by sme narazili na technické matematické 

nepríjemnosti. V učebniciach sa preto uspokojujeme iba s radovo presnou definíciou 

strednej voľnej dráhy a vynásobením „typickou rýchlosťou“ bez toho aby sme presne 

definovali, čo sa pojmom typická rýchlosť presne myslí.



• Napíšte rovnicu adiabaty
• Čo je Poissnova konštanta v rovnici adiabaty?
• Vysvetlite kvalitatívne prečo kvapalina má povrchovú hostutu energie.
• Ako súvisí hustota povrchovej energie a kapilárna sila na jednodtku dĺžky čiarového 

rozhrania
• Ako osmotický tlak súvisí s  osmózou a inverznou osmózou.
• Vyjadrite pravdepodobnosť zrážky častice v krátkom okamihu dt
• Aký je fyzikálny význam časovej konštanty  vo vzťahu pre pravdepodobnosť zrážky 

častice v krátkom okamihu dt
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𝑗 particles/cm-2/s

𝑛 detector_clicks/s

Účinný prierez pre „šťuknutie detektorov“



Priestorový uhol

jednotka steradián



Totálny účinný prierez

Keby som detektormi pokryl celú sféru okolo terča, okrem maličkej plôšky v 

priamom smere, kam idú projektily ktoré „nenarazili“ potom príslušný počet 

šťuknutí detektorov je vyjadrený tiež nejakou plochou na myslenej rovine kolmej 

na zväzok projektilov 



Odhad strednej voľnej dráhy v plyne z účinného prierezu

Každá častica plynu predstavuje terč o ploche 

𝜎. V akej hĺbke sa zastaví bodový projektil?

Hustota častíc v plyne 𝑛.

Celková plocha terčov na ceste

Zakrytá zadná stena:

rádovo stredná voľná dráha



Pre typický plyn

• 𝑛 = 0,3. 1026 m-3

Rádovo

• typický rozmer molekuly 1 nm

• 𝜎 = 0.1 nm2

• 𝑙 = 3.10−7 m

• 𝜏 = 10−9 s
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Molekula neustále meniaca po zrážkach smer svojho pohybu sa správa ako „opitý 
námorník“. 

Námorník  vyjde z krčmy a pretože je totálne opitý kráča domov nie cielene ale 
náhodne. Robí opakovane kroky náhodného smeru. Otázka je, ako ďaleko sa 
typicky môže dostať po 𝑛 krokoch. Úlohu vyriešime pre námorníka, ktorý kráča v 
jednorozmernom svete, teda po priamke. Naštartuje v bode so súradnicou 0 a po 𝑛
krokoch je jeho súradnica 𝑥𝑛. Zistíme, že stredný kvadrát vzdialenosti, kam sa 
dostane námorník po 𝑛 krokoch rastie ako počet krokov, nie ako kvadrát počtu 
krokov, ako to platí, ak kráča nie náhodne ale cielene v jednom smere. Teda 
vzdialenosť, kam sa typicky dostane rastie ako 𝒏.
Dĺžka kroku jednej blúdiacej molekuly je typicky 300 nm. Za ako dlho typicky 
prekoná vzdialenosť 10m? 10m = 3.106 cielených krokov = 1013 opitých krokov .
Jeden opitý krok trvá 10−9 s, takže jedna molekula potrebuje typicky vyše hodiny 
na prekonanie 10 m. 



Tu je „teória“ opitého námorníka

Rovnica pre jedného námorníka znie (pre n-tý krok)

Majme 𝑁 námorníkov, pre každého napíšeme jeho 
rovnicu. Pre i-teho námorníka bude

Predstavme si rovnice pre všetkých 𝑁námorníkov napísané pod 
sebou, sčítajme ich a výsledok vydeľme počtom námorníkov. 
Dostaneme

Keďže znamienka v rovniciach sú náhodné, sčítaním veľkého 
počtu rovníc vznikla v stĺpci krokov nula. Dostali sme aký je vzťah 
medzi strednou polohou námorníka po 𝑛 krokoch a strednou 
polohou námorníka po 𝑛 − 1 krokoch



Riešením tohto rekurzívneho vzťahu pre všeobecné 𝑛 je

Teda v stredná poloha námorníka je „v krčme“. Informačne bohatší 
vzťah dostaneme, keď rovnice námorníkov najprv umocníme na druhú.

Po sčítaní a vydelení počtom dostaneme

Riešením tohto rekurzívneho vzťahu je

Teda stredný kvadrát vzdialenosti kam sa dostane námorník po 𝑛
krokoch rastie len ako počet krokov, nie ako kvadrát počtu krokov, ako 
to platí, ak kráča nie náhodne ale cielene v jednom smere.



Difúzia molekúl

Molekuly plynu sa pohybujú ako opití námoerníci. Robia náhodne kroky, ktoré 

majú dĺžku strednej voľnej dráhy. Preto keď urobia 𝑛 krokov dostanú sa 

typicky iba do vzdialenosti 𝑛𝑙.

Aby sa molekula dostala do vzdialenosti 10m od „štartu“, musí vykonať

9𝑥1014 krokov, to je 9 × 105 sekund!!
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Aplikácie



1

Elementy spracovania dát



2

Jednoduché meranie

Analyzujme jednoduché fyzikálne meranie: meranie rezistora abstraktným 
ohmmetrom. Preto abstraktným, lebo naozajstné ohmmetre sa tak 
nesprávajú, ako ďalej budeme predpokladať. Ale modeluje to nejakú situáciu 
a pre naozajstnú analýzu reálnej situácie musíme použiť hlavu a premyslieť si, 
ako aplikujeme to, čo sa tu abstraktne naučíme.
Máme jeden konkrétny rezistor. Budeme predpokladať, že hodnota jeho 
odporu, ktorú chceme určiť nie je náhodná ale celkom konkrétna hodnota. 
Povedané lapidárne „ten rezistor presne vie, koľko má Ohmov“. Keby vedel 
hovoriť, povie nám to, a nemusíme sa trápiť analyzovaním „chýb merania“. 
Ibaže nevie hovoriť. Mám konkrétny ohmmeter, pripojím ho k rezistoru, ukáže 

číslo: 46.6 Ω. To ale neznamená, že „naozajstná hodnota“ 
odporu je 46.6 Ω. Problém je v tom, že údaj ohmmetra sa 
„náhodne líši“ od skutočnej hodnoty. Opakujeme: 
budeme sa tváriť, že existuje čosi ako skutočná, presná, 
nenáhodná hodnota odporu a údaj ohmmetra je 
náhodná veličina, ktorá sa od skutočnej náhodne líši.

Reálna „skutočná“ hodnota odporu je tiež trochu náhodná, lebo napríklad 
teplota v miestnosti trochu fluktuuje, ale to je v praxi úplne zanedbateľné.
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Jednoduché meranie

Ohmmeter nie je celkom ilustrácia toho, čo chceme ďalej 
robiť, ale zase ilustruje všelijaké iné úskalia, na ktoré si 
musím dávať v reáli pozor.
Predovšetkým zmerať odpor pomocou hrotov ako na 
obrázku je celkom umenie, kvôli zlým kontaktom. Špina, 
oxidácia. Ohmmeter môže ukázať takmer čokoľvek. 

Údaj na displeji bude divoko náhodný ale to je nie ten typ náhody, o ktorej sa 
chceme baviť. Ďalej ohmmeter môže byť systematicky zle ukazujúci. Kvôli slabej 
batérii, kvôli zlému nastavenie, kvôli starnutiu ... Všetkému tomu sa hovorí 
systematická chyba, lebo nemá náhodný charakter a nedá sa jej zbaviť opakovaným 
meraním, treba ju identifikovať a zbaviť sa jej alebo ju aspoň odhadnúť a upozorniť 
na ňu „zákazníka“.
Po tom, čo si odmyslíme divočiny a systematiku ostane náhodná chyba merania, teda 
že pôsobením nejakej náhodnej príčiny (ktorú nemám pod kontrolou) sa zobrazená 
hodnota líši od skutočnej hodnoty. Terminológia používané v skriptách kolegu 
Kundracika (odporúčam!) http://davinci.fmph.uniba.sk/~kundracik1/SED

chyba merania :   rozdiel medzi získanou a skutočnou hodnotou veličiny 

neistota merania: odhad chyby merania 

V praxi sa často terminologicky nerozlišuje medzi chybou a neistotou a hovorí 

sa proste o chybe.

http://davinci.fmph.uniba.sk/~kundracik1/SED
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Jednoduché meranie

V ďalšom budeme teda predpokladať, že skutočná hodnota meranej veličiny je 
fixné nenáhodné číslo a údaj meracieho prístroja (nameraná hodnota) je 
náhodná veličina.
Ako každá náhodná veličina aj nameraná hodnota musí mať nejakú hustotu 
rozdelenia pravdepodobnosti 𝜌 𝑥 . O tejto funkcii málokedy vieme niečo 
exaktne, ale my sa tu budeme tváriť, že ide o Gaussovo rozdelenie, teda

Ak meranie nemá systematickú chybu, potom hodnota 𝜇 je skutočná hodnota 
meranej veličiny a merané hodnoty sú  okolo nej rozptýlené s varianciou 𝜎2. O 
hodnote 𝜎 spravidla niečo vieme alebo aspoň tušíme, je to vlastne to, čo 
Kundracik vola neistota jedného merania. My tu budeme predpokladať, že 
hodnota 𝜎 „je napísaná na meracom prístroji“, teda že ju niekto určil pri jeho 
kalibrácii.
Je zrejmé, že nás nezaujíma údaj prístroja, teda jedna nameraná hodnota, my 
chceme vedieť hodnotu 𝜇.
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Jednoduché meranie bez opakovania

Zhrňme tu, čo sme povedali o jednorazovom meraní nejakej veličiny. Výsledkom 
merania je jediná „nameraná hodnota“ 𝑥1. Na meracom prístroji je napísaná 
hodnota neistoty jedného merania 𝜎. Do protokolu ako výsledok zapíšeme čosi ako:

Teraz ide o to, čo to znamená. Varovanie: ten zápis nehovorí nič o tom, že by meraná 
veličina bola náhodná a jej rozdelenie pravdepodobnosti odhadujeme nejako tak, 
ako to naznačuje ten zápis. Naopak, meraná veličina má (anjelom v nebi presne 
známu) určitú fixnú hodnotu. Ten zápis hovorí niečo o nás ako experimentátoroch, 
hovorí niečo o našom odhade našej pravdepodobnosti namerať hodnotu s menšou 
alebo väčšou chybou merania. Pravdepodobnosť, o ktorej hovorí ten zápis sa týka 
tohto: 
Predstavme si, že ten istý rezistor s tou istou skutočnou hodnotou odporu zmeria 
veľa experimentátorov, Jano, Jožo, Fero, Mišo,.... Každý urobí jediné meranie. Každý 
nameria inú (svoju) konkrétnu hodnotu 𝑥1. Tie namerané hodnoty od rôznych 
experimentátorov budú náhodne rozdelené a ten zápis hovorí o našom odhade 
hustoty pravdepodobnosti tých nameraných hodnôt. Očakávame, že tie namerané 
hodnoty budú rozdelené gaussovsky okolo nejakej strednej hodnoty 𝜇, ktorú 
odhadujeme našou hodnotou 𝑥1 a jednu štandardnu odchýlka toho rozdelenia 
odhadujeme ako 𝜎.
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Jednoduché meranie bez opakovania

Tento zápis hovorí, že keď veľmi veľa 
experimentátorov nameria jednorazovo 
veličinu x potom v 68.2% prípadov bude 
skutočná hodnota meranej veličiny ležať v 
rámci intervalu (𝑥1 − 𝜎, 𝑥1 + 𝜎).

Inými slovami povedané to znamená toto. Budem vystupovať ako súdny znalec na 
súde a dostanem otázku „koľko promile alkoholu mal obžalovaný v krvi?“. 
Odmeriam vzorku jedenkrát „alkoholometrom“ a napíšem

Ak by to sudca interpretoval tak, že alkohol nebol pod 1.0 % a obžalovaného by 
odsúdil, potom by nedobre interpretoval, čo ten zápis o meraní hovorí. Neviem ako 
to chodí na naozajstnom súde, ale ak by to tak bolo, potom zo 100 obžalovaných (u 
ktorých uvediem ako expert tento konkrétny interval) na základe môjho svedectva 
odsúdia 14 nevinných!!! Lebo v 13.6 % prípadoch skutočná hodnota (asi, teda 
podľa môjho odhadu neistoty) leží pod spodnou hranicou  intervalu, ktorý som 
uviedol. Uf!!!
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Zdôraznime znovu veľmi jasne. Zápis typu

vypovedá o tam, ako ja odhadujem možnosť mojej smoly, že sa mýlim. 

Nespával by som dobre, keby som myslel že na základe mojich svedectiev odsúdili 
14 nevinných z každej stovky obžalovaných.

Neviem, akú inštrukciu dávajú na školení súdnych znalcov, ja by som radšej uvádzal 
výsledok v tvare „n% confidence level interval“. Napríklad by som sudcovi 
povedal, že 95% confidence level interval je približne (𝑥1 − 2𝜎, 𝑥1 + 2𝜎).

Ak na základe takejto výpovede odsúdia 
niekoho, že jeho hodnota nespadá do tohto 
intervalu, potom na základe mojej výpovede 
odsúdia už „len“ 2 nevinných zo 100 
obžalovaných. To už by som spával dobre?

Vo fyzike sa spravidla verí na pravidlo „aspoň 3𝜎“. Teda napríklad, že publikujem, 
že meraná hodnota sa líši od takej, ktorej sme doteraz verili, ak je to o „viac ako o 
3𝜎“. S veľmi vážnymi oznámeniami sa čaká dlhšie, kým sa nahromadí dostatočná 
štatistika. Objav Higgsa oznámili, keď to bolo čosi okolo 7𝜎.

Intervaly spoľahlivosti
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Zmenšenie neistoty: urobiť viacero meraní
Doteraz sme diskutovali neistotu pri jednom odmeraní nejakej veličiny. A hovorili 
sme, že ak merania urobia postupne Jano, Mišo, Fero,... namerajú rozličné 
hodnoty. Namerané hodnoty od rôznych experimentátorov budú náhodne 
rozdelené. Ako každá náhodná veličina aj nameraná hodnota musí mať nejakú 
hustotu rozdelenia pravdepodobnosti 𝜌 𝑥 . O tejto funkcii málokedy vieme niečo 
exaktne, ale my sa tu budeme tváriť, že ide o Gaussovo rozdelenie, teda

V tom rozdelení je skrytá mne neznáme hodnota 𝜇, teda skutočná hodnota 
meranej veličiny. Idea je teraz taká: merania nemusia robiť iní experimentátori, ja 
sám môžem zopakovať to meranie veľakrát a získam 𝑛 vzoriek „nameranej hodnoty. 
Je to teda čosi, ako keby som mal zásobník („mech“) vzoriek náhodnej veličiny a 
stojím pred nasledovnou úlohou: Máš k dispozícii plný mech vzoriek náhodnej

veličiny rozdelenej ako 𝑵(𝝁, 𝝈), kde hodnota 𝝈 je známa ale hodnota 𝝁
je neznáma. Môžeš vytiahnuť z vreca nejaký počet vzoriek a ich 
„štatistickou analýzou“ určiť čo možno najlepšie neznámy parameter 𝝁. 
Z jednorazového merania nemôžem odhadnúť skutočnú hodnotu 
meranej veličiny inak ako tak, že je to hodnota, ktorú som práve nameral. 
Na základe viacerých opakovaných meraní sa to dá urobiť lepšie. Veda, 
ktorá poskytuje rady „ako takéto veci robiť“ je matematická štatistika.
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Nápad: urobím viac meraní a z nich aritmetický priemer

Chcem experimentálne určiť 𝜇. Vytiahnem z vreca 𝑛 čísel 
(prakticky to znamená „urobím 𝑛 meraní) 

Vypočítam aritmetický priemer. Čísla 𝑥𝑖 sú náhodné, preto 
aj je náhodné číslo. Ukážeme si o chvíľu, že toto 
náhodné číslo má Gaussovo rozdelenie pravdepodobnosti, 
aké sú parametre toho rozdelenia?

Treba si jasne uvedomiť, akú strednú hodnotu sme to počítali. Máme veľa 
experimentátorov. Každý z nich urobí 𝑛 meraní a každý vypočíta svoj aritmetický 
priemer. To sú náhodné priemery. Ich stredná hodnota je to čo sme práve spočítali. 
Hovorí sa tomu stredná hodnota cez súbor experimentátorov.
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Variancia aritmetického priemeru

Poznáteda dva parameter pre rozdelenie náhodných hodnôt aritmetických 
priemerov 𝑛 meraní získaných veľkým súborom experimentátorov. Ostáva určiť 
hustotu pravdepodobnosti týchto náhodných hodnôt. Ukážeme, že je to Gauss.
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Súčet dvoch Gaussov je Gauss

Výsledok je Gauss so 𝜎2 = 2.
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Neistota aritmetického priemeru

Ukázali sme si, že súčet dvoch gaussovsky rozdelených premenných je gaussovsky
rozdelený. Preto aj súčet 𝑛 gaussovsky rozdelených premenných je gaussovsky
rozdelený. A preto zjavne aj aritmetický priemer 𝑛 gaussovských premenných je 
gaussovsky rozdelený. Stredná hodnota a variancia tohto výsledného rozdelenia je

Som experimentátor a mám zmerať veličinu, ktorej presná (ale neznáma) 
hodnota je 𝜇, a neistota (jedna štandardná odchýlka) jedného merania je známa 
a má hodnotu 𝜎. Čo mám urobiť? Zmerať tú veličinu 𝑛-krát a vydať výsledok v 
tvare 

Poučka: neistota aritmetického priemeru 𝒏 nameraných hodnôt je 𝒏-krát 
menšia ako neistota jedného merania.
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Zapamätajte si „hieroglyf“

„Odmocnina z n“ sa vo vzorcoch zo štatistiky vyskytuje enormne často a je dobre 
rozumieť prečo. „Prečo to vyšlo, ako to vyšlo.“

Je to opitý námorník
Keď počítame aritmetický priemer sčítame 𝑛 čísel. Každé sa líši od skutočnej 
hodnoty o náhodnú chybu, ale tie náhodné chyby majú náhodné znamienka. 
Presne ako kroky opitého námorníka majú náhodný smer. Preto aj veľkosť súčtu 
náhodných chýb nebude 𝑛-krát veľkosť náhodnej chyby 𝜎, ale len 𝑛-krát veľkosť 
náhodnej chyby a po predelení 𝑛 dostaneme 
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Meranie valčeka mikrometrom

Doteraz sme sa tvárili, že na meracom prístroji „je napísaná“ hodnota neistoty 
jedného merania. Často to tak nie je a neistotu jedného merania musíme odhadnúť 
zo samotných meraní. Nie je to ťažké, vykonáme 𝑛 meraní, pozrieme sa ako sú 
jednotlivé výsledky rozptýlené okolo aritmetického priemeru a máme odhad neistoty 
jedného merania.
V živote sme to všetci robili na prvom praktiku v úlohe „meranie priemeru valčeka 
mikrometrom“. Valček sa odmeral 10-krát a potom „sa to spracovalo“. Problém bol 
len v tom, že pri meraní človek dostane 10-krát tú istú hodnotu, lebo mikrometer je 
kvalitný a valček dobre vysústružený. Takže všetci sme po čase prišli na to, že to 
„treba našvindľovať“. Vymysleli sme si 5 akože nameraných hodnôt a spracovali do 
tabuľky v protokole. 

i xi (xi-x)2

1 5.2 0.0484

2 5.1 0.0144

3 4.8 0.0324

4 4.9 0.0064

5 4.9 0.0064

4.98 0.027

V žltej bunke je odhad neistoty jedného merania.



V tabuľke sa vypočítal najprv aritmetický priemer  podľa vzorca

a potom odhad kvadrátu neistoty jedného merania

Vzorec je zrejmý, vypočítajú sa kvadráty odchýlok jednotlivých meraní od 
aritmetického priemeru a potom ich priemer, čo je asi dobrý odhad kvadrátu 
neistoty jedného merania. 

Ibaže priemer sa robí dajako divne, delí sa hodnotou (𝑛 − 1) a nie 𝑛. Že je to 
tak správne, prenechávam na duševnú aktivitu čitateľa. Treba si overiť, že 
stredná hodnota takto odhadnutého kvadrátu je naozaj variancia rozdelenia 
výsledkov meraní. Intuitívny dôvod odkiaľ sa berie −1 je v tom, že merania 
sme už raz použili na výpočet aritmetického priemeru, takže z 5 kvadrátov 
odchýlok v riadkoch je sú len 4 riadky nezávislé. 

Na záver sme našvindľované dáta zhrnuli do víťazného vzorca

15Toto je hieroglyf „odmocnina z n“ za „opitého námorníka“.



• Ako súvisí účinný prierez, hustota prúdu projektilov a počet šťuknutí 

detektorov v rozptylovom experimente.

• Ako súvisí stredný kvadrát vzdialenosti kam dokráča opitý námorník 

po n krokoch s tým počtom krokov

• Ako pre Gaussovom rozdelení súvisí 95% interval spoľahlivosti so 

strednou kvadratickou odchýlkou

• Aké je približne percento spoľahlivosti v intervale plus mínus jedna 

štandardná odchýlka



Elementy metodológie fyziky

• Fyzika je motivovaná hľadaním pravdivého obrazu sveta okolo nás

• Ale neuplatňuje si nárok na pravdu

• Netvrdí, že to, čo učí, je pravda

• To, čo učí sú dobré „rady do života“

• Občas tie dobré rady modifikuje alebo zmení

• Na rozdiel od matematiky, ktorá tvrdí, že jej vety sú pravdivé

• Matematika je rigorózna veda, vie „ako sa dokazuje pravda“

• V skutočnosti „pravidlá dokazovania pravdy vznikli „v podstate konsenzom“, 

dohodou

• Ale potom, ak sa pravidlá dokazovania použili správne, o pravdivosti výsledku sa 

už „nehlasuje“. V dôkaze niekto môže nájsť chybu, ale o tej chybe tiež niet sporu

• Fyzika nedokazuje pravdivosť svojich tvrdení

• Fyzika svoje tvrdenia vyvracia, zamieta, falzifikuje

• A potom sa ich snaží nahradiť, upresniť, ohraničiť ich platnosť



Sir Karl Raimund Popper (28 July 1902 – 17 September 1994)

Požiadavka falzifikovateľnosti vedeckej teórie



Ako sa falzifikuje teória

Tak, že sa nájde nesúlad medzi predpoveďou teórie a výsledkom merania

l každý výsledok je zaťažený prinajmenej nejakou náhodnou chybou merania, takže 

presný súlad s teóriou sa nenájde nikdy. Takže pravidlo o falzifikácii treba upraviť

Tak, že sa nájde štatisticky signifikantný nesúlad medzi predpoveďou 

teórie a výsledkom merania

Platí „prezumpcia neviny“. Predpokladám, že teória je správna. Te je tzv. 

nulová hypotéza.

Výsledok merania sa líši od predpovede. Vyčíslim  (odhadnem) pravdepodobnosť 

toho, že pozorovaná odchýlka od predpovede je štatistická chyba merania, teda 

fluktuácia. Vlastne odhadnem pravdepodobnosť svojej smoly, že pozorujem odchýlku 

od teórie ktorá je správna. A keď tá pravdepodobnosť je veľmi malá, vyhlásim teóriu 

za nesprávnu. Vlastne vyčísľujem pravdepodobnosť, že si urobím vedeckú 

hanbu, že správnu teóriu vyhlásim za nesprávnu, za falzifikovanú. Je mojím 

subjektívnym rozhodnutím, akú pravdepodobnosť hanby som ochotný riskovať. V 

každej oblasti vedy panuje akýsi konsenzus o „akceptovateľnej hanbe“.



Ak fyzika len falzifikuje ako to, že sa oznamujú objavy?

V CERNe objavili Higgsovu časticu, čo to znamená?

Falzifikovali „teóriu“ že Higgsov bozón neexistuje. To bola pri spracovaní 

experimentu nulová hypotéza: Sú namerané dáta konzistentné s 

predpokladom, že Higgsov bozón neexistuje?

Vedenie CERNu dovolilo „publikovať objav“ keď odhad „hanby z ohlásenia 

objavu neexistujúcej častice“ bude menší ako zodpovedajúci úrovni aspoň 

5𝜎.



Modelový príklad: hracia kocka

Uvažujme nulovú hypotézu:

Pravdepodobnosť, že pri hode kockou padne 6 je 1/6

Ako sa toto falzifikuje? Urobím 𝑁 hodov a zistím koľkokrát padlo číslo 6, 

označím to ako 𝑁6.

Vypočítam náhodnú hodnotu

teda pozorovanú odchýlku od teoreticky očakávanej   hodnoty 1/6.

Pre veľké počty pokusov možno považovať veličinu 𝑥 za spojitú náhodnú 

veličinu, takže potrebujem vypočítať hustotu pravdepodobnosti pozorovať 

odchýlku 𝑥 pri 𝑁 pokusoch za predpokladu, že platí nulová hypotéza 

(prezumpcia nevinu), teda že skutočná hodnota pravdepodobnosti je naozaj 

1/6.

Pre diskrétnu hodnotu pravdepodobnosti hodnoty 𝑁6 platí (binomické 

rozdelenie)



Po nejakom hľadaní si môžete vygoogliť približný vzorec, ktorý z 

binomického rozdelenie pre 𝑁6 vyplýva pre hustotu pravdepodobnosti 

veličiny 

je to

Stredná hodnota 𝑥 je nula, štandardná odchýlka 𝑥 je

Ak nameriam 𝑥 „dosť“ odlišné od nuly, budem mať tendenciu prehlásiť, že 

som nulovú hypotézu falzifikoval. Pravdepodobnosť „možnej hanby“ určím z 

grafu  



Iný príklad

Nulová hypotéza: Platí Ohmov zákon, teda prúd je priamo úmerný 

napätiu

Ako sa toto dá falzifikovať. Urobím meranie 

Budem testovať konzistentnosť meraní so zákonom



Mám namerané dvojice hodnôt (𝑈𝑖 , 𝐼𝑖). Hodnoty 𝐼𝑖 majú neistoty 𝜎𝑖. 
Neistoty sú na grafe znázornené ako zvislé čiarky pri nameraných bodoch. 

Nepoznám hodnotu 𝑅.
Z nameraných hodnôt zostavím funkciu

Je to vlastne normalizovaná suma kvadrátov „odchýlok od zákona“.

Nájdem, pre akú hodnotu ෨𝑅 tá funkcia nadobúda minimum. To je hodnota, 

pre ktorú je nulová hypotéza „najmenej porušená“. Ak nulovej hypotéze 

verím, potom som práve našiel najlepšiu hodnotu odporu 𝑅.

Vyčíslim hodnotu

Keby Ohmov zákon platil a merania by nemali náhodné chyby, potom by 

tá hodnota bola 𝜒2 ෨𝑅 = 0. Ale merania majú náhodné chyby, typicky 

očakávam že každý z čitateľov nadobúda hodnotu 𝜎𝑖
2. Ak bolo 𝑛 meraní, 

potom čakám, že dostanem 𝜒2 ෨𝑅 = 𝑛. Ak dostanem hodnotu „o dosť 

väčšiu ako 𝑛, budem mať tendenciu prehlásiť, že Ohmov zákon neplatí.



Ako ale odhadnem „pravdepodobnosť možnej hanby“? Takto.

Namerané hodnoty sú náhodné čísla, preto aj z nich vypočítané číslo 𝜒2

je náhodné číslo.

Požiadam matematických štatistikov, aby našli hustotu pravdepodobnosti 

náhodnej veličiny 𝜒2. Oni povedia, že tú hustotu teoreticky poznajú, je to

chikvadrát-rozdelenie pre 𝒏 − 𝟏 stupňov voľnosti.

Na obrázkoch je počet stupňov voľnosti označený ako 𝑘



Príklad

Mám 7 meraní a dostal som hodnotu

𝜒2 ෨𝑅 = 7. Mám prehlásiť, že som 

falzifikoval zákon?

Na krivke pre 𝑘 = 6 odčítam 

pravdepodobnosť namerať hodnotu 

menšiu ako 7, je to okolo 0.68. Teda 

pravdepodobnosť, že zákon je platný a 

niekto nameria hodnou viac ako 7 čisto 

ako dôsledok štatistických fluktuácii je 

0.32.

Teda ak by som pri hodnote 𝜒2 ෨𝑅 = 7 prehlásil, že som falzifikoval zákon priamej 

úmernosti, pravdepodobnosť, že si urobím hanbu odhadujem ako 0.32. To je 

strašne veľa. Nevydám oznam o falzifikácii. 



• Čo sa vo fyzike myslí tým, že teória má byť falzifikovateľná

• Uveďte nejaký argument, prečo priemer z 10 meraní by mal byť presnejší 

ako jedno meranie

• Ak zvýšime počet meraní 100 krát, ako sa zmení presnosť priemeru z 

meraní

• Aká je približne hodnota spoľahlivosti pre interval plus/mínus sigma a 

plus/mínus 2 sigma



Elementy špeciálnej teórie relativity



Experimentálny fakt:

Rýchlosť svetelného lúča je voči ľubovoľnej inerciálnej súradnicovej 

sústave rovnaká a je 299 792 458 kms-1.



Rýchlosť svetelného lúča je voči ľubovoľnej inerciálnej súradnicovej 

sústave rovnaká a je 299 792 458 kms-1.

Rýchlosť lúča odmeraná na pevnej zemi 299 792 458 kms-1.



Rýchlosť lúča odmeraná na pohybujúcom sa koni 299 792 458 kms-1.

Rýchlosť svetelného lúča je voči ľubovoľnej inerciálnej súradnicovej 

sústave rovnaká a je 299 792 458 kms-1.



Zdravý rozum: nie je možné aby rýchlosť pohybujúceho sa objektu bola rovnaká 

voči dvom navzájom sa pohybujúcim pozorovateľom

Experimentálny fakt: Rýchlosť svetelného lúča je voči ľubovoľnej 

inerciálnej súradnicovej sústave rovnaká a je 299 792 458 ms-1.

Zdravý rozum nás pletie, ak sa jedná o rýchlosti blízke k rýchlosti svetla.

Moderný príklad merania rýchlosti svetla, GPS: 

Satelit je vo vzdialenosti 20000 km od Zeme, jeho rýchlosť je 3 km/s to je 

1/100000 rýchlosti svetla. Vzdialenosť od satelitu sa meria časom cez rýchlosť 

svetla. Keby rýchlosť signálu zo satelitu závisela na rýchlosti satelitu ale 

prepočítavali sme to podľa Einsteina, tak by chyba vzdialenosti bola 

20000/100000 km to je 200 m. Poloha je GPS určená na 10 m ľahko, takže 

svetlo naozaj ide rovnakou rýchlosťou, či je vyslané z hýbuceho sa zdroja alebo 

stojaceho zdroja. Presnejšia analýza faktov o GPS hovorí, že rýchlosť svetla je

vždy rovnaká s presnosťou 12 m/s. (Pozri v knihe F.Selleri Open Questions in 

Relativistic Physics.)



Ešte jeden príklad:

Stačí ísť na exkurziu k urýchľovaču.
Treba sa tam napríklad pozrieť na rozpad častice piónu. Rozpadá sa na dva fotóny. Ak pión 
stojí, tie dva fotóny letia oproti sebe rýchlosťou svetla c. V laboratóriu sú však dnes už 
bežné pióny, pohybujúce sa rýchlosťou 0,999 999 c. Ak sa takýto pión rozpadne na dva 
fotóny, potom nepozorujeme, že by sa jeden z nich pohyboval rýchlosťou 1,999999 c a 
druhý iba 0,000001 c (= 300 m/s!, taký efekt by naozaj nebolo ťažké pozorovať). Naopak, 
oba fotóny majú experimentálne rýchlosť c.

Záver: treba prehodnotiť zdravý rozum, nanovo predumať všetko o meraní 

polohy a času. To je to, čo urobil Einstein  v roku 1905.



Einsteinova špeciálna teória relativity je založená na dvoch fundamentálnych 

princípoch

• Princíp relativity: Nijakým experimentom nemožno rozhodnúť, ktorá z dvoch 

navzájom sa pohybujúcich inerciálnych sústav sa hýbe a ktorá stojí.

• Princíp rovnakej rýchlosti svetla: Daný svetelný lúč sa šíri (vo vákuu) voči 

ľubovoľnej inerciálnej sústave rovnakou rýchlosťou 299 792 458 ms-1.

Tieto princípy sú zovšeobecnenia mnohých experimentálnych pozorovaní. Nie 

sú to nejaké logické postuláty. Svet by (možno) mohol „byť urobený“ aj inak, že 

by tieto princípy neplatili. Ich pravdivosť nevieme dokázať v zmysle 

matematického dôkazu. Máme však takú skúsenosť, že všetko, čo z týchto 

princípov „odvodíme“ ako predpovedaný výsledok nejakého experimentu, sa 

ukáže ako „pravdivé“, teda že vykonaný experiment dá výsledky v súlade s 

našou predpoveďou.



Fyziku sme začali diskutovať tvrdením, že fyzika zachytáva nejaký okamih. 

Okamih je to, čo sa deje „naraz“.

Treba začať tak, že poriadne predumáme, čo to je „naraz“. Nevystačíme 

s intuitívnym chápaním, musíme objektívne definovať pojem naraz.

Opakovanie:

stav fyzikálneho systém v istom okamihu sa dá zachytiť na papier a 

podľa toho papiera ten stav inokedy (úplne) zrekonštruovať



Čo je to naraz?

Puding Pani Elvisovej



Pojem „naraz“ objektivizoval Einstein definíciou vzhľadom k nejakej súradnicovej 

sústave, tvorenej „súradnicovými trpaslíkmi“ ktorí všetci majú lokálne hodiny a tie 

sú navzájom synchronizované.



Súradnicová sústava tvorená systémom navzájom nehybných 

„súradnicových trpaslíkov“





Dve inerciálne sústavy, navzájom sa pohybujúce:

vlak a stanica

každý súradnicový trpaslík má hodiny

šéftrpaslík: nemeria, len zbiera hlásenia od súradnicových trpaslíkov a analyzuje 



Šéftrpaslík synchronizuje hodiny súradnicových trpaslíkov sediacich vo vlaku, ktorí 

sa nepohybujú ani voči sebe ani voči vlaku ani voči vlakovému šéftrpaslíkovi



Šéftrpaslík synchronizuje hodiny súradnicových trpaslíkov sediacich na stanici, ktorí 

sa nepohybujú ani voči sebe ani voči stanici ani voči staničnému šéftrpaslíkovi



Synchronizácia hodín v rámci jednej inerciálnej súradnicovej 

sústavy umožňuje definovať pojem „naraz“ pre tú sústavu.

Kľúčovým pojmom teórie relativity je udalosť (angl. event). Fyzikálne javy, 

pozorovania, môžeme popísať ako sekvencie lokálnych udalostí, ktoré sa odohrali 

na konkrétnom mieste v konkrétnom čase. Príklady udalostí: zrážka dvoch častíc, 

rozsvietenie žiarovky, výbuch granátu, dopad kameňa na dno studne, prechod 

lopty vrcholom dráhy pri šikmom vrhu, ...

Udalosť je miestne lokálna. Prebehne teda v istom čase v blízkosti nejakého 

súradnicového trpaslíka. Meno toho trpaslíka definuje „miesto kde nastala tá 

udalosť“. „Meno trpaslíka“ je tvorené trojicou čísel (𝑥, 𝑦, 𝑧). V čase, keď udalosť 

nastala, sa „miestne príslušný“ trpaslík pozrie na svoje hodinky a ich údaj nazve 

že je to „čas, kedy tá udalosť nastala“.

Miestne príslušný trpaslík vyhotoví záznam o udalosti, ktorý pozostáva z 

„popisu aká udalosť to bola“ (dopad kameňa) a štvorice čísel 𝒕, 𝒙, 𝒚, 𝒛 ,
udávajúcich čas a miesto udalosti. Záznamy o udalostiach posielajú trpaslíci do 

centra súradnicovému šéftrpaslíkovi, ktorý záznamy zhromažďuje a fyzikálne 

analyzuje. Udalosti, ktoré na zázname majú rovnaký údaj 𝒕, sa definitoricky stali 

naraz (teda v jednom okamihu), i keď prípadne na dvoch rôznych miestach. Tým 

je pojem „naraz“ definovaný v rámci jedenej inerciálnej sústavy trpaslíkov.



Relatívnosť súčasnosti

Vyšetrime teraz, či dve udalosti, ktoré sa odohrali v nejakej súradnicovej sústave 

(napríklad staničnej) „naraz“, ale na rôznych miestach (teda vedľa rôznych 

súradnicových trpaslíkov) sa odohrali „naraz“ aj voči inej súradnicovej sústave 

(napríklad vlakovej).

Nazvime tie dve udalosti A a B. Udalosť A je súmiestna s jedným trpaslíkom 

staničnej sústavy a jedným trpaslíkom vlakovej sústavy. Hodiny trpaslíkov v dvoch 

rôznych sústavách nie sú navzájom synchronizované, takže čas udalosti A bude 

nejaká hodnota 𝑡𝐴 vo vlakovej sústave a v princípe možno iná hodnota 𝑡𝐴
′ vo 

staničnej sústave. Udalosti B budú analogicky zodpovedať údaje 𝑡𝐵 , 𝑡𝐵
′ .

Predpokladajme, že udalosti A,B sú vo vlaku vyhodnotené ako súčasné (stali sa 

„naraz“), teda že 𝑡𝐴 = 𝑡𝐵. Otázka je, či potom platí aj 𝒕𝑨
′ = 𝒕𝑩

′ ??? Teda budú 

pokladané za súčasné aj na stanici ??? Dali sme tam veľa otáznikov, aby sme 

zdôraznili, že to, čo sa nám intuitívne javí ako samozrejme správne, experimentálne 

správne nemusí byť. Einstein si to uvedomil ako prvý, analyzoval jednoduchý 

príklad.



Relatívnosť súčasnosti

Presne v strede pohybujúceho sa vagóna blikne žiarovka. Svetlo po nejakom čase 

dorazí k zadnej stene vagóna (to je udalosť A) a k prednej stene vagóna (to je 

udalosť B). Z toho, akú procedúru sme použili pre synchronizáciu hodín trpaslíkov 

vo vlaku je zrejmé, že hodiny vlakových trpaslíkov budú ukazovať pri dorazení 

svetelného signálu rovnaké časy. Trpaslíci vo vagóne teda povedia, že svetlo 

dorazilo dopredu a dozadu súčasne. Pozrime sa teraz na to, čo budú hovoriť 

staniční trpaslíci o tých istých udalostiach A,B.



Modrou farbou sme nakreslili staničného trpaslíka, ktorý videl bliknutie žiarovky 

uprostred vagóna, keď ho žiarovka práve míňala. Červený staničný trpaslík je ten, 

ktorý uvidel zadnú stenu vagóna, keď k nej dorazilo svetlom, to je udalosť A. Žltý 

staničný trpaslík je ten, ktorý uvidí prednú stenu vagóna, keď k nej dorazí svetlo, to je 

udalosť B. Otázka je, čo ukazujú hodiny červeného a žltého trpaslíka pre udalosti A a

B. Je zrejmé, že zadné stena ide oproti svetlu, predná stena uteká pred ním. Hodiny 

žltého trpaslíka preto budú zjavne ukazovať väčší čas pri udalosti B ako ukazovali 

hodiny červeného trpaslíka pri udalosti A. Staniční trpaslíci preto vyhodnotia udalosti A 

a B ako nesúčasné, budú hovoriť , že nenastali naraz.

Záver: nie je možné definovať pojmy súčasnosť, naraz, teraz, okamih ... tak, aby dve 

nesúmiestne udalosti boli rovnako vyhodnotené vo všetkých súradnicových sústavách. 

Pojem súčasnosť teda nie je absolútny, vyhodnotenie závisí od toho, voči ktorej 

sústave sa robí. Pojem súčasnosť je teda relatívny, vzťahuje sa na nejakú sústavu

Relatívnosť súčasnosti



Bliknutie žiarovky

Udalosť A

Udalosť B



L L
Prediskutujeme pohľad zo stanice, čo hlásia staniční trpaslíci.

Modrý trpaslík hlási !vidím bliknutie žiarovky v strede vagóna, moje hodiny ukazujú 

čas (napríklad) 11:22:34

Staniční trpaslíci majú synchronizovaný čas, červeno zakrúžkovaný je trpaslík, ktorý 

vidí okolo seba prechádzať zadnú stenu presne vtedy, keď jeho hodiny ukazujú 

11:22:34 a žlto zakrúžkovaný je trpaslík, ktorý vidí okolo seba prechádzať prednú 

stenu presne o 11:22:34.

Vzdialenosť medzi modrým a červeno zakrúžkovaným je 𝐿, vzdialenosť medzi 

modrým a žlto zakrúžkovaným je tiež 𝐿. 

Pýtame sa o koľkej (z hľadiska stanice) narazí fotón zo žiarovky na zadnú stenu. 

Fotón letí dozadu rýchlosťou 𝑐, stena oproti nemu rýchlosťou 𝑣. Spolu musia prekonať 

vzdialenosť 𝐿 potrebujú na to čas 𝐿/(𝑐 + 𝑣), teda hodiny červeného trpaslíka, ktorý

vidí dopad fotónu na zadnú stenu budú ukazovať čas 

11:22:34+𝐿/(𝑐 + 𝑣).



L L
Teraz sa pýtajme o koľkej (z hľadiska stanice) narazí fotón zo žiarovky na prednú 

stenu. Fotón letí dopredu rýchlosťou 𝑐, stena rovnako dopredu uteká rýchlosťou 𝑣.
Stena má na začiatku „náskok“ 𝐿, preto fotón „dolapí“ prednú stenu za čas 𝐿/(𝑐 − 𝑣)
teda hodiny žltého trpaslíka, ktorý vidí dopad fotónu na prednú stenu budú ukazovať 

čas 11:22:34+𝐿/(𝑐 − 𝑣).

Staničný šéftrpaslík teda vyhodnotí udalosti takto

• fotón dopadol na zadnú stenu o 11:22:34+𝐿/(𝑐 + 𝑣).
• fotón dopadol na prednú stenu o 11:22:34+𝐿/(𝑐 − 𝑣).

Záver staničného šéftrpaslíka teda bude: dopady fotónov 

na prednú a zadnú stenu nie sú súčasné udalosti.

Videli sme ale, že záver vlakového šéftrpaslíka bude: 

dopady fotónov na prednú a zadnú stenu sú súčasné 

udalosti. 

Poznámka (predbiehajúc výklad) Staniční trpaslíci nazvú dĺžku 2𝐿 dĺžkou 

pohybujúceho sa vagóna. Je to vzdialenosť zakrúžkovanyých trpaslíkov.



Meranie časového intervalu, doba trvania fyzikálneho deja

Už sme sa stretli s pojmom udalosť. To je krátkotrvajúci fyzikálny jav, ktorý sa celý 

odohrá na jednom mieste a v priebehu krátkeho (infinitezimálneho) časového 

intervalu, teda v „jednom okamihu“. 

Sú aj komplexnejšie fyzikálne javy, špeciálne sa teraz budeme zaoberať javmi, 

ktoré začínajú v nejakom okamihu na jednom mieste a končia v inom 

(neskoršom) okamihu na inom mieste. Sú to nelokálne deje.

Budeme pracovať na definícii pojmu „doba trvania nelokálneho deja“.

Ak je nejaký dej lokálny, teda začína a končí na jednom mieste, potom jeho doba 

trvanie je určená ľahko. Predovšetkým pojem „na jednom mieste“ sa zjavne viaže 

na nejakú súradnicovú sústavu. V inej sústave, ktorá sa voči uvažovanej pohybuje, 

by už nekončil na tom mieste, kde začal. Ak začiatok a koniec sú na jednom 

mieste, potom je na tom mieste aj súradnicový trpaslík, ktorý má hodiny. Meranie 

doby lokálneho deja je potom ľahké. Lokálne príslušný trpaslík sa pozrie na 

hodiny, keď dej začne a potom znovu, keď dej skončí. Namerané časové údaje 

odčíta a to, čo dostane sa nazve „doba trvania lokálneho deja“.



Meranie časového intervalu, doba trvania nelokálneho deja

Dej, ktorý je nelokálny voči nejakej súradnicovej sústave začína a končí na iných 

miestach, teda vedľa dvoch súradnicových trpaslíkov. V rámci súradnicovej sústavy 

majú trpaslíci hodiny synchronizované, preto meranie doby deja voči nejakej 

súradnicovej sústave triviálne definujeme takto.

Trpaslík lokálne príslušný začiatku deja sa pozrie na svoje hodiny pri začiatku. Trpaslík 

lokálne príslušný koncu deja sa pozrie na svoje hodiny pri konci. Svoje údaje nahlásia 

svojmu súradnicovému šéftrpaslíkovi. Ten prijaté časové údaje odčíta a rozdiel nazve 

„doba trvania nelokálneho deja“.

Všimnime si, že meranie nijako nie je ovplyvnené tým, ako sa hlásenia lokálne 

príslušných trpaslíkov zdržia cestou k šéftrpaslíkovi.

Toto býval problém historického merania doby šprintov v atletike. Rozhodcovia so 

stopkami sedeli v cieli ale štart bol inde. Štartovalo sa výstrelom a rozhodcovia mali 

inštrukciu aby spustili stopky nie až keď počujú zvuk výstrelu, ale už vtedy, keď uvidia 

dym zo štartovacej pištole. Problém bol v tom, že sa doba  trvania nelokálneho deja 

merala na jedných stopkách (hodinách). Podľa Einsteina sa má správne merať na 

dvoch synchronizovaných hodinách.

Všimnime si ešte, že doba „návod na meranie nelokálneho deja“ je presne rovnaký 

v každej súradnicovej sústave. Dej nijako nemusí súvisieť s konkrétnou 

súradnicovou sústavou, podstatné je iba to, že je ohraničený dvoma udalosťami. 



Meranie časového intervalu, vlastný čas

Pre niektoré deje však existuje jedna význačná súradnicová sústava, v ktorej  dej 

prebieha na jednom mieste a teda špeciálne začína a končí na jednom mieste. 

Doba trvania takého deja je v tej sústave odmerateľná jedným trpaslíkom, teda 

jednými hodinami. Čas trvania deja takto odmeraný sa volá vlastný čas trvania 

deja.

V každej inej súradnicovej sústave, ktorá sa voči tej význačnej pohybuje, treba na 

odmeranie trvania toho deja dvoch trpaslíkov a dvojo hodín.

Otázka, či čas trvania deja takto nameraný v inej sústave je alebo nie je rovnaký 

ako vlastný čas, vyžaduje starostlivé preskúmanie a intuitívna odpoveď na ňu 

môže byť nesprávna.

Naša intuícia nás môže sklamať, ak tá druhá sústava sa pohybuje veľmi rýchlo, 

rýchlosťou porovnateľnou s rýchlosťou svetla.

Budeme sa podrobne venovať tejto otázke pre špeciálny dej: jedno tiknutie 

hodín.



Hodiny

Hodiny slúžia na meranie časových intervalov. Ukazujú síce aj momentálny 

časový okamih, ale aj to je len interval od nejakej dohodnutej udalosti, pre 

počítačové hodiny je to často od 1.1.1970. Ako hodiny možno v princípe použiť 

hocijaký dej, „ktorý pravidelne (rovnomerne) tiká“. Ako sa dá testovať 

pravidelnosť tikania, o tom sme sa bavili v zimnom semestri.

Presné hodiny sú často veľmi zložité zariadenia, analyzovať ich z pohľadu 

dvoch rôznych inerciálnych sústav je netriviálne. 

Einstein vymyslel jednoduchý dobre analyzovateľný model hodín, svetelné 

hodiny. Realizované ako fotón chodiaci hore-dole medzi dvoma paralelnými 

zrkadlami, alebo fotón vyžiarený zo zdroja a prijatý po odraze od protiľahlého 

zrkadla fotónkou. Jedna cesta fotónu hore a dolu znamená jedno tiknutie. 

Elektronický mechanizmus, počítajúci jednotlivé tiknutia už nie je pre 

relativistickú analýzu dôležité, podstatné je iba, že počítadlo sa dá 

elektroinžiniersky v princípe vyrobiť.



Einsteinove hodiny vo vlaku

Trpaslík sa vezie vo vlaku, vedľa neho stoja vo vagóne Einsteinove svetelné 

hodiny, trpaslík počíta ich tiknutia. Zistí (definuje), že jedno tiknutie trvá dobu

Podľa predchádzajúcej diskusie sa títo doba volá vlastný čas jedného tiknutia 

hodín.



Červený staničný trpaslík 

vidí, že fotón štartuje na 

spodnom zrkadle

Žltý staničný trpaslík vidí, 

že fotón sa odráža na 

hornom zrkadle

Modrý staničný trpaslík 

vidí, že fotón pristáva na 

spodnom zrkadle



Čo vidia staniční trpaslíci? Že fotón cestuje šikmo. Červený trpaslík si poznamená 

čas 𝑡1, keď okolo neho letia hodiny a modrý si poznačí čas 𝑡3, keď letia okolo neho.

Šéftrpaslík odčíta tie dva časy, ktoré dostal v hláseniach: 𝑇𝑏 = 𝑡3 − 𝑡1. A bude tvrdiť: 

jedno tiknutie hodín vo vlaku trvá podľa mňa čas 𝑇𝑏. Podľa obrázku fotón z pohľadu 

stanice vykoná dráhu                                         a odtiaľ úpravou dostaneme

Animácia: http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/lightclock.swf

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/lightclock.swf


Dilatácia času

Čo sme to dostali?

Trpaslíci na stanici povedia: „Hodiny vo vlaku tikajú pomalšie, ako by také hodiny 

tikali u nás na stanici.“ Alebo použijú ešte menej opatrnú formuláciu: „Čas vo 

vlaku plynie pomalšie ako u nás na stanici.“ 

Hovorí sa tomu dilatácia času.

Keď takéto vety počuje nepoučený poslucháč, pomýli ho to a hneď vymyslí 

kontrapríklad: Veď z pohľadu vlakových trpaslíkov je to tak, že stanica s pohybuje 

a vlak stojí, preto my by sme mali dospieť k opačnému záveru, že čas na stanici 

plynie pomalšie ako u nás vo vlaku. No a oboje nemôže byť pravda, z čoho 

vyplýva že dilatácia času neexistuje.

Argumentácia naznačuje, že  situácia vlak versus stanica musí byť symetrická. 

Ale nie je to pravda. My sme porovnávali jedny hodiny vo vlaku s dvoma hodinami 

na stanici. Tiknutie vlakových hodín malo svoj začiatok a koniec na jednom 

mieste vo vlaku ale na dvoch rôznych miestach na stanici. Vlaková sústava je 

význačná pre hodiny stojace na jednom mieste vo vlaku. Symetria vlak 

versus stanica sa nekoná.



Dilatácia času
Iný argument hovorí: toto ste skúmali nejaké divné svetelné hodiny. Normálne 

hodiny by sa tak nesprávali.

Ale správali. Keby si trpaslík zobral spolu so svetelnými hodinami aj „normálne 

hodiny“ a tie by sa nesprávali rovnako ako tie svetelné, potom by trpaslík pozoroval 

že sa postupne viac a viac rozchádzajú. A z toho by usúdil, že jeho sústava sa 

pohybuje. A to je spor s postulátom relativity. Takže aj biologické hodiny budú „tikať 

rovnako ako svetelné“. Trpaslík sa musí holiť rovnako často vo vlaku ako na 

stanici, inak by poznal, že sa pohybuje

• Princíp relativity: Nijakým experimentom nemožno rozhodnúť, ktorá z dvoch 

navzájom sa pohybujúcich inerciálnych sústav sa hýbe a ktorá stojí.

Ďalší argument je paradox dvojčiat. Jedno dvojča ostane na stanici, druhé 

nasadne do vlaku, odcestuje a potom sa vráti a podľa Einsteina by malo byť 

mladšie ako jeho dvojča, čo ostalo na stanici. A to už porovnávam „jedny hodiny s 

jednými hodinami“. Situácia je symetrická, dilatácia času nemôže byť pravda.

Ale je. Dvojča vo vlaku vie, že to ono bolo na ceste a nie dvojča na stanici, ktoré 

„sa vrátilo aj so stanicou“. Vrátiť sa nedá, ak vlak koná len rovnomerný priamočiary 

pohyb. Musí zabrzdiť a urýchliť v opačnom smere. Počas brzdenia hodí pasažierov  

o stenu, takže oni vedia, že sa brzdilo. Zrýchlený pohyb sa rozpoznať dá. To nie 

je v spore s princípom relativity



Kontrakcia dĺžok

Ako sa meria dĺžka stojacej tyče je jasné. Napríklad postupne prikladám metrovú 

tyč. Mám na to dosť času, lebo tyč stojí. Iná možnosť je požiadať trpaslíkov, ktorí 

stoja pri začiatku a konci tyče aby mi poslali svoje súradnice. Súradnice odčítam a 

mám dĺžku tyče.

Ako sa meria dĺžka letiacej tyče, to si treba poriadne premyslieť. K letiacej tyči 

neviem dobre prikladať metrovú tyč.

Jedna možnosť je takáto. Dám inštrukcie svojim (stojacim) trpaslíkom. Trpaslík, 

ktorý uvidí presne o dvanástej letieť okolo seba začiatok tyče zdvihne pravú ruku. 

Trpaslík, ktorý vidí okolo seba presne o dvanástej letieť koniec tyče zdvihne ľavú 

ruku. Ostatní nerobia nič. Trpaslíci so zdvihnutými rukami sú moje nepohybujúce 

sa značky začiatku a konca tyče, odmeriam ich vzdialenosť ako keby to bola 

stojaca tyč a definujem, že to je dĺžka letiacej tyče. Kľúčová požiadavka je, že ide 

o súčasnú polohu začiatku a konca tyče. Ale súčasnosť nie je absolútna, takže 

nemusím sa diviť, ak meraním zistím inú dĺžku, ako by som zistil, keby tá tyč stála.



Tento trpaslík v tomto okamihu ešte nevie, že to bude on, kto 

v čase 𝑡12 uvidí letieť koniec tyče. Ale spomenie si, že jeho 

hodiny ukazovali 𝑡𝐾𝑍, keď videl okolo seba letieť začiatok

Kontrakcia dĺžok

Ideme vypočítať dĺžku letiacej tyče. Na začiatku aj konci tyče sedia vo vlaku dvaja 

trpaslíci  Na obrázkoch sú označené časy, ktoré vidia jednotliví trpaslíci v 

okamihoch naznačených na obrázkoch



𝑙0 je dĺžka stojacej tyče ako ju 

namerajú vlakoví trpaslíci

𝑙 je dĺžka letiacej tyče ako ju 

namerajú staniční trpaslíci

vlakoví trpaslíci namerajú červenému staničnému rýchlosť

staniční trpaslíci namerajú modrému vlakovému rýchlosť

dvaja vlakoví trpaslíci zistia, že jednému 

červenému staničnému tikajú hodiny 

pomalšie (dilatácia času na stanici z 

pohľadu vlaku)

Staniční trpaslíci namerajú, že tyč je kratšia: 

kontrakcia dĺžok

Kontrakcia dĺžok



Dlhé auto v krátkej garáži

Ako to vyzerá z pohľadu garážmajstra

Ako to vyzerá z pohľadu šoféra



• Základné postuláty špeciálnej teórie relativity

• Vysvetlite pojem relatívnosť súčasnosti

• Sformulujte presne, čo hovorí poučka o dilatácii času

• Ako je definovaná dĺžka letiacej tyče

• Sformulujte presne, čo hovorí poučka o kontrakcii dĺžok
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Udalosti vo vlaku a na stanici: prekladový slovník

Udalosť videná zo stanice: 𝑥, 𝑡
Udalosť videná z vlaku: 𝑥′, 𝑡′

Koordinácia súradníc a časov je takáto 

Prekladový slovník

Sledujem zo stanice bod 𝑥′ = 0:
Keď bod 𝑥′ = 0 je totožný s bodom 𝑥, čo vtedy ukazujú jeho hodiny 𝑡′ =?
Dilatácia času 
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Udalosti vo vlaku a na stanici: prekladový slovník

Sledujem z vlaku bod 𝑥 = 0 stanice: 
Dilatácia času 
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Udalosti vo vlaku a na stanici: prekladový slovník

Lorentzove transformácie
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Relatívna rýchlosť

Z vlaku sledujem časticu, hýbe sa rýchlosťou 𝑤′. Akú rýchlosť 𝑤 uvidím zo 
stanice?

Skladanie rýchlostí podľa Einsteina, Galileo by mal iba
Pre 𝑤′ = 𝑐 dostanem 𝑤 = 𝑐. Rýchlosť svetla je v oboch sústavách rovnaká.
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Námietka proti Einsteinovi: konštantná sila →konštantné zrýchlenie → prekročím 𝑐

Ako vyzerá Newtonova pohybová rovnica v teórii relativity?

Napíšem ju štandardne vo vlaku, z ktorého vidím časticu hýbať sa veľmi pomaly, 
ideálne tak že v danom okamihu častica stojí.

Riešim teda úlohu ako bude zo stanice vyzerať pohybová rovnica pre pohyb častice,

pričom častica túto rýchlosť postupne získava pôsobením konštantnej sily.

Častica koná nerovnomerný pohyb, ale môžem nasadnúť do inerciálneho vlaku, 
ktorý sa v čase 𝑡, hýbe práve rýchlosťou         . V tom vlaku bude častica stáť a jej 
rýchlosť sa zmení za čas 𝑑𝑡′ o malú hodnotu

Zatiaľ na stanici uplynie doba

Po uplynutí tejto doby bude mať častica voči stanici rýchlosť
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Explicitným derivovaním sa možno presvedčiť, že je to to isté ako

Táto rovnica pripomína rovnicu
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Toto je vzorec pre hybnosť, ak prijmeme hypotézu, že hmotnosť častice závisí na 
rýchlosti. Pre jednoznačnosť potom často namiesto 𝑚 píšeme 𝑚0, aby sme 
zvýraznili, že ide o pokojovú hmotnosť
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Kinetická energia

Vypočítame prácu, ktorú vykoná sila urýchľujúca časticu z kľudu.

Pre malé rýchlosti dostanem približne
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𝑬 = 𝒎𝒄𝟐

Ak častica žije nemenne večne, odčítanie konštanty 𝑚0𝑐
2 nemá žiaden fyzikálny 

význam a môžeme kľudne používať vzorec

Ak je častica nezničiteľná a netransformovateľná na inú časticu alebo iný 
fyzikálny objekt, potom je energia nemôže nijako klesnúť pod minimálnu 
(kľudovú) energiu

a v takom prípade (ak zabudneme na všeobecnú teóriu relativity) nemožno túto 
energiu nijako využiť ani zistiť.
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𝑬 = 𝒎𝒄𝟐 pre fotón

Fotón je fyzikálny pojem, ktorý nie je ľahko porozumiteľný bez príslušného 
technického aparátu kvantovej teórie poľa. S prijateľnou didaktickou licenciou sa 
však dá povedať, že fotón je častica, ktorá sa dá chápať ako „nositeľ energie“ 
svetla, svetelného lúča. Celková energia prenášaná svetelným lúčom sa dá chápať 
ako súčet energií prenášaných jednotlivými fotónmi lúča. 

Fotóny teoretickou analýzou fotoefektu „objavil“ Einstein, ktorý zistil, že energia 
svetelného lúča – vlny o frekvencii 𝜔 sa v interakcii s nábojmi pohlcuje „po 
kúskoch“ rovnakej veľkosti 𝐸 = ℏ𝜔, a to tak, že sa vždy pohltí „celý fotón“, ktorý 
nesie energiu

To, že svetelný lúč prenáša energiu, je zrejmé, všetci žijeme z energie, ktorú na 
Zem prináša slnečné svetlo.
Menej známy fakt je, že svetený lúč, a teda aj každý fotón, prenáša aj hybnosť.
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𝑬 = 𝒎𝒄𝟐 pre fotón: svetelný tlak overený Lebedevom

Na ľavom obrázku je Crookesov rádiometer, zariadenie, ktoré neregistruje svetelný 
tlak ale energiu svetelného lúča, ktorý zohrieva vrtuľku v banke so zriedeným plynom. 
Listy vrtuľky majú jeden povrch čierny a druhý biely, preto inak pohlcujú svetelnú 
energiu a inak odovzdávajú energiu molekulám zriedeného plynu, čo vrtuľky 
elegantne roztočí. Uvádzame Crookesov pokus preto, lebo často sa mýli s 
Lebedevovým pokusom na meranie svetelného tlaku. Lebedevov poklus sa dosť 
podobá na Crookesov, ale je oveľa premakanejší, pretože efekt svetelného tlaku je 
oveľa slabší. Tiež používa vrtuľky, ale vo vysokom vákuu, aby nebolo rušenie tepelným 
pohybom molekúl. Pri dopade svetla fotóny odovzdajú vrtuľkám hybnosť, čo ich otočí.
Na pravom obrázku sú originálne Lebedevove vrtuľky
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Svetlo (fotón) je teda nositeľom aj hybnosti, čo vyplýva dokonca už z klasickej 
(nekvantovej) teórie elektromagnetického poľa (z Maxwellových rovníc). 
Medzi energiou fotónu a hybnosťou fotónu je jednoduchý vzťah,

kde 𝑐 je rýchlosť svetla.
Svetelný tlak má rôzne, dobre pozorovateľné dôsledky. Tlak slnečného svetla 
napríklad vytvára „chvost kométy“, ktorý smeruje „od slnka“.
Kozmická loď vysielajúca svojou parabolou elektromagnetické vlny na Zem 
odovzdáva Zemi hybnosť a podľa zákona o zachovaní hybnosti musí tým sama 
získať hybnosť v opačnom smere. Podobne ako chlapec na skateboarde, keď 
odhodí loptu, pohne sa v opačnom smere.
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𝑬 = 𝒎𝒄𝟐 pre fotón: Einsteinov vagón

Anténa vyžiari fotón, vagón získa hybnosť v opačnom smere a začne sa pohybovať. 
Keď protiľahlá anténa pohltí fotón, vagón získa hybnosť v smere letu fotónu, 
presne opačnú ako predtým a teda sa zastaví. Ťažisko celého systému „vagón plus 
fotón“ sa nesmie pohnúť, ale ťažisko vagóna sa posunulo, preto prenosom fotónu 
muselo dôjsť k prenosu hmotnosti.
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𝑬 = 𝒎𝒄𝟐 pre fotón: Einsteinov vagón

Vagón má dĺžku 𝐿, hmotnosť 𝑀. Fotón má hybnosť 𝑝, letí dobu 𝐿/𝑐.
Vagón získa hybnosť
Ťažisko vagóna sa posunie o vzdialenosť
Fotón sa posunie o 𝐿
Aby sa celkové ťažisko neposunulo, musí mať fotón hmotnosť 𝑚 tyakú aby 
platilo
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Snímka z bublinovej komory
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Snímka z bublinovej komory, vytvorenie páru elektrón pozitrón
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• Vzorce Lorentzovej transformácie
• Relativistický vzorec pre hybnosť častice
• Einsteinov vzorec pre energiu častice
• Prečo v teórii relativity nemôže pre relatívnu rýchlosť voči dvom 

rozličným súradnicovým sústavám platiť Galileov vzorec 



PET – Pozitrónová emisná tomografia

Elektrón pozitrónová anihilácia
𝒆+ + 𝒆− → 𝟐 𝜸





18F          18O  + e+ +  e
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Priestoročas

Udalosť (𝑥, 𝑡)
Udalosti zodpovedá bod v abstraktnom 𝑥, 𝑡 priestore, ktorému hovoríme 
priestoročas
Vizualizácia udalostí: tá istá udalosť zaznamenaná na stanici a vo vlaku

na stanici vo vlaku



61

Tá istá udalosť má iné „súradnice“ pre pozorovateľa na stanici a vo vlaku.

Analógia
Ten istý vektor má iné „súradnice“ pre pozorovateľov navzájom otočených
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Tá istá udalosť má iné „súradnice“ pre pozorovateľa na stanici a vo vlaku.

Analógia
Ten istý vektor má iné „súradnice“ pre pozorovateľov navzájom otočených
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Hyperbolické funkcie

Niekto si všimol, že sa Lorentzova transformácia dá napísať ako

kde



64

Dôsledok

Invariantná kombinácia zo súradníc udalosti

pripomína Pytagorovu vetu ale s divným znamienkom
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Energia a hybnosť

Rýchlosť častice videná z vlaku (𝑤′)a zo stanice ( 𝑤):

Hybnosť a energia videná z vlaku

Hybnosť a energia videná zo stanice

Prácne možno overiť, že platí invariantný vzťah

a Lorentzova transformácia pre energiu a hybnosť
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Záverečné poznámky

• Náš svet je priestorovo trojrozmerný, tu sme si všímali „len jedny koľajnice a 
na nich vlaky“. Vlaky jazdia v princípe vo všetkých smeroch, takže Lorentzove
transformácie sú všeobecnejšie.

• Pri porovnávaní s vlakom, ktorý ide v smere osi 𝑥 sa súradnice 𝑦, 𝑧
netransformujú, teda Lorentzove transformácie vo štvorrozmernom 
priestoročase majú vtedy tvar

• V štvorrozmernom priestoročase platí „podivná Pytagorova veta“ so 
zápornými znamienkami, takže pri takej transformácii sa zachováva 
„pseudoveľkosť štvorvektora“

• Pre štvorvektor energie – hybnosti

• Vzorec pre relatívnu rýchlosť, ak táto nemá smer osi 𝑥 je komplikovanejší 
(vyhľadajte si napríklad vo Wikipédii) 
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Fyzika na prelome 19. a 20. storočia

• objavuje sa mikrosvet na úrovni nm
• molekuly a atómy ako herci v termodynamike a štatistickej fyzike sa 

objavili okolo 1860 a definitívne sa tam usadili po Einsteinovej práci 
o Brownovom pohybe 1905

• 1897 objavený elekrón J.J.Thomson
• 1912 Rutherford objavil atómové jadro, čo viedlo na planetárny 

model atómu
• 1842 A.Comte: nikdy nebudeme vedieť chemické zloženie planét a 

hviezd
• okolo 1860 Kirchhoff zákony o spektrách plynov a hviezdy boli

skúmateľné: 1868 P.Janssen objavil hélium na Slnku, ktoré až v roku 
1895 bolo potvrdené na Zemi. 
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Záhadná diskrétnosť mikrosveta

Záhadná rovnakosť atómov

Planetárny model atómov: elektróny obiehajú okolo jadra ako planéty 
okolo Slnka

Lenže nik si nemyslí, že keby sa našlo niekde vo vesmíre hviezda podobná  
Slnku a pri nej planéta podobná Zemi, tak by vzdialenosť  tej planéty od 
hviezdy mala byť presne rovnaká ako v našej sústave vzdialenosť Zeme od 
Slnka.

Ale v atómovom svete je to tak!  Atóm vodíka vyrobený vo Viedni 
napríklad elektrolýzou vody je presne rovnaký ako atóm vodíka vyrobený 
v Bratislave úplne inou technológiou, napríklad reakciou zinku a kyseliny 
sírovej. Je nanajvýš podivné, že elektróny vo vodíku obiehajú okolo jadra 
„presne v tej istej vzdialenosti“. Tak to vyzeralo vyjadrené v reči 
Newtonovej mechaniky.
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V spojitom svete častíc, ktoré sa riadia zákonmi Newtonovej mechaniky, 
možno len o máličko zmeniť počiatočné podmienky a rovnice „si nájdu“ 
príslušné riešenie, ktoré bude tiež fungovať.

Keby prišiel veľký asteroid a narazil do Zeme, tak to bude mať 
katastrofálne následky pre život na Zemi, ale z vesmírneho hľadiska 
len Zem začne obiehať okolo Slnka po trochu inej elipse.

Bombardovanie veľkými telesami vo svete planét je našťastie zriedkavé, 
ale v mikrosvete veľmi časté, kvôli tepelnému pohybu molekúl a 
atómov.

Takže je naozaj extrémne čudné že všetky atómy toho istého prvku sú 
presne rovnaké.
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Tepelný pohyb atómov

Okolo roku 1860 Maxwell a Boltzmann prišli s myšlienkou, že vlastnosti 
plynov ako tlak a teplota sa dajú vysvetliť predpokladom o chaotickom 
tepelnom pohybe molekúl. Tak tlak vzniká v dôsledku stáleho narážania 
molekúl plynu na steny nádoby, mechanizmom podobným ako v akčnom 
filme: keď projektily zasiahnu zločinca, tak toho zločinca až tak odhodí 
dozadu pod vplyvom tých nárazov.
O pohybe molekúl sa predpokladá, že je chaotický, podlieha 

pravdepodobnostným zákonom. Takže keď „ulovím nejakú molekulu“ 
neviem deterministicky určiť akú rýchlosť jej nameriam. Rýchlosť molekúl 
sa správa ako náhodný vektor (resp. tri náhodné priemety rýchlosti). 
Keďže ide o spojité náhodné veličiny, musíme pravdepodobnosť popisovať 
pomocou hustoty pravdepodobnosti. Explicitný tvar objavil Maxwell:
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Maxwellovo rozdelenie rýchlostí

To umožňuje vypočítať strednú kinetickú energiu molekúl a dostane sa

Hodnoty             : pri izbovej teplote typicky 0.02 eV, pri 12000K: 1 eV
Na rozbitie (ionizáciu) atómu vodíka treba 13.6 eV. Za normálnych 
podmienok je teda len zanedbateľné percento atómov vodíka 
ionizovaných.

Ale bombardovanie molekulami s energiou 0.02 eV by sa malo prejaviť 
zmenami trajektórie elektrónu okolo jadra a teda nie všetky vodíky by 
mali byť rovnaké  
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Záver:

Vyzerá to tak, ako keby elektrón obiehajúci okolo jadra 
nemohol zmeniť svoju energiu „ len o trošku“.
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Záhadná diskrétnosť mikrosveta

Diskrétne spektrá atómov 

Spektrálny rozklad svetla (Newton)

Spektrum svetla vydávané rozpáleným tuhým telesom
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Spektrum atómu vodíka

Elektrická výbojka plnená vodíkom
Niečo ako horské slnko, ktoré môže byť 
plnené ortuťovými parami.
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G.R.Kirchhoff okolo 1860
spektrálna analýza chemického zloženia

....planets..... we can never known anything of their chemical or mineralogical 

structure

Auguste Comte, The Positive Philosophy, Book II, Chapter 1 (1842) 

1868 P.Janssen objavil na Slnku spektrum 
na Zemi neznámeho plynu (hélium), ktorý 
bol na Zemi potvrdený až po 30 rokoch

spektrum hélia
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Záhadná diskrétnosť mikrosveta

Diskrétne spektrá atómov 

Ak atóm vyžiari svetlo, musí zmeniť svoj stav, lebo vyžiaril nejakú energiu, 
teda jeho energia po vyžiarení musí byť iná ako pred vyžiarením.
Ale prečo je frekvencia diskrétna. Čo to hovorí o stavoch atómov.
Odpoveď: Einstein v teórii fotoefektu.
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Einstein a fotoefekt

Fotoefekt: dopadom svetla na kov možno z neho vyraziť elektróny do 
okolitého priestoru  (vákua). Ak je na blízku kladná elektróda, tá elektróny 
pritiahne, teda vákuom prechádza prúd. Pri opačnej polarite elektród prúd 
neprechádza. Ale ak je „protinapätie“ malé, nejaké elektróny prejdú, z 
čoho sa dá usúdiť, že boli nielen vytrhnuté z kovu ale dostali ešte aj nejakú 
rýchlosť (kinetickú energiu) takže treba vykonať nejakú prácu, aby 
nedoleteli. Môžem odmerať koľko „záporných voltov“ je treba aby 
nedoleteli a tým odmeriam energiu, s ktorou boli vystrelené.
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• sú tam nejaké elementárne procesy
• energia odovzdaná elektrónu v jednom 

elementárnom procese závisí len na 
frekvencii svetla, nie na jeho intenzite

• väčšia intenzita sa prejaví len zvýšením 
počtu elementárnych procesov

energia je úmerná frekvencii

Závery na základe experimentov:
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Einstein:
• elementárny proces je pohltenie svetelného kvanta elektrónom
• energia svetelného kvanta je úmerná frekvencii svetla

Aby elektrón vôbec vyletel (s nulovou kinetickou energiou) musí platiť

kde W je tzv. výstupná práca potrebná pre vytrhnutie elektrónu z 
daného kovu. Pre Na je to 2.36 eV, pre Cu okolo 5 eV.
Pre Na treba 525 nm (viditeľné) pre Cu 250 nm (ultrafialové)
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Prenos energie svetla sa deje po kvantách – fotóny.
Energiu jedného fotónu určuje frekvencia svetla

Intenzívnejšie svetlo rovnakej frekvencie: prúd väčšieho počtu fotónov,
každý fotón má rovnakú energiu ako pri nižšej intenzite.

fotón -> elektrón+pozitrón

Fotón možno „vidieť“, ako 
vyrobí pár elektrón 
pozitrón v bublinovej 
komore
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Svetlo prenáša nielen energiu ale aj hybnosť.

smerové vysielanie signálu spôsobuje 
reakčný pohyb satelitu v opačnom 
smere, podobne ako keď na 
skateboarde striekam vodovodnou 
hadicou dopredu, začnem sa hýbať 
dozadu
Dráhu vysielajúceho satelitu treba z 
času na čas korigovať malými 
raketovými motormi

Záver: fotón má nielen energiu ale aj hybnosť

Vlna v smere osi x:
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Záhadná diskrétnosť mikrosveta

Diskrétne spektrá atómov 

Ak atóm vyžiari svetlo, musí zmeniť svoj stav, lebo vyžiaril fotón, teda 
nejakú energiu, teda jeho energia po vyžiarení musí byť iná ako pred 
vyžiarením.
Vidno ale že atóm vie vyžarovať len celkom určité diskrétne frekvencie, 
teda fotóny len celkom určitých diskrétnych energií.
Teda rozdiely energií atómových stavov sú len celkom určité diskrétne 
čísla.

Energie atómových stavov sú teda len celkom určité diskrétne čísla
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Možné energie atómu vodíka:

Diskrétne spektrá → diskrétne energie

V spojitom svete sa objavujú diskrétne hodnoty veličín !!!!!
Diskrétne hodnoty sa dajú vyjadriť pomocou celých čísel 
(hovorí sa im kvantové čísla)

Empirický vzorec:
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Ako je to možné, že celé čísla, ktoré ľudstvo pôvodne vymyslelo na 
počítanie dobytka hrajú úlohu vo "fyzikálnom zverinci"?

Prvý, kto sa tak prekvapil bol Pytagoras.
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Tóny strún súzvučia, keď ich dĺžky 
sú v pomere malých celých čísel
2:1 oktáva
3:2 čistá kvinta

Dnes rozumieme, ako sa objavujú celé 
čísla v porozumení zvuku struny:

Vlastnosti riešení vlnovej rovnice
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Vlnová rovnica: okrajové podmienky

V rovnici pre zvukove vlny v jednorozmernej tyči sme mali okrajové 
podmienky takéto:

Pre koaxiálny kábel ukončený odporom sme mali okrajovú 
podmienku takúto:

s okrajovou 
podmienkou

Parciálna diferenciálna rovnica teda potrebuje zadať okrajové podmienky, 
až tie vyberú z možných riešení to fyzikálne správne k danému problému.

Okrajové podmienky môžu byť veľmi rôzne od prípadu k prípadu, treba 
ich určiť na základe dôkladnej fyzikálnej analýzy toho, čo sa deje na 
okrajoch systému, ktorý skúmame.



87

Vlnová rovnica: analytické riešenie

Geniálny Fourierov nápad: hľadajme riešenie v tvare 

Po dosadení do vlnovej rovnice dostaneme

Z jednoznačnosti Fourierovho rozkladu dostaneme rovnice

Sú to rovnice nezávislých harmonických oscilátorov

Tým sa obmedzíme len na funkcie, ktoré 
automaticky spĺňajú okrajové podmienky
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všeobecné riešenie pre jeden oscilátor (teda konkrétne n) 
má tvar

teda všeobecné riešenie vlnovej rovnice na intervale 0, 𝐿 je
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Vlnová rovnica: charakter riešení

Vyšetrime vlastnosti najjednoduchšieho riešenia
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Video ukazuje, že každý rez tyče kmitá ako oscilátor, stále rovnakou 
frekvenciou a amplitúdou. Niektoré rezy tyče nekmitajú vôbec, to sú 
takzvané uzly. Riešenie

popisuje tzv. stacionárne kmity tyče (stojatú vlnu). Slovom stojatý 
máme na mysli to, že po tyči sa nepremiestňuje energia ani amplitúda 
oscilácií. Všimnime si, že stojatá vlna je monofrekvenčná, všetky body 
kmitajú jednou a tou istou frekvenciou
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Index 𝑛 pri určuje počet priestorových polperiód kmitov,
súvis s vlnovou dĺžkou je

𝑐 má rozmer rýchlosti !
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Ukážka nestacionárneho vlnenia
Na videu je pohybujúca sa vlna
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Fourierovskou metódou sme hľadali riešenia už hneď vo veľmi 
špeciálnom tvare, lebo nulové okrajové podmienky nám to napovedali.

Skúsili sme to hľadať aj v menej špeciálnom tvare, ale takom, aby sme 
mali šancu, že vlastne nájdeme nový pseudofourierovský rozklad.
Fourier bol založený na konkrétnych sínusovkách, ale naozaj esenciálne 
boli len nejaké ich vlastnosti. Skúsme vymenovať nejaké vlastnosti, 
ktoré by sa nám na špeciálnych riešeniach páčili:
• časová a priestorová závislosť sú separované ako súčin dvoch 

funkcií, jednej len časovo závislej, druhej len priestorovo závislej
• splnené sú okrajové podmienky
• priestorové funkcie sú ortogonálne
• priestorové funkcie tvoria úplný systém, t.j. že hocijaká priestorová 

funkcia s požadovanými vlastnosťami sa dá napísať ako ich 
superpozícia

• časovo závislé časti tých špeciálnych funkcií sú monofrekvenčné
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Začnime prvou z tých vlastností, separáciou časovej a priestorovej 
závislosti. Hľadajme riešenie v tvare(nedbáme na okrajové podmienky):

Dosadíme do vlnovej rovnice:

Ľavá strana závisí len od času, pravá len od súradnice, ale musia byť 
rovnaké pre každú hodnotu času a každú hodnotu súradnice. To je možné 
len tak, že obe strany sú rovné jednej a tej istej neznámej konštante, 
nazvime ju X. Dostali sme dve rovnice. Keď sme začali navyše žiadať, aby 
boli splnené okrajové podmienky, ukázalo sa, že vhodné riešenia existujú 
len pre nejaké špeciálne diskrétne hodnoty konštanty X.

Zopakujme si, čo sme už robili:
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Pri riešení vlnovej rovnice (alebo iných podobných parciálnych 
diferenciálnych rovníc) sa teda objavujú špeciálne stacionárne 
diskrétne riešenia. 
Úloha na hľadanie istých špeciálnych (pre fyziku stacionárnych) 
riešení bola v matematike asi jediná známa úloha zo spojitej 
matematiky, ktorá viedla na diskrétne riešenia.

Lenže to bolo o vlnách a mikrosvet je vystavaný z častíc!

Pri svetle, o ktorom sa dokázalo, že je to vlnenie, sa ale prekvapivo 
objavili "časticové vlastnosti".

Myšlienka (de'Broglie): čo ak častice majú naopak vlnové vlastnosti 
a namiesto Newtonovými rovnicami sa majú popisovať ako vlnenie?
Skúsme prekladový slovník, platný pre fotóny
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Ale čítajme ten slovník naopak, nie takto

ale takto:

teda skúsme časticu, ktorá má energiu 𝐸 a hybnosť 𝑝 považovať za 
vlnu s frekvenciou 𝜔 a vlnovým číslom 𝑘.

E.Schrödinger zobral tento nápad doslova a skúsil zostaviť 
pohybovú rovnicu pre častice ako rovnicu pre vlnenie.

Prvé, čo asi skúsil, bola obyčajná vlnová rovnica, ktorá by mohla 
popisovať voľnú časticu, na ktorú nič nepôsobí
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Ak hľadáme riešenie, ktoré by malo zodpovedať častici s energiou 𝐸, 
potom by to riešenie malo mať určitú frekvenciu, teda malo by to byť 
monofrekvenčné riešenie. Predstavme si, že hľadáme riešenia, 
zodpovedajúce voľným časticiam uzavretým v "krabici", niečo ako 
ideálny plyn. Očakávame že príslušná de'Broglieho vlna bude nulová 
mimo krabice a teda aj na stenách. Také monofrekvenčné riešenia 
vlnovej rovnice poznáme, sú to Fourierove sinusovky tvaru

Dostali sme diskrétne hodnoty energií

Súčasne aj diskrétne hodnoty hybností 
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Lenže odtiaľ dostávame nejaký divný súvis medzi energiou a hybnosťou

Asi ale nechceme "zrušiť celého Newtona". Chceme si dovoliť 
modifikovať Newtona pre mikrosvet (pre častice s malými hmotnosťami 
a malými energiami, rádove eV) ale pre veľké energie by mal ostať platný 
(aspoň ako priblíženie) starý dobrý Newton.

Takže páčilo by sa nám, aby pre veľké energie (teda veľké n) platilo čosi 
ako

ale obyčajná vlnová rovnica dáva pre malé aj veľké n stále rovnako
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Prečo dostávame taký vzťah?
Lebo keď hľadáme riešenie vlnovej rovnice

v separovanom tvare

dostaneme dve rovnice

V obidvoch rovniciach sú druhé derivácie, takže dostaneme 
„oscilátorové riešenia“ typu                                                 a druhé 
derivácie z toho vyrobia                         resp

teda kvadrát  v energii aj hybnosti. Kvadrát pochádza z toho že je 
tam druhá derivácia. 
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My potrebujeme

teda lineárne v energii, kvadraticky v hybnosti. Nápad na zmenu je 
jednoduchý, skúsiť rovnicu , kde bude prvá derivácia podľa času a druhá 
derivácia podľa súradníc. Naivný nápad skúsiť rovnicu

ale nebude fungovať. Separované riešenia typu                                     dajú

Lenže rovnica

nemá ako riešenie sínusovky ale reálne exponenciály a riešenia typu

sú neakceptovateľné tak pre záporné X (riešenie „vymrie“), ako aj pre 
kladné X (riešenie exponenciálne „vybuchne“).
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Chceme teda zdanlivo nemožné, rovnicu s prvou deriváciou, ktorej 
riešenie je kmitanie, teda „imaginárna exponenciála“

Nápad: išlo by to, ale v rovnici by museli byť komplexné čísla. Čo tak 
skúsiť rovnicu

to povedie na

s riešením
Takže nakoniec dostaneme vlnu typu

a vzťah

šikovne ešte definujeme
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a dostaneme (použijúc obvyklé označenie        namiesto 𝑢)

Toto je Schrödingerova rovnica (v jednorozmernom  svete), základná 
rovnica kvantovej mechaniky. Práve sme boli svedkami jej zrodu.

Záver: s časticou nejako súvisí komplexná vlna, ktorá spĺňa Schrödingerovu
rovnicu.
Pozoruhodné: ako keby sme tvrdili, že príroda vie, čo sú to komplexné 
čísla a používa ich.
My sme už používali komplexné čísla, ale bol to len taký matematický trik, 
aby sme nemali starosti s goniometrickými vzťahmi. Písali sme komplexné 
exponenciály ale chápali sme to tak, že fyzikálny význam majú len ich 
reálne časti.
Toto je iné: de’Broglieho vlna je naozaj komplexná.
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Čo hovorí Schrödingerova rovnica o voľných časticiach (ideálnom plyne) v 
nádobe (kontajneri) v jednorozmernom svete? V  jednorozmernom svete je 
kontajnerom úsečka (0,L). Monofrekvenčné riešenia poznáme, sú to 
Fourierove sínusovky

V trojrozmernom svete bude mať Schrödingerova rovnica pre voľnú 
časticu tvar
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Hodnoty energií zodpovedajúcich stacionárnym stavom voľnej častice v 
nádobe tvaru kocky o hrane L budú

Znamená to toto: ak mám nádobu plnú častíc, vyberiem si jednu z nich 
a odmeriam jej energiu (podobne ako policajti radarom odmerajú 
rýchlosť auta na diaľnici, ktoré si vybrali),  potom meraním získaná 
hodnota energie bude rovná niektorej z hodnôt (1), teda že existujú 
celé čísla i,j,k také, že nameraná hodnota bude rovná 

Správnosť formuly pre možné hodnoty energií častíc (takmer) 
ideálneho plynu sa dá experimentálne overiť. Závisia na nej niektoré 
jemné predpovede teórie o predpokladaných vlastnostiach plynov a 
vychádza to správne.

(1)
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Schrödinger teda napísal rovnicu pre voľnú časticu

Otázka znela, ako napísať rovnicu pre niečo zaujímavejšie, napríklad 
pre elektrón „obiehajúci okolo jadra“ v atóme vodíka

Uhádnutie správnej rovnice bolo geniálne: Rovnica pre voľnú časticu 
je symbolickým zapísaním vzťahu

Derivácia podľa času totiž z vlny „vytiahne“ energiu a druhé derivácie 
podľa súradníc kvadráty komponent hybnosti. Pre elektrón v poli 
jadra pribudne klasicky do vzťahu pre energiu ešte potenciálna 
energia elektrónu v Coulombovom elektrickom poli jadra, klasický 
vzťah je



106

Schrödinger teda odvážne napísal rovnicu

A stal sa zázrak: ak hľadáme riešenie tej rovnice v tvare

a požadujeme okrajové podmienky tak, že chceme aby funkcia              
dostatočne rýchlo v nekonečne klesala k nule, zistíme, že také riešenie 
neexistuje pre ľubovoľné číslo E. Existuje len pre nejaké vybrané diskrétne 
hodnoty, konkrétne pre hodnoty 

To bol gól !
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Ostáva otázka:

Tá vlnová funkcia v prírode naozaj niekde je? Vo filozofickom zmysle 
„existencie“.

Odpoveď: zdá sa, že nie. Je to zrejme len pomocný matematický pojem. 
Častice sa nestali po objave kvantovej mechaniky vlnami.
Názov častica ostáva primeraný, vlna len slúži na predpoveď budúcnosti 
v nasledovnom zmysle.

Vlnová funkcia               slúži na výpočet hustoty pravdepodobnosti, kde 
v priestore očakávam nájsť časticu v čase t.
Presnejšie takto: poloha častice v čase t je predpovedateľná len 
pravdepodobnostným spôsobom.  Jej poloha          je  náhodnou 
veličinou charakterizovanou v čase t hustotou pravdepodobnosti
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Schrodingerova rovnica umožňuje predpovedať 
možné energie elektrónov viazaných pri jadre 
vodíka.

Podobne vieme dnes vypočítať možné energie 
elektrónov v zložitých atómoch a molekulách.

Ba vieme niečo povedať aj o možných energiách 
elektrónov v tuhých látkach.

Povieme si niečo kvalitatívne o vodičoch, 
nevodičoch a polovodičoch
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E

Typicky energetické spektrum tuhej látky vyzerá ako na 
obrázku. Na osi energií sú oblasti husto zaplnené 
hodnotami "povolených energií" striedavo s oblasťami, 
kde sa nevyskytuje žiadna "povolená energia". 
Upozornime ešte, že čiara na obrázku zodpovedá 
možnej hodnote energie, nie jednému možnému stavu. 
V skutočnosti často existuje veľa rozličných stavov, 
ktorým zodpovedá jediná energetická hladina.
Hladiny sú v skutočnosti extrémne husto vedľa seba, 
takže vzniká dojem "energetického pásu".

Hovorí sa o pásovom energetickom spektre a o 
povolených a zakázaných pásoch. 

Druhým kľúčovým faktom pre pochopenie druhov 
vodivosti je Pauliho princíp. Podľa neho môže byt v 
určitom stave nanajvýš jeden elektrón. 
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E

Vodič

Vedenia elektrického prúdu sa v tuhej látke zúčastňujú 
len valenčné elektróny, ktoré sa stávajú spoločnými 
pre všetky atómy mriežky. To, čo máme nakreslené sú 
hladiny týchto spoločných valenčných elektrónov.

Nech tých elektrónov je N. Spočítame, koľko stavov 
zodpovedá energetickým hladinám v spodnom páse. 
Vo vodiči je tých stavov spravidla 2N. Znamená to, že 
elektróny majú k dispozícii viac stavov ako je ich počet. 
Pri normálnych teplotách obsadia tie elektróny N 
stavov s najnižšími hodnotami energií (tie sú na 
obrázku nakreslené modro). Ak sa na vzorku pripojí 
napätie, elektrónom o trošku zvýši energiu. Umožnené 
je to tým, že sú k dispozícii stavy s len o trochu vyššími 
energiami ako majú tie obsadené. Elektróny, ktoré 
preskočia do stavov s mierne vyššími energiami sú tie, 
ktoré sa zúčastnia vedenia elektrického prúdu.
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E

Nevodič

Valenčných elektrónov je N. Spočítame, koľko stavov 
zodpovedá energetickým hladinám v spodnom páse. 
Vo nevodiči je tých stavov spravidla N. Znamená to, že 
elektróny majú k dispozícii  práve toľko stavov z nižšími 
energiami, koľko ich je. Pri normálnych teplotách 
obsadia tie elektróny všetkých N stavov s najnižšími 
hodnotami energií (tie sú na obrázku nakreslené 
modro). Lebo podľa Pauliho princípu nemôžu dva 
elektróny zdieľať spolu jeden stav. Ak sa na vzorku 
pripojí napätie, elektrónom "by chcelo" o trošku zvýšiť 
energiu (aby mohli viesť elektrický prúd). Ale nedá sa. 
Najnižšia energia, ktorá by sa musela dodať elektrónu, 
je daná šírkou zakázaného pása. Zakázaný pás je v 
prípade nevodičov veľmi široký, niet dosť energie na 
jeho prekonanie. Vzorkou nebude prechádzať prúd.
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E Polovodič

Situácia je podobná ako v nevodiči. Len šírka 
zakázaného pása je menšia. Znamená to, že aj pri 
normálnych teplotách môžu niektoré elektróny získať v 
zrážkach s tepelne sa pohybujúcimi atómami mriežky 
dostatočnú energiu aby prekonali zakázaný pás a 
ocitnú sa v hornom vodivostnom páse. Potom môžu už 
ľahko získať ešte dodatočnú energiu od elektrického 
poľa a zúčastniť sa vedenia prúdu. Takých elektrónov 
je ale veľmi málo, preto polovodič je zlý vodič 
elektrického prúdu
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E Polovodič typu N

Polovodič typu N vznikne, ak do čistého polovodiča, 
napríklad kryštálu 4-mocného kremíka pridáme "ako 
nečistoty" 5-mocné atómy napríklad fosforu. Na 
spektre vzniknutej vzorky sa to prejaví tak, že sa 
objavia energetické  hladiny v predtým zakázanom 
páse, a to blízko spodného okraja vodivostného pása 
(na obr. červeno). Volajú sa donorové hladiny a pri 
veľmi nízkych teplotách sú obsadené elektrónmi. Ale 
pri normálnych teplotách donorové elektróny ľahko 
získajú tepelnú energiu, ktorá ich vyhodí až do 
vodivostého pása. Elektróny donorových hladín sa 
zúčastňujú vedenia prúdu, vodivosť je tým väčšia, čím 
viac prímesových atómov do vzorky pridáme.
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E

Polovodič typu P
Polovodič typu P vznikne, ak do čistého polovodiča, 
napríklad kryštálu 4-mocného kremíka pridáme "ako 
nečistoty" 3-mocné atómy napríklad hliníka. Na 
spektre vzniknutej vzorky sa to prejaví tak, že sa 
objavia energetické  hladiny v predtým zakázanom 
páse, a to blízko horného okraja obsadeného 
valenčného pása (na obr. červeno). Volajú sa 
akceptorové hladiny a pri veľmi nízkych teplotách nie 
sú obsadené elektrónmi. Ale pri normálnych teplotách 
elektróny valenčného pása ľahko získajú tepelnú 
energiu a obsadia akceptorové hladiny.
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E

Polovodič typu P
Polovodič typu P vznikne, ak do čistého polovodiča, 
napríklad kryštálu 4-mocného kremíka pridáme "ako 
nečistoty" 3-mocné atómy napríklad hliníka. Na 
spektre vzniknutej vzorky sa to prejaví tak, že sa 
objavia energetické  hladiny v predtým zakázanom 
páse, a to blízko horného okraja obsadeného 
valenčného pása (na obr. červeno). Volajú sa 
akceptorové hladiny a pri veľmi nízkych teplotách nie 
sú obsadené elektrónmi. Ale pri normálnych teplotách 
elektróny valenčného pása ľahko získajú tepelnú 
energiu a obsadia akceptorové hladiny.
Tým vo valenčnom páse vznikne neobsadený stav 
"diera„ (na obr. zeleno). Do toho neobsadeneého stavu 
môže pod vplyvom napätia preskočiť iný valenčný 
elektrón a diera sa objaví na inom mieste. Vzniknutý 
pohyb elektrónov vyvoláva efektívne dojem, ako keby 
prúd viedli kladne nabité diery.
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