OpakzZimSemestra.pdf
KmityVIny.pdf
Kontinuum.pdf
PracaEnergia.pdf
Tekutiny.pdf
Molekuly.pdf
Pravdepodobnost.pdf
TeploDejeVPlynoch.pdf
MolekulyVPlynoch.pdf
Transport.pdf
SpracovanieDat.pdf

RelativitaModernaFyzika.pdf



Pravidla

Maximalny pocet bodov za semester 40, za skusku 60 (pisomka 35, Ustna 25)
Hodnotenie: >85 A, >75 B, >65 C, >55 D, >45 E, inak Fx

Sucet bodov za semester plus skuskova pisomka musi byt > 45 pre pripustenie
k Ustnej skuske. To znamena, Ze za semester treba ziskat >10 bodov !!! pre
pripustenie ku skuske.

Na kazdom cviceni kratka pisomka, spolu 20 bodov/semester

Z kazdého cvicenia domaca uloha, nezapocitava sa, ale nepodcenujte to !!!!
Kratke pisomky spravidla budu suvisiet s Ulohami zadanymi na
predchadzajucom cviceni.

Midterm pisomka 10 bodov

Endterm pisomka 10 bodov

Su aj dobrovol'né vyberové cvicenia ako samostatny predmet.



Strasenie

Nepodcenujte pracu pocCas semestra

Déraz je na pochopenie, nie na naucenie

ale Ratajte vela drilovacich prikladov

Dodatkové vyberové cviCenia

S malym poctom bodov za semester sa skuska neda urobit’

http://davinci.fmph.uniba.sk/~cerny1/

Na tej stranke budu postupne pribudat prednasky pre tento semester. Ale su
tam vSetky prednasky, tak ako odzneli v minulom roku v zimnom aj lethom
semestri. Su tam aj .pptx s originalnym zaznamom zvuku, ako naozaj
odznel na prednaske.


http://davinci.fmph.uniba.sk/~cerny1/

Odporicana literatira:

-

Fyzika cast 1. Mechanika : Vvsokoskolska ucebnice obecné fvziky / David Halliday, Robert
Resnick, Jearl Walker ; pFeloZili Jana Musilova ... [er al.]. Brno : Vvsoke uceni technicke

FUTIUM, 2000

Fyzika pre Studujucich na vvsokych skolach technickych : 1 @ mechanika, akustika, termika /
Diomyz ITkovié. Bratislava : Alfa, 1972
Vieobecna fvzika : | : mechanika a molekulova fizika / Stefan Veis, Jan Madar, Viktor

ominik Dan

Q@ martinus.s vracat

Knihy E-knihy

Hry Kava a Caj Viac - Bestsellery | Novinky | Akcie a zFavy

ZIAVA NA UCEBNICE az do 20%

S Knihy

1Fyzi ka 2 Fyzik

a.

Prirodné vedy Fyzika Véeobecna fyzika Fyzika 1+2

Fyzika 1+2 ni 15

David Halliday - Vydavatelstvo: Akademické nakladatelst, VUTIUM, 2014

Beini cena: 8100 Zvytajne posielame do 3 dni.
Nasa cena: 75,02 € Pozriet, v ktorych knihkupectvach mame na sklade
UZetrite: 7% (5,98 €)
Detaily Informécie
« 1200 stran i 0knihe

* pevna vizba *  Recenzie
* Zesky jazyk &%  Odporicania
Viac podrobnosti




Programoveé vyhlasenie fyziky
Systém, stav, zmena stavu, casovy vyvoj

» okamih (stav systému) mozno zaznamenat a na zaklade zaznamu
ho zrekonstruovat

» c¢asovy vyvoj systému je ¢asova postupnost stavov (okamihov)

« casovy vyvoj systému je mozné predpovedat, vychadzajuc zo
znalosti pociatoCného stavu.

* Technoldgiou predpovede buducnosti su matematické pohybové
rovnice. Casovy vyvoj hfaddme ako rieenie pohybovych rovnic,
ktoré spiria pociato¢nt podmienku (stav na zaciatku je znamy
pociatocny stav)



Castica (hmotny bod) ako fyzikalny systém

Stav Castice: (moZno zadat aj pomocou dvoch vektorov)
* poloha 7 = {z,y,z2}
o rychlost o = {vz, vy, v}

Stav castice (hmotného bodu) viem zaznamenat pomocou Sestice Cisel

{3?7 Y, %y Ugy Uy, Uz}




Nerovnomerny pohyb (po priamke)




Opakovanie
Newtonov trik

Ak sa pozrieme na dostatocCne
maly usek grafu pri vhodnom
acseni, vyzera ako priamka
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x [m]

Vypocet urobime vo velmi
malickom okienku: zvolime At
tak malé, aby sa do toho okienka
zmestilo, najdeme prislusné Ax a
vypocitame podiel, to ¢o
dostaneme nazveme

okamzita hodnota rychlosti

lebo okienko ,,pokryva len
okamih“ 8



Neskor exaktni matematici vybabrali s Newtonom, kritizujuc: co to je za
neexaktnu rec ,tak malé At ako je rozumné®, to treba formulovat
matematicky presne a definovali:

I Ax
V= 1111 ——
At—0 At




Zaver tejto dlhej diskusie:

Poloha castice je ,,jednookamihova zdlezitost”, v kazdom
okamihu cCastica , niekde je*“.

Okamzita rychlost castice je ,,dvojbodova“ (dvojokamihova)
zaleZitost, ale prakticky pripisatelna k jednému okamihu

_ Az
At

U

10



Opakovanie

Zovseobecnenie pojmu rychlost
Rychlost narastania hocijakej velic¢iny

Newton: ako definovat pojem
okamzita rychlost zmeny nejakej velic¢iny
V okoli zelaného okamihu zvolim tak malé At ako je rozumné a urobim

podiel . AQ
At

potom | sa nazyva okamzita rychlost zmeny veli¢iny Q, matematicka
definicia znie

11



Zrychlenie

— _ dv zrychlenie:
@ = "7 rychlost s akou sa meni rychlost

d
— (afxaayaaZ) — (d;twv ;tya d;tz)




Suradnicovy trpaslik (ma 6 ruak a hodinky)




Suradnicova sustava
vznikne tak, ze trpaslikov pomenujeme. Kazdy trpaslik
dostane trojslovné meno
Najjednoduchsie mena sa trpaslikom vytvoria
pomocou trojice Cisel. Jeden trpaslik (pociatok
suradnicovej sustavy) dostane meno (0,0,0). Jeho
pravy sused "v smere x" bude (1,0,0), l'avy (-1,0,0).
Horny sused bude (0,0,1) doiny (0,0,-1). Atd.
Mena trpaslika udavaju suradnice "bodu v priestore"

14



Suradnicova sustava
Mena trpaslikov sme urobili celoCiselné, ale mézeme si
ich predstavit velmi mali¢kych, napriklad Ze vzdialenosti
medzi nimi budd 1012 m. TakZe suradnice vyjadrené v
metroch budu readlne Cisla s 12 platnymi desatinnymi
miestami, Co postacuje pre vela fyzikalnych problémov.

Trpaslici vzdialeni od seba 103> m, to uz nie je dobry
napad. Mame dovody domnievat sa, Ze vlastnosti
nasho priestoru na tak malych vzdialenostiach su
radikalne iné

15



Synchronizacia hodin




Prelet castice suradnicovou sustavou

Kazdy trpaslik ktory vidi tesne okolo seba preletiet ¢asticu (to je pre neho
udalost) urobi o tom zaznam na listok, na ktory napisSe svoje meno (x,y,z) a
uvedie c¢as, ktory ukazovali jeho hodiny pri tom prelete. Listok posle do

ustredia, kde listky zhromazdia a vyhodnotia
17



Ustredie dostalo listky:

(1,2,7; 12:47)

(2,3,14; 12:48)
(3,4,21; 12:49)
(4,5,28,12:50)




MW

t t 12:48 t

Pohyb Castice nazveme rovhomerny priamociary, ak trpaslikovské zaznamy sa daju
Sfitovat” tak, Ze existuju tri konstanty Uz, Uy, V. také, Ze zaznamy vyhovuju
vztahom

x(t) = xo + v (t — to)
y(t) = yo + vy(t —to)
2(t) = zo + v, (t — tg)

19




¢/‘/‘/r-/‘/‘/‘

t t 12:48 t

?

. .. o A .. , . .,
Pohyb Castice nazveme rovnomerny priamociary, ak trpaslikovské zaznamy sa daju
Sfitovat” tak, Ze existuju tri konstanty Uz, Uy, V. také, Ze zaznamy vyhovuju
vztahom

x(t) = xo + v (t — to)
y(t) = yo + vy(t —to)
2(t) = zo + v, (t — tg)

Hop, nieco sme zabudli! Podari sa to takto, iba ked' trpaslici budui mat ,,dobré“ hodinky,
teda také, ktoré rovnomerne (pravidelne) tikaju. 20



Co su to dobré (rovnomerné, pravidelne tikajuce) hodinky

Také, ze uplynie rovnako dlhy ¢cas medzi tym co ukazu 12:47 a potom 12:48, ako medzi
tym, ¢o ukazu 12:54 a potom 12:55

Ale co je to ,,uplynie rovnako dlhy ¢as“?

21



Co su to dobré (rovnomerné, pravidelne tikajuce) hodinky

Také ze uplynie rovnako dlhy ¢as medzi tym co ukazu 12:47 a potom 12:48, ako medzi
tym, ¢o ukazu 12:54 a potom 12:55

Ale co je to ,,uplynie rovnako dlhy ¢as“?

mam navod na vyrobu hodin, ktoré maju gombik start
vyrobim dvojo hodin, dam ich vedla seba

jedny nastartujem, zacnu tikat

v okamihu, ked' ukazuju Cislo 1000, nastartujem druhé hodiny
sledujem, ¢i synchrénne ukazuju dvojice (1000, 0), (1001,1),
(1002,2), (1003,3), ...

Ak ano, budem hovorit, Ze idi rovhomerne, lebo tisici tik trva
rovnako dlho ako prvy. Lebo ,verim“ ze prvy tik hodin
nastartovanych v pondelok bude trvat rovnako dlho ako prvy
tik hodin nastartovanych v stredu, ak si vyrobené podla

rovnakého navodu



Uz vieme, ¢o to znamena ,rovhnomerne” a ,,priamociaro”
Skontrolujme teda naucenu stredoskolsku vetu:

Hmotny bod (¢astica), na ktory nepdsobi Ziadna sila, sa pohybuje rovhomerne
priamociaro alebo stoji.

Uz vieme, ¢o tym hovorime, ale zjavne to nie je pravda:

Trpaslici, navzajom pochytani za ruky, ktori sedia v elektricke prave zahybajucej
dolava a pozoruju gulu polozenu na sedadle, uvidia, Ze gula sa rozbehne doprava
bez toho, ze by na nu niekto aktivne pbsobil silou. Trpaslici, stojaci na zastavke a
nazerajuci cez okno uvidia, ze gula pekne pokracuje v rovhomernom priamociarom
pohybe, ibaze elektricka pod nou ,,uhla dolava®“.

Zaver: zakon zotrvacnosti sme zatial sformulovali zle. Spravne ma byt takto:
Existuje suradnicova sustava, voci ktorej sa vol'né hmotné body pohybuju
rovhomerne priamociaro (pripadne nulovou rychlostou). Taka sustava sa vola
inerciadlna.

Logicky d6sledok: ak existuje jedna inercialna sustava, potom je inercialna i kazda
sustava, ktora sa voci uz identifikovanej inercidlnej sustave pohybuje (ako celok)

rovhomerne priamociaro.
23



Ak chcete robit fyziku a nenarobit si
zbytocné komplikacie, pouzivajte len

inercialne sustavy.

24



dt

25



Poznam priebeh rychlosti v éase v(t), chcem uréit s(t)

s(t)y =7

Draha prejdenaod asut =0azpo Cast je
- opak derivacie funkcie v(t)
« plocha pod krivkou v(t)

Matematicky poznatok: plocha pod krivkou sa da vypogitat’ pomocou ,,opaku

derivacie®.
26



VySetrime jednorozmerny pohyb, hmotny bod sa kize po osi x,

ak je (by bol) v mieste x,
posobi (posobila by) nan sila F,(x)
funkcia F,(x) je znama (mame nejaku teoriu)

Priklad
r g<0
p () ®
X
1 Qq __ 1 |Qllq|
Fﬂf (ZC)  A4dmeg r2 drreg T2

27



Ako mi znalost funkcie F,(x) umoziiuje predpovedat budicnost

* Poznam pociatoc€ny stav v Case t=0 CC(O)') Uy (0)
* Pozndm hodnotu F'(z(0))
* Teda podla Newtona poznam zrychlenie v ¢ase O

00 = FE0)

« Zo znamej rychlosti viem vypoditat polohu za kratky okamih dt
z(0) + v, (0)dt
* Zoznameho zrychlenia Wema vypocitat rychlost za kratky okamih dt

(0) + a,(0)dt

* V novej polohe viem vypoéig{a bude zrychlenie v ¢ase dt

* Viem teda stav v buducom Case~dt\a pokracujem rovnako do eSte buducejsSieho
Casu 2dt

28



Retazenie predpovedi buducnosti

o) = PO

z(dt) = 2(0) + v, (0)dt
v, (dt) = v,(0) 4 a,(0)dt

() — F(xﬂgdt))

x(2dt) = z(dt) + v, (dt)dt
v (2dt) = v, (dt) + a.(dt)dt

0. (20t) = F(:cfjdt))
x(3dt) = z(2dt) 4+ v, (2dt)dt

Ve (3dt) = v, (2dt) + a,(2dt)dt

29



Skladanie posunuti

Posurime ¢asticu, ktora sa poévodne nachadza v bode (x, y, z) vektorom a do bodu
(x',y',z") a odtial vektorom b do bodu (x",y",z".

Vektory posunuti si  — _ (' —x,y —y, 2 — 2)

a
" 17 7, T /
b= (2" —2',y" -y, 2" =2

Celu operaciu mézeme vykonat jedinym posunutim z bodu (x, y, z) priamo do bodu
(x",y",z"") pomocou vektora posunutia
7= (mu . $’yn . y,z” . Z)

pricom plati ¢ =a + b
Vidno to hned po dosadeni suradnic.

Zaver: b
Skladaniu posunuti zodpoveda sucet

prislusnych vektorov posunutia a g
To je tiez dévod (ba mozno hlavny), preCo bol sucet

vektorov definovany, ako bol. Teda cez sucet zloZiek.

Pozor! Pismenom a tu neoznaCujeme zrychlenie ale posunutie. Pismen je malo! Pri
Citani treba rozmyslat, nie fotografovat text do mozgu. 30



Alternativne oznacenie

%
M s
%
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— s — ZE
(] 1
— — —
ei=1i, eé=j, es=k
3
— — — B B B
d=a,7 +ayj +a.k <) aef kdear=az, ax=ay a=a;
=1
0 aki=#£7j .
Zavedieme symbol  0ij = 0 pred,j€{1,2,3}
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Majme teda vyraz typu bi =) Aija,

Treba to vnimat takto. Na vstupe ina pravej strane) je vektor @ a pomocou matice
A;; z neho vyrobime novy vektor b. Hovorime, Ze matica A;; transformuje vektor a
na vektor b. RozpiSme pre istotu ako vypocCitame prvu zlozku vektora b:

by = A11a1 + Aisas + Ajzas
ZapisSme teraz vSetko v maticovom (tabulkovom) tvare

by Rl P I a1” \a

by | = | A21 Az Az | .| a2®
b3 Az1 Azz  Aszs agze

V zapise sme pouzili akoby znamienko sucinu, bodku. Tym sme akoby definovali
,ako sa nasobia matice”. VSimnite si ukazovaky na obrazku. Ukazuju ako vznikne
prvy riadok vysledného vektora. M6zem si to predstavit tak, ze ukazovakom lavej
ruky postupne ukazujem prvky v prvom riadku matice a ukazovakom pravej ruky
postupne prvky vektorového stipca tak Ze ukazovaky posiivam synchrénne. Cervena
ruka ukazuje prvu synchrénnu polohu, modra druhu a zelena tretiu. Vynasobim

vzdy prvoky, na ktoré ukazuju synchronizované prstu a vzniknuté suciny sc€itam.

b1 = Aj1a1 + Aisas + Ajzas



Rovnaky vektor vyjadreny v dvoch bazach

1

e—1>/
@
/ — =7/ = =7/ = =7
a;, = a.€ zz%ej.e?; 22(67; .ej)aj:ZOijaj
J J J

, vere _ = = e d —
ked sme oznadili Oij = €; .€; = COS uhla medzi C; & €
a) O11 O12 O3 ai
as, | = | 021 Oz Oa3 as

/
as Osz1 O30 Oss as
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Rovnaky vektor vyjadreny v dvoch bazach

£1
—_— —_—
?_Zu,r_-;" rr—E:u’,:':J
L S w0
i 3 7
ked sme aznadili Oy = r_Hﬁ = eos uhla medzi 277 a ‘_.}

ffq O O Ogg @y
ab | = | O O Oz | | a2
ﬂ.{a. (a1 Oaz Oa a3

Poopravme si predstavu (,definiciu®), €o je to vektor. Doteraz sme sa tvarili, ze vektor
su tri Cisla. PresnejSia predstava je ze pri zadanej ortogonalnej baze je vektor dany
troma Cislami, pri€om pri prechode k inej baze sa ta trojica Cisel transformuje
pomocou matice ,,smerovych kosinusov“. Teda trojica Cisel ,sa stava vektorom" az
po doplneni pravidla transformacie prechodu k inej baze. Transformacné pravidlo je
kfuCova vec aby objekt mal vlastnost' ,vektorovost®.

Tieto vety su len slabym odvarom toho, €o vSetko si predstavi matematik pod pojmom

vektor. Ak si chcete spravit o tom predstavu, otvorte si knizku
M.Fecko:Diferencialna geometria a Lieove grupy pre fyzikov, ISBN:9788089256204
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Vektor a otoceny vektor v tej istej baze

7=y 07
g i
b= bl =Y ae e = (e.e))a
T T T T J=7 = (2| J
J J
ked sme oznadili R;; = er. e_;’ — cos uhla medzi e} a e_;’
predtym bolo O;j = el e_; cos uhla medzi €/’ a @

R;j = Oj;

Rotacna matica R a matica O sU navzajom transponované

35



Newtonove zakony mechaniky

1. Zakon zotrvacnosti
2. Zakon sily
3. Zakon akcie a reakcie



Rovnomerny pohyb po kruznici

Uhol sprievodiCa narasta rovhomerne s Casom, za kladny smer rotacie sa
povazuje pohyb proti smeru hodinovych rucCiCiek, uhol sa meria v radianoch, w sa

vola uhlova rychlost

= wt w je rychlost narastania
dy uhla ¢, preto termin
& W= uhlova rychlost

7= (rcoswt, rsinwt,0)

wt | L dF .
V== (—wrsin wt, wr cos wt, 0)
d—)
a= d—z = (—w?r coswt, —w?rsinwt, 0)
U] = wr
@] = wr

Je zjavné, ze vektor rychlosti je v kazdom okamihu kolmy na sprievodic, lebo
skalarny sucin tych vektorov je nulovy, ma teda smer dotyCnice ku kruhovej

trajektorii. L 5 . 5 .
.U = —wr” sin wt cos wt + wr® sin wt coswt = 0

S5/




Rovnomerny pohyb po kruznici

Uhol sprievodiCa narasta rovhomerne s Casom, za kladny smer rotacie sa
povazuje pohyb proti smeru hodinovych rucCiCiek, uhol sa meria v radianoch, w sa

vola uhlova rychlost

= wt w je rychlost narastania
uhla ¢, preto termin

de ;L
= —= uhlova rychlost

Cdt

—s. w

7= (rcoswt, rsinwt,0)

wt | L dF .
V== (—wrsin wt, wr cos wt, 0)
d—)
a= d_?tj = (—w?r coswt, w?rsinwt, 0)
U] = wr
@] = wr

Prostym porovnanim zloziek polohového vektora a zrychlenia vidno, Ze zrychleniae
ma smer do stredu kruznice (teda rovnobezny ale opacny ako sprievodic). Vola sa
to dostredivé zrychlenie. Zrychlenie je teda nenulové, hoci velkost rychlosti je

konstantna. Rychlost ako vektor vsak nie je konsStantna, smer vektora rychlosti sa
stale meni. , 02

|d| = wr = —
r 38




Nerovnomerny pohyb po kruznici

Uhol sprievodiCa zavisi lubovolne na Case.

uhol je fubovolnou (aj

_ p(t) nelinearnou) funkciou
—~./ N dp N - .
| w(t) = — ¢asu, uhlova rychlost’ nie
' dt je konstantna
o(t) 7 = (rcos(p(t)), rsin(p(t)),0) = rii

7= T = (~w(t)rsin(e(t)). w(t)r cos(p(1)),0)
U] = wr
v =07, 7= (—sin(p(t)),cos(¢(t)),0)

|ﬂﬁa n= (COS(QP(t))a Sin(@‘o(t))a 0)
7 je jednotkovy vektor v smere dotycnice, rychlost ma smer dotyénice ku kruhovej
trajektorii, n je vektor v smere normaly, teda koimyna ¢, 7n.7=0

% = (—wrsin(p) — w?rcos(p), w(t)rcos(p) —w

,F’

“rsin(¢), 0)

d|v]

dt

Zrychlenie ma zlozky tangencialnu a dostredivu. Tangencialna je ,zodpovedna“ za
zmenu velkosti rychlosti, normalova je zname dostredivé zrychlenie, ,zodpovedné’
za zmenu smeru rychlosti 3

a =

ad = wr? — wrn uvedomme si Zze 71w =

1



Nerovnomerny pohyb po l'ubovolnej krivke

UvaZujme vSeobecny pohyb &astice dany ¢asovym priebehom  #(¢)

Rychlost v Case t bude
dr(t :

i(t) = T8 = i) = o) 7

7 je jednotkovy vektor v smere rychlosti

v bode 7(t). Otazka je, v akom vztahu

je vektor 7 ku trajektoérii v bode 7(t).

Tvrdime, Ze vektor T ma smer

doty€nice k trajkektorii.

Naozaj: pre vypocCet vektora rychlosti

su dolezité dva (infinitezimalne) blizke

body trajektorie, vektor rychlosti a teda

aj T ma smer spojnice tych dvoch

bodov

*.. Definicia doty&nice ku krivke je:

i Je to priamka prechadzajuca dvoma

J infinitezimalne blizkymi bodmi krivky

40




Oskulacna kruznica

Uvazujme vSeobecnu krivku a na nej tri (infinitezimalne) blizke body. Krivka vo
vSeobecnosti nelezi v jednej rovine. Ale tri nejaké body urCuju rovinu a sucasne v
tej rovine jednoznacne nejaku kruznicu, ktora sa nazyva oskulacna kruznica tej
krivky v jednom jej bode (v strednom z tych troch bodov). Polomer oskulacne;
kruznice sa nazyva polomer krivosti krivky v uvazovanom bode.

Sucasne je zrejme, Ze krivka a jej oskulacna kruznica maju v uvazovanom bode
spoloénu dotyénicu.

Prijmime intuitivne bez rigor6zneho ddkazu, ze v limite, ked uvazovane tri body budu
nekonecne blizko pri sebe, postupnost nimi tvorenych kruznic sa bude blizit k limitne;
oskulacnej kruznici v uvazovanom bode. V matematickej limite je teda oskulacna
kruznica ,bodovy pojem®, fyzikalne je to ,trojbodovy pojem” (v tom zmysle ako sme sa
bavili, Ze rychlost je ,dvojbodovy pojem” a zrychlenie ,trojbodovy”



2

—

L dgl . |7

0 — 5, _

da ' Ry

Vektor 11, je jednotkovy vektor normaly trajektorie v bode 7, je kolmy na dotyénicu
Ty, lezi v rovine oskulaénej kruznice a ma smer od stredu oskulacnej kruznice von.
Znamienko — v rovnici potom znamena ze normalova zlozka smeruje do stredu
oskulacnej kruznice, hovorime o dostredivom zrychleni.

Tangencialne zrychlenie teda vypoveda o zmene velkosti rychlosti, normalove
(dostrediveé) zrychlenie o zmene smeru rychlosti. Zapamatajte si vzorec pre velkost
dostredivého zrychlenia

]

R

Zdoraznime eSte, ze dotyCnica ku krivke je vacsine ludi intuitivne zrejmy pojem a;
pri priestorovej krivke, ktora nelezi v nejakej rovine. Ale normalovy vektor kolmy k
dotycCnici vlastnostou kolmosti nie je urCeny jednoznacne, musime este urcit, v
ktorej rovine lezi. Je to prave rovina oskulacnej kruznice. Teda vektor normaly ku
krivke ,je trojbodovy pojem®, kym vektor dotyCnice ku krivke je ,je dvojbodovy
pojem”.



Dostrediva sila

U
Ak sa Castica pohybuje po zakrivenej drahe, ma
. dostredivé zrychlenie a teda nan musi pésobit
F dostrediva sila
g . mu®
Fdostr = MAadostr = — n

r

kde r je polomer krivosti trajektorie.

Keby nepobsobila dostrediva sila, Castica by pokraCovala zotrvacnym

rovhomernym priamociarym pohybom v smere dotyCnice, ako to napriklad vidno

na odbrusenych Casticiach kovu pri bruseni:
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Transformacia: otocenie fyzikalneho systému

Najme system Castic, polohy ktorych v nejakom okamihu su dané sustavou
polohovych vektorov 7. ne(lN)

poznamenajme, ze symbol n nie je zlozka vektora ale index vektora, teda Cisluje
jednotlivé Castice.

Predstavme si teraz, ze cely systém Castic otoCime do novych pol6h tak, ze kazdy
z polohovych vektorov otoCime o rovnaky uhol voci zvolenej (rovnakej osi)
otaCania. Po otoCeni sa Castice budu nachadzat v novych (transformovanych)

polohach
P — 7, ne(l,N)

Vykonana transformacia sa vola ,otoCenie fyzikalneho systému®. Transformacia
otoCenia je zadana rotacnou maticou (spolocnou pre vSetky vektory) R;;

(7)i = Z Rij(7n);



Ako sme videli, prvky rotaCnej matice su vlastne skalarne sucCiny nejakych
jednotkovych vektorov, teda vlastne kosinusy uhlov, ktoré tie jednotkové vektory
zvieraju. Nazyvame ich ,smerove kosinusy“. Nasa intuicia si spravidla nevie
predstavit ,ako vyzera“ otoCenie, zadané 9 smerovymi kosinusmi. Kazdé otoCenie sa
ale da vyjadrit ako otoCenie okolo nejakej fixnej osi o nejaky uhol. To je intuitivne

ovela prijatelnejsie.

Takze pohrajme sa s otoCeniami okolo osi.

Zacneme otoCenim okolo osi z. Pri takom otoCeni sa z-oveé suradnice Castic
nemenia, menia sa len x-ové a y-ove suradnice, takze je to rovinny problém, na ktory
sa mézeme pozriet v rovine xy. Sledujme jednu Casticu leZiacu v rovine xy na obr.

Os z smeruje od nakresnej roviny smerom ,k

€Tr =
’y:

’ Citatefovi“, kladny smer otoCenia o uhol ¢, je
C/ dany prstami pravej ruky ak palec ukazuje smer
z’ 0Si z.

r=rcosa Yy =rsina
' =rcos(a+¢) y =rsin(a+ )

7 COS (x COS (¢ — T Sin v sin ¢

7 Sin ae cos @ + 1 cos asin

.’B,

/

Y

= I COS Y — ysiny
= Y COS Y + xsinp




Zapamatajte si, ako vyzeraju vzorce pre rotaciu v dvoch rozmeroch!

2’ = xcosp —ysing
"= ycosp+ xsinp

X

Suradnice otoeného vektora su ,zmieSaniny®“ suradnic povodného vektora.
Pomocou kosinusu a sinusu. Pri sinuse je jedno znamienko kladné druhé zaporné.
Na to, kde je sinus a kde kosinus pridete z uvahy o limite vemi malého otoCenia.
Pri malom otoCeni sa suradnice ,moc nezmenia“, takze v limite malého uhla musi
byt x" =~ x,y" = y. Pre malé uhly cosp = 1, sing = 0, taZe je to jasné.

To, pri ktorom sinuse je zaporné znamienko vidim z obrazku: x' < x.
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Rotacna matica pre otocenie okolo osi z

&
Z
x' = xcosp — ysinp
Nem y' =ycosp+wsing
i 7=z
T iy
.
y

o ta,
.
.

_(‘O/' ...... a
x >

Po nejakych pokusoch a omyloch by sa vam malo podarit napisat, ako
vyzera rotaCna matica pre takuto transformaciu. Dostanete

x’ cosy —sing 0 x
y | =[sing cosy 0 Y
Z 0 0 1 z

Overte si maticovym nasobenim, ze je to dobre.



Skladanie otoceni okolo tej istej osi

Urobme najprv otoCenie okolo osi z o uhol ¢ a nasledne dalSie otoCenie zase okolo
osi z o uhol 9. Takze bude

¥’ =xcosp —ysingp 2" = 2" cosd — 3 sin
' = ycosy + xsinp y" =y cos? + 2’ sin?
2=z 2 =2
x’ cosp —sing 0\ [« z" costy —sind 0\ [a
y' | = |sing cosp Of [y y" | = [sind cosd O] (v
2 0 0 1) \z 2" 0 0 1/ \¢

/ "no__ D ../
T, = E Rjkrrk Ty — E szrrj
k J
1 2 : > 2 : E : /

’l"i = R’ij Rjk?"k = Rikrk
7 k k

Dve po sebe nasledujtice oto¢enia, ktorym prisliichaju rotacné matice R a R sa daju
chapat ako jedna (vysledna) rotacia s rotaénou maticou R’

, 3
ik = E RijRji
i



e = Z RURJk

Vsimnime si strukturu vyrazu. Na lavej strane je dvojindexova matica, teda
vlastne je to 9 rovnic, kazda pre nejaku kombinaciu hodnét indexov ij. V sucte je
jeden nemy index, teda je to sucet troch sucinov. V sucCinoch su prvky z dvoch
matic, pric¢om sa séita tak Ze druhy index (stipcovy) prvku prvej matice je rovnaky
ako prvy index (riadkovy) prvku druhej matice. V maticovom zapise je to

4

P

51 Igg=has Ror~ Rao  Rog Ro1 Rz Rag
51 Q3 Rag Rg1 Rsy Rss K31 M3z Has

’ | ! Ren R Ri1 Ri2 R
11 N %}k @\ [ 11 Riz Ras

Na obrazku konkrétne vidime, ako sa vypocita prvok R;;. Ukazujeme synchrénne
ukazovakom [avej ruky prvky v druhom riadku favej matice a ukazovakom prave;
ruky prvky v tretom stlpci pravej matice.

Lo = Ro1Ri3 + RaoRas + RosRss

Analogicky ziskame vsetkych 9 prvkov vyslednej matice.

Spolahlivo si nacvicte techniku nasobenia dvoch matic!
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Vektorovy sucin
Definicia @ x b=|d||b|sin® 7

C=-AxB
Fesult |

axb

h

15t vector A

bxa

—_-axbh .
Znd wector

Pravidlo pravej ruky: prsty pravej ruky
postavime tak, aby ukazali stacanie vektora A
smerom k vektoru B a palec potom ukaze smer

- -
vektorového sucCinu 4 X B .



— _k | | Plati v pravotocivej
> | | baze

Osi x,y,z nembzeme
= —J | | pomenovat
lubovolne, ale tak,
aby toto platilo

Left-handed Right-handed

Cartesian Coordinates Cartesian Coordinates

Prsty otacaju od "x" k "y", palec ukaze

a z+a,yj+azl€ b=bi+ byj+ b,k

(am?+ ayj + ak) X (byi+b,j+b E)
= a,b sz—l—amb ZX]-I—Cbe ’L><k-|—
= abyk + azb.(—)) + ...
= (ayb, — azby)er (a,b, — ambz)5+ (@b, — aybm)/;
Tu sme vyuzili distributivnost vektorového sucinu, ktora z definicie, ktord sme

uviedli trivialne nevyplyva. Zaujemcov od dékaz odkazujeme na doplnkovu
Powerpoint prezentaciu o vektorovom sucine

axb
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(@ x b)y = (azby — azb.) yze = yaz
-7 ZXxY — 2YT
(@xb), = (azby — ayb:) . , : : , :
prirodzené poradie - neprirodzené poradie
Levi-Civitov antisymetricky e-symbol
Eijk = —E&jik g-symbol je totalne antisymetricky
Eijk = —Eikj i, gk € {1,2,3} vsetky hoc.jpoty S aspon dyoma’ ’
rovnakymi indexami musia byt nulové
Cijk = —Ekji
€11k — €22k — €33k — €151 — €242 — €353 — &411 — £422 — £433 — 0
€123 = €231 = €312 = 1 Toto je konvencia: pre prirodzené poradie je
£139 = €391 = €913 = —1 hodnota 1, pre neprirodzené -1
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Napad: uhlova rychlost’ a uhol otocenia ako vektory

Infinitezimalne otoCenia sa konaju ako postupnost v Case okolo fixnej osi, vzdy
kazdé infinitezimalne otoCenie za maly (infinitezimalny) Cas dt.
Infinitezimalny uhol otoCenia bude dgp = w dt a vyznam w je zrejmy: je to rychlost
narastania uhla otoCenia v Case g
_

dt
Vyrobme teraz vektor w tak, aby v iom bola zakédovana nielen uhlova rychlost
otaCania ale aj smer osi, okolo ktorej sa otaCa. Kdédovanie je jednoduché:

W

Vektor w ma smer osi otaania a taku orientaciu, aby prsty
pravej ruky ukazovali smer otaCania ak palec ukazuje
orientaciu vektora w. Velkost toho vektora je velkost uhlovej

rychlosti
3 = w =2

W dt
Potom je prirodzené zaviest aj infinitezimalny uhol otoCenia ako vektorﬁp)
rA
dp = wdt
%
Je to vektor v smere osi otdGania a jeho velkost je uhol otodenia [d¢| = dp = wdt



Zmena polohového vektora pri infinitezimalnom otoceni
Zistili sme, ze suradnice polohového vektora

(Lgi\ sa pri infinitezimalnom otoCeni okolo osi z
menia takto:
z =z —ydp
[
A7 =y + xdp

.
aus
wu®
wn®
L
-------
s
L
au®
n®
wn®

!
. Z = Z

e, T . v
Infinitezimalny vektor otoCenia do ma zlozky

—
6 = (0,0,6¢)
Zmena polohového vektora dr =7' — 7
ma zlozky
i = (—ydp, x6p, 0)

Yy

Overte si explicitnym vypoctom podla pravidla pre pocCitanie
zloziek vektorového sucinu

axb= (ayb, — azby);—l— (asb, — a,xbz)f+ (azb, — aybm)lg
ze plati

_>
di = 5 x 7
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Zmena polohového vektora pri infinitezimalnom otoceni

__>
dF = 0 x 7

Tento vztah sme si odvodili pre rotaciu okolo osi z, teda vektor §¢ mal smer osi
z. Ale dostali sme vztah medzi vektormi, ktory neméze zalezat na to, ako su
zvole_rgé osi. Teda je to univerzalne platny vztah. Hovori toto:
Ak d¢ je vektor infinitezimalnej rotacie okolo fubovolnej osi (teda ma smer osi
rotacie a velkost’ infinitezimalneho rotaéného uhla), potom zmena
polohového vektora je urCena takto .

dr=0p X1
resp. —



Hmotny stred

d —_ - — —
T mez‘ =Y E(7, 1)
1 d . . 1
—P=F
dt
Pokusime sa lepsie ,precitit®, ¢o ta rovnica znamena, upravime preto vyraz pre

celkovu hybnost
, . d . d ), mT;
P = EZ miv; = - E@ m;T; = % mi = qu;mi

Ozna¢me celkovu hmotnost ststavy ako m, teda  m =) m;
a zavedme oznacenie iy 1 .
T

Symbol R* méZeme zjavne chapat ako polohovy vektor ¢ohosi, otazka je Coho.
Je to vazena suma polohovych vektorov jednotlivych Castic. Je to Cosi ako
stredny polohovy vektor systému, ale jednotlivé Castice v hom nezavazia
rovnako. Vaha, ktorou Castica prispieva do tej sumy, je »,; m;/m. Teda vysledny
vektor je ,blizSie k Castici velkou hmotnostou ako k Castici s malou hmotnostou.
Je to polohovy vektor bodu, ktory sa (definitoricky) nazyva hmotny stred
sustavy.




d

Prepi§eme teraz rovnicu ﬁﬁ = F
. d -
vyuzijuc polohovy vektor hmotného stredu: P = mER*
d d = i
—m—R"=F
it dt
d® -
— RP* — F
mdtQR

Prave sme odvodili vetu o hmotnom strede:
Hmotny stred sustavy sa pohybuje akoby to bol hmotny bod, v ktorom je

sustredena cela hmotnost’ systému a posobila by nan sila rovna
vektorovému suctu vSetkych vonkajsich sil pésobiacich na sustavu.

Poznamenajme, ze tuto rovnicu sme odvodili suc motivovany zaujmom o pohyb
tuhého telesa, ale v tomto odvodeni sme tuhost systému nijako nevyuzili. Vnutorné
sily vypadli kvéli univerzalnemu principu akcie a reakcie takze veta o hmotnom

strede je univerzalne platna pre hocijaky systém.



Nulova vonkajsia sila, zachovanie hybnosti

d—) —
—P =F
dt

Pre nulovu celkovu vonkajsiu silu dostaneme
d

—P=0 = P =const

dt
Dostali sme zakon zachovania hybnosti: Pri nulovej sumarnej vonkajsej sile sa
celkova hybnost sustavy Castic zachovava. Prakticky to znamena, ze ak pre taku
sustavu vypocCitame v nejakom okamihu jej celkovu hybnost a potom v neskorom
okamihu znovu, dostaneme tu istu hodnotu (ten isty vektor). Plati to vSeobecne,

nielen pre tuhé teleso.

Moze sa stat, ze celkova vonkajsia sila nie je nulova, ale ma nulovu len niektoru
zlozku (napriklad priemet na os x). v takom pripade dostaneme

iP:C =0 = P, =const
dt

V tomto pripade sa zachovava x-ova zlozka hybnosti sustavy.



Tu je klasicky priklad na pouzitie zakona

zachovania hybnosti.
Na zacCiatku mame nabity kandn v pokoji. Jeho

hybnost' je nulova.
Kanodn je na kolieskach ako zvyraznenie faktu, ze
zanedbavame trenie pri pohybe kanona vo
vodorovnom smere.

*—g ®— Vo vodorovnom smere nepdsobi na kanon ani na
naboj v nom ziadna vonkajSia sila.

Preto sa zachovava vodorovna zlozka hybnosti.

Akt vystrelu naboja je aktom pbsobenia vnutornych sil systému, nie je ovplyvneny
vonkajsSimi silami. Preto po vystrele bude celkova hybnost systému kandn + naboj
nulova. Kedze naboj ma po vystrele zjavne hybnost v smere dopredu, musi mat
kanon po vystrele hybnost v smere dozadu. Vojaci tomu hovoria, Zze kanon dostane
spatny raz. Pre hmotnosti a rychlosti kanona a naboja po vystrele teda plati

mv + MV =0
Rychlosti sme nepisali ako vektory, lebo su to len vodorovné zlozky rychlosti. Pre

rychlost kandna V tak dostaneme zaporné Cislo, Co znamena, ze sa pohybuje v
zapornom smere, teda dolava.



Nulova vonkajsia sila, veta o hmotnom strede

d — —

—P=F
dt

Pre nulovu celkovu vonkajsiu silu dostaneme

d — —
—P =0 = P = const
dt

Vyjadrené cez rovnicu pre pohyb hmotného stredu dostaneme

—R* =0
e
Ak je celkova vonkajSia sila nulova, hmotny stred sa pohybuje akoby hmotny bod
podla zakona zotrvacnosti, teda rovnomerne priamociaro alebo stoji (voCi
inercialnej sustave). Plati to vSeobecne, nielen pre tuhé teleso.

Znamena to, ze hmotny stred systému, ak na pociatku stoji, sa neméze len
poésobenim vnutornych sil posunut’ a teda ani zac¢at’ posuvat.

Ludovo povedané i keby vnutri sustavy boli trpaslici vybaveni slobodnou
volou, nemoézu vykonat’, bez podpory zvonku sustavy, ni€, €¢o by posunulo
polohu hmotného stredu.



Moment hybnosti

Uvazujme cCasticu, jej pohyb popisovany voci inercialnej sustave. PocCiatok
inercialnej sustavy berme ako referencny bod, voci ktorému budeme popisovat
polohu ¢astice pomocou polohového vektora 7(t). Okamzita rychlost ¢astice v

okamihu t bude 9 (1)
5 o r
v(t) = o

Pre Casticu v stave 7, ¥ sme uz definovali veli¢inu hybnost’ (anglicky

momentum) vztahom
p=mv

Definujeme teraz novu veliCinu, moment hybnosti (anglicky angular
momentum), vztahom

L=rxp=rxmv

PresnejSie by sme mali hovorit moment hybnosti voCi zvolenemu
referenCnému bodu. Ak zvolime iny referencny pod, potom i ked
nezmenime smery 0si suradnicovej sustavy, moment hybnosti Castice
bude vo vSeobecnosti iny nez vocCi pédvodnému referenCnému bodu.



Moment hybnosti vzhfadom na priamku

Aby sme podobné veci mali na jednom mieste, definujme eSte moment hybnosti
vzhfadom na priamku. Myslime orientovanu priamku, teda Cosi ako priamku, ktorej
smer a orientacia je dana nejakym jednotkovym vektorom 7.

Moment hybnosti vzhfadom na priamku, je priemet momentu hybnosti
definovaného vzhladom na referenény bod leziaci na tej priamke na tu
priamku. Trochu krkolomna veta, ale obsahuje vSetko dblezité, aby definicia bola
korektna. Na prvy pohfad sa to nezda, lebo sa nepovedalo, kde na uvazovanej
priamke sa ma umiestnit’ referenény bod, ale, ako hned uvidime, méze to byt

l[ubovolny bod na osi.

Priemet momentu hybnosti na priamku oznaCme M (je to
skalarna hodnota, méze byt aj zaporna, lebo os ma

orientaciu). M = @i.L = i.(7 x m?)
Keby sme za referencny bod na priamke zvolili namiesto
bodu O bod 0, (a € také &islo také, aby platilo O'O = &)
dostali by sme _
M'=n.L' =n.(f" x mv) = n.(F+ &n) x mv)

= n.(F x mv) + n.(£1) x m¥) = n.(r x md) = M
Druhy €len suctu vypadol, pretoze vektorovy sucin v nom je
kolmy na vektor 71, a teda jeho skalarny sugcin s vektorom 7 je

nulovy. Priemet momentu hybnosti na priamku teda nezavisi
na volbe referencného bodu na nej.



Moment hybnosti vzhfadom na priamku

Poznamenajme, ze niektori autori zavadzaju moment hybnosti vzhfadom na
priamku ak vektor, ktory ma smer jednotkového vektora tej priamky 77, takto

M = i(R.L) = i(i.(F x m?))



Moment sily

Vypocitajme teraz, ako zavisi moment hybnosti Castice na Case, ak sa Castica
pohybuje v sulade so zakonom sily.

d_, —
aL:a(?xmﬁ):ﬁxmﬁ%—”ﬁxm&':O%—FxF

Definujme moment sily (vzhl'adom na referenény bod) ako
F=ixF

(anglicky termin torque alebo momentum of force)

potom teda plati d_E _ =
dt

Pre moment hybnosti a moment sily plati teda Cosi ako analdgia zakona pre

hybnost' a silu s

9@ _ f

dt

Zatial to vyzera ako hromadenie novych definicii, ale postupne uvidime, naco je

to vSetko dobreé.



Moment sily vzhladom na priamku

V analdgii s momentom hybnosti vzhfadom na priamku definujeme aj moment
sily vzhfadom na priamku:

Moment sily vzhfadom na priamku, je priemet momentu sily definovaného
vzhladom na referenény bod leziaci na tej priamke na tu priamku.

Priemet momentu sily na priamku oznaCme N (je to skalarna hodnota, méze byt
aj zaporna, lebo priamka ma orientaciu).
N=R7=a.(FxF)

Poznamenajme, ze niektori autori zavadzaju moment sily vzhfadom na
priamku ak vektor, ktory ma smer jednotkového vektora tej priamky 7 takto

N =q(n.7) = n(n.(f x F))
Ak je sila kolma na uvazovanu priamku, zavadzame pojem

rameno sily presne analogicky ako sme to robili pri momente
hybnosti a dostaneme |]§f| _ b|ﬁ|

teda velkost momentu sily vzhladom na priamku je sucin
ramena sily a velkosti sily.




Moment hybnosti: jedna ¢astica v centralnom poli

Ako ukazku uzito€nosti pojmov moment hybnosti a moment sily uvazujme jednu
Casticu, ktora sa nachadza vo vonkajsom silovom poli vyjadrujucom pdsobenie
vonkajsieho telesa fixovaného v referenCnom bode.

Uvazujme centralne silové pole, t.|. ze sila medzi vonkajSim telesom v
referenCnom bode a uvazovanou Casticou ma smer spojnice (polohového vektora
Castice). Priklad je Zem ako hmotny bod v gravitaChom poli Sinka ako centralneho
telesa v referenCnom bode.

Moment hybnosti Castice vzhladom na referencny bod
bude "

L =7xmuvu
Sila na Casticu ma podfa predpokladu smer
polohového vektora, teda

F = a(r)r
kde a(7) je lubovolna skalarna funkcia polohy &astice.
Moment tej sily vzhladom na centralny bod bude
nulovy

T=rxF=rxar=0
takze dostaneme



Moment hybnosti: jedna ¢astica v centralnom poli

Moment hybnosti sa teda zachovava, je to konStantny vektor poCas celého
pohybu Castice

—

L =7 X mvU = const

Z definicie vektorového sudinu je teda zrejmé, ze vektory 7,7 su trvalo kolmé
na konstantny vektor L , teda stale leZia v rovine, kolmej na vektor L, teda
lezia v konsStantnej rovine. Pohyb Castice v centralnom poli nejakeho telesa je
teda rovinny pohyb, prebieha v konstantnej rovine, ktora je kolma na vektor
momentu hybnosti. Nakreslime si Cast trajektorie v tej rovine, spolu s vektormi

Plati  |L| = %\m dr’

U dr
7+ dF Velkost vektorového suginu |7 < drl je
g zjavne rovna ploche zeleného
r trojuholnika, takze je to plocha opisana
polohovym vektorom (sprievodiCom) za
cas dt.

Konstantnost momentu hybnosti potom znamena, ze sprievodiC opiSe
pocCas pohybu Castice za rovnaké Casove useky rovnaké plochy. Keplerov
zakon.



d — — —
7 E T X M;U; = E T X Fy (75, U;)
; :

Suma na lavej strane je celkovy moment hybnosti sustavy, na lavej strane je
suCet momentov sil, teda celkovy moment vonkajsich sil

1.
Bl
a7

Upozornime, ze tuto rovnicu sme dostali za predpokladu, ze vnutorné
medzicasticové sily su centralne.

Zopakujme si:

Pre translacny pohyb telesa ako celku (pohyb taziska) sme dostali ,Newtonovu
rovnicu sily” d . .
—P=F
dt

Ako uvidime neskor, rovnica ﬂ [ =7

dt
je analogom Newtonovej rovnice pre rotacny pohyb telesa ako celku.



Pripad nulového momentu sil

V pripade nulového momentu vonkajsich sil (7 = 0) dostaneme vztah

—

L = const

To je zakon zachovania momentu hybnosti.

Aby nam rovnice obsahujuce moment hybnosti boli na nieCo uzitocnée,
musime sa naucit vypocitat moment hybnosti aspon v nejakych typickych
situaciach.

Najjednoduchsi pripad je tuhé teleso upevnené tak, ze méze fubovolne
rotovat’ okolo fixnej osi.
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Tuhé teleso rotujuce okolo fixnej osi

jednotkovy vektor v smere osi je 1, uhlova rychlost ma smer osi w = wn.
Problém si znacne zjednodusime, ked budeme ratat moment hybnosti voci osi,

teda L.n.

Bez ujmy na vSeobecnosti m6zeme stotoznit' os z nehybnej inercialnej vztaznej
sustavy za totoznu s osou rotacie telesa. Uvazujme maly objemovy element
telesa dV, ktorého okamzité suradnice (voCi pevnej vztaznej sustave) su (x, y, z).
Ten bod v dosledku rotacie telesa okolo osi sa bude pohybovat po kruznici
polomerom /x2 4 32 ato je suCasne i

rameno hybnosti.

Velkost rychlosti toho elementu bude

WA /$2 _|_y2

Preto pre moment hybnosti toho objemového
elementu vzhladom na os (chapany ako vektor)
bude platit' (,rameno krat hybnost™)

OM = /22 + y? dm d/x? + y?

SM = dm&(z* + y?)

Hmotnost uvazovaného objemového elementu sme oznacdili
dm. Sucasne si treba uvedomit, ze smer vektora momentu
hybnosti voci referenénému bodu 0 je naozaj n a teda aj .



Celkovy moment hybnosti telesa vzhfadom na os
otacCania teda dostaneme ako sucet cez vsetky
objemove elementy telesa.

—

M:Q/dm(m2+y2):ﬁf

Oznadili sme

I= /dm(mQ +y°)

veliCina I sa vola moment zotrvac€nosti telesa
voci osi z . V definicii momentu zotrvacnosti nie
je dolezité, ze za os otacanie sme zvolili prave os
z. Moment zotrvacnosti tuhého telesa je
definovany voCi akejkolvek osi otaCania vztahom

I:fcsl:rn,g2

kde o je vzdialenost hmotného elementu telesa od osi otacania.
Zopakujme teda: moment hybnosti tuného telesa rotujuceho okolo fixnej osi

uhlovou rychlostou @ je

M = &I




Moment zotrvacnosti valca rotujuceho okolo svojej osi

I= fdm(x2 +y°)

/

hmotnost LEGO kvadrat

kocky vzdialenosti
LEGO kocky
od osi

hmotnost ,medzivalCia“ (R je polomer valca, h vyska)

m__,,rdr
TR2h R?

’ prispevok ,medzivalCia“® k momentu zotrvacnosti

2mrdrh




Tuhé teleso rotujuce okolo fixnej osi

Programové vyhlasenie fyziky

* Vybrat kasok sveta ako fyzikdlny systém
* Popisat okamzity stav toho systému

* Najst pohybové rovnice

* Predpovedat vyvoj stavu do budtcnosti

Systém: teleso rotujuce okolo fixnej osi

Okamzity stav: momentalny uhol oto¢enia vo i
zvolenej Standardnej polohe (natoCeniu) a uhlova
rychlost, teda stav je dvojica (5, ). Napisali sme to
ako dva vektory, ale oba lezia v osi otaCania, takze na
zadanie stavu stacCia dve Cisla. Vektorové oznacCenie
sme pouzili pre zvyraznenie faktu, ze tie Cisla mézu
byt kladné aj zaporné

Pohybova rovnica: V kazdom stave musime poznat
moment sil voCi osi otacania, ktorymi vonkajSi svet
posobi na to teleso, teda N.Jeto opat’ vektor leziaci v
osi, takze zase je to iba jedno Cislo (kladné alebo
zaporneé). Pohybova rovnica sa dostane zo

vSeobecnej rovnice d ~
=T

=
gl

ania

(@]

jej priemetom na os ota

1

T

S\

d
—n.
dt

1

SR
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Tuhé teleso v homogénnom gravitacénom poli.
Na hmotnostny element telesa dm p6sobi v jeho ubovolnej polohe sila
SF = —6m 7] k.

Prvym désledkom je, Ze vektorovy sucet vSetkych sil sa pocita velmi jednoducho:

—

ﬁz—gE/ém:—mg =G

m je celkova hmotnost telesa. Dostali sme teda celkovu tiaz telesa. Upozornime, ze
tento vzorec ni€¢ nehovori o nejakom ,posobisku tiaze“. Je to jednoducho vektor,
teda Cosi, Co ma tri zlozky a ziadne pdOsobisko.



Tazisko
Vypocitajme celkovy moment hybnosti tiazovych sil pdsobiacich na tuhé teleso.
Zvolme si flubovolny okamih a stav natoCenia telesa. Uvazujeme hmotny element
telesa §m(r). Tymto oznaéenim chceme povedat, Ze uvazujeme hmotny element,

ktory sa pre dané natocenie telesa nachadza v polohe 7. Celkovy moment hybnosti
ziskame scCitanim cez vSetky hmotné elementy telesa. Dostaneme

T = /fF’X (—5mg/2)
Druhy Cinitel vo vektorovom sucine je konstantny vektor, mézeme ho ,vynat
pred zatvorku®, teda von z integralneho suctu a dostaneme

—g(/(smf)xié'

) -
fmfrk

J om
= R* x

7__'

ﬂi

= —gm

G

Vo vzorci vystupuje polohovy vektor hmotného stredu telesa. Slovne vyjadrené:
moment tiazovych sil pdsobiacich na tuhé teleso ja taky isty, aky by bol moment
tiaZzovej sily pbésobiacej na hmotny bod, ktory ,by sedel” v hmotnom strede telesa a
jeho hmotnost by bola rovna celkovej hmotnosti telesa. To je dévod, preCo sa
hmotny stred nazyva Casto ,t'azisko” a kreslia sa ludové obrazky, ze ,tiaz telesa
pOsobi v tazisku®. Zdéraznime, ze referenény bod sme nevolili nijako Specialne!



Upozornime, ze fudové obrazky o tiazi pésobiacej v tazisku su dostatoCne matuce
napriklad v situaciach ako je tiaz zeleznej obruce, ktora ma tazisko v svojom
geometrickom strede (kde nie je ani kusok Zeleza):

G

Obrazok sam o sebe nie je zly, ak ho chapeme tak, ze vyjadruje vzorec
F=R*xG
matuca je len naivna ludova interpretacia toho obrazka.



Neinercialne sustavy

Sustava (7,7, k) je inercialna,
sustava (7,7, k') je neinercialna.
Uvazujme hmotny bod. Jeho polo-
hovy vektor voci inercialne;
sustave je 7, voCi neinercialnej
sustave r'. Polohovy vektor
poCiatku neinercialnej sustavy
vo i inercialnegj je 7.

Neinercialna sustava je ako tuhé
teleso, jeho stav (vocCi inercialnej
sustave je v kazdom okamihu
zadatelny ako

7o (L), Uo(t), Rij (1), (1)

Ked sme bez ujmy na vSeobecnosti povazovali poCiatok neinercialnej sustavy za jej
tazisko. Plati teda, Ze w je uhlova rychlost pohybu neinercialnej sustavy a
. d

Uy = —17%
0 dt 0 77




Neinercialne sustavy

@) =~ (ﬁ — mig(t) — 2ma(t) x 7'(t) — ma(t) x (@(t) x 7) — m (%g(t)) . F,)

m

Pozorovatel v neinercialnej sustave sa nad touto rovnicou zamysli a povie si:
Ved ja vlastne mb6zem robit fyziku v neinercialnej sustave, len Newtonov zakon sily
bude mat’ u mia iny tvar. Urobim to takto:
« zmeriam si zrychlenie pociatku mojej neinercialnej sustavy a, vodi inercialne;
« zmeriam uhlovu rychlost rotacie w(t) mojej sustavy vodi inercialnej
dw(t)
dt
* potom si poviem, Ze v mojej neinercialnej sustave okrem naozajstnej sily F
pOsobia eSte dalSie mystické zotrvacné sily neznameho pévodu, a to

* vypocitam aj uhlové zrychlenie

zotrvacna sila postupného zrychlenia: — may(t)
Coriolisova sila: — 2md(t) x ' (t)
odstrediva sila: — mda(t) x (&G(t) x 7")
zotrvacéna sila rota¢ného zrychlenia: —m (%cﬁ(t)) x 7’

« anapisem akoby Newtonovu rovnicu s pridanim zotrva€nych sil .




Trenie (Smykové)

Sl

1
)

)

Teleso stoji napriek taznej sile F.
Kolma tlakova sila F
Trenie T

Ak teleso stoji, celkova sila nan

poOsobiaca f'emulovj
. TI| T |F| 7 J v s .
Trenie ,akurat” vyrovna taznu silu

Ale trenie nie je schopné vyrovnat
akokolvek velku taznu silu, pri istej
kritickej velkosti sa teleso da do
pohybu

Thrit] = | Fiorie| = fIN]|

f je koeficient (statického) trenia
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Trenie (Smykové)

Ak teleso stoji, celkova sila nari pdsobiaca je nulova Trenie ,,akurat” vyrovna taznu silu
T| = |F]|

Statické trenie je mensie ako jeho maximalna kriticka hodnota

T < fIN| = [Thrid

Ak uzZ sa teleso hybe (Smyka po podlozke), trecia sila je v podstate rovna kritickému
treniu

a 1 = S
— ad=—(F— falN)
S | m
T
— | l
N f 4 je koeficient dynamického trenia
v

Dynamické trenie je spravidla mensie nez kritické statické trenie, teda tazna sila,
ktora je schopnd uviest teleso do pohybu je vacsia ako sila, ktord je potom
schopna udrZiavat teleso v rovhomernom priamociarom pohybe (f;< f).



Trenie (Smykové)

| 171 711 = T |

Ak teleso preSmykuje vocCi podlozke, trecia sily je ,dopredu urCena Co do velkosti
aj smeru. Smer trecej sily je proti smery preklzovania

Ak teleso nepreSsmykuje, potom ani smer ani velkost trecej sily nevieme urcit
dopredu, vyjde nam to az pri rieSeni Newtonovych pohybovych rovnic

Preklzujuci valec




Kto pohana chodca? Trenie.

AR

Chodec tlaci na topanku smerom dozadu, ako keby chcel, aby sa topanka
Smykala dozadu. Trenie tomu brani silou, ktora smeruje dopredu. Na chodca
nepdsobi vo vodorovnom smere ziadna vonkajsia sila okrem trenia. Trenie teda

pohana chodca dopredu. Nie je teda pravdou, ze trenie vzdy posobi proti
pohybu.
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Statika tuhého telesa

Pripomenme si rovnice dynamiky tuhého telesa

LS = B a)

dt i i

d = =
—P =F
dt

d L

pr Zr@ X m;U; = Zfr,,; x F; (7, U;)
4 -
il
T

Statika: P = 0,L = 0. ‘ﬁ:() F:O‘

Casto staéi len pozadovat len nulovost (priemetu) momentu
hybnosti na nejaku os otacania.
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Priklad: Kriticky uhol opretého rebrika

Pre kriticky uhol, ked' rebrik prave zacne
Smykanim padat su obe trecie sily prave

kritické
Ty = f1ilN1
Ty = faNo
G=T+ N,
Ty = N
L

0= Tchosoa+N1Lsina—G§ COS

moment sil vzhladom na os v spodnom
bode rebrika

1 — fife
2f2

tana =
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Gravitacny zakon

Newtonov gravitacny zdkon mozno zhrnut do jednoduchého vzorca. Dve
hmotné telesa zanedbatelnych rozmerov (hmotné body) vo vzdialenosti r sa
pritahuju silou

miypmsa

2

F=G

r
2 =6.673x1071 N:(m/kg)? je gravitacna konstanta

Vektorovy zapis toho istého znie takto: teleso 1 pdsobi na teleso 2 silou

mimso 772 - ’-'?1

F12 — _G — — 9 | = —
|T‘2—?“1| |?"2—’-'“1|
Znamienko — hovori, ze sila je
L ~ pritazlivd, teda ma smer opcny ako
s — 1M Fl - -
-— vektor r, — 77,
= Newtonov zakon je univerzalny, hovori
]_ — v 7 7 ’ 7
T2 ze lubovolné telesa na seba takto

gravitacne posobia.
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Vo vektorovom tvare (sila je vektor, takze okrem velkosti ma aj smer) silu, ktorou
teleso ,, 1“ posobi na teleso ,2“ vyjadrime takto

= mi1msa 772 — ?71
F=-G

7y — 7|2 |y — 7
. . e ro —T1 .
Pre pochopenie tohto vzorca si treba uvedomit, ze vyraz E—— je
2 —T1
jednotkovy vektor v smere 7, — 7, a znamienko — pred vzorcom hovori, Ze sila je
pritazlivd, smeruje ku ¢astici , 1, teda opacne, ako je orientovany vektor 7, — 17.

Trik so zapisom jednotkového vektora si zapamaétajte, bude sa ¢asto pouzivat.
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Ak na teleso v bode 7 pdsobi viac gravitujucich telies, potom celkova gravitaéna
sila p6sobiaca na to teleso bude vektorovym suctom gravitacnych sil od
jednotlivych telies. Pre situaciu na obrazku to teda bude

— —

Feo—q L 1 g 2
|7 — 7|2 |7 — 7 |7 — 7|2 | — 7|

V tomto vzorci mdzeme zvyraznit (pridanim argumentu 7 do symbol sily), Ze sila,
ktoru poditame, pdsobi na teleso umiestnené v polohe 7.

mo r — T

|77— 772|2 |’l" — 79

_*mm_,’l 1 _ m
REGEEG

r—n

—

1

IRl It

F(f)= -G |
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Gravitacné pole

mmo T — T
— G
17— |2 |7 — 7

Vzorec svojim zapisom evokuje myslienku, Ze sa moéZzem zaujimat nielen o to, aka sila
posobi na teleso m ak je (naozaj) umiestnené v polohe 7, ale aj o virtudlne moZnosti:
Ze akd sila by na teleso pdsobila, keby bolo umiestnené v (roznych) polohdch 7, pri
fixnych polohdach gravitujucich telies 74, 7.

Pri takejto virtualnej interpretacii si dokonca mézeme predstavit, Ze teleso m sa

(zatial) nenachadza nikde a aj tak vzorec vyjadruje aka sila by na teleso p6sobila, keby
bolo umiestnené v (réznych) polohach 7, pri fixnych polohach gravitujacich telies 74, 7.
Vyvolava to predstavu, Ze v priestore v okoli gravitujucich telies m;, m, je ,,Cosi ako
skrytd moZnost, Ze keby sme do toho priestoru vloZili teleso m do bodu 7, pdsobila by
nan gravitacna sila, dana tym vzorcom. Zavadzame preto pojem ,gravitacné pole”. V
nasom vzorci ale explicitne vystupuje hmotnost m. Gravitujlce telesa ,vytvarajluce
gravitacné pole” mozu ale pdsobit na teleso akejkolvek hmotnosti, preto je
rozumnejSie charakterizovat gravitacné pole samotné bez odvolavania sa na hmotnost
telesa, na ktoré to pole bude pdsobit.



Gravitacné pole

Gravitacné pole v priestore charakterizujeme vektorom intenzity gravitacného
pola g. Vektor intenzity je definovany v kazdom bode priestoru ako podiel
gravitacnej sily, ktora by v tom bode po6sobila na teleso hmotnosti m a tej
hmotnosti m. Teda 1

g(r) = —F(r

37 = —F(?
Vsimnime si, Ze intenzita gravitacného pola je vlastne gravitacné zrychlenie,
ktoré pole udeluje telesam v uvazovanom bode.

Intenzita gravitaéného pola v mieste 7 budeného jednym (bodovym) telesom o
hmotnosti M umiestnenym v pocCiatku suradnicovej sustavy je

—

M r
—/ = — —G——
g(7) 3

Intenzita gravitaéného pola v mieste 7 budeného viacerymi bodovymi telesami
o hmotnostiach M; umiestnenymi v bodoch 7; je




Gravitacné pole

Poznamenajme, ze slovo pole v pojme ,gravitacné pole“ sa vo fyzike Standardne
pouziva na pomenovanie faktu, ze nieco (nejaka fyzikalna veli¢ina) je definovana v
kazdom bode priestoru. V pripade gravitacného pola hovorime Specialne, ze je to
vektorové pole, lebo intenzitu gravitacie definuje v kazdom bode vektor.

Ak chceme zistit (zmerat, zmapovat) gravitacné pole (intenzitu gravitacného pola)
v nejakom priestore, potom to v principe mézeme urobit pomocou nejakého
bodového testovacieho telesa [ubovolnej hmotnosti m. S tymto telesom musime
,navstivit” v principe kazdy bod uvazovaného priestoru, zmerat (vhodnym
silomerom) gravitacnu silu, ktora na tom mieste na testovacie teleso posobi.

Potom intenzita gravitacného pola vtom bode bude
1 -

g(r) = —F(r

g(r) = —F(r)
Bodov v priestore je nespocitatelne vela, preto , navstivit testovacim telesom” kazdy
bod je nemozné. Prakticky mapujeme pole tak, Zze zmeriame pole v nejakej
diskrétnej sieti meracich bodov a v ostatnych bodoch v pripade potreby dopocitame
hodnotu pola vhodnou matematickou interpolaciou nameranych bodov. Existuju

komercne dostupné meracie pristroje na meranie gravitacného pola, gravimetre.






Praca nekonstantne;j sily po krivej trajektorii
Uvazujme Casticu, ktora sa pohybovala po trajektorii
#(§), pricom v bode 7 na fiu pdsobila sila F (#). Sila vo
» VSeobecnosti nie je rovnobezna s prisluSnym usekom

/' drahy d7. Prijmime (momentdlne, dévod si povieme
/’ neskor) bez dlhého zdovodriovania, Ze praca vykonana
/772 silou pdsobiacou na Useku drahy d7 je dand skaldrnym

sucinom | 5.4 = F(7).dr |
Celkova praca vykonana na trajektorii od bodu 7; aZ po bod 7, bude

A:/cSA:/ F(7).d7

Symboly integralov neoznacuju Ziadne ,,opaky derivacii“, su to oznacenia pre sucty
velkého mnozstva malych cCisel. NajlepSie je predstavit si to ako numeriku na pocitaci.
Rozkuskujem drahu na malé useky. Na kazdom useku vypocitam skalarny sucin

F (7). d7 a takto vzniknuté &iselka séitam.

VsSimnite si, Ze sme pre maly element vykonanej prace pouzili symbol 64 a nie dA.
Apridrne totiz nevieme, ¢i existuje nejaka funkcia A(7), pre ktoru by 64 bolo
diferencidlom a zasluzilo by si to oznacenie dA, takze by platilo

JEZENGRIGY
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Mobzme sa pytat preco sa ndm zachcelo definovat fyzikdlnu pracu tak, aby praca v
gravitachom poli po drahe AC vysla rovnako ako praca po drahe BC. Akej fyzike to
zodpoveda? Ta otazka znamena: ,, Akej nasej skusenosti to zodpoveda?” Nuz takej,
Ze sa neda spravit perpetuum mobile. Neexistencia perpetua mobile sa neda
,dokazat z nicoho” nie je to logickad nutnost. Len cela doterajsia skisenost fudstva
hovori, Ze sa to (asi?) nedd spravit. Prikladu s pracou na naklonenej rovine
zodpoveda nasledujuci (nefungujuci!) ndvrh na konstrukciu perpetua mobile
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T

Trpaslik premiestnuje teleso v gravitacnom poli. Kona pritom pracu. Ma na
vyber dve trajektdrie, obe vedu z bodu 7; do bodu 7,. Ak by praca vykonana
trpaslikom nebola po réznych trajektériach rovnakd, dalo by sa skonstruovat
perpetuum mobile. Ak verime, Ze to nie je mozné potom musi platit tvrdenie:
Praca v gravitacnom poli po lubovolnej trajektorii spajajucej dva fixné body je
rovnaka, nezavisla na zvolenej trajektorii.
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Potencialna energia

N }\/ Uvazujme trpaslika, ktory v gravitachom poli bodovej
\ / \ Castice premiestriuje ¢asticu s hmotnostou m z miesta
L a 7, ha miesto 75,. Vypoditali sme pracu na to potrebnu
/ "2 M r.dr 1 1

4 t N A= mG—Q—:—mGM — — —

71 T r 9 ™

Pozrime sa teraz na tento vzorec z iného pohladu. Prica, ktord musi vykonat
trpaslik, aby premiestnil teleso o hmotnosti m z bodu F hocikam do nekonecnej

vzdialenosti je .
A7 — o0)=-U(T) = mGMﬁ
r

Zaviedli sme tak velmi uZitoénd funkciu U(7), pomocou ktorej vieme vypoditat
pracu trpaslika medzi dvoma ubovolnymi bodmi

/ mG "~ U(m) - U()

Toto je praca, ktord musi vykonat trpaslik ako konatel prace.



Potencialna energia

Pozrime sa teraz na pracu, ktoru naopak kona pri tom istom premiestnovani
gravitacné pole ako konatel nad trpaslikom ako trpiteflom, dostaneme

/Qma%iﬁ—v() U (7)

Ak A" > 0, potom trpaslik zarobil ¢osi na Ukor gravitacného pola a ziskanu pracu
moze vyuzit na nie¢o uzitocné, napriklad dobit si baterky (ak je to trpaslik
fungujuci na elektrinu). Prendsana ¢astica vykonala pracu A’ nad trpaslikom,
takZe Castica v gravitacnom poli ma schopnost vykonat pri premiestneni nejaku
pracu. Asi ste sa stretli s vyjadrenim, Ze schopnost telesa konat pracu suvisi s
jeho energiou, takZe je prirodzené nazvat funkciu U(7) potencidlnou energiu
astice v mieste 7. Ak ¢astica ma na zaciatku presunu (v bode 7;) vacSiu energiu
ako na konci presunu (v bode 7,) vykona pri presune kladnu pracu.
VSimnime si, ze sme dostali 7o
A:/<M:U%%%W@
T

—

1

takZze sme mohli pisat namiesto 6A diferencial dA, lebo vykonana praca je v
pripade gravitacného pola diferencialom potencialnej energie, o sme na
zaCiatku naSich uvah s istotou nevedeli.



Potencialna energia

Pre pracu vykonanu na infinitezimdlnej trajektdrii dr dostaneme

—G(F).dP = F(F).dFi = 6A = dU = U(F + dr) — U(7)

Potencidlna energia je funkciou polohy, jej argumentom je vektor 7 = (x, y, 2).
Potencidlnu energiu moéZzeme preto chapat aj ako funkciu troch skalarnych
premennych x, y, z. Dostaneme teda rovnicu

G.dr + Gydy + G,dz = —U(x +dx,y + dy,z + dz) + U(x,y, 2)

na pravej strane urobime rozvoj do prvého radu pomocou parcialnych derivacii
a dostaneme

oU oU oU
Gydr + Gydy + G,dz = —U(z,y,2) — %dw - 8—ydy — Edz +U(z,y, z)

oU oU oU
+d d dz = ——dr — —dy — —d
Gpdr + Gydy + G.dz o x 9y Y o 2



Potencialna energia
oU oU oU

+d d ,dz = ——dxr — —dy — —d
Ggdr + G,dy + G.dz 5 O 9y y— 5, dz
Gravitacné pole teda pdsobi na Casticu v mieste (x, y, z) silou
oU
Gy = ——
oz
oU
Gy == —a—y
oU
=%

kde U(x, vy, z) je potenciadlna energia Castice. VSimnime si, Ze potencidlna energia je
skalar a troma parcialnymi derivaciami z tohto skalara vyrobime vektor (gravita¢nu
silu). Aby sa zvyraznila tuto skuto¢nost, matematici zaviedli osobitny symbol

vektorovej povahy ( 9 O 0O )

ﬁ ? ?
Ox Oy 0z
Tri symboly parcialnej derivacie sme zapisali, ako keby to boli zlozky nejakého

vektora. 7



Operator nabla

. g 0 0
V= (8:5’ dy’ 8z>

Poznamenajme, ze abstraktny symbol % (Citaj ,,nabla“) reprezentuje
matematicky objekt typu , operator”. Operatorom v matematike nazyvame
nejaky predpis (operaciu), ktory z jedného matematického objektu vyrobi
nejaky iny matematicky objekt vo vSeobecnosti aj iného typu ako bol pévodny
objekt. Zvykneme hovorit, Ze operator ,,p6sobi“ na objekt a vyrobi z neho iny
objekt.

Prikladom je operator derivacie %, ktory vyrobi z nejakej funkcie jej derivaciu.

Operator nabla vyrobi zo skalarnej funkcie polohy vektorovu funkciu polohy.
Vyrobi teda tri funkcie polohy, ktoré tvoria tri priemety vyslednej vektorovej
funkcie, v nasom pripade

ém:—ﬁmm:(

0U(x,y,2) OU(z,y,2z) OU(z,y, Z))

or ' oy 0z
X v v ev sy 7 . — 8 - 6 - 8 —
Casto sa pouziva este ,vektorovejsi zapistvaru v = —; + —j+ —k
Ox Oy 0z

a dostaneme

—

G(i) = —VU(F) = —

8U(CE’? Y, Z);_ aU(.T, Y, Z) —.’_ aU(.ﬂC,y, Z) ]Z
Ox oy J 0z



Gradient

Operacia pésobenia nabla na skalarnu funkciu typu

S oo oUu(xz,y,z)-» 0OU(x,y,z)- OU(xz,y,z) -
) = S0y = - E2)y W)y Wir)g

sa vola gradient. Uvedeny vzorec potom Citame takto:

Gravitacna sila posobiaca na casticu sa vypocita ako zaporny gradient
potencialnej energie tej Castice v gravitachom poli.

Formulaciu ,zdporny gradient” si treba zapamatat, patri to do Standardnej
vyzbroje fyzika.
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Gravitacny potencial

Potencialna energia (testovacej) €astice v gravitachom poli je Umerna jej
hmotnosti, teda necharakterizuje len gravitacné pole samotné ale aj Casticu,
ktorou ho testujeme. Preto zavddzame novy pojem gravitaény potencial ¢ ()
pola v bode 7 vztahom !

p(r) = —U(7)

m
Fyzikalne je to praca, ktord musime vykonat, aby sme premiestnili testovaciu
¢asticu jednotkovej hmotnosti z bodu 7 do nekoneéna.
Intenzita gravitacného pola sa potom da vypocitat podla vztahu

g(r) = =V(7)
Nasa doterajsSia diskusia o potencialnej energii sa tykala gravitacného pola

budeného jednou bodovou €asticou. VSseobecne méZzeme uvazZovat gravitacné
pole budené viacerymi bodovymi Casticami

. 77
G T
Z |'r—frz|2|7“—fr|

alebo spojitym rozlozenim grawaJuceJ hmotnosti

—n —.» / G F’ d.?)—’f
7’ r
S




Gravitacny potencial

Vsetky vztahy pre potencial, ktoré sme diskutovali boli linedrne, preto
zovseobecnenie na pripad viacerych zdrojov gravitacného pola je trivialne.
Gravitacny potencial pola budeného viacerymi bodovymi zdrojmi je teda

S M
?“):;—Gh?__,

d3—*l
/ G|v~ 7

explicitnym derivovanim sa mozno presvedcit o tom, Ze intenzita pola sa da
vypocitat ako zaporny gradient potencialu

§(F) = —V()

a pre spojité rozlozenie

teda Ze plati
7 — 7’
§(7) -G d?“’——V/ ~G-2
g(r) / T—fr’|2\ff’ e 17— 7

Poznamenajme, ze ak chceme pre dané rozlozenie gravitujucej hmoty priamu
vypocitat intenzitu gravitacného pola, musime pracovat s vektormi a teda , ddvat
pozor na kosinusy“. Spravidla je jednoduchsie vypocitat najprv skalarnu veli¢inu
potencial a potom vypocitat intenzitu ako zaporny gradient potencialu.




Harmonicky oscilator

i

!i

ERERE
il
il

F, = —kx

8
1
-

8

V dalsom, pokial budeme Studovat jednorozmerny oscilator, nebudeme pisat pri
sile index. Budeme proste pisat F = —kx a budeme mat na mysli priemet sily na
os x. (Preto nech niekoho neprekvapi zaporné znamienko.)
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Praca pri napinani pruziny

Sila, ktorou pésobi pruzina: F, = —kx T
Sila, ktorou p6sobia burlaci: F, = kx
Praca, ktoru vykonaju burlaci pri napinani pruziny z rovhovazneho stavu o

vzdialenost x: T x 1
A= / F')dz' = / ka'dz' = —ka?
0 0 2
Potencialna energia pruznosti




Oscilator

X
Rovnovazna poloha nechjex=0
Pruzina: F, = —Ku
) _ d?x

Pohybova rovnica: m—oy = —Kx

, Ly : K
Uhddneme rieSenie: z(t) = Asin(wt) w= ”E

. dQCIj 2 . .

Naozaj: M-y = —mw Asin(wt) = —K Asin(wt) = —Kx(t)

Ale rovnako dobré je aj rieSenie  x(t) = B cos(wt)



d?z

Rovnica Moy = — Kz je tzv. linearna, Co znamena, ze sucet jej

dvoch rieseni je tiez rieSenim, teda aj riesenie
x(t) = Acos(wt) + B sin(wt)
Pri zadanych pociatoénych podmienkach z(0) = z¢,v(0) = v
dopocitame najprv rychlost v(t) = —Awsin(wt) + Bw cos(wt)
a dostaneme jednoznacne

1
x(t) = zg cos(wt) + —vg sin(wt)
w

1
pohyb je periodicky s periédou T = il

naozaj: cos(w(t+T)) = cos(w(t + %T)) = cos(wt + 27)) = cos(wt)
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Pri lubovolnych pociatocnych podmienkach vieme teda jednoznacne
predpovedat buducnost, takze sme zrejme nasli v tvare

x(t) = Acos(wt) + B sin(wt) (#)

vsetky riesenia pohybovej rovnice. Lebo ak by boli nejaké dalsie, potom by
buduicnost uz nebola jednoznaénd. Co fyzikalne neo¢akdvame. Je na
matematikoch, aby naozaj dokazali, ze su to vsetky riesenia. Tym sa tu
zaoberat nebudeme. RieSenia sme proste uhadli a nasli sme ich tak dost.
ESte trochu iné ekvivalentné vyjadrenie v tvare (budeme hladat X, a §)

x(t) = Xg cos(wt + 6)
x(t) = Xg cos(wt) cos § — Xq sin(wt) sin 6)

porovnanim s (#) dostaneme A = Xycosd, B = —Xpsind

odtial zrejme X, = VA2 + B2

Potom treba najst také &, aby platilo A = X cosd, B = —Xqsino
B

= tand, o0 = atan2(—B,A)
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Pri lubovolnych pociatocnych podmienkach vieme teda jednoznacne
predpovedat buducnost, takZze sme zrejme nasli v tvare

atan2 je programatorské znacenie, ktoré matematici nepoznaju,
obor hodnot funkcie atan?2 je totiz (-m, ), kym obor hodnot
inverznej funkcie k tangensu, arctan() je (-i/2, t/2)

Funkcia atan2 je totiz definovana nie ako inverzna funkcia k
tangensu ale ako polarny uhol ¢ bodu s kartézskymi suradnicami
(x,y), teda taky uhol, ze plati

xr=+x%+y?cosp, y=+\x%+y?siny

= atan2(y, x)

<

N30'<

A

odtial zrejme X, = VA2 + B2
Potom treba néjst také &, aby platilo
teda

_g =tand, J = atan2(—B,A)




Parametre X, a § vo vyjadreni
x(t) = Xg cos(wt + 6)

sa nazyvaju ,amplituda“ a ,faza“. Poznamenajme, ze v literature (u€ebniciach) nie
je zhoda v definicii pojmu ,faza“. Mézete stretnut vyjadrenia

x(t) = Xo cos(wt — 9)
x(t) = Xpsin(wt + 6)
x(t) = Xpsin(wt — 6)

Parameter § vo vSetkych vyjadreniach sa méze volat ,faza“. Pre niekoho
uprednostnenie ,kosinusovky® pred ,sinusovkou® je Casto motivované tym, ze
kmitavy pohyb sa da vnimat ako priemet rotujuceho vektora ,na os x“. Ten
rotujuci vektor sa niekedy zvykne nazyvat ,fazor“. Dizka fazora je rovna
amplitude X,.

w=wt+ 9

xr




x1(t) = X7 cos(wt + 61)
xo(t) = Xo cos(wt + 02)

Vizualizacia kmitavého pohybu pomocou rotujuceho fazora je uzitoCna najma pri
porovnavani dvoch kmitavych pohybov s rovnakou frekvenciou ale réznymi
amplitudami a fazami. Pouziva sa potom intuitivne velmi rukolapny pojem ,fazovy
rozdiel” alebo ,fazovy posun® (6, — §;) medzi dvoma kmitaniami, €o je proste uhol,
ktory zvieraju tie dva fazory.



Technika vizualizacie kmitavého pohybu pomocou rotujucich fazorov ma
elegantné vyjadrenie pomocou komplexnych Cisel. Komplexné Cisla
prinasaju okrem intuitivne priezraCnej vizualizacie aj, ako uvidime neskor,
znacné technické zjednodusenie niektorych vypoctov.

Rotujuci vektor v rovine si totiz fahko mézeme predstavit’ ako (rotujuce)
komplexné Cislo v komplexnej rovine.

Komplexné Cislo z = a + ib mbzeme vzdy vyjadrit v tvare

z = |z]e'®
kde |z| =Va? +b?aa = atanZ(Z). V komplexnej rovine sa to vizualizuje
takto
Z .
b
@




Je teda zrejmé, Ze rotujuci fazor prislusny ku kmitaniu
x(t) = Xg cos(wt + 9)
mdbzeme vyjadrit ako komplexnu funkciu realnej premennej ,Cas” takto
2(t) = Xgexp(i(wt +9))
a kmitavy pohyb potom ako realnu Cast
x(t) = Re z(t) = Re Xgexp(i(wt + §))
UzitoCné je pouzit vo vyjadreni komplexnu ,amplitudu” tak ze do nej zahrnieme
aj fazu takto X — Xoei(s
x(t) = Re z(t) = Re X exp(iwt)

Vyuzivame tu Eulerov vztah  exp(ia) = cos(a) + i sin(«)
Pravidlo o ,nasobeni exponent” potom pracuje namiesto nas (oslobodi nas od
pouzivania goniometrickych vztahov), ked dostaneme

x(t) = Re z(t) = Re X exp(iwt) = Re Xgexpidexp(iwt) = Re Xgexp(iwt + i)
x(t) = Xo cos(wt + 9)

Pri praci s komplexnym vyjadrenim kmitavého pohybu casto nepiseme
symbol pre realu ¢ast’ a chapeme ho implicitne, ked’ na konci vypoctu
zoberieme len realnu €ast’ vysledku.



Zachovanie energie

Stav harmonického oscilatora v lubovolnom okamihu je urCeny polohou a
rychlostou oscilatora. Funkciu polohy sme nasli

x(t) = Xg cos(wt + 6)
rychlost v lubovolnom Case urCime derivovani, teda

v(t) = 2(t) = —Xow sin(wt + §)
Kinenticka energia oscilatora v Case t bude

1 1
Wi(t) = ameQ(t) = §mX0w sin? (wt + 6)

potencialna energia (pruznosti) bude
1 1
Ut) = 5/{:3:2(15) = §kX§ cos®(wt + 9)
VyuZijeme vztah mw? = k ? dostaneme pre celkovu elnergiu
Et)=Wr(t)+U(t) = §mw2X0 sin(wt + 6) + 2mw2X0 cos®(wt + 6)

E(t) = Wi(t) + U(t) = %meXg

Vidno, ze celkova energia oscilatora je na Case nezavisla, teda energia sa zachovava.




Linearny oscilator s timenim

Nech proti pohybu p6sobi odpor prostredia Umerny rychlosti ale proti
smeru rychlosti, teda sila vtvare —ai (bodka nad pismenom znadi
prvu derivaciu podla ¢asu, dve bodky druhu derivaciu podla casu).
Pohybova rovnica potom bude

mr = —Kx — ax

&4 2b& +wiz =0, kde wj = b= —

2m
Vsimnime si, Ze v pohybovej rovnici su dve ¢asové skaly: konstanty w,
aj b maju rovnaky fyzikadlny rozmer s2.

Predpokladajme wo > b

K Q0
m’

a hladajme riesenie v tvare _

J z(t) = Xe 7 cos(wt + 0)
Odkial sa berie taka genialita? Nuz ak trenie je malé, oCakdvame, ze to
bude kmitat podobne ako oscilator, ale trenie sposobi, Zze kmity budu
postupne zanikat, teda Ze ich amplituda bude klesat a vo vzdialenej

buducnosti klesne az na nulu. Jedina funkcia, ktord pozname a ma také
,klesavé vlastnosti” je exponenciala.



VSimnime si ale, ze v navrhovanom rieseni

z(t) = Xe U7 cos(wt + 6)
mame nejaké parametre (7, w, §), ktoré v rovnici

K
i+ 2bi +wir =0, kde w?=—, p— &
m 2m

nevystupuju. Robime nieCo, Comu sa hovori ,hfadajme rieSenie v tvare®, o
obcCas privadza Studentov alebo Citatelov do zufalstva. Ale Casto staci len
nepodcenit sam seba a zamysliet sa, Co viedlo k takému navrhu na hladania.
NieCo som sa pokusil naznacit' v predchadzajucom odstavci ,odkial sa berie
taka genialita?“. Mozno ze nepochopime na prvykrat uplne vSetko, ale na
nieCo sa prist da. Napriklad, ze preCo genialny autor nazval parameter v
exponenciale . Lebo potreboval v argumente exponencialy Cas t, aby mu to
postupne klesalo. Ale v argumente exponencialy nemdzu byt sekundy, lebo
nevieme, ako by sa Cislo umocfiovalo na sekundy. V argumente musi byt
fyzikalne bezrozmerna vec, teda sekundy v argumente treba zlikvidovat.
Najlepsie dat tam zlomok kde v menovateli budu tiez sekundy, aby sa to
vykratilo. Takze neznamy parameter t bude v sekundach, ma Cosi spoloCné s

nejakym Casom, preto oznacCenie t, lebo to je grécke pismeno pre t. Naucte

sa to vnimat okamzite, ked vidite zapis exp (— %) tak hned mate vidiet

sekundy v menovateli. Snazte si pri uceni sa klast’ otazky ,,Preco?“



B o=
m’ 2m
t+06)

Mame teda rovnicu & + 2bi +wiz =0, kde wj =
LR 4 . ) z 13 — _t/T

a jej rieSenie ,hfadame v tvare z(t) = Xe cos(w

Robi sa to tak, ze robime ,ako keby“ skusku spravnosti. Dosadime navrhované

rieSenie do rovnice a vyskuSame, Ci je splnena. A zistime, Ze aj mb6ze byt

splnena, ale to by sme museli volit' zatial nezname parametre (7, w, §) nie

l[ubovolne, ale nejako konkrétne.

Tak dosadme, dostaneme

1
i(t) = =X =e V7 cos(wt + 8) — Xe ¥ wsin(wt + §)
T
1 1
z(t) = X —e U7 cos(wt 4+ 8) + X —e Y Twsin(wt + 0)
T T
1

+X —e /Twsin(wt + 6) — Xe " 7w? cos(wt + )
T



B o=
m’ 2m
t+06)

Mame teda rovnicu & + 2bi +wiz =0, kde wj =
LR 4 . ) z 13 — _t/T

a jej rieSenie ,hfadame v tvare z(t) = Xe cos(w

Robi sa to tak, ze robime ,ako keby“ skusku spravnosti. Dosadime navrhované

rieSenie do rovnice a vyskuSame, Ci je splnena. A zistime, Ze aj mb6ze byt

splnena, ale to by sme museli volit' zatial nezname parametre (7, w, §) nie

l[ubovolne, ale nejako konkrétne.

Tak dosadme, dostaneme

1
i(t) = =X =e V7 cos(wt + 8) — Xe ¥ wsin(wt + §)
T
1 1
z(t) = X —e U7 cos(wt 4+ 8) + X —e Y Twsin(wt + 0)
T T
1

+X —e /Twsin(wt + 6) — Xe " 7w? cos(wt + )
T

1 1
—Xe VT (W? — — ) cos(wt +9) +2X —e” 7w sin(wt + 6)
T T
1
—2bX —e 7 cos(wt + 8) — 2bX e Twsin(wt + 9)
T

+Xwie VT cos(wt + 0) ~0



1 1
—Xe VT (w? — =) cos(wt + 0) 4+ 2X —e /" wsin(wt + 0)

T2 T
1
—2bX —e 7 cos(wt + 8) — 2bX e Twsin(wt + 9)
T
+Xwie VT cos(wt + 0) ~0
1 2b
—Xe V7 (w? — — = wi + =) cos(wt + 6)
T T

1
+2X (= —b)e Y Twsin(wt + ) 20
T

Znamienko rovnosti ma platit' stale, teda v kazdom Case. Tlo je mozné len tak,

Ze koeficienty pri sinuse aj pri kosinuse su rovné nule. Aby vypadol sinus,

musime volit 1
~—p

T

a aby vypadol kosinus, musime volit |w? = w% — b?

Parameter § méze myt [ubovolny |(v podstate iba hovori kedy zaCheme pocitat

cas)



Linearny oscilator s timenim

Pohybova rovnica timeného oscilatora

&+ 20 +wiz =0
ma teda rieSenie

z(t) = Xe 7 cos(wt + §) = Xe b cos(wt + )
1

w? = wi — b — =} Parameter § je lubovolny
T

Predpokladame pritom, Ze trenie je dostato¢ne malé, teda Ze plati w3 > b2.

V pripade, velkého trenia, teda pri w3 > b? pohyb nema kmitavy charakter, treba
hladat iné rieSenie, ale nebudeme sa tym zaoberat.



z(t) = Xe % cos(wt + 6)
Graf pre hodnoty: b=0.5,w=10,0=0
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z(t) = Xe % cos(wt + 6)
b=0.5,w=10,0 =0
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Co je to peridda (frekvencia) neperiodického signalu?

S z(t) = Xe % cos(wt + 6)
o 'nl '. gxp(—(].ST]
Ilil ||' Y e S b=0.5,0=10,0=0
: | | ||| It |" ". .'." I“‘.‘ ; '"»..:\I—-A;‘/“{.;__ N
SRR E WY R VALVAR S
VU] AN
L '. I'
05k || ‘l |l'._,.“'
ol , , 8 1
Napoéitam 8 pikov za 5 sekdnd = E T 1.6s
W
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Co je to peridda (frekvencia) neperiodického signalu?

- z(t) = Xe % cos(wt + )

0.5 | |

| T~ b=0.5,w=10,0=0

[
A O . /
| | | :
l ' | 1| .| '|| 2 ;B
' | || " |'I
L ' | | 'I \
|
_0,5.- || ‘l I\ .“
| |
|/
\

Napocitam 8 pikov za 5 sekund
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Co je to peridda (frekvencia) neperiodického signalu?

?‘.l N z(t) = Xe % cos(wt + 6)
o5k ( ‘:l “""';.xl._,__:_fexl)(—(].f)f]
:'il Al A - b=0.5,w=10,6 =0
Ly | I'I WANA ;,f_"r"f"’;«“-a;--
TRVRVEVAVA A
A N
L ) I' \ /
05k || l‘ |l'._.‘l'
Napocitam 8 pikov za 5 sekund J
w=2rf

O poslednom piku nemam istotu, preto

Keby som ratal piky nie pocas 5 sekund ale pocas 50 sekund, naivne

by som cakal, ze dostanem  f — I (1.6 +0.02)s ! -



Skuste urcit pocet pikov za 50 sekund signalu!

Neda sa to, lebo cas 50 sekund je pridlhy voci tomu ako rychlo klesa
ona exponenciala

10F
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Ako rychlo klesa exponenciala?

/ 1
exp(—bt) = exp(—;) T

;l“ M~

i :.'|v III l'. '|,?‘”-.;"--~-~ fﬂ)(_(]jﬂ

|| ||| ll III| VIR '~,||' -. ~

1T o - L -

T 1Y 2 f 4 5

VLot l" |

[ t' ‘l '.ll .'

t
exp(—0.5t) = eXp(_i)

Za dobu t =~ T exponenciala uz viditelne poklesne, za dobu
~ niekolko 7 poklesne tak, Ze sa uz piky dalej ratat nedaju
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f= —— = (1.6 +£0.2)s*

Chyba (nepresnost) uréenia frekvencie je teda

1

niekolko 7

Af ~ =+

Radovo teda plati ¢osi, ¢o sa zvykne volat ,princip neurcitosti”
IAf|lT~ 1

Absolutna chyba urcenia frekvencie krat doba pritomnosti
signalu je radovo rovna jednej 127



Disipacia energie timenych kmitov

z(t) = Xe % cos(wt) v(t) = —Xbe " cos(wt) — Xe "wsin(wt)

E(t) = Wi(t) + U(1)

1 1 1
= §]€X26_2bt cos? (wt) + §mX2626_2bt cos? (wt) + §mX2wze_%t sin? (wt)+

+ mbwX2e 2 cos(wt) sin(wt)

VyuZzijeme: mw? = mw% — mb® = k — mb?

1
E(t) = —mw?X%e 2" £ mX2b%e 2% cos? (wt) + mbwX2e % cos(wt) sin(wt)l

2

Plot[{1+2b*2 {Cos[omeqga t]} 2 / {(omeqga) ~ 2+ b / omeqga Sin[2 omeqga t])
Exp[-2bt], {t, 0, 5}]

10

Grafpre w =10,b =0.5
Plotovane je
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Budeny oscilator s timenim
&+ 2bi +wiz = f(t)

Specialny pripad Z + 2bi + wix = fo cos(wt)

Mozna realizacia:

Nabité teliesko na nevodivej pruzine v
homogénnom striedavom elektrickom
poli

U(t) = Up cos(wt)



Budeny oscilator s timenim

&+ 2bi + wix = fo cos(wt)

Pouzijeme trik s komplexnymi fazormi a pokusime sa najprv najst aspon jedno
rieSenie pohybovej rovnice. ZapiSeme ju v komplexnych Cislach

&+ 2bi + wix = foe'!

Skusime hladat komplexné rieSenie v tvare  x(t) = Zoe""
Po dosadeni do rovnice dostaneme

_w2§30€zwt + inbiﬁoezwt + wgi,oezwt — foezwt

- fo

Trn =
0= _2 + w% + 2ibw

Dostali sme komplexny fazor X, s nejakym fazovym posunom voci realnemu
fazoru f,. VypocCitame velkost a fazu fazora x,.



Budeny oscilator s timenim

.%() = fO = |.5Al'30|€i(S
—w? 4 w + 2ibw
V(—w? + wd)? + 4b%w?
- s Jo B Jo
—w? +w§ + 2ibw | — w? + w§ + 2ibw|et™

Zjavne plati 6 = —a. Fazu menovatela urCime lahko, takze dostaneme

0 = —atan2 (2bw, —w? + w%)




Budeny oscilator s timenim

&+ 2bi + wix = fo cos(wt)

Vratiac sa k realnym Cislam mézeme tvrdit, ze sme nasli jedno nejaké specialne
rieSenie pohybovej rovnice

fO tw ~ 1,10 jiw
xo(t) = Re (—wQ T2 T “) =Re (|zole O¢ ‘)

| fol 0 = —atan2 (wa, —w? + wg)
V(—w? + wd)? + 4b2w?

kde |Lf?0| =

Pohybova rovnica je linearna, takze ak k najdenému Specialnemu rieseniu
pripoCitame fubovolné riesenie pohybovej rovnice bez pravej strany, dostaneme
tiez nejaké rieSenie. Rovnica bez pravej strany je rovnica timeného linearneho
oscilatora, jej rieSenia pozname, takze dostaneme

. . 1
2(t) = Xe V7 cos(wpt + B) + Re (|Zg|e??e™!) kde wy, = m, =1

V tomto rieseni su parametre X, 8 lubovolné parametere, ktoré treba urcit z
pociatoCnych podmienok




Budeny oscilator s timenim
&+ 2bi + wix = fo cos(wt)

z(t) = Xe Y7 cos(wyt + ) + Re (|j’30|6i5eiwt)

Y R I 70| = | fol
b= \/ W ; b 0 \/(_wg + wd)? + 4202 0 = —atan2 (2bw,—w2 —I—WS)

V tomto rieseni su parametre X, 8 [ubovolné parametre, ktoré treba urcit' z
pocCiatocnych podmienok. Lahko sa da presvedcit o tom, ze pre fubovolné
pocCiatoCné podmienky

sa daju najst parametre X, S tak, Ze rieSenie spifa tie pogiatoéné podmienky.
Tym sme ,fyzikalne® dokazali (fyzika pozaduje jednoznaénu predpoved
buducnosti), ze sme nasli vSetky rieSenia pohybovej rovnice. Zapamataijte si
poucku ,,fubovolné riesenie linearnej rovnice s pravou stranou sa da pisat’
ako sucet vSeobecného riesenia tej rovnice bez pravej strany a nejakého
specialneho (parcialneho) riesenia tej rovnice s pravou stranou“
Pripomerime este, Ze sa zaujimame iba o pripad malého trenia, teda w3 > b2.



Budeny oscilator s timenim

z(t) = Xe t/T cos(wpt + ) + Re (|j§0|6i5eiwt)

Pozrime sa teraz, ako vyzera kvalitativny charakter najdeného rieSenia.

Pre dostatone dihé &asy, teda t >> 1. Cast rieSenia zodpovedajlca riedeniu bez
pravej strany ,exponencialne vymrie® (prakticky stacCi €as t niekolkokrat 7) a teda
po dlhom Case nastane ,vynuteny pohyb”

~ 10 _iwt
zo(t) = Re (|Zgle™e™")
Exponencialneho vymretiu homogénneho rieSenia hovorime ,,prechodovy jav*.

Amplituda aj faza vynutenych kmitov zavisia na vynucujucej frekvencii, tak ako to
ukazuju vzorce
. | fo

ol = V(—w? +wj)? + 4b2w? 0 = —atan2 (2bw, —w”* + wp)

Uz prosty pohlad na tie vzorce s cielom ,vySetrit priebeh funkcie v zavislosti na
w" ukazuje, ze sa moze diat nieCo zaujimaveé v oblasti v = w,, kde su
menovatele vyrazne malé. Pozrime si najprv numerické obrazky.



Rezonancia

Plot[l/ Sqrt[{-omega "2 + omegal~ 2} 2 + 4b" 2 owmegqa~2], {omega, 0., 30.3,
PlotRange — Full]

olof
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Plot[-ArcTan[2b omega, - onega™2 + omegal~2], {omega, 0., 30.}%,. PlotRange — Full]

15}
1o}
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Amplituda a faza v
zavislosti na vynucujucej
frekvencii w pre hodnoty
wo =10,b = 0.5

Poznamka.

Obrazky boli nakreslené v
programe Mathematica a pre
zaujimavost som do nich
nakopiroval aj prislusny plotovaci
prikaz. | ked nepoznate jazyk
programu Mathematica, prezrite si
ten prikaz a zistite, ze
porozumiete jeho Strukturu.
Nebojte sa lustit nezname veci, je
to zabavné, poucné a Casto
nevyhnutné, lebo navody a popisy
funkénosti su ¢asto neuplné alebo
dokonca chybné. Otazka ,,Ako to
funguje?* patri do kompetencie
fyzika. VSimnite si napriklad, ze
potrebna funkcia sa nevola atan2
ale ArcTan.




Rezonancia

Amplituda a faza v
Plot[1/ Sqrt[ {-omega ~2 + omeqal= 2} ~2 + 4b~ 2 omeqa~2], {owega, 0., 30.},

PlotRange - Full] zavislosti na vynucujucej
o3t frekvencii w pre hodnoty
0s Wy = 10,b = 0.1

o3f
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Plot[-ArcTan[2b onega, - omega™ 2 + omegal ~2], {omega, 0., 30.3}, PlotRange — Full]
15}
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Rezonancia

Plot[l/ Sqrt[ {-omega =2 + omeqal~2) ~2 + 4b~ 2 omegqa~2], {oweqga, 0., 30.}. e ,
PlotRange — {{0., 30}, {0., 0.03}}] Amplltuda afazav

oo zavislosti na vynucujucej
frekvencii w pre hodnoty
Wy = 10,b = 2.0
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Plot[-ArcTan[2b onega, - omega ™ 2 + omegal ~2], {omega, 0., 30.}, PlotRange — Full]




Rezonancia

Z prezentovanych grafov je zrejme, ze amplituda vynutenych kmitov ma vyrazné
maximum v oblasti, ked frekvencia vynucujuce;j sily je blizka k frekvencii vlastnych
kmitov oscilatora, teda kmitov zodpovedajucich rieSeniu ,bez pravej strany®. Tento
jav sa vola rezonancia. Vidno tiez, ze rezonancny pik je vefmi uzky ak koeficient
trenia b je maly. Porovnanim obrazkov vidime, ze Sirka rezonancného piku ma

radovo velkost Aw = b

Plot[1/Sqrt[{-omeqa 2 + omeqal~2) ~2 + 4b*2 onega 2], {orega, 0., 30.},
PlotRange - Full]

010

oosf wy = 10,b = 0.5

na

Na obrazku je ,Sirka piku”
naznacena zvislymi cervenymi
Ciarami.

Nedefinovali sme presne, €o
nazyvame sSirkou piku, kazdy
pokus o presnu definiciu by bol
znacne [ubovolny. VSimnime si
tiez, ze ani pojem ,frekvencia
vlastnych kmitov timeného
oscilatora“ nie je dost’ exaktne
definovatelna, videli sme, ze
taka frekvencia je radovo
definovatelna iba s presnostou

Aflrm~1 |Aflab



Rezonancia

Rezonancia je ,/udovo popularny” jav. Spomernme napriklad varovania o
pochodujucom vojsku, ktoré rozkmita most a stym suvisiaci vojensky prikaz
,Zrusit krok!" Je to trochu na urovni ludovej rozpravky, ale nasledujuce linky na
videa na webe ukazuju, ze nieCo podobné naozaj exituje.

https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=eAXVa XWZ8
https://www.youtube.com/watch?v=uWoiMMLIvco

Problém je v tom, Ze v u€ebniciach sa podobné priklady uvadzaju ako ilustracia
pri vyklade vynutenych kmitov linearneho timeného oscilatora. Rozkmitany most
je matematicky riadne ina kava. | ked pravda je aj taka, ze niekde v hlbinach
matematiky sa daju najst’ suvislosti medzi ,matematikou oscilatora“ a
,matematikou mosta“. Bez vysvetlenia uvedme len mystické zaklinadlo
,2analytické vlastnosti Greenovej funkcie” (mozno si na to spomeniete pri Studiu
teoretickej fyziky). Ani toto zaklinadlo nevysvetluje vsetko. V tych ukazkach most
v Tahome spadol nie kvéli jednoduchému periodickému vynucovaniu ale kvéli
virom vyvolanym vetrom a Miléniovy most v Londyne dostal bo¢né kmity najma
vdaka inziniermi nepredpokladanej (psychologickej?) spatnej vazbe medzi
pohybom davu a reakciami mosta.


https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=eAXVa__XWZ8
https://www.youtube.com/watch?v=uWoiMMLIvco

Matematické kyvadlo

Hmotny bod na nehmotnom zavese dizky
[ (tyCke alebo lanku)
Trajektoriou je kruznica
V tangencialnom smere pdsobi len zlozka
tiaze o velkosti mgsin(¢).
Vychylku hmotného bodu meriame diZzkou
drahy pozdiz kruznice
Drahu od rovnovazneho bodu dofava
chapeme ako kladnu, doprava ako
zapornu
Tangencialnme zrychlenie vyjadruje
zmenu rychlosti v dotyCnicovom smere
pohybova rovnica teda bude
d?s _

mﬁ = —mgsin(yp)
drahja pozdlz kruznice sa vyjadruje ako
s = lg, preto nakoniec dostaneme
rovnicu

dzgo | ( )
— = ——gsin
12 it




Matematické kyvadlo

o _ 1 in()
— = — — (7 S1I1
dt2 it

Pre malé uhly plati sin(¢@) = ¢, takze
nakoniec mame

*¢ g

@t
Porovnanim s rovnicou harmonického
oscilatora

d*x K 0

@ = —EJ} = —wW T

o(t) = po cos(wt + 9) W=/

141



Fyzikalne kyvadlo

Pohybova rovnica tuhého telesa rotujuceho
okolo fixnej osi (L je vzdialenost taziska od osi)

d
I2u=N
dt”
d2
Iﬁﬁ = —mgLsin(f) ~ —mgL#6
d? 0 ~ mgLQ 29
— O~ ——0=—w
dt? I
mgL
w=4/—

142



Kmity zlozitejsich sustav.
Viny.



Dva viazané oscilatory

Uvazujme dva oscilatory, pre zjednoduSenie vypoctov nech maju rovnakeé
hmotnosti m a rovnaké tuhosti ich vratnych pruzin K.Oscilatory su previazané
pruzinou tuhosti k. Na hornom obrazku su oscilatory v rovnovaznych polohach,
vSetky pruziny povazujeme za nedeformované. Na spodnom obrazku su oba
oscilatory vychylené z rovnovaznych poléh. Polohu kazdého oscilatora urcCuje
suradnica merana od jeho rovnhovaznej polohy.



Dva viazané oscilatory

mwmmw‘mmmmmw

Z1 )

Pohybové rovnice maju tvar

ma’jl = —K$1 — ]C(ZUl — 5(32) ml-ﬁg — —KSCQ — ]ﬁ(ZCQ — $1)

Isty problém pri napisani tych rovnic méze sp6sobit sila od vazbovej pruziny k.
Treba si uvedomit, ze keby vychylky oboch oscilatorov boli rovnaké, pruzina k by
vObec nebola deformovana, preto velkost sily, ktorou pruzina pésobi bude umerna
rozdielu |x; — x,|. Na kazdu Casticu p6sobi ta pruzina silou proti smeru vychylky te;
Castice. Preto vo vyraze pre silu v pohybovej rovnici pre Casticu 1 musi vychylka x;
vystupovat so zapornym znamienkom, preto je tam Clen —k(x; — x,). A presne
opacny Clen bude v rovnici pre druhu Casticu.



m:’él - —K.’El — ]ﬂ(.il;’l — 332) mfl;.’g - —K:IIQ — k(.ﬁCQ — 331)

Pri rieSeni tych rovnic pouzijeme ,genialny trik, rovnice raz s€itame a raz
odcCitame a dostaneme in¢é dve rovnice

m(:iél + :'152) = —K(ﬂ?l + xz)
m(CL‘1 — 232) = —(K -+ 2]6)(581 — CBQ)

V tych rovniciach vystupuju hladané funkcie len v kombinaciach x; + x, v prvej
rovnici a x; — x, v druhej rovnici. Tie rovnice su navzajom nezavislé, mozno ich
rieSit kazdu samostatne. Zavedme nové funkcie

§(t) = o1(t) +22(t)  n(t) = z1(t) — 22(2)
mé=—-K¢& mij=—(K 4 2k)n

Dostali sme dve nezavislé rovnice pre akoby dva harmonické oscilatory, vSeobecné
rieSenie ma tvar

§ = Acoswet + Bsinwgt 1= Ccoswyt + Dsinw,t

K K+ 2k
(JJEZ E wn: -

Odtial uz lahko vyjadrime pévodné funkcie x4, x,.




(Acoswet 4+ Bsinwet 4 C coswyt + D sinwyt)

(A coswet + Bsinwgt — C coswyt — D sinwyt)

= DN =

VSeobecné riesenie obsahuje 4 nezname konstanty A, B, C, D. UrCime ich z
pociato¢nych hodnbt x;(0), x,(0),x;(0), x,(0).

Ako priklad vySetrime, ako vyzera rieSenie pre pripad, ze vychylime jeden
oscilator, druhy ostane v rovhovaznej polohe

21(0) = X, 25(0) = 0,41 (0) = 0, 5(0) = 0

RieSenim je zjavhe A = C = X, B = D = 0 a dostaneme

x1(t) = X cos (%t) cos (%t)

raft) = ~Xsin (01 ) i (4 01) “/\WWWMW\”

Typicky priebeh kmitov je na obrazku. Oscilatory kmitaju ,,na striedacku”



Dva viazané oscilatory, normalne mody

Interpretacne zaujimave riesenia dostaneme, ak vyberieme také pocCiatocnée
podmienky, aby

 C=D=0(,£"-mod, tedan =0)

« A=B=0(,n"-mod, teda ¢ = 0)

&mod: C =D =0

1
xgg) (t) = §(A cos wet + B sinwet)
(&) 1 -
xy’ () = §(A coswet + B sin wet)

Je to mdd, v ktorom oba oscilatory kmitaju synchronne rovnako, v kazdom case
maju rovnaké vychylky aj rychlosti. Vazbova pruzina je teda v kazdom okamihu
nedeformovana, nepdsobi teda silou, teda ako keby tam ani nebola. Oscilatory
neinteraguju, kazdy si kmita svojou vlastnou frekvenciou w;. Je zrejme, ako
nastartovat oscilatory, aby kmitali v tomto mdode: Na zaciatku ich vychylime z
rovnhovahy rovnako a udelime im rovnaku pociatocnu rychlost. Ak ich len pustime
bez udelenia rychlosti, bude navyse B = 0.



Dva viazané oscilatory, normalne médy

n-mod: A=B =0

1
x&n) (1) = 5(6’ coswyt + D sinw,t)

:rgn) (1) = —%(C coswyt + Dsinwyt)

Je to mod, v ktorom oba oscilatory kmitaju rovnakou frekvenciou ale s opacnou
fazou, teda ,,proti sebe®. V kazdom Case maju opacné vychylky aj rychlosti.
Oscilatory ako keby neinteragovali, kazdy kmita frekvenciou w,. Ta frekvencia je
vacsia ako vlastna frekvencia oscilatorov. Vazbova pruzina je oboma oscilatormi
deformovana rovnako, preto jej efekt je taky, ze efektivhe zvySuje tuhost ,vlastnych”
oscilatorovych pruzin. Je zrejme, ako nastartovat oscilatory, aby kmitali v tomto
mode: Na zaciatku ich vychylime z rovnovahy presne opacCne a udelime im opacné
pocCiatoCné rychlosti. Ak ich len pustime bez udelenia rychlosti, bude navyse D = 0.



§-mod aj n-maod, ktoré sme prave popisali, sa suhrnne nazyvaju normalne mody

a maju niekolko spolocnych charakteristik:

« normalne mody su monofrekvencné, teda ich Casova zavislost' je popisana
harmonickou funkciou s jedinou frekvenciou, vSetky komponenty (nase
oscilatory) kmitaju s tou istou frekvenciou

« normalne mody su stacionarne, teda jednotlivé komponenty systému (nase
oscilatory) sa pohybuju stale rovhako, nedochadza k presunom energie medzi
komponentami

« normalne maody tvoria uplny systém, teda lubovolny iny pohyb uvazovanej
sustavy sa da vyjadrit ako superpozicia normalnych médov

Normalne médy sme nasli ,genialnym trikom®. Prisli sme na to, Zze pévodné
pohybové rovnice mézeme sCitanim a odcitanim premenit na nové navzajom
nezavislé rovnice.

Ak by sme boli vedeli, ze hfadame ,normalne mody“, mohli sme ich najst’ aj bez
genialnych trikov tak, ze by sme hladali Specialne pohyby s prave popisanymi
vlastnostami normalnych moédov. Ukazeme si to.



mjﬁl = —K$1 — k‘(l‘l — 5(32) mfﬁg — —K.TCQ — ]C(ZCQ — $1)

Pri hfadani normalnych moédov pouzijeme techniku komplexnych Cisel, uSetri nam to
namahu s trigonometrickymi identitami.

Budeme hladat stacionarne monofrekvencné kmity, teda rieSenia v tvare
.fli'l(t) = fﬁle?'Wt Wiy, (t) == CEQ@MMt

VsSimnime si, ze vSade je ta ista a jedina frekvencia w.Po dosadeni do rovnic
dostaneme

—mw?d = —(K + k)& + kTs — mw?ds = —(K + k)T + kT

Trik s monofrekvencnostou prerobil sustavu linearnych diferencialnych rovnic na
sustavu linearnych algebraickych rovnic. Mimochodom, dostali sme homogénne
rovnice ,bez pravych stran®

(K +k—mw))i, —kis =0 —k& + (K+k—mw?)iy =0



(K +k—mw))i, —kio =0 —k& +(K+k—mw?)Ty =0

Takeéto rovnice maju bud len jedno trivialne rieSenie ¥; = ¥, = 0, alebo dve
netrivialne rieSenia, a to vtedy, ak tie dve rovnice nie su nezavislé, ale kazda hovori
L0 isté”, takze mame vlastne iba jednu rovnicu. Bude to vtedy, ked jedna rovnica
bude jednoducho nasobkom druhej, teda ak existuje Cislo c tak, aby platilo

K+ k —mw? = —ck

—k = (K + k — mw?)
odtial

K +k—mw? = (K + k — mw?)
c==+1
=K+ k+tk




Nasli sme teda frekvencie normalnych médov a po dosadeni tych
frekvencii do rovnic

(K+k—mw?)i, —kia =0 —ki;i+ (K+k—mw?)is=0

pre we k1 — kzo =0 teda Z; = Z2

pre w, —kZ; —kiy =0 teda z; = —22

Dostali sme teda technikou ,hladania monofrekvencnych rieSeni“ rovnakeé
normalne mody ako tie, ktoré sme uz videli.

V istom zmysle teraz mozno lepsie vidime, v akom zmysle su normalne mody
Specialne rieSenia.

Predovsetkym vidime, ze ide o kolektivne koordinované pohyby jednotlivych
zloziek celého systému, teda naSich ,povodnych oscilatorov®, z ktorych sa
uvazovany system sklada.

,Skladat’ sa z“ je dblezity pojem pre chapanie okolitého sveta a na priklade
viazanych oscilatorov si mézeme ukazat jemné nuansy tohto pojmu.



Skladat’ sa z

Na priklade viazanych oscilatorov teraz chceme demonstrovat’ kusok z metodiky
fyziky, pristup k chapaniu reality technikou ,,skladat’ sa z“.

Povedali sme si niekedy na zaCiatku semestra:

Zapadna civilizacia:
nemusim mat’ ambiciu pochopit’ ,,svet v jeho celostnosti”

Vymedzim nejaku Cast’ sveta (fyzikalny systém)

snazim sa analyzovat ,ako funguje” sam o sebe a tiez v kontakte s okolim.
Potom postupne skladat’ z kuskov cely puzzle.
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Skladat’ sa z, ¢ierna skrinka

e

Na zacCiatku mame pojem harmonicky oscilator. Ten sme dostatoCne preskumali
ako samostatny fyzikalny objekt. Teraz mame novy systém, ,Ciernu skrinku®, o
ktorej nam niekto povedal, ze su tam dva oscilatory, teda ,sklada sa z" dvoch
oscilatorov. Takze je prirodzené, predstavit' si ,vnutro skrinky“ takto:

ume  omuuy

Ibaze ,naozaj” vyzera vnutro takto:

Jusme.oomug

Su tam dva oscilatory, ale interagujuce, previazané.




Nevidim dovnutra Ciernej skrinky, ale dostanem ulohu zistit' (bez jej rozbitia), Co je
vnutri a mam informaciu ze ,su tam dva oscilatory®. M6zem napriklad skrinkou
zahrkat a potom pocuvat, aky zvuk sa odtial Siri. Keby to bola ta skrinka viavo,
mal by som pocCut’ zvuk jedinej frekvencie w = v/ K/m  ak to je ta skrinka
vpravo budem pocut zvuk skladajuci sa z dvoch frekvencii
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Je to ale naozaj tak, ze ak poCujem pri r6znom zahrkani r6zne zvuky, ale
vzdy len zmes dvoch frekvencii
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potom mézem usudit, Ze vnutri su dva viazané oscilatory?

Jusme.omug

Pozor! Nik mi nepovedal, ze su tam dva rovnaké oscilatory! Ak som
nepredpojaty a uprednostiujem jednoduché hypotézy, potom mozno
prirodzenejSia hypotéza bude, ze v skrinke su dva r6zne nezavislé oscilatory,
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jeden s vlastnou frekvenciou \/K/m a druhy s frekvenciou /(K + 2k)/m




Ako mam experimentami bez rozbitia skrinky zistit, €i ,konStrukCne® ide o
skrinku vlavo alebo tu vpravo. Ak ide o ,nerozbitnu® skrinku a jeding, Co
md&zem pouzit’ su vydavaneé zvuky, potom nijako. Ale vadi to?

Naco je fyzika? Aby mi pomohla prezit v dZzungli okolitého sveta. Ak
pristupné su len zvuky, potom ma skrinka ani inak neovplyvnuje, iba
zvukmi. Pre moje prispdsobenie sa a pre prezitie su obe skrinky uplne
rovnocenné. Mam plné ,pravo” prehlasit, Ze v skrinke ,su“ dva nezavislé
nerovnaké oscilatory. Ze sa skrinka ,sklada“ z dvoch oscilatorov ¢ a 7.
Ba dokonca je to tak pre praktické rozhodovanie o0 mojom preziti
jednoduchsie, nez povedat, ze ,sa sklada z dvoch rovnakych oscilatorov
ale previazanych®”.

Oscilator previazany s nejakym inym sa chova inak, nez izolovany
oscilator, takze dokonca prisne filozoficky naladeny ¢lovek sa méze pytat
,~Je to eSte stale ten oscilator, ktory som Studoval ako izolovany, ked' je
zviazany s inym podobnym?*



Skladat’ sa z

VSetci sme sa uz ako mali ucili, ze ,latky sa skladaju z atdmov a tie sa skladaju z
protonov, neutronov a elektronov®. Ale ak zaCnem Studovat osamoteny izolovany

neutron, zistim pozoruhodnu vec: je to nestabilna Castica a zhruba po Stvrthodine sa
rozpadne.

Ako sa mbzeme ,skladat’ z“ nieCoho, ¢o sa po Stvrthodine rozpadne? Ved
nepozorujeme, ze by sme sa po stvrthodine rozpadli! Nuz tak, Ze neutron v jadre
atomu ,sa chova inak” (a niekto mozno povie ,je iny“) ako izolovany neutréon. Dnes
rozumieme celkom dobre, ako to funguje, ale treba na to kvantovu teériu. Takze si
len ,po Skblkarsky® povieme, ze protony v jadre ,kvantovomechanicky nedovolia®
neutronu, aby sa rozpadol. Ale ilustruje to tazkosti pri pouzivani metodologie
,Skladat sa z“.



Dilema

Dilemu ,ako je to skonstruované naozaj“ je pripustné prerozpravat i takto.

Naozaj su tam dva viazané rovnaké oscilatory, ale pre ucely vypoctov je
jednoduchsie, ked’ sa budeme tvarit’, ze su tam dva nezavislé nerovnakée oscilatory.

Priam sa nuka historicka paralela. Na mnohych stredovekych posluchacov a Citatelov
Galilea a Kopernika sa dnes divame ako na hlupakov, lebo tvrdili, ze ,naozaj" sa
Sinko toCi okolo Zeme, kym heliocentricky systém je len taky vypoctarsky trik. Ale v
c¢om sa to liSi od nasho prikladu s viazanymi oscilatormi?

Ina, mozno menej znama paralela je takato. Chemici uz v Case okolo Francuzske;
revolucie prisli na to, ze chemickym reakciam sa da jednoducho rozumiet, ked
prijmeme vazne atbmovu hypotézu a naraz vedeli, ze ,voda“ je H,0. A zistili, ze tlak
plynu sa da predstavit ako bombardovanie steny nadoby molekulami, ze teplota
plynu suvisi s kinetickou energiou chaotického pohybu molekul (niekedy kolo .
1860). Ale stale bolo vela profesorov fyziky, ktori hovorili ,to su len také vypoctarske
triky, naozaj nie su ziadne atomy“. Az ked Einstein a Smoluchowski kvantitativne
vysvetlili Brownov pohyb pochybovaci povedali, ze uz ,veria“ na atomy.



Vratme sa eSte k obrazku pohybu ,dvoch viazanych oscilatorov”
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na tom obrazku esSte vieme identifikovat dva ,harmonické oscilatory, ktoré si
striedavo vymienaju energiu®. Je to preto, ze peridoda ,vymen energie” je ovela dlhsia
ako peridda ,vlastnych kmitov“ jednotlivych oscilatorov. Takze kazdy z nasSich
viazanych oscilatorov ,sa eSte stale dost podoba na seba v stave, ked bol
izolovany“. Ten obrazok sme ale zamerne nakreslili pre situaciu, v ktorej to tak
vyzera, konkrétne pre ,slabé previazanie k «< K. Pre pripad k = K to dopadne takto:

V tomto pripade je uz naozaj tazké priznat intuitivnu
hodnotu popisu ,dva rovnaké viazané oscilatory.

PoucCenie z celého je také: ak podsystémy, z ktorych sa
cely systém sklada, interaguju slabo, je terminologia
podsystémov a ,skladania sa z nich” Casto uzitoCna pre
intuitivne prijatefny popis a porozumenie. V pripade silnej
interakcie je technologia ,skladat’ sa z* debatovatelna.




Co mam garantovane vediet

« frakvencia matematického kyvadla
« napisat pohybové rovnice dvoch viazanych oscilatorov
* uvedte nejakeé charakteristiky normalnych modov



Retiazka oscilatorov

Uvazujme jednorozmerny systém N —1 Castic rovnakej hmotnosti m navzajom

poprepajanych pruzinami rovnakej tuhosti k. Krajné ¢astice nech si rovnakymi
pruzinami spojené s pevnymi stenami

k k k k
é im] im2 imN-1 l
Hlasujte, €o su spravne pohybové rovnice
cernyv.com l/pwd  fmph/fmphedu
a. mu; = —k(u@ — ’Uﬂi_l) — k(uz — ’Uﬂ,;_|_1)
b: muz = —k(uz — u@'_1) -+ k(uz — u?;+1)
C. muz = —k(uz — u@'_l) — k(qu — ’Uﬂl)

d: muz = —I—k(uz — u@'_l) — k(uz — u?;+1)
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Retiazka oscilatorov

Uvazujme jednorozmerny systém N —1 Castic rovnakej hmotnosti m navzajom
poprepajanych pruzinami rovnakej tuhosti k. Krajné ¢astice nech si rovnakymi
pruzinami spojené s pevnymi stenami

k
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NapiSeme teraz pohybové rovnice pre tento systém. Oznac¢me vychylku i-tej
castice z jej rovnovaznej polohy ako u;, pre i = 1,2,...(N — 1). A zavedme
eSte pomocné konstanty ug = 0, u, = 0. Potom pohybové rovnice su (pre
i=1,2,...(N—-1))

TniQ ::——k(u@-—fui_l)-—-k(ui-—'u¢+1)

Je to systém n—1 navzijom viazanych linedrnych diferencidlnych rovnic druhého
radu pre N — 1 neznamych funkcii u;(?).

Systém pohybovych rovnic pre retiazku oscilatorov sa neskér naucime riesit, ale
najprv budeme riesit’ ulohu v spojitej limite. RieSenie je v spojitom pripade intuitivne

prijatelnejsie. -



Mala matematicka vsuvka

V matematike mavame funkcie aj niekolkych premennych,
ako tu u(t, z)

Takuto funkciu méZzeme derivovat podla niektorej z jej
premennych, pricom ostatné premenné, podla ktorych
nederivujeme, budeme povazovat za konstantné (akoby za
parametre) teda napriklad definujeme

Ou(t, x) . u(t+dt,z) —u(t, x)
= lim
ot dt—0 dt
ou(t, x) — lim u(t, z + dx) — u(t, x)
Ox dz—0 dx

Aby sme upozornili na to, ze derivujeme len podla jednej
premennej, kym ostatné su konstantné, pouzivame v
symbole derivacie znak d namiesto d. Vola sa to parcialna
derivacia. Analogicky budeme znacit vyssie parcialne
derivacie.



Budeme teraz pouzivat iné oznacenie, namiesto celoc¢iselného indexu ¢ bu-
deme pouzivat index z ako realnu sdradnicu rovnovaznej polohy uvazovanych

bodov. Hmotné body teda sedia v polohach danych stiradnicou z, ktora nado-
buda diskrétne hodnoty z mmnoziny

z€iA, i=1,2..N—-1

k k k k
I 1 .il 112 | : i':“' 1 I
x=1 x=24 x=i/ x=(N-1)A
i >,
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Budeme teraz pouzivat iné oznacenie, namiesto celoc¢iselného indexu 7 bu-
deme pouzivat index x ako realnu stradnicu rovnovéaznej polohy uvazovanych
bodov. Hmotné body teda sedia v polohach danych stradnicou z, ktora nado-
buda diskrétne hodnoty z mmnoziny

retA, i=1,2,.N—1
V tomto oznaceni maji pohybové rovnice tvar

m82"g(tt2’ ) k(u(tx) — ultw — A)) — k(u(t.z) — ult.z + A))

s okrajovymi podmienkami
u(t,z =0) =u(t,r = NA) =0
Porovnajte si toto znacenie s pévodnou rovnicou
mi; = —k(u; —ui—1) — k(u; — uja1)

Je to to isté, len index piSeme ako keby parameter funkcie.
25



r i, i=1,2..N-1

k

k k k
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Budeme teraz vysSetrovat limitu kontinua, teda limitu

N — o
A — 0
NA — L

V limite vznikne novy typ fyzikalneho objektu: deformovatelna tyc

77777
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O%u(t, x)
ot?

O%u(t, )

ot?

—k(u(t,r) —u(t,z — A)) — k(u(t,z) — u(t,x + A))

u(t,z) —u(t,r —A) u(t,r+ A) —u(t,z)
kA{ A A }
ou(t,r —A)  Oult,x)
—kAd oz Oz ;
Ou(t,z)  Ou(t,x—A)
kA2 ox ox
A
O?u(t,r — A)
A? :
g Ox?
kA 8215@2,3;) N & o
* A — 0
kA? §%u(t, x) NA — [
m 2
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O%u(t, x)

—k(u(t,r) —u(t,z — A)) — k(u(t,z) — u(t,x + A))

ot?
B u(t,z) —u(t,r —A) u(t,r+ A) —u(t,z)
= —kA{ A A }
B ou(t,r —A)  Oult,x)
= kA Oz - Oz ;
Ou(t,z)  Ou(t,x—A)
_ kA2 Jx Ox
A
O?u(t,r — A)
= EkA? ’
g Ox?
= kAZ? 621{;(2’ z) N — o
! A — 0
O%u(t, ) kA? 6%u(t, ) NA — L
ot? m  Ox? kA2 )
"
O%u(t, x) ., 0*u(t, )
ot? C T o
28




Co sme to stvorili? Nové fyzikalne "zviera“!
Y

V limite vznikne novy typ fyzikalneho objektu: deformovatelna tyc

nedeformovana tyc

77777

deformovana tyc

ANNAN  DNNNN
77777

TycC sa sklada z Castic, ale tie su malé a su nahusto, takze ich nevidime.
Mozno ani netusime, Ze tie Castice existuju. Ty¢ sa nam moze javit ako
osobitny fyzikalny objekt "kus kovu". Javi sa nam ako spojité
prostredie, , kontinuum® z nicoho elementarnejsieho sa neskladajuce.
Dokonca historicky to bolo prave tak. Nasa deformovatelna tyc sa
mdZe nachadzat v roznych stavoch podla toho, ako je pozdiine, teda v
smere tyce, vychyleny bod (rez) tyCe zo svojej kludovej polohy x.



Takze pozor:
zadat stav Castice v nejakom okamihu vieme pomocou (iba) 6 Cisel: tri
zlozky vektoru polohy a tri zlozky vektoru rychlosti

Na zadanie stavu tyCe potrebujeme "dvakrat spojite nekonecCne vela

Cisel" teda potrebujeme zadat hodnoty funkcie
u(x) pre z € (0,L) pricom u(0)=wu(L)=0

a aj jej prvej Casovej derivacie

d
%(taj) pre x € (0, L)
Buducnost budeme predpovedat pomocou rovnice, ktord sme nasli,
teda O%u(t, x) 5 0%u(t, x)
= cC
Ot? Ox?

toto je vlastne spojite nekonecne vela diferencialnych rovnic, po
jednej pre kazdé x € (0, L) Rovnice ale nie su navzdjom nezavislé.
Cez pravé strany sa citia.



O*u(t,z) 2 O%u(t,x) (#)

Ot? B Ox?

Zdanlivo su rovnice nezavislé, ved' v kazdej rovnici je len ,jedno x“ Takze
sa to zdanlivo podoba na pohybové rovnice Newtonovho typu

d*x 1
R 7
dt2  m (2)
v ’ . 282“‘(75737) ’ . . ’
Ibaze vyraz na pravej strane ¢ 52 sa tyka nie jedného bodu x ale

troch infinitezimdalne blizkych bodov {(z — A), z, (x + A) } Druhd derivacia
,Citi“ zakrivenie grafu funkcie. Na to potrebuje poznat hodnotu funkcie v
troch infinitezimalne blizkych bodoch (kym prva derivacia, ktora ,meria“
strmost dotycnice potrebuje hodnoty funkcie v dvoch infinitezimalne
blizkych bodoch). Vidno to z pévodne diskrétneho vyrazu

—k(u(t,x) —u(t,z — A)) — k(u(t,x) —u(t,z + A))
Rovnic (#) je teda spojite nekonecCne vela a kazda z nich ,citi” aj
predchadzajucu rovnicu aj nasledujucu rovnicu. Nemozeme ich riesit
jednu po druhej, riesime ich ako ,jednu parcialnu diferencialnu rovnicu®
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Predstierajme teda, ze nevieme, Ze sa tyC sklada z Castic a nau€me sa
robit fyziku tyce ako osobitného druhu fyzikalneho objektu. Vola sa to
"efektivna tedria" alebo efektivny pristup.

Efektivne tedrie pouzivame vlastne denne, len si to neuvedomujeme.
Hovorime, ze z vodovodu tecie "voda", ako keby "voda" bol osobitny
fyzikalny systém (objekt). V skutocnosti nic také ako "voda" vlastne
neexistuje. Z vodovodu tecie kopa protonov, neutronov a elektronov.
Ale keby sme chceli stavat priehradu a tecenie "vody" chceli popisovat
ako presuvanie protonov, elektronov a neutronov, asi by sme sa zblaznili.
Namiesto toho pouzivame efektivny pojem "voda" a popisujeme jej
vlastnosti pomocou pojmov ako "hustota” alebo "viskozita". 32



77777 77777

Takze budeme skumat tyc v priblizeni efektivnej tedrie, povazujtc ju za
jednorozmerné kontinuum

Ako s kazdym fyzikalnym systémom, musime sa naucit

» ako sa popise okamzity stav systému

* ako sa predpoveda buducnost, teda ¢asovy vyvoj stavov

Stav nasho jednorozmerného kontinua v istom okamihu pozname ak
zadame funkciu deformacie (posunutia kazdého bodu tyce)
u(x) pre z € (0,L) pricom u(0)=wu(L)=0

a eSte aj jej prvu casovu derivaciu v uvazovanom okamihu

Ou(x)
5 pre z € (0, L)

Ze treba zadavat aj ¢asovu derivaciu uvidime z toho, Ze pohybova rovnica je
druhého radu podobne ako Newtonova. 33




napiste pohybové rovnice retiazky oscilatorov

aku rovnicu dostaneme z rovnic retiazky v spojitej limite

napiste vinovu rovnicu

8o musime zadat, aby sme zadali okamzity stav pozdizne kmitajucej tyce



Hladame rieSenia vinovej rovnice

Pouceni prikladom dvoch viazanych oscilatorov hfadame najprv Specialne riesenia,
normalne maody. Mali by mat takéto vlastnosti

* normalne maddy su monofrekvencné

« normalne médy su riedenia, takZe spifiaju okrajové podmienky

* normalne mady su stacionarne

* normalne maddy tvoria uplny systém, t.j. ze hocijaké iné riesenie sa
da napisat ako ich superpozicia

35



O%u(t, ) o 0%u(t, x)
L =¢ 2 s okrajovou podmienkou u(¢,0) = u(¢t,L) =0
502 53 j p (t,0) = u(t, L)
Hladajme monofrekvencné riesenia v tvare v tvare ( zatial nedbame na

okrajové podmienky):

u(t, z) = exp(iwt)w(x)

Dosadime do vinovej rovnice:

2
—w? exp(iwt)w(z) = ¢ exp(iwt) %w(m)
0? w?
@w(x) = —C—Qw(m)

RieSenia tejto rovnice pozname:
w(x) = ACOS(EQE) + Bsin(g:c)
C C
Teraz zohladnime okrajové podmienky: w(0) = w(L) = 0. Zistime, Ze musi platit
B = 0 a ze w nem0Oze byt hocijake, ale iba a niektore Cislo z diskretnej mnoziny

nimw
w?’b = C——
L 36




Zistili sme, ze existuje cela mnozina monofrekvencnych rieSeni, su to

un(t, ) = Cexp(iw,t) sin(k,x)
n nim

kde Wpn = CT kn = CT

Tieto riesenie su zatial napisané ako komplexné, my, samozrejme potrebujeme
realne, takze monofrekvencné realne rieSenia budeme pisat’ ako

un(t,x) = (Acos(wpt) + Bsin(wyt)) sin(k,x)

nm nm
Wy, = C— k, = c—

L L

VSeobecné rieSenie vinovej rovnice, spifiajuce okrajové podmienky potom bude

u(t,z) =Y (A cos(wpt) + By sin(wyt)) sin(kpz)
kde A,, B,, su konstanty, ktoré treba najst tak, aby boli splnené aj poCiatocné
podmienky

37



Tu je video experimentu demonstrujuce ako mozno presdvanim
prstov pozdlz tyce vzbudit pozdlzne deformacie, ktorych ¢asovy
Vyvoj sa potom prejavi ako zvuk.

JINE

VsSimnite si koniec videa. Plastovy pohar fungujuci ako rezonator,
nezosilni zvuk tyCe, ak je k tyci prilozeny priecne, ale zosilni zvuk pri
pozdiznom prilozeni. To dokazuje, Ze zvukové viny $iriace sa v ty¢i su
pozdizne. 38



Vinova rovnica: ako predpovedame buducnost
O*u(t,z)  ,0%u(t,x)

Ot? — C T ox2
Mame zadany stav v okamihu t=0, teda pozname funkciu deformacie
(posunutia kazdého bodu tyce)
U(z) = u(t,z)|,_, pre € (0,L) pricom U(0)=U(L)=0

a este aj jej prvu casovu derivaciu v uvazovanom okamihu

t
V(z) = 3“gt’ D) pre z€(0,L) pricom V(0) = V(L) =0
, =0
Ulohou je ndjst funkciu :
u(t, x)

Pre (vSetky) neskorsie Casy t.
ou(t, x)
ot

Zavedme este prirodzené oznacenie v(t,z) =

Konce tyCe sa nehybu, teda ,navyse“ chceme, aby v kazdom Case platilo
u(t,z) =0 v(t,x) =0




Vinova rovnica: jednoduché numerické riesenie

Oou(t,z)
8t - ’U(t,.’E)
ou(t,z) 50%u(t,x)
ot T 2

Toto su rovnice, ktoré ukazuju ako sa u(t,x), v(t,x) budu po malych
krokoch posuvat dopredu v ¢ase, porovnaj s Newtonom

- W
do(t) 1
o = F)

Posunutie o krok 6 dopredu v ¢ase (druht derivaciu nahradim
jej pribliznym numerickym vycislenim):

u(t+0,2) = wu(t,z)+9v(t,x)

v(t+6,2) = w(t,x)+46 02$ (u(t, r—A)—2u(t,z) +u(t,z + A))

Pri numerickom rieSeni A nebude infinitezimalne, bude to maly krok v x.



Mame teda napad, ako sa posuvat dopredu po malych Casovych krokoch.

Diskretizujeme usecku (0,L) na vela malych intervalov A a budeme vycCislovat
posunutia a rychlosti len v diskrétnych bodoch

LC@:ZA

Zacneme tak, Zze pozname v Case t = 0 hodnoty posunuti a rychlosti

u(z;), v(zi)
z pociatoénych podmienok a potom sa posunieme o maly krok v Case
u(lt+6,x) = wu(t,z)+ 06 v(t, x)

v(t+6,z) = ov(t,z)+46 czé (u(t, r—A)—2u(t,x) +u(t,z + A))

Ukazeme si program pre jednoduché numericke rieSenie v Pythone. PoCiatocné
posunutia a rychlosti zvolime v tvare
. i
u(x;) = Slﬂ(zﬂ%'); v(z;) =0
Tento konkrétny pociatoCnych podmienok nie je pre numericke rieSenie nijako
délezity, motivacia pre taku volbu sa ukaze, az budeme rieSit vinovu rovnicu
analyticky.
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from pylab import *

npoints=100; #number of points in x is npoints+l
L=1.

c2=1. #sound velocity squared
deltax=L/npoints # step in x

deltat=0.01 # step in time

x=empty (npoints+l) #coordinates

u=empty (npoints+l) #currrent displacements

WO o =] gy LN L [N

v=empty (npoints+l) #current wvelocities
newiu=empty (npoints+1) #new displacements

(S
oo

newv=empty (npoints+l) #new velocities
Hfor i in range (npoints+l):

[
Lo

®x[i]l=i*deltax
ulil=sin(pi*x[i]/L) #initial displacements

e
e

v[i]=0. #initialk wvelocities

j in range{100000): #make 100000 time steps

newu[0]=0. #left boundary condition for displacement
newv[0]=0. #left boundary condition for wvelocity

[
Ww oo - o

newu[npoints]=0. #right boundary condition for displacement

[
[=

newv[npoints]=0. #right boundary condition for wvelocity

[3%]
ot

for i in range(l,npoints): #now new values for inside points

[
[S%]

newu[i]=ul[i]+v[i] *deltat
newv[i]:v[i]+c2*{u[i—1]—2.*u[i]+u[i+1])*deltad

R
=

for i in range(l,npoints): #make current values from new values

[§e]
L

ulil=newul[i]
; v[il=newv[i]
if (7 % 1000) ==0:
é print(u[50]) #prints th displacement of the midle point each 1000 time steps
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Jednoduché numerickeé riesenie: program

for 7 in range(100000) #make 100000 time steps
newu [0]=0. #left boundary condition for displacement
newv[0]=0. #left boundary condition for veloclty
newu [npoints]=0. |#right boundary condition for displacement
newv [npoints]=0. |#right boundary condition for velocity
for i in range(l,npolnts): #now nNew values for 1nside POLNLS
T newu[il=ul[i]l+v[i] *deltat

newv[i]=v[i]+c2*{u[i—1]—E.*u[i]+u[i+1]}*deltaﬂ

u(t+6,xz) = wu(t,z)+ 06 v(t, x)
v(t+0,z) = w(t,x)+0 (32% (u(t, r—A)—2u(t,z) + u(t,x + A))

VSimnite si, preCo musime ,,opracovat® hranicné body osobitne!

Posuvanie v Case vyzaduje, aby kazdy posuvany bod mal lavého aj pravého
suseda, a to hrani¢né body nemaju. Preto hranicné body nevieme posuvat v Case
podla toho, ako to vyzaduje pohybova parcialna diferencialna rovnica. Preto
potrebujeme definovat’ hranicné podmienky v kazdom case.



Zapamatajte si !

Pre fixovanie jednoznacného rieSenia parcialnej diferencialnej rovnice (a teda pre
predpovedanie buducnosti) je treba okrem tej diferencialnej rovnice definovat’
aj okrajoveé podmienky. Dévod sme videli pri pokuse o numericke rieSenie:
okrajové body nemaju vsetkych potrenych susedov, preto diferencialna rovnica
samotna nespecifikuje, ¢o s tymi bodmi urobit.

Pohybova parcialna diferencialna rovnica sa ,odvodzuje” pre skumany systém
fyzikalnou analyzou. Okrajové podmienky treba stanovit’ osobitnou rovnako
starostlivou fyzikalnou analyzou problému. Na to sa Casto zabuda. Fyzik je
stastny, ze sa mu ,podarilo odvodit” pohybovu rovnicu a v navale radosti zabudne,
ze bez okrajovych podmienok je mu nanic.

My sme v nasom probleme kmitajucej tyCe mali také jednoduché okrajove
podmienky, ze sme si takmer ani nevsimli, ze nejaké podmienky vyrabame.
Uvazovali sme ty€ ,votknutu“ medzi dva mury, a teda bolo jasné, Ze ,konce tyCe sa
nehybu®. Bolo trivialitou zapisat tie podmienky matematicky

u(t,z) =0 v(t,z) =0

Velmi Casto analyza a odvodenie okrajovych podmienok da viac roboty ako
odvodenie samotnej pohybovej rovnice.



Teraz budeme vinovu rovnicu riesit analyticky. Pomocou Fourierovho radu.

Matematicka vsuvka: Fourierov rozvoj

Veta: Kazdu "slusnd" funkciu U(x), definovanu na intervale (0, L) ktora
spifa okrajové podmienky U(0) = U(L) = 0 mozno vyjadrit v tvare
nekonecného Fourierovho radu

U(x) = Z Cn Sin(WL—n:U)

Pre Fourierove sinsusovky plati

L if
/ Sin(ﬂaﬁ) Sin(@az)dm = {O ifm 7
0

L L % ifm=n

preto mozno pre zadanu funkciu U(x) koeficienty c,, vyjadrit v tvare

n

9 L
Cn = E/O Ul(x) sm(fm)da:



Vinova rovnica: analytické riesenie

O*u(t,z)  ,0%u(t,x)

912 =cC g2 s okrajovou podmienkou wu(t,0) = u(t,L) =0
Genialny Fourierov napad: hladajme riesenie v tvare
— ™n
t,x) = () sin(—
u(t, ) nz::lc (t) sin( 7 T)

Po dosadem’ do vInovej rovnice dostaneme

_ = m2n2c? . TN
Z ) sin( ) = — Z 73 Cn (¢) sm(fa:)
n=1 n=1

Porovnanim koeficientov na lavej a pravej strane dostaneme rovnice

En(t) = —w2cp(t), kde w, = e

Su to rovnice ako keby pre harmonické oscilatory



En(t) = —w2cp(t), kde w, = %

vseobecné rieSenie ma tvar
cn(t) = ay, cos(wnt) + by, sin(w,t)
teda vSeobecné riesenie vinovej rovnice na intervale (0, L) je

Z Ay, coS(wnt) + by sm(wnt))sin(%m), kde w, = e

Teraz musime najst koeficienty a,,, b,, tak, aby boli splnené
pociatocné podmienky




= i Qi sin(ﬂx
L
n=1
= Z Bn sin(l—na:
n=1
. L
ay = 5/0 Ul(x) Sin(w—;m)dm

L [t . TN
ﬁn:EfO V(w)sm(f:c)da:

™

Z (an cos(wpt) + by, Sln(wnt))sin(f:v), kde w, = —
n=1

mnc

Staci si uvedomit, Zze zadané funkcie U(x), V (x) tiez m6Zzeme vyjadrit v
tvare Fourierovho radu
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u(t, 2) = 3 (an cos(wnt) + by sin(wt)) sin(Fa), kde w, = T

n=1

Z — Wy, sin(wyt) 4+ byw, cos(wpt)) sin(%az)

n=1
— ; Oy Sin(%x) Viz) = ngl B, Sin(l—naz

a potom uz lahko vyjadrime rieSenie vinovej rovnice so zadanymi
okrajovymi a pocCiatocnymi podmienkami ako

o0

1 ™ TNC
u(t, x) nE_l(oz cos(wpt) + wnﬁ sin(wyt)) sin( 7 ) e w 7
~ \4 7 A4 . ﬂ-n
Standardne sa eSte zavadza oznacenie k, = T wy, = cky,

takze dostaneme

- 1
Z oy, cos(wpt) + — By, sin(w,t)) sin(k,x)
n=1

Wn
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Ako vyzera Fourierov rozvoj funkcie na Usecke dizky L, ktora ma na
konci usecky nulové hodnoty

Integral zo sucCinu Fourierovych sinusoviek na usecCke

Ako sa najdu koeficient rozvoja funkcie do sinusoviek na usecCke

Ako vyzeraju frekvencie normalnych modov vinovej rovnice na usecCke



VInova rovnica: charakter rieseni

Vysetrime vlastnosti najjednoduchsieho riesenia

u(t, r) = aq cos(wit)sin(kix)

n[a):= Animate [Flot [Sin[omegat] Sin[kx], {x, 0, L}, PlotRange — {-1., 1.1}],
{t, 0, 10}]
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Animate[Plot [Sin[omegad ] Sin[k3 =], {x, 0, L}, PlotRange — {-1., 1.}],
{t, 0, 10}]
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Animate[Plot [Sin[omegaé t] Sin[k6 x], {x, 0, L}, PlotRange — {-1.
{t,0,10}]
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Pozor, ty¢ nekmita v prieCcnom smere, ostava stale rovna. Graf ukazuje

velkost posunutia v pozdlZznom smere miesta so suradnicou x v

rozlicnych casoch
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Toto je animacia pozdiznych posunuti rezov tyce
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Video ukazuje, ze kazdy rez tyCe kmita ako oscilator, stale rovnakou
frekvenciou a amplitudou. Niektoré rezy tyce nekmitaju vobec, to su
takzvané uzly. RieSenie

u(t, z) = ay, cos(wyt) sin(k,x)

popisuje tzv. stacionarne kmity tycCe (stojatu vinu). Slovom stojaty
mame na mysli to, Ze po tyCi sa nepremiestnuje energia ani amplituda
oscilacii. VSimnime si, Ze stojata vina je monofrekvencna, vsetky body

kmitaju jednou a tou istou frekvenciou -



u(t,z) = a, cos(wyt) sin(k,z) k, = T Wn = ck,,
C 0 wEg= ¢ e t J mis&=]
56
7T 37 2L 6 2L
]{'1 = —, )\1 = 2L ko = A2 = T
3= 7, A3 = 5 ke = —, A3 = —
L L Y 3 §] L b/ 3 6
: ™n v . v . , ., :
Index n pri k. = — urcuje pocet priestorovych polperiéd kmitov,
suvis s vinovou dlzkou je 97
k, = —
An
27

An
WnAn 2T A A,
or T or T ¢ ma rozmer rychlosti !
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Ukazka nestacionarneho vinenia
Na videu je pohybujuca sa vina
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Ukazka nestacionarneho vinenia
Na videu je pohybujuca sa vina
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sin(f + ) — sin(f — )
i}

=]

cos 1 sin @ =
u(t,z) = cos(wit)sin(kix)

1
= 5 (sin(wit + k1z) — sin(wit + ki)

= %(sin(wl(t + 5—1%)) — sin(wq (t — %x)))

- %(sin(un(t + %)) — sin(wi (£ — %)))

Vsimnime si, ze plati

e (6 — ) = sl (5 e ) —

_— ~N

)

Posunutie bodu x v Case t Posunutie bodu x + ctvcaset+ 1

Bod vzdialenejsi vpravo o ¢t ma takeé isté posunutie v Case neskorsomo t
teda popisuje to vzruch (vinu) Siriacu sa zlava doprava rychlostou c.
Obdobne prva sinusovka popisuje vinenie Siriace sa sprava dolava.



u(t,z) = cos(wit)sin(kx)

— %(sin(wl(t + %)) — sin(wy (t — E)))

Fourierova stojata vina vznika teda superpoziciou dvoch postupnych
vin, jednej $iriacej sa zlava doprava a druhej $iriacej sa sprava dolava.
Tie postupné viny maju v tomto pripade velmi Specialny tvar, takze sa
poskladaju na stojatu vinu.

Pouzitim identit pre suciny trigonometrickych funkcii mozno
l'ubovolné riesenie vinovej rovnice napisat ako superpoziciu dvoch
postupnych vin, jednej $iriacej sa zlava doprava a druhej $iriacej sa
sprava dolava. Tie postupné viny ale vSeobecne nemaiju taky Specialny
tvar, aby sa poskladali na stojatu vinu. Spravidla sa poskladaju na
vinenie striedavo sa pohybujuce zlava doprava, po odraze od konca
sprava dolava a po dalsom odraze zase zlava doprava ... Videli sme to

na videu.



VInova rovnica vseobecne

O%u(t, x) _ 2 6%u(t, x)
ot? dx?

Majme lubovolnu funkciu jednej premennej

f(€)

a vyrobme z nej funkciu dvoch premennych t, x takto

flt—-)

C

Rovno vidim, ze takato funkcia splna vinovu rovnicu a
podobne ju splna aj funkcia

g(t+ %)

kde ¢g(£) je (ind) flubovolna funkcia jednej premenne;



Nemobzem si ale mysliet, Ze mnou hladanu funkciu deformdcie
u(t, )
budem pisat ako

ult,z) = f(t— =)

Lebo funkcia deformacie musi okrem vinovej funkcie spifiat aj
okrajové podmienky

u(t,0) =0, wu(t,L)=0, previetky casy t
Skusme ale hladat rieSenie v tvare

u(t,w) = f(t— =) +g(t+ =)

a najdime, aké podmienky musia spifiat (inak fubovolné)
funkcie f,g, aby boli identicky splnené okrajové podmienky



Dostaneme
u(t,0) = f(t) +g(t) =0

Takze funkcie f a g spolu suvisia takto
f=-g

mame teda
xZ X
ey = f- D) - fe+ D)
teraz podmienka = €

u(t, L) =0, pre vSetky casy t

u(t, L) = f(t — %) — ft+ %) =0 pre vSetky t

2L

Zjavne je treba pouZit periodicku funkciu s periédou T = o

napriklad o
£() = cos (—a)



Potom dostaneme

ut, ) = f(t— =) +g(t+ =) =

c c
2m x 2 x

= cos (E(t — —)) — cos (E(t + —)) —
ne € ne €

— QSiD(W—Znt) sin(%nx)

Vo vSeobecnosti mozeme pouzit [ubovolnu superpoziciu takych
rieSeni (v asovej zavislosti moze byt aj kosinus), takze dostavame
inou cestou to, Co uz pozname.



Zhrnme nase poznatky o vinovej rovnici
O*u(t,z)  ,0%u(t,x)

= C
Ot? o2
s okrajovymi podmienkami
u(t,0) =0, wu(t,L)=0, pre vetky casy t
VSeobecné riesenie mbozeme pisat v tvare superpozicie Specidlnych

stacionarnych rieseni
o0

™ mn

tz) =Y (a,cos(wnt) + by sin(w,t))sin(——=), kde w, = —
u(t, x) ;(a cos(wpt) + b, sin(w ))SIH(LZL‘) e w 7

Stacionarne riesenia su

* monofrekvencné

e tvoria uplny systém, teda kazdé rieSenie sa da pisat ako ich
superpozicia

e suU ,ortogonalne” takze plati

L if
/ sin(ﬂx) sin(@x)dac = {0 im 7 1
0

L L % ifm=n

tuto vlastnost vyuzivame pri hfadani koeficientov rozvoja z
pociatocnych podmienok



« ZapiSte vSeobecné riesenie vinovej rovnice na usecke (s nulovymi
okrajovymi podmienkami) ako superpoziciu stacionarnych kmitov
» Uvedte charakteristiky stacionarnych kmitov



Diskrétna retiazka oscilatorov

Po tom, ¢o sme sa potrapili so spojitou vinovou rovnicou, vratme sa k diskrétnej
retiazke oscilatorov

Uvazujme jednorozmerny systém /N —1 ¢astic rovnakej hmotnosti m navzajom
poprepajanych pruzinami rovnakej tuhosti £. Krajné castice nech si rovnakymi
pruzinami spojené s pevnymi stenami

k ke 4 k
é im] im2 imN=-1 E

NapiSeme teraz pohybové rovnice pre tento systém. Oznacéme vychylku i-tej
Castice z jej rovnovaznej polohy ako u;, pre ¢ = 1,2,...(N — 1). A zavedme
este pomocné konstanty ug = 0, u, = 0. Potom pohybové rovnice si (pre
i=1,2,..(N—1))

mu@ — —k(uz — ui_l) — k(uz — ui—i—l)

Je to systém n—1 navzajom viazanych linearnych diferencialnych rovnic druhého
radu pre N — 1 neznamych funkcif u;(?).



Spoijity pripad, ktory sme riesili bol limitou diskrétnej retiazky, takze skusime
predpokladat, ze rieSenia diskrétheho modelu budu v nie€om podobné na rieSenia
spojitého modelu. Skusme teda postupovat tak, ze najdeme najprv Specialne
monofrekvencné stacionarne rieSenia, ktoré su navyse faktorizované, teda vyzeraju
ako sucin funkcie €asu a funkcie priestorovej premennej, ktorej ulohu hra index i.

Priestorova Cast spojitych monofrekvencnych rieSeni boli sinusovky, takze skusime
cosi ako diskretizovave sinusovky. Hladajme teda Specialne rieSenia v tvare

2 U .
u?(;n)(t) = exp(—iwyt) sm(wz) pre 1 =20,1,2,....,. N
Poznamenajme ze pouzivanie komplexnych ¢isel je len pomocny trik, aby sme
nemuseli pouzivat privela goniometrickych vztahov, skutoéné redlne fyzikalne
rieSenia skonstruujeme nakoniec z komplexnych funkcii vhodnymi linearnymi
kombinaciami.



muz = —k(u@ — ui—l) — k(uz — ’UJ@'_|_1)
muz = —QIC’U/@ == k(ui_l E u@'_|_1)

VyskuSame teda rieSenie v tvare (komplexnu jednotku piSeme ako 5, aby sa to
neplietlo s indexom i.

ui-”) (t) = eXp(—%wnt) sin(%i)
Po dosadeni do sustavy rovnic dostaneme
_mw?l Sin(%i) = Sin(%z’) +
—I—k(sin(%(i — 1))+ sin(%(i +1))
—muwlsin(=zi) = —2ksin(—i) +
+2k sin(%'i) COS(%)
k ™
w2 = QE(I — COS(W))

Teda navrhnuty tvar je naozaj rieSenim, ak w,, volime podla prave odvodeného
vztahu.



Nasli sme teda rieSenia

¢ . N7, 2 k ™m
u (t) = exp(—iwpt) sin(—1); w2 =2—(1 — cos(—
P (t) = exp(—iwat) sin(=1); wp = 2~ (1 = cos(5-))
Pre spojity pripad sme potrebovali takéto rieSenia pre lubovolné celé Cislo n, teda bolo
nekonecne vela takychto Specialnych rieseni.

Vznika otazka, Ci aj pre diskrétnu retiazku oscilatorov budeme vyuzivat najdené
Specialne rieSenia pre lubovolné prirodzené Cislo n, teda nekoneCne vela Specialnych
rieSeni. NavySe sme dostali vyjadrenie pre kvadraty frekvencii, otazka je, ¢i budeme
potrebovat’ aj ,zaporné omegy".

Tieto otazky si zodpovieme, ked' si dobre uvedomime, naco tieto Specialne rieSenia
potrebujeme.

Potrebujeme ich na predpovedanie buducnosti. Pri zadanych pociatoCnych

podmienkach
wi(t = 0) = Uy; w;(t =0) =V
chceme prislusne rieSenie pisat ako,

ui(t) =Re Y (an + by )ul™ (2)

Zatial nevieme, po aké velké n pobezi ta suma.



nim .

u;(0) = Re Z(an — %bn)urgn)(O) = Re Z(an + 1by,)) sin(ﬁz)

n=1 n=1

nim

1;(0) = Re Z(an + %bn)ug”’)([)) — Re Z(an + 2b,) ) (—iwy,) sin(wz)

N
n
u; (0) = T; A, sm(wz) — (U}
N nm
1;(0) = nz::lbnwn sm(wz) =V

Namiesto otaznika sme ako hornu hranicu v sume pisali zatial nezname &islo N.
Poznamenajme, ze index i v tychto rovniciach prebieha hodnoty 1,2,3,... (N — 1).

3 ke ke k
i iml im2 imH=-1 E




Mame teda 2(N — 1) rovnic o 2N neznamych a,,, b,,. Rovnice pre a,, a b,, su ale
nezavislé, takze mame dve sady rovnic. Prva je (N — 1) rovnic o N neznamych
a,, druha sada je (N — 1) rovnic o N neznamych b,,.

Su to systémy linearnych rovnic s pravou stranou. Koeficienty pri neznamych su
v oboch sadach rovnake, su to Cisla
™ .

Ay = Sin(wz)

N
E Ainan — U?,
n=1

Skusme si tipnut, ako to celé dopadne. Vo fyzike oCakavame jednoznacnu
predpoved buducnosti, teda jednoznacné rieSenie pre koeficienty a,,.
Najjednoduchsie by to bolo tak, Ze N = N, teda rovnaky pocet rovnic ako
neznamych, pricom, aby to fungovalo, tie rovnice musia byt nezavislé.

Takze prva sada rovnic znie



Velmi sa to vSetko podoba na spoijity pripad, kde sme robili Fourierove rozvoje a
tam kluCom k tomu, ze to bolo fahke, bol vztah ortogonality

L if
/ Sin(ﬂx) sm(mg;)da: — {O ifm #
0

L L % ifm=mn

Integral je suma infinitezimalnych malych Cisel. Skusme si tipnut, ze v
diskrétnom pripade by sa to mohlo modifikovat na diskrétnu sumu

i\f:sin(@i) Sin(@i) _J0 itm#n
— N N7 |7 ifm=n

al , 7rm, 1 & m(n—m) . m(n+m).
Z_%Slﬂ ) sin Nl)ZQ;(COS( (N )z)—cos( (N )z)):?

Nevediac ako dalej, zaCal som na Wikipédii, kde som nasiel elegantnu

Lagrangeovu trigonometricku identitu
N

1 sin(N +1)8
z cosnfl = —— + —
2 2sin =6

n=1

jej dokaz som si tiez vygoodglil



fS=14+z+22+---+ 2" then

S—28=Q1+z+22+---+2")—(z+ 22 +22 +---+2") =1 - "ML,

Tt

Therefore, S = 1_1;_21 with z = 1. Equating both expressions of S, we have

1— zn.+1
1+z+22 4+ +2"=—"——
1—=z

Substitute z = eiﬂ, with 0 < 8 < 2, into the expression, and we get

1 — E{n+1]i9

1— e

1+e? +e® .. 4 em =

The real component of the left side is 1 + cos 8 + cos 28 + - - - + cosnf. For the right side, the real component is

(skipping a few steps on this one, but it is)

. (2n+1)8
51 5
8

2sin 3

=+
2

If we equate the real components from both sides, we get

(2n+1)8
7]
g

251_115

1
1+ cosf+cos280+---+ cosnb = - +

Mudreho toto malo napadnut hned, ze suma tych kosinusov je v
komplexnych Cislach geometricka postupnost! Eulerova formula je sila!



Vratiac sa k naSmu problému

N N
1
E sin(—==1) sin(—— Ty = =5 g (COS )z) — cos(w(n; m)z)) =7
1=0 1=0
dostaneme o
Z st ein sz) 0 it m#n
= N Nl ifm=n

N o N
Z ay sin(—1i) = U; Z b, Wwn, Sm(ﬁi) =V
n=0 n=0
N 9 N
0 o nmw
n = 5 Z U; SID(WZ) o (N —1) ; sin(——1)




K fubovolnym pociatoCnym podmienkam sme teda nasli rieSenie, Cim sme
nepriamo dostali odpoved na otazky, ktoré sme sformulovali takto:

Vznika otazka, Ci aj pre diskrétnu retiazku oscilatorov budeme vyuzivat najdené
Specialne riesenia pre lubovolné prirodzené cislo n, teda nekonecne vela
Specialnych rieseni. Navyse sme dostali vyjadrenie pre kvadraty frekvencii, otazka je,
Ci budeme potrebovat aj ,zaporné omegy".

Na najdenie rieSenia nam stacilo N — 1 Specialnych rieSeni. To znamena, ze tie
rieSenia tvoria uplny systém a vSetky ostatné Specialne rieSenia, ktoré sme nasli nie
suU uz nezavislé, daju sa vyjadrit pomocou prvych N — 1 Specialnych rieSeni. Ako to
vieme? Nuz, su to rieSenia, zodpovedaju im nejaké pocCiatocné podmienky a teda
vieme ich zostavit pomocou prvych N — 1 rieSeni. Tento ,,dokaz" nebol matematicky,
ale fyzikalny. Viera v predpovedatelnost sveta zo znalosti poCiatocného stavu Ziada
jednoznacnost rieSenia pohybovych rovnic pri urcitych poCiatocnych podmienkach.
Je na matematikoch, aby dokéazali, Ze Newtonove rovnice spifiaju takii podmienku
jednoznacnosti. Fyzikalni prvolezci sa musia starat’ o matematicky dokaz
jednoznaénosti. My, ktori lezieme uz za nimi sme uverili, Zze vyty€ena cesta je
preverena a mézeme fyzikalne technolégie pouzivat, zatict' fyzikalnu skobu a
zverit’ sa jej. Keby to nahodou s nami spadlo, znamena to, ze fyzikalna cesta
potrebuje korekcie. Parkrat to v historii spadlo a novi genialni prvolezci nasli
lepsSie skoby, doplnili napriklad Newtonovu mechaniku o kvantovu mechaniku
a tedriu relativity. Staré skoby sme nezahodili, len upresnili v akych skalach ich
mozno s doverou pouzivat’ a v akych skalach treba nové skoby.



Sucasne vidime, Ze nepotrebujeme ani rieSenia so ,zapornymi omegami®.
Lubovolné pociatocné podmienky sme dokazali spinit len pomocou rieseni s
kladnymi omegami, teda rieSenia so zapornymi omegami su vyjadritefné
pomocou rieseni skladnymi omegami.

VsSetky tieto poznamky vyzaduju poriadne premyslenie. Ked ich Citate a
rozumiete po slovensky, to este neznamena, Ze aj chapete.

Vari hlavnou ulohou prvej fyzikalnej prednasky magisterského kuru je
»pochopit, co to znamena pochopit’. Nepodcenujte to. Odmenou je
radost’ z pochopenia.



Latka ako kontinuum



Objekty okolo nas su spravidla ,,latkovej povahy*.

Co presne nazyvame ,latka“ nie je dobre definované. V slovenskej terminoldgii
pretrvavaju zvyklosti zavedené niekedy v ramci ideologického ,newspeaku®, ked sa
hovorilo, ze fyzikalne objekty su vo vSeobecnosti ,hmotnej povahy®, kde slovo ,hmota“
sa vymedzovalo ako oznacenie pre ,objektivnu existenciu® v protiklade k ,vedomiu®.
Slovo latka sa potom pouziva(lo) na znaCenie Cohosi uchopitelného, viditelného,.... v
protiklade napriklad k ,fyzikalnemu pofu® (napriklad elektromagnetickému).

V anglickej terminoldgii sa pouziva jeden spolo¢ny pojem ,matter” a to aj vo vysSie
uvedenom vyzname hmota (ako filozoficka kategoria) aj ako latka.

Pozrite si wikipédiu, tak slovensku ako aj anglicku verziu a troSku sa oboznamte s
celym tym zmatkom. VObec to nie je pre ,chapanie fyziky“ potrebné: terminologicki

v v

o tom pocut, lebo sa s tym urCite stretnete. Tak aby ste to nebrali vazne.

Rozdiel medzi latkou a ne-latkou mi pripomina probléem, ktori sme riesili s detmi v
skoblke, ked mali vysvetlit rozdiel medzi ovocim a zeleninou. Ja som to urcite
nedokazal a, popravde, bolo mi to jedno. Hoci v zivote su tie dva pojmy niekedy aj
uzitocné. Podobne stolicka je prakticky dobry pojem, ale neviem rigorézne vysvetlit, Co
vSetko sa nazyva alebo naopak nenazyva stoliCka.



Latka ako efektivny objekt

Dnes fyzika hodne pokrocCila v porovnhané so zaCiatkom 19. storocia, ked' ,zverinec”
fundamentalne réznych fyzikalnych objektov bol velmi bohaty. Objekty ako ,voda“,
,2wzduch®, ,med” boli osobitné ,zvierata“, ktoré spolu nijako nesuvisleli.

Ulohou fyziky ako prirodopisu bolo kvantitativne popisat vlastnosti latok ako su
(hmotnostna) hustota, teplotna roztaznost, moduly pruznosti, tvrdost, koeficient
trenia, farba (spektralna pohltivost svetla) a podobne. Dalej rozhodnut, ako sa
zadava ,stav v danom okamihu®. Pre kus medi to méze byt napriklad tvar objektu v
nedeformovanom stave, miera deformacie v kazdom bode, rychlost zmeny tejto
deformacie, teplota.

V druhom koku pristupuje ,prorocka uloha fyziky“: uloha najst (pre dany pripad
interakcie s vonkajsim prostredim) pohybové rovnice a potom sa naucit’ ich riesit.

Toto boli nezavislé ulohy pre kazdu latku.

V 19 storoCi objavili chemici atdmy a molekuly a pohlad na fyzikalne zverinec sa
razom zmenil. Fundamentalne zvierata boli atomy a vzniklo presvedcCenie, ze ak
fyzikalne zvladneme prirodopis i predpovedanie buducnosti pre atomy, budeme
vediet vypocitat i vlastnosti vSetkych latok.

Latky sa stali iba ,efektivnymi kolektivnymi zvieratami®. Pre jednoduchost hovorime
vzduch, ale vieme, ze ide o mnozstvo istych molekul.



Latka ako efektivny objekt

Tuhu latku a jej vlastnosti teda vnimame ako efektivny popis objektu, ktory
mikroskopicky vyzera nejako takto

Reakciu tuhej latky na vonkajsi silovy podnet potom chapeme ako efektivny
vyraz pre reakciu mriezky atbmov na ten silovy podnet, nejako takto




Latka ako efektivny objekt

V praxi ale Casto s vodou pracujeme stale akoby s osobitnym ,zvieratom® voda.
Ked' inzinier pri navrhu priehrady pocita prudenie vody v nej, nevnima vec ako
pohyb molekul vody ale ako zmenu stavu zvierata ,voda“. PiSe rovnice ,teCenia
vody“, ktoré v sebe obsahuju vSelijaké mystické ,latkové konStanty” ako hustota,
viskozita, koeficient stlacCitelnosti. V principe by mohol pisat rovnice pre vSetky
molekuly vody. Tie rovnice by obsahovali zakon silového pésobenia medzi
molekulami vody. Ibaze pohybovych rovnic by bolo radovo 1036, lebo tolko je
molekul vody v takej priehrade. Musel by pouzit’ techniku Statistickej fyziky a ta by
mu dala v istom priblizeni zasa len efektivne rovnice te€enia nového zvierata
,2voda“.

NavySe ,molekula vody“ a silové pésobenie medzi molekulami su iba efektivne
pojmy zjednodusujuce popis spravania jadier a elektronov pomocou kvantove;
mechaniky.

A ani to nie je koniec. Jadro je len efektivny pojem pre systém protonov e
neutronov, ktory treba popisat pomocou jadrovej fyziky.

A ani to nie je koniec, lebo protdon a neutron su len efektivne pojmy pre systémy
kvarkov. Nevieme, Ci toto je uz koniec, alebo najdeme aj dalsi level.



Latka ako efektivny objekt

Porozumenie okolitému svetu sa nam teda hierarchizuje na viacero efektivnych
urovni, pricom na istej urovni spravidla vystaCime s efektivnhou tedriou danej
urovne.

Nie vzdy a nie celkom. Efektivny popis atomu vodika je kvantova mechanika a
Coulombov zakon pésobenie dvoch efektivnych bodovych Castic (protonu a
elektronu na seba). Ale keby sme energetické hladiny atomu vodika chceli ratat
prilis presne (na mnoho desatinnych miest), musime poznat rozmery proténu, a
keby sme aj tie chceli vediet velmi presne, nevystaCime s efektivnym pojmom
,proton” ale potrebovali by sme tedriu Struktury protonu nizSej (kvarkovej) urovne.

V praxi teda obvykle vystaCime pracovat s efektivnymi tedriami, ale postup
poznania fyziky nam umozni vnimat napriklad ,mystické konstanty“ v efektivnych
rovniciach ako vypocitatelné v teodrii hibsej urovne. Tak napriklad v tretom ro¢niku
sa naucCime vypocitat viskozitu vzduchu vypoctom na molekulovej urovni.

KrCovité snazenie sa o vypocet z najhlbsich principov nemusi byt vzdy dobry
napad. Podobne ako prvoprincipovy kompliment typu ,SleCna, vy ste najkrajSia hréa
kvarkov a elektronov, aku som doteraz poznal!“ nemusi vyvolat pozitivnu reakciu.



Pruznost’ — efektivny popis deformacie tuhej

latky

reakcia podlozky, nosnik
stoji, teda reakcia podlozky
musi byt rovnhako velka ako
zhora pbsobiaca sila
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+ predpoklad linearity (linearny vztah medzi silou a deformaciou sa vola
Hookov zakon):

A
EO(F

relativna deformacia je umerna sile




T,

d, F, S— A
d, F, 25 = A/2

Relativna deformacia je umerna napatiu (sila na plochu).

o Vtomto pripade je sila kolma na uvazovanu plochu, takému
napatiu sa hovori tlak. Keby sila mala opacny smer, hovorili
by sme tah.

A _F
S

9



A = T =
] ]

Na tom to obrazku je priklad namahania nosnika tahom. Napatie sa prenasa
dovnutra nosnika. Ak si ho predstavime ako zlozeny z dvoch Casti, potom celkova
sila na hornu Cast musi byt nulova, lebo objekt stoji, preto sa vnutorné sily ustalia
tak, ze spodna Cast pdsobi na hornu rovhakym tahom ako je vonkajsi tah na hornu
podstavu. Podla akcie a reakcie preto aj horna Cast musi pdsobit na spodnu
rovnakym tahom, teda takym istym ako je tah na hornu podstavu. Napatie sa teda v
latke prenasa, na myslenu plochu vnutri nosnika posobi rovnaké napatie ako je
vonkajsie napatie. 0
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Hovorit o napati na vnutornej ploche v nosniku nie je len teoreticka abstrakcia,
to napatie sa da naozaj merat vhodnym tenziometrom.
Tenziometer mbéze pracovat napriklad na baze piezoelektrického javu (ale aj na

inych principoch).

Ak piezoelektricky krystal umiestnime medzi dve kovové
platne akoby dosky kondenzatora a podrobime tlaku, na
doskach mézeme namerat napatie umerné tlakom vyvolane;
relativnej deformacii. Tenziometer teda vlastne meria
deformaciu ale ta je umerna mechanickému napatiu.

Na fotografii su komercné tenziometre. Taky tenziometer
mobzeme v principe umiestnit’ vnutri nejakého objektu,
napriklad zaliat do beténu a na vyvedenych vodiCoch merat
elektrické napatie a teda relativnhu lokalnu deformaciu Ci
mechanické napatie. 11



senzor napatia pred zaliatim do
zelezobetonovej konstrukcie

senzory napatia pred zaliatim do
experimentalneho useku dialnice

12



To, ze spominame moznost merania vnutorného napatia
ma dolezity vyznam. Ak chceme naozaj rozumiet’ pojmom,
ktoré sa uCime, je dobreé polozit' si vela kontrolnych otazok,
overit si, Ci naozaj rozumiem, Co tie pojmy znamenaju.

— Lo i ) B
O . Vazna otazke je takato: ako by som to meral?
@ 0 Hovorili sme, ze v zatazenom nosniku sa Siri napatie.
Overme si, ¢i rozumieme.
s 4
Tu je obrazok zatazeného nosnika a v nom
zamurované dva tenziometre tlaku
A v . . .
N e Co nameria tenziometer A a ¢o B?
Q

Tenziometer A nameria napatie ¢ = F/S.

B Tenziometer B nameria nulu. Na pl6sku,
ktoru predstavuje tenziometer B nepdsobi
ziadna sila na nu kolma. Toto je troSku
didakticky podvod. Napatie vo vodorovhom
smere je naozaj nulove, ale ako ho naozaj
merat si treba lepsie premysliet.

13




v tuhej latke

v kvapaline

Zapamatajme si rozdiel medzi pojmami ,tlakové napatie na nejakej ploche v tuhej
latke” a ,tlak v kvapaline". V kvapaline oba tenziometre nameraju rovnaku hodnotu
o = F/S. (Pascalov zakon!) Poriadne premyslenie toho, v om je rozdiel dvoch
situacii naznaCenych na obrazkoch je dost tazké, nebudeme sa tu do toho pustat.

14
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Relativha deformacia je umerna napatiu.

Konstanta umernosti v tomto vztahu je dblezita materialova konstanta, nazyva sa
Youngov modul pruznosti E (modul pruznosti v tlaku) a vo vztahu pre suvislost
relativnej deformacie a mechanického napatia vystupuje v tvare

o= Fe

15



T’" Pre namahanie tahom a prislusné relativne
predlzenie plati analogicky vztah

B F AL
—=0c=Fe=F—
[ L+Al S L
J V tomto vztahu vystupuje Youngov modul
v pruznosti v tahu a obvykle byva prakticky
la rovnaky ako modul pruznosti v tlaku.
=

VSetky vztahy sme pisali tak, ze relativhe deformacie i napatia v tlaku i tahu sme
povazovali za kladné veliCiny. V teoretickejSich pristupoch sa postupuje tak, ze
skratenie sa povaZuje za zaporné prediZenie a tah za zaporny tlak a vetky
definicie potom treba pisat starostlivejSie pre orientované plochy.



Poznamky o linearite

Vo fyzike sa Casto stretame s linearnymi zavislostami, z nich linearna teoéria
pruznosti a Ohmov zakon su asi najzname;jsie.

V oboch pripadoch ide o vzajomny suvis dvoch veliCin, Co vo vSeobecnosti je
vyjadritelné funkénou zavislostou.

Vo vSeobecnosti teda oCakavame nejaku funkénu zavislost medzi relativnou
deformaciou a mechanickym napatim. Pre dany material tu zavislost mézeme
experimentalne vySetrovat: experimentalna zavislost pre namahanie ocele tahom

je (trochu symbolicky), znazornena na obrazku.
povnost om  Zavislost teda nie je linearna v celej
experimentalnej oblasti. Na druhej strane v

Kuzu | dostato¢ne malej oblasti sa kazda funkcia da
T — | aproximovat' priamkou a teda zavislost je vzdy
S linearna pre dost’ malu oblast. To je trivialita. To
/f—]mearm (elastickd) oblast - .. . e . v . , y . ,
Co nie je trivialne, je, Zze niektoré zavislosti su

pre dost’ velku prakticky zaujimavu oblast’

,y,dostatocne linearne®. Az tak, ze sa to uci ako
,Zakon®.

napéti (F/5)

=

deformace (Ad/d)



Op mez lom
pevnosti

Pre mnohé latky je zavislost dostatoCne
o1 mez linearna takmer v celej oblasti pruznosti (to
Kuz | je oblast, v ramci ktorej sa latka vrati do

" oblast trvalé deformace | povodného tvaru ked sa vypne deformujuca
/—]ineémi (elastickd) oblast S| Ia) .

napéti (F/5)

=

deformace (Ad/d)

Youngov modul pruznosti v tahu a tlaku byva v podstate rovnaky, ale charakter
zavislosti mechanického napatia na relativnej deformacii méze byt za oblastou
pruznosti velmi iny pre tah a tlak. Typickym pripadom je betdn, ktory ma podstatne
inu hodnotu medze pevnosti pre tlak a tah. Beton dobre znasa namahanie tlakom a;
pri vysokych hodnotach tlaku, ale ma malu hodnotu medze pevnosti v tahu. Betonove
konstrukcie sa preto konStruuju ako zelezobetonové: Zelezna vystuz je v betone na to,
aby odolavala namahaniu v tahu. Casto sa pouziva takzvany predpaty betén, ked
vystuz je podrobena tahu pred zabetonovanim. Taky betdn je namahany tlakom od
predpatej vystuze aj v ,nedeformovanom” stave. Deformacia, ktora by normalne

viedla uz k tahu vyvola len pokles namahy tlakom od zeleznej vystuze a betdn nie je
nikdy nhamahany na tah.



StruCne sa zmienime o dalSich druhoch deformacie a napati. Okrem tlaku a tahu
byvaju objekty Casto namahané na sSmyk, ked sila pésobi v rovine uvazovanej
plochy a nie kolmo na nu ako v pripade tahu alebo tlaku.

V tomto pripade hovorime o Smykovom alebo tangencialnom napati.
Konstanta umernosti ¢ sa vola modul pruznosti v Smyku.



Iny délezity sp6sob namahania je vSestranny tlak. NajlahSie sa realizuje tak, ze
objekt ponorime do kvapaliny, v ktorej podla Pascalovho zakona pdsobi tlak
vSetkymi smermi rovnako. VSestranny tlak vyvola zmenu objemu telesa.
Relativha deformacia je opat umerna vsestrannému tlaku p.

Konstanta umernosti K sa vola modul objemovej pruznosti.

Casto sa opakuje taka poucka, Ze ,kvapaliny st malo stladitelné®. Preto mozno
niekoho prekvapi, Ze modul objemovej pruznosti vody je 2,2.10° Pa, kym modul
objemovej pruznosti ocele typicky 16.101° Pa, takze ocel je ovela menej stladitelna
ako voda. To vyvolava otazku ak to, Ze ocel sa da dobre lisovat tlakom? Odpoved
je, ze pri lisovani sa nejedna o vSestranny ale jednostranny tlak a kym ocel sa v
smere tlaku zmrstuje, v kolmom smere sa roztahuje.



Deformacia v prieénom smere

T"

B Pri namahani tahom sa ty& predizi o AL, ale v

priecnom smere sa rozmer skrati o Ad. Relativhe
skratenie v prieCnom smere suvisi s relativnym

L L+AL predlZzenim v smere tahu pomocou Poissonovho
koeficientu (materialova konsStanta) v

—
‘ ‘ Ad AL
— — U
p l d L
Upozornime, ze v prie€nom smere sa sice tyC
d— Ad skrati, ale nie pod vplyvom nejaké,ho priecneho
tlaku. Vnutri tyCe je stale len pozdlzny tah o, ktory
by nameral tenziometer A, ale v prie€nom smere
nie je Ziaden tlak, tenziometer B nenameria nic.

s 4 Platiteda A g 1 |
— = V=0=V—=—
d E ES
| L Pri namahani tlakom sa pozdizne ty¢ skrati a
prie€ne predlzi, prislusné vzt'ahy su rovnakeé.

ﬂ
|




Budeme hlasovat’

Diera v dutom valci sa pri stlaceni

a) rozsiri
b) zuzi



V texte sme spomenuli niekolko materialovych konstant charakterizujucich
elasticitu: Youngov modul pruznosti v tahu a tlaku E, modul objemovej pruznosti
K, modul pruznosti v Smyku G, a Poissonov pomer v. Teoreticky sa pre linearnu
pruznost da dokazat, Ze homogénna izotropna latka ma len dva nezavislé
koeficienty pruznosti, medzi Styrmi uvedenymi teda platia nejaké vztahy, ako
ukazuje tabulka (tie vztahy sa neucte!, v pripade potreby si ich vyhladate
https://en.wikipedia.org/wiki/Bulk_modulus )

K = E = G = V=
(K. B) K E k-5 | ok
- . 9KG . 3K -2G
(K, G) K 3K+G G 2(354-:::_]
(K, v) K 3K(1 - 2v) 32‘("1:;2;’] v
Typické hodnoty
K [GPa] E [GPa] G [GPa] v

ocel 160 200 80 0,3
med’ 140 110 48 0,34
voda 2,2

porozmyslajte, preco pri vode neuvadzame E, G, v. 23


https://en.wikipedia.org/wiki/Bulk_modulus

Moduly pruznosti su parametre efektivnej teorie latky
ako kontinua.

Keby sme uplne poznali molekularnu strukturu latky a mali kvantovmechanicky
zratané energetické zmeny pri deformaciach Struktury, vedeli by sme vypocitat
hodnoty modulov pruznosti ,.z prvych principov®.



Hustota

Daldim déleZzitym parametrom je objemova hustota hmotnosti latky g, kratko
nazyvana len hustota.

Uvazujme nejaké latkové teleso v jeho vnutri v okoli bodu 7
maly (infinitezimalny) priestorovy objem dV. Hmotnost' latky
obsiahnutej v tom objeme oznacme dm. Potom hustotou latky v

bode 7 nazyvame hodnotu
. dm

Q(T):W

Zapis nie je celkom korektny, lebo by sa mohlo zdat, ze ide o
derivaciu nejakej funkcie m podla premennej V. Naozaj ide len
o podiel dvoch malych hodnét, aby sme mohli hovorit o
lokalnej hustote v danom bode a nie o priemernej hustote
telesa danej ako podiel celkovej hmotnosti a celkového
objemu. Ak latke je homogénna, potom hustota nezavisi
od polohy a je v celom telese rovnaka.

Z definicie je zrejmé, Ze jednotkou hustoty je kg m-3.



Predstavme si, ze pozname lokalnu hustotu hmotnosti ako funkciu
polohy o (7). Ako sa vypocita celkova hmotnost telesa?

OperacCny postup vyzera takto. Predstavime si, ze objem telesa je
vyplneny ,infinitezimalnymi“ kockami s malym objemom dV'.
Poloha kazdej kocky méze byt identifikovana napriklad polohou
[avého predného spodného vrcholu. Potom hmotnost celého

telesa je zjavne
m = Z o(7)dV
kocky

Problém pri vypoCte sumy mdzu robit' kocky, ktoré su pri hranici telesa, takze nie su
celé vnutri telesa. Ked su objemy kociek naozaj velmi malé, matematici vedia
dokazat, ze ak zapoCitame hmotnost celej kocky, hoci tr€i trochu von z telesa,
celkova chyba vypoctu bude zanedbatelna.

Cely vypoCet mé6zeme robit napriklad numericky na pocitaCi niekolkokrat, priCom
pri kazdom dalsom vypocCte zmensSime objem kazdej malej kocky a zvacsSime teda
ich poCet. Ked budeme sledovat’ Cisla, ktoré tak budeme postupne dostavat,
zistime, Ze sa blizia k nejakej konkrétnej hodnote, ktord budeme povazovat' za
vypocCitanu hmotnost’ telesa. Formalne ide o limitu takych sum a volame ju

,objemovym integralom” a znaCime
m= [ o(r)dV



m:/Q(F)dV

Integral, ktory sme napisali nie je apriérne nijakym ,opakom derivacie® je to suma
nekonecného poctu nekonecne malych Cisel.

Naznacili sme si, ako by sme taku sumu pocitali numericky. Niekedy sa nam méze
podarit’ vypocitat tu sumu aj analyticky. VyZaduje to istu invenciu ako transformovat’ tu
sumu na ,niekolko opakov derivacii®

Okrem objemovej hustoty hmotnosti sa Casto pouziva aj ploSna hustota hmotnosti pri
objektoch, ktoré su z praktického hladiska dvojrozmerné. Napriklad list papiera. Plosna
hustota kancelarskeho papiera byva 80 g m?. Celkova hmotnost ploSného objektu sa
rata tak, ze objekt ,vyStvorCekujeme® a zratame integral (dS je pl6Ska malinkého
Jinfinitezimalneho” Stvorca)

m = [ es(ds

Pouziva sa aj dizkova hustota hmotnosti pri objektoch, ktoré su z praktického hladiska
jednorozmerné. Napriklad drét. Celkova hmotnost jednorozmerného objektu sa rata
tak, Ze krivku popisujucu jeho tvar ,vyuseckujeme* a zratame integral (ds je dizka
jednej ,infinitezimalnej” usecCky na krivke)

m= [ o.(ris



Poznamenajme, ze fyzici v storoCiach, ked' ,kontinuum® bolo naozaj kontinuom,
mohli v principe vyhoviet matematikom a delit’ priestor, plochu alebo krivku na
,naozaj infinitezimalne” kocky, stvorCeky alebo usecKky.

Ale odkedy verime, ze nejake fyzikalne kontinuum je len ,efektivne zviera“ v
skutoCnosti zlozené z molekul, nemézeme s rozmermi delenia ,ist az do nuly*.
Efektivna tedria totiz straca zmysel pre velmi malé priestorové rozmery.

Ak by sme napriklad objemiky robili prilis malé, mohlo by sa stat, ze sa v nich
niekedy nachadza len jedna molekula a niekedy ani jedna. Pojem ,,objemova
hmotnostna hustota latky“ potom straca dobry zmysel. TakZze aplikacia
diferencialneho a integralneho poctu na ,fyzikalne kontinuum® je mozna iba ak pri
pozadovanej presnosti vystaCime s ,objemikmi“ tak malymi, Ze napriklad hustotu
latky v ramci jedného objemiku mozno uz povazovat za prakticky konstantnu, ale
objemik je pritom dost velky, aby stale eSte obsahoval velmi velky poCet molekul.



Tu je pre inSpiraciu jednoduchy program v Pythone ratajuci plochu polkruhu. Pri
ratani hmotnosti by bolo treba kazdu pl6Sku este vynasobit’ ploSnou hustotou.

AT T TN

5 [ o T 0 o Y = VR I % T

L | [0 O ]

from pylab import *
nx=200; #number of
ny=100; #number of
R =1. ]
deltax=2*R/nx;
deltay=R/ny;
area=0;

Sauares
sauares

# step in
#step in y

for 1 in range (nx+1l):
for 7 in range (ny+1l) :
¥x=-R+i*deltax:
y=J*deltay;

in x direction
in y direction

if(sgrt(x*x+vy*y)<R) :
area=area+deltax*deltay; #if sqguare inside semicircl

print (area)

#prints the area of the semicircl

should be pi/2

g then sum
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Hmotnostna hustota je parameter efektivnej tedrie latky
ako kontinua.

Ak by sme poznali molekularnu strukturu latky, mohli by sme hustotu latky vypocitat.
V skutoCnosti to nie je velmi zlozita uloha. Ako ukazku vypocitame hustotu

kuchynskej soli. Chemické zloZenie kuchynskej soli je NaCl.

Molekularna Struktura vyzera ako kockova mriezka.
Vo vrcholoch kociek su na striedaCku atomy Na a
Cl. Z rontgenovej Strukturnej analyzy vieme, ze

& C1 . , .
"1 @ | vzdialenost Na — Cl je 0,282 nm.
¥ & 0/.) ® Na' Atémova hmotnost Na je 22,99
Atomova hmotnost’ Cl je 35,45
(O ®
o -" o/.)

Mall

Jeden vrchol je spolocny 6smim kockam, takZze jednej kocke pripada 72z atomu Na a V%
atému ClI, takZe ,molekularna hmotnost jednej kocky o objeme d?3 je (22,99+35,45)/2 =
29,22 Jedna atbmova hmotnostna jednota zodpoveda 1g/(6,022.10%%) = 1,66.1024 g.
Jedna elementarna kocka soli ma teda hmotnost' 29,22 x 1,66.10-24 g =48,51. 10%*g a
objem (0,282 nm)3. To dava hustotu 2160 kg m=3. Experimentalna hodnota je 2165.
Rozdiel je dany zaokruhlovaniami v udajoch a vypoctoch.



Kontinuum: stav a pohybova rovnica

Po pripravnych pracach si teraz ukazeme, ako sa pracuje v ramci efektivnej teérie s
kontinuom — latkovym objektom.

Ukazka bude o kovovej tyCi votknutej medzi dve pevné steny vo vzdialenosti L od
seba.

DNNNN
77777

Pripomenme si slajd, aka je uloha fyziky:

Programové vyhlasenie fyziky

* Vybrat kusok sveta ako fyzikdlny systém
* Popisat okamZity stav toho systému

* Najst pohybové rovnice

* Predpovedat vyvoj stavu do buddcnosti




/
4

Prvou ulohou je popisat okamzity stav tycCe.

77777

To, Co chceme popisovat su zmeny stavu tyCe, priCom sa obmedzime na take
mechanické zmeny, ktoré ponechaju tyC rovnu, ale budeme vysSetrovat deformacie
materialu tyCe v pozdlznom smere.

/ ' R

= \

UvaZzujme myslenu plochu (prierez) tyée, ktora sa v zakladnom (kfudovom stave)
nachadza v polohe danej suradnicou x. Pri deformacii sa tento prierez posunie do
polohy so suradnicou x + u(x).

kfudovy stav
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deformovany stav
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Sucastou zadania stavu tyCe v istom okamihu bude teda zadat funkciu,

u(z)

udavajucu posunutie prierezu tyCe, ktory sa v kludovom stave nachadza v

mieste x.

OcCakavame, ze stav tyCe sa bude v Case menit, takze v istom okamihu t bude

stav zadany funkciou
u(t, x)

Pretoze ide o mechanicky problém a Newtonove rovnice su druhého radu,
oCakavame, ze pre uplné zadanie stavu tyCe je potrebné este zadat' aj
,rychlosti®, teda pre kazdy prierez rychlost, s ktorou sa jeho posunutie meni:

0

v(t,z) = —u(t, x)

ot

Zaver: deformacny stav tyCe je v kazdom okamihu zadany dvoma funkciami

u(tjgj) ’U(t,ﬂ?) =

0

ot

u(t, )




Dal3ou ulohou je najst pohybovu rovnicu pozdiZzne deformovatelnej tyce.

S o kludovy stav
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| deformovany stav
| |

Uvazujme maly objemovy element tyCe (oznaCeny Cerveno), ktory sa v kludovom
stave nachadza v intervale suradnic (x, x + dx). DiZka tohto objemového elementu
v klude je zjavne dx.
V deformovanom stave sa favy okraj uvazovaného elementu dostane do bodu x +
u(x) a pravy okraj do bodu x + dx + u(x + dx). Jeho diZka po deformécii teda
bude (x + dx + u(x + dx)) — (x + u(x)) = dx + u(x + dx) — u(x). Narast dizky
oproti pédvodnej dizke dx teda bude A(x) = u(x + dx) — u(x) a relativne prediZzenie
toho objemového elementu bude
A(x) u(lz+dr)—u(x) OJu(x)
e(2) dx dx Ox

derivaciu sme pisali ako parcialnu, aby sme zddéraznili, Ze momentalne sa sice
uvaha tyka iba istého Casového okamihu, ale vSeobecne u zavisi aj od Casu.




Len tak mimochodom: d& sa rozumiet, pre¢o relativne prediZenie v mieste x vyslo

takto: ( )_ 8u(:c)
)= ox

Kvalitativhe da. Keby posunutie u(x) nezaviselo na x, potom by sa lavy okraj a
pravy okraj kazdého elementu tyCe posuvali rovnako a vzdialenost medzi nimi by sa
pri posunuti nemenila, teda by nedoslo k prediZeniu alebo skrateniu. Vzdialenosti sa
deformuju, iba ked je nenulova derivacia, v prvom priblizeni teda deformacia je
umerna derivacii.

ESte zdbraznime, ze na rozdiel od nasho uvodného vykladu o pruznosti, tu sa uz
,2hrame so znamienkami®. e(x) méze byt kladné aj zaporné. Ak si pozorne
prezrieme odvodenie, zistime, Ze kladné ¢ zodpoveda prediZeniu objemového
elementu, zaporné skrateniu. Uvedomme si teraz, Co to znamena pre znamienko
deformacného napatia vnutri tyCe v mieste x.

Precitajte si nasledujuci slajd pozorne, aby ste sa nielen naucili naspamat’ ze
,toto sa odvodzuje takto“ ale naozaj odvodeniu rozumeli a vedeli presved¢it’
kolegu, ktory pripadne nerozumie, ze znamienka maju byt naozaj tak, ako sa
tam pisSe a nie naopak.



y oyt dx kl'udovy stav R
a | &_ L
r=0 | > eu(z+dr) v
e ,
ﬂ u(x ) | deformovany stav k
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ou(x)
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Predpokladajme, ze e(x) =
Ox

Znamena to, Ze erveny element sa prediZil, na mieste x je teda deformacia tahom.
Na prierez v mieste x teda Cerveny element taha predchadzajuci zeleny element,
podobne na mieste x + dx nasledujuci zeleny element taha Cerveny element.

Teda sila, ktora p6sobi z pravej strany na prierez v mieste x, je kladna a podobne aj
sila, ktora z pravej strany na prierez v mieste x + dx.

Napatie vnutri objektu v mieste x budeme definovat ako urCené silou, ktora posobi
sprava na prierez v mieste x, teda silou, ktorou poésobi nasledujuci element na
predchadzajuci element. V pripade (x) > 0 tato konvencia bude hovorit, Zze

o(x) > 0. Vztah medzi napatim a deformaciou je dany Hookovym zakonom
pomocou Youngovho modulu pruznosti

o(x) = Fe(x)



o(r) = Fe(x)
Skontrolujme eSte znamienka. Kladné znamienko deformacie znamena tah, teda
nasledujuci element musi tahat predchadzajuci, sila ma smer doprava v smere o0si x,
teda je kladna. Zaporné znamienko deformacie znamena tlak, nasledujuci element
musi tlaCit na predchadzajuci, sila ma smer proti osi x, teda je zaporna. Znamienka
deformacie a napatia teda maju byt rovnakeé, ako to hovori aj napisany vzorec.
NapiSeme teraz Newtonov pohybovy zakon pre Cerveny objemovy element

a:HHdw § Ak prierez tyce je S, Cerveny element pésobi na
} I R_ predchadzajuci silou o(x)S, teda nan posobi
u(x}l [<u(etde) p Zzlavasila —o(x)S. Sprava nan pbsobi sila od
2:. R nasledujiceho elementu o(x + dx)S.
do
Celkova sila pdsobiaca na éerv%\y(el)ementje teda o(z+dzr)S —o(z)S = a—xdaz
u(x
Ak pouzijeme vztahy €(z) = B o(z) = Ee(z), dostaneme pre celkovt
silu pésobiacu na Cerveny element
O%u(x)
ES dx
Ox2
. , . . , . 0“u(t, )
Hmotnost Cerveného element je oSdx a jeho zrychlenie je 5
Newtonova rovnica teda bude 92, (t.2) 82 ( )815
u(t, x
Sdx = 2 Sdx
€ ot? Ox?



O%u(t, ) Sy — E82u(t, )

ot? ox? Sdx

Dostali sme teda rovnicu p

O*u(t,z) E(‘?QU(t,x) _ 2 O%u(t, x)
o2 o  Ox2 Ox?

Co sme to dostali? Zistili sme Ze tyé s hustotou ¢ a modulom pruznosti E pri
pozdiznych deformaciach musi spifiat uvedenu rovnicu. To je hfadana pohybova
rovnica, umoznuje predpovedat buducnost. Takto:

Mame zadané v Case t = 0 pocCiatoCné podmienky
u(t=0,2)=U(z), v(it=0z)=V(x)
~ Ou(t,x)

Pripomefime, ze  v(t,7) = “ar

Pouzijeme okrajové podmienky u(t,x =0) =u(t,x = L) =0

co zodpoveda nepohyblivym koncom tyCe votknutej medzi dve pevné steny.
Potom vieme pohybovu rovnicu jednoznacne riesSit’ a teda predpovedat’ deformaciu
v buducnosti. Vieme? Vieme, ved je to nasa znama vinova rovnica. Prave sme
teda zistili ze v kontinuu sa mo6ze Sirit zvukova vina rychlostou

E
C= 4] —
o 38




Pripomienka Retiazka oscilatorov

Uvazujme jednorozmerny systém N —1 Castic rovnakej hmotnosti m navzajom
poprepajanych pruzinami rovnakej tuhosti k. Krajné ¢astice nech si rovnakymi
pruzinami spojené s pevnymi stenami

k

k k k
é iml im?2 l

imH=1

NapiSeme teraz pohybové rovnice pre tento systém. Oznac¢me vychylku i-tej
castice z jej rovnovaznej polohy ako u;, pre i = 1,2,...(N — 1). A zavedme
eSte pomocné konstanty ug = 0, u, = 0. Potom pohybové rovnice su (pre
i=1,2,...(N—-1))

TniQ ::——k(u@-—fui_l)-—-k(ui-—'u¢+1)

Je to systém n—1 navzijom viazanych linedrnych diferencidlnych rovnic druhého
radu pre N — 1 neznamych funkcii u;(?).

Systém pohybovych rovnic pre retiazku oscilatorov sa nau€ime riesit, ale najprv
budeme riesSit ulohu v spojitej limite. RieSenie je v spojitom pripade intuitivhe

prijatelnejsSie. .



Pripomienka k x % k

1 im 1

x=A x=2A x=il x=(N-1)A

L=NA
mil; = —k(u; — w;—q) — k(u; — uiyq)
o . N = o } O%u(t, x) 5 0%u(t, x)
Limita kontinua bola A = 0 vyslo: 92 = c 972
NA = L v
kA ,
— = c
m

Chapme to ako kvazimikroskopicky model kontinua. Aké budu jeho parametre g, E?

Ak prierez gulicky je S, potom jedna gulicka s hmotnostou m pripada na objem SA a

bude o = m/(SA). Ak sa pruzina predI|zi o u, treba na to silu F = ku. Dlzka

nedeformovanej pruziny je A, relativne predlzenie u/A, napatie F/S a dostaneme
Fku kA w kA kA

= gT S TS A gk 7 E=g

kA? kA? kKA1 F
V modeli s gulickami vy$lo ¢? = = = - = —
m oS A S o o

a tak to vyslo aj v efektivnej teérii bez odvolavania sa na ,,gulicky“. Hura!
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Rychlost’ zvuku v deformovatefnom médiu odvodil uz Newton v Principiach. Médium
bolo chapané ako kontinuum, lebo o molekularnej Strukture sa eSte niC nevedelo.

V nasom vyklade sme si trochu naznacili ako mézu suvisiet mikroskopicka
molekulova a makroskopicka kontinuova teodria. Retiazka guliCiek nie je realisticky
model tuhej latky, ale velmi zjednoduseny Strukturny model. SkutoCny svet je
technicky ovela tazSie zvladnutelny, ale nas primitivny model dostatoCne naznacil
ako ,to funguje”.

Poznamenajme, Ze sme videli len pozdiZne zvukové viny, ktoré si dominantné v
objektoch ako dlha uzka tyc.

V trojrozmernych objektoch su v tuhych latkach dblezité aj prie€ne zvukové viny,
ked latka je lokalne namahana nie na tlak a tah ale na Smyk. Vo vztahu pre rychlost
zvuku potom vystupuje modul pruznosti v Smyku. Prieéne aj pozdiZne viny treba
uvazovat napriklad pri analyze zemetraseni.



Praca a energia

Pri skimani pohybu €astice v homogénnom gravitacnom poli (vofny pad a Sikmy
vrh) sme spozorovali, takmer ako ,nahodnu kuriozitu®, Ze plati zakon

1
Emv2 + mgz = const

Ukazuje sa, ze to nie je len kuridzna vlastnost pohybu v gravitaCnhom poli ale
Specialny pripad fundamentalneho fyzikalneho zakona o zachovani energie. V tejto
Casti preskumame viacero situacii z hladiska toho, ako tam zakon zachovania
energie funguje. Zacneme dvoma telesami v gravitacnom poli a zistime, ze si naSe
predstavy musime poriadnejSie upratat. Pri tom upratovani spozname viacero
zaujimavosti o praci, energii a ich suvise.



Energia a praca v sustave dvoch telies

NepiSeme vektory, len velkosti
mia; = F — mygsina

4
moas = —F 4+ mog

Lano spc’yéobl’, ze rychlosti a teda aj
zrychlenja su rovnaké a; = a, = a

No — M1 SIN v

mog ml 4+ m?2

Z1 = 210 + SSIncx  z9 = 299 — S !

_1 2 _ 1 2 1 5
Ei1 = 2m1’U +migz1 B = 2m2’U + Magz2 §at
d . :
EEl = myva + migvsina = (mia + migsing)v = Fv # 0
d
EEQ = mova — Magv = (Moa — mag)v = —Fv # 0

d d
LY B —Fy_Fu=0
TR T

Energia kazdého telesa osobitne nie je konstantna.
Sucet energii telies, celkova energia je konstantna,

zachovava sa.




Lano ako ,,prenasac sily”

Cerveno nakreslené sily, su sily, ktorymi
lano p&sobi na telesa, ku ktorym je pripnuté.
Pri vypocCte sme pouzili predpoklad, ze tie
sily su rovnako velké, teda, ze ,,lano
prenasa silu nemeniac je velkost', iba
pripadne jej smer“.

Tento predpoklad je spravny, pokial [ano i
kladka su nehmotné a lano po kladke
nepreklzuje. Ukazeme si argumentaciu.

Predovsetkym dokreslime nejaké chybajuce
sily, ktorymi lano p&sobi na kladku a potom
aj vSetky reakcie k Cerenym silam.

Je zrejmé, Ze zelené sily, ktoré pésobia na
Cast lana natiahnutého medzi telesom 1 a
kladkou su rovnaké. Celkova sila pésobiaca
na tu Cast lana je totiz nulova podla
Newtonovho zakona sily, lebo lano ma
nulovu hmotnost.



Ak zelené sily p6sobiace na Sikmu Cast' lana su rovnaké, potom su rovnaké aj ich
reakcie, teda prislusné Cervene sily. Jedna z nich p6sobi na kladku. Na kladku
pOsobi este druha Cervena sila, reakcia na zelenu silu zvislej Casti lana. Dve Cervene
sily pésobiace na kladku musia mat rovnaku velkost, lebo kladka ma nulovy moment
zotrvacnosti a podla pohybovej rovnice pre rotujuce teleso teda na kladku pésobi
nulovy moment sil vocCi osi rotacie. Dve zelené sily p6sobiace na zvislu Cast' lana
musia byt rovnaké, lebo lano je nehmotné, teda podfa Newtona celkova nan
pOsobiaca sila je nulova. Preto su rovnake aj prislusné reakcie teda Cervené sily.
Zaver je taky: vSetky Cervené aj zelene sily na obrazku maju rovnaku velkost.

Odporucéam: Precitajte a poriadne predumaijte celu argumentaciu. Je dost’
jemna, ale nevyhnutna, ak chcem rozumiet’, ze priklad bol spravne vypogitany.
Nepodcente to mavnutim ruky, ze hlavne ze viem, ako sa pocita ten konkrétny
priklad. Argument, ze kazdy ,,citi“ ze vSetky tie sily su rovnaké, neobstoji. Sam
Hawkens hovoril, Ze citenia maju iba staré sqgaw.



Zistili sme toto:

d p Energia kazdého telesa osobitne nie je konstantna.
%El + EEZ = Fv—Fv=0  Sucet energii telies, celkova energia je konstantna,

zachovava sa.

Mo — M1 SIN &

@=9 ml + m2
v =at
L
= —at
S 2a,

Uvazujme pripad m, > m, sina, teda a > 0, teleso 1 stupa, teleso 2 klesa.
Zacinaju z kfudu, s nulovou kinetickou energiou. Energia telesa 1 sa teda zvacsuje,
lebo rastie aj jeho kineticka aj potencialna energia. To je vyjadrené vztahom

d

—Fi=Fv >0
gt

Energia telesa 2 klesa. Jeho kineticka energia sice rastie ale potencialna klesa
zrejme viac, takze sumarne

d
’Ey=—F
7t 2 v >0



Uvedomme si dblezitu vec. Energiu kazdeho telesa osobitne vieme vypocitat v
kazdom okamihu, ak pozname stav toho telesa v tom okamihu. Ak pozname polohu a

rychlost telesa v danom okamihu, teda , v dosadime tieto ,stav urCujuce veliCiny"
do vzorcov pre kineticku a potencialnu energiu, teda

1 —»2 —
Eyin = Emv Epot — mg(r)z
a celkovu energiu v danom stave urCime ako sucet

1
E(7,v) = §m172 + mg(7),

Ak uvazujeme zlozitejSi systém (v nasom pripade to boli dve telesa), potom
okamzity stav je dany va&sim poétom ,stav uréujucich veli¢in® 71, U1, 72, Uz .
Celkovu energiu v danom okamihu vSak vzdy vieme pomocou tychto veli€in
vypocitat, teda

E(Fla 6177?2)62) — imﬁ? - mg(Fl)Z + Emvg + mg(FQ)Z

Poucenie: energia je stavova veliCina, Co znamena to, ze ak pozname okamzity
stav systému, potom hodnoty stav urCujucich veliCin dosadime do vSakovych
vzorcov pre energiu, vysledky sCitame a dostaneme to, Co sa vola energia
systému v danom stave. VypocCet energie v danom stave teda nezavisi napriklad
od historie ,,ako sa system do daneého stavu dostal®, energia systému je stavom
uplne urCena. To nas opravnuje hovorit, Ze systém v danom stave ma energiu.
Energia systému je atributom stavu systému.
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Pre tento uvazovany systém dvoch telies sme dokazali ze plati

d d (1 1
EE(Fl,{Jh ’FQ, ?_)’2) = % (§mﬁ? + mg('r_"l)z —+ imf)’% + mg(fr_"Q)z) = ()
Energia celého systému je teda konstantna, zachovava sa. Povedané ,polopatisticky
to znamena, ze ked vycCislim energiu systému v nejakom Case a potom v neskorSom
Case, dostanem tu istu hodnotu. To je zakon zachovania energie.

VSetci pozname zakon: ,Energia sa zachovava“. Ale tato veta je malo starostlivo
sformulovana. Takto to jednoducho neplati. Ak chceme rozvazovat, Ci plati zakon
zachovania energie, musime predovsetkym Specifikovat aky fyzikalny systém mame
na mysli. Ak mame na mysli system ,teleso 1, tak sme videli, ze jeho energia sa
nezachovava. Ani energia systému ,teleso 2“ sa nezachovava. Ale energia systému
Jeleso 1 plus teleso 2 sa zachovava.

Takze pozor: vo fyzike nestrielajte od boku nejaké klisé. Rozvazujte. Presne
formulujte. Aby ste aj vy aj vas posluchac vedeli ¢o a o éom hovorite. 7



VSimnime si, ze zakon zachovania energie ,,je skryty“ uz v pohybovych
rovniciach. Prezrite si eSte raz odvodenie

Nepideme vektory, len velkosti

mipiny = F = mygsina

Miafls = ‘—‘F + Mg

Lano spdsobi, Ze rychlosti a teda aj
zrychlenla sU rovnaké a, = a, = a

fle — T S0 o

i =r'_|'

ml + md
Iy =y SSIE Io = Iop — A -~
Py = 1 4 z J"'—l = > L e
‘1 2.'.ll_.' ) - ?.ul-‘:_--: mMaifzz 4 — ,._,'-'-'I'
I'|I , . . s v )
ELI = i+ i gvsing = [mga g gsing v = P
L
i . 4
o Fo = mgrva — mpgy = (mea — magly = —Fo # ()
«

p y Energia kaidého telesa osobitne nie je konstantna.
ﬁbﬁ + F.Eg = Fuo— Fe =10 || S0cet energii telies, celkova energia je konstantna,
! : zachovéva sa.

Nikde sme nevyuzili konkrétny tvar rieSenia, teda vyraz pre zrychlenie a. Iba sme
pouzili vyraz pre silu rovno z pohybovych rovnic a bolo to hotove.



Praca a energia

Uvazujme pripad m, > m, sina, teda a > 0, teleso
} 1 stupa, teleso 2 klesa. ZacCinaju z kfudu, s nulovou
F kinetickou energiou. Energia telesa 1 sa teda

:lmz zvacsuje, lebo rastie aj jeho kineticka aj potencialna
energia. To je vyjadrené vztahom

Y A —Puso
_ — >
dt* v

Pozrime sa o kolko narastie energia telesa 1 za Cas dt.
dFEy = Fudt = Fds

Vidno, ze prirastok energie telesa 1 je rovny praci, ktoru vykona lano, ked ho taha
po drahe ds. Naopak, energia telesa 2 sa zmeni za ten Cas o

dEy = —Fuodt = —Fds

Lano kona nad telesom 2 zapornu pracu a energia telesa klesa.

Ak sa na lano pozerame iba ako na ,prenasac sily“, potom lano mozno vynechat z
hry a tvrdit, ze prace, ktoré sme uvazovali, konaju tie telesa. Teda nad telesom 1
kona kladnu pracu teleso 2, Co su€asne (podla principu akcie a reakcie) znamena,
ze nad telesom 2 kona zapornu pracu teleso 1.



Praca a energia

Povedali sme si, Ze energia je stavova veliCina. V danom stave uvazovany fyzikalny
systém ma nejaku hodnotu energie. Ako keby v danom stave bola v tom systéme
,2ulozena“ energia o hodnote prisluchajucej tomu stavu. Ak sa v uvazovanom procese
energia zachovava, potom to v onej terminoldgii znamena, ze ,uskladnena hodnota
energie” sa nemeni.

Ak energia rastie, potom to v onej terminoldgii znamena, ze niekto do skladu prinasa
dalSiu energiu. Ako sa da uskladnena hodnota energie zvysit? Nas priklad hovori, ze
vykonanim kladnej prace nad uvazovanym systémom. Naopak vykonanim zapornej
prace sa energia systému znizuje. Pracu, ktora meni hodnotu energie systému,
musi vykonat’ nejaky ,,vonkajsi (voCi systému) externy objekt“.

Energia aj praca sa vyjadruju v J (Joule). Ale vSimnite si rozdiel: energia sa tyka stavu,
praca sa tyka nejakého deja. Ak dej skonci, praca uz neexistuje, to slovo proste nema
vyznam pre jeden okamih.

Na zmenu energie treba nejaky proces, v priebehu ktorého sa kona praca.
Energia je charakteristika stavu, praca je charakteristika deja. Hodnota energie
sa pritom zmeni o hodnotu vykonanej prace, ktora moze byt’ tak kladna ako aj
zaporna. 10



Praca a energia

Videli sme situaciu, ze v systéme pozostavajucom z dvoch telies sa energia
zachovavala, ale nezachovavala sa separatne energia kazdého telesa. Energia
jedného telesa sa zvySovala, energia druhého telesa sa znizovala, sucet energii
ostaval konStantny.

Vyjadrujeme to aj tak, ze dochadzalo k prenosu (transferu) energie medzi tymi
telesami.

Pritom stratena alebo ziskana (teda prenesena) energia bola rovna praci, ktoru
telesa konali.

Zapamatajte si tento pohl'ad na pracu: konanim prace dochadza k transferu
energie medzi fyzikalnymi systémami. Praca je spésob transferu energie.
Praca sama nie je druh energie, hoci sa meria v jednotkach energie.

Teleso nemdze konat nad inym telesom pracu ,len tak zadarmo®, ak kona kladnu
pracu, straca pritom tofko svojej energie, kolko prace vykona. Samozrejme, jeho
energia mdze byt naopak dopifiana, ak sucasne nejaky daldi externy objekt kona
nad tym telesom kladnu pracu. Vtedy to teleso funguje ako keby bolo iba
sprostredkovatelom prace. V nasom priklade to bolo lano spajajuce telesa.

11



Praca a energia

energia je stavova veliCina, da sa pre dany stav vypocitat, ak pozname
hodnoty ,stav ur€ujucich veli€in®

praca nie je stavova veliCina, teleso v sebe neobsahuje ,skrytu pracu”. Praca
sa tyka nejakého deja. Praca ,sprostredkuje” transfer energie medzi dvoma
objektami, ktoré jeden nad druhym konaju pracu. Praca nie je druh energie.

Vazna poznamka, vel'mi pred¢asna, uvadzana bez podrobnej diskusie:
Teplo nie je “druh energie”, teplo je ,druh prace®. Je to praca konana
mikroskopickym (makroskopicky neviditeflnym) sp6sobom. Teplo nie je
stavova veliCina. Nie je pravda, ze teleso v sebe obsahuje nejaké ,teplo”.
Kedze teplo ,nikde nie je“, neda sa ani prenasat. Prenasat sa da Cosi ako
kufor, ktory je najprv tu a potom tam. Teplo sa kona. V praxi sa (zial) uziva
velmi Casto pojem ,prenos tepla“, alebo ,dodali sme vam teplo® a podobne.
Cela tato poznamka je len varovanie do buducnosti.



Co je to ta energia?

Studenti maju radi definicie. Tie sa daju zapisat a naudit. A na skuske ocakavaju
otazku typu: povedzte mi definiciu energie. Takuto otazku na skuske z mechaniky
nedostanete.

Nedostanete preto, lebo nepoznam Ziadnu rozumnu formulaciu definicie pojmu
energia.

Volakedy v Skole som sa ucil definiciu: ,Energia je miera schopnosti telesa konat
pracu”“. Nebudem teraz diskutovat, Co je na tej definicii nie dost’ dobré alebo dost
presné. Len zdéraznim, Ze v tej definicii sa pojem praca kladie hierarchicky nad
pojem energia. Je pravdou, ze to zodpoveda historii fyzikalneho poznania. Uz
Archimedes de facto vedel, ze praca je na oboch stranach paky rovnaka, hoci to tak
asi nevolal. Pojem energie sa ustalil ovela neskoér, v termodynamike, ked sa prislo na
to, ze teplo ,nie je energia®.

Moze vzniknut namietka, ako mézem pracovat’ s pojmom energia, ked' neviem, Co to
je. M6zem, lebo sice nebudem vediet, Co je energia, ale mézem sa jednoducho
naucit' ,pravidla pouzivania toho pojmu.

Ludia dlho nevedeli ,Co je to teplota® ale ten pojem prakticky pouzivali. Na chladniCku
pripinali odkazy typu ,VeCeru mas v chladniCke, zohrej si ju!* a manzel napodiv vedel,
Co ma robit.



Co je to ta energia?

Energia je dnes povazovana za jeden z najfundamentalnejSich fyzikalnych pojmov.
Naozaj nevieme, €o je to ta energia? Nuz, maloktory prednasatel ma guraz povedat
explicitne, ze nevie. Feynman bol fyzikalny VIP, mohol si to dovolit povedat’ bez obav,
za €o ho budu povazovat. Tu je par originalnych viet:

There is a fact, or if you wish, a law governing all natural phenomena that are known to
date. There is no known exception to this law — it is exact so far as we know. The law is called
the conservation of energy.

It states that there is a certain quantity, which we call “energy,” that does not change in the
manifold changes that nature undergoes. That is a most abstract idea, because it is a
mathematical principle; it says there is a numerical quantity which does not change when
something happens.

It is important to realize that in physics today, we have no knowledge of what
energy is. We do not have a picture that energy comes in little blobs of a definite
amount. It is not that way. However, there are formulas for calculating some
numerical quantity, and when we add it all together it gives "28"'—always the
same number. It is an abstract thing in that it does not tell us the mechanism or
the reasons for the various formulas.

14



Co je to ta energia?

Tu je struCné zhrnutie toho, ako ,definuje” energiu Feynman.

Energia je také oné, ze mame sadu vzorcov pre energiu. Vyberieme z nich tie, ktore
su pre dany systém a jeho dany stav relevantné. Dosadime do nich hodnoty ,stav
urcujucich veliCin®, Cisla ziskané pomocou jednotlivych vzorcov sCitame a dostaneme

hodnotu energie v danom stave.

V Skole sme sa vSetci uclili, ze definicia musi byt poriadna a ,vedecka“ a slova ,také
oné” su uz uplne zakazané. Nedajte sa tym zmiast. Ak sa vam to nepaci, skuste
vymysliet’ nieCo lepSie. Tromfnete Feynmana.

Zakon zachovania energie hovori, Ze ked vypocitame energiu podla relevantnych
vzorcov v dvoch rozliénych okamihoch, dostaneme tu istu hodnotu.



Zakon zachovania energie

V skole nas ucia, a hovori to aj vysSie uvedeny
citat z Feynmana, ze zakon zachovania energie
je fundamentalny zakon prirody, z ktorého
nepozname vynimku.

m,g NO amy sme videli, ze energia telesa 1 sa
: nezachovava. Tak ako to je?

Zovseobecneny zakon zachovania energie

Pre teleso 1 sme zistili, ze plati

dEl = Fds

Poucenie: zakon zachovania energie mozno zovSeobecnit' takto:

Kazda zmena energie systéemu musi byt kryta pracou,
konanou externym objektom, ktory je mimo uvazovaného
systému.

16



Co je to ta praca?

Poznamenajme, Ze vo fyzike mame viac vzorcov pre pracu, nielen F.s.

Parafrazujuc Feynmana o energii: Praca, to je také oné, ze mame sadu
vzorcov pre jej vypocet a ked pomocou nich spocitame pracu konanu
vonkajsimi externymi objektmi nad systémom v nejakom procese, zistime,
ze celkova vykonana praca kryje zmenu energie systému v uvazovanom
procese.

Poznamenajme, ze ,dobré vzorce” pre energiu a pre pracu nehfadame len tak
hadanim naslepo. V teoretickej mechanike sa budete ucit postupy, ako sa tie
vzorce ,hladaju” resp. dokonca ,,odvodzuju”.

Zakon zachovania energie v podstate hovori, ze ,,doteraz sa nam vzdy podarilo
najst’ chybajuci vzorec* tak, Ze zdanlivé nezachovanie energie pocCitanej
pomocou dovtedy znamych vzorcov sa zmenilo na zachovanie po pridani nového
vzorca do zbierky ,vzorcov pre energiu a pracu”

Vykon

Popri praci sa v mechanike zavadza i uzitocna veliCina vykon, definovany ako
praca pripadajuca na jednotku Casu. Ak sa za Cas dt vykona praca §A, potom
vykon definujeme vztahom SA




Vykon sily na drahe

Ak na teleso pbsobi sila F a teleso zmeni polohu o d7, potom sila vykona
pracu

§A = F.dF
Vykon tej sily bude SA  Fdif
P=—= — F.0

dt dt

I
gl
<y

Vzorec | P si drzte v pamati rovnako ako vzorec ,Fs".

Pridajme poznamku, Zze malu vykonanu pracu sme zamerne znacili 64 a nie
dA, lebo ,mala praca nie je rozdiel dvoch prac®, praca vSeobecne mobze
zavisiet’ na ceste. Takze vzorec pre vykon

0A

P==
dt

nehovori, Ze vykon je derivacia prace. Napisali sme tam proste zlomok ako
podiel dvoch velmi malych Cisel. Symbol § nas na to upozornuje



Pokusme sa finalizovat' poucenie z doterajSich uvah:

Uvazujme nejaky systém. Ak nevidime externé objekty, ktoré by konali pracu
nad tym systémom, potom energia toho systému sa zachovava. Ak také
externé objekty existuju, potom plati zovSeobecneny zakon, zmena energie je
kryta pracou vonkajSich externych objektov.

Priklad: Uvazujme systém ,teleso 1°. Je tam

" vonkajsi externy objekt ,lano”. Energia telesa
1 sa nezachovava, jej zmena je ale kryta

]mz pracou externého objektu

mag dF, = Fds

L
Priklad: Uvazujme systém ,teleso 1 plus teleso 2“. Jeho energia sa zachovava
d(F1+ FE2) =0

lebo nie su vonkajSie externé objekty, ktoré by konali pracu.

ZLE 2! Ved tam je vonkajsSi externy objekt!!! Zem, ktora kona
T pracu. Nevidite tie zelené sily?! Ved' tie konaju

” 19
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PreCo sa energia zachovava, ked externé
objekty konaju pracu?

A
F

]m2 Napad : Nie je to nahodou tak, ze celkova
mag praca konana externymi objektmi je nulova?

Budeme hlasovat’

a) celkova praca zelenych sil je nulova
b) celkova praca zelenych sil nie je nulova



PreCo sa energia zachovava, ked externé
objekty konaju pracu?

Napad : Nie je to nahodou tak, ze celkova
mag praca konana externymi objektmi je nulova?

Celkova praca konana zelenymi silami: —mygsina ds + mog ds

To sa nerovna nule, lebo ked sCitam pohybové rovnice
mia; = F —mygsina

moao = —F 4+ mog

dostanem —mqgsin ads + magds = (my + mo)ads # 0

Zaver: Poucka, ktoru sme sformulovali

Ak nevidime externé objekty, ktora by konali pracu nad tym systémom, potom
energia toho systému sa zachovava. Ak také objekty existuju, potom plati
zovseobecneny zakon, zmena energie je kryta pracou externych objektov.
JE ZLE !l
Otazka je, pre€o. Skuste najprv chvifu podumat!
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NiecCo je zle. Nase poucky boli zjavne zle sformulované. Prezradime dopredu ,
preco bola nasa uvaha zla.

Pretoze pracu externého objektu — Zeme, sme uz zohl'adnili vo vzorci
pre potencialnu energiu telesa.

Pre vypocCet energie telies sme (pouzivajuc Feynmanovu terminologiu) totiz

pouzili ,zbierku® dvoch vzorcov ,

Eyin = §m’U Epot = mgz

Nejako sa nam to (treba povedat, ze schvalne) zamotalo. Aby sme to rozmotali,
zacneme uvahy o energii znovu od zaciatku. Musime si ozrejmit, ako postupne
,pridavame vzorce do Feynmanovej zbierky energetickych vzorcov”.
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Ako sa tvori Feynmanova ,,zbierka vzorcov* pre energiu?

Zacnem prvym vzorcom pre energiu, kinetickou energiou.
Ako ludstvo vyhutalo vzorec pre kineticku energiu?
Neviem historicky verne odpovedat.

Ale viem argumentovat’, ako to pripadne mohlo byt

Ako l'udstvo mohlo vyhutat’ prvy a mozno hlavny vzorec pre energiu, na
ktorom vSetko d’alSie stoji: vzorec pre kineticku energiu

23



Ako Fudstvo vyhutalo vzorec pre kineticku energiu

Ludia uz davno vyhutali nastroje na dosiahnutie velkej sily, od pastného klinu cez
Davidov prak, kladiva, baranidla az po buchare na zatikanie pilot. Objavili trik:
zobrat tazkeé teleso, urychlit ho na velku rychlost a potom ho narazom do
cielového objektu na kratkej drahe rychlo zastavit’ (napriklad na Goliasovej

hlave) . 24



Lis: dopad telesa hmotnosti m rychlostou
spoOsobi, ze predmet povodne vysky H sa
zlisuje na zanedbatelnu hrubku.

+H - Odhadneme silu, ktora to sposobi.

Teleso sa zastavi na drahe dizky s = H. Sila
bude na drahe premenliva, jej graf méze

[ 1ix <_!_> vyzerat napriklad takto. Priemerna sila na
drahe H sa vypocita takto

_ 1 [H
F:—/ Fds
H J

S tym vyrazom sa trochu pohrame:

~ H T T v

FH = / Fds = / mavdt = m—uvdt =
0 0 0

dt
v 1
= / mudv = —mau?
0 2

Ak chcem lisovat r6zne materialy rovnake;
hrabky, potrebujem niekedy vacsiu a inokedy
mensiu silu. Mam k dispozicii vofbu m a v.
Zistili sme, ze pri danej hrubke lisovaného materialu jej dblezity vyraz

1 2

5?’?1“0




V historii fyziky nejaku dobu sutazili medzi sebou dva vzorce. Leibnizov vzorec

pre ,vis viva® muv? a Newtonov a Descartesov pre ,mieru pohybu“ muv .

Ziaden nevyhral, lebo oba sa tykaju zachovavajucich sa veligin, réznych, s
rébznym vyznamom: energie a hybnosti. Zrejme prvy, kto pouzil termin energia v
modernom zmysle bol T.Young v roku 1807 (ten Young po ktorom je pomenovany

modul pruznosti a ten, ktory pretlacal vinovu tedriu svetla oproti Newtonovej
korpuskularnej).

Faktom ostava, ze lepSou mierou schopnosti urychleného telesa rozbijat orechy
(alebo hlavy) je kineticka energia, definovana voci Leibnizovej vis vitalis navyse s
faktorom 7%, aby to sedelo so vzorcom pre pracu F.s.

Takze prvy a zakladny vzorec do ,Feynmanovej zbierky vzorcov® pomocou ktorych
sa pocita energia je

—mu
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Jednou z technik, ako vyrobit' velku kineticku energiu je postit teleso z vysky
volnym padom.

Externé teleso, Zem, pOsobi pri pade na teleso silou mg, ktora spdsobuje
zrychlenie g a teleso pri pade z vysky h dosiahne kineticku energiu (spocitatelnu
podla Newtonovho zakona sily)
%mv2 = mgh
Pri vySetrovani pohybu telesa v homogénnom gravitacnom poli (Sikmy vrh) sme si
vSimli, ze rieSenia pohybovych rovnic maju ,kuridoznu vlastnost”, ze je splneny zakon
zachovania {
§mv2 + mgz = const
a nazvali sme vyraz mgz potencialnou energiou, pridajuc ho do ,zbierky
Feynmanovych vzorcov®. V americkych ucebniciach byva zvykom neskocit hned na
zakon zachovania energie ale upozornit, ze teleso pri pohybe v gravitaChom poli
ziskava energiu (mysli sa kineticku, lebo iny vzorec sa v danej chvili nepozna) tym,
ze Zem kona pracu. (Vid napriklad odporucana ucebnica Halliday, Resnick alebo
MIT Open course na webe.) Ziskavanie energie konanim prace ma dokonca
yoficializovany nazov“ work energy theorem. V tomto pristupe sa vyraz mgh Cita ako

mg. h = F. h, teda ako ,sila-krat-draha“, Co sa vola praca.



Takze prvé, s ¢im sa Student mechaniky v Amerike zoznami nie je zakon
zachovania energie ale ,work energy theorem®, ktory hovori, ze

Zmena (kinetickej) energie telesa je kryta pracou externého objektu.

V nasich zemepisnych Sirkach sa na takuto zovSeobecnenu formu zakona
zachovania energie ,s pracou na pravej strane” (presnejSie mozno zakona o
,bilancii energie”) Casto neupozoriuje.

Didakticky aj konceptualne je tu problém, Ci ,prvotné je vajce alebo sliepka?”.
Hovorim o pojmoch energia a praca.

Casto sa za prvotny pojem voli praca a potom sa energia ,pseudodefinuje” ako
miera schopnosti telesa konat' pracu. Alebo sa ako prva definuje energia
(kineticka, vis vitalis) a potom sa vSimne, ze sila-krat-draha meni energiu a nazve
sa to pracou.

MOj nazor je taky, ze debatovat o prvotnosti vajca je neuzitoCné, lebo ,fyzika sa
neodvodzuje” ako matematika z nejakych primarnych axiom typu ,Euklides”.
Fyzika sa objavuje ,po celych navzajom prepletenych kusoch® ako krajina videna z
vrcholu kopca, ked sa rozptyli hmla. V pripade energie a prace je to napred hranie
sa s nejasne definovanymi koncepciami v rozliénych situaciach, ked zrazu
dostanem akysi ,aha-pocit, ze ved to vSetko krasne funguje dokopy. Skusenostou
vycizelovany pojem energie porodi pojem prace a skusenostou vycizelovany
pojem prace porodi pojem energie. Tedria sa neodvodzuje, ale ,,zrazu sa zjavi".
Najlepsie to vystihuje anglicky termin ,emergence” (nepliest s emergency!).



Spomenuli sme niekedy na zaciatku nasSich diskusii o fyzike, ze fyzika si nekladie
za ulohu ,vSetko alebo ni¢". Teda ze neskuma svet v celostnosti ale je spokojna s
cestou chapat svet po kuskoch.

Prakticky to znamena vycClenit nejaku Cast’ sveta, nazvat to ,skumany fyzikalny
systém® a snazit' sa pochopit, ako funguje. Taky systém spravidla nezije vo svete
sam, pOsobia nan (interaguju s nim) externé objekty. Takze ,pochopit systém ako
funguje” spravidla znamena pochopit ho v nejakom vonkajsom kontexte v interakcii
s vonkajSimi objektami.

Ked' teda chcem pochopit’ ,padajuci kamen®, potom to chapem v kontexte
gravitacného pésobenia Zeme ako vonkajSieho objektu. V tomto pripade je to
znacne ulahCené tym, Ze sice je pravda, ze nielen vonkajsi objekt Zem p6sobi na
kamen, ale aj kamen p&sobi na Zem. Ibaze Zem je taka tazka, ,ze si pbésobenie
kamena na seba ani nevSimne®, takze pri skimani kamena mézem Zem povazovat
za staticky nemenny objekt.

Pri padajucom kameni alebo vseobecnejSie pri ,Sikmom vrhu® to umoznuje
,vycarat™ v zakone o energetickej bilancii pracu externého objektu ,na pravej
strane” za vzorec pre potencialnu energiu kamena ,na lavej strane” a pisat
1 1

nie A(§mf02) = praca  ale A(;mvz +mgz) =0




V pripade gravitacného p6sobenia Zeme navyse v oblasti s homogénnym polom je
odvodenie spravneho vzorca mgz fahka vec. Su ale situacie, kde sa lahSie pomylime,
tak si ukazeme ,odvodzovaciu techniku®, ktora by mala trivialne omyly ustrazit..

Ide o to, ze pri pohybe skimaného objektu sa pésobenim sil meni rychlost a kineticka
energia tohto objektu. Preto si privolame na pomoc ,trpaslika-brzdara®, ktory bude
silovo p6ésobit naskumany objekt ,navyse” a to tak, ze bude strazit, aby sa kineticka
energia objektu nemenila.

Trpaslik-brzdar zapichne do nasho objektu svoju brzdiacu kopiju,
pomocou ktorej bude silovo na objekt pésobit’ (silou lubovolnej
potrebnej velkosti aj smeru, teda nielen ,v smere kopije“) a tom tak, aby
sa pri pohyboch objektu nemenila jeho rychlost’ a teda ani kineticka

mg energia. Teda ku vSetkym silam p6sobiacim na objekt prida svoju silu

v tak, aby celkova sila bola nulova a teda zrychlenie (ako vektor!) nulové.

Teraz do hry vstupim ja ako ,velky $éf, opatrne chytim objekt a mézem ho s
vynalozenim nulovej sily infinitezimalne pomaly premiesthovat kam chcem, lebo
trpaslik adaptivne brzdi. Premiestnim objekt réznymi cestami z polohy ,,1“ do polohy
,2 avzdy sa spytam brzdara aku pracu musel pri mojom premiesthovani vykonat.
Ak hodnota prace, ktoru brzdar musel vykonat, nezavisi na zvolenej ceste, potom
viem, Ze brzdarova praca sa da vypocitat ako rozdiel dvoch hodndt akejsi funkcie,
vyCislenej v polohe ,2“ minus hodnota v bode ,1%. Ak urcity bod zvolim za

referencny, potom mézem zmeranim brzdarovej prace zmapovat hodnoty tej funkcie
v flubovolnom bode.



V homogénnom gravitacnom poli musi brzdar p6sobit’ konstantnou silou

F = (0,0,mg)
a pri premiestneni telesa z bodu 7; do bodu 7, vykona pracu

T2 T2 T2
/ F.dr= / F,.dz= / mg.dz = mg(zo — 21)
T T !

Prave som do Feynmanovej zbierky vzorcov ziskal vzorec mgz.

Vznika otazka, pracu ktorého silového pésobenia uz nebudem teraz zaratavat
,na pravej strane” zovSeobecneného zakona o zachovani energie (teda ,work
energy” teorému). Odpoved je jednoducha: nebudem ratat pracu Ziadnej sily,
ktoru sa mi podarilo ,vyCarat” a dostat’ ,na lavu stranu“ ako rozdiel dvoch hodnét
Sikovnej funkcie, ktorej vzorec pridam medzi Feynmanove vzorce pre energiu.

Co ak ale zistim, Ze brzdarova praca zavisi na ceste. Jednoduché, vtedy sa
neda ,vyCaranim® pridat vzorec do zbierky a musim pouzivat zovSeobecneny
zakon o zachovani energie s pracou ,nevycCaranej sily“ na pravej strane.

Moze to byt aj tak, ze mam viacero vonkajsich objektov silovo pdsobiacich na
moj objekt. Vtedy mbézem najat’ viacerych brzdarov, z ktorych kazdy strazi len
silu jedného z vonkajsich objektov.



Priklad na jednu ,vyCaratelnu silu® a jednu nevycCaratelnu silu: teleso na naklonenej
rovine s trenim

Nakreslil som silu trenia pre pripad, ze teleso sa pohybuje nadol. Pri pohybe nahor
bude mat trenie opacny smer. Lavy brzdar kompenzuje silu Zeme, pravy silu trenia. Ak
budem hybat telesom z jedného bodu do druhého, existuju aj cesty typu najprv kusok
smerom dole, potom kusok smerom hore, potom zase dolu az pridem do zelaného
ciefa. Problém s brzdarom, ktory kompenzuje trenie, je taky, ze praca, ktoru vykona je
pre rézne cik-cakovité cesty ré6zna. Preto praca ktoru on vykona sa neda napisat’ ako
rozdiel dvoch hodnét funkcie na konci a na zacCiatku. Praca trenia sa neda vyCarat. Ale
pracu Zeme mdOzem vycCarat ako prednym pomocou vzorca mgz.



Do prikladu, ktory sme riesili pridame trenia
na Sikmej ploche. Pohybové rovnice budu

(nepiSeme vektory, len velkosti)
my _F %F mia; = F —mygsina — T

S moas = —F + mag

«{“LXQ
/ M2 Lano sp6sobi, ze rychlosti a teda aj

zrychlenia su rovnakeé a; = a, = a

| mag mog —myigsina — T
Z1 = Z10 +SSIntx  zZo = Z9g — S v a= ml + m2
1 1
Ei = §fmw2 +migz1 B = §m2’02 T m2gz2
d
B =mva+migusina = (mia +migsinajy = Fv —Tv
d
%Ez = mava — Magv = (M2a — mag)v = —Fv

d(E1+ Es) = (Fv—Tv— Fv)dt = —Tvdt = —Tds

Sucet energii dvoch telies nie je (na rozdiel od pripadu bez trenia) konstantny, na
pravej strane je praca sily trenia. Pridajme, ze ,,energia sveta“ sa nenici, iba
sme nezaratali energiu tepelného pohybu molekul, ktora primerane narastie.



OPAKOVANIE: nezavislost’ prace trpaslika na ceste sme uz skumali pri

gravitacnom zakone
Potencialna energia

N }\/ Uvazujme trpaslika, ktory v gravitachom poli bodovej
\ / \ Castice premiestriuje ¢asticu s hmotnostou m z miesta
L a 7, ha miesto 75,. Vypoditali sme pracu na to potrebnu
/ "2 M r.dr 1 1

4 t N A= mG—Q—:—mGM — — —

71 T r 9 ™

Pozrime sa teraz na tento vzorec z iného pohladu. Prica, ktord musi vykonat
trpaslik, aby premiestnil teleso o hmotnosti m z bodu F hocikam do nekonecnej

vzdialenosti je .
A7 — o0)=-U(T) = mGMﬁ
r

Zaviedli sme tak velmi uZitoénd funkciu U(7), pomocou ktorej vieme vypoditat
pracu trpaslika medzi dvoma ubovolnymi bodmi

/ mG "~ U(m) - U()

Toto je praca, ktord musi vykonat trpaslik ako konatel prace. 34



Potencialna energia
Niekolko ,,pripadovych studii“

Odvodit spravny vzorec pre potencialnu energiu méze myt niekedy dost tazke,
najma ak eSte nemame poznatky z abstraktnejSej teoretickej mechaniky (naudci
vas to kolega Fecko).

Preto sa tu nepokusim sformulovat’ nejaké rigorézne postupy ,ako vyrabat
Feynmanovu zbierku vzorcov pre energiu®

Namiesto toho rozoberiem niekolko Specialnych pripadov, mozno to prinesie
nejaké poucenie.



Potencialna energia na pruzine

Poloha z = 0 je poloha nedeformovane]

pruziny. To nie je rovnovazna poloha

gulicky, lebo pruZina sa prediZia pod

vplyvom tiaze guliCky. GuliCka m&ze ostat v
) kfude v bode, ked' sila pruziny vyrovna silu
tiaze, tedaked —Kz = mg

— Kz Rovnovazna poloha guliky ma teda
suradnicu zo=-mg/K

Volme bod z, za referencny bod a
vypocCitajme pracu, ktoru vykona trpaslik,
ked guliCku potiahne za lano tak, aby sa
—myg prakticky nulovou rychlostou presunula do
lubovolného bodu z < z,. V bode z teda
hodnoty na obr. | Musi posobit’ silou, ktorej z-zlozka bude
sU z-zlozky sil F.=mg+ K=z
lebo prave vtedy celkova sila na gulicku
bude nulova a gulicka nebude zrychlovat.

z z 1
A:f dez:f (mg+Kz)dz:mgz+§K22
0 0
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Potencialna energia na pruzine

hodnoty na obr.
su z-zlozky sil

1
A=mgz+ §K22

VSimnime si, ze na skumany fyzikalny
system, guliCku, pésobia dva externé
objekty. Zem tiazovou silou a pruzina
silou z deformacie. Trpaslik, ktorého sme
pouzili, je vlastne nas znamy trpaslik-
brzdar, tentokrat nepouzivajuci kopiju ale
lano. Vypocitame jeho pracu a
dostaneme suhrnnu potencialnu energiu,
Vv nasom pripade

1
Epot = mgz + iKZQ

p p p 1 .
Vyraz mgz pozname. Vyraz EKZZ je
novy vzrec do ,Feynmanovej zbierky",
potencialna energia pruznosti. -,
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Potencialna energia na pruzine

1
Eoor = mgz + §K22
Analyzou prace jedného trpaslika sme
vycCarali pracu dvoch externych
objektov za dve zlozky potencialnej
energie Castice. Celkova energia

gulicky teda bude

— Kz 1

1
FE = §mfvg + mgz + §K22

Pohybova rovnica gulicky je

ma, = —mg — Kz
Overme, Ze celkova energia guliCky sa
zachovava
dE

— = mu,a, + mgu, + Kzv,

hodnoty na obr.

su z-zlozky sil

dt
Po dosadeni za ma, z pohybovej

rovnice dostaneme

dE

dt

v,(—mg — Kz)+mgv, + Kzv, =0

Energia je konstantna, zachovava sa.
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Potencialna energia pruziny

Pozrime sa teraz na situaciu z iného uhla
pohladu. Za fyzikalny systém, ktory
studujeme budeme povazovat pruzinu,
ktora nech ma zanedbatelnu hmotnost.
Teda nema ani kineticku energiu, i ked sa
pripadne bude hybat' (deformovat).

Suradnica z = 0 znamena nedeformovanu
pruzinu. Trpaslik, ked' chce pruzinu
deformovat, musi pésobit silou F, = Kz a
vykona pritom pracu (Startujuc z
referencného bodu z = 0)

A :/ Kzdz = leQ
0 2

Potencialna energia deformovanej pruziny teda je

1
Epot = §K22

VSimnime si, ze tu sme ,necCarali” pracu nejakého
externého objektu za potencialnu energiu pruziny. Tato
energia pruznosti je ,naozaj obsiahnuta vnutri“ pruziny.
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Potencialna energia pruziny
verzus
potencialna energia gulicky na pruzine

Vsimnime si, ze ked sme ako systém uvazovali

T R '|' il gulicku a pruzina bol len externy objekt, tiez sme
(T i 15 dvodili vy
gyt iy % L oavoailll vyraz 1
: ; pot = QKZ

Aj ten vyraz sme odvodzovali pomocou trpaslika,
ale bol tu vyrazny rozdiel oproti ,Cistej pruzine®. Pri
<0 &= 2<0 gulicke sme potencialnou energiou nahradili
K= . (vyCarali) pracu externého objektu, pruziny. A
potom sme povedali, ze do energetickej bilancie
uz nebudeme ratat pracu pruziny, hoci ,zelena
sila“ stale pri pohybe guliCky pracuje.
Energia pruznosti ,Cistej pruziny” je v akomsi
zmysle ,poctivejSia energia“ nez potencialna
energia ,,guliCky od pruznosti®, ktora je len
,2wycarana praca“.
Celé to zdihavo popisujeme najma preto, Zze Feynmanovu zbierku
energetickych vzorcov nemézme pouzivat’ bez rozmyslania, musime vediet,
ktory z tych vzorcov je ,len vy¢arana praca“, a potom pracu ,,vy¢aranych
objektov* uz nezaratavat’ do energetickej bilancie. 40




VyCarana energia verzus nevycarana energia

Vo Feynmanovej zbierke energetickych vzorcov teda mézeme mat vzorce dvoch

typov: vyCaraneé vzorce a nevyCarané vzorce. Medzi nimi je rozdiel.

* hociktory vy¢arany vzorec mézem zo zbierky vynechat’, ale potom musim do
energetickej bilancie zaratat’ (na pravu stranu) pracu prislusného externého
objektu. Zakon zachovania energie bude fungovat v zovSeobecnej forme s
pracou na pravej strane.

* nevyc€arany vzorec hemodézem zo zbierky vynechat’, prestal by fungovat zakon
zachovania energie. NevyCarany vzorec sa neda rozumne nahradit ,pracou
cohosi na pravej strane®. Lebo prislusnu pracu nekonaju externé objekty ale
vnutorné komponenty, napriklad molekuly, v pruzine.

NevyCarana energia pruznosti pruziny sa prejavi aj tak, ze v istom zmysle sa da
identifikovat, ,kde sa ta energia nachadza (miestne), teda ze ,v tej pruzine®. Dalo by
sa to overit’ aj takym pokusom. StlaCim pruzinu a fixujem jej deformaciu nejakym
Spagatom. Potom ju stlacenu hodim do kyseliny, Spagat sa rozpusti. Aky bude
rozdiel oproti pokusu, ked do kyseliny hodim nestlacenu pruzinu? Teplota kyseliny, v
ktorej sa rozpustila stlaCcena pruzina sa zvysi oproti pokusu s nestlacenou pruzinou.

LN )




Potencialna energia pruziny

Pre nehmotnu pruzinu neviem rozumne napisat
pohybovu rovnicu, takze neviem skontrolovat Ci sa
zachovava v Case jej energia. Ale odvodeny vyraz

1
Epot —

—K2?

2
je zjavne energiou, lebo ak zavesim na deformovanu
pruzinu teleso a uvolnim ho, vie ho pruzina vytiahnut
vySSie a vykonat pracu a ked tu pracu spocitam,
zjavne to bude sediet s najdenym vzorcom pre jej
energiu.

Priatel'skejSi objekt na skumanie zachovania energie,
ktorej Castou je energia pruznosti, je kmitajuca tyC, s
ktorou sme sa uz zoznamili, takze v dalSom budeme
skumat energeticku bilanciu kmitajucej tyCe ako ,iného
fyzikalneho zvierata®.

42



Opakovanie: pozdizna deformacia pruznej tyce

4 ! kfudovy stav N
/ | N
7 X N
x =0 >4 u(x) "
4 deformovany stav N
7 N
7 N
/ Tl lptdy kfudovy stav
Y,
I
T :/0 I
|
5 u(z)> deformovany stav
7 _
7 |

77777 S 77777

Deformacia tyCe v nejakom okamihu
je zadana funkciou u(x), ktora

L udava posunutie prierezu tyce, ktory

sa povodne nachadzal v mieste x.

Maly objemovy element ty&e dizky
dx pri deformécii zmeni svoju dizku,
jeho nova dizka bude

(z 4+ dr + u(x + dx)) — (x + u(x))

TakZe relativne prediZenie voci pévodnej dizke dx bude

~u(zr +dx) —u(x) _ Ju(x)

e(x) =

ox

Funkcia e(x) udava relativne prediZenie tyce v mieste x. Ak Na prierez tyée v
mieste x p6sobi napatie a(x) (napatie je sila/plocha), potom plati Hookov zakon

o(x) = Ee(x)

Predstavme si teraz, ze mame zadanu deformaciu tyCe ako funkciu u(x) a chceme
vypocitat potencialnu energiu tyCe v désledku tej deformacie. LahSie sa ,to odvodi®
v diskrétnom modeli pruziniek, lebo deformacnu energiu jednej pruzinky pozname.



Pripomienka k x % k

1 im 1

x=A x=2A x=il x=(N-1)A

L=NA
mil; = —k(u; — w;—q) — k(u; — uiyq)
o . N = o } O%u(t, x) 5 0%u(t, x)
Limita kontinua bola A = 0 vyslo: 92 = c 972
NA = L v
kA ,
— = c
m

Chapme to ako kvazimikroskopicky model kontinua. Aké budu jeho parametre g, E?

Ak prierez tyCe je S, potom jedna gulicka s hmotnostou m pripada na objem SA a

bude o = m/(SA). Ak sa pruzina predI|zi o u, treba na to silu F = ku. Dlzka

nedeformovanej pruziny je A, relativne predlzenie u/A, napatie F/S a dostaneme
Fku kA w kA kA

= gT S TS A gk 7 E=g

kA2 kA2 kKA1 E
V modeli s gulickami vy$lo ¢? = = = - = —
m oS A S o o

a takto to vyslo v efektivnej teoérii bez odvolavania sa na ,,gulicky“. Hura!

44



k k k k

im

E x=A x=2A X=iA x=(N-1)A |

A
i A

L=NA

Posunutia koncov i-tej pruziny st u(x;-,) a u(x;), povodna diZzka tej pruzinky bola
A, deformovana diZzka je A + u(x;) — u(x;_,), predizenie pruzinky teda je

u(x;) —ulx;_q)
Potencialna energia i-tej pruzinky teda je

L(u(m:) — uz;y))? = ~k (a“(""))z A2

2 2 ox

kA
Vztah konstant E spojitého modelu a k diskrétneho modelu je E = —

a teda energia pruznosti celej tyCe je 5

1 0 2
Eyor = 251«35( T;S‘)) A

1
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g (Qu@)
Vzorec Epot = Z §E8 e
1 (ou(x)\’
prejde v spojitom modeli na integral ~ £pot =/§E( 9 ) Sdx

Potencidlnej energie pruznosti v pozdizne deformovanej tyéi je teda

1 ou(t, x) 2
Eoot = / §E ( O ) dVv
kde E je Youngov modul pruznosti a uviedli sme explicitne aj Casovy okamih t.

Kineticku energiu tyCe najdeme lahko. Hmotnost objemového elementy tyCe je
odV, jeho okamzita rychlost je du(t,x)/dt ateda

(1 [Oult,x) ’
Ekln_/§Q< ot ) dV

Celkova energia tyCe teda je
N\ 1 (Ou(t,x) ’
+ 2E o dv

o= J (e (5

1




Energia deformacie tyce bez aproximacie diskrétnymi
pruzinami

kludovy stav

I
=~

deformovany stav

777277 S7/7777

Chceme zistit deformaénu energiu tyce. Ty& rozdelime na elementy diZky dx, jeden
taky element je nakresleny Cerveno. Zavolame na pomoc trpaslikov — brzdarov,
kazdy dostane na starost jeden element tyCe. Zapichne si do toho elementu svoju
brzdiacu kopiju a dava pozor, aby zrychlenie elementu po€as nasledujucich
manipulacii bolo stale nulové. Preto sleduje sily, ktorymi okolité elementy pdsobia na
jemu zvereny element a neustale ich vyrovnava, aby celkova sila p6sobiaca na
element a teda aj jeho zrychlenie bolo nulove.

ou
o(r) = E%



Energia deformacie tyce bez aproximacie diskrétnymi

pruzinami
kludovy stav N
N
=1L
deformovany stav N
N
N
T , , A Ou
Element susediaci s &ervenym elementom zlava nar pdsobi silou So(x) = _SEE?_:I:
Ju(x + dx)

element susediaci sprava silou So(z +dzr) = SE o

Trpaslik — brzdar teda musi vyvijat' silu

Ou(x +dx) 8u(a:)) _ _SE62U($)

dx

Fle)=-SE ( Ox ox Ox?



Energia deformacie tyce bez aproximacie diskrétnymi
pruzinami

kludovy stav

I
=~

deformovany stav

777277 S7/7777

Mam rozostavenych trpaslikov. Nech aktualny stav deformacie tyCe je dany
funkciou ti(x). KoneCna deformacia, ktoru chcem dosiahnut je u(x). Dosiahnem to
tak, Ze ako ,velky $éf* postupne posuvam trpaslikov o malé kusky 61i(x). Tieto malé
pridavané deformacie su pri roznych x navzajom nezavislé, r6znej velkosti a
vykonavané v [ubovolnom poradi. VSetko kvoéli tomu, aby som sa presvedcil, ze
vysledna deformacCna energia ,nezavisi na ceste”, teda na detailnom postupe ako
som z referenéného stavu u(x) = 0, priSiel k stavu u(x). KedZe trpaslici
vyrovnavaju vsetky sily na nulu, ja ako velky séf nekonam pri manipulaciach ziadnu
pracu, ale zato trpaslici pri malom posunuti §i(x) vykonaju pracu

-~ 0%u(x)

déA(x) = —du(x)SE 52 dx
T




Energia deformacie tyce bez aproximacie diskrétnymi
pruzinami

kludovy stav

I
=~

deformovany stav

777277 S7/7777

Celkova praca, ktoru vykonaju pri mojich manipulaciach trpaslici pri zmene
bude (x) — u(x) + du(x)

3 L L 2~
SA = / A5 A(z) = — / dzoi(z)SEZ ”(f)
0 0 835'

Pouzijem per partes, uvedomim si, ze okraje neprispeju, lebo tam su vSetky
deformacie stale nulové a dostanem

L ~ ~
§A = / dzs (8u(a:)) gp2il@)
0 833 833




Energia deformacie tyce bez aproximacie diskrétnymi
pruzinami

kludovy stav

I
=~

deformovany stav

777277 S7/7777

L ~ ~
SA = / dzs (8“(5”)) gp i)
0 8[15‘ 835'

Teraz sCitam cez vSetky malé pridavky deformacii §ii(x) a dostanem pre celkovu
pracu trpaslikov

L 2 Poriadne si predumajte, ako sc¢itanim
A :/ dq;%SE (8“(33)) D J
0

or (integrovanim) cez § vznikla 72!

A toto je presne deformacna energia pruznej tyCe.



Vinenie tyCe — zachovanie energie

! kludovy stav
|
Ix

>+ JIe u(x)

deformovany stav

77 //ﬁ 77777
t~

=
NUCULEXCRRN

I
Pohybova rovnica tyCe je vinova rovnica
O*u(t,x)  FE d%ult,x)
o2 o 0z
DokaZeme, Ze ak deformacia u(t, x) spifia pohybovu rovnicu, energia sa zachovava.
PocCitajme Casovu derivaciu energie

d _, d 1 [Out,z)\® 1 du(t, )\’ B

at = w (29( ot ) +§E( Oz v =
B O%u(t, x) Ou(t, ) O%u(t, x) Ou(t, ) B

- / (Q o2 ot Y otor oa ) av =

B / (E82u(t,3:) ou(t, x) N E(‘?Qu(t,m) au(t,x)) S

N Ox? ot Jotox Ox

ked sme dosadili za druhu €asovu derivaciu pravu stranu pohybovej rovnice



. . o d Ly 0%u(t, z) dul(t, x) O%u(t, ) Ou(t, )
Mame zatial g — ) ’ ) ;
th /o (E Ox? ot B otox ox ) Sdz

Na prvy Clen pouzijeme per partes (podla premennej integrovania, teda x) a
dostaneme

d o /OL ( Ea%(t,.q;) ou(t, ) N Eﬁzu(t,x) ﬁu(t,x)) S

dt Ox? ot otox ox
~ [Ou(t,z) du(t, x) L /L ou(t, x) 0%u(t,x) 0%u(t, z) Ou(t,x) B
_[ or o L+ A i e S TR 17 M ) L
=0

Clen v hranatych zatvorkach je nulovy, lebo na hraniciach je deformacia nulova.
Scitance v integrali su rovnaké ale s opacnym znamienkom, takze celkovo
dostavame nulu.

Casova derivacia energie je teda nulova, energia je konstantna, zachovava sa.

Pre nase ,nove fyzikalne zviera®, pruznu ty€, sme nasli vyraz pre energiu (do
Feynmanovej zbierky vzorcov) a ukazali sme, Ze aj pre toto zviera plati zakon
zachovania energie.
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FEVVVVVVVVIVV

Ked sme vysSetrovali guliCku na pruzine z
energetického hladiska, za fyzikalny systém sme
povazovali guliCku a pruzina bola vonkajsi objekt.
Pracu sily od pruziny sme ,vyCarali“ za potencialnu
energiu guliCk 1

giug y ot = §Kz2
Potom sme vySetrovali samostatne pruzinu ako
fyzikalny objekt a nasli sme, zZe jej potencialna energia
(ni¢ ,vyCaraného!) je

1
Epot = §KZQ

To, ¢o by sme radi videli, je vySetrovat ,spojeny fyzikalny systém ,pruzina plus
gulicka” z hlfadiska zakona zachovania energie. Neurobili sme to, lebo sme nemali
pohybovu rovnicu pre pruzinu (nemali sme ani vzorec pre kinetickl energiu pruziny).
Nahradime teraz pruzinu pruznou tyCou, o ktorej vieme vSetko a vySetrime pohyb a
zakon zachovania energie pre systém ,guliCka nalepena na tyCi®
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Gulicka na pruznej tyci

kfudovy stav

deformovany stav

1ONNNAN NWNNAN

-

=

D——-- - —--——'———

§ = §

¢ suradnica gulicky, merana od konca nedeformovanej tyCe. TyC (nedeformovana)
ma diZku L. x identifikuje prierezy ty&e (je to vzdialenost prierezu od zadiatku tyce
v nedeformovanom stave). x je vlastne ,meno” prierezu tyCe. é-suradnica prierezu
tye s menom x v deformovanom stave je {(x) = —L + x + u(x). Koniec ty¢e ma
suradnicu é(L) = ¢, lebo to je suasne suradnica gulicky, teda u(L) = €.
Napatie na konci tyCe je (L) = Eau(x) _ Eau(x ~ L)

Ox lz=L Ox

Sila, ktorou guli¢ka pésobi na ty€ je F = o(L)S, ty€ na gulicku silou —a(L)S.




Gulicka na pruznej tyci

kfudovy stav

ﬂ i
®
B :
—>—:e u(x) i
|
g : deformovany stav
/ x+u(x) i
x =0 l
£=0
Pohyboveé rovnice teda budu
d*€(t) _ 1 ou(t,z=L)  Newtonova pohybova rovnica gulicky
dt? m ox
M — EM Vinova pohybova rovnica tyCe
ot2 o Ox?

u(t,z =0) =0, u(t,L)=¢() Okrajové podmienky tyCe



Energeticka bilancia samotnej pruznej tyce

d?£(t) 1 _Ou(t,x=1L)

7 : _
; - ,. klfludovy stav dt2 m L or
S u(x) L
5 ! E =. deformovany stav %2,33) — Ew
Y, IX+u(x) E i ot 0 ox
x=0 i !
T u(t,e =0) =0, u(t,L) = ()
B 1 (Ou(t,z)\’ ou(t,z)\”
Bye = / (29 ( ot ) O v
d B ou(t,z) 02 ou(t, ) O%u(t, x) B
prat i / (Q ot oz P or aar )WV T
B ou(t,z) 0*u(t, ) ou(t, z) 0%u(t, x) B
= / (E 5 92 + F o CYEw dV = per partes
L
_ E@u(t, x) Ou(t, ) _ Fﬁ
Ox or |, dt

Napravo je vykon sily, ktorou externy objekt, gulicka, posobi na ty¢, takze
energeticka bilancia tyCe je v poriadku. Energia samotnej tyCe sa nezachovava,
ale jej zmena je kryta pracou externého objektu guliCky. Super!



Energeticka bilancia samotnej gulicky

/ | | d?&(t) ou(t,x = L)
7 '. kfudovy stav a2 _RE ox
7 Ix l
) —>|—4I<— u(x) i i | é)zu(tj ;1:) B E 82u(t, ;C)
7 ;X+u(x) E =. deformovany stav atz - 0 a$2
x=0 i i
(=0 ¢ u(t,z =0) =0, wu(t,L)=~&~)
1 d&
Eou =
gul = 5 (dt)
iE df dzf B d‘f
g e =M =

—F je sila, ktorou tyC p6sobi na guliCku, dé¢/dt je rychlost konca tyCe a aj guliCky),
takze napravo mame vykon sily, ktorou tyC pésobi na guliCku. Takze zmena energie
gulicky je kryta pracou externého objektu, tyCe. Super! VSimnime si, Ze za energiu
gulicky sme povazovali len jej kineticku energiu. Nemali sme ziadnu ,potencialnu
energiu pruznosti“ ako pri gulicke na pruzine. Praca tyce sa totiz ,,neda vycarat™ za
akusi efektivnu potencialnu energiu gulicky. Praca tyCe totiz nie je dana len
zaCiatoCnym a koncovym stavom guli¢ky, lebo medzitym vnutorné vinenie tyCe mohlo
vyzerat od pripadu k pripadu vSelijako, takZze praca vykonana vonkajSim objektom
,Zavisi na ceste”.



Energeticka bilancia sustavy tycC plus gulicka

d?£(t) 1 _Ou(t,x=1L)

/ | i _
: | I. kludovy stav dt2 _EE Ox
/! X 1
| ] .
/ _M_T u P O%u(t,x)  E%u(t,x)
i : def y st — e - T T
Y — E :. eformovany stav o2 0 2
z=0 ] i
£=0 *§

u(t,r =0) =0, wu(t,L)=~&(%)

Ecelk — Egul + Etyé

Dajuc dokopy vysledky ziskané pre samotnu tyC a pre samotnu gulicku dostaneme

d d d ¢ d¢
L= S s
T

_Ece :_Eu — b ¢ — 0
gt el = gpbreu o By dt

Celkova energia sustavy ty¢€ plus gulicka sa teda zachovaval!
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M&ze vzniknut otazka, preCo sa to pri pruzine da vycCarat' a pri tyCi nie. V Com
su ty€ a pruzina odliSne?

Nuz, musi to byt tak, ze pri pruzine sme Svindlovali. VedeckejSie povedang,
daCo sme zanedbavali. Zanedbavali sme dynamiku pruziny. Pre pruzinu sme
nepisali ziadnu pohybovu rovnicu!

Pritom aj po pruzine sa zjavne moéze Sirit akési vinenie, o sme neuvazovali.
Pruzina instantne reagovala na pohyb guliCky rovhomernym roztiahnutim.

RigoréznejSou analyzou, Co a ako sme pri pruzine zanedbavali, sa pre istotu
zaoberat nebudeme.

Vysledkom zanedbani bolo, Ze praca pruziny nad guliCkou nezavisela na ceste
a mohli sme pracu vycCarat za efektivnu potencialnu energiu gulicky.



Energia a interakcia na dialku

Uvazujme dve Castice p6sobiace na seba gravitaCne.

= Pohybové rovnice su

2 — T

? d2 Gm1m2 —
4 7 — - — F

e (79 — 71).(7% —7“1))3/2( ") -
d2 Gm1m2 —

— . —; _ — —F
. N (R NG e

Pre Casticu majme zatial len jeden vzorec v zbierke: kineticku energiu

d d1 L d*r _ Ao

i T ot = e = 2.0
| @ dlm'E'Q mﬁ’dQFQ——ﬁ (0

dt 2 qr2 2T TR g T

Separatne pre kazdu Casticu je to ok, lebo zmena energie prvej Castice je kryta
vykonom sily, ktorou druha Castica p6sobi na prvu a podobne zmena energie druhej
Castice je kryta vykonom sily, ktorou na fiu pésobi prva Castica.

Problém nastane, pre systém oboch Castic: sumarna energia sa nezachovava, ako to
bolo pri kontaktnej interakci. Podla zakona akcie a reakcie maju sice sily opacné
znamienko, ibaze Castice nemusia mat rovnaku rychlost, ako mali objekty v pripade
kontaktnej interakcie (ktoré sa dotykali), takze suma pravych stran sa nevynuluje.
Pritom ziadny dalSi vonkajSi objekt nepdsobi!

Zaver: bud’ sa energia nezachovava, alebo sme na nie€o zabudli. 61



Energia a interakcia na dialku

VySetrime podrobnejSie, ako je to z energiou sustavy dvoch Castic

Gmlmg
(72 = 71).(F2 — 71))3/2

VsSimnime si ale, Zze vyraz na pravej strane sa da pisat ako Casova derivacia akejsi
funkcie pol6h dvoch Castic. (Genialne sa pozriem na ten vztah a vidim !)

d (7 d Gmim
(El + Ez) Flg.(’Ul — 'UQ) — 1m2

d =
7 —(E1 + Eg) = Fi2.(U] —vg) =

(72 —71).(U2 — 1)

dit dt (72 — 77).(r% — ”'“1))1/2
d Gmime
. , E E, — =0
Takze plati pm ( 1+ Lo (Fo — 71).(Fs — 7,,1))1/2)
(g LB Gmum2) _,
dt |7 — 771

Nasli sme novy vzorec do Feynmanovej zbierky! Ale pozor. Nas system sa sklada z
dvoch Castic, ale nepribudol vzorec aplikovatelny na kazdu casticu zvlast’
Pribudol vzorec pre ,,dvojcastiCie®. Az dve Castice chapané ako jeden systém maju

novy vzorec.
62



Energia a interakcia na dialku

Gm1m2 ) —~0

|7y — 71

d
"B, B, —
dt(1+ 2

Zakon zachovania energie pre dve gravitujuce Castice teda zachranil novy vzorec

L L Gmim
Eint(TI:»TQ) = —ﬁ

Hovorime tomu interakCna energia dvoch gravitujucich Castic, nachadzajucich sa v
polohach 7, 7,.

Mame ale problém s interpretaciou prace ako spdsobu transferu energie. Pre
: D . d E—
energiu prvej Castice plati EEl = Fiy.17

Co hovori, ze energia Castice narasta (uvazujeme teraz priblizujuce sa Castice)
,pritekanim” energie, ako hovori vykon na pravej strane. Ibaze energia druhej
Castice neklesa, ale tiez narasta. Kto to plati? Formalna odpoved je jednoducha,
kinetické energie oboch Castic narastaju na ukor ich interakCnej energie, ktora klesa
(stava sa viac zapornou). Ibaze akosi necitime, ze by interakCna energia bol
fyzikalny objekt, z ktorého ,odteka energia“ tak, ze by konal pracu nad Casticami.
Viac by sa nam pacilo, keby sme energetické naklady mohli ,zosobnit”, ako ked
firma hodi na krk stratu konkrétnemu zamestnancovi. Co keby tak existoval

treti objekt, ktory by tu pracu ,naozaj konal®?



Pole ako sposob interakcie nablizko a jeho energia

Slajdy o energii gravitacného pola presahuju uroven uvodného kurzu, ale
uvadzame ich tu pre uplnost, aby sa dalo k tomu pripadne neskor vratit’.

Trik je v tom, ze vhodny treti objekt si m6zeme vySpekulovat vola sa gravitacne
pole. Silové pdsobenie dvoch telies navzajom na dialku popiseme alternativne
tak, ze Castice vytvaraju v priestore gravitacné pole, popisaneé v kazdom bode
vektorovou intenzitou pola g(7) tak, zZe sila posobiaca na bodovu (testovaciu)
gasticu s hmotnostou m v bode # bude F = mg(7)

Teraz budeme trochu Carovat, lebo bodova Castica vytvara v mieste, kde sa
nachadza formalne nekonecnu intenzitu a vznika problém so self-energiou. Preto
bodové Castice nahradime spojitym rozlozenim hmotnosti v priestore s hustotou
o (7). Potom intenzita pola bude

g(“f‘): |?;»_T—7|3(T_T)d r
: . C S L Gmim
a vzorec pre interakénu energiu nabojov Bint (71,72) = — 7 . F2|
2 — 11

zovSeobecnime takto

—f —
Bins = — / Goli")e7) 3.3

7]



Pole ako sposob interakcie nablizko a jeho energia

Vzorec pre interakCnu energiu rozlozenia hmotnosti prepiSeme s pouzitim
gravitacného potencialu budeného tym rozlozenim hmotnosti

90(?7) _ GQ('FI) 37

|7 = 7|

B = [ o)p(id*r
teraz si uvedomime, ze pre potencial pola platia tieto dva vztahy
Ap(r) = 4nGo(F)  §(F) = —Ve(7)

Eiy = / 4WGA<,0(T)g0(7‘)d I’ = per partes = / —47TGVQO(T’).VgO(T‘)d =

Vsimnime si, Ze interakCnu energiu Castic (latky) sme prepisali ako objemovy
integral z kvadratu intenzity gravitacného pola. Castice (latka) zo vzorca zmizla, je

tam len pole. Preto je prirodzenejSie nazvat ten novy vzorec nie interakCna energia
latky ale energia pola.



Energia pola

Zmenime preto aj oznacenie a piseme
E ole — _/ = 52(7?)6137?
P e

Zakon zachovanie energie, ktory sme pre dve gravitujuce Castice pisali v tvare

d G

— | E1 + B9 — M =0

dt |75 — 71|
Mb&zeme teraz zapisat' v tvare

d

E(Ekinet.létky + Epole) =0

Vytvorenie noveho objektu ,pole” restauruje aj vyznam spojenia ,praca ako spdsob
transferu energie®. Kineticka energia Castic (latky) sa meni, lebo pole nad nimi kona
pracu a tym energia prechadza z pola do latky alebo naopak. Energia zavedenim
pola ,niekde je". Vzorec pre energiu pola evokuje predstavu, ze pole a jeho energia
su rozlozené v priestore, pricom hustota energie pola pripadajuca na objemovu
jednotku priestoru je

Wpole = _4 Gg




Elektricke pole a jeho hustota energie

Poslednu pripadovu studiu ponechavame na usilovnost Citatela. Uvazujme Cosi
ako nabity kondenzator, dve velké paralelné nabité kovové dosky v malej
vzdialenosti od seba, ale neupevneng, takze sa mézu hybat. Medzi doskami je
elektrické pole. Dosky na seba pdsobia silou. Ak napiSem pohybové rovnice pre
dosky, zistim, Ze kineticka energia dosiek sa nezachovava. Zakon zachovania
energie zachranim, ak zavediem pojem interakéna energia dosiek. Alternativna
zachrana je take, Ze poviem, Ze kineticka energia dosiek sa meni, lebo sa meni
energia ,uskladnena” v elektrickom poli medzi doskami a zistim, ze spravny
vzorec pre objemovu hustotu energie elektrického pola je

—

Wpole = 6052(T)

Odvodenie v tomto Specialnom pripade je ovela menej matematicky naro¢né ako
pre pripad gravitacného pola.



Bonbonik na zaver

Choédzu umoznuje trenie, ktoré udel'uje
chodcovi hybnost’ dopredu.
Kona pri tom trenie pracu?



OPAKOVANIE Kto pohana chodca? Trenie.

Chodec tlaci na topanku smerom dozadu, ako keby chcel, aby sa topanka
Smykala dozadu. Trenie tomu brani silou, ktora smeruje dopredu. Na chodca
neposobi vo vodorovnom smere Ziadna vonkajsia sila okrem trenia. Trenie teda
pohana chodca dopredu. Nie je teda pravdou, Ze trenie vzdy posobi proti
pohybu. Na obrazku Cervena sila je trecia sila, ktorou teniska p6sobi na
podlozku, zIta sila je reakcia podlozky, trecia sila, ktorou podlozka p6sobi na
tenisku a ,pohana“ chodca dopredu. 69



Kto pohana chodca? Trenie.

Vieme, ze plati veta o tazisku: ak nepbsobi vonkajsia
sila, tazisko sa nemoéze zrychlovat. Pre zrychlenie

taziska plati Newtonova rovnica
’ "

2R* 1 =
| _ 1z
* dt? m

kde F je celkova vonkajSia sila.

Ak bezec zrychluje (napriklad dava so zo stoja do pohybu), potrebuje na to, aby
niekto zvonku pésobil vodorovnou silou dopredu. Zvonku ale nik nepésobi, iba
podlozka pod nohami, a to len trenim medzi podoSvami tenisiek a podlozkou. Ibaze
to nie podlozka si ,zmysli“, Ze potlaCim chodca dopredu. Trenie v smere dopredu je
len reakcia podlozky na chodcovu nohu tlaciacu dozadu. VSimnime si to
rozfazované na obrazku.

Chodec odlahdil pravu nohu a zatazil favd. Potom zacal na
lavu nohu tlacit' aj vodorovne dozadu, akoby ju chcel Smykat
po podlozke. Trenie ale nedovoli nohe preSmyknut, vyvinie
protisilu dopredu, ta dopredna sila je vonkajsia sila, ktora
chodca posunie dopredu. Prava noha vpredu dokroCi , chodec
ju zatazi aby sa neSmykala (toto uz nie je na siluetovom
obrazku), odfahéi dovtedy zatazenu lavu nohu a prisunie ju
dopredu. Prave dokonCil jeden krok.




Kto pohana chodca? Trenie.

Prave sme sa presvedcili, ze chodca posuva
dopredu trenie. Ale ak chodec pritom
zrychfuje alebo kracCa do kopca, rastie jeho
energia. Musi sa teda niekde konat praca.
Prirodzené by bolo povedat, Ze trenie nielen
udeluje chodcovi zrychlenie, ale aj kona
pracu a tym chodec ziskava energiu.

Ale to asi nie je pravda, tu su dva argumenty:

« odkial by na to podlozka brala energiu. NavySe vsetci vieme, ze ak chceme
kraCat, potrebujeme na to zjest nejaké tie sendvi¢e. Chemicku energiu v jedle v
tele nejako premenime na mechanicku. Ale asi sotva tak, Ze premenenu energiu
nejako napumpujeme do podlozky a ta ju potom pouzije na pracu a zvySenie
nasej mechanickej energie

« Dopredna sila trenia zjavne nekona ziadnu pracu, lebo pdsobi na tenisku vtedy,
ked ta sa nehybe, neposuva sa po nejakej drahe. Teda praca, sila krat draha, je
nulova.

Zaver: je to nejako tak, ze pomocou vnutornych sil systém nemoéze zvysit’

svoju hybnost’, potrebuje na to pomoc vonkajsej sily. Ale zrejme konanim

prace vnutornych sil vnutri objektu, moze zvysit’ svoju (napriklad) kineticku
energiu, vonkajsie sily pritom nemusia konat’ pracu. Ukazeme si to na

jednoduchom modeli ,robotického jednorozmerného chodca“. 71



Jednorozmerny roboticky chodec, popis konstrukcie.

Toto je originalna konstrukcia vytvorena pre tuto prezentaciu.

Telo

I|:l
——

Zakladom su dva od seba oddelené voziky ,Telo” a ,Noha“, ktoré sa na kolieskach
pohybuju po podlozke bez trenia. Oba voziky maju na sebe namontovany
,mechanizmus trecej podosvy”“. Ovladany je elektromagnetom (hneda kocka), ktory
,2podosvu“ bud nadvihne nad podlozku, alebo naopak pritlaci na podlozku.
Podlozka ma velky koeficient trenia, takze ak je pritlacena, dany vozik sa neméze
hybat, brani mu v tom trecia sila medzi podlozkou a ,podoSvou*

Na ,Tele” je nalepeny hydraulicky valec, v hom sa pohybuje piest s piestovou
tyCou, ktorej vonkajSi koniec je nalepeny na ,nohe"“. Na hydraulike je olejové
cerpadlo, ktoré méze pumpovat olej sprava dolfava a naopak a tlaCit’ tak na piest
raz zlava a inokedy sprava.

Takyto robot vie ,kracat”, odstrkavat sa nohou dopredu. Jeden krok je zlozeny zo
styroch faz, ukazeme si ich.



Jednorozmerny roboticky chodec, stav 0

Telo

—s

* 0

,Podosva“ na Nohe je pritlacena na podlozku. Noha sa nem&ze hybat, brani jej v
tom trenie. Telo sa m6ze hybat bez trenia. Piest je v [avej krajnej polohe.

V tomto stave spustime hydraulické Cerpadlo, ktoré bude preCerpavat olej z lavej
strany valca na prvu, posuvat piest dolava, vysuvat piestnu tyC, ktora sa zaprie do
nohy, ale kedze ta je nehybna, musi hydraulicky valec odtlaCit telo doprava.



Jednorozmerny roboticky chodec, stav 1

Telo

f——=\
* -

Skoncilo preCerpavanie oleja, Telo sa posunulo oproti povodnej polohe dopredu,
Noha ostala na pévodnom mieste, vzdialenost Nohy od Tela sa teda zvacsila.
Tazisko systému Telo+Noha sa posunulo akoby pod vplyvom sily piesta, ale posun
taziska zabezpecila podlozka trecou silou pésobiacou dopredu na podoSvu Nohy.
Ak cesta smeruje do kopca, potom Telo ziskalo potencialnu energiu pracou
hydraulického Cerpadla. Trenie nekonalo ziadnu pracu.

V tomto stave ,prenesieme vahu“ z Nohy na Telo, teda odlahCime podosvu nohy a
pritlaCime podosvu Tela



Jednorozmerny roboticky chodec, stav 2

W ——"

T

Telo

PritlaCila sa podosva Tela, odlahCila sa podoSva Nohy. Noha sa méze hybat volne.
Telo sa nem&ze hybat, brani mu v tom trenie.

Teraz spustime hydraulické Cerpadlo, bude preCerpavat olej sprava dolava, piest sa
bude posuvat smerom k telu a tahat za sebou nohu smerom K telu.



Jednorozmerny roboticky chodec, stav 3

Telo

Ja’—‘jl

Skongilo sa prederpavanie oleja, Noha sa prisunula k Telu. TaZisko systému
Noha+Telo sa zase posunulo dopredu, umoznilo to trenie podosvy Tela.
Predumajte ako vznika. Olej tlaCi na piest v smere dopredu ale aj na laveé veko
hydraulického valca smerom dozadu. Valec je prilepeny na Telo a snazi sa ho
tahat dozadu. Tomu brani trenie podosvy Tela, podlozka vyvinie silu smerom
dopredu! (Aby zabranila posunu Tela dozadu.) Ak to bolo do kopca, hydraulické
cerpadlo vykonalo pracu na zvySenie potencialnej energie nohy, trenie ziadnu
pracu nekonalo!

V tomto stave ,prenesieme vahu“ z Tela na Nohu, teda odlahime podoSvu Tela a
pritlaCime podosvu Nohy.



Jednorozmerny roboticky chodec, stav 4

Telo

Zatazena je podosva Nohy. Noha je !prisunuta k Telu. Cely systém je v rovhakom
vhutornom stave ako bol v stave 0, ibaze je posunuty dopredu ako celok, urobil krok!
Ak to bolo do kopca, potrebnu pracu dodalo v dvoch fazach vnuatorné hydraulicke
cerpadlo. Silu potrebnu na posunutie taziska ,dodala“ podlozka ako trenie.

Na dalSom slajde su pre porovnanie ukazané oba stavy, 0 aj 4



Jednorozmerny roboticky chodec, stavy 0 a 4

Robot urobil krok dopredu!

Telo

Poznamka: Ak podlozka je priliS klzka, magnety by namiesto pritlaCania trecich
podosiev mohli ovladat vysuvacie ihly, ktoré sa zabodnu do polozky a znehybnia
Nohu alebo Telo. Takto v podstate funguje chodec na lade, kde je malé trenie.
Obuje si macky.



Zdovodnite, preco kladivo vyvinie vacsiu silu pri zatiCeni klinca o rovnaku
hibku, ak bude mat va&siu kineticki energiu.

Ukazte, ze nemoznost zostrojit perpetuum mobile vyzaduje, aby praca
potrebna na zdvihnutie telesa po naklonenej rovine bola rovnaka akol praca
pri jeho zdvihnuti kolmo hore.

PreCo, ked uz do energetickej bilancie zahrniem potencialnu gravitactnu
energiu telesa typu mgh, tak uz nesmiem do bilancie zahrnut aj pracu
gravitacnej sily.

Odvodte potencialnu energiu guliCcky na pruzine pri vychylke x.

Vysvetlite, Co je to potencialna energia interakcie na priklade dvoch telies
pOsobiacich na seba gravitaCne.

Dokazte, ze pri Sikmom vrhu bez trenia sa energia zachovava

Ako sa modifikuje zakon zachovania mechanickej energie ak teleso, ktoré sa
Smyka pod vplyvom gravitacie dolu po naklonenej rovine posobi aj Smykové
trenie.



Tekutiny

Tekutiny (anglicky fluids) su latky, ktoré tecu. Ale vieme, ¢o o znamena tiect?

Najprv priklady

* voda tecie

 med tecie (trochu ,horsie” ale tecie)

* kus zeleza netecie

* plyn tedie: toto treba trosku priblizit. Ak napriklad praskne termoska s
tekutym argénom, robi sa na zemi mlaka tekutého argdénu. Ten sa rychlo
vypari a vznikne na tom mieste plyn v zdsade pri zemi, lebo argdn je tazky. A
ten plyn sa bude dalej ,roztekat do stran”, ako keby to bola dajaka
kvapalina. Pravda po ¢ase sa bude aj mieSat do vyssSich vrstiev vzduchu ale v
,prvej aproximacii“ sa moézme tvarit, Ze sa rozteka viac-menej pri zemi.



Teraz o odlisuje tekutiny od inych latok. Ked naklonim nadobu s tekutinou, bola v nej
povodne vodorovna hladina. Prudkym naklonenim vznikne najprv Sikma hladina ale
tekutina sa roztecie tak, ze sa znovu vytvori vodorovna hladina ale v Sikmej nadobe

e

Keby vrchna vrstva kvapaliny mala ostat nie vodorovna ale Sikma, musela by vrstva
tesne pod nou kompenzovat silu tiaze, ktora sa snazi vrchnu vrstvu Smykat po
vrstve pod riou staby po naklonenej rovine. Preto nizsia vrstva by musela posobit
na vyssSiu tangencialnou silu na rozhrani tych dvoch vrstiev podobne ako trenie na
naklonenej rovine brani hranolu Smykat sa dolu po naklonenej rovine. KedZe vrstva
tekutiny ,,neustoji“ byt Sikmo na spodnej vrstve, znamena to, Ze tekutina nevie na
styku dvoch vrstiev vyvinut tangencialnu silu, prinajmenej ked' je uz vsetko v klude.
Vieme ale, Ze med ,stecCie” pomaly, kym voda rychlo. TakZze v mede sa vie vyvinut
tangencialna brzdiaca sila, ale len ked'sa vrstvy navzajom pohybuju. Ten jav sa vola
viskozita: vznik tangencialnej sily na rozhrani navzajom sa pohybujtcich vrstiev.
Tekutina vsak nevie vyvinut tangencialnu silu na rozhrani dvoch navzajom sa
nepohybujucich vrstiev. >



Moéze sa zdat divné, preco davame ,,do jedného vreca” plyny a kvapaliny. Maju sice
vlastnost tekutosti spoloc¢nu, ale zdaju sa ndm tak rozdielne ako su rozdielne napriklad
kvapaliny a tuhé latky. Uz skélkarov ucia, aky je rozdiel medzi kvapalinami a plynmi. Ibaze
ich to udia zle.

Niet principidlneho rozdielu, ktory by umoznioval v absolitnom zmysle rozoznat, ¢i ide o
plyn alebo kvapalinu. Len ak mame naraz ,pri sebe” dve fazy vo vzajomnej tepelne;
rovnovahe, panuje vSeobecna dohoda, ktoru z nich nazveme kvapalinou a ktoru plynom.
Kvapalinou nazveme tu, ktora za rovnakych podmienok je napriklad hustejsia alebo menej
stlacCitelna. To su tie rozdiely, ktoré uci deti pani ucitelka v skblke. Ale uci to ako rozdiely,
pouzivajuc ,, porovndvacie” pridavné mena. Treba si ale uvedomit, Ze ,,porovnéavacie
pridavné meno“ sa neda pouzit na jeden objekt, musim ho vztahovat na objekty dva.
Povedat Ze , kvapalina je malo stlacitelna” v snahe zrusit porovnavaci charakter vlastnosti
kvapaliny je rovnaky nezmysel ako povedat Ze ¢islo 1 je ,malé”. Isto je malé voci milidnu ale
nie vocCi milidntine.

Odlisit tuhu latku od kvapaliny sa da v absoliutnom (neporovnavacom) zmysle. Z hladiska
Struktury su tuhé latky na molekularnej drovni usporiadané: polohy jednotlivych atdmov di
molekul su navzajom korelované na makroskopickych vzdialenostiach (teda ovela vacsich
ako su nanometre). Je to v dosledku krystalickej Struktury tuhych 1atok. Namietka, Ze kus
zeleza nevyzera ako krystal neobstoji. Na mikroskopickej urovni tisicov nanometrov je tuha
latka krystalicka, ibaze jednotlivé krystalické zrna nie su viditelné na drovni milimetrov.
Pravda, existuju ,,amorfné tuhé latky“ ktoré dlhodosahové usporiadanie nemaju, ale tie
nazyvame aj ,, podchladené kvapaliny”. Striktne vzaté ide o nerovnovazny stav ziskany
prudkym zmrazenim.



Meranie lokalneho smykového napatia

Naznacime jeden mozny princip merania Smykového napatia. Meracia sonda
vlastne meria lokalnu deformaciu v Smyku, ktoru zo znalosti modulov pruznosti
mozno prepocitat na Smykové napatie. Principialna schéma sondy je na
obrazku. Ide o dve paralelné plochy na jednej je zdroj svetla, na druhej
svetlocitlivy chip. Medzi plochami je priehladny elastomérovy (,,ako guma*“)
material. Ked sa plochy vodi sebe posunu, svetelny signal registrovany chipom
sa zmeni a zmenu mozZno prepocitat na posunutie.

T ———

Viem si predstavit, Ze ak je tenka sonda ,vlepena“ medzi dve vrstvy vzajomne
namahané Smykom v dutine zaoberajucej malu plochu velkych , klznych” pIc“)cQ,
potom by sa tym malo dat efektivnhe odmerat Smykové napatie



Tekutiny

Zaver: tekutina je latka, ktora na rozhrani navzajom sa nepohybujucich
vrstiev ma nulové tangencialne sily.

V praxi skdr pouzivame vyjadrenia o tangencialnom napati, ¢o je tangencialna
sila p6sobiaca na jednotku plochy rozhrania.

V stojacej tekutine teda na lubovolnud myslenu plochu moéze p6sobit len
normalovy tlak (kratko sa hovori len tlak). Plati pritom, ze na danom mieste v
kvapaline je tlak na lubovolnu myslenu plochu nezavisly na orientacii tej
plochy: ,tlak je vo vSetkych smeroch rovnaky“ (toto je jedno z dvoch tvrdeni
Pascalovho zakona).



Dokaz Pascalovho zakona (o smeroch tlaku)

Uvazujme maly objemovy element kvapaliny v
rovnhovahe (nehybucej sa) tvaru trojbokého hranola.
Na obrazku su naznacené tri kolmé tlaky na tri zo
stien. Kvapalina sa nehybe, preto vsetky zlozky
celkovej sily p6sobiacej na objemovy element musia
byt nulové. Zd6raznime, Ze vyrazy o, 0,, 0, nie su
y vektory ale velkosti kolmych tlakov. Velkost

prislusnych sil je potom ,,tlak krat plocha“.

Plochu lavej steny oznacme S. Potom plocha Sikmej

steny je zjavne S/ sin a a plocha spodnej steny je

priemet Sikmej plochy, teda S cosa/sin«a .

Zlozka y celkovej sily preto bude

0,8 — (0gsine)S/sina=0 = o0, =0,

Zlozka z celkovej sily bude

Y o,Scosa/sina — (0, cosa)S/sina =0

= 0o = 0,

Tlaky na lubovolne orientované plochy na danom mieste v
tekutine su teda rovnakeé (lebo uhol a bol lubovolny). .




The basic configuration of the fiber-optic sensor system incorporates a mesh. (Note that
pressure sensors typically measure a force over a known area and pressure is subsequently
calculated. As such, our sensor measures force as well; thus, all our data are in Newtons.) This
mesh comprises two sets of parallel fiber planes (Figure 1). The two fiber planes are configured
so that the parallel rows of fibers of the top and bottom planes are perpendicular to one
another. The planes are sandwiched together, creating one sensing sheet. Information from
the orthogonal fibers corresponds to information on a set of orthogonal axes. This information
creates a two-dimensional (2-D) plot of the pressure distribution on the mesh. For bend loss,
both sets of fibers are illuminated. We can determine 2-D information by measuring the loss of
light from each fiber. Knowing which fiber along the x-axis dims and which one along the y-axis
dims, one can determine the x- and y-coordinates of the pressure point.

(a)

http://www.rehab.research.va.gov/jour/05/42
/3/wang.html

(b)
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The shear sensor is constructed of two layers of bend-loss mesh sensors (Figure 2). The basic
design is a multilayered sensor in which the top and bottom layers are composed of a sensor
mesh embedded in a high-shear-compliant shoe insole. The coordinates of the pressure
points are taken from the top and bottom mesh sensors. With this method of determining
shear, we assume that the pressure points are originally directly above and beneath one
another. The pressure points will be shifted out of alignment because of shearing forces, and
the amount of misalignment determines the amount of shear.

(a) Sensor layers j
C > Eommpee’
FERER TR 0
000 0[0%"

Onginal position

(b) Shear displacement .
Applied compression force

Applied shear force

[[O00 sensormesh |

| |
Sheared position | EEEEER High-compsance material |

Twsssin ¥



Atmosfeéricky tlak

Preco sa voda neda vysat do vysky 1 torr=1 mm Hg =1/760 atm = 133.3 Pa
viac ako 10m?

1 Pa=1N/m?

1648 Blaise Pascal, French philosophei physicist and
mathematician, heard about the experiments of Torricelli
and was searching for the reasons of Galileo's and Torricelli's
findings. He came to the conviction that the force, which
keeps the column at 760 mm, is the weight of the air above.

Hustota vzduchu 1.23 mg/cm3

Hustota ortuti 13.6 g/cm?3

Vyska vzduchu, ktora vyvazi 760 mm
ortuti, teda ma byt rddovo 10 km, ¢o

S T L A U e je 21y radovy odhad vysky atmosfeéry

mercury and set it vertically with the open end in a basin

of mercury. The column of mercury invariably fell to about

760 mm, leaving an empty space above its level. Torricelli

attributed the cause of the phenomenon to a force on the

surface of the earth, without knowing, where it came from. He also

concluded that the space on top of the tube is empty, that nothing 9
is in there and called it a "vacuum".

Evangelista Torricelli by Lorenzo




Budeme hlasovat’

Toricelli vykonal pokus s ortutou. Hustota ortuti 13.6 g/cm?3
Aku dlhu trubicou (priblizne) by bol potreboval, keby chcel vykonat’ ten
pokus s vodou

a)3m
D)5 m
c)10m
d)30 m



Magdeburské pologule

Atmospheric pressure

Magdeburg hemispheres
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Krvny tlak

Sphygmomanometer

column of mercury
indicating pressure
in mm Hg

Il

I

No sounds
B ' (artery is closed)

Sounds heard

> o (artery is opening
and closing)

e No sounds

squeezable bulb
inflates cuff with air

Krvny tlak 120/80 je udavany v torroch.

(artery is open)

12



Toricelli a Pascal

Interpretacia Toricelliho pokusu ako dosledku
atmosférického tlaku invokuje Pascalov zakon: Tlak sa
prenasa do kazdého miesta v kvapaline rovnako.
Vaha stfpca vzduchu, ktord ,,drzi hladina ortuti” v
miske je rovnakd ako vaha stipca ortuti od Grovne
hladiny az po hranicu vakua

vakuum

Demonstracia Pascalovho
zakona: tlak vody vo vysokej
trubici roztrhne sud

Teoreticky dokaz Pascalovho zakona si uvedieme neskor. 13



Archimedov zakon

4 p ’(’TFT oo |F Fy
I 5nE skdmen © gdievo

4 f \ B ng mg

Tenucké polyetylénové vrecko plné vody sa da pod hladinou presuvat
pomocou infinitezimalnej sily. Vznasa sa (stoji) pod hladinou, Newton teda
hovori, ze sucet sil od okolitej kvapaliny na povrch vrecka (alebo mysleného
objemu vody) musi byt rovny (vektorovo) vahe uvazovaného objemu
kvapaliny. Ak objem kvapaliny nahradime nejakym telesom, da sa
predpokladat, Ze tlakové sily na povrch od okolitej kvapaliny sa nezmenia:

Teleso ponorené do kvapaliny je nadlahcované silou, ktora sa rovna vahe

kvapaliny telesom vytlacenej. »



Archimedov zakon ako désledok hydrostatického tlaku

Podla Archimeda plati:
F =p3S—p1S=0Vg=0S(hy —h)g

p2 —p1 = 0g(ha — hq)

p = hog

hydrostaticky tlak

15



Dynamika idealnej kvapaliny
Idealna kvapalina:
* nestlacitelna (hustota hmotnosti kvapaliny je vo vSetkych bodoch rovnaka)
* neviskdzna (nulové tangencialne napatia nielen v klude ale i pri pohybe)

Realne kvapaliny su malo stlacitelné a maju nenulovu viskozitu

Nenulova viskozita znamena, ze dve vrstvy kvapaliny, ktoré sa navzajom
pohybuju na seba pbsobia tangencialnou silou: pomalsia vrstva ,,sa snazi“
rychlejsSiu vrstvu spomalit, naopak rychlejsia vrstva ,,sa snazi“ pomalsiu vrstvu
urychlit.

xr
Zltou Sipkou je znazornené tangencialne napatie ktorym vo viskoznej kvapaline pdsobi
vrstva ,, 1“ na vrstvu ,,2° zelenou Sipkou tangencialne napatie, ktorou vrstva ,,2“
posobi na vrstvu ,,1“ Experimentdlne poznatky hovoria, Ze velkost ,,zItého” napétia je

umerna gradientu rychlosti (n sa vola koeficient viskozity) v,
Opr = —1
Dy

16




Chaoticka a driftova rychlost molekul v objemovom elemente

V nasom kurze sme sa uz stretli s pojmom ,vektorové pole“ a ako priklad sme
uvadzali pole rychlosti prudiacej tekutiny. Ak hovorime o rychlosti tekutiny ,v
nejakom bode” nemame na mysli idealny matematicky bod a ani nie jednu
molekulu tekutiny. Mame na mysli ,malu LEGO-kocku® kvapaliny. Teda maly
objem (tzv. objemovy element), ktory je zanedbatelne maly voci rozmerom
napriklad potrubia, v ktorom tekutina prudi ale stale dost velky, takZze obsahuje
velké mnozstvo molekul tekutiny. Jednotlivé molekuly v objemovom elemente
sa pohybuju chaoticky vsetkymi smermi, ale tento mikroskopicky pohyb
nevnimame. Nam sa pohyb elementu javi tak, ako by sa ,,ako celok” pohyboval
nejakou ,rychlostou prudenia“. Z mikroskopického hladiska ide o strednu
rychlost mikroskopického chaotického pohybu molekdl, tzv. driftova rychlost.
Ak tekutina neprudi (teda makroskopicky sa nehybe) potom stredna driftova
rychlost molekul je nulova” molekuly sa hybu ndahodne vSetkymi smermi s
rovnakou pravdepodobnostou, ¢o v strednom da nulu. Ak tekutina prudi, teda
napriklad ak ,,fuka vietor”, znamena to, ze molekuly sa pravdepodobnejsSie
pohybuju v jednom smere oproti smeru opacnému, priemerna driftova rychlost
je nenulova. Pre nazornost: typickda ndhodna chaoticka rychlost molekul
vzduchu za obvyklych podmienok byva radovo 500 m/s, kym driftova rychlost
(teda rychlost vetra) byva radovo 10 m/s.



opakovanie ,
Vektorové pole

V kazdom bode priestoru je definovany vektor, mame teda
vektorovu funkciu polohy (a pripadne aj ¢asu)

7(?) resp. 7(15, 7)

/ fVT )f‘?(?)—(vm(:ﬁay,Z)a’vy(ﬂ%yaZ)anz(mv’UaZD

Predstavme si prudiacu vodu a rychlost prudenia v kazdom bode
18



opakovanie

Pole rychlosti meraju napriklad hydrolégovia

Zmeraju profil rychlosti v rieke, tvar riecneho
profilu (hibka, $irka) a potom uréia prietok
vody.

Napriklad typicky prietok vody v Dunaji v
Bratislave je 2000 m3/s = 2.10° kg/s

Hustota prudu vody v jednotkach
kgm2s je dana vzorcom

Jj = ov

Ak ma zaujimaju prietoky, mézem namiesto vektoroveho pola rychlosti
uvazovat rovno vektorové pole hustoty pradu j(7).

19



Laminarne a turbulentné prudenie

vektorové pole rychlosti prudnice pola rychlosti

Prudnice su trajektorie, ktoré opisuju objemové elementy tekutiny pri svojom
pohybe driftovou rychlostou. Lavy obrazok predstavuje ,snimku” pola rychlosti v
jednom ¢asovom okamihu. Na pravom obrazku nie je zachyteny jeden ¢asovy
okamih: jednotlivé useky prudnice opisuje objemovy element v rozlicnych po sebe
nasledujucich ¢asoch. Na nasom obrazku sa vsak zda, ze prudnice ako keby
kopirovali smery rychlosti rozlicnych objemovych elementov v rovhakom case.
Prudnice, ktoré ma takyto , pekny tvar” vznikaju vtedy, ak rychlosti dvoch
objemovych elementov na tom istom mieste v rozlicnych ¢asoch nie su od seba
prilis odlisné a ani rychlosti objemovych elementov v tom istom case v blizkych
miestach nie su prilis odlisné. Ak to tak nie je, hovorime o turbulentnom prudeni,
ktoré intuitivne vnimame ako prudenie ,,plné lokalnych nestabilnych virov*.



Laminarne a turbulentné prudenie
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Prudova trubica, rovnica kontinuity

c Predstavim si myslenu plochu (S;) a vSetky
prudnice, ktoré nou prechadzaju. Objemové
52 elementy idedlnej kvapaliny, ktoré sa pohybuju po
B tych prudniciach po nejakom ¢ase prechadzaju
— plochou S,. Vsetky tieto prudnice vytvaraju
| objekt, ktory sa vola prudova trubica.
Z konstrukcie prudovej trubice je jasné, ze ziadny objemovy element z nej nevyteka
,obvodovymi stenami®, elementy, ktoré do trubice vtiekli cez plochu S; zase vytiekli
cez plochu S,.
Uvazujme teraz stacionarne prudenie, teda také, ked sa vektorové pole rychlosti
objemovych elementov nemeni z casom. Na tom istom mieste v priestore je teda
rychlost objemového elementu, ktory sa na tom mieste prdve nachadza, stale
rovnakd. Prudova trubica je potom v ¢ase konsStantnd a da sa predstavit akoby to bol
kus pevného potrubia, cez steny ktorého kvapalina netecie. Kedze uvazujeme
nestlacitelnu kvapalinu, potom celkové mnozstvo kvapaliny, ktoré sa v nejakom
Case v tomto ,,potrubi“ nachadza, nezavisi na Case. Preto mnozstvo kvapaliny, ktoré
za nejaky ¢as do ,,potrubia” vtecie cez plochu S; musi byt rovné mnozstvu kvapaliny,
ktoré za ten isty Cas vytecCie cez plochu S,.



Prudova trubica, rovnica kontinuity
Predpokladajme, Ze rychlost vSetkych objemovych
elementov na ploche S; je rovnaka a podobne, ze aj
s, rychlost vSetkych objemovych elementov na ploche
S, je rovnaka (ale vo vSeobecnosti ina nez na
ploche §;). Uvazujme eSte, ze obe plochy su kolmé
s, na prudnice, ktoré nimi prechadzaju.

B

Vsetko to mozZe byt pravda aj pre dost velké plochy. Ak to tak nie je, m6Zzeme
vzdy uvaZzovat iba prudové trubice vymedzené velmi malymi priecnymi
plochami. Na dostato¢ne malej ploche uz mozno povazovat rychlosti za rovnaké
a plochu volit kolmo na prudnice. Pre nestlacitelnu kvapalinu potom plati

Ulsl — U252

Uvedena rovnica sa vola rovnica kontinuity, presnejsie jej Specialny tvar za danych
podmienok. VSeobecnejsie mozno pre fubovolnd myslenu uzavretu plochu v
prudovom poli rychlosti vyjadrit pre nestlacitelnd kvapalinu rovnicu kontinuity v
tvare: vytok nestlacitel'nej kvapaliny z uzavretej plochy je nulovy, teda

j{fﬁ.cﬁ:o



Bernouliho rovnica

--Uvazujme stacionarne prudenie idealnej
st tokina kvapaliny v pradovej trubici na obr. SU tam
znazornené dva okamihy oddelené ¢asovym
intervalom At. Za ten Cas do trubice natiekla
“tmavomodro oznacené mnozstvo kvapaliny a
' vytieklo zeleno oznacené mnozstvo kvapaliny.
, . Objemy tmavomodrého a zeleného mnozstva
v kvapaliny su rovnaké (nestlacitelnost).
== Uvazujme infinitezimalne uzku trubicu, potom
” T vietka modra kvapalina ma rovnakd stradnicu
| ¥1 arovnaku rychlost 1 a analogicky to plati aj
-- 1+ At o zelenej kvapaline. Kvapalina uzavreta v trubici
. Vintervale oznacenom ako a je v rovnakom
(b) stave na oboch obrazkoch. Pri zvazovani
zachovania energie treba teda kalkulovat len s energiou tmavomodrej a zelenej
kvapaliny. Do energie zaratame kineticku energiu a potencialnu energiu gravitacie.
Energia tmavomodrej kvapaliny bude B — %gAVruf N

: : - 1
energia zelenej kvapaliny bude E, = §QAVU§ + oAV gys

(a)




y Bernouliho rovnica
a __ Zakon zachovania energie hovori
ket Er = Ey +04
--  kde 64 je praca vykonanad kvapalinou viavo
od tmavomodrej kvapaliny a kvapalinou
.{1 vpravo od zelenej kvapaliny
Kvapalina vlavo od tmavomodrej tlaci silou

p1S1 a vykona kladnu pracu

(a)

d v)l(:mp 5A1 = DP1 51’01 At
——~_ Kvapalina vpravo od zelenej je tlaéena silou
P2+ 1,5, avykona teda zapornu pracu
o 5142 = —pQSQ’UQAt
-= Y2 , , , v
- A Celkova vykonana praca ,vonkajsou
_ kvapalinou® teda bude
) 0A = 0A1 + 0As = p1S1v1 At — paSova At

Po dosadeni do zakona zachovania energie dostaneme
1 1
5 0AVU; + 0AVgys — oAV vy — 0AVgys = prSiv1 At — paSyvp At

pre nestlacitelnu kvapalinu dostavame (rovnica kontinuity) S1v1At = Sev. At = AV

, ’ 1 1
a vysledkom bude vztah 5@@% + 0gys + Py = 59,0% T ogy1 + m .




Bernouliho rovnica

Pre stacionarne prudenie sme dostali Bernouliho rovnicu, ktora hovori, ze
pozdlz prudnice plati

1
—Q’U2 + 09y + p = const

2
VSimnime si, ze sme vlastne ziskali novy vzorec do ,,Feynmanovej zbierky“
vzorcov pre energiu, a to ,vyCaranim“ za vonkajsiu pracu tlakovych sil. Vzorec
hovori, ze objem nestlacitelnej kvapaliny AV, vystaveny tlaku p ma potencialnu
tlakovd energiu W, = pAV. Bernouliho rovnica je potom vlastne zakonom
zachovania energie a hovori, Ze sucet kinetickej, gravitacnej potencialnej a
tlakovej potencialnej energie objemového elementu kvapaliny pozdiz
prudnice je konstantny.
Doplinme bez dbkazu, Zze v pripade tzv. bezvirového prudenia idealnej kvapaliny
plati Bernouliho rovnica nielen pozdiz pridnice ale v celom objeme. Rovnica
sa dd zovSeobecnit v istych pripadoch aj pre stlacitelnu kvapalinu, potom v nej
nevystupuje priamo tlak ale tzv. tlakova funkcia. Zdujemcom od podrobnosti

odporucam napriklad llkovicovu ucebnicu. -



Bernouliho rovnica v nehomogénnom poli

1

Bernouliho rovnicu 5@’02 + 0gy + p = const

sme odvodili pre kvapalinu v homogénnom gravitachom poli. V podstate rovnaké
odvodenie sa da aplikovat aj pre pripad nehomogénneho pola ak ide o
potencidlové pole. Pre kvapalinu v gravitatnom poli s potencidlom ¢ (7) bude
platit

1

59'02 + 0p(7) + p = const



Bernouliho rovnica pre neprudiacu kvapalinu

V statickom pripade ked kvapalina neprudi, ide automaticky o ,,bezvirové
prudenie”, takze v celom objeme kvapaliny plati

0p(7) + p = const

Z uvedenej rovnice okamzite vyplyva aj rovnica pre hydrostaticky tlak p = hog.
Ak rozdiely v hodnotach gravitacného potencialu su voci hodnotam tlaku
zanedbatelné potom dostaneme zjednodusenu formu Pacalovho zakona

p = const
teda pri zanedbani gravitacie je tlak v celom objeme stojacej idealnej

kvapaliny rovnaky.

Ak hydrostaticky tlak je nezanedbatelny, potom dostaneme Pascalov zakon v
tvare: navysenie tlaku nad hodnotu hydrostatického tlaku je v celom objeme
stojacej idealnej kvapaliny rovnaké.

28



Pascalov zakon, hydraulika

Tlak v nestlacitelnej kvapaline v uzavretom priestore sa Siri do vSetkych miest
a vo vSetkych smeroch rovnako
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Pascalov zakon, hydraulika
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Bernouliho rovnica
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Chybné vysvetlenie!!l!

fastec .Flou, lower P

A Y /
-___——:—//'77?::\5-—

Slewer .Flot:i\, kics\r\er P
[P/( + il_\f‘ = C.o'n‘si-:\




Co je to vektorové pole

Dokazte lubovolnym sp6sobom Archimedov zakon

Vzorec pre tangencialne napatie v prudiacej viskoznej kvapaline

Ako znie Pascalov zakon (obe jeho Casti)

Suvis Pascalovho zakona a hydraulickych strojov

Napiste Bernouliho rovnicu

Ako sa meria rychlost prudiacej tekutiny vyuZijuc Bernouliho rovnicu
Co je to lamindrne a turbulentné prudenie



Ako sme objavili, ze svet sa sklada
z atomov a molekul



Prerod alchymie na chémiu

Intuitivne vnimanie sveta okolo nas hovori, Ze svet okolo nas je , latkovej povahy*.
Objekty okolo nds sa skladaju z rozli¢nych latok. Ugelné vyuZivanie okolitych objektov
ako nastrojov alebo surovin vyZzadovalo zhromazdovat poznatky o Strukture,
vlastnostiach a premenach latok.

Poznatky tohto typu sa zhromazdovali nie celkom systematickym (dnes by sme povedali
nevedeckym) spésobom najma medzi alchymistami.

Nedostatok vedeckych postupov viedol k tomu, zZe poznatky o rozlicnych
alchymistickych procedurach boli ¢asto nereprodukovatelné, obsahovali vela
nepodstatného balastu a mystiky.

Vedeckd metodoldgia sa vo vSeobecnosti zacala formovat okolo roku 1600, ako prvy
pokus o systematicky vyklad vedeckej metodoldgie sa uvadza spis René Descartes:
Discours de la méthode z roku 1637.

Premena alchymie na chémiu bola postupnd a zdihava. So systematickym uplatriovanim
vedeckych postupov sa spomina najma meno Robert Boyle (1627-1691, objavil
napriklad zakon izotermickych dejov v plynoch pV = const). Ak sa md pomenovat
jeden otec modernej chémie, uvadza sa Antoine-Laurent de Lavoisier. Je dobré si ho
casovo zaradit do obdobia francuzskej revoltcie, ktorej neskor padol za obet

pod gilotinou. Jeho hlavna zasluha je zavedenie presnych kvantitativnych merani pri
rozlicnych ,,chemickych recepturach®.



Chemickeé receptury

Kvantitativne udaje o hmotnostiach a objemoch latok vstupujucich do alebo vystupujucich z
chemickych reakcii umoznili sformulovat vyznamné kvalitativne zakonitosti chemickych
reakcii.

Zakon stalych zlucovacich pomerov (Proustov zakon), hovori, Ze chemicka zlic¢enina
obsahuje vzdy presne rovnaky podiel prvkov latok vstupujucich do reakcie. Toto tvrdenie
prvykrat vyslovil Joseph Proust, na zaklade niekolkych experimentov vykonanych v
rokoch 1798 a 1804.

Daltonov zdkon (1808) o ndsobnych zlucovacich pomeroch potom bezprostredne viedol
k formulovaniu atdmovej hypotézy o mechanizme chemickych reakcii: Ak dva prvky
tvoria viac ako jednu zliceninu, potom pomery hmotnosti druhého prvku, ktoré sa
kombinuju s rovhakou hmotnostou prvého prvku, budi pomery malych celych éisel.
VSimnime si najma vyrazny rozdiel medzi "chemickymi receptami" a , kucharskymi
receptami®. Ak chemicky recept hovori ,vezmi 1g vodika + 7,94 g kyslika a horenim
dostanes vodu”, potom nie je mozné ,vziat 1g vodika + 10 g kyslika“ a dufat, ze
dostanem napriklad "hustejsiu vodu". Vznikne tolko ,Standardnej vody“ ako predtym a
2,06 g kyslika ostane nevyuzitych. Oproti tomu ak kucharsky recept hovori ,vezmi 4
vajcia a 200 g muky a urob palacinky”, mozes omylom vziat 220 g muky a stdle urobit zo
vsetkého palacinky, ibaze budu trochu tvrdsie.



Atomova hypotéza riesi zahadu, preco plati "Zakon stalych zlu¢ovacich pomerov"
(preco chemické recepty su tak prisne v porovnani s kuchynskymi). Ak "chemické
varenie", je len zluCovanie (kombinovanie) diskrétnych nedelitelnych atdmov, potom je
mozné, ze sa 2 atdmy vodika zlucia s 1 atdmom kyslika, ale to nie je mozné, aby sa 1
atom vodika zIucil s 2,12 atdmami kyslika. Tym sa automaticky tiez riesi aj zahada,
preco "zakon mnoznych zlucovacich pomerov“. Ak vsetky atomy urcitého prvku su
identické, maju teda rovnaku hmotnost ale atdmy rozlicnych prvkov nemaju rovnaku
hmotnost, potom pre ,vyrobu vody“ dostaneme stale pomery (Skalovanie receptur)

experiment: 1 5 totonie je celoCiselny
1g vodik + 7.94 g kyslik = 8.94 g voda = pomer

.94 :
5g vodik + 39.68 g kyslik = 44.68 g voda 79 39.68

a pre vyrobu peroxidu v porovnani s vodou

Experiment: ﬁ 2  toto je celociselny
1g vodik + 15.87 g kyslik = 16.87 g peroxid 15187 — 1 pomer

VSimnime si, Ze pomery hmotnosti pre jednu reakciu nie s presne celocCiselné, ale
pomery pomerov hmotnosti pre dve reakcie su presne celoCiselné. Predumaijte si tento
fakt a jeho suvis s chapanim reakcii ako kombinovania diskrétnych atomov.



Atdmova hypotéza bola schopna vysvetlit pozorované charakteristiky chemickych
receptur. V obdobi francuzskej revolucie teda atdbmova hypotéza dostala konkrétne
,vedecké” ¢rty. Hypotéza sama, ako ,nie dost vedecka Spekulacia” je starSieho data,
spominaju sa stari Gréci, najma Demokritos.

Na starogrécku atdmovu hypotézu sa niekedy divame trochu s
usklabkom. Bertrand Russell to komentoval, Ze to bola len stastna
nepodlozena hypotéza.

Myslim, ze to je trochu priprisne hodnotenie. To, o motivovalo
starych Grékov bol ,filozoficky” predpoklad Ze svet by mal byt
zalozeny na jednoduchych principoch. A to bolo v prinajmene;j

- zdanlivom protiklade s pozorovanou ré6znorodostou okolitého sveta.
TTTIITE Napad, ako skonzistentnit tieto dva protichodné aspekty, bol v
podstate LEGO-napad: kombinatoricky ,vybuch® Trik je vtom, Ze
niekolko malo typov zakladnych stavebnych kamernov
(reprezentujucich zakladné principy) v dostatocnom mnozstve
umoznuje bohatstvom kombinacii vytvorit obrovské mnozstvo
velmi réznorodych konstrukcii. To nebol ani hldpy ani uplne lacny
napad.




LEGO: kombinatoricky princip




Atomova hypotéza objasnila principy ,kombinatorickej stavby” latok z atomoy, ale
bezprostredne nezodpovedala ako konkrétne vyzeraju ,registrované partnerstva“
atomov v rozlicnych latkach, teda Ci je to ,jeden z jednym®, ,jeden s dvoma“, ,,dva s
tromi“ alebo ako. Suc¢asne nepovedala priamo aky je pomer hmotnosti rozlicnych typov

atomoy, teda vlastne ani aka je absolitna hmotnost jedného konkrétneho atému.

Netrufam si presne zrekonstruovat historicku cestu, ako sa postupne nachadzali
odpovede na tieto otazky. Ale principialne sa to da odhadnut. Urcite to nie je
jednoznacné rieSenie nejakych rovnic. Viac sa to podoba na ,,puzzle” o mnohych
neznamych a skusanie rozlicnych hypotéz. Treba totiz uhadnut chemické
stechiometrické vzorce tak, aby to bolo konzistentné s hmotnostami v chemickych
receptoch. Napriklad recept na vyrobu vody hovori

experiment:
1g vodik + 7.94 g kyslik = 8.94 g voda

Mo&zem skusit najjednoduchsiu hypotézu ,jeden s jednym®, teda Ze stechiometricky
vzorec vody je HO. Hmotnosti v chemickom recepte potom i tak neumoznuju urcit
absolutne hmotnosti atdbmov vodika a kyslika, ale relativny pomer hmotnosti atomu
vodika a atdmu kyslika ano. Pri predpoklade ,HO" recept zjavne hovori

mo = 7.94 X myg

(Pre istotu pripomenme, Ze dnes vieme, Ze toto je zle, ale stari chemici to pévodne
takto vyhdatali.)



Experiment:
100 g Zelezo + 28.65 g kyslik = 128.65 g oxidu (dnes nazyvaného Zeleznaty)
100 g Zelezo + 42.98 g kyslik = 142.98 g oxidu (dnes nazyvaného Zelezity)

100

5% FE 3

28.65 __ 1.50 = =
2

100
42.98

Preto najjednoduchsia stechiometricka hypotéza je
oxid Zeleznaty je FeO, oxid Zelezity Fe,O,. KedZe uz mame hypotézu, ze

mo =7.94 x mpyg

potom jednoducha trojélenka povie, ze

mpe =100 x F2my = 27.7 X my
Postupne skuisam skladac¢ku dopifat o daldie prvky a stale to dopada tak, Ze atém
vodika je najlahsi. Preto neprekvapi ndpad, ze kedZe nemo6zem z receptov urcit
absolutne hmotnosti atdmov (v jednotkach kg), zvolit si pre atdmovy svet int
nezavisli jednotku: hmotnost jedného atému vodika a relativne k tejto jednotke

vyjadrovat vsetky atdmové hmotnosti.



Experiment:
10g kyslik + 7.50 g uhlik = 17.50 g oxid uhlika, ktory dnes volame oxid uholnaty
10g kyslik + 3.75 g uhlik = 14.75 g oxid uhlika ktory dnes volame oxid uhlicity

Najjednoduchsia stechiometricka interpretacia: oxid uholhaty CO, oxid uhliéity CO,

Odtial dostaneme 7.94

me = 7.90 X &5 X my =5.96 X mpy

Takto moZzem v principe pokracovat zahrnutim dalSich chemickych receptov a tvorenim
dalSich hypotéz o stechiometrickom zlozeni latok.

Zdoraznime ale, Ze stechiometrické hypotézy nie su jednoznacné a moézeme sa dostat na
scestie. Ako sme sa dostali aj tu, ked sme pouzili nespravnu hypotézu pre vodu ako HO a
dostali sme atdmové hmotnosti

H..1, 0..7.94,C...5.96

Dnes uz vSetci vieme, Ze su to nespravne Cisla, hoci chemici im spociatku verili.

Cesta k ziskaniu spravnych atdmovych hmotnosti bola zlozita.



Celé trapenie pri hlfadani spravnych vzorcov a atdmovych hmotnosti trvalo prvym chemikom
dost dlho. Nebudeme to tu rekonstruovat. Hlavna chyba bola v zlom uréeni atdmove;j
hmotnosti kyslika.

Vlastne chyba bola v predpoklade, ze jednoduché chemikalie, ktoré dnes volame prvky, su
zlozené z nedelitelnych atdmov. BlizSia logicka analyza povie, Ze predpoklad o absolutnej
nedelitelnosti je prisilny. Chemické receptury zakazuju len nekonecnu delitefnost na
infinitezimalne kusky, delitelnost na maly pocet CiastocCiek je v poriadku. No a v tom to bolo,
ze plyny ako vodik a kyslik a dalSie su ,,zlG¢eniny”, presnejsie skladaju sa z dvojatomovych
molekul z rovnakych atdmouv.

Cestu k rieseniu otvorili kvantitativne chemické receptury pre plyny, vyjadrené nie v
hmotnostiach reagentov ale v objemoch reagentov. PresnejsSie v objemoch meranych za
rovnakych tlakovych a teplotovych podmienok. A tu ¢akalo prekvapenie.

Kym pomery hmotnosti v receptoch na konkrétne chemikalie nie su celoCiselné, az pomery
pomerov hmotnosti su celoCiselné, ukazalo sa, Ze pre objemové receptury uz pomery
objemov plynnych reagentov v jednej reakcii su celocCiselné.

Pomery hmotnosti neboli celociselné, lebo hmotnosti r6znych atdmov nie su rovnaké.
Celodiselnost pomerov objemov ako keby hovorila, Ze objemy atémov su rovnaké. Ale je i iné
rieSenie zdhady: celoCiselnost pomerov dostaneme aj vtedy, ak viastné objemy vsetkych

-----

objem prazdneho priestoru pripadajuci na jeden atom plynu je pre rozne atomy rovnaky.



Analyza objemovych receptov teda viedla k formulacii

Avogadrov zakon (1811)

Rovnaké objemy réznych plynov za rovnakého tlaku a teploty obsahuju rovnaky pocet
Castic (atomov alebo molekail)

Experimentalna objemova receptura pre ,,uvarenie vody“ hovori
1 liter of vodika + 0.5 liter kyslika dava 1 liter vodnych par

Podla Avogadra vysledny pocet Castic v parach vody je rovnaky ako bol pocet Castic
vodika. Preto kazdd Castica (molekula) vody spotrebuje jednu ¢asticu vodika. Ale v
polovicnom objeme kyslika je len poloviény pocet Castic kyslika. Kazda molekula vody
teda nemoze zozrat celu Casticu kyslika, kyslikov je primdlo. Preto musime pridat
hypotézu, Ze kyslikové Castice su v reakcii roztrhané a kazda molekula vody zozerie iba
polovicu povodnej Castice kyslika. Odtial hypotéza, Ze plyny su dvojatdmové a spravna
stechiometricka rovnica bude

2H, +0, = 2H,0



Spravna stechiometricka rovnica pre vznik vody z vodika a kyslika potom uz vedie k
spravnej interpretacii hmotnostného receptu a dé pre atém kyslika atdmovu hmotnost 16.
Prehodnotenie vSetkych receptov potom da spravne atdmové hmotnosti ako ich pozname
z Mendelejevovej tabulky

1

18
1A VIIIA
11A . . 8A
Periodic Table of the Elements
15
Atomic 5A
Number
Symbol
Name
Atomic Mass
4 5 6 7 8 9 10 1 12 .
IvB VB VIB viB Vil 1B B
4B 5B 6B 7B ¥ 8 \ 1B 2B
22 23 24 25 26 27 28 29 30
Ti V Cr Mn Fe Co Ni Cu Zn
i i ( i Iron Cobalt Nickel Copper Zinc
47.88 50.942 51.996 54.938 55.933 58.933 58.693 63.546 65.39 i
40 41 42 43 44 45 46 47 48
Zr Nb Mo Tc Ru Rh Pd Ag Cd
Zirconium Niobium i i i F i Silver Cadmium
91.224 92.906 95.94 98.907 101.07 102.906 106.42 107.868 112411 3

72 73 74 75 77 78 79 80

Hf Ta W Re OS Ir Pt Au

Hafnium Tantalum Tungsten henium Iridium Platinum Gold
178.49 180.948 183.85 186 207 190 23 192.22 195.08 196.967 200 59

104 105 106 107 108 109 110 111 112
Rf Db Sg Bh Hs Mt Ds R

Rutherfordium  Dubnium Roel lum Oopem cium
[261] [262] [266] [264] [269] [268] [269] [272]

Lanthanide
Series
Actinide

Series

Transition 0
Metal




V Mendelejevovej tabulke na predchadzajucom slajde su uz pouzité dnesné jednotky pre
atomové hmotnosti. PGvodna volba starych chemikov bola, Zze jednotkou atdmove;j
hmotnosti bude hmotnost atdmu vodika. Dnesna volba je, Zze jednotkou atdmovej
hmotnosti je 1/12 hmotnosti atému uhlika, presnejsie izotopu C22.

V tychto jednotkach je potom atdmova hmotnost ,bezného atému vodika” (o chvilu
prezradime, ¢o tym myslime) 1.008.



Hmotnostné pomery v chemicky recepturach nie su celociselné, kym pomery
hmotnostnych pomerov su presne celoCiselné.

Ale blizSi pohlad ukaze, ze aj samotné hmotnostné pomery su ,takmer celociselné”.
Napriklad receptura pre vodu

1g vodik + 7.94 g kyslik = 8.94 g voda

to je takmer

1g vodik + 8 g kyslik =9 g voda

To vedie k tomu, ze atdbmové hmotnosti vela atdmov v tabulke su ,takmer celé ¢isla“.
Co by sme usudili, keby platilo, Ze atdmové hmotnosti st ,presne celé ¢&isla®, hoci
niekedy aj dost velké? Prirodzend interpretdcia by bola takd, Ze atdmy su tiez zloZzené
objekty, skladajuce sa z LEGO-tehliciek rovnakej hmotnosti



Az v 20.storoci sa ukazalo, ze atdbmy su naozaj zlozené z elementarnejsich Castic, z proténoy,
neutronov a elektrénov. Protony a neutrény su v atdbmovom jadre, elektrény tvoria
,elektronovy obal”. P6vodna predstava o elektronoch bola, ze elektrény ,,obiehaju okolo
jadra“, Cosi ako mala slne¢na sustava. Tato predstava sa ukazala byt chybnad, spravnu tedriu
stavby atdmu objasnila az kvantova mechanika, presne sformulovana v dvadsiatych rokoch
20.storocia. Ukazala, ze pre Castice mikrosveta neplati mechanika zalozena na Newtonovych
zakonoch ale konceptualne Uplne novy typ zakonitosti, ktoré na tejto urovni nemozeme ani
len priblizit.

Pojmy hmotnosti Castice a elektrického naboja vSak ostavaju zachované aj v kvantove;j
mechanike a to je momentalne jediné, o potrebujeme. Takze zhriime (ako fakty bez ukazania,
ako sme sa k nim dopracovali) potrebné hodnoty pre protény, elektrony a neutrény.

Elektréon ma zaporny elektricky naboj o velkosti-1.602 x 1012 C (naboj elektrénu ma fyzik
vediet naspamat). Elektréon voci proténu ma zanedbatelnd hmotnost (priblizne 2000-krat
mensiu). Protdon ma kladny naboj v absolitnej hodnote rovnaky ako naboj elektrénu. Neutrdon
ma nulovy elektricky ndboj, ma hmotnost malo vacsiu ako protén Atdmy su elektricky
neutralne, takZze musia mat rovnaky pocet elektrénov ako protdnov. Pocet proténov v jadre
atdomu sa vola atdmové cislo atdmu

V Mendelejevovej tabulke:

atdmové cCislo
atdmova hmotnost




Patri sa, aby fyzik vedel naspamat atdomové a atémové hmotnosti (niekedy nazyvané aj
hmotnostné Cisla) s presnostou na celé Cislo aspon vodika, hélia, uhlika, dusika a kyslika

Najjednoduchsi atom je atdm vodika, ktory sa sklada z jedného proténu a jedného
elektronu. Okrem toho existuje v prirode aj tazky vodik (deutérium) ktory ma rovnaké
atomové Cislo (je to teda vodik) ale v jadre ma okrem proténu aj neutron. Hmotnostné cislo
deutéria je priblizne 2.

Atom s rovnakym chemickym menom (chemické vlastnosti atdmu su dané poctom
elektréonov, teda atdomovym Cislom) ale r6znym poctom neutrénov sa volaju izotopy (toho
istého prvku).

Hlavny izotop uhlika ma 6 protdnov a 6 neutrdnoyv, teda atdmové cCislo 6 a atdmovu
hmotnost (z definicie !!!) presne 12. Fakt, Ze pri znacke uhlika je v tabulke uvedend atdmova
hmotnost 12.011 odraza skutocnost, Ze v prirode sa vyskytuju aj izotopy uhlika s vac¢sim
poctom neutrénov a necelé Cislo odraza relativne zastupenie réznych izotopov v prirode.
Obycajny vodik s jednym protdnom a Ziadnym neutrénom ma dost presne atémovu
hmotnost 1, hodnota 1.008 v tabulke odraza relativne prirodné zastupenie deutéria, ktoré
ma v jadre jeden protdn a jeden neutron.




Preco atomové hmotnosti nie su celé cCisla

tabulkové hmotnostné Cisla odrazaju priemerné zastupenie izotopov v prirode
neutrdon a protdn nemaju rovnakd hmotnost

vazbova energia jadra sa prejavi Ubytkom hmotnosti vo¢i sume hmotnosti protonov a
neutrénov

hmotnost elektronu nie je celkom zanedbatelna



Mol
Chemické receptury sme kvantitativne vyjadrovali v jednotkach hmotnosti alebo

objemu. Najprirodzenejsie by bolo vyjadrovat ich v celych ¢islach, v poctoch atémov
alebo molekul, tak ako sa to pise v stechiometrickych vzorcoch, napriklad

2H, +0, = 2H,0

sotva vSak mo6zeme laborantovi povedat zober 2 molekuly vodika a 1 molekulu kyslika
a urob z nich vodu.

V praxi musime experimentalne pracovat s makroskopickymi mnozstvami molekul, teda
s velmi velkymi poc¢tami molekul. Sme zvyknuti, ze velké Cisla maju osobitné mena ako
milion, miliarda, bilion. To su stale primalé Cisla na narabanie s poctami molekul,
ktorych prichadza do uvahy radovo 10%3.

MozZna cesta by bola nazvat ¢islo 1023 ako “chem” a recept na vodu by znel ,,zober dva
chemy molekul vodika a jeden chem molekul kyslika a urob z nich vodu. Problém je v
tom, ze ,,chem” je pekna Cislovka s ostrou hodnotou ale pre laboranta neprijemna, lebo
sotva moze ratat molekuly stylom jedna, dve, tri, Styri,...,chem.

Ani predavac v Zeleziarstve nerata klince po jednom, ked’ zakaznik povie potrebujem
Casto predavanom pocte klincov ma uz pripravenu tabulku prepoctu hmotnosti na
pocet klincov. TakZe aj chemici maju pripravenu tabulku na taky prepopcet. Klu¢om je
slovo mal.



Mol

Mol je jednotka latkového mnozstva, de facto je to Cislovka, ktora este doneddavna bola
definovana takto:

1 mol Castic je taky pocet Castic kolko je atdbmov v 12 g uhlika 1§G

Casto potrebujeme vyjadrit hodnotu ,&islovky” mol aj numericky, zaviedol sa preto pojem
Avogadrova konstanta (Avogadrovo Cislo) ako pocet Castic v jednom mole. Fyzici sa dost
natrapili, kym experimentalne nasli hodnotu Avogadrovho cisla

6.022140857(74)x10%3 mol-?

Dve cifry v zatvorke je obvykly sp6sob ako uvadzat neurcitost merania (jednu Standardnu
odchylku) na dve platné cifry na poslednych uvedenych desatinnych miestach.

Vsimnite si ,,fyzikalny rozmer” mol™1. Je uzitoéné pouzivat takyto rozmer, aby sme nestratili
zo zretela, Ze ,bezrozmerny vysledok” nie je obycajné Cislo ale Cislo vyjadrené v
»jednotkach” mol. Zdrojom chyby mozZe byt ¢asto fakt, Ze niekto pouziva vacsiu jednotku
kmol (kilomol) a ked pomiesam v jednom vzorci mol a kmol, dostanem radovo zlu
hodnotu na konci.

Dobry zdroj informacii o tom, ako sa Avogadrova konstanta prakticky merala je Perrinova
nobelovska prednaska
http://www.nobelprize.org/nobel prizes/physics/laureates/1926/perrin-lecture.html



http://www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html

Nova definicia molu

V roku 2019 zazila sustava jednotiek SI dramaticki zmenu, uz sme o nej hovorili. Po novom
je teda mol definovany inak. Definitoricky je uréena hodnota Avogadrovho Cisla. Uvedme
oficidlnu definiciu v anglictine

The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.022 140 76 x 1023
elementary entities. This number is the fixed numerical value of the Avogadro constant, Na, when expressed in the
unit mol~! and is called the Avogadro number.

The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An

elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

Avogadrovo Cislo uz teda nemoézeme merat, ma definovanu hodnotu
N, =6.02214076%x10%3 mol™!

Jeden mol je potom definovany ako také mnozstvo latky, ktoré obsahuje prave N, Castic.

Experimentalni fyzici uz teda nemo6zu merat Avogadrovo cislo, podobne, ako nemo6zu

merat rychlost svetla vo vakuu, lebo aj ta je definovana. Co mézu merat (stale presnejsie a
presnejsie) aké je hmotnost jedného mélu uhlika 12C



Aky je rozdiel medzi receptami pre pecenie a chemickymi receptami, pokial
ide o nedodrzanie presnych hmotnostnych pomerov

Co hovori zakon o stalych zlu¢ovacich pomeroch

Co hovori zdkon o mnoznych zlu¢ovacich pomeroch

Avogadrov zakon

Co plati o pomeroch hmotnostnych pomerov v chemickych receptoch
PreCo atdbmové hmotnosti nie su celé Cisla

Co je to mél

Co je to Avogadrovo &islo a akd ma velkost

Aky je typicky rozmer jednej molekluly

Uvedte atdbmové hmotnosti aspon piatich prvkov

Co to je atdmové &islo

Uvedte atdmové Cisla aspon piatich prvkov



Ako sme objavili, ze svet sa sklada
z atomov a molekul



Prerod alchymie na chémiu

Intuitivne vnimanie sveta okolo nas hovori, Ze svet okolo nas je , latkovej povahy*.
Objekty okolo nds sa skladaju z rozli¢nych latok. Ugelné vyuZivanie okolitych objektov
ako nastrojov alebo surovin vyZzadovalo zhromazdovat poznatky o Strukture,
vlastnostiach a premenach latok.

Poznatky tohto typu sa zhromazdovali nie celkom systematickym (dnes by sme povedali
nevedeckym) spésobom najma medzi alchymistami.

Nedostatok vedeckych postupov viedol k tomu, zZe poznatky o rozlicnych
alchymistickych procedurach boli ¢asto nereprodukovatelné, obsahovali vela
nepodstatného balastu a mystiky.

Vedeckd metodoldgia sa vo vSeobecnosti zacala formovat okolo roku 1600, ako prvy
pokus o systematicky vyklad vedeckej metodoldgie sa uvadza spis René Descartes:
Discours de la méthode z roku 1637.

Premena alchymie na chémiu bola postupnd a zdihava. So systematickym uplatriovanim
vedeckych postupov sa spomina najma meno Robert Boyle (1627-1691, objavil
napriklad zakon izotermickych dejov v plynoch pV = const). Ak sa md pomenovat
jeden otec modernej chémie, uvadza sa Antoine-Laurent de Lavoisier. Je dobré si ho
casovo zaradit do obdobia francuzskej revoltcie, ktorej neskor padol za obet

pod gilotinou. Jeho hlavna zasluha je zavedenie presnych kvantitativnych merani pri
rozlicnych ,,chemickych recepturach®.



Chemickeé receptury

Kvantitativne udaje o hmotnostiach a objemoch latok vstupujucich do alebo vystupujucich z
chemickych reakcii umoznili sformulovat vyznamné kvalitativne zakonitosti chemickych
reakcii.

Zakon stalych zlucovacich pomerov (Proustov zakon), hovori, Ze chemicka zlic¢enina
obsahuje vzdy presne rovnaky podiel prvkov latok vstupujucich do reakcie. Toto tvrdenie
prvykrat vyslovil Joseph Proust, na zaklade niekolkych experimentov vykonanych v
rokoch 1798 a 1804.

Daltonov zdkon (1808) o ndsobnych zlucovacich pomeroch potom bezprostredne viedol
k formulovaniu atdmovej hypotézy o mechanizme chemickych reakcii: Ak dva prvky
tvoria viac ako jednu zliceninu, potom pomery hmotnosti druhého prvku, ktoré sa
kombinuju s rovhakou hmotnostou prvého prvku, budi pomery malych celych éisel.
VSimnime si najma vyrazny rozdiel medzi "chemickymi receptami" a , kucharskymi
receptami®. Ak chemicky recept hovori ,vezmi 1g vodika + 7,94 g kyslika a horenim
dostanes vodu”, potom nie je mozné ,vziat 1g vodika + 10 g kyslika“ a dufat, ze
dostanem napriklad "hustejsiu vodu". Vznikne tolko ,Standardnej vody“ ako predtym a
2,06 g kyslika ostane nevyuzitych. Oproti tomu ak kucharsky recept hovori ,vezmi 4
vajcia a 200 g muky a urob palacinky”, mozes omylom vziat 220 g muky a stdle urobit zo
vsetkého palacinky, ibaze budu trochu tvrdsie.



Atomova hypotéza riesi zahadu, preco plati "Zakon stalych zlu¢ovacich pomerov"
(preco chemické recepty su tak prisne v porovnani s kuchynskymi). Ak "chemické
varenie", je len zluCovanie (kombinovanie) diskrétnych nedelitelnych atdmov, potom je
mozné, ze sa 2 atdmy vodika zlucia s 1 atdmom kyslika, ale to nie je mozné, aby sa 1
atom vodika zIucil s 2,12 atdmami kyslika. Tym sa automaticky tiez riesi aj zahada,
preco "zakon mnoznych zlucovacich pomerov“. Ak vsetky atomy urcitého prvku su
identické, maju teda rovnaku hmotnost ale atdmy rozlicnych prvkov nemaju rovnaku
hmotnost, potom pre ,vyrobu vody“ dostaneme stale pomery (Skalovanie receptur)

experiment: 1 5 totonie je celoCiselny
1g vodik + 7.94 g kyslik = 8.94 g voda = pomer

.94 :
5g vodik + 39.68 g kyslik = 44.68 g voda 79 39.68

a pre vyrobu peroxidu v porovnani s vodou

Experiment: ﬁ 2  toto je celociselny
1g vodik + 15.87 g kyslik = 16.87 g peroxid 15187 — 1 pomer

VSimnime si, Ze pomery hmotnosti pre jednu reakciu nie s presne celocCiselné, ale
pomery pomerov hmotnosti pre dve reakcie su presne celoCiselné. Predumaijte si tento
fakt a jeho suvis s chapanim reakcii ako kombinovania diskrétnych atomov.



Atdmova hypotéza bola schopna vysvetlit pozorované charakteristiky chemickych
receptur. V obdobi francuzskej revolucie teda atdbmova hypotéza dostala konkrétne
,vedecké” ¢rty. Hypotéza sama, ako ,nie dost vedecka Spekulacia” je starSieho data,
spominaju sa stari Gréci, najma Demokritos.

Na starogrécku atdmovu hypotézu sa niekedy divame trochu s
usklabkom. Bertrand Russell to komentoval, Ze to bola len stastna
nepodlozena hypotéza.

Myslim, ze to je trochu priprisne hodnotenie. To, o motivovalo
starych Grékov bol ,filozoficky” predpoklad Ze svet by mal byt
zalozeny na jednoduchych principoch. A to bolo v prinajmene;j

- zdanlivom protiklade s pozorovanou ré6znorodostou okolitého sveta.
TTTIITE Napad, ako skonzistentnit tieto dva protichodné aspekty, bol v
podstate LEGO-napad: kombinatoricky ,vybuch® Trik je vtom, Ze
niekolko malo typov zakladnych stavebnych kamernov
(reprezentujucich zakladné principy) v dostatocnom mnozstve
umoznuje bohatstvom kombinacii vytvorit obrovské mnozstvo
velmi réznorodych konstrukcii. To nebol ani hldpy ani uplne lacny
napad.




LEGO: kombinatoricky princip




Atomova hypotéza objasnila principy ,kombinatorickej stavby” latok z atomoy, ale
bezprostredne nezodpovedala ako konkrétne vyzeraju ,registrované partnerstva“
atomov v rozlicnych latkach, teda Ci je to ,jeden z jednym®, ,jeden s dvoma“, ,,dva s
tromi“ alebo ako. Suc¢asne nepovedala priamo aky je pomer hmotnosti rozlicnych typov

atomoy, teda vlastne ani aka je absolitna hmotnost jedného konkrétneho atému.

Netrufam si presne zrekonstruovat historicku cestu, ako sa postupne nachadzali
odpovede na tieto otazky. Ale principialne sa to da odhadnut. Urcite to nie je
jednoznacné rieSenie nejakych rovnic. Viac sa to podoba na ,,puzzle” o mnohych
neznamych a skusanie rozlicnych hypotéz. Treba totiz uhadnut chemické
stechiometrické vzorce tak, aby to bolo konzistentné s hmotnostami v chemickych
receptoch. Napriklad recept na vyrobu vody hovori

experiment:
1g vodik + 7.94 g kyslik = 8.94 g voda

Mo&zem skusit najjednoduchsiu hypotézu ,jeden s jednym®, teda Ze stechiometricky
vzorec vody je HO. Hmotnosti v chemickom recepte potom i tak neumoznuju urcit
absolutne hmotnosti atdbmov vodika a kyslika, ale relativny pomer hmotnosti atomu
vodika a atdmu kyslika ano. Pri predpoklade ,HO" recept zjavne hovori

mo = 7.94 X myg

(Pre istotu pripomenme, Ze dnes vieme, Ze toto je zle, ale stari chemici to pévodne
takto vyhdatali.)



Experiment:
100 g Zelezo + 28.65 g kyslik = 128.65 g oxidu (dnes nazyvaného Zeleznaty)
100 g Zelezo + 42.98 g kyslik = 142.98 g oxidu (dnes nazyvaného Zelezity)

100

5% FE 3

28.65 __ 1.50 = =
2

100
42.98

Preto najjednoduchsia stechiometricka hypotéza je
oxid Zeleznaty je FeO, oxid Zelezity Fe,O,. KedZe uz mame hypotézu, ze

mo =7.94 x mpyg

potom jednoducha trojélenka povie, ze

mpe =100 x F2my = 27.7 X my
Postupne skuisam skladac¢ku dopifat o daldie prvky a stale to dopada tak, Ze atém
vodika je najlahsi. Preto neprekvapi ndpad, ze kedZe nemo6zem z receptov urcit
absolutne hmotnosti atdmov (v jednotkach kg), zvolit si pre atdmovy svet int
nezavisli jednotku: hmotnost jedného atému vodika a relativne k tejto jednotke

vyjadrovat vsetky atdmové hmotnosti.



Experiment:
10g kyslik + 7.50 g uhlik = 17.50 g oxid uhlika, ktory dnes volame oxid uholnaty
10g kyslik + 3.75 g uhlik = 14.75 g oxid uhlika ktory dnes volame oxid uhlicity

Najjednoduchsia stechiometricka interpretacia: oxid uholhaty CO, oxid uhliéity CO,

Odtial dostaneme 7.94

me = 7.90 X &5 X my =5.96 X mpy

Takto moZzem v principe pokracovat zahrnutim dalSich chemickych receptov a tvorenim
dalSich hypotéz o stechiometrickom zlozeni latok.

Zdoraznime ale, Ze stechiometrické hypotézy nie su jednoznacné a moézeme sa dostat na
scestie. Ako sme sa dostali aj tu, ked sme pouzili nespravnu hypotézu pre vodu ako HO a
dostali sme atdmové hmotnosti

H..1, 0..7.94,C...5.96

Dnes uz vSetci vieme, Ze su to nespravne Cisla, hoci chemici im spociatku verili.

Cesta k ziskaniu spravnych atdmovych hmotnosti bola zlozita.



Celé trapenie pri hlfadani spravnych vzorcov a atdmovych hmotnosti trvalo prvym chemikom
dost dlho. Nebudeme to tu rekonstruovat. Hlavna chyba bola v zlom uréeni atdmove;j
hmotnosti kyslika.

Vlastne chyba bola v predpoklade, ze jednoduché chemikalie, ktoré dnes volame prvky, su
zlozené z nedelitelnych atdmov. BlizSia logicka analyza povie, Ze predpoklad o absolutnej
nedelitelnosti je prisilny. Chemické receptury zakazuju len nekonecnu delitefnost na
infinitezimalne kusky, delitelnost na maly pocet CiastocCiek je v poriadku. No a v tom to bolo,
ze plyny ako vodik a kyslik a dalSie su ,,zlG¢eniny”, presnejsie skladaju sa z dvojatomovych
molekul z rovnakych atdmouv.

Cestu k rieseniu otvorili kvantitativne chemické receptury pre plyny, vyjadrené nie v
hmotnostiach reagentov ale v objemoch reagentov. PresnejsSie v objemoch meranych za
rovnakych tlakovych a teplotovych podmienok. A tu ¢akalo prekvapenie.

Kym pomery hmotnosti v receptoch na konkrétne chemikalie nie su celoCiselné, az pomery
pomerov hmotnosti su celoCiselné, ukazalo sa, Ze pre objemové receptury uz pomery
objemov plynnych reagentov v jednej reakcii su celocCiselné.

Pomery hmotnosti neboli celociselné, lebo hmotnosti r6znych atdmov nie su rovnaké.
Celodiselnost pomerov objemov ako keby hovorila, Ze objemy atémov su rovnaké. Ale je i iné
rieSenie zdhady: celoCiselnost pomerov dostaneme aj vtedy, ak viastné objemy vsetkych

-----

objem prazdneho priestoru pripadajuci na jeden atom plynu je pre rozne atomy rovnaky.



Analyza objemovych receptov teda viedla k formulacii

Avogadrov zakon (1811)

Rovnaké objemy réznych plynov za rovnakého tlaku a teploty obsahuju rovnaky pocet
Castic (atomov alebo molekail)

Experimentalna objemova receptura pre ,,uvarenie vody“ hovori
1 liter of vodika + 0.5 liter kyslika dava 1 liter vodnych par

Podla Avogadra vysledny pocet Castic v parach vody je rovnaky ako bol pocet Castic
vodika. Preto kazdd Castica (molekula) vody spotrebuje jednu ¢asticu vodika. Ale v
polovicnom objeme kyslika je len poloviény pocet Castic kyslika. Kazda molekula vody
teda nemoze zozrat celu Casticu kyslika, kyslikov je primdlo. Preto musime pridat
hypotézu, Ze kyslikové Castice su v reakcii roztrhané a kazda molekula vody zozerie iba
polovicu povodnej Castice kyslika. Odtial hypotéza, Ze plyny su dvojatdmové a spravna
stechiometricka rovnica bude

2H, +0, = 2H,0



Spravna stechiometricka rovnica pre vznik vody z vodika a kyslika potom uz vedie k
spravnej interpretacii hmotnostného receptu a dé pre atém kyslika atdmovu hmotnost 16.
Prehodnotenie vSetkych receptov potom da spravne atdmové hmotnosti ako ich pozname
z Mendelejevovej tabulky

1

18
1A VIIIA
11A . . 8A
Periodic Table of the Elements
15
Atomic 5A
Number
Symbol
Name
Atomic Mass
4 5 6 7 8 9 10 1 12 .
IvB VB VIB viB Vil 1B B
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V Mendelejevovej tabulke na predchadzajucom slajde su uz pouzité dnesné jednotky pre
atomové hmotnosti. PGvodna volba starych chemikov bola, Zze jednotkou atdmove;j
hmotnosti bude hmotnost atdmu vodika. Dnesna volba je, Zze jednotkou atdmovej
hmotnosti je 1/12 hmotnosti atému uhlika, presnejsie izotopu C22.

V tychto jednotkach je potom atdmova hmotnost ,bezného atému vodika” (o chvilu
prezradime, ¢o tym myslime) 1.008.



Hmotnostné pomery v chemicky recepturach nie su celociselné, kym pomery
hmotnostnych pomerov su presne celoCiselné.

Ale blizSi pohlad ukaze, ze aj samotné hmotnostné pomery su ,takmer celociselné”.
Napriklad receptura pre vodu

1g vodik + 7.94 g kyslik = 8.94 g voda

to je takmer

1g vodik + 8 g kyslik =9 g voda

To vedie k tomu, ze atdbmové hmotnosti vela atdmov v tabulke su ,takmer celé ¢isla“.
Co by sme usudili, keby platilo, Ze atdmové hmotnosti st ,presne celé ¢&isla®, hoci
niekedy aj dost velké? Prirodzend interpretdcia by bola takd, Ze atdmy su tiez zloZzené
objekty, skladajuce sa z LEGO-tehliciek rovnakej hmotnosti



Az v 20.storoci sa ukazalo, ze atdbmy su naozaj zlozené z elementarnejsich Castic, z proténoy,
neutronov a elektrénov. Protony a neutrény su v atdbmovom jadre, elektrény tvoria
,elektronovy obal”. P6vodna predstava o elektronoch bola, ze elektrény ,,obiehaju okolo
jadra“, Cosi ako mala slne¢na sustava. Tato predstava sa ukazala byt chybnad, spravnu tedriu
stavby atdmu objasnila az kvantova mechanika, presne sformulovana v dvadsiatych rokoch
20.storocia. Ukazala, ze pre Castice mikrosveta neplati mechanika zalozena na Newtonovych
zakonoch ale konceptualne Uplne novy typ zakonitosti, ktoré na tejto urovni nemozeme ani
len priblizit.

Pojmy hmotnosti Castice a elektrického naboja vSak ostavaju zachované aj v kvantove;j
mechanike a to je momentalne jediné, o potrebujeme. Takze zhriime (ako fakty bez ukazania,
ako sme sa k nim dopracovali) potrebné hodnoty pre protény, elektrony a neutrény.

Elektréon ma zaporny elektricky naboj o velkosti-1.602 x 1012 C (naboj elektrénu ma fyzik
vediet naspamat). Elektréon voci proténu ma zanedbatelnd hmotnost (priblizne 2000-krat
mensiu). Protdon ma kladny naboj v absolitnej hodnote rovnaky ako naboj elektrénu. Neutrdon
ma nulovy elektricky ndboj, ma hmotnost malo vacsiu ako protén Atdmy su elektricky
neutralne, takZze musia mat rovnaky pocet elektrénov ako protdnov. Pocet proténov v jadre
atdomu sa vola atdmové cislo atdmu

V Mendelejevovej tabulke:

atdmové cCislo
atdmova hmotnost




Patri sa, aby fyzik vedel naspamat atdomové a atémové hmotnosti (niekedy nazyvané aj
hmotnostné Cisla) s presnostou na celé Cislo aspon vodika, hélia, uhlika, dusika a kyslika

Najjednoduchsi atom je atdm vodika, ktory sa sklada z jedného proténu a jedného
elektronu. Okrem toho existuje v prirode aj tazky vodik (deutérium) ktory ma rovnaké
atomové Cislo (je to teda vodik) ale v jadre ma okrem proténu aj neutron. Hmotnostné cislo
deutéria je priblizne 2.

Atom s rovnakym chemickym menom (chemické vlastnosti atdmu su dané poctom
elektréonov, teda atdomovym Cislom) ale r6znym poctom neutrénov sa volaju izotopy (toho
istého prvku).

Hlavny izotop uhlika ma 6 protdnov a 6 neutrdnoyv, teda atdmové cCislo 6 a atdmovu
hmotnost (z definicie !!!) presne 12. Fakt, Ze pri znacke uhlika je v tabulke uvedend atdmova
hmotnost 12.011 odraza skutocnost, Ze v prirode sa vyskytuju aj izotopy uhlika s vac¢sim
poctom neutrénov a necelé Cislo odraza relativne zastupenie réznych izotopov v prirode.
Obycajny vodik s jednym protdnom a Ziadnym neutrénom ma dost presne atémovu
hmotnost 1, hodnota 1.008 v tabulke odraza relativne prirodné zastupenie deutéria, ktoré
ma v jadre jeden protdn a jeden neutron.




Preco atomové hmotnosti nie su celé cCisla

tabulkové hmotnostné Cisla odrazaju priemerné zastupenie izotopov v prirode
neutrdon a protdn nemaju rovnakd hmotnost

vazbova energia jadra sa prejavi Ubytkom hmotnosti vo¢i sume hmotnosti protonov a
neutrénov

hmotnost elektronu nie je celkom zanedbatelna



Mol
Chemické receptury sme kvantitativne vyjadrovali v jednotkach hmotnosti alebo

objemu. Najprirodzenejsie by bolo vyjadrovat ich v celych ¢islach, v poctoch atémov
alebo molekul, tak ako sa to pise v stechiometrickych vzorcoch, napriklad

2H, +0, = 2H,0

sotva vSak mo6zeme laborantovi povedat zober 2 molekuly vodika a 1 molekulu kyslika
a urob z nich vodu.

V praxi musime experimentalne pracovat s makroskopickymi mnozstvami molekul, teda
s velmi velkymi poc¢tami molekul. Sme zvyknuti, ze velké Cisla maju osobitné mena ako
milion, miliarda, bilion. To su stale primalé Cisla na narabanie s poctami molekul,
ktorych prichadza do uvahy radovo 10%3.

MozZna cesta by bola nazvat ¢islo 1023 ako “chem” a recept na vodu by znel ,,zober dva
chemy molekul vodika a jeden chem molekul kyslika a urob z nich vodu. Problém je v
tom, ze ,,chem” je pekna Cislovka s ostrou hodnotou ale pre laboranta neprijemna, lebo
sotva moze ratat molekuly stylom jedna, dve, tri, Styri,...,chem.

Ani predavac v Zeleziarstve nerata klince po jednom, ked’ zakaznik povie potrebujem
Casto predavanom pocte klincov ma uz pripravenu tabulku prepoctu hmotnosti na
pocet klincov. TakZe aj chemici maju pripravenu tabulku na taky prepopcet. Klu¢om je
slovo mal.



Mol

Mol je jednotka latkového mnozstva, de facto je to Cislovka, ktora este doneddavna bola
definovana takto:

1 mol Castic je taky pocet Castic kolko je atdbmov v 12 g uhlika 1§G

Casto potrebujeme vyjadrit hodnotu ,&islovky” mol aj numericky, zaviedol sa preto pojem
Avogadrova konstanta (Avogadrovo Cislo) ako pocet Castic v jednom mole. Fyzici sa dost
natrapili, kym experimentalne nasli hodnotu Avogadrovho cisla

6.022140857(74)x10%3 mol-?

Dve cifry v zatvorke je obvykly sp6sob ako uvadzat neurcitost merania (jednu Standardnu
odchylku) na dve platné cifry na poslednych uvedenych desatinnych miestach.

Vsimnite si ,,fyzikalny rozmer” mol™1. Je uzitoéné pouzivat takyto rozmer, aby sme nestratili
zo zretela, Ze ,bezrozmerny vysledok” nie je obycajné Cislo ale Cislo vyjadrené v
»jednotkach” mol. Zdrojom chyby mozZe byt ¢asto fakt, Ze niekto pouziva vacsiu jednotku
kmol (kilomol) a ked pomiesam v jednom vzorci mol a kmol, dostanem radovo zlu
hodnotu na konci.

Dobry zdroj informacii o tom, ako sa Avogadrova konstanta prakticky merala je Perrinova
nobelovska prednaska
http://www.nobelprize.org/nobel prizes/physics/laureates/1926/perrin-lecture.html



http://www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html

Nova definicia molu

V roku 2019 zazila sustava jednotiek SI dramaticki zmenu, uz sme o nej hovorili. Po novom
je teda mol definovany inak. Definitoricky je uréena hodnota Avogadrovho Cisla. Uvedme
oficidlnu definiciu v anglictine

The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.022 140 76 x 1023
elementary entities. This number is the fixed numerical value of the Avogadro constant, Na, when expressed in the
unit mol~! and is called the Avogadro number.

The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An

elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

Avogadrovo Cislo uz teda nemoézeme merat, ma definovanu hodnotu
N, =6.02214076%x10%3 mol™!

Jeden mol je potom definovany ako také mnozstvo latky, ktoré obsahuje prave N, Castic.

Experimentalni fyzici uz teda nemo6zu merat Avogadrovo cislo, podobne, ako nemo6zu

merat rychlost svetla vo vakuu, lebo aj ta je definovana. Co mézu merat (stale presnejsie a
presnejsie) aké je hmotnost jedného mélu uhlika 12C



Aky je rozdiel medzi receptami pre pecenie a chemickymi receptami, pokial
ide o nedodrzanie presnych hmotnostnych pomerov

Co hovori zakon o stalych zlu¢ovacich pomeroch

Co hovori zdkon o mnoznych zlu¢ovacich pomeroch

Avogadrov zakon

Co plati o pomeroch hmotnostnych pomerov v chemickych receptoch
PreCo atdbmové hmotnosti nie su celé Cisla

Co je to mél

Co je to Avogadrovo &islo a akd ma velkost

Aky je typicky rozmer jednej molekluly

Uvedte atdbmové hmotnosti aspon piatich prvkov

Co to je atdmové &islo

Uvedte atdmové Cisla aspon piatich prvkov



Elementy tedrie pravdepodobnosti



Nahodna udalost’

V beznom zivote ale aj vo fyzike pouzivame slovo ,udalost” na oznacenie ,Cohosi
Co sa stalo v dobre definovanom Case a spravidla aj mieste®, o Com noviny mézu
doniest spravu ze ,vCera o0 15:30 sa na krizovatke Tomasikova Ruzinovska zrazili
dve auta“. Takéto ,spravy o udalostiach® su zaznamenavané aj vo fyzikalnych
databazach ako ,podla vCerajSich pozorovani konsStatujeme, ze v galaxii XY pred
5 milion rokmi (urCené podfa vzdialenosti) vybuchla supernova. Alebo: na
urychlfovaci LHC sa bola v rune 243897 zaznamenana produkcia 4-leptonového
eventu (anglické slovo event znamena udalost) svedCiaca o produkcii Higgsovej
Castice.

Obe spominané fyzikalne udalosti su (alebo sa nam prakticky javia) ako
,nahodné®, pretoze su ,naozaj nahodné“ (Panboh asi naozaj hra kocky, hoci sa to
Einsteinovi nezda uveritelné), alebo ich nemame dostato¢ne pod kontrolou.

V kazdom pripade pre pracu s takymi udalostami prakticky potrebujeme
matematicky aparat tedrie pravdepodobnosti.



Nahodna udalost’ a nahodna velicina

PredovSetkym kazdu nahodnu fyzikalnu udalost’ potrebujeme jednoznacne
identifikovat, pomenovat’, aby sme ju vedeli rozliSit od inych podobnych udalosti.
Okrem toho u kazdej fyzikalnej nahodnej udalosti spravidla vieme zistit (odmerat)
viacero hodnét réznych fyzikalnych veli€in, ktoré ju charakterizuju. Hodnoty tych
veliCin nemusia byt jednoznacCne, teda moze existovat' viac roznych nahodnych
udalosti s rovnakou hodnotou nejakej fyzikalnej veliCiny.

V désledku nahodnosti udalosti maju hodnoty s fiou spojenych fyzikalnych veliCin
tiez nahodny charakter, hovorime preto o nahodnych veli€inach.

V pripade, ze hodnota nejakej nahodnej veliCiny je jednoznacna, teda ze
jednoznacne identifikuje nahodnu udalost, mézeme hodnotu tej veli€iny pouzit' na
pomenovanie (identifikaciu) nahodnej udalosti. Vo fyzike to aj spravidla tak
robime a preto v mnohych textoch sa nerozliSuje medzi pojmom ,nahodna udalost™
a ,nahodna velicCina"“.



Priklad nahodnych udalosti

Je dobré predstavovat si abstraktne popisané veci aj na konkrétnych prikladoch, tu
su dva typicke:

Nahodna udalost’
hod hracou kockou

Nahodna udalost”
hod Sipkou




Diskrétne a spojité udalosti a veli€iny

L™,
i "

Dva uvedené priklady sa v nieCom fundamenalne lisia:

pre hod kockou existuje len 6 spésbov ako méze hod dopadnut, teda existuje len 6
rozlicnych nahodnych udalosti. Nepokusame sa o uplnu rigoréznost' textu, takze
naraz sa nam tu objavilo Cosi také ako pre opakované hadzanie kockou ,dve
rovnake udalosti, ktoré sa stali v rozlicnych ¢asoch” (padla 2-x 6-ka v rozlicnych
casoch). Klu€ovy nie je ani tak koneCny pocet r6znych udalosti ako fakt ich
diskrétnosti, Co prakticky znamena pomenovatel'nost’ (identifikovatelnost’)
pomocou celych Cisel.

pre hod Sipkou na terC, ak ma Sipka nekonecCne ostry hrot, existuje ,spojite
nekonecne vela vysledkov® teda ,spojite nekonecCne vela nahodnych udalosti®.

To neznamena, Ze udalosti sa nedaju jednoznacne pomenovat, ibaze sa to neda
pomocou diskrétnej mnoziny celych €isel. Musime pouzit’ nejaku ,spojitu”
mnozinu. Napriklad tercom v hostinci v jednorozmernom svete je usecka,
udalostou je idealny geometricky bod dopadu na useCke a menom udalosti
napriklad suradnica bodu dopadu na usecCke (urCena ako vzdialenost bodu dopadu
od lavého krajného bodu terca).



Diskrétne a spojité udalosti a veli€iny

Diskrétne udalosti su pomenovatelné ale aj vymenovatelné, teda mézem
pripravit, aspon v principe, uplny zoznam moznych udalosti, priCom zoznam
moze byt aj nekonecny.

Spojité udalosti su pomenovatelné ale nie vymenovatelné.

S tym suvisi dalSia vec: spojité udalosti su neopakovatelné. Kazdy hod
nekonecne ostrou Sipkou vedie na udalost pomenovanu konkréetnym realnym
Cislom, ale Ziadne dva hody nevedu na to isté realne Cislo (s teoretickou
presnostou na nekonecny pocet desatinnych miest).



Intuitivny pojem pravdepodobnosti diskrétnych udalosti

Nebudeme sa pokusat’ o rigor6znu definiciu pojmu ,pravdepodobnost’ nejake;
udalosti®. Pre diskrétne udalosti je to intuitivhe zrejmy pojem. Diskrétne udalosti su
opakovatelné. M6zem si teda predstavit’ situaciu, ze opakujem ,hody" velmi-vela-krat
(teoreticky nekonec€ne-vela-krat), spoCitam kolko bolo vSetkych hodov a kofkokrat
som pozoroval udalost, ktorej pravdepodobnost zistujem.

Povedzme pri hode kockou pocitam kolkokrat padla 5-ka. Nech celkovy pocCet hodov
bol N=12000 a z toho 5-ka padla N;=1852-krat. Povieme, Zze sme pozorovali, ze
pravdepodobnost, ze padne 5-ka bola
1852

Ps = 12000
Ibaze, ak my alebo niekto druhy zopakuje ,rovnaky experiment®, mozno spozoruje, ze
5-ka padla iny-pocCet-krat, napriklad 2046-krat, Co sa vyhodnoti ako

2046

=20 L0171
Ps = o000 = 017

Rozlicné ziskané hodnoty interpretujeme tak, ze ide o statistické fluktuacie. Verime
pritom, ze vplyv Statistickych fluktuacii na vysledok klesa s rastucim poctom ,hodov®,
takze existuje Cosi ako ,skutocna pravdepodobnost™, ku ktorej ziskané Cisla
,konverguju“ pri zvysujucom sa pocte ,hodov“. Toto povazujeme za €osi ako ,prirodny
zakon®. Podobne ako pri inych prirodnych zakonoch, ani tu nevieme dokazat' ze ,je to
pravda“, ale zakonu iba ,verime®.

~ 0.154



Teoretické urCenie pravdepodobnosti diskrétnych udalosti

Niekedy sme presvedceni (,verime®), ze pozname cosi ako ,tedriu fyzikalneho
procesu” veduceho k skumanym nahodnym udalostiam. Potom sa v ramci tej tedrie
mb&zeme pokusit’ ,urCit’ teoreticky” relevantné pravdepodobnosti. Povedzme ak pre
danu hraciu kocku ,verime, ze kocka nie je faloSna“, potom tym vyjadrujeme, ze
,verime, ze pravdepodobnost vSetkych 6 moznych udalosti je rovnaka“. Odtial ale
rovno vyplyva ze teoreticka pravdepodobnost bude

1
ps = 5 = 0.16666....



Pravdepodobnost’ spojitych udalosti

Spojité udalosti su neopakovatelné, preto sa intuitivny model pravdepodobnosti
zaloZeny na opakovanych ,hodoch“ neda pouzit’ pre spojité udalosti. V skutoCnosti
nie je mozné rozumne definovat pravdepodobnost’ pre konkrétnu udalost z
mnoziny spojitych udalosti. To ale nevadi, lebo ani meranim sa nemozno
presvedcCit, ktora konkrétna udalost’ nastala. Akymkolvek meranim nejakej veliCiny
mdb&zeme urCit’ len niekolko platnych cifier z jej hodnoty a teda neidentifikujeme
konkrétnu spojitu udalost presne.

Pouzitie tedrie pravdepodobnosti v priestore spojitych udalosti sa zaklada na
vhodnej diskretizacii. Nembzeme sa spytat na pravdepodobnost toho, ze nastane
nejaka konkrétna udalost &, ale m6zeme sa spytat, Ci nastane nejaka udalost z
istého intervalu & € (a, b). To, Ci nejaka udalost ,padla“ do intervalu je
experimentalne testovatelné a opakovatelné, preto sa da, aspon principialne, urcit
pravdepodobnost p(¢ € (a, b)).



Matematicky formalizmus pre diskrétne udalosti

Diskrétne udalosti je mozné vymenovat, preto hodnoty pravdepodobnosti
jednotlivych udalosti je mozno jednoducho tiez vymenovat napriklad v tvare
postupnosti (hoci v principe nekonecnej). Ak teda jednotlivé udalosti identifikujeme
pomocou celych Cisel i, potom ich pravdepodobnosti zadavame ako Cleny
postupnosti p(i), pricom

p(i) >0 ) p(i)=1

Suma (normalizacia ,na jednotku®) vyjadrljje fakt, ze ,pravdepodobnost, ze
nastane hociCo” musi byt rovna jedne;j.

Ak nas zaujimaju nielen udalosti ale aj hodnota nejakej veliCiny x charakterizujuca
udalost, potom oznaCime hodnotu tej veliCiny v pripade, Ze nastala udalost' i ako
x;. Specifikovanie pravdepodobnostného modelu potom vyZaduje, Ze okrem
postupnosti pravdepodobnosti p(i) musime zadat i postupnost' hodn6ét x;,
pripadne podobnych postupnosti pre dalSie veliCiny.



Kompresia pravdepodobnostnej informacie

Predstavme si jednoduchy pravdepodobnostny model: predajnu topanok pre
nahodnych (nezazmluvnenych) zakaznikov. Do predajne méze v principe prist
l[ubovolny obyvatel Zeme, to je nahodna udalost. Nahodnych udalosti je nieCo
okolo 6 miliard. To, Co zaujima majitela, je velkost potrebnej topanky pre
konkrétneho zakaznika.

Men's Shoes Size Conversion Chart
Korea (mm) 240 245 250 255 260 265 270 275 280 285 290
Japan (cm) 24 » 245 25 ' 255 ' 26 ‘ 26.5 ‘ 27 ‘ 275 28 » 285 29
us 6 6.5 7 75 8 8.5 9 95 10 105 1
Europe 38 38.5 39 40 40.5 41 42 425 43 44 445
UK ‘ 5 . 55 v 6 v 6.5 v 7 ‘ 75 ‘ 8 . 8.5 ‘ 9 . 9.5 v 10
Korea (mm) 295 300 305 310 315 320 325 330 335 340 345
Japan (cm) ‘ 29.5 30 » 30.5 31 315 32 325 33 ‘ 335 34 » 345
us 115 » 12 125 » 13 135 ‘ 14 145 ‘ 15 15.5 » 16 17 .
Europe 45 46 46.5 47 48 48.5 49 50 50.5 51 52
UK 10.5 1 115 12 125 13 135 14 145 15 16

Majitel nembze mat z kazdého vzoru vsetky velkosti, to by bol prilis velky umftveny
kapital. Musi mat taku zbierku velkosti, aby s vysokou pravdepodobnostou obsluzil
nahodného zakaznika. Nie je prakticke, aby chcel mat' zoznam vSetkych [udi na
Zemi, k nim hodnotu pravdepodobnosti, ze sa objavia v jeho obchode a ku kazdému
velkost' jeho topanok. To je 12 miliard Cisel, privela na zostavenie rychlej objednavky
u vyrobcu. Potrebuje vhodne komprimovanu informaciu, ktoru si vie ,,v hlave®
predstavit' a dobre sa rozhodovat.



Kompresia pravdepodobnostnej informacie

V praxi sa osvedcCilo niekolko spésobov kompresie informacie. Ak chcem maximalnu
a pritom stale orientaCne uzitoCnu informaciu, spravidla sa pytam na jediné Cislo

stredna hodnota velkosti topanky nahodného zakaznika

Matematici vyhutali takuto definiciu strednej hodnoty

T = Z x;p(7)

Toto Cislo hovori dost malo pre praktického predajcu, ale nieco hej. Napriklad
predajca v Taliansku, kam chodia vacsinou Taliani vie, ze toto Cislo je mensie ako
podobné Cislo, ktoré zaujima predajcu na Slovensku, lebo Slovaci maju v strednom
vacsie nohy. Takze v talianskom obchode su topanky v strednom o €osi mensie
ako v slovenskom obchode. Preto napad prvych podnikatelov ,po revolucii®
objednavat’ ,moderné talianske kolekcie” nebol najlepsi napad.

Zaujimat sa iba o strednu hodnotu, podla toho sa nedaju objednavat topanky.
Treba aj odhad ,rozumného intervalu® velkosti okolo strednej hodnoty.



Kompresia pravdepodobnostnej informacie, rozptyl hodnot okolo strednej

Matematici vyhutali takuto charakteristiku

Ax = \/Z(sz — 7)?p(1)

7

PreCo taky komplikovany vyraz s odmocninou a kvadratom. Lebo nefungoval ,prvy
napad” vypocitat’ strednu odchylku

r—2 =) (¢ —2z)p(i)

Vyjde totiz nula, lebo kladné a zaporné 2odchylky sa vyrusia na nulu.

Matematici vyhutali aj nazvy

T = Z zip(%) sa vola stredna hodnota
i

Q
|

2 Z(% —z)*p(i)  sa vola variancia alebo stredny kvadrat odchylky

Ar — Z(% — 2)2p(i) sa vola str’edna kyadratlcka odchylka alebo
standardna odchylka




Kompresia pravdepodobnostnej informacie, rozptyl hodnot okolo strednej
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7

PreCo taky komplikovany vyraz s odmocninou a kvadratom. Lebo nefungoval ,prvy
napad” vypocitat’ strednu odchylku

r—2 =) (¢ —2z)p(i)

Vyjde totiz nula, lebo kladné a zaporné 2odchylky sa vyrusia na nulu.

Matematici vyhutali aj nazvy

T = Z zip(%) sa vola stredna hodnota
i

Q
|

2 Z(% —z)*p(i)  sa vola variancia alebo stredny kvadrat odchylky

Ar — Z(% — 2)2p(i) sa vola str’edna kyadratlcka odchylka alebo
standardna odchylka




VSimnime si, ze ak vyuzijeme naivnu ,experimentalnu definiciu
pravdepodobnosti®, dostaneme pre strednu hodnotu vyraz

T = Z x;p(i) = zilNi

N

7

Toto je presne to, Co sme sa naucili pocCitat v Skole ako ,priemernu
znamku“: ak mas 3 “jednotky” and 4 “dvojky”“ tvoj priemer je

1x3+2x4
7

Uvedomme si ale, ze neexistuje Ziaden ,prirodny zakon® ktory by hovoril,
ze takto musime ratat strednu hodnotu®. Priroda ni¢ netusi, Zze sme si
vymysleli definovat’ akusi strednu hodnotu. To je Cisty folklor, ale velmi
vSeobecne akceptovany a ,vSetci podla neho tancuju®. Hoci je pravda, ze v
niektorych komunitach (folklornych skupinach) uprednostnuju median pred
strednou hodnotou.

Nie celkom rigor6ézna (a preto nejednoznacna ale dostatoCne nazorna)
definicia medianu je, ze je to hodnota, ktora vSetky udalosti deli na dve
rovnhako pocetné mnoziny: hodnota veliCiny u udalosti v prvej mnozine je
mensia a v druhej mnozine vacsia ako median.



Stredna hodnota a stredna kvadraticka odchylka v predajni obuvi

Ak sa vratime k nasmu prikladu o predavani obuvi, potom znalost' strednej hodnoty
a strednej kvadratickej odchylky velkosti obuvi u o€akavanych nahodnych
zakaznikov je uz celkom dostatoCna informacia o tom, ako objednat’ velkostny
sortiment obuvi.

Jednoduché rieSenie je objednat kolekciu s velkostami v intervale

(z — Az, z + Ax)

StarostlivejSi podnikatel, ktory si to méze dovolit' zafinancovat, objedna asi aj Cosi
menej obuvi v intervaloch az po odchylku 2Ax.



Matematicky formalizmus pre spojité udalosti

Pouzitie teodrie pravdepodobnosti v priestore spojitych udalosti sa zaklada na
vhodnej diskretizacii. Nembzeme sa spytat’ na pravdepodobnost’ toho, Ze nastane
nejaka konkrétna udalost &, ale m6zeme sa spytat, Ci nastane nejaka udalost z
istého intervalu & € (a, b). To, Ci nejaka udalost ,padla“ do intervalu je
experimentalne testovatelné a opakovatelné, preto sa da, aspon principialne, urcit
pravdepodobnost p(¢ € (a, b)).

Nie je vSak praktické napriklad tabelovat hodnoty pravdepodobnosti pre rézne
intervaly (a, b). Nie je to ani potrebné, ak si vSimneme, ze existuje Cosi ako zakon
skladania pravdepodobnosti pre nadvazujuce intervaly

p(§ € (a,b)) +p(§ € (b,c)) = p(& € (a,¢))
Potom staci, ak tabelujeme (alebo vyhutame vzorec) pre funkciu jednej premennej
F(z) = p(§ € (-0, 2))

Funkcia F(x) sa vola (kumulativna) distribuéna funkcia pravdepodobnosti.
Hodnotu pravdepodobnosti pre [ubovolny interval z nej lahko vypocCitame,

p(¢ € (a,0)) = F(b) — F(a)

takze cela informacia o pravdepodobnostiach spojitych udalosti je zakddovana do
distribuCnej funkcie.



Funkcia F(x)=p(—oc0 <{ < x)

typicky vyzera ako “sigmoidna krivka”. Porozmyslajte, preCo kumulativna
pravdepodobnost neméze klesat, ked premenna x rastie a preCo pre x - —
je Fix)=0aprex »>oje F(x)=1.

1.0

F(x)




Experimentalne urcenie hodnoty F(x)

Pre konkrétnost' si predstavme hadzanie Sipkou na jednorozmernu priamku, kazdy
hod bude charakterizovany suradnicou dopadu ¢ € (—oo, ). Zvolime si flubovolnu
hodnotu x a vykoname N hodov. Zistime hodnotu N_x kolkokrat suradnica dopadu
¢ bola mensSia ako x, teda ¢ < x. Potom zrejme

Pri velmi velkom pokuse hodov N mézeme hodnotu F(x) takto ur€it velmi presne.

Takto urCime hodnotu distribu¢nej funkcie v lubovolnom bode x. Stale to ale niC
nehovori o tvare funkcie. M6Zeme si ale zvolit vela diskrétnych bodov

L1, XL2y---,ILn

a urcit hodnotu F(x;) v kazdom z tych bodov



Experimentalne dostaneme niec€o takeéto
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Vyzera to akonejaka sigmoidna funkcia, ale akasi ,zubata“. Je to preto, ze pri
koneCnom pocCte pokusov ziskané hodnoty F(x;) nie su presné, su tam Statistické
fluktuacie. Typicku velkost fluktuacii mozno odhadnut takto

MiVMW—M)
N VN3

(pozri napriklad http://en.wikipedia.org/wiki/Empirical _distribution_function)

Mame teda diskrétne funkéné hodnoty spolu s odhadom ich neurcitosti (chyb) a
dalSou ulohou je ,nafitovat namerané data“ pomocou Sikovnej hladkej funkcie.


http://en.wikipedia.org/wiki/Empirical_distribution_function

Fitovanie dat

, Velmi strucne tu naznac€ime, ako sa vo fyzike
¥=1152,N=16 | preklada hladka krivka nameranymi bodmi.
\ . Fyzik to povie tak, ze fituje data.
J’; | llustrativny priklad Mame k dispozicii sadu trojic (x;, y;,&;)
—\i kde ¢; su experimentalne chyby nameranych
N\ hodnot ;.
/ H\ { Vychadzame z hypotézy, ze data by mali byt
' . popisané hladkou krivkou f(x, a), kde a su
e [ nejaké parametre urCujuce tvar tej krivky.

Parametre treba v priebehu fitovania vybrat tak, aby krivka €o najlepSie prechadzala
nameranymi hodnotami. Pre kazdu Specifikaciu parametov a vypocCitame testovaciu
hodnotu i — f(x, a))?

(@)=Y (y i:;f @))
Cim mensia bude pre nejaké a tato testovacia hodnota X (a) tym lepSie popisuje
funkcia f(x, ®) namerané data. Pouzijeme pocitaCovy program, ktory prehfadava
priestor hodnét a, az narazi na dostatocne malu hodnotu x*(a) . Struéne uvedme,
ze za dostatoCne dobru hodnotu sa povazuje

Y’(@) < N=n—p

kde n je poCet experimentalnych bodov a p je pocet fitovacich parametrov a.



Pravdepodobnost’ v uzkom intervale: hustota pravdepodobnosti

Uvazujme uzky interval udalosti, potom
p(& € (z,x+dx)) = F(x+dz) — F(x)

Fyzikalne spravidla vefmi plauzibilny je predpoklad, ze distribuCna funkcia je
diferencovatelna a existuje jej derivacia
d

o(z) = —F(z)

Potom plati pre dostatoCne maly interval dx:
p(€ € (z,x +dx)) = F(z + dz) — F(z) = o(z)dx

b
p(€ € (a,b) = F(b) — F(a) = / o(x)dz

Funkcia o(x) sa vola hustota pravdepodobnosti. Nazov je odvodeny z analogie
s hustotou hmotnosti (alebo s akoukolvek inou hustotou): pravdepodobnost sa
pocCita ako integral z hustoty podobne, ako hmotnost sa pocCita ako integral z
hustoty. Kedze nejaka udalost' musi nastat, je hustota pravdepodobnosti
normalizovana na jednotku /oo

p(& € (—o0,+0)) = o(x)dr =1

—o



Stredna hodnota a variancia

V diskrétnom pripade sme definovali strednu hodnotu

T = Z z;p(i)

Preto strednu hodnotu lfubovolnej velic":iriiy f (x) zavislej na spoijitej nahodne;
udalosti x definujeme B o0
F= [ @

pre veliinu x (ktoru vyuzivame na pomenovanie udalosti) to znamena
oo

E:/;OO zp(z)dr

(f—ﬂQZ/mLﬂﬂ—?VM@@f

Variancia veli€iny f je potom

2
Of

a variancia x




Matematicky formalizmus pre spojité udalosti

Pred spojity pripad mame teda dva ekvivalentné sposoby ,kdédovania®
pravdepodobnostnej informacie

« pomocou kumulativnej distribu¢nej funkcie

« pomocou hustoty pravdepodobnosti



Priklad: rovhomerné rozdelenie

Da sa definovat’ iba na kone¢nom intervale (a, b):

1 b b 1
o) = [ oteria = [ e =1

Pouzivame ho, ak chceme vyjadrit fakt, ze ziadna z hodnét nie je preferovana
(angl.: no bias). Treba byt opatrny. Pre diskrétne udalosti je zrejmée, ako vyjadrit
nepreferovanost

p; = const

Naivne by sme sa mohli domnievat, ze zovSeobecnenie na spojity pripad znie

p(x) = const

Ale treba byt velmi opatrny. Spravidla nemame ddvod na nejaké kanonicku ,volbu
mena“ pre spojitu udalost. V principe mézeme ako meno pouzit fubovolnu veli€inu.
Ibaze hustota pravdepodobnosti, ktora by bola rovhnomerna voci jednej premennej,
nebude vo vSeobecnosti rovhomerna vocCi inej premenne;.

Povedané obrazne: matka méze spravodlivo rozdelit’ cukriky medzi svoje
diskrétne deti, da kazdému rovnako. Ale cukriky sa nedaju apriérne
spravodlivo rozdelit’ medzi ,,spojité deti“, ibaze by sme mali dévod na nejaku
kanonicku vol'bu ich mien.



Zamena premennych

Predpokladajme, ze mame hustotu pravdepodobnosti p(x) premennej x. Definujme
novu nahodnu premennu y ako funkciou pévodnej x pomocou jedno-jednoznacnej
transformacie = )

a pre jednoduchost’ predpokladajme, Ze funkcia f(x) je rastuca. Chceme najst
hustotu pravdepodobnosti premennej y, oznacme ju p(y). Zrejme plati

()
pla<y<b)= f p(z)dz
f=1(a)
V integrali pouzijeme substituciu = = () a dostaneme
£ (b) b . 1
pa<y<b:f :Ed:E:/ f(y — dy
( ) o p(x) ) p(f( ))f,(f 10))

Hustota pravdepodobnosti p(y) je definovana vztahom
b
pa<y<t)= | pu)dy

Porovnanim poslednych dvoch vztahov dostaneme




Teda pozor! Nova hustota pravdepodobnosti sa neziska jednoduchym dosadenim

inverznej transformacnej funkcie do pévodnej hustoty pravdepodobnosti. Pribudne
este Jakobian transformacie!

TakZe napriklad ak pévodna hustota pravdepodobnosti bola konstantna funkcia,
Jakobian transformacie nemusi byt konStantny a nova hustota uz nebude konstantna!

Rovnomerné rozdelenie pravdpodobnosti (no bias) sa preto vo vSeobecnosti
neda kanonicky definovat’



Priklad: Gaussovo (normalne) rozdelenie

Je definované vzorcom

plo) = <z exp(— L)

Ide vlastne o celu ,rodinu hustdt pravdepodobnosti®, liSiacich sa Specifikaciou

dvoch parametrov u and o. Ich vyznam je takyto:

Typicky tvar je na obrazku

NoV2r) = -

y;Za

T
X



Gaussovskeé integraly

Overme, Ze pre Gaussovo rozdelenie pravdepodobnosti
1 (z — p)?

plx) = Voro? eXp(—T)

naozaj plati
f pla)de =1 T= / rp(a)de=p  (z-7)*= f (¢ —7)*p(x)de = 0

Najprv treba dokazat pomocné tvrdenie (tzv. Laplaceov integral)
f exp(—z?)dx = /7

Skoélkarsky vtip hovoril, Ze jeden lev sa da chytit’ tak, Ze sa chytia dva a jeden sa

pusti. Jeden taky integral nevie zratat nik, ale dva kazdy. V dvoch rozmeroch.
Naozaj:

e o] 2 oo oo o0
(/ exp(—xz)d:ﬂ) :/ exp(—xz)dsz:/ exp(—y?)dy :/ exp(—r?)2rrdr =7
— 00 —50 — 00 0
Po vhodnych substituciach je uz lahko overit spravnost normalizacie

/OO p(x)dr =1

— o



Gaussovskeé integraly

_ 1 (z — p)?
p(CC) — W eXp(_ 252 )

Overit spravnost’ vztahu

T = /OO xp(x)dr = p

— 00

je trividlne, po substitucii to prejde na integral typu f Eexp(—E%)dE

ktory sa trividlne spocita substitiiciou é? = n.

Overovanie vztahu (z —7)% = f (x —%)?p(z)dr = 0* vedie na integral typu

— o0

f 2 exp(— dg Pocita sa pomocou ,per partes”

f_ £? exp(— df / —£ 2€ exp( —£2 ))d¢ = %/ exp(—§2)d§ _ %\/7_?

— 00



Gaussove krivky pre rozlicné hodnoty parameterov u, o.
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Priklad: Gaussovo (normalne) rozdelenie

Je dobré ,mat’ v oku® pravdepodobnosti niekolkych Standardnych odchyliek od
strednej hodnoty

34.19% 34.1%

+10...68.2%
+20...95.4%
+30...99.6%




Gaussovo rozdelenie

Gaussovo rozdelenie sa v praxi pouziva velmi Casto, prirodzené je pytat sa preco.

* Niekedy mame dost dobré teoretické dovody, ze hustota pravdepodobnosti je
naozaj Gaussovska.

- Casto ale dobru teériu nemame a mame len pocit, Ze potrebujeme hustotu
pravdepodobnosti v tvare akéhosi zvona, pricom Casto pozname strednu
hodnotu a varianciu a ni€ iné. Gaussovo rozdelenie je plne Specifikované
strednou hodnotou a varianciou , preto je velmi prirodzené pouzit Gaussa.



Hustota pravdepodobnosti: experimentalne urcenie

Tvar hustoty pravdepodobnosti mézeme urcit podobnou technikou ako sme to robili

pri distribu€nej funkcii

 diskretizujeme priestor premennej x na podintervaly (hovori sa im biny)

(_OO) ZCO)v (3’?0, wl)(xla ZCQ)v (3727 LE3): Ty (:anla mn)a (xna OO)

Biny (—o0, ), (zn,00) sa zvyéajne nazyvaju “underflow bin” and “overflow bin”,
ostatné biny sa spravidla volia ako rovnako velké.

* Vykoname N experimentov a ziskame tak N nahodnych eventov. Zaznamename
hodnoty N; kolkokrat event zasiahol bin (z;_1, z;).

» Vysledok celého experimentu sa da vizualizovat ako histogram

250

2001

150

100

50F

Potom nechame pocitac najst hladku krivku,
ktora dostatoCne dobre reprezentuje tvar
histogramu



250

Probability density: experimental determination

* Ak chceme urobit rozumné kriterium, kedy
nejaka krivka dobre reprezentuje histogram,
musime odhadnut velkost Statistickych
fluktuacii a na to potrebujeme vediet neurcitosti
(Statistické chyby) hodndt N_i.

Ak su biny dostato¢ne malé, mézme
odhadnut statistické neurcitosti ako we can
estimate the errors as

N; = /N;
a teoreticky oCakavane pocCty zasahov ako

Ti—1+ T;

)z — zi1)

Vyberieme si nejaku formulu pre husstotu pravdepodobnosti a nechame v nej
nejaké volné parametre p(z, )
Potom testovacia funkcia kvality fitu bude

= (Np(Z=, 0) (z; — 2-1) — N;)?
X : N,
Pocita€ najde optimalne hodnoty volnych parametrov a a dostaneme tak
~experimentalne zistenu hustotu pravdepodobnosti®.



Viacrozmerné nahodné premenné

Casto sa spoijité nahodné eventy nedaju rozumne pomenovat jedinym redlnym
&islom. Ziju vo viacrozmernom abstraktnom priestore. Co je to viacrozmerny priestor
budeme tu chapat’ len velfmi intuitivne. Kto chce mat’ o tom seridéznejSie vedomosti
moze si to vyhladat v literature o varietach, napriklad v knizke

M.Fecko, Differential Geometry and Lie Groups for Physicists,
http://www.amazon.com/Differential-Geometry-Lie-Groups-Physicists/dp/0521187966

Mame teda spojité eventy pomenované viacrozmerne

(331)5823 SR 7:1;71)

a definujeme viacrozmernu hustotu pravdepodobnosti

P($17$25 s amn)

tak, ze pravdepodobnost zasiahnut nejaku podmnozinu S flubovolného
(,zemiakovitého®) tvaru bude dana vztahom

p(S):fp(xl,mg,...,:z:n)dmldatg...d:l:n
S


http://www.amazon.com/Differential-Geometry-Lie-Groups-Physicists/dp/0521187966

Priklad viacrozmernej nahodnej premennej:
rychlost’ molekuly

Ak nahodne vyberiem jednu molekulu v plyne a spytam sa jej ,aku mas rychlost®,
molekula odpovie troma Cislami

U= (’U$,”Uy, Uz)

Rychlost molekuly je trojrozmerna nahodna veliCina, je to trojrozmerny vektor
definovany priemetmi na tri ortogonalne osi.

Prislusnu hustotu pravdepodobnosti genialne uhadol Maxwell (je to trojrozmerné
Gaussovo rozdelenie)

m\3/2 m(vi + v +v7)
P(Vz, Uy, V) = ( ) exXp | —

2kT 2T

V tomto vztahu m je hmotnost jednej molekuly (normalne hmotnost vkg)a T je
absolutna teplota plynu v Kelvinoch. k je Boltzmannova konstanta.



Marginalne rozdelenie o
Niekedy ma nezaujimaju vSetky premenné, ktoré spolu tvoria ,meno” jednej

viacrozmernej nahodnej udalosti. Napriklad m6zem sa zaujimat iba o
pravdepodobnostné rozdelenie x-ovej zlozky rychlosti molekul. Ak poznam
mnohorozmernu hustotu pravdepodobnosti, ako najdem hustotu pravdepodobnosti
pre podmnozinu zo vSetkych jej premennych.

Napriklad poznam dvojrozmernu hustotu pravdepodobnosti p(z,y) a zaujima ma
len hustota pravdepodobnosti p(x) premennej x. Znamena to vlastne, ze chcem
poznat pravdepodobnost p(x, x + dx) najst premennu x v malom intervale
nezavisle na tom, kam ,padla“ hodnota premennej y. V rovine x, y to znaci, ze sa
zaujimam o situaciu, kde dvojrozmerna premenna x, y padne hocikam do uzkeho
pasu, naznateného na obrazku. Z definicie dvojrozmernej hustoty

pravdepbdobr psti je zrejmé ze plati r+dzr 00
p(z,z +dx) = / dﬂi‘/dypmy)—dm/dyp(aj Y)

xr

Z definicie jednorozmernej hustoty pravdepodobnosti plynie
p(z,z +dx) = p(z)dz

Porovnanim dostaneme ~

plz) = /dyp(xa y) Zabudnut na y znamena preintegrovat’ cez y.

p(x) sa nazyva marginalne rozdelenie z rozdelenia p(x, y).



Podmienena pravdepodobnost’

Uvazujme dvojdimenzionalnu hustotu pravdepodobnosti p(z,y)
Pravdepodobnost’ najst x v podmnozine X a suCasne y v podmnozine Y je

p@GXwGY%iﬁM/@M%w

Pravdepodobnst najst y € Y priCcom x je hocikde je
p@eYﬁi/M/@M%w
— 00 Y

Potom podmienena pravdepodobnost najst x € X ak vieme, ze y €Y je
definovana ako
p(zre X,yeY)

p(y€Y)

Takto nejako sa to stru€ne definuje v knihach o pravdepodobnosti (pozrite si
napriklad Wikipédiu). Je pravdou, ze v matematike si m6zem definovat, Co
chcem (ak to nie je vnutorne protireCivé), a nazvat to mézem, ako chcem.
Formalne sa definicia podmienenej pravdepodobnosti Casto povazuje za jednu z
nezavislych axiom teorie pravdepodobnosti. Ale potom je treba byt pripraveny na
otazku Studenta, ktory sa nechce len naucit ale chce aj pochopit: ,Preco toto
nazyvate podmienenou pravdepodobnostou, ja to nijako nevidim®. Skusim to
vysvetlit' lepsie, ale skuste najprv, Ci to nerozlustite sami.

plxeX[yeY)=



Podmienena pravdepodobnost’

Zacnime tak, ze definujeme v experimentalnom jazyku, ¢o by sme radi nazvali
podmienenou pravdepodobnostou.

Predstavme si, ze v prirodovedeckom muzeu maju velku zbierku komarov. Pri
kaZzdom komarovi maju dva udaje: dizku tela v mm a GPS suradnice miesta na
Zemi, kde bol komar chyteny. Potom mézem napriklad pravdepodobnostné
rozloZenie diZok komarov v celej zemskej populécii. Ale niekoho mdZe zaujimat
iba rozdelenie dizok africkych komarov. Vyberie sa do Afriky zo sietkou na komare,
nachyta komare, ani si nepoznadi GPS, len diZku komara a analyzuje
pravdepodobnostné rozdelenie diZky.

Potom mu napadne, ved na to som nemusel chodit' do Afriky. Stacilo vytriedit' v
celosvetovom muzeu komare, ktorych GPS suradnica je volakde v Afrike a mat tak
podzbierku africkych komarov a tu analyzovat' na dizkové rozdelenie. Ziskam tak
podmienenl pravdepodobnost dizky komarov, ale len takych, ktoré boli chytené v
Afrike. Podmienena pravdepodobnost diZky je pravdepodobnost dizky ak uZ viem,
Zze komar ma africku GPS.

OspravedInujem sa za dadaisticky priklad.



Podmienena pravdepodobnost’

Majme teraz dvojrozmerné eventy, ktoré ziju v dvojrozmernom priestore x, y. Ich
rozloZenie pravdepodobnosti je dané dvojrozmernou hustotou #(z,¥).

Ako sa ta dvojrozmerna hustota experimentalne ziska. Vyberiem sa do roviny x, y na
.lov eventov®. Ulovim N, urobim dvojrozmerny histogram a nafitujem ho hladkou
funkciou p(z,v) .

Predpokladajme teraz, ze nas zaujima len x-rozdelenie eventov takych, ktorych
hodnota y padne do nejakej zvolenej mnoziny Y na osi y. Ako to ziskam? Zoberiem
si ,sietku na eventy” a potulujem sa s nou len po podoblasti roviny x, y, takej kde y €
Y a chytam eventy. VSetky eventy, ktoré tak chytim budu mat hodnotu y €Y a
nejaké dopredu neurceneé x. Zoberiem si takto ulovené eventy a analyzujem v tejto
mnozine rozdelenie premennej x. To o dostanem je podmienena
pravdepodobnost’ premennej x za predpokladu, ze y e Y .

Teraz si uvedomim, ze nemusim vzdy nanovo lovit' eventy v zaujmovej oblasti Y.
Staci, ak z pévodne nalovenych N eventov, ktoré som lovil nahodne v celej rovine
x,y vyberiem takeé, pre ktoré y € Y . OznaCme pocCet takych eventov Ny. Z tychto

Ny eventov bude isty pocCet takych, ktorych suradnica x bude v oblasti X, teda x € X.

OznaCme tento pocCet ako Nyy. Potom by uz malo byt akceptovatelné nazvat' Cislo

XlyeY)= 2L
plze XlyeY) Ny
Ze to je podmienena pravdepodobnost x € X ak uz vieme (alebo ,za predpokladu®),

zey €Y.



Podmienena pravdepodobnost’
VypocCitame teraz Ny, Nyy.
Ak vSetkych pokusov je N, potom z nich takych, kde y € Y je zrejme
Ny =p(y €Y)N

Z tychto eventov sme potom vyberali také, kde suCasne bolo aj x € X. Ich pocCet
sme oznacili Nyy. Uvedomme si ale, Ze tie eventy nemusime vyberat z tych Ny
eventov, rovnake eventy dostaneme ak ich budeme vyberat rovno zo vSetkych N
eventov, ak budeme vyberat eventy pre ktoré x € X a suCasne Y € Y. Bude ich

Nxy =p(z € X,y € Y)N

Potom pre podmienenu pravdepodobnost, ktord sme (dufam Ze s plnym
pochopenim) definovali ako

N
plreXlyeY)=——
Ny
dostaneme
plre X,yeY)
plx e XlyeY)=
( | ) plyeY)

a to je presne ten vzorec, ktory sa nam mozno zdal malo pochopitelnym



Pravdepodobnost’ ako technologia pre pracu s
chybajucou informaciou

Jednu jemnost sme v nasich uvahach zamietli pod koberec. Ked sme sa bavili o

pravdepodobnostnom rozdeleni dizky africkych komarov, uvaZzovali sme dve

techniky

- jedna bola ist do Afriky, nahodne tam nalovit komare a analyzovat ich dizku

« druha bola ist do muzea, a zo zbierky tam ulozenych nahodne po celom svete
nachytanych komarov vybrat tie, ktoré boli chytené v Afrike a potom urcit
pravdepodobnostné rozdelenie tych africkych komarov.

Ona jemnost spociva v tom, Ze v druhom postupe uz nehra nahoda Ziadnu aktualnu
rolu. Komare uz su chytené a ulozené v muzeu. Potom z nich vyberieme akusi
podmnozinu a pravdepodobnostne ju analyzujeme. O akej pravdepodobnosti to
vlastne hovorime, ked pri vybere podmnoziny muzealnych komarov uz nahoda
nehra nijaku rolu.

LepsSie tento pojmovy paradox mézeme sledovat pri hre s dvoma hracimi kockami,
pri ktorej ich krupiér zamieSa v pohari a pohar polozi na stél hore dnom, takze
nevidno, aké Cisla na kockach padli. A vyzve hracov aby si vsadili, aké Cisla
padli. Hrac , ked chce vsadit, prirodzene si polozi napriklad otazku ,Aka je
pravdepodobnost’, ze pod poharom su dve sSest’ky?“ O akej pravdepodobnosti to
hovori? Odkedy bol pohar polozeny, sa uz nic nahodné nedeje. Kocky uz ,vedia“
ako padli, aj pohar uz ,vie ako padli, iba krupiér ani hraci nevedia.



Pravdepodobnost’ ako technologia pre pracu s
chybajucou informaciou

Hraci uz ,nebojuju s nahodou” bojuju s rozhodnutim pri nedostatku informacie. A
pouzivaju pri tom jazyk teorie informacie. Motivuju to tak, ze pri tom nedostatku
informacie sa budu rozhodovat tak, ze si predstavia, ze kocky eSte nepadli, vycCislia
si pravdepodobnosti roznych moznosti a podla vysledkov sa rozhodnu ako vsadia.

Poucenie.

Ak musim nejako reagovat’ pri nedostatku informacie o nejakej udalosti, ktora uz
v skutoCnosti nastala, mézem si predstavit’, ze eSte nenastala a odhadnem
pravdepodobnosti roznych moznosti ,,Co by mohlo nastat®. Potom budem reagovat
ako hazardny hrac, podla vysledkov vyCislenych pravdepodobnosti.

Technolégia pravdepodobnosti sa teda da pouzit’ nielen na vycislenie
pravdepodobnosti vysledkov nahodnych procesov ale aj na pracu s
nedostatkom informacie, ocenenie mnozstva potrebnej informacie, meranie
vel'kosti €i hodnoty poskytnutej informacie.



Nezavislé premenné

Premenna x sa nazyva nezavisla na premennej y, ak podmienena
pravdepodobnost plzeX|yey)

nezavisi na Y pre Ziadne X. Znamena to, ze ak pozname nejaku informaciu o y,

nijako to nezmeni nase oCakavania, tykajuce sa premennej x. Dokazeme ze x je
nezavislé na y prave vtedy, ak dvojdimenzionaln a hustota pravdepodobnosti sa
faktorizuje, teda ak sa da pisat pomocou marginalnych distribucii v tvare

p(z,y) = pa;(it)ﬁy(y)

Najprv postacCujuca podmienka. Predpokladajme, ze p(x,y) sa faktorizuje, potom

[dx [dyp(x,y) f dfb‘fdypm )Py (y)
p(xeX]er):p(me‘X’yey):fo Y —

p(y S Y) _f dm}[dyp(iﬁ,y) f dx fdypx py(y)

Jdzp.(x) [dypy(y) Jdzpa(x)

_ X Y - X - / dzpa(2)

_f dapy () 1[ dypy(y) _f drp.(r) %

vysledok zjavne nezaviina Y.




Nezavislé premenné

Teraz nevyhnutna podmienka. Vyberme malické intervaly okolo (fTubovolne
zvolenych) hodnét x,, y,. OznaCme ich dx,, dy,. Dostaneme

J dz [ dyp(z,y)
p(x € dwo,y € dyo) _ dzo _dyo

p(x € dxgly € dyg) =

Py € dyo) J dz [ dyp(z,y)
— O d’yo
0 dxodyop(ro,yo)  dxodyop(ro,yo)  dxop(zo,yo)
o0 - d -

Podla predpokladu podmienena pravdepodobnost nezavisi na Y, preto
p(z € dxoly € dyo) = p(z € dxgly € (—o0,00) = p(x € dxy) = dzops(z0)

Comparing the two results, we get
dzop(To, Yo)
Py (Yo)
p(z0,Y0) = pz(T0)py(Yo)
takZze sme dokazali faktorizaciu.

— dl‘opaz (330)



Stredné hodnoty pre viac premennych

Majme dve nahodné premenné, potom vo vSeobecnosti plati

Dokaz: gz:——l—y://da:dy( //d:r;dya:p z,Yy) //dmdyyp(fb‘,y)
:/dx:c/dyp(ﬂ:,y)+fdyy/dmp(x,y)

:fdxa:p:c(x)Jr]dy’ypy(y)szrg

Majme dve nezavislé nahodné premenné, potom plati

y:
y)e(

T.Y=T.J
Dékaz: z faktorizacie pre nezavislé premenné dostaneme

Ty = //dwdywyp(:vay) = //dardyfcypm(fc)py(y) Z/dmpm(x)/dyypy(y) =Ty

Poznamenajme, ze ak plati .y = Z.y este z toho nevyplyva, Zze premenné su
nezavislé.



Kontrapriklad: pri spojitych nahodnych premennych
nie je kanonické rovnhomerneé rozdelenie

Majme zadanie: hodime épagetu na nakreslent kruZnicu. Spageta kruZnicu pretne v
dvoch bodoch A,B. Oznacme dlzku tetivy AB ako ¢. Najdite hustortu
pravdepodobnosti premennej €.

,RieSenie” 1:

Bez ujmy na vSeobecnosti m6zeme
predpokladat, ze vsetky hodené Spagety su
rovhobezné, kolmé na bodkociarkovanu &iaru
na obrazku. Nahodny event je potom plne
Specifikovany diZkou Usecky SM, oznaéenou
ako x. Predpokladajme rovhomerné
rozdelenie x € (—r,r).Dostaneme

£ =2r? + 22
E:/ 2v/r? + x?—dr ~ 1.57r

1
. UF




Kontrapriklad: pri spojitych nahodnych premennych
nie je kanonické rovnhomerneé rozdelenie

“‘Riesnie” 2:

Bez ujmy na vSeobecnosti m6zeme
predpokladat, ze vSetky hodené Spagety
pretnu kruznicu v tom istom bode A.
Nahodny event je potom plne Specifikovany
uhlom ASB oznacenym ako .
Predpokladajme rovnomerné rozdelenie ¢ €
(0,2m) a dostaneme

£ =2r/sin(p/2)

_ 4 d
£ = / 27"811’1(@/2)—90 ~ 1.27r
0 s




aké su hlavné rozdiely medzi diskrétnymi a spojitymi nahodnymi udalostami
ako sa experimentalne stanovi pravdepodobnost’ nejakej diskrétnej udalosti
definicia strednej hodnoty diskrétnej nahodnej veliCiny

variancia diskrétnej nahodnej veliCiny

stredna kvadraticka odchylka

Co je to kumulativna distribucna funkcia pravdepodobnosti spojitej nahodnej
veliCiny

hustota pravdepodobnosti spojitej nahodnej veliCiny a jej suvis s distribucnou
funkciou

normalizacia hustoty pravdepodobnosti

ako sa vypocCita pomocou hustoty pravdepodobnosti pravdepodobnost, ze
nahodna veliCina x padne do intervalu (a, b)

definicia strednej hodnoty nahodnej veli€iny

definicia strednej hodnoty funkcie f(x) nahodnej veli€iny (x)

variancia spojitej nahodnej veliCiny

stredna kvadraticka odchylka pre spojitu nahodnu veli€inu

rovhomerné nahodné rozdelenie

normalne (Gaussovo) rozdelenie

ako suvisi 95% confidence interval so Standardnou odchylkou pre Gaussovo
rozdelenie



Teplo ako mikroskopicky konana praca

Latky sa skladaju z molekul

Molekuly na seba silovo p6sobia (silami elektromagnetickej povahy, lebo
sa skladaju z nabitych castic)

Molekuly sa hybu chaotickym tepelnym pohybom
Hybu sa a p6sobia silovo, teda konaju pracu
Praca je mikroskopickej povahy, , nevidime ju“

Pracu, ktoru kona trpaslik stlacanim piesta, vidime: je to makroskopicka
praca

Mikroskopicky konana praca sa vola teplo. Teplo je druh prace, nie druh
energie. Konanim prace sa vymiena, prerozdeluje energia

Kontakt medzi dvoma objektami, pri ktorom sa kona len mikroskopicka
tepelna praca sa vola tepelny kontakt

Dva objekty, ktoré boli makroskopicky statické, ked sa daju do tepelného
kontaktu, vo vSeobecnosti sa za¢nu diat makroskopické zmeny ale
napokon tie makroskopické zmeny ustanu. Hovorime, ze tepelny kontakt
priviedol tie dva objekty do tepelnej rovnovahy.



Tepelna rovnovaha

Aj objekt izolovany od okolia sa nakoniec dostane do stavu, Ze ustanu
vsetky makroskopické zmeny, je sam o sebe v rovnovahe

Niekedy dva objekty privedené do tepelného kontaktu nevyvolaju
makroskopické zmeny, su od zaciatku navzajom v rovnovahe

Otazka je, da sa nejako zistit, kedy dva objekty privedené do tepelného
kontaktu budud hned' v rovnhovahe. Odpoved: ked maju rovnaku teplotu.

Teplota to je také oné, ktoré ked je rovnaké, tak objekty privedené do
tepelného kontaktu su ihned v rovnovahe bez makroskopickych zmien.

Neviem, Co je to teplota, ale vieme Ze to ma vlastnost testovania vztahu
,byt v rovnovahe”

Dajme si mensiu ulohu, skonstruovat ,,termoskop” teda pristroj, ktory
ked prilozim k dvom objektom rozhodne, ¢i po ich privedeni do kontaktu
budu v rovnovahe alebo nie.

V zasade mozem ako termoskop pouzit hocico velmi malé, aby jeho
privedenie do rovnovahy s meranym objektom ten objekt vel'mi
neovplyvnilo



Termoskop

Napriklad sklenena rudrocka so zatavenou ortutou. Po privedeni do tepelného
kontaktu s meranym telesom sa objem ortuti zacne menit (to je ten makroskopicky
dej) aZz sa ustdli. Ked potom privediem tu rurocku do tepelného kontaktu s inym
objektom a objem sa neza¢ne menit, tak je v rovnovahe aj s tym druhym objektom,
takZze ma rovnaku teplotu ako ten prvy objekt. Zaver: dva objekty ak sa privedu do
kontaktu budui okamzite v rovnovahe, ked' je pravdou Ze otestovanie ortutou
naplnenou rurockou ukaze rovnaky objem ortuti pri styku s oboma telesami. Na to
ale musi byt ortutova rurocka mala, aby tie objekty moc neovplyvnila.

Matka spravidla nemeria teplotu decka, ktoré nechce ist do Skoly tak, Zze by ho
ponorila do velkého mnozstva studenej vody a nesleduje ako sa zmenil objem vody
vo vani po privedeni do kontaktu. Privedie to sice objekt decko a objekt voda do
rovnovahy, ibaze decku velmi klesne teplota a matka by ho vidy mohla poslat do
Skoly



Teplomer

Vhodnym okalibrovanim sa mo6ze z termoskopu stat teplomer

Napriklad termoskop typu ,rirocka s ortutou” vlastne meria tplne int veli¢inu: objem
ortuti. Ak predpokladam jednoznacnu zavislost medzi teplotou a objemom ortuti, potom
mozZem na sklenenu rurocku naniest ,,iarky” oznacované v jednotkach teploty a nie
jednotkach objemu po vhodnej kalibracii.

Jedna znama kalibarcia pochadza od Celsia

Celsius zaviedol v roku 1742 stupnicu s dvomi pevnymi bodmi pri tlaku vzduchu
1 013,25 hPa, a to 100 °C pre teplotu tuhnutia vody a 0 °C pre teplotu varu vody. Carl Linné
stupnicu neskor otocil a preto je dnes definovana ako

0 °C pre teplotu tuhnutia vody
100 °C pre teplotu varu vody .

Po definovani dvoch teplotnych bodov nasleduje interpolacia pre teploty medzi tymi dvoma
bodmi ako linearna interpolacia na 100 rovnakych dielikov. Tym sme vlastne definovali, ze
ortut zvacsuje svoj objem linearne s teplotou. KedZe nevieme, co je to teplota, je nam to
jedno. VSimnime si, ze zatial mame len okalibrovany termoskop, teplotné rozdiely nemaju
zatial ziaden fyzikalny vyznam. Vyznam pre posudenie rovnovahy ma len fakt, ze dva objekty
maju rovnaku teplotu. Ale to, ze jeden objekt ma teplotu o 5 stupriov vyssiu ako druhy
objekt nema zatial pre nas ziaden vyznam.

Ale staci zacat robit nejaké experimenty pri r6znych teplotach a nejaky vyznam sa prejavi.



Teplota a teplo

Doteraz sme teplotu definovali iba takto:

Teplota to je také oné, ktoré ked' je rovnaké, tak objekty privedené do tepelného
kontaktu su ihned' v rovhovahe bez makroskopickych zmien. Ked to oné nebolo rovnaké
pred privedenim do kontaktu, tak sa zaénu diat makroskopické zmeny, ktoré po nejakom
Case ustanu, uz sa ni¢ makroskopicky nemeni a vtedy to oné je uz rovnaké pre oba
objekty v tepelnom kontakte.

Trochu odbornejsie to vyjadrujeme tak, ze pri tepelnom kontakte sa vyrovnaju teploty, a to
tak, ze teplota objektu s pdvodne vyssou teplotou poklesne a teplota objektu s pévodne
nizSou teplotou stupne.

Opravnene sa moZzeme pytat, ¢o sa to deje pri tom tepelnom kontakte.

Nedodrzime historicky vyvoj a prezradime, o Co ide. Fyzikom trvalo velmi dlho, kym tento
problém spravne vyriesili a vela Casu stravili skimanim ,slepych uliciek®.

KI't€om je molekulova hypotéza. Latky sa skladaju z molekul. Pri tepelnom kontakte sa
molekuly dvoch objektov k sebe priblizia a zacnu na seba silovo p6sobit. KedZe sa pri tom
aj chaoticky pohybuju, funguje vzorec ,sila krat draha” a teda molekuly kontaktu jedna nad
druhou konaju pracu. Praca znamena prenos energie. Pri tepelnom kontakte sa teda
prerozdeluje energia medzi objektami v kontakte, konanim ,neviditelnej” mikroskopickej

prace. Ta mikroskopicky konana praca sa vola teplo.



Teplo je druh prace, nie druh energie

Do nadpisu sme dali dbélezitu poucku. Najma preto, ze ludia to maju spravidla popletené.

BeZna predstava je, Ze teplo je forma (druh) energie. Ze je to ¢osi, ¢o je ,,schované“ v
jednom (teplejSom) objekte a pri tepelnom kontakte sa to Cosi ,preleje” do druhého
(chladnejsieho) objektu, ktory sa tym zohreje.

Odtial dalSia chybna predstava: ked chcem nieco zohriat (zvysit tomu teplotu) musim do
toho ,,dodat teplo” .

To vSetko je zle. Teplo nie je nikde uskladnené, je to charakteristika nejakého deja, pri
ktorom sa to teplo kona. Podobne, ako sa kona bezna makroskopicky viditelna praca typu
,sila krat draha“. Rozdiel je len v tom, Ze pri makroskopicky konanej praci ,vidim® tu silu aj
tu drahu, pri mikroskopicky (na molekulovej drovni) konanej praci nevidim ani silu ani
drahu. Mnohym vadi formulacia ,teplo sa kona” ale Uplne suhlasia s formulaciou ,,praca sa
kona“. Opakujem znovu: teplo je druh prace, teda ,sa kona“. Ak je na fakture z teplarne
napisané , dodali sme vam teplo® je to nefyzikalny paskvil. Hoci je pravdou, Ze aj vela
fyzikov by v Zivote nepouzilo formulaciu ,teplo sa kona® Je to pozostatok historickych
slepych uliciek a zlych hypotéz, ktoré pouzivali formuldacie typu ,teplo sa dodava, prenasa“
a podobne. Trvanie na formulacii ,teplo sa kona“ je taka moja privatna obsesia. Ak sa vam
to nepadi, hovorte dalej, Ze teplo sa dodava. Ale naozaj sa zbavte predstavy, zZe teplo je
druh energie. V dalSom este budeme tieto poucenia hlbsie a dokladnejsie diskutovat.



Praca sa neda uskladnit, energia ano

Energia je stavova veli¢ina. Teda ked' mam nejaky fyzikalny objekt, da sa spytat, aki ma v
momentalnom stave energiu. DOraz je na slovo mat, takmer vo vyzname ,vlastnit”, ¢asto aj
vo vyzname ,mat ju v sebe uskladnenu”. Energia v momentdlnom stave sa zisti tak, Ze mdm
sadu vzorcov pre vypocet energie (Feynman), dosadim do tych vzorcov hodnoty veli¢in
definujucich momentalny stav, s¢itam a dostanem hodnotu energie. Teda nemusim poznat
historiu, ako sa objekt dostal do stavu, v ktorom momentalne je, ani buducnost, ¢o bude o
chvilu robit. Energia je zaleZitost okamihu.

Praca charakterizuje prebiehajuci dej, pocas ktorého sa kona. Neexistuje nieco ako , praca v
danom okamihu®, existuje len , praca vykonana v priebehu nejakého Casu, nejakého procesu”.
Ked proces skoncil, praca nema zmysel, nikde nie je ,,uskladnena“. Je pravdou, Zze mnozstvo
prace vykonané v priebehu nejakého procesu sa da ,spatne vystopovat”: ak mame zaznam,
aku energiu mal objekt na zaciatku vysetrovaného procesu a potom vypocitame jeho energiu
na konci toho procesu, rozdiel je ona vykonana praca. Praca je sp6sob, ako moze dojst k
transferu energie medzi dvoma objektami. Ak objekt A vykona nad objektom B kladnu pracu,
jeho energia pri tom klesne o hodnotu vykonanej prace a energia objektu B stupne o
hodnotu vykonanej prace. Energia uskladnena v objekte A sa preskladnila do objektu B.
Praca sa tyka dvoch objektov, , konatela” a ,trpitela”. Kto je konatel a kto trpitel je vecou
dohody, pomenovania mozno vymenit ak si¢asne zmenime znamienko vykonanej prace. Na
trpitela, nad ktorym konatel vykonal kladnu pracu sa da nahliadat akoby na konatela, ktory
nad originalnym konatelom, na ktorého sa zaéneme divat ako na trpitela, vykonal zapornu
pracu. Zvyknite si, Ze prace moze byt zaporna, to v beZznom Zivote nepouzivame.



Energia, praca a autoservis

Na fakture z autoservisu su dva stlpce
* nahradné diely
* vykonané prace

Nahradné diely boli v sklade, potom su namontované do auta, a potom su vo vasej
garazi

Prace neboli v sklade a nemate ich ulozené vo vasej garazi po navrate zo servisu.
Prace sa konali a neboli ani nie su nikde ulozené

Suciastky stale niekde su.

Podobny rozdiel je vo fyzike medzi energiou a pracou.

Energia stale niekde je a tyka sa okamzitého stavu. Je to stavova velicina.
Praca sa kona pocas deja. Pred jeho zacatim ani po jeho skonceni nikde nie je.

Teplo je druh prace, nie energie. Nikde nie je schované. To bol len historicky omyl.



Kalorimetria

Kalorimeter je tepelne izolovana nadoba, ¢im je
Thermometer—_ vyluéeny tepelny kontakt s okolitym prostredim. Vnutri
nadoby prebieha typicky experiment, v ktorom
privedieme do tepelného kontaktu dva fyzikalne
objekty, ktoré maju na zaciatku nerovnaké teploty. Na
obrazku jeden systém je voda, druhy nejaké tuhé teleso.

Water

Po istom Case sa ustali spolocna vysledna teplota
System

Experiment vyzera teda takto

Voda: hmotnost m4, pociato€na teplota t;. Teleso: hmotnost m,, pociatocna teplota

t, > t;.

Vysledna teplota je t.

Suhrn experimentalnych skusenosti je, ze existuju materialové konstanty pre vodu ¢4 a pre
material telesa c,, tak, ze pre experiment popisaného typu plati kalorimetricka rovnica:

miCq (t — tl) = mQCQ(tQ — t)

Konstanty ¢4, ¢; sa nazyvaju merné tepla prislusSnych materialov.



Kalorimetricka rovnica ako ,,zakon zachovania tepla“

Kalorimetricka rovnica sa da prepisat takto: ~ ™Micit1 + macata = micit + macat

Pozriem na tu rovnicu a vidim zakon zachovania. Nieco na zaciatku vypocitané podla vzorcov
typu ,mct” je rovnaké ako na konci. A zjavne ma musi napadnut, Ze ,nieco je schované v
zohriatom telese”, ¢o sa prelieva z teleso do telesa a celkova suma sa zachovava. A vyhutam si
cosi ako ,,zakon zachovania tepla“. A Ze teplo je také oné co je zodpovedné za teplotu telesa a

(]

da sa ,mat v sebe teplo“, , premiestnit teplo“, vyhtitam rovnicu pre ,vedenie tepla“, potom
{

,»Z izby uniklo teplo“, dom ma ,straty tepla“, ,teplo sa Siri vedenim, pridenim alebo
salanim“. A mnoho dalSich klisé. Vsetko je to zle.

Celkom dobra hypotéza o zachovani tepla ale nepravdiva. Kalorimetrické merania na to priam
navadzaju. Co je na tom zle? To, Ze ked chcem menit teplotu, da sa to nielen (uZ to poviem
,po novom®) konanim tepla ale aj konanim makroskopickej prace. Teplota suvisi s energiou
uskladnenou v telese, nie s ,teplom, uskladnenym v telese”,

Ako vznikli také zmatky? Tak, ze kalorimetrické merania sa prirodzene robili s kvapalinami a
tuhymi telesami, nie s plynmi. Kvapaliny a tuhé telesd maju malu tepelnt roztaznost, malo
menia svoj a teda sa kona mala makroskopicka mechanicka praca. Kona sa prakticky len
mikroskopicka tepelna praca. Zmena energie v kazdom telese je potom cela rovna
vykonanému teplu, je za tym zdkon zachovania energie, nie tepla. Ked sa zacnem hrat s
plynmi, tak zistim ze neplati kalorimetricka rovnica tak, ze by existovala pre kazdy plyn jedna
hodnota ,merného tepla® Zalezi, ako je experiment usporiadany, napriklad, ¢i prebieha v
kalorimetri pri stalom objeme plynu alebo pri stalom tlaku alebo mnohymi inymi sp6sobmi.



Prva veta termodynamicka

Uvazujme nejaky fyzikalny systém (objekt). Ten objekt ma nejakd vnutornud struktdru a
predpokladajme, Ze v kazdom stave vieme vypocitat energiu toho objektu.

Posobenim vonkajsich objektov uvazovany objekt moze zmenit svoj stav a teda aj svoju
energiu o nejaku hodnotu AE. Ta zmena energie je mozna iba tak (ak verime na zakon
zachovania energie), Zze prebehol nejaky dej, pocas ktorého vonkajsie objekty vykonali
pracu nad uvaZzovanym objektom. Ta praca moze byt dvoch typov

* makroskopicka, oznaéme ju A’ (¢iarkované oznaéenie je historickd konvencia)

* mikroskopicka, Cize teplo, oznaéme ho Q.

Z4dkon zachovania energie hovori, Ze zmena energie musi byt kryta zvonku vykonanou
pracou, teda plati

AE=A +Q

Uvedené rovnica sa vola ,,prva veta termodynamicka® Dévod, preco sa tomu nehovori
prosto zakon zachovania energie je historicky. V dobe, ked sa na vSetko toto postupne doslo
neboli zname molekuly a teda nebolo zrejmé, ze ,vnutri telesa” sa moze ,,schovavat” nejaka
energia napriklad ako kineticka energia neviditelného pohybu molekul. Dokonca nebol ani
vycizelovany pojem energie. TakZze nebolo jasné, Ci a o sa vlastne zachovava. Prva veta
termodynamicka hovorila vlastne na zaciatku len tolko, Zze ak k prechodu z jedného stavu do
druhého dojde dvoma réznymi sposobmi, potom sucet vykonanej makroskopickej prace a
tepla je pri oboch procesoch rovnaky, pricom relativna velkost prace a tepla moze byt pre
rézne procesy rozna. Prva veta termodynamicka bol vlastne prispevok ,tepelnych vedcov”
(termodynamikov) k vycizelovaniu pojmu energie a zakona zachovania energie.



Heot Priklad makroskopickej prace

V plyne je tlak p. Piest je

S ,Zasprajcovany”, objem je
konstantny. Ak chceme menit objem,
musime na pomoc zavolat
7 ,vonkajsieho agenta” trpaslika. Ten

chyti piest a nastavi silu ruk tak, aby
°c akurat vyrovnavala vnutorny tlak.
Takze piest stoji.
Teraz moze trpaslik trochu potiahnut
piest malickym zmensenim sily ruk.
Piest sa posunie o dx.
Plyn vykona pracu

0A = pSdx = pdV

Trpaslik vykona pracu

F
A J

0A" = —pSdx = —pdV




Budeme hlasovat

Kazda praca je vidy kladna

Praca plynu je vidy kladna

Praca trpaslika vzdy zaporna

Ked' je praca plynu kladna je praca trpaslika zaporna a naopak



Prva veta termodynamicka
AE =A"+Q

Upozornime, ze na lavej strane je ,, delta”, o oznacuje ,zmenu” presnejsSie ,prirastok”
energie. Technicky to znamena, Ze ide o rozdiel (diferenciu, preto delta) dvoch hodn6t
energie: energia v koncovom stave minus energia v pocCiatocnom stave.

VSimnime si, Ze na pravej strane nie su ziadne ,,delty”. Praca je konana pocas nejakého
procesu, nie je to ,praca v koncovom stave minus praca v pocCiatocnom stave®. Praca nie je
stavova veliCina. Napravo teda nemame ,,prirastky prac” ale ,vykonané prace”. Preto ziadne
,delty”.

Ukazanim prvej vety termodynamickej sme trochu predbehli logicky aj historicky vyvoj, lebo
sme chceli ukazat ,na €o je to dobré“ a tak motivovat zaujem dumat nad logickymi a
technickymi jemnostami, ku ktorym sa teraz ideme vratit.

Chceme pouzivat pojem teplo ako mikroskopicka praca, teda by sme ho mali merat v
jednotkach Joule, ibaze nevieme ako.



Jednotka tepla

Pojem teplo sa historicky zjavil v kalorimetrickej rovnici
micy (t — tl) = mQCQ(tQ — t)

kde sme hovorili Ze , existuju materialové konstanty” ¢4, ¢,. Ale nepovedali sme nic o
jednotkach, v akych sa merné tepla vyjadruju. Malo by to zjavne byt , cosi/(kg.stupen)”.
A to ,Cosi“ by mala byt ,jednotka tepla“.

Problém je v tom, Ze ak tie merné tepld nechceme pouzivat inde ako v kalorimetrickej
rovnici, potom ta jednotka ni¢ neznamena. Na volbe jednotky ,Cosi” vObec nezalezi, len
musi byt rovnaka pre merné tepld vSetkych latok. Jednotka Cosi sa totiz v rovnici vykrati,
takze jej ,velkost” vlastne ni¢ nehovori (opakujem: ak to vystupuje len v kalorimetrickej
rovnici — predumajte si to poriadne!)

Historicky takéto Cosi bolo (lubovolne) definované tak, Zze sa definovalo, Ze merné teplo
vody ma hodnotu 1 kcal/(kg.stupen) a teda teplo sa meralo v kilokalériach.



Mechanicky ekvivalent tepla

Nazov tohto slajdu odraza fakt, ze postupne sa vycizelovalo, Ze teplo je druh prace a teda by
sa malo merat v jednotkach, v ktorych sa meria praca.

Bol to historicky zdihavy proces.

Prvy kvalitativny zaver urobil zrejme Benjamin Thompson v roku 1797, ktory si vSimol, ze
objekt sa da zahriat nielen tak, Ze ho privedieme do kontaktu s teplejsim objektom ale aj tak
ze ,,sa niekde kona mechanicka praca“. Konkrétne si vSimol, Ze pri vitani delovych hlavni sa
hlavne (aj vrtaky) zahreju aZz do tej miery, Zze ked sa chladia vodou, tak voda az zovrie.
Kvantitativne merania urobil najma James Prescott Joule v roku 1843 a zistil (r6znymi
experimentalnymi technikami), kolko mechanickej prace treba vykonat aby to viedlo k
rovnhakému zvyseniu teploty ako pri,,dodani“ 1 jednotky tepla. Odtial ten ndzov mechanicky
ekvivalent tepla.

Standardna hodnota ,mechanického ekvivalentu tepla“ je

1 kcal = 4.186 kI




Mechanicky ekvivalent tepla
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Ak trvame na ,Cisto mechanickej praci“ (o pred sformulovanim zakona o zachovani energie
bolo urdite treba), potom meranie bolo zaloZzené na réznych rafinovanejsich postupoch
(trenie!ll) podla principu ,vrtulka sa toci vo vode v kalorimetri na Ukor zmeny mechanicke;j
energie zavazia“. Dnes je ovela jednoduchsie dat do vody v kalorimetri Spiradlu a pustit do nej
elektricky prud a vypocditat pracu batérie podla vzorca Ult .



Mechanicky ekvivalent tepla

Nazov tohto slajdu odraza fakt, ze postupne sa vycizelovalo, Ze teplo je druh prace a teda by
sa malo merat v jednotkach, v ktorych sa meria praca.

Bol to historicky zdihavy proces.

Prvy kvalitativny zaver urobil zrejme Benjamin Thompson v roku 1797, ktory si vSimol, ze
objekt sa da zahriat nielen tak, Ze ho privedieme do kontaktu s teplejsim objektom ale aj tak
ze ,,sa niekde kona mechanicka praca“. Konkrétne si vSimol, Ze pri vitani delovych hlavni sa
hlavne (aj vrtaky) zahreju aZz do tej miery, Zze ked sa chladia vodou, tak voda az zovrie.
Kvantitativne merania urobil najma James Prescott Joule v roku 1843 a zistil (r6znymi
experimentalnymi technikami), kolko mechanickej prace treba vykonat aby to viedlo k
rovnhakému zvyseniu teploty ako pri,,dodani“ 1 jednotky tepla. Odtial ten ndzov mechanicky
ekvivalent tepla.

Standardna hodnota ,mechanického ekvivalentu tepla“ je

1 kcal = 4.186 kI




,Vedenie” tepla

Spomenuli sme, ze tepelna praca sa kona pri tepelnom kontakte medzi dvoma

objektami. Kalorimetricka rovnica nam potom pri merani zmien teploty, kolko tepla

bolo v procese vykonané.

Rafinovaniejsii spdsob kontroly nad konanym teplom spociva v kontakte cez ,,takmer

izolujuci medzikus®. Medzikus je z malého mnozstva latky, ktora ma velmi nizke merné

teplo, takze ,pre seba si ukradne” len zanedbatelnu energiu a zabezpecdi len pomaly

,prenos tepla z objektu 1 do objektu 2. Korektnejsia
formulacia by bola takato:

Na styku objekt 1 s medzikusom kona objekt 1 tepelnu
pracu, Co zvysuje energiu kontaktnej vrstvy materialu
medzikusa. Prva vrstva medzikusa ale bude konat tepelnu
pracu nad druhou vrstvou. Energia prvej vrstvy ale podla
predpokladu vzrastie len malo, takze teplo konané prvou
vrstvou nad druhou vrstvou je prakticky rovnaké ako
teplo konané objektom 1 nad prvou vrstvou. A tak dale;j

po vrstvach az po styk s objektom 2.
Po velmi dlhom case sa teploty objektov 1 a 2 vyrovnaju, ale méZzeme sledovat ten proces

postupne, takze v nejakom okamihu 7 budu teploty tych objektov ty, t5. Vtedy bude platit
kalorimetrickd rovnica mycy(t1 — ) = maoco(th, — t2) . Celkové mnoZstvo tepla, ktoré objekt
1 vykonal za ¢as T potom je
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Q(7) = mici(t; —t})



,Vedenie” tepla

Q(7) = mycy(ty —17)

D
(1]

Toto je mnozstvo tepla vykonaného objektom 1 nad
objektom 2 za Cas 7. Pri lepSie izolujdcom materiali
,medzikusa”“ bude potom toto vykonané mnozstvo tepla
mensie. Izola¢né vlastnosti ,medzikusa“ moézeme v
takomto experimentalnom usporiadani merat a zistovat,
od ¢oho zavisi teplo vykonané za jednotku casu.

e

mi,t1

Vsetci ,normalni“ [udia tomu ale hovoria ,teplo prenesené medzikusom” za jednotku casu. S
vedomim, Ze sa neprenasa teplo ale de facto energia, si aj my nebudeme davat paranoidny
pozor na terminoldgiu a budeme hovorit o ,vedeni tepla“.

Experimentalne sa pozoruje, Ze mnozstvo preneseného tepla je priamo Umerné casu T,
velkosti sty¢nej plochy S, nepriamo Umerné hrubke izolaéného materidlu h a priamo umerné
rozdielu tepl6t na ,vstupe” a ,vystupe” (t;—t,). Vyjadrené matematicky

th —t
Q=AIrS—2
h
koeficient A sa vola koeficient vedenia tepla a je materidlovou charakteristikou. Rovnica sa

vola rovnica vedenia tepla.




,Vedenie” tepla

D
(1]

t1 — 1o

Q=X7S ;

V ucebniciach ,,rovnicu vedenia tepla® Castejsie
nachadzame zapisanu v tvare

dt

o\
JQ dx

mi,t1

Velic¢ina na lavej strane sa vola hustota prudu tepla a udava, ma vyznam prenosu tepla za
jednotku casu cez jednotku plochy. Uddava sa teda v jednotkach Js'm=2. Zlomok

t1 — 12

v rovnici vedenia tepla vyjadruje vlastne rychlost poklesu teploty so vzdialenostou v smere
x, preto sme ho nahradili zapornym gradientom (derivaciou) teploty podla premennej x.
Zapornym preto, Zze poradie v Citateli uvedeného zlomku je opacné ako v definicii
derivacie. Ak gradient teploty je zaporny, dostaneme kladny ,tok tepla“ v smere x, ako
intuitivne o¢akavame, lebo ,teplo tecie od teplejsieho telesa k chladnému®,



Trpaslik ,, kuric”

Postupne budeme skiumat r6zne procesy, najma v plynoch, pri ktorych sa bude kontrolovane
menit teplota, tlak, objem, bude sa konat mechanicka praca a teplo. Najlepsie je predstavit si
pomocnych laborantov, budem ich volat ,trpaslici“, ktory dostanu presné instrukcie pre
sledovanie nejakych meracich pristrojov a ovladanie nejakych vonkajsSich objektov.

Prvy pomocnik sa bude volat ,trpaslik kuric“. Jeho ulohou bude vykonat nad vySetrovanym
systémom nejaké teplo Q. Systém je dokonale tepelne izolovany, nemdze dojst k
nekontrolovanému konaniu tepla. Ak Uloha pre kuri¢a bude ,,dodat” systému kladné
mnozstvo tepla Q, zoberie si nejaky externy objekt o hmotnosti m a mernom teple ¢ zahriaty
na teplotu vyssiu ako je teplota systému. Potom urobi do izolacie systému otvor a do otvoru
presne nasadi slabo tepelne vodivy medzikus na ktory prilozi v tepelnom kontakte zahriaty
objekt, ktorého teplotu sleduje kym poklesne oproti pocCiato¢nej teplote o hodnotu At, pre
ktoru plati Q = mc|At|. Je zrejmé, Ze do systému ,dodal” poZzadované kladné teplo Q.

Keby poziadavka bola dodat zaporné teplo, zoberie
si objekt chladnejsi ako vySetrovany systém a
docka, az jeho teplota stupne o hodnotu At, pre
ktoru plati |Q| = mcAt.

Trpaslik kuri¢ bude pre nas neskor robit aj dalsie
operacie. V technickej praxi sa zariadenie, ktoré
obsluhuje trpaslik kuri¢ vola vymennik tepla.




Teplotna roztaznost latok

Ortutovy teplomer definoval, Ze ortut sa roztahuje
linearne s teplotou. To nie je prirodny zakon ale
(zatial) sucast definicie teploty. Potom mozeme
skumat, ako je to s objemom inych latok pri roznych
teplotach. A objavime, Ze latky s rastucou teplotou
spravidla zvacsuju pri konstantnom vonkajSom tlaku
svoj objem a to linedrne (resp. takmer linearne) v
prakticky zaujimavom intervale tepl6t. Linearna
zavislost znamena Ze pre zavislost objemu na teplote
plati vztah (S sa vold koeficient objemove;j
roztaznosti).

V =W+ 8(t—to))

VSimnime si, ze tu mame na mysli relativhu objemovu

vvvvv

objemu pri tom istom zvysSeni teploty. Vyplyva to z
prirodzeného predpokladu, ze ,kazdy kubicky
centimeter” tej latky sa roztiahne rovnako, preto 10
cm?3 sa roztiahne 10-x viac ako 1 cm3. Tento
predpoklad je prirodzeny, ale nie logicky nevyhnutny.
Premyslite si, preco je prirodzeny, ak latky su zlozené
z molekaul.



Dlzkova roztaznost

Objemova teplotna roztaznost je vlastnost vSetkych latok. U tuhych latok (ktoré na rozdiel
od tekutin maju svoj vlastny tvar neuréeny nejakou nadobou) moézeme hovorit aj o
diZkovej roztaznosti (v nejakom smere). Aj tu pozorujeme e v dost velkom intervale
tepl6t sa rozmery latok zvacsuju takmer linearne, teda podla zakona (a sa vola koeficient
diZkovej roztaznosti roztaznosti).

d=do(1+alt—1ty))

Pre vela tuhych latok je hodnota koeficientu roztaZnosti radovo a ~ 107> /°C.
Pri izotropnych latkach su koeficienty dlzkovej roztaznosti v kazdom smere rovnaké a teda
pre objemovu roztaznost dostaneme [ = 3a.

LN LAV LAY LY LA LA R L L i I
1 2 3 4 5 Qﬁ Q?
/ (a) krouiek—/ / L
! kruhovy !

! otvor \

/ \
L L s I L

1 2 3 4 SO(S O?

Ocelové pravitko pri dvoch teplotach. Stupnica, Cisla, priemer vyrytého kruhu aj priemer
kruhového otvoru sa menia v rovhakom pomere.




Bimetalovy teplotny vypinac
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Deje v plynoch

V tejto prezentacii zhrnieme prevazne experimentalne poznatky historicky ziskané pred
sformulovanim molekulovej hypotézy. Vsetko sa bude tykat plynov, lebo to su latky s
jednoduchou strukurou. Dnes vieme, ze sa skladaju z molekul, ale tie sa v obvyklych
podmienkach nachadzaju daleko (vyjadrené v rozmeroch typickych pre svet molekul) od
seba a teda ich vzajomna interakcia sa da vacsinu ¢asu zanedbat, s vynimkou zrazok
molekul. Preto makroskopické rovnice pre plyny su dost jednoduché a aj kvalitativne
pochopenie zakladnych procesov je tiez jednoduché.

TakZe vacsinou budeme imitovat starych experimentatorov, teda, Ze nevieme, Ze plyny sa
skladaju z molekul. Ale ¢asto potom tam, kde to nebude prilis zlozité, ozrejmime si aj to,
ako sa na diskutovanu vec diva dnesna fyzika ,,o¢ami molekul”.



Stav plynu. Rovnovazny stav.

Pre Cloveka, ktory nevie o molekulach, je plyn ,,nové fyzikalne zviera®, ktorému sa neda

bezprostredne rozumiet ak rozumieme napriklad mechanike hmotnych bodov. Je to

,Zviera“ vypinajuce nejaky objem priestoru, je to kontinuum a ked ho chceme ovladat,

musime nejako vyexperimentovat ako sa sprava a potom naplnit zakladny fyzikalny

program,

* teda povedat ako sa zapiSe momentalny stav plynu a

» ako sa potom dé predpovedat buducnost, teda zmeny stavu pri interakcii s
vonkajsim svetom.

Vo vSeobecnosti su stavy plynu a deje v plyne velmi komplikovana vec (koniec koncov
napriklad ,,pocasie” je v istom pribliZzeni ,asovy vyvoj stavov vzduchu®).

Fyzici si ale skoro vSimli, ze ista podmnozina stavov plynu su jednoduché stavy. Su to tzv.
rovnovazne stavy.

Ide o toto. Ak plyn v fubovolnom stave dokonale izolujeme od okolia a ,ponechame ho
samého na seba”, potom spravidla na zaciatku sa s plynom deju vSakové aj dost divoké deje
ale po uplynuti istej doby deje utichnu, plyn vyzera staticky, nemeni svoj ,,experimentalne
pozorovatelny stav”. Takyto stav, ktory sa uz sdm o sebe nemeni, sa nazyva rovnovazny stav
plynu.

Zaregistrovali sme teda prirodny zakon: Izolovany plyn samovyvojom prejde do
rovnovazneho stavu.



Vratné deje

V nasej dalsej diskusii sa obmedzime iba na rovnovazine stavy (budeme sa tvarit ako keby
Ziadne iné stavy ani neexistovali). Ak aj budeme skimat nejaké deje, potom iba také, ked'
pocas deja stav ,,neopusti mnozinu rovnovaznych stavov”, KedZe rovnovazny stav sa uz
samovolne nemeni, skimané deje budu prebiehat vplyvom vonkajsich objektov. Ak dej
nema opustit podmnoZinu rovnovaznych stavov, potom tie vonkajsie vplyvy musia byt
dostatocne ,,opatrné”. Také, ze ked' sa vplyv prerusi, dej uz samovolne nepokracuje dalej,
lebo predpokladame, Ze sledovany systém je stale v rovnovaznom stave. Prerusenie
vonkajSieho vplyvu znamena okamzité zastavenie deja.

Takto prebiehajuce deje nazyvame vratné deje. Nazov pochadza z toho, ze ak taky de;j
prebieha pod nejakym vonkajsim vplyvom, potom infinitezimalnou zmenou toho vplyvu
mozno dosiahnut, Ze dej zacne prebiehat ,,opacnym smerom®,



Rovnovazne stavy plynu

Experimentalna skisenost hovori, Ze ak uvaZzujeme nejaké fixné mnozstvo (hmotnost, pocet
molekul) nejakého plynu, potom rovnovazne stavy mozno jednoznacne urcit definovanim len
dvoch (makroskopickych) velic¢in. NajéastejSie sa vybera nejaka dvojica z trojice moznosti

* objem

» tlak

* teplota

Tlak plynu sa zisti tlakomerom, teplota teplomerom a objem spravidla vypoctom, z rozmerov
kontajnera, v ktorom je skimany plyn uzavrety.

Ak chceme skumat rovnovazine stavy toho istého plynu pri réznych objemoch, je potrebné
lahko (a pri tom dost opatrne, aby dej bol vratny) menit objem kontajnera, v ktorom sa plyn
nachdadza. Zariadi to ,variabilna stena” kontajnera, technicky realizovana ako utesneny piest
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Deje v plynoch - experimentalne usporiadanie

Chceme sledovat vratné deje v plynoch,
potrebujeme ,,zvonku” ovladat (nastavovat) dva
parametre. Zamestname trpaslika kurica, ktory
bude vykonavat tepelnu pracu a tym nejako
ovplyviovat parametre t,p. Bude mat zasobnik
na vodu, do ktorého méze pripustat hortcu a
student vodu a tym nastavit lubovolne teplotu
zasobnika, co ovplyvni ,transport tepla“ do
plynu v kontajneri. Poznamenajme, Zze miesSanie
vody v zdsobniku nemusi byt vratny dej (netyka
sa plynu v kontajneri).

Vratnost je zabezpecend tym, Ze transport tepla sa deje cez latku s malym koeficientom
vedenia tepla, takze konanie tepla nad plynom v kontajneri je pomaly vratny de;j.

Zjavne potrebujeme este jeden nezavisly vonkajsi vplyv, lebo nemo6zme nezavisle ovladat dva
parametre t, p kontrolou iba jedného parametra, vykonaného tepla Q.

K piestu preto angazujeme druhého trpaslika, budeme ho volat ,tlacic”. On priamo ovlada
parameter /. Koordinovanym usilim sa po nejakom ¢ase naucia nastavit vratnym sposobom
vychadzajuc z lubovolného rovnovazineho stavu novy stav dopredu zvolenymi hodnotami
lubovolnej dvojice parametrov z mnoziny p, V, t. V dalSej diskusii potom uvidime, ako to asi
mozu robit.



Stavovy diagram p,V

UZ sme povedali, Ze priestor rovnovaznych stavov plynu je dvojrozmerny, rovnovazny stav
mozZeme zadat nezavislou volbou dvoch parametrov. Graficky potom mozZeme vizualizovat
priestor rovnovaznych stavov v rovinnom diagrame, ¢asto to byva p, V diagram.
Rovnovaznemu stavu potom zodpoveda bod na diagrame, vratnému deju nejaka cCiara

[pociatocny stav|

vratny dej \

Npodiatotny stav
\ﬁnej aky stav]

V

Uvedomme si, Ze na tomto diagrame sa daju
jednoznacne zobrazit iba rovnovazne stavy a iba
vratné deje. Nerovnovazny stav sa neda jednoznacne
zobrazit, lebo na jeho zadanie treba viac parametrov.
Napriklad ak urobime umelo nerovnovahu tak, ze
natla¢ime molekuly iba do jednej polovice
kontajnera, potom ten stav nie je charakterizovany
jedinou hodnotou tlaku. Tlak v polovici zaplnenej
plynom je vysoky, v prazdnej polovici nulovy: dva
manometre ukazu r6zne hodnoty. Preto vizualizacii
takého nerovnovazneho stavu nezodpoveda bod na
p,V diagrame. Vratny dej je (husta, spojita)
postupnost rovnovaznych stavov, preto vratnému
deju zodpoveda cCiara na p, V diagrame.



Izotermicky dej (vratny)

Podumajme, aké prikazy dat tlaci¢ovi a kuricovi, aby
prebiehal izotermicky dej, teda kontinualna zmena
stavu pri zachovani konstantnej hodnoty teploty
plynu. Stavy sa maju postupne menit, takZze sa bude
menit p, V pri konstantnom t. Cielom je napriklad
zvysit objem z pociatocnej hodnoty V; na objem

V, > V;.

Prikaz pre kurica: ,Sleduj teplomer plynu a pred zacatim pokusu si namiesaj
(prilievanim teplej a studenej vody) vo svojom ,,zasobniku tepla“ taku istu teplotu, aka
je teplota plynu v kontajneri. PoCas deja neustale sleduj teplomer. Keby teplota zacala
trochu klesat, prilej teplej vody do zasobnika, ¢o zvysi transport tepla do plynu v
kontajneri, keby teplota mala tendenciu stupat, podchlad’ priliatim studenej vody
zasobnik pod teplotu plynu v kontajneri, o spbésobi ,opacny transport tepla z plynu do
zasobnika“ a vrati teplotu na pozadovanu hodnotu. Takto kuri€ primitivne realizuje Cosi,
comu sa hovori v technickej praxi termostat.

Prikaz pre tlaci€a: na zaCiatku tla¢ na piest silou F = p. S, ktora akurat vyrovna aktualny
tlak plynu v kontajneri, piest bude stat. Potom malinko zniz silu tvojich ruk, takze piest
sa zacne posuvat doprava a zvacSovat objem kontajnera. Ustlp doprava a postupne tak
pokracuj, az kym nedosiahnes zelany vysledny objem. Rob to pomaly, aby kuric stacil
udrZiavat konstantnu teplotu. PriebeZne zapisuj postupnost hodnét V, p.



Myslienkové experimenty

Predchadzajuci ,detinsky” popis experimentu s izotermickym dejom je mozno s€asti odrazom
postupného zdetinstovania mysle starntdceho ucitela. Ale chcenym cielom bolo ukazat na
primitivnom priklade techniku ,,myslienkového experimentu®. To je Cosi ako ,,navod na
skutoCny experiment” ktory mozno nikdy nevykoname a Casto je to mierne zjednoduseny
navod s vynechanim podrobnosti, ktoré povazujeme za nepodstatné pre principialne
fungovanie. (V skuto¢nom experimente napriklad moze dat vela prace vyriesit ako zatesnit
vymennik tepla aby plyn ani neunikal ani sa nekontaminoval vyparmi tesniacej vazeliny.)
Myslienkovy experiment nas ma zachranit pred spakruky sformulovanymi vetami typu ,,potom
izotermicky zvySime objem na hodnotu V,“ lebo by sa mohlo stat, Ze taka zmena nie je v
principe vykonatelna. Majstrami v technike myslienkového experimentu boli Einstein a
Feynman a veruzZe sa im to vyplatilo. Myslienkové experimenty im pomohli vycizelovat Gvahy,
no a potom u? len Stokholm (Feynman bol uz chory, Nobelovu cenu mu priniesli domov.)
Cvicte si techniku myslienkového experimentu rozpitvavanim veci, ktoré pocujete na
prednaskach, mozno budete prekvapeni, ked’ pri tom objavite, comu vSetkému nerozumiete.



Izotermicky dej (vratny)

pQ:‘/Q
/

>

Takto nejako by mohol vyzerat graf so

zaznamami trpaslika tlacCica o hodnotach

p, V pri vratnom izotermickom de;ji

p

%4

Ked uz mame zaznam o paroch hodnét p, IV
mobzeme skusmo ndjst vzorec pre funkciu p(V)
tak, aby si namerané hodnoty ,lahli“ na graf tej
funkcie. V dnesnej dobe to pocitac urobi za
okamih, volakedy to dalo zrejme viac roboty.
Experimentalne sa naslo, ze rovnica izotermy je

pV = const

Boyle Mariottov zakon:

p1Vi = paVs




Izotermy idedineho plynu

Boyle Mariottov zakon nie je absolutne presny, pre readlne plyny plati dost dobre len v istej
oblasti p, V —diagramu a presne plati len pre hypotetické idealne plyny. To su také, ktorych
molekuly sa navzajom ,necitia“ (neinteraguju). Na p, V —diagrame idealneho plynu si m6zeme
dopredu nakreslit sustavu izoterm pre rozne konstantné teploty. Bude to vyzerat ako na tomto
obrazku preteploty t; <t, <t3 <t, <tg < -

>
>

Vv

Rovnovaznemu stavu stale zodpoveda bod na p, V —diagrame, ale ak su na diagrame
predkreslené oznacené izotermy, potom pre znazorneny bod moézeme odcitat nielen hodnoty
p,V na osiach ale mézeme urcit aj teplotu toho stavu tak Ze zistime medzi ktorymi izotermami
sa nachadza a potom interpolaciou zistime teplotu aj trochu presnejsSie Napriklad, len tak od
oka, Cerveny bod na obrdazku leZi priblizne v 1/3 vzdialenosti medzi izotermami t,, t;. Teplota

teda bude pribliz
eda bude priblizne 0 ]

b= St 4 —t
g3t gt



Izobaricky dej

|dea je zistit, ako sa meni objem plynu s teplotou pri konstantnom tlaku, napriklad chcem
zvysit teplotu z t; nat, > t_1. Experiment sa da vykonat za pomoci tlacica a kurica. Kuricovi
poviem, aby kontrolovanym prenosom tepla pomaly zvySoval teplotu az na t,. A to tak, aby
tlacic stihal udrziavat konstantny tlak.

Tlacicovi ddm komplikovanejsi prikaz: ,Sleduj tlakomer a snaz sa udrzat konstantny tlak pocas
toho ako bude kuric¢ , karit“. Ak bude mat tlak tendenciu stupat, malicko posun piest doprava
aby si zvacsil objem a tlak sa vratil na pozadovanu hodnotu. Ak naopak tlak zacne klesat,
potlac trosku piest dolava aby si zmensil objem a tlak naspat stupol na poZzadovanu hodnotu.
V priebehu deja zapisujte dvojice hodnot V, t. Experiment na VV,t —diagrame dopadne

nejako takto:




Izobaricky dej

Idea je zistit, ako sa meni objem plynu s teplotou pri konStantnom tlaku, napriklad chcem
zvysit teplotu z t; nat, > t_1. Experiment sa da vykonat za pomoci tlaci¢a a kurica. Kuricovi
poviem, aby kontrolovanym prenosom tepla pomaly zvySoval teplotu az na t,. A to tak, aby
tlacic stihal udrziavat konstantny tlak.

Tlacicovi ddm komplikovanejsi prikaz: ,Sleduj tlakomer a snaz sa udrzat konstantny tlak pocas
toho ako bude kuric ,kurit”. Ak bude mat tlak tendenciu stupat, malicko posun piest doprava
aby si zvacsil objem a tlak sa vratil na pozadovanu hodnotu. Ak naopak tlak zacne klesat,

potlac trosku piest dolava aby si zmensil objem a tlak naspat stupol na poZzadovanu hodnotu.

V priebehu deja zapisujte dvojice hodnot V, t. Experiment na V/,t —diagrame dopadne

nejako takto:
Bodmi sa da preloZit priamka

V= Vo(1+~(t—to))
V Gay-Lussacov zakon

/./

oooooo
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Koeficient y je koeficient objemovej roztaznosti plynu.



Izobaricky dej jednoduchsie

Jednoduchsie je dat tlaci¢ovi volno a zatazit piest
zavazim vypocitanym tak, aby v gravitacnom poli
spolu s vonkajsim atmosférickym tlakom
udrziavalo ,,automaticky” zelanu hodnotu tlaku
plynu.

Bodmi sa da preloZit priamka
V= Vo(1+~(t—to))
Gay-Lussacov zakon

/0//

Koeficient y je koeficient objemovej roztaznosti plynu.



Izochoricky dej

|dea je zistit, ako sa meni tlak plynu s teplotou pri konstantnom objeme, napriklad chcem
zvysit teplotu z t; nat, > t_1. Experiment sa da vykonat za pomoci tlacica a kurica. Kuricovi
poviem, aby kontrolovanym prenosom tepla pomaly zvySoval teplotu az na t,. A to tak, aby
tlacic stihal udrziavat konstantny objem.

Tlacicovi ddm komplikovanejsi prikaz: ,, Konstantny objem sa neda udrzat tak, ze budes drzat
piest na mieste. Problém je v tom, Zze s meniacou sa teplotou sa menia aj rozmery kontajnera.
Takze meraj neustale rozmery kontajnera a posuvaj piest tak, aby objem plynu pri zmenenych
rozmeroch ostaval konstantny.”

V priebehu deja zapisujte dvojice hodnot p, t. Experiment na p, t —diagrame dopadne

nejako takto: —
J Bodmi sa da prelozit priamka

p p=npo(l+5(t—to))
Gay-Lussacov zakon

/c/'/'/‘/‘/

Koeficient ¥ sa vola koeficient tepelnej rozpinavosti plynu.




Vratné deje v idealnom plyne

Pre idealny plyn sa nasli jednoduché zakony
* izotermicky dej pV = poVj

* izobaricky dej V = V(1 + fy(t to))

* izochoricky dej p = po(1 4+ A(t — tg))

Uvedené Specidlne deje sa ,vyucuju v skole”. Okrem nich existuje vela inych dejov. Ak
vychddzam zo stavu pg, Vy, mézem na pV-diagrame nakreslit [ubovolnu krivku a vyhutat
prikazy pre kurica a tlaci¢a tak, aby dej sledoval dopredu zvolenu krivku. A potom najst
prislusny ,,zakon“. Ukazeme si, Ze netreba robit Ziadne dalSie experimenty, stacia dokonca uz
napriklad izotermicky a izobaricky zdkon a moézem odvodit zakon pre lubovolny dej, ak zvolim
nejaku krivku. Nie je na tom ni€ zahadné, izotermy su nakreslené podla dopredu znamych
rovnic a ak zaddm nejaku krivku zavislostou p(V), potom ¢istd matematika (bez fyzikdlneho
experimentu) uZ umoziuje vypocitat priesecniky tejto krivky s izotermami a teda najst
rovnicu procesu typu T (V). Urobime to vSeobecne, ale najprv dodajme dalsiu
experimentalnu informaciu: koeficient teplotnej roztaznosti plynu y je pre vsetky (idealne)
plyny pri rovnakej teplote £, rovnaky, pre t, = 0°C ma hodnotu

1
273.15°C

Yoo =




Absolutna teplota, Kelvin

Univerzalnost koeficientu roztaznosti plynov

10°C = 573 15°C
uz potom cisto matematicky vedie k tomu, Ze vSetky grafy rozpinavosti (idealnych)

plynov linearne extrapolované do zapornych tepl6t pretinaju os teplot v jednom
univerzdlnom bode —273.15°C

P

%

—273.15°C

Kelvina napadlo posunut pociatok teplotnej stupnice do tohto univerzalneho teplotného
bodu. Odvtedy meriame vo fyzike teplotu v Kelvinoch, pri¢om OK zodpovedd —273.15°C.,
Velkost ,jedného stupna“ sa nezmenila, teda teplotny rozdiel merany v Kelvinoch a stuprioch
Celzia ma rovnaku Ciselnu hodnotu. Dnesna definicia Kelvinu vychadza z toho ze teplotu
trojného bodu vody definujeme ako 273.16 K.



Absolutna teplota, Kelvin

Univerzalnost koeficient roztaznosti plynov

10°C = 573 15°C
uz potom cisto matematicky vedie k tomu, Ze vSetky grafy rozpinavosti (idealnych)

plynov linearne extrapolované do zapornych tepl6t pretinaju os teplot v jednom
univerzdlnom bode —273.15°C

v V = Vo(1+(t —to))

— I
[ Y ! t
—273.15°C T,
Kelvina napadlo posunut pociatok teplotnej stupnice do tohto univerzalneho teplotného
bodu. Odvtedy meriame vo fyzike teplotu v Kelvinoch, pri¢om OK zodpovedd —273.15°C.,
Velkost ,jedného stupna“ sa nezmenila, teda teplotny rozdiel merany v Kelvinoch a stuprioch
Celzia ma rovnaku Ciselnu hodnotu. Dnesna definicia Kelvinu vychadzala donedavna z toho, ze

teplotu trojného bodu vody definujeme ako 273.16 K.




Kelvin, nova SI

Tym, Ze sa povedalo, Ze trojny bod vody ma teplotu 273.16 K sa hodnota 1K stala
nezavislou na jednom dieliku Celziovej stupnice. Teplota OK, takzvana absolutna nula, je
totiz dobre a nezavisle definovana hodnota teploty. Nie celkom abstraktne mézeme
dychom treba dodat, Ze dosiahnut presnu hodnotu OK je experimentalne nemozné,
majstri v dosahovani nizkych teplot sa vsak k absolutnej nule vedia priblizit. Momentalny
svetovy rekord najnizsej dosiahnutej teploty z roku 1999 je 100 pK.

Od roku 2019 vsak velkost jedného Kelvinu nie je dana rozdielom medzi trojnym bodom
vody a absolutnou nulou ale tak, Ze Boltzmannova konstanta k ma definitoricky urcenu
hodnotu 1.380649x10723 J-K™1 .



Stavova rovnica idealneho plynu

Zakon pre izobaricky dej V' = V(1 + ~y(t — t9))

1 1
repisané pomocou absolutnej teploty vyuzijuc o = —
PTEPIRANE P JEEPO RS 0 = 91500 T T

K _ E Toto je Gay-Lussacov zakon prepisany
" To| do absolutnych tepl6t

Teraz prejdeme zo stavu pq, V4, T; do fubovolného iného stavu daného pomocou
p-, V> vypocitame jeho teplotu T, a uvidime ako stav ,,2“ suvisi so stavom ,,1“
Urobime to tak, ze najprv p6jdeme zo stavu ,,1“ izotermicky do pomocného stavu
p,, V', T; a odtial izobaricky do stavu p,, V,, T,. Postupne dostaneme

V= V(1 + Tio(T _ 7))

PiVi = paV'  pri kon$tantnom Ty, zdkon Boyle Mariott

/
1 — E pri konstantnom p,, zdkon Gay-Lussac
T T
Nezname st tu V', T,. Po vyliéeni nezndmej V' dostaneme rovnicu
Vi p2Vo const
T 15

Dostali sme stavovu rovnicu idealneho plynu ako logicky désledok experimentalnych
zakonov Boyle Mariottovho a jedného z dvoch Gay-Lussacovych zakonov. Teraz uz zo
stavovej rovnice mozZzeme odvodit Gay-Lussacov zdkon pre izochoricky dej, ktory sme
doteraz nepouzili. TakZe izochoricky experiment ani nemusime robit.



Stavova rovnica idealneho plynu

Vi p2Vo
T, Ty
izochoricky dej, ktory experimentdalne vyzerd takto p = po(1 + F(t — t9))
Zo stavovej rovnice pre V; = V, dostaneme zakon

pL_ P2

T, T
Toto je kompatibilné s ,,experimentalnym tvarom zakona® ak sa da aj v zakone pre
izochoricky dej prejst k absolitnym teplotam presne rovnako, ako sme to urobili pre
izobaricky dej. A to bude len vtedy ak koeficient teplotnej rozpinavosti 7 je rovny
koeficientu teplotnej roztaznosti y. Experimentalne je to naozaj tak.

Ppri odvodeni stavovej rovnice = const sme nepouzili zakon pre

Gay-Lussacov zakon

p1 Vi _ p2Va

= const
T 15

KonsStanta na pravej strane stavovej rovnice moze pre kazdé mnozstvo plynu a kazdy
druh plynu ind. Ak si ale spomenieme na Avogadrov zakon

Rovnaké objemy roznych plynov za rovnakého tlaku a teploty obsahuju rovnaky pocet
Castic (atomov alebo molekauil)

potom je zrejmé (predumajte si to a presvedcte sa, Ze je to tak!) Ze konstanta na pravej
strane musi byt imerna poctu molekul plynu N a konstanta Umernosti musi byt nejaka
univerzalna konstanta. Nazyva sa Boltzmannova konstanta k.



Stavova rovnica idealneho plynu

Stavova rovnica idealneho plynu s explicitnym uvedenim konsStanty na pravej strane
vyzera takto:

pV = NET

N je pocet molekul (¢astic) v uvazovanom mnozstve plynu, Boltzmannova konstanta ma
(od 2019 definitoricky) hodnotu
k = 1.380649%x10723 J-K!

Pocet molekul vieme lahko vyjadrit pomocou (od 2019 definitorickej hodnotyO
Avogadrovej konstanty
N, = 6.02214076 x 1023 mol™

m
N =—N
A

kde m je hmotnost uvazovaného plynu a M molekulovd hmotnost.
Historicky sa stavova rovnica pisala v tvare

™m
v ="RpT
PY =

Dévod bol taky, Ze velkost konstant k, N, dlho nebola znadma s dostato¢nou presnostou,
kym hodnota plynovej konstanty

R = N4k =8.3144598 ) mol~1 K1

sa dala zmerat priamo porovnanim experimentu so stavovou rovnicou.



Deje v plynoch:
praca, teplo, energia



Zaoberali sme sa dejmi v plynoch z hladiska dobre meratelnych stavovych parametrov
p,V,T a dospeli sme k stavovej rovnici idealneho plynu

m

pV = MRT
tato rovnica sa v termodynamike charakterizuje privlastkom ,termicka“ pretoze v nej
vystupuje teplota (merana v Kelvinoch) ale Ziadna veliCina typu prace alebo energie, ¢o su
veliCiny merané v Jouloch.
Termodynamika je “nauka o teplote, teple, praci a energii”. Teplota je stavova veliCina a
vieme ju v danom stave priamo odmerat, mame na to teplomer (¢o je trochu matuci
historicky nazov, mozno by bolo lepsie hovorit teplotomer). Praca a teplo nie su stavové
veli¢iny, takZe ani nema zmysel pytat sa na nejaké meracie pristroje ktoré by ich ,v danom
okamihu zmerali®.
Energia je stavova velicina, ale, napodiv, nemoZeme kupit energometer, ktory by zmeral v
danom okamihu a stave systému okamzitu hodnotu celkovej energie toho systému.
Energia vdanom okamihu sa nemeria, energia sa pocita podla vzorcov, o ktorych sme
hovorili v suvislosti s Feynmanom. Rovnici, ktora urci energiu systému v danom stave
vypoctom z priamo meratelnych stavovych velicin sa hovori kalorimetricka rovnica. Je to
preto, ze kalorimetrické merania zohrali historicky délezitd dlohu pri spresnovani pojmov
teplo a energia. TakZze ideme hladat kalorimetricku rovnicu idedlneho plynu.



Deje v plynoch: teplo konané kuricom

v
P2,Va

P1,V1

Trpaslici dostali za ulohu vykonat vratny dej zo stavu p4, V; do stavu p,, V, presne po
“zelenej ceste”.Obaja sleduju teplomer plynu a pocitaju objem a prispésobuju svoje
manipulacie vymennikom tepla a piestom tak, aby dej naozaj prebiehal po zvolenej ceste.
Trpaslik kuri¢ zapisuje v kratkych ¢asovych tdsekoch zmeny teploty vymennika t: kazda taka
mald zmena teploty zasobnika dt znamend vykonanie malej tepelnej prace (tepla) 0.
Nakoniec kuri¢ scita vSetky hodnoty vykonanych (infinitezimalnych ) tepiel a dostane
celkové vykonané teplo ,po zelenej drahe” -

Q= [ 5

ESte dolezitd pozndmka k oznacovaniu. Zmenu teploty vymennika sme oznacili pismenom d,
teda pisali sme dt, lebo sa to pocita ako rozdiel dvoch teplotnych hodn6t, po cudzom
diferencia, preto d. Zodpovedajice vykonané malé teplo sa ale nepocita ako diferencia
dvoch hodnét nejakého ,,momentalneho tepla“, symbol §Q ma len pripomenut, Ze ide o
malu hodnotu vykonaného tepla, preto dQ a nie dQ.



Deje v plynoch: praca konana tla¢icom

v
P2,Va

P1,V1

Trpaslik tlaci¢ pomaly meni objem kontajnera po malych kuskoch dV. Tuto hodnotu zistuje
meranim malého posunutia piesta dx, pricom zjavne dV = Sdx. (V zapise vSetky , décka“
znamenaju poctivé diferencie, su to vSetko rozdiely dvoch okamzitych hodno6t. Pritom tlacic
tlaci na piest smerom dolava silou o velkosti F = pS, kde p je okamzity tlak plynu. To preto,
aby sa piest pohyboval pomaly. (Presnejsie povedané tlaci silou len infinitezimdlne mensou
ako pS, aby sa piest predsa len pomaly pohyboval doprava. VSimnime si Zze smer sily a drahy
je opacny, takZze pri zmene objemu plynu o dV vykona tlaci¢ zdpornu pracu

0A" = —Fdx = —pdV
Vsimnime si symbol 8, ktory opat znamen3, Ze sa nejedna o rozdiel dvoch nejakych hodnot
ale proste o malu hodnotu. Tlaci¢ nakoniec spocita vSetky infinitezimalne vykonané prace a

dostane celkovu pracu, ktoru vykonal 2 2
A’ —/ A" = / pdV
1 1



Deje v plynoch: praca konana plynom

v
P2,Va

P1,V1

Pripomenme, Ze pri konani prace su spravidla pritomni dvaja (dva fyzikalne objekty),
,konatel” a , trpitel”. Na predchadzajucom slajde sme pocitali pracu, ktoru konal trpaslik
tlacic. Teda tlaci¢ bol konatel a plyn trpitel.

Ibaze nielen trpaslik p6sobi cez piest na plyn, ale aj plyn posobi cez piest na trpaslika. Podla
principu akcie a reakcie silou rovnako velkou ale opacne orientovanou. Pritom ide o
kontaktnu interakciu, preto draha trpaslika je rovnaka ako draha piesta. Preto plyn ako
konatel vykona nad trpaslikom ako trpiteflom rovnako velku pracu iba opacného
znamienka. Praca vykonana plynom bude

.2 .2
A—/ 5A—/pdV—A’
1 1



Deje v plynoch: praca konana plynom

Praca plynu ako konatela sa v praxi nevyuziva na strkanie do trpaslikov, ale na nieco
uzitoCnejsie, napriklad na pohon kolesa. Pretoze primarny zaujem o termodynamiku
bol prakticky, ustalil sa pohlad ze na pracu pri dejoch v plynoch sa pozerame ako na
pracu plynu, nie trpaslika a preto definujeme A (neciarkované) ako pracu konanu
plynom a Ciarkované oznacenie volime pre pracu externého objektu nad plynom ako
trpitelom.

NCSHSOOE 4-‘

[ - N
2 2

A_/cSA_/pdV_A’
1 1

Naopak, plynové tepelné stroje nie su na to, aby ,dodavali teplo preto sa na teplo v
suvislosti s plynom divame primarne tak zZe plyn je trpitel a trpaslik kuri¢ konatel a
neciarkované oznacenie Q volime pre teplo konané vonkajsim objektom. Takze este raz:
e (: konatelom je trpaslik kuric, trpiteflom je plyn

e A: konatelom je plyn, trpitelom je trpaslik tlaci¢

Eat]



Deje v plynoch: praca a teplo sucasne

p2,Va

S~

UC~ 288, 1:@ r1.V1
L b

Kuric a tlaci¢ m6zu spoloénym koordinovanym snazenim vykonat akykolvek vratny dej,
napriklad po zelenej trajektorii zaCinajucej v rovnovaznom stave ,1“ a konciacej v stave
,2% Pri tom deji si starostlivo zapisuju vykonané teplo a pracu, takze nakoniec mozu
spocitat celkovu pracu i celkové teplo.

2 2 2
A’_/cSA’_/ pdV Q:f 0@
1 1 1

Historicky praca sa merala v mechanickych jednotkach, dnes je tou mechanickou
jednotkou Joule. Ale teplo sa meralo v jednotkach tepla, napriklad kalériach, teda tie
hodnoty A’ a Q boli (akoby) nezavislé. Potom priSiel Joule a nasiel ,,mechanicky ekvivalent
tepla“, teda v dnesnom slovniku prevod kalérii na Jouly.



Deje v plynoch: praca a teplo sucasne

p2,Va

S~

ngS’%ﬁSoo 14-@ 1.V1

fﬁgﬁr* :
2 2 ’

A'_/aA'_/pdv Q=/5Q
1 1 !

Na vzorcoch sa ni¢ nezmenilo, ale teraz uz pracu a teplo meriame v rovnakych jednotkach J.
Preto teraz na chvilu budeme pri veli¢ine teplo pisat index J aby sme explicitne zd6raznili
jednotku J. Mame teda

2 2 2
A’_/ 5A’_/ pdV QJ—/ 0Q s
1 1 1




Deje v plynoch: praca a teplo sucasne

p2,Va

I~

p1,V1

| ’“2 2 2
A’—/CSA’—] pdV QJ—/(SQJ
1 1 1

Teraz klucova vec: trpaslikom rozkazeme, aby vykonali iny dej, zacinajuci a konciaci v tych
istych stavoch, ale po inej trajektorii (Cervenej). Spocitaju pracu i teplo po novej trajektorii a

dostanu: A ? 5A/ : ~ :
— =— [ pdV Qs= [ 0Q,
1 1 1

Zistia, e hodnoty prace i teplabudiing A’ # A Q #Q
Ale ked spocitaju celkovu pracu (makroskopicku plus mikroskopicku) , dostanu tu istu
celkovld hodnotu, teda

A+Q=A4+Q

Poucenie: sucet vykonanej makroskopickej prace a tepla je nezavisly na ceste, ak tie cesty
maju spolocny pociatocny aj spolocny koncovy stav ak praca a teplo si meranév
rovnakych (ekvivalentnych) jednotkach



Deje v plynoch: praca a teplo sucasne

v
p2,Va

I~

p1,V1

ry

2 2
Integraly / 0A / 0@ su oba definované pre nejaku trajektériu a pre inu
1 1

trajektoriu daju iné vysledné hodnoty. Ale sucet, teda integral

2 2
/5QJ+/ SA'
1 1

da na fubovolnej trajektorii tu istu hodnotu, ak tie trajektorie zacinaju v tom istom stave
aj koncia v tom istom stave. Hodnota toho suctu integralov teda zavisi len na tom, kde je
pociato€ny a kde koncovy stav. Znamena to teda (toto si dobre premyslite sami !!1), ze
musi existovat stavova velicina, nazvime ju E, ten sucet integralov sa da vyjadrit ako

2 2
EQ—E1:/ 5QJ+/ SA'
1 1

Takto termodynamici objavili novu stavovu veliinu a nazvali ju energia




Prva veta termodynamicka

Pre infinitezimalny prirastok energie po infinitezimalnej trajektorii, teda pre rozdiel
energie medzi dvoma infinitezimalne blizkymi stavmi dostaneme

dE = 6Q; +0A

Tento zakonom sme uz videli a nazvali sme ho ,,prva veta termodynamicka”. VSimnime si,
Ze pre zmenu energie pouzivame symbol d, lebo je to rozdiel dvoch hodno6t stavove;j
veli¢iny. Pre pracu a teplo musime nadalej pouzivat symbol 6.

Vznika otdzka, ¢i nazov ,,energia“ je vhodny, lebo toto slovo sme uz pouzivali v mechanike
na oznalenie akejsi veli¢iny. Otazka vlastne je, &i je to ,ta ista veli¢ina“. Ano, je. Struény
naznak ,dbékazu” je napriklad tento. Zvolime si také dva stavy, medzi ktorymi sa da
vykonat dej pri tepelnej izolacii, teda ,bez kuric¢a”. V takom pripade prirastok velic¢iny E
bude dany len velkostou makroskopickej mechanickej prace. A to je prave prirastok
veliCiny, ktord sme nazvali v mechanike energia.

Pre termodynamikov bolo teplo ,,mystika“: je to také oné, ¢o treba pridat k praci aby sme
dostali zakon zachovania. Po tom, ¢o sme ,,uverili, ze latky sa skladaju z molekul” sa
mystika tepla stratila: teplo je obycajna mechanicka praca konana medzi molekulami na
mikroskopickej urovni, ktoru sme si predtym makroskopicky ,nevsimli“. Takze E je
energia, jej zmena je krytd pracou (su¢tom makroskopickej a mikroskopickej prace).



Co su vratné deje

Preco na pV diagrame mozno zobrazit iba rovnovazne stavy (body) a vratné deje
(Ciary)

Co je graf izotermického deja na pV diagrame

Nakreslite Ciaru izobarického a izochorického deja na pV diagrame
Nakreslite Ciaru izobarického a izochorického deja na na tp resp tV diagrame
Zakon pre izotermicky dej

Zakony pre izochoricky a izobaricky de;j

Makroskopicka praca pri izotemickom deji

Makroskopicka praca pri izochorickom deji

Makroskopicka praca pri izobarickom deji

Prva veta termodynamicka

Vztah medzi pracou plynu a pracou ,trpaslika-tlaci¢a”



Kineticka teodria plynov



Molekulova hypotéza o zlozeni latok a jej dosledky

Ukazali sme si, ako analyza chemickych receptur viedla na vyslovenie hypotézy, ze latky sa
skladaju z atdbmov a molekul a podarilo sa vyriesit ,,puzzle” o tom ako vyzeraju
stechiometrické vzorce zlucenin tak, aby to bolo konzistentné s priradenymi atdmovymi
hmotnostami.

To, ze sme dostali konzistentnd molekularnu interpretaciu chemickych receptur este
,hedokazuje”, Ze molekulova hypotéza zodpoveda skutocnosti, lebo vlastne sme ju vyhutali
tak, aby to zodpovedalo recepturam. | ked nie je Uplne trivialne, ze taky model sa vbbec da
zostrojit, je to malo na to, aby sme uverili, Ze model zodpoveda skutocnosti.

Ak ale prijmeme molekulovu hypotézu, potom mdzeme skiumat jej dalSie dosledky a urobit
predpovede pre iné pozorovania, nielen pre chemické reakcie. Cim bude vacdie mnoZstvo
pozorovani, ktorych vysledky sa budu zhodovat s predpovedami molekulovej hypotézy, tym
viac budeme nadobudat presvedcenie, Ze ta hypotéza zodpoveda skutocnosti.

Podla standardnej metodoldgie fyziky vSak nikdy nebudeme tvrdit, Ze ,,molekulova hypotéza
uz bola dokazana“. Fyzika nedokazuje, fyzika vyvracia. Keby sme na zdklade molekulovej
hypotézy urobili nejaku predpoved, a ta by sa nepotvrdila, potom by sme povedali, Ze sme
molekulovu hypotézu vyvratili a museli by sme hladat novd hypotézu, prinajmenej nejaku
modifikaciu povodnej hypotézy, ktora by uz viedla k suhlasu so vSetkymi pozorovaniami.



Dosledky molekulovej hypotézy:
kineticka teodria teploty a tlaku plynov

My si vSimneme blizSie dva dosledky molekulovej tedrie, ktoré spadaju pod novu
hypotézu s ndzvom: kineticka tedria plynov. Tato hypotéza hovori, ze molekuly su v
neustalom chaotickom pohybe a d6sledkom tohto pohybu je

* teplota ako efekt spojeny s kinetickou energiou chaotického pohybu molekul

* tlak, ako prejav narazov molekul na stenu nadoby, v ktorej je plyn

Avogadrov zakon: ,,Rovnaké objemy roznych plynov za rovnakého tlaku a teploty obsahuju
rovnaky pocet castic (atdmov alebo molekul)“ sa da pochopit iba tak, ze vacsina objemu v
kontajneri s plynom je prazdna a len kde-tu sa nachadza molekula. Ale potom molekuly v
rovnovaznom stave nemozu stat nemozu stat: vplyvom gravitdcie by sa vSetky museli usadit
na dne kontajnera a keby sme urobili dierku pri vichnom veku, plyn by nevyfucal von. Takze
plyn ndhodne zapiria cely kontajner a molekuly sa musia, predpokladame Ze chaoticky, hybat.
Ak je to stav rovnovazny, ni¢ makroskopické sa v nom uz nemeni, tak musia mat konstantnu
strednu hodnotu velkosti rychlosti alebo aj konStantny stredny kvadrat rychlosti.

Predstavme si teraz, Zze v kontajneri su dva druhy molekul, teda zmiesané dva plyny. V
rovnovaznom stave musi byt stredny kvadrat rychlosti molekul kazdého plynu konstantny a
teda stredna kineticka energia molekul kazdého plynu konstantna. Z toho ale ni¢ nevyplyva
pre vzajomné porovnanie strednych kinetickych energii réznych molekul. Ukazeme si teraz, ze
je rozumné predpokladat, Ze stredné kinetické energie postupného pohybu vsetkych molekul
(aj navzdjom réznych) su v rovnovahe rovnaké. Vedie k tomu analyza zrdzok molekul



Nahodna velicina: rychlost chaotického pohybu molekul

Predstavme si, Ze nahodne vyberieme jednu molekulu v plyne a zmeriame jej vektor

rychlosti. S tymto meranim su spojené tri nahodné veliciny
Vg y Uy, Uz

sustredme sa na jednu z nich v, . Ide o spojitu ndhodnu veli¢inu, ma zmysel pytat sa na
hustotu pravdepodobnosti, ktora ju popisuje. Spravny vzorec objavil v podstate teoretickym
uvazovanim Maxwell, ktory sformuloval vzorec (m je hmotnost jednej molekuly v kg)

m \1/2 mu>
ofve) = (QWkT) P (_ QkT)

porovnajme tento vzorec so vzorcom abstraktnej gaussovskej hustoty pravdepodobnosti
1 (x — p)?
xr) = exp(———=—
p( ) W Xp( 20_2 )

z ktorého pre strednu hodnotu a stredny kvadrat gaussovsky rozdelenej veli€iny plati:

r= [ w@ir=p @m0 [ @-mlad = o

— o0 — o0

Porovnanim s Maxwellovym rozdelenim dostaneme

kT 1 1
V=0 72=— = —mv2=_kT
oom 2 2




Maxwellovo rozdelenie rychlosti

Maxwell tiez zistil, ze priemety rychlosti nahodnej molekuly na r6zne osi su navzajom
nezavislé, o znamena Ze zmeranie priemetu rychlosti na nejaku os neprinesie nijaku
informaciu o priemete jej rychlosti na inu os. Vsetky priemety rychlosti ndhodne zvolenej
molekuly su teda popisané rovnakymi hustotami pravdepodobnosti

m \1/2 mu2
ofve) = (QWkT) oxp (_ QkT)

m \1/2 mvi
olvy) = (ka) P ( QkT)

(v)—( m )1/2 ox _mvz
A= \arkT P\ 2kT

V tychto vzorcoch m je hmotnost molekuly (obyéajna hmotnost v kg, teda nie relativna
molekulova hmotnost v jednotkach 1/12 hmotnosti atdmu uhlika), T je teplota v Kelvinoch a
k je Boltzmanova konstanta. VSetky priemety maju teda rovnaky stredny kvadrat

o _ o _ o KT
U, =U, =0, =

T

m
a teda stredna hodnota kinetickej energie Castice je

1 3

—muv? = kT

2 2




Maxwellovo rozdelenie rychlosti

Ako to mohol Maxwel vyhutat?

On bol naozaj genidlny a mal ovela lepSie argumenty nez teraz napiSem, ale mohol to urobit aj
takto:

Hladdm nezndmu hustotu pravdepodobnosti p(v,). Co od nej éakdm? Ked' sa kontajner s
plynom nehybe, pravdepodobnost kladnych a zapornych priemetov rychlosti bude rovnaka,
takZe funkcia p(v.) by mala byt parna p(v.) = p(—v.) a bude platit @, = 0 Velmi velké
rychlosti (v limite nekonec¢né) budu mat zrejme zanedbatelnu pravdepodobnost, hfadam teda
parnu funkciu, ktora pre velké hodnoty premennej klesa dost rychlo k nule. Takato funkcia ma
zjavne ,,zvonovity tvar”. Bakalar fyziky pozna jediny vzorec, ktory da taky zvonovy tvar

2
T~ o(v;) = Cexp(—avy)
kde C, a su (zatial) nezname konstanty. Maxwell ale vedel ako vyzera

kT
. . v , T |
,Gaussovo rozdelenie” a vedel aj to, ze ma platit 7, = —

a to uz mu dalo m \1/2 mvg
o(ve) = (5-77)  exp

orkT kT

' ,u+.20' '

kT
_m

" Odkial vedel, Ze by malo platit 2 ?

Lebo vyhutal kineticku tedriu tlaku plynu, Ze tlak na stenu nadoby
vznika v dosledku narazov molekul na tu stenu. Pozrime sa teraz na to.



Kineticka tedria tlaku

Predstavme si, ze molekuly nemaju ziaden chaoticky pohyb
a ze vSetky molekuly pred stenou sa hybu rovnakou
rychlostou ¥'. Je tam teda Cosi ako vietor, vanuci rychlostou
v,

Po dopade na stenu sa kazda Castica odrazi tak, ze priemet
jej rychlosti vo vodorovnom smere zmeni znamienko. Pri
odraze molekuly od stenu sa teda zmeni hybnost kazdej
Castice o Ap, = —2mu,
Vypocitajme teraz pocet Castic ,vetra® ktoré sa od steny
odrazia v priebehu nejakého ¢asu 7 . Zelenym je na obrazku
nakresleny Sikmy valec s podstavou plchy S na stene s
vyskou v, T.

Ak hustota castic ,vetra® je n, potom v tom Sikmom valci sa nachddza nSv, 7 ¢astic a su to
prave tie, ktoré za ¢as T dopadnu na plochu § steny. Celkova zmena hybnosti vsetkych
Castic, ktoré dopadnu na stenu za ¢as T bude

—2mnSviT
a teda priemernad sila, ktorou tieto ¢astice pdsobia na stenu bude F = 2mnSv? a priemerny

tlak uvaZovaného ,vetra astic“ bude p = 2mnov?



Kineticka tedria tlaku

S Ukazali sme si, ze ak by sa Castice nepohybovali chaoticky
nahodnymi rychlostami ale pohybovali sa ako ustaleny vietor

rychlostou ¢, po6sobili by na stenu tlakom

2

p = 2mnuv;

V kontajneri sa ale hybu ndhodnymi rychlostami, takze pre tlak
dostaneme Cosi ako -

p = 2mnuv?
Ibaze takto je to zle, lebo od samej horlivosti sme si neuvedomili
7e k nenulovému v2 prispievaju aj ¢astice s v, <0 a tie sa
pohybuju od steny a teda na stenu vbbec nenarazia!

Spravny vyraz pre tlak plynu na stenu v désledku chaotickych narazov molekul teda je teda
iba polovicny p = mno?
Platin = N/V , preto nakoniec dostaneme pV = mNv2 . Porovnanim so stavovou rovnicou
pV = NkT dostaneme, Ze ak tlak je dosledok chaotickych narazov molekul, tak musi platit

— 1 = 21 — 1 — 3
mu2 = —muv? = ——mv? = kT — —mv2:§kT

T3 32 2

Tak odtialto to Maxwell vedel.



Teraz uz rozumieme fyzikalnemu objektu ,idealny plyn“ ako jeho vlastnosti vyplyvaju z
toho, Ze sa sklada z molekul.
Teplota je dana strednou kinetickou energiou postupného pohybu molekul

1 - 3

—muv® = =kT

2 2
Tlak plynu na steny nadoby je dany narazmi molekul v désledku ich chaotického pohybu

p = mnuv?>
odtial priamo vyplyva stavova rovnica idealneho plynu pV = NET
a Specialne pre jeden maél plynu

pV = NjskT = RT R = Nk

Celkova energia plynu je uréena celkovou kinetickou energiou molekul, lebo v idedlnom
plyne ,,sa molekuly navzajom necitia® preto potencidlna interakéna energia molekdul je
nulova. Pri jednoatémovych molekuldch mozno kineticku rotacnu energiu zanedbat,
preto celkova kineticka energia je dana len kinetickou energiou postupného pohybu,

preto pre jednoatomovy plyn dostadvame kalorickd rovnicu g — S NET
P 5 f
pre dvojatomovy plyn F = §NkT Suhrnny vzorec: FE = §NkT
. . . . 6
pre troj a viacatomovy plyn f — 3 NET f je ,pocet stupnov volnosti“




Historické merania v kalorimetroch pre kvapaliny neodhalili, Ze teplo nie je stavova
veli¢ina, ze teplo nie je ,, druh energie” ale ,,druh prace” pretoze kvapaliny su prakticky
nestlacitelné, nemenia svoj objem a teda sa pri ,,dejoch v kvapalinach” nekona
makroskopicka mechanicka praca

0A =pdV =0
pretoze dV = 0.

Pozrime sa teda, ¢o dostaneme v analogickej situacii pre idealny plyn. Aké teplo treba
vykonat, aby sa zmenila teplota plynu pre izochoricky dej, teda pri dV = 0.

Trpaslik tlacic¢ drzi piest zafixovany, nekona pracu. Trpaslik kuri¢ vykona teplo 6Q, teplota
plynu sa pri tom zmeni o dT. Prva veta termodynamicka (zakon zachovania energie)

hovori JE = 60
Kalorimetrickd rovnica hovori f
E = §NkT
dE = gdeT
i
0Q) = §deT




na zvysenie teploty idedlneho plynu o dT pri stdlom objeme treba vykonat teplo

5Q = gdeT

V analdgii s kalorimetrickymi meraniami definujme pojem
cy Specifické teplo plynu pri stalom objeme

ako mnoiZstvo tepla, ktoré treba vykonat na izochorické zahriatie 1 kg plynu o jeden
Kelvin. Na zahriatie plynu o hmotnosti m treba

f m
00 = =NkdT = =—NskdT
@=3 oM A
preto f1
Cy — EMNAk

Okrem Specifického tepla (teda na jeden kilogram) sa zavadza aj pojem molové
teplo pri stalom objeme (C},) ako teplo potrebné na zahriatie jedného mélu plynu o
jeden Kelvin. Dostaneme

o~ In




VSimnime si teraz, ze celkovu energiu idealneho plynu vyjadrujeme ako

E = iNkT

2

porovnanl'm SO vzorcom f
CV — §NAk

vidime, Ze celkovu energiu plynu vieme vyjadrit ako

N
E=—CyT
Ny ¥

Pozor! Energia plynu je stavova veli¢ina. Nesuvisi s nijakym dejom. Napriek tomu sa da
pre idedlny plyn vyjadrit vzorcom, v ktorom vystupuje moélové teplo pri stalom objeme. To
je len zhoda okolnosti. Energia plynu nie je dana nijakym ,,stalym objemom® Je to len
prakticky uzitoCny vzorec, lebo v nom vystupuje meratelna charakteristika Cy,, namiesto
abstraktnej charakteristiky f (pocet stupnov volnosti molekuly).



Mayerov vztah

Experimentalne sa ovela [ahSie zabezpecuje konstantny tlak plynu v porovnani s
konstantnym objemom plynu. Pozrime sa preto, aké teplo treba dodat na zahriatie plynu
pri konstantnom tlaku, tlac¢i¢a nahradime ,barostatom®. Aké teplo musi dodat kuric pre
zvysenie teploty o dT pre jeden mal plynu v takomto experimentalnom usporiadani?

Zakon zachovania energie
dE =0Q —0A = 0Q — pdV

Stavova rovnica pV = NAKT
:-""'%

J ' X Odtial pri stalom tlaku (teda pri dp = 0) dostaneme

pdV = NakdT

Po dosadeni do rovnice pre energiu jedného malu

0Q = dE + pdV = CydT + NakdT = (Cy + Nak)dT
Vidime, ze pre mélové teplo pri stalom tlaku dostaneme Mayerov vztah

Op:CV—I-NAk:CV—I—R




Neidealne (realne) plyny
Kondenzacia
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kriticka teplota, kriticka izoterma
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Fazovy diagram



Supercritical fluid

Solid region

Liquid region Critical point
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voda - anomalia

Supercritical fluid
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Napiste Maxwellovo rozdelenie, hustotu pravdepodobnosti pre priemet
rychlosti na os x. Normaliza¢nu konstantu nemusite vediet naspamat.
Napiste, ako suvisi tlak idealneho plynu so strednou kinetickou energiou
postupného pohybu molekul

Napiste, ako suvisi teplota plynu so strednou kinetickou energiou
postupného pohybu molekul

Napiste vzorce pre energiu idealneho jednoatdmového, dvojatomového
a viacatomového plynu.

Co je to tlak nasytenych par

Co je kriticka teplota plynu

Co je skupenské teplo kondenzacie



Doplnok: adiabaticky dej

pdV (Cy + R) + CyVdp = 0 v



dp _ _Cpp

v CyV

Pre strmost izotermy by sme dostali
pV = const
pdV +Vdp =10

dp — p

vV

adiabaty su strmsie ako izotermy

Yoy
R W
w R




Rovnica adiabaty

Cpp p

CyV 1%

dp _
dv
dp dV

= —y—

D %
Inp—Inpyg = —s(InV —InVj)

111£:111VL

Po Vo

pV* =poVy* = const

VoA

Poissonova konstanta




Kapilarita: povrchovy jav

V trojdimenzionalnom svete plati tvrdenie, ze ovela viac molekul sa
nachadza vnutri objemu nejakej latky nez na povrchu tohto objemu.
Molekuly na povrchu inaksie ,citia svoje okolie® nez molekuly vnutri objemu
Medzimolekulové sily su kratkodosahove, preto uz v malej vzdialenosti od
povrchu molekula ,citi svoje okolie” rovnako ako molekula vo velke;
vzdialenosti od povrchu

Len velmi tenka vrstva molekul na povrchu sa sprava inak

Molekula na povrchu ,citi“ jednostrannu pritazliva silu od molekul vnutri
objemu, pritazlivé sily na molekulu vnutri objemu od okolitych molekul sa
rusia

Ak sa chce molekula dostat na povrch, musi za to ,niekto zaplatit energiou’
Latky maju ,pridavnu energiu“ za molekulovu povrchovu vrstvu oproti tomu,
aku by mali energiu, keby nebol povrch

Ta pridavna energia je umerna ploche povrchu, existuje teda

1

hustota povrchovej energie o




Hustota povrchovej energie vody je napriklad vacsia ako u mydlového roztoku. Preto
ak na pokojnu hladinu vody v nejakej nadobe polozime opatrne slucku z bavinene;j
nite a do stredu slucky kvapneme trosku mydlového roztoku, sluc¢ka sa roztiahne na
presny kruh: systém ,,uprednostiiuje” aby povrch vody bol ¢o najmensi a povrch
mydlového roztoku o najvacsi, vtedy bude celkova povrchova energia minimalna.

Efekt optimalizacie povrchovej energie sa prejavuje tak, ze na krivku — hranicu
rozhrania p6sobi sila vSade kolma na dotyCnicu ku krivke. Velkost' sily pdsobiacej
na element rozhrania diZky ds je Umerna ds. Konstanta tmernosti sa vola
povrchové napatie. Oznacme ho na chvilu o:

dF = o ds

Ukazeme si, ze povrchové napatie je rovné hustote povrchovej energie: o = o.




Suvislost povrchového napétia s plosSnou hustotou povrchovej
energie nazorne vyplyva z nasledujuceho jednoduchého

pokusu.

Ked' do vodného roztoku mydla a glycerolu ponorime obdiznikovy
ramcek R s pohyblivou prieCkou S, vytvori sa v nom tenka
kvapalinova blana s povrchovymi vrstvami po obidvoch stranach.
Preto, ak povrchové napitie pouzitého roztoku je o a dizka
priecky [, blana ucinkuje na priecku silou F = 20l. Faktor 2
pochadza z toho, Ze povrchy su dva, po oboch stranach ramceka.

Ak posunieme priecku o ds vykona sa praca

60A = 20l ds
Tato praca sa spotrebuje na zvacsenie energie povrchov. Plocha
povrchu na kazdej strane sa pri posunuti priecky zvacsi o hodnotu

dS =1lds
Zvysenie povrchovej energie teda bude
dW = 20l ds

Porovnanim dostaneme o = o.



Vztah o = o je aj jednotkovo v poriadku. Jednotkou hustoty povrchovej energie
je Jm2, o je toisté ako N mL.

Priklad niekolkych hodndt povrchovych napati

kvapalina povrchové napatie v
jednotkach 103 N m-!

alkohol 22

olivovy olej 33

voda 73

glycerol 66

ortut 500




Ako vieme z dennej skusenosti, obyCajne ani za rovnovahy nie je hladina kvapaliny v
nadobe vsade vodorovna. Vo vseobecnosti je povrch kvapaliny pri stene zdvihnuty, alebo
stlaceny, a len vo zvlastnom pripade je az po stenu presne vodorovny.
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Tento jav mb6Zeme vysvetlit jestvovanim
povrchovych napati nielen na rozhrani
dvoch kvapalin alebo kvapaliny a plynu,
ale aj na rozhrani pevného telesa a
kvapaliny a na rozhrani pevného telesa a
plynu. Detaily rozoberat nebudeme.
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Ked do kvapaliny v SirSej nadobe ponorime v : 1
zvislej polohe uzku ruarku s kruhovym prierezom,
tzv. kapilaru, hladina kvapaliny bude v kapilare v | i
inej vySke ako v Sirokej nadobe.

Kvapalina, ktora zmaca steny kapilary (napriklad
voda v sklenej kapilare), pdsobenim povrchového
napatia vystupi v kapilare nad uroven hladiny v |
Sirokej nadobe; nastava kapilarna elevacia a

zakriveny povrch kvapaliny, tzv. meniskus, je duty.

Ked' kvapalina steny kapilary nezmaca, hladina 1
kvapaliny v kapilare je pod urovnou hladiny

v Sirokej nadobe; nastava kapilarna depresia a
meniskus je vypukly.
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Odhadnime radovo do akej vysky vystupi voda v
kapilare o polomere r = 0.1 mm

_ 2nro = mrihog
o0 je hustota vody.

Po dosadeni hodnot dostaneme h =~ 15cm.

Hodnota elevacie nie je mal3, ale urcite nestaci napriklad na to, aby stromy dostali vodu na
vrchol koruny kapilarnymi silami. V stromoch to musi byt nieco iné. Prezradime: osmoza



Predstavme si, Ze sme na konci sklenej rurky vyfukli mydlovd bublinu s polomerom R.
Pretoze sa kvapalinova blana posobenim povrchového napatia usiluje svoj povrch, zmensit,
za rovnovahy je tlak p vo vnutri bubliny vacsi nez tlak py na vonkajsej strane. Rozdiel
obidvoch tlakov mézeme urcit pomocou zakona o zachovani energie.

V zariadeni podla obr. posunutim piesta vykona trpaslik posuvajuci piest pracu pdV
pricom dV je zvacsSenie objemu bubliny. Plyn pritom vykond pracu proti atmosférickému
tlaku podV Podla zakona o zachovani energie celkova bilancia prace ,,je pouzita“ na
zvacSenie povrchovej energie bubliny, teda (p — py)dV = 20dS, kde dS je zvacsenie

povrchu bubliny dS = d(4nR?) = 8nRdR, dV = d (gnR3) = 4nR?dR. Faktor 2 vo vzorci

povrchovej energie pochadza z toho, ze bublina ma dva povrchy, vonkajsi a vnutorny.
Po dosadeni dostaneme pre rozdiel tlakov danych dvoma povrchmi Ao

P —Po — E
Pod rozhranim gulového tvaru o polomere R
medzi dvoma kvapalinami sa teda vytvori
kapilarny pretlak (dany len jednym povrchom)

8 20
—t ] e L
e Ap=—
: Ak kozmonautom v bezvahovom stave unikne do
P Pa yvzduchu malé mnozstvo nejakej kvapaliny, vytvori

gulicku (lebo gulicCka ma minimalny povrch pri
danom objeme) a kapilarny pretlak vnutri guliCky
je dany uvedenym vzorcom.



Kapilarny pretlak v bubline je teda nepriamo umerny polomeru bubliny, preto ak
spojim dve bubliny rozdielnych polomerov, bude menSia bublina nafukovat
vacsiu. VseobecnejSi vzorec pre pretlak pod zakrivenym povrchom negulového
tvaru je odvodeny napriklad v llkovi€ovej uéebnici.




Osmoza

Su zname polopriepustné ( semipermeabilné ) blany, ktoré v niektorych
pripadoch prepustaju len rozpustadlo, nie vSak aj rozpustenu latku.

e >0 c =0
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V zariadeni podla obr. roztok neprchavej latky je oddeleny od Cistého
rozpustadla polopriepustnou blanou. Podla experimentalnej skusenosti na strane
roztoku musi ucinkovat' tlak vacsi nez na strane Cistého rozpustadla, inak
rozpustadlo bude prenikat cez polopriepustnu blanu do roztoku a zriedovat ho.
Rozdiel p — p, sa nazyva osmoticky tlak. Da sa ukazat, Ze osmoticky tlak je

prave taky velky, ako keby rozpustena latka vyplnovala objem roztoku v plynnom
stave

pV =nRT



Semi-permeable
membrane

Ozmofic Pres=
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Reverzna osmoza

e >0 c =9y
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Osmoticky tlak morskej vody je okolo 25 at.

Reverse osmosis desalination plant o
in Barcelona, Spain



Zrazky Castic

Rovnovazny stav plynu nastava v désledku zrazok Castic. | v prakticky idealnom
plyne, ked typicky sa molekuly nachadzaju daleko od seba a pri pocCitani energie
plynu nemusime zaratavat potencialnu energiu vzajomnej interakcie molekul,
dochadza pri nahodnom blizkom priblizeni molekul k zrazkam.

Uvedieme si teraz niekolko technickych veci, ktoré sa pouzivaju pri teoretickom
popise zrazkovych procesov.

Postupne si priblizime pojmy

» stredna doba medzi zrazkami
» stredna volna draha

* UcCinny prierez zrazky



Ruska ruleta.

Pre kratke ¢asy dt je pravdepodobnost zasahu imerna dt.

p(t,t +dt) oc dt




Ruska ruleta.
p(t,t + dt) o dt

1
p(t,t + dt) = —dt
T
Z rozmerovych dovodov ma 7 rozmer ¢asu, je to nejaka doba.

Opac¢na pravdepodobnost, ze nenastane zasah je zrejme

B(t, ¢ +dt) = 1 — %dt

Pravdepodobnost, Ze nenastane zasah po celi dobu ¢ je teda

500.4) — (1 — L _1 - o T e EAR
P(0,8) = (1 — —dt) x (1 - —dt) x (1 - =dt) x ... = lim (1 )

n—od ™

p(0,t) = exp(—t/7)




Ruska ruleta.

Pravdepodobnost, ze prvy zdsah nastane v intervale (¢, + dt) teda bude

P(t,dt) = p(0,t) x p(t,t + dt) = exp (—1) %dt

T

Stredna doba prezitia bez zasahu teda bude

Z:/tp(t,,dt)=/tcxp (—é) %dt=‘r

Veli¢ina 7 vo vyraze p(t,t + dt) = ;}dt ma vyznam strednej doby Zivota.




Stredna doba medzi zrazkami molekul

Predstavme si taky skélkarsky popisany myslienkovy experiment. Dam jednej
molekule maly zoSitok a poziadam ju, aby si zapisovala Casy, ked do nej narazi ina
molekula. Po urCitom dlhom Case si od nej vypytam ten zoSitok a popocitam Casove
rozdiely medzi po sebe nasledujucimi okamihmi zrazok. Potom vypocCitam strednu
hodnotu tych Casovych rozdielov. To Co dostanem sa vola stredna doba medzi
zrazkami. A je to rovné Casu 1, ktory sme videli v priklade o ruskej rulete: molekula si
tiez mdéze vycislit pravdepodobnost’ ze do nej nejaka ina molekula narazi v
nasledujucom kratkom Casovom intervale dt, priCom ta pravdepodobnost sa z
rozmerovych dévodov musi dat’ vyjadrit pomocou nejakého Casového parametra t v
tvare |

—dt

-
Potom, ked do molekuly niekto naozaj narazi, méze sa spytat’ aka je hustota
pravdepodobnost, ze nasledujuci zaznam o zrazke bude v intervale (t,t + dt) od
posledného zapisu a dostane hustotu pravdepodobnosti
t. dt

b+ dt) = L
p(t,t + dt) = exp( T)T

a stredna doba medzi zrazkami bude prave .



Stredna vol'na draha

V Casovych intervaloch medzi ,zaznamami o okamihoch zrazok v zoSitku“ sa
molekula pohybuje podla Newtonovej pohybovej rovnice citiac pripadne len silu od
nejakého ,vonkajSieho pola“, napriklad gravitacného.

Draha, ktoru ubehne medzi zrazkami sa vola volna draha a v strednom sa tomu
hovori stredna volna draha a oznacuje sa spravidla [. Ak pozname strednu dobu
medzi zrazkami t, potom stredna volna draha je radovo rovna

[ = vt

kde v je typicka rychlost chaotického pohybu molekul. Zamerne sme povedali
,sradovo®, lebo pri rigoréznom pokuse o definiciu strednej volnej drahy a jej zavislosti
na strednej dobe medzi zrazkami by sme narazili na technické matematickeé
neprijemnosti. V u€ebniciach sa preto uspokojujeme iba s radovo presnou definiciou
strednej volnej drahy a vynasobenim ,typickou rychlostou® bez toho aby sme presne
definovali, o sa pojmom typicka rychlost presne mysli.



Napiste rovnicu adiabaty

Co je Poissnova konstanta v rovnici adiabaty?

Vysvetlite kvalitativne preco kvapalina ma povrchovu hostutu energie.

Ako suvisi hustota povrchovej energie a kapildrna sila na jednodtku dizky ¢iarového
rozhrania

Ako osmoticky tlak suvisi s osmozou a inverznou osmozou.

Vlyjadrite pravdepodobnost zrazky castice v kratkom okamihu dt

Aky je fyzikalny vyznam casovej konstanty vo vztahu pre pravdepodobnost zrazky
Castice v kratkom okamihu dt
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Uginny prierez pre ,$tuknutie detektorov”

cross section = are of ring of radius b
and width db

> R

|

\

Particles hitting the ring between

b and b+db are scattered by an

angle between 6 and @+ d0

vYYY VY Y YY

. They are scattered into a larger
J ring on a sphere with the
scattering nucleus in its center

Solid angle of the

entire ring :
dQ = 2TENORE 2 75in(6)dO solid angle of
dQ= w - sin(0)dOd
particles/cm2/s -
n=jo n = jmdﬂ

detector_clicks/s ;



Priestorovy uhol

jednotka steradian

a = R*Q)

scattering

center

n = jdo

n=3,

do
—d)
ds)
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Totalny ucinny prierez

dQ=1CRIMORD _in(O)i6dp

Keby som detektormi pokryl celu sféru okolo ter€a, okrem maliCkej plésky v
priamom smere, kam idu projektily ktoré ,nenarazili potom prislusny pocet
stuknuti detektorov je vyjadreny tiez nejakou plochou na myslenej rovine kolmej

na zvazok projektilov

= ]0tot



Odhad strednej volnej drahy v plyne z u€inného prierezu

@ @ o = m(2d)?

Kazda éastjca plynu predstavuje terC o ploche
o. V akej hlbke sa zastavi bodovy projektil?

Hustota Castic v plyne n.

Celkova plocha terCov na ceste
nlSo

Zakryta zadna stena: nlSo =S

| = — | radovo stredna volna draha




Pre typicky plyn

« n=0,3.10%°m3

Radovo

* typicky rozmer molekuly 1 nm
« ¢ =0.1nm?

+ 1=3107"m ;_ 1
« 7=10""s no



n

Molekula neustale meniaca po zrazkach smer svojho pohybu sa sprava ako ,opity
namornik”.

Namornik vyjde z krémy a pretoze je totalne opity kraca domov nie cielene ale
nahodne. Robi opakovane kroky nahodného smeru. Otazka je, ako daleko sa
typicky moze dostat po n krokoch. Ulohu vyrie$ime pre ndmornika, ktory kraéa v
jednorozmernom svete, teda po priamke. Nastartuje v bode so suradnicou 0 a pon
krokoch je jeho suradnica x,,. Zistime, ze stredny kvadrat vzdialenosti, kam sa
dostane namornik po n krokoch rastie ako pocet krokov, nie ako kvadrat poctu
krokov, ako to plati, ak kraca nie nahodne ale cielene vjednom smere. Teda
vzdialenost, kam sa typicky dostane rastie ako \/n.

Dizka kroku jednej bltdiacej molekuly je typicky 300 nm. Za ako dlho typicky
prekond vzdialenost 10m? 10m = 3.10° cielenych krokov = 103 opitych krokov .
Jeden opity krok trva 1077 s, takZe jedna molekula potrebuje typicky vyse hodiny
na prekonanie 10 m.



Tu je ,tedria” opitého namornika

Rovnica pre jedného namornika znie (pre n-ty krok)

Ty = Tp_1 L step

Majme N namornikov, pre kazdého napiseme jeho
rovnicu. Pre i-teho namornika bude

3755) = 375:)—1

+ step

Predstavme si rovnice pre vsetkych Nnamornikov napisané pod
sebou, sCitajme ich a vysledok vydelme poctom namornikov.
Dostaneme

Ipn = Tp—-1 +0

Kedze znamienka v rovniciach su nahodné, sc¢itanim velkého
poctu rovnic vznikla v stipci krokov nula. Dostali sme aky je vztah
medzi strednou polohou namornika po n krokoch a strednou
polohou namornika po n — 1 krokoch



Lp = Tp-1

RieSenim tohto rekurzivneho vztahu pre vSeobecné n je

Tp =70 =0
Teda v stredna poloha namornika je ,v krécme®. Informacne bohatsi
vztah dostaneme, ked rovnice ndmornikov najprv umocnime na druhd.

N 2 . 2
(9:53)) = (a?,s)_l =+ Step)
N 2 NN _
(ng)) = (ng)_l) =+ QxS')_lstep = step”

Po sCitani a vydeleni poctom dostaneme

E = 33%_1 + Step2
RieSenim tohto rekurzivneho vztahu je
— ,
rs = n X step

Teda stredny kvadrat vzdialenosti kam sa dostane namornik pon
krokoch rastie len ako pocet krokov, nie ako kvadrat poctu krokov, ako
to plati, ak kraca nie nahodne ale cielene v jednom smere.



Difuzia molekul

Molekuly plynu sa pohybuju ako opiti namoernici. Robia nahodne kroky, ktore
maju dizku strednej volnej drahy. Preto ked urobia n krokov dostanu sa
typicky iba do vzdialenosti v/nl.

« [=310""m

e 7=10""s

Aby sa molekula dostala do vzdialenosti 10m od ,Startu®, musi vykonat
9x10%* krokov, to je 9 x 10° sekund!!



Aplikacie



Elementy spracovania dat



Jednoduché meranie

Analyzujme jednoduché fyzikalne meranie: meranie rezistora abstraktnym
ohmmetrom. Preto abstraktnym, lebo naozajstné ohmmetre sa tak
nespravaju, ako dalej budeme predpokladat. Ale modeluje to nejaku situaciu
a pre naozajstnu analyzu redlnej situacie musime pouzit hlavu a premysliet si,
ako aplikujeme to, €o sa tu abstraktne naucime.

Mame jeden konkrétny rezistor. Budeme predpokladat, Ze hodnota jeho
odporu, ktord chceme urcit nie je ndhodn4d ale celkom konkrétna hodnota.
Povedané lapidarne ,ten rezistor presne vie, kolko ma Ohmov*. Keby vedel
hovorit, povie ndm to, a nemusime sa trapit analyzovanim ,,chyb merania”.
Ibaze nevie hovorit. Mdm konkrétny ohmmeter, pripojim ho k rezistoru, ukaze

Cislo: 46.6 Q). To ale neznamena, ze ,, naozajstna hodnota“
odporu je 46.6 Q). Problém je v tom, ze udaj ohmmetra sa
,nahodne lisi“ od skutocnej hodnoty. Opakujeme:
budeme sa tvarit, Ze existuje cosi ako skutoc¢na, presna,
nendahodna hodnota odporu a udaj ohmmetra je
nahodna velicina, ktora sa od skutocnej nahodne lisi.

Realna ,skutocna“ hodnota odporu je tiez trochu nahodna, lebo napriklad
teplota v miestnosti trochu fluktuuje, ale to je v praxi uplne zanedbatelné. >



Jednoduché meranie

Ohmmeter nie je celkom ilustracia toho, co chceme dalej
robit, ale zase ilustruje vSelijaké iné uskalia, na ktoré si
musim davat v reali pozor.

Predovsetkym zmerat odpor pomocou hrotov ako na

‘ I obrazku je celkom umenie, kvoli zlym kontaktom. Spina,
oxidacia. Ohmmeter moze ukazat takmer cokolvek.

Udaj na displeji bude divoko nahodny ale to je nie ten typ ndhody, o ktorej sa
chceme bavit. Dalej ohmmeter méze byt systematicky zle ukazujuci. Kvoli slabej
batérii, kvoli zIému nastavenie, kvoli starnutiu ... VSetkému tomu sa hovori
systematicka chyba, lebo nema nahodny charakter a neda sa jej zbavit opakovanym
meranim, treba ju identifikovat a zbavit sa jej alebo ju aspor odhadnut a upozornit
na nu ,,zakaznika®“.

Po tom, o si odmyslime divoCiny a systematiku ostane nahodna chyba merania, teda
ze posobenim nejakej nahodnej priciny (ktord nemdam pod kontrolou) sa zobrazena
hodnota liSi od skuto¢nej hodnoty. Terminoldgia pouzivané v skriptach kolegu
Kundracika (odporuc¢am!) http://davinci.fmph.uniba.sk/~kundracik1/SED

chyba merania : rozdiel medzi ziskanou a skuto¢nou hodnotou veli€iny
neistota merania: odhad chyby merania

V praxi sa Casto terminologicky nerozlisuje medzi chybou a neistotou a hovori
sa proste o chybe. ’



http://davinci.fmph.uniba.sk/~kundracik1/SED

Jednoduché meranie

V d'alsom budeme teda predpokladat, Ze skutoéna hodnota meranej veliciny je
fixné nenahodné cislo a udaj meracieho pristroja (namerana hodnota) je
nahodna velicina.

Ako kazda ndhodna veli¢ina aj namerana hodnota musi mat nejaku hustotu
rozdelenia pravdepodobnosti p(x). O tejto funkcii malokedy vieme nieco
exaktne, ale my sa tu budeme tvarit, Ze ide o Gaussovo rozdelenie, teda

1 r — u)?
plz) = Toros exp(—%)

Ak meranie nema systematicku chybu, potom hodnota u je skutocna hodnota
meranej veli¢iny a merané hodnoty si okolo nej rozptylené s varianciou 2. O
hodnote o spravidla nieCo vieme alebo aspon tusime, je to vlastne to, o
Kundracik vola neistota jedného merania. My tu budeme predpokladat, ze
hodnota o ,je napisana na meracom pristroji“, teda ze ju niekto urcil pri jeho
kalibracii.

Je zrejmé, ze nas nezaujima udaj pristroja, teda jedna namerana hodnota, my
chceme vediet hodnotu p.




Jednoduché meranie bez opakovania

Zhrnme tu, o sme povedali o jednorazovom merani nejakej veliciny. Vysledkom
merania je jedina ,namerana hodnota“ x;. Na meracom pristroji je napisana
hodnota neistoty jedného merania . Do protokolu ako vysledok zapiSeme Cosi ako:

r=x1 o

Teraz ide o to, Co to znamena. Varovanie: ten zapis nehovori ni¢ o tom, ze by merana
veliCina bola ndhodna a jej rozdelenie pravdepodobnosti odhadujeme nejako tak,
ako to naznacuje ten zapis. Naopak, merana veli¢ina ma (anjelom v nebi presne
znamu) urcitd fixnd hodnotu. Ten zapis hovori nieco o nas ako experimentatoroch,
hovori nieco o naSom odhade nasej pravdepodobnosti namerat hodnotu s mensou
alebo vacsou chybou merania. Pravdepodobnost, o ktorej hovori ten zapis sa tyka
tohto:

Predstavme si, ze ten isty rezistor s tou istou skutocnou hodnotou odporu zmeria
vela experimentatorov, Jano, Jozo, Fero, Miso,.... Kazdy urobi jediné meranie. Kazdy
nameria inu (svoju) konkrétnu hodnotu x;. Tie namerané hodnoty od r6znych
experimentatorov budu nahodne rozdelené a ten zapis hovori o naSom odhade
hustoty pravdepodobnosti tych nameranych hodn6t. Ocakavame, ze tie namerané
hodnoty budu rozdelené gaussovsky okolo nejakej strednej hodnoty u, ktoru
odhadujeme nasou hodnotou x; a jednu Standardnu odchylka toho rozdelenia
odhadujeme ako o.



Jednoduché meranie bez opakovania

Tento zapis hovori, ze ked velmi vela

34.1% 34.1% experimentatorov nameria jednorazovo
veliCinu x potom v 68.2% pripadov bude
skuto¢na hodnota meranej veliciny lezat v
ramci intervalu (x; — 0,x; + 0).

Inymi slovami povedané to znamena toto. Budem vystupovat ako sudny znalec na
sude a dostanem otazku , kolko promile alkoholu mal obzalovany v krvi?*“
Odmeriam vzorku jedenkrat ,,alkoholometrom® a napisem

r=114+0.1%

Ak by to sudca interpretoval tak, ze alkohol nebol pod 1.0 % a obzalovaného by
odsudil, potom by nedobre interpretoval, ¢o ten zapis o merani hovori. Neviem ako
to chodi na naozajstnom sude, ale ak by to tak bolo, potom zo 100 obzalovanych (u
ktorych uvediem ako expert tento konkrétny interval) na zdklade méjho svedectva
odsudia 14 nevinnych!!! Lebo v 13.6 % pripadoch skutocna hodnota (asi, teda

podla mbjho odhadu neistoty) lezi pod spodnou hranicou intervalu, ktory som
uviedol. Uf!!! 6



Intervaly spolahlivosti

Zd6raznime znovu velmi jasne. Zapis typu
r=x1 o0
vypovedd o tam, ako ja odhadujem moznost mojej smoly, Ze sa mylim.

Nespaval by som dobre, keby som myslel ze na zaklade mojich svedectiev odsudili
14 nevinnych z kazdej stovky obzalovanych.

Neviem, aku instrukciu davaju na Skoleni sudnych znalcoy, ja by som radsej uvadzal
vysledok v tvare ,n% confidence level interval®. Napriklad by som sudcovi
povedal, Zze 95% confidence level interval je priblizne (x; — 20, x, + 20).

Ak na zaklade takejto vypovede odsudia
niekoho, Ze jeho hodnota nespada do tohto
e intervalu, potom na zaklade mojej vypovede
odsudia uz ,len” 2 nevinnych zo 100
obzalovanych. To uz by som spaval dobre?

-30 -20 -lo M lo 20 30

Vo fyzike sa spravidla veri na pravidlo ,, aspon 3c“ Teda napriklad, ze publikujem,
ze merana hodnota sa lisi od takej, ktorej sme doteraz verili, ak je to o, viac ako o
30" S velmivaznymi oznameniami sa caka dlhsie, kym sa nahromadi dostatocna

Statistika. Objav Higgsa oznamili, ked to bolo cosi okolo 7a.
7



Zmensenie neistoty: urobit viacero merani

Doteraz sme diskutovali neistotu pri jednom odmerani nejakej veliCiny. A hovorili
sme, ze ak merania urobia postupne Jano, Miso, Fero,... nameraju rozlicné
hodnoty. Namerané hodnoty od réznych experimentatorov budu nahodne
rozdelené. Ako kazda nahodna veli¢ina aj namerana hodnota musi mat nejaku
hustotu rozdelenia pravdepodobnosti p(x). O tejto funkcii malokedy vieme nieco
exaktne, ale my sa tu budeme tvarit, Ze ide o Gaussovo rozdelenie, teda
2
(o) = s exp( A

V tom rozdeleni je skryta mne nezname hodnota p, teda skutocna hodnota
meranej veli¢iny. Idea je teraz takd: merania nemusia robit ini experimentatori, ja
sam moZem zopakovat to meranie velakrat a ziskam n vzoriek ,,nameranej hodnoty.
Je to teda Cosi, ako keby som mal zasobnik (,,mech”) vzoriek nahodnej veli¢iny a
stojim pred nasledovnou ulohou: Mas k dispozicii plny mech vzoriek nahodnej
velic¢iny rozdelenej ako N(u, o), kde hodnota o je znama ale hodnota u
je neznama. Mozes vytiahnut z vreca nejaky pocet vzoriek a ich
»Statistickou analyzou“ urcit co mozno najlepsie neznamy parameter L.
Z jednorazového merania nemo6zem odhadnut skuto¢nu hodnotu
meranej veliciny inak ako tak, ze je to hodnota, ktord som prave nameral.
'Na zéklade viacerych opakovanych merani sa to da urobit lepSie. Veda,
ktora poskytuje rady ,,ako takéto veci robit” je matematicka Statistika.




Napad: urobim viac merani a z nich aritmeticky priemer

No): o) = oy e~ T

Chcem experimentdlne urcit u. Vytiahnem z vreca n Cisel
prakticky to znamena ,,urobim n merani)

x; € N(u,0) pre i € (1,...,N)

n
1
xav:_E Ly
n 1

Vypocéitam aritmeticky priemer. Cisla x; si ndhodné, preto
aj Tqv je nahodné Cislo. Ukazeme si o chvilu, ze toto
nahodné Cislo ma Gaussovo rozdelenie pravdepodobnosti,
aké su parametre toho rozdelenia?

R [
xavzgzl:xzzgzl:}uzﬂ

Treba si jasne uvedomit, aku strednu hodnotu sme to pocitali. Mame vela
experimentatorov. Kazdy z nich urobi n merani a kazdy vypocita svoj aritmeticky

priemer. To sU nahodné priemery. Ich stredna hodnota je to o sme prave spocitali.
Hovori sa tomu stredna hodnota cez subor experimentatorov.

9



Variancia aritmetického priemeru

_ 1 (z — p)?
p(x) = m eXp(—T)

o) for ie(1,...,N)

Poznateda dva parameter pre rozdelenie nahodnych hodnét aritmetickych
priemerov n merani ziskanych velkym siborom experimentatorov. Ostava urcit
hustotu pravdepodobnosti tychto nahodnych hodnot. Ukazeme, ze je to Gauss.,



Sucet dvoch Gaussov je Gauss

1 - 1 y? .
2=T+y p(z) =7 K
o0 zt+dz—=z 00 Z
otz = [ o) [ dupto) = [ deolarp(c — a1z = e
= 5de [ drexp(—a/2) exp(—(z — 2)?/2) = SEEELD g [ exp(- 22T
= exp(;; /2) dz/dw exp(—(z? — zx + 22 /4 — 22 /4)) = esz(;; /4 dz/d:z; exp(—(z — 2/2)?) =
exp(—2z2 T ex CxXp _§
_ p(gw /4 dz/ d¢ exp(—¢2) = péw ) gz = (2712 )dz

— 00

Vysledok je Gauss so 2 = 2.




Neistota aritmetického priemeru

Ukazali sme si, Ze sucet dvoch gaussovsky rozdelenych premennych je gaussovsky

rozdeleny. Preto aj sucet n gaussovsky rozdelenych premennych je gaussovsky

rozdeleny. A preto zjavne aj aritmeticky priemer n gaussovskych premennych je

gaussovsky rozdeleny. Stredna hodnota a variancia tohto vysledného rozdelenia je
2 1

- — 2 2 _ -2
Loy = H Tav = Lau (IIJGU) _na

Som experimentator a mam zmerat veli¢inu, ktorej presna (ale neznama)
hodnota je u, a neistota (jedna Standardna odchylka) jedného merania je znama
a ma hodnotu o. Co mam urobit? Zmerat tu veli¢inu n-krat a vydat vysledok v

tvare 1
T =Tyy T —=0

/n

Poucka: neistota aritmetického priemeru n nameranych hodnét je \/n-krat

mensia ako neistota jedného merania. .



Zapamatajte si , hieroglyf“

n

,0dmocnina z n“ sa vo vzorcoch zo Statistiky vyskytuje enormne c¢asto a je dobre
rozumiet preco. ,,Preco to vyslo, ako to vyslo.”

1 mn
Loy = E Zajz
Je to opity namornik !
Ked pocitame aritmeticky priemer s¢iftame n Cisel. Kazdé sa liSi od skutocnej
hodnoty o nahodnu chybu, ale tie nAhodné chyby maju nahodné znamienka.
Presne ako kroky opitého namornika maju ndhodny smer. Preto aj velkost suctu

nahodnych chyb nebude n-krat valkost ndhodnej chyby o, ale len \/n-krat velkost
nahodnej chyby a po predeleni n dostaneme

1

T = Tyy T —=0

\/ﬁ




Meranie valceka mikrometrom

Doteraz sme sa tvarili, Ze na meracom pristroji ,,je napisana”“ hodnota neistoty
jedného merania. Casto to tak nie je a neistotu jedného merania musime odhadnut
zo samotnych merani. Nie je to tazké, vyvkonadme n merani, pozrieme sa ako su
jednotlivé vysledky rozptylené okolo aritmetického priemeru a mame odhad neistoty
jedného merania.

V Zivote sme to vsSetci robili na prvom praktiku v Ulohe ,,meranie priemeru valceka
mikrometrom®, ValCek sa odmeral 10-krat a potom ,,sa to spracovalo”. Problém bol
len v tom, Ze pri merani ¢lovek dostane 10-krat tu istu hodnotu, lebo mikrometer je
kvalitny a valcek dobre vysustruzeny. Takze vSetci sme po Case prisli na to, ze to
,treba nasvindlovat”. Vymysleli sme si 5 akoZze nameranych hodnot a spracovali do

/|
tabulky v protokole. i ] o
1 5.2 0.0484
2 5.1 0.0144
3 4.8 0.0324
4 4.9 0.0064
5 4.9 0.0064
. 1 2 1 2
T=— > 498 0% = — > (z;—z)* 0027

V Zltej bunke je odhad neistoty jedného merania.



V tabulke sa vypocital najprv aritmeticky priemer podla vzorca

a potom odhad kvadratu neistoty jedného merania

1
2 _ 2
U—n_lg(acZ T)

Vzorec je zrejmy, vypocitaju sa kvadraty odchylok jednotlivych merani od
aritmetického priemeru a potom ich priemer, Co je asi dobry odhad kvadratu
neistoty jedného merania.

IbaZe priemer sa robi dajako divne, deli sa hodnotou (n — 1) a nie n. Ze je to
tak spravne, prenechdvam na dusevnu aktivitu Citatela. Treba si overit, ze
stredna hodnota takto odhadnutého kvadratu je naozaj variancia rozdelenia
vysledkov merani. Intuitivny dévod odkial sa berie —1 je vtom, Ze merania
sme uz raz pouzili na vypocet aritmetického priemeru, takze z 5 kvadratov
odchylok v riadkoch je su len 4 riadky nezavislé.

Na zaver sme nasvindlované data zhrnuli do vitazného vzorca

xz%ini ! niIZ(fEi—i’)z

Toto je hieroglyf ,,odmocnina z n“ za ,,opitého namornika“.




Ako suvisi ucinny prierez, hustota prudu projektilov a pocCet Stuknuti
detektorov v rozptylovom experimente.

Ako suvisi stredny kvadrat vzdialenosti kam dokraca opity namornik
po n krokoch s tym poctom krokov

Ako pre Gaussovom rozdeleni suvisi 95% interval spolahlivosti so
strednou kvadratickou odchylkou

Akeé je priblizne percento spolahlivosti v intervale plus minus jedna
standardna odchylka



Elementy metodologie fyziky

Fyzika je motivovana hfadanim pravdivého obrazu sveta okolo nas

Ale neuplatriuje si narok na pravdu

Netvrdi, ze to, o uci, je pravda

To, ¢o uCi su dobré ,rady do zivota“

Obcas tie dobré rady modifikuje alebo zmeni

Na rozdiel od matematiky, ktora tvrdi, ze jej vety su pravdivé

Matematika je rigorézna veda, vie ,ako sa dokazuje pravda“

V skutoCnosti ,pravidla dokazovania pravdy vznikli ,v podstate konsenzom®,
dohodou

Ale potom, ak sa pravidla dokazovania pouzili spravne, o pravdivosti vysledku sa
uz ,nehlasuje”. V dékaze niekto mdze najst’ chybu, ale o tej chybe tiez niet sporu
Fyzika nedokazuje pravdivost svojich tvrdeni

Fyzika svoje tvrdenia vyvracia, zamieta, falzifikuje

A potom sa ich snazi nahradit, upresnit, ohranicit ich platnost



=

Sir Karl Raimund Popper (28 July 1902 — 17 September 1994)

Poziadavka falzifikovatelnosti vedeckej tedrie



Ako sa falzifikuje teodria

Tak, ze sa najde nesulad medzi predpovedou teérie a vysledkom merania

| kazdy vysledok je zatazeny prinajmenej nejakou nahodnou chybou merania, takze
presny sulad s tedriou sa nenajde nikdy. Takze pravidlo o falzifikacii treba upravit

Tak, ze sa najde statisticky signifikantny nesulad medzi predpovedou
tedrie a vysledkom merania

Plati ,prezumpcia neviny“. Predpokladam, ze tedria je spravna. Te je tzv.

nulova hypotéza.
Vysledok merania sa liSi od predpovede. VyCislim (odhadnem) pravdepodobnost
toho, ze pozorovana odchylka od predpovede je Statisticka chyba merania, teda
fluktuacia. Vlastne odhadnem pravdepodobnost’ svojej smoly, ze pozorujem odchylku
od tedrie ktora je spravna. A ked ta pravdepodobnost’ je vefmi mala, vyhlasim tedriu
za nespravnu. Vlastne vycisfujem pravdepodobnost’, ze si urobim vedecku
hanbu, ze spravnu tedériu vyhlasim za nespravnu, za falzifikovanu. Je mojim
subjektivnym rozhodnutim, aku pravdepodobnost hanby som ochotny riskovat. V
kazdej oblasti vedy panuje akysi konsenzus o ,akceptovatelnej hanbe”.



Ak fyzika len falzifikuje ako to, ze sa oznamuju objavy?

V CERNe objavili Higgsovu Casticu, ¢o to znamena?

Falzifikovali ,tedriu”“ ze Higgsov bozén neexistuje. To bola pri spracovani
experimentu nulova hypotéza: Su namerané data konzistentné s
predpokladom, ze Higgsov bozon neexistuje?

Vedenie CERNu dovolilo ,publikovat objav” ked odhad ,hanby z ohlasenia
objavu neexistujucej Castice” bude mensi ako zodpovedajuci urovni aspon
50.

34.1% 34.1%




Modelovy priklad: hracia kocka

Uvazujme nulovu hypotézu:
Pravdepodobnost, Ze pri hode kockou padne 6 je 1/6

Ako sa toto falzifikuje? Urobim N hodov a zistim kolkokrat padlo Cislo 6,
oznacim to ako Ng.

Vypocitam nahodnu hodnotu
Ng
x — —_—

N

| =

teda pozorovanu odchylku od teoreticky oCakavanej hodnoty 1/6.

Pre velké poCty pokusov mozno povazovat veli€inu x za spojitu nahodnu
veliinu, takze potrebujem vypocitat hustotu pravdepodobnosti pozorovat
odchylku x pri N pokusoch za predpokladu, Ze plati nulova hypotéza
(prezumpcia nevinu), teda ze skutoCna hodnota pravdepodobnosti je haoza;
1/6.

Pre diskrétnu hodnotu pravdepodobnosti hodnoty Ny plati (binomicke

rozdelenie) N NN
0= (3)(5) (5)



Po nejakom hladani si mézete vygooglit’ priblizny vzorec, ktory z
binomického rozdelenie pre N, vyplyva pre hustotu pravdepodobnosti
veliciny

Ng 1
r=-———=
N 6
jeto 1 72
o) = ———exp (575 )
\/ 27 525 36N

: , : [ 5
Stredna hodnota x je nula, Standardna odchylka x je o = 36N

Ak nameriam x ,dost” odliSné od nuly, budem mat tendenciu prehlasit, ze
som nulovu hypotézu falzifikoval. Pravdepodobnost ,moznej hanby“ uréim z
grafu

34.1% 34.1%




Iny priklad

Nulova hypotéza: Plati Ohmov zakon, teda prud je priamo umerny
napatiu

Ako sa toto da falzifikovat. Urobim meranie

L
U T U U U T U T T 1
00 05 10 15 20 25 30 35 40 45 50
uv]

Budem testovat’ konzistentnost merani so zakonom

1
I ==-U
R



Mam namerané dvojice hodnét (U;, I;). Hodnoty I; maju neistoty o;.
Neistoty su na grafe znazornené ako zvislé Ciarky pri nameranych bodoch.
Nepoznam hodnotu R.
Z nameranych hodnét zostavim funkciu
(Ii — Ui/R)?
XQ(R) _ Z () 27,

o

1

Je to vlastne normalizovana suma kvadratov ,,odchylok od zakona“.

Najdem, pre aku hodnotu R ta funkcia nadobuda minimum. To je hodnota,
pre ktoru je nulova hypotéza ,najmenej porusena“. Ak nulovej hypotéze
verim, potom som prave nasiel najlepSiu hodnotu odporu R.

7T/ D)2
Vydislim hodnotu XQ(R) _ Z (i U;”L/R)
. O'i

Keby Ohmov zakon platil a merania by nemali nahodné chyby, potom by
ta hodnota bola y2(R) = 0. Ale merania maji nahodné chyby, typicky
o¢akavam ze kazdy z Citatelov nadobuda hodnotu o?. Ak bolo n merani,
potom ¢akam, Ze dostanem y2(R) = n. Ak dostanem hodnotu ,0 dost
vacsiu ako n, budem mat tendenciu prehlasit, ze Ohmov zakon neplati.



Ako ale odhadnem ,pravdepodobnost moznej hanby“? Takto.

Namerané hodnoty st nahodné ¢&isla, preto aj z nich vypocitané &islo y?
je nahodné Cislo.

Poziadam matematickych statistikov, aby nasli hustotu pravdepodobnosti
nahodnej veli¢iny y2. Oni povedia, Ze tu hustotu teoreticky poznaju, je to
chikvadrat-rozdelenie pre (n — 1) stupnov volnosti.

Cumulative distribution function
frlx) 2 Fi(x) 2
= Jr\:l
+ 3 ._.’

L -]

1.0 ¢

k=3
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0.4 k4

. — k=6 |
0371 T—7lg 0.6
0.2 0.4
0.1 0.2
0.04 — 0.0° x
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Na obrazkoch je pocCet stupriov volnosti oznaceny ako k



Cumulative distribution function
Fi(z) .. Priklad
1.04 Mam 7 merani a dostal som hodnotu

x%(R) = 7. Mam prehlasit, Ze som
falzifikoval zakon?
Na krivke pre k = 6 odcCitam
pravdepodobnost namerat hodnotu
mensiu ako 7, je to okolo 0.68. Teda
pravdepodobnost, Ze zakon je platny a

niekto nameria hodnou viac ako 7 €isto
ako doésledok statistickych fluktuacii je
0.32.

\
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Teda ak by som pri hodnote y?(R) = 7 prehlasil, ze som falzifikoval zakon priamej
umernosti, pravdepodobnost, ze si urobim hanbu odhadujem ako 0.32. To je
strasne vela. Nevydam oznam o falzifikacii.




Co sa vo fyzike mysli tym, Ze tedria ma byt falzifikovatelna

Uvedte nejaky argument, preCo priemer z 10 merani by mal byt presnejSi
ako jedno meranie

Ak zvySime pocCet merani 100 krat, ako sa zmeni presnost priemeru z
merani

Aka je priblizne hodnota spolahlivosti pre interval plus/minus sigma a
plus/minus 2 sigma



Elementy Specialnej tedrie relativity



Experimentalny fakt:

Rychlost’ svetelného lu¢a je voéi f'ubovol'nej inercialnej suradnicovej
sustave rovnaka a je 299 792 458 kms™1.
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Rychlost’ svetelného lu¢a je voéi f'ubovol'nej inercialnej suradnicovej
sustave rovnaka a je 299 792 458 kms™1.

TP 1

== —

Rychlost' lG€a odmerana na pevnej zemi 299 792 458 kms.



Rychlost’ svetelného lu¢a je voéi f'ubovol'nej inercialnej suradnicovej
sustave rovnaka a je 299 792 458 kms™1.

Rychlost' lu€a odmerana na pohybujucom sa koni 299 792 458 kms.



Zdravy rozum: nie je mozné aby rychlost pohybujuceho sa objektu bola rovnaka
voCi dvom navzajom sa pohybujucim pozorovatelom

Experimentalny fakt: Rychlost svetelného Iuca je voci lubovolne;
inercialnej suradnicovej sustave rovnaka a je 299 792 458 ms™.

Zdravy rozum nas pletie, ak sa jedna o rychlosti blizke k rychlosti svetla.

Moderny priklad merania rychlosti svetla, GPS:

Satelit je vo vzdialenosti 20000 km od Zeme, jeho rychlost je 3 km/s to je
1/100000 rychlosti svetla. Vzdialenost od satelitu sa meria Casom cez rychlost
svetla. Keby rychlost signalu zo satelitu zavisela na rychlosti satelitu ale
prepocitavali sme to podla Einsteina, tak by chyba vzdialenosti bola
20000/100000 km to je 200 m. Poloha je GPS uréena na 10 m lahko, takze
svetlo naozaj ide rovnakou rychlostou, Ci je vyslané z hybuceho sa zdroja alebo
stojaceho zdroja. PresnejSia analyza faktov o GPS hovori, ze rychlost svetla je
vzdy rovnaka s presnostou 12 m/s. (Pozri v knihe F.Selleri Open Questions in

Relativistic Physics.)



ESte jeden priklad:

Staci ist na exkurziu k urychlovacu.

Treba sa tam napriklad pozriet na rozpad castice pidnu. Rozpada sa na dva fotdony. Ak pidn
stoji, tie dva fotony letia oproti sebe rychlostou svetla c. V laboratériu su vSak dnes uz
bezné pidny, pohybujlce sa rychlostou 0,999 999 c. Ak sa takyto pion rozpadne na dva
fotdny, potom nepozorujeme, Ze by sa jeden z nich pohyboval rychlostou 1,999999 c a
druhy iba 0,000001 c (= 300 m/s!, taky efekt by naozaj nebolo tazké pozorovat). Naopak,
oba fotdny maju experimentalne rychlost c.

Zaver: treba prehodnotit' zdravy rozum, nanovo predumat’ vSetko o merani
polohy a €asu. To je to, ¢o urobil Einstein v roku 1905.




Einsteinova Specialna tedria relativity je zalozena na dvoch fundamentalnych
principoch

* Princip relativity: Nijakym experimentom nemozno rozhodnut, ktora z dvoch
navzajom sa pohybujucich inercialnych sustav sa hybe a ktora stoji.

* Princip rovnakej rychlosti svetla: Dany svetelny Iu¢ sa Siri (vo vakuu) vodi
lubovolnej inercialnej sustave rovnakou rychlostou 299 792 458 ms™.

Tieto principy su zovSeobecnenia mnohych experimentalnych pozorovani. Nie
su to nejaké logické postulaty. Svet by (mozno) mohol ,byt urobeny” aj inak, ze
by tieto principy neplatili. Ich pravdivost nevieme dokazat v zmysle
matematickeho dokazu. Mame vsSak taku skusenost, ze vsetko, Co z tychto
principov ,odvodime” ako predpovedany vysledok nejakého experimentu, sa
ukaze ako ,pravdivé®, teda ze vykonany experiment da vysledky v sulade s
nasou predpovedou.



Opakovanie:

stav fyzikalneho systém v istom okamihu sa da zachytit’ na papier a
podfla toho papiera ten stav inokedy (uplne) zrekonstruovat’

Fyziku sme zacali diskutovat tvrdenim, ze fyzika zachytava nejaky okamih.
Okamih je to, Co sa deje ,naraz”.

Treba zacCat tak, ze poriadne predumame, €o to je ,,naraz‘“. NevystaCime
s intuitivnym chapanim, musime objektivhe definovat pojem naraz.



Co je to naraz?

Puding Pani Elvisovej




Pojem ,naraz” objektivizoval Einstein definiciou vzhfadom k nejakej suradnicovej
sustave, tvorenej ,suradnicovymi trpaslikmi® ktori vSetci maju lokalne hodiny a tie
sU navzajom synchronizovane.

Suradnicovy trpaslik (ma 6 rak a hodinky)




Suradnicova sustava tvorena systémom navzajom nehybnych
,<suradnicovych trpaslikov”




Synchronizacia hodin




Dve inercialne sustavy, navzajom sa pohybujuce:
vliak a stanica

kazdy suradnicovy trpaslik ma hodiny



Synchronizacia hodin

Séftrpaslik synchronizuje hodiny suradnicovych trpaslikov sediacich vo vlaku, ktori
sa nepohybuju ani voCi sebe ani voci vlaku ani voci vlakovému Séftrpaslikovi



Synchronizacia hodin

Séftrpaslik synchronizuje hodiny suradnicovych trpaslikov sediacich na stanici, ktori
sa nepohybuju ani voCi sebe ani vodi stanici ani voCi stanicnému Séftrpaslikovi



Synchronizacia hodin v ramci jednej inercialnej suradnicovej
sustavy umoznuje definovat’ pojem ,,naraz” pre tu sustavu.

KfaCovym pojmom tedrie relativity je udalost’ (angl. event). Fyzikalne javy,
pozorovania, mézeme popisat ako sekvencie lokalnych udalosti, ktoré sa odohrali
na konkréetnom mieste v konkrétnom Case. Priklady udalosti: zrazka dvoch Castic,
rozsvietenie ziarovky, vybuch granatu, dopad kamena na dno studne, prechod
lopty vrcholom drahy pri Sikmom vrhu, ...

Udalost je miestne lokalna. Prebehne teda v istom Case v blizkosti nejakého
suradnicového trpaslika. Meno toho trpaslika definuje ,miesto kde nastala ta
udalost®. ,Meno trpaslika“ je tvorené trojicou Cisel (x,y, z). V Case, ked udalost
nastala, sa ,miestne prislusny” trpaslik pozrie na svoje hodinky a ich udaj nazve

Ze je to ,Cas, kedy ta udalost nastala“.

Miestne prislusny trpaslik vyhotovi zaznam o udalosti, ktory pozostava z
»popisu aka udalost’ to bola“ (dopad kamena) a Stvorice Cisel (¢, x,y, z),
udavajucich Cas a miesto udalosti. Zaznamy o udalostiach posielaju trpaslici do
centra suradnicovéemu Séftrpaslikovi, ktory zaznamy zhromazduje a fyzikalne
analyzuje. Udalosti, ktoré na zazname maju rovnaky udaj t, sa definitoricky stali
naraz (teda v jednom okamihu), i ked pripadne na dvoch ré6znych miestach. Tym
je pojem ,naraz” definovany v ramci jedenej inercialnej sustavy trpaslikov.



Relativhost sucasnosti

VySetrime teraz, Ci dve udalosti, ktoré sa odohrali v nejakej suradnicovej sustave
(napriklad stani¢nej) ,naraz”, ale na réznych miestach (teda vedla r6znych
suradnicovych trpaslikov) sa odohrali ,naraz” aJ voCi inej suradnicovej sustave
(napriklad vlakovej).
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kazdy suradnicovy trpaslik ma hodiny

Nazvime tie dve udalosti A a B. Udalost A je sumiestna s jednym trpaslikom
stani¢nej sustavy a jednym trpaslikom vlakovej sustavy. Hodiny trpaslikov v dvoch
r6znych sustavach nie su navzajom synchronizovang, takze €as udalosti A bude
nejaka hodnota t, vo vlakovej sustave a v principe mozno ina hodnota t, vo
stani¢nej sustave. Udalosti B budu analogicky zodpovedat udaje tg, tg.
Predpokladajme, Ze udalosti A,B su vo vlaku vyhodnotené ako sucasné (stali sa
,haraz“), teda ze t, = tz. Otazka je, ¢i potom plati aj t,, = tp ??? Teda budu
pokladané za sucasné aj na stanici ??? Dali sme tam vela otaznikov, aby sme
zdéraznili, Ze to, €Co sa nam intuitivne javi ako samozrejme spravne, experimentalne
spravne nemusi byt. Einstein si to uvedomil ako prvy, analyzoval jednoduchy
priklad.



Relativhost sucasnosti

-l |

||I1 ""“" Tk

Presne v strede pohybujuceho sa vagona blikne Ziarovka. Svetlo po nejakom Case
dorazi k zadnej stene vagona (to je udalost A) a k prednej stene vagona (to je
udalost’ B). Z toho, aku proceduru sme pouzili pre synchronizaciu hodin trpaslikov
vo vlaku je zrejmé, ze hodiny vlakovych trpaslikov budu ukazovat pri dorazeni
svetelného signalu rovnaké Casy. Trpaslici vo vagone teda povedia, zZe svetlo
dorazilo dopredu a dozadu sucasne. Pozrime sa teraz na to, o budu hovorit
stanic¢ni trpaslici o tych istych udalostiach A,B.



Relativhost sucasnosti

g i W awEngs BE
) L %

h

A
/
[}
[

(.i g

TN

Modrou farbou sme nakreslili stanicného trpaslika, ktory videl bliknutie ziarovky
uprostred vagona, ked ho Ziarovka prave minala. Cerveny staniény trpaslik je ten,
ktory uvidel zadnu stenu vagéna, ked k nej dorazilo svetlom, to je udalost A. ZIty
stani¢ny trpaslik je ten, ktory uvidi prednu stenu vagona, ked k nej dorazi svetlo, to je
udalost’ B. Otazka je, ¢o ukazuju hodiny Cerveného a Zltého trpaslika pre udalosti A a
B. Je zrejmé, Ze zadné stena ide oproti svetlu, predna stena uteka pred nim. Hodiny
ZItého trpaslika preto budu zjavne ukazovat vacsi €as pri udalosti B ako ukazovali
hodiny Cerveného trpaslika pri udalosti A. Stani¢ni trpaslici preto vyhodnotia udalosti A
a B ako nesucasné, budu hovorit’, Ze nenastali naraz.

Zaver: nie je mozné definovat pojmy sucasnost’, naraz, teraz, okamih ... tak, aby dve
nesumiestne udalosti boli rovnako vyhodnotené vo vsetkych suradnicovych sustavach.
Pojem sucasnost teda nie je absolutny, vyhodnotenie zavisi od toho, vodi ktorej
sustave sa robi. Pojem sucasnost’ je teda relativny, vztahuje sa na nejaku sustavu



Bliknutie ziarovky
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Bliknutie Ziarovky
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Prediskutujeme pohlad zo starITice, co hlasia stanicni trpasilici.

Modry trpaslik hlasi lvidim bliknutie ziarovky v strede vagona, moje hodiny ukazuju
Cas (napriklad) 11:22:34

Stanicni trpaslici maju synchronizovany Cas, Cerveno zakruzkovany je trpaslik, ktory
vidi okolo seba prechadzat zadnu stenu presne vtedy, ked jeho hodiny ukazuju
11:22:34 a zlto zakruzkovany je trpaslik, ktory vidi okolo seba prechadzat prednu
stenu presne o0 11:22:34.

Vzdialenost medzi modrym a Cerveno zakruzkovanym je L, vzdialenost medzi
modrym a zIto zakruzkovanym je tiez L.

Pytame sa o kolkej (z hfadiska stanice) narazi foton zo ziarovky na zadnu stenu.
Foton leti dozadu rychlostou ¢, stena oproti nemu rychlostou v. Spolu musia prekonat
vzdlalenost L potrebUJu na to Cas L/(c + v), teda hodiny Cerveného trpaslika, ktory
g i vidi dopad fotonu na zadnu stenu budu ukazovat' Cas

& g 11:22:34+L/(c + v).




Bliknutie Ziarovky
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Teraz sa pytajme o kolkej (z hi’_adiska stanice) narazi foton zo Ziarovky na prednu
stenu. Fotdn leti dopredu rychlostou ¢, stena rovnako dopredu uteka rychlostou v.
Stena ma na zaciatku ,naskok” L, preto foton ,dolapi” prednu stenu za €as L/(c — v)
teda hodiny Zltého trpaslika, ktory vidi dopad fotonu na prednu stenu budu ukazovat
cas 11'22'34+L/(c — V).

Stani¢ny Séftrpaslik teda vyhodnoti udalosti takto
« fotdn dopadol na zadnu stenu o 11:22:34+L/(c + v).
+ fotdn dopadol na prednu stenu o 11:22:34+L/(c — v).

| Zaver staniéného &éftrpaslika teda bude: dopady foténov
na prednu a zadnu stenu nie su sucasné udalosti.
Videli sme ale, Ze zaver vlakového Séftrpaslika bude:
dopady fotonov na prednu a zadnu stenu su sucasné
udalosti.

Poznamka (predbiehajuc vyklad) Stani¢ni trpaslici nazvu dizku 2L diZzkou
pohybujuceho sa vagona. Je to vzdialenost’ zakruzkovanyych trpaslikov.



Meranie Casového intervalu, doba trvania fyzikalneho deja

Uz sme sa stretli s pojmom udalost. To je kratkotrvajuci fyzikalny jav, ktory sa cely
odohra na jednom mieste a v priebehu kratkeho (infinitezimalneho) ¢asového
intervalu, teda v ,jednom okamihu®.

Su aj komplexnejSie fyzikalne javy, Specialne sa teraz budeme zaoberat javmi,
ktoré za€inaju v nejakom okamihu na jednom mieste a konéia v inom
(neskorsom) okamihu na inom mieste. Su to nelokalne deje.

Budeme pracovat na definicii pojmu ,doba trvania nelokalneho deja“.

Ak je nejaky dej lokalny, teda zaCina a koncCi na jednom mieste, potom jeho doba
trvanie je urCena lahko. Predovsetkym pojem ,na jednom mieste” sa zjavne viaze
na nejaku suradnicovu sustavu. V inej sustave, ktora sa vocCi uvazovanej pohybuje,
by uz nekoncCil na tom mieste, kde zacCal. Ak zacCiatok a koniec su na jednom
mieste, potom je na tom mieste aj suradnicovy trpaslik, ktory ma hodiny. Meranie
doby lokalneho deja je potom lahké. Lokalne prislusny trpaslik sa pozrie na
hodiny, ked' dej zaCne a potom znovu, ked dej skonCi. Namerané Casové udaje
odcita a to, Co dostane sa nazve ,,doba trvania lokalneho deja*“.



Meranie casového intervalu, doba trvania nelokalneho deja

Dej, ktory je nelokalny vocCi nejakej suradnicovej sustave zacCina a koncCi na inych
miestach, teda vedla dvoch suradnicovych trpaslikov. V ramci suradnicovej sustavy
maju trpaslici hodiny synchronizované, preto meranie doby deja vocCi nejake;
suradnicovej sustave trivialne definujeme takto.

Trpaslik lokalne prislusny zacCiatku deja sa pozrie na svoje hodiny pri zaCiatku. Trpaslik
lokalne prislusny koncu deja sa pozrie na svoje hodiny pri konci. Svoje udaje nahlasia
svojmu suradnicovému Séftrpaslikovi. Ten prijaté Casoveé udaje odcita a rozdiel nazve
,doba trvania nelokalneho deja"“.

VSimnime si, Zze meranie nijako nie je ovplyvnené tym, ako sa hlasenia lokalne
prislusnych trpaslikov zdrzia cestou k Séftrpaslikovi.

Toto byval problém historického merania doby Sprintov v atletike. Rozhodcovia so
stopkami sedeli v cieli ale $tart bol inde. Startovalo sa vystrelom a rozhodcovia mali
inStrukciu aby spustili stopky nie az ked' pocCuju zvuk vystrelu, ale uz vtedy, ked' uvidia
dym zo Startovacej pistole. Problém bol v tom, Ze sa doba trvania nelokalneho deja
merala na jednych stopkach (hodinach). Podla Einsteina sa ma spravne merat na
dvoch synchronizovanych hodinach.

VSimnime si este, ze doba ,navod na meranie nelokalneho deja“ je presne rovnaky
v kazdej suradnicovej sustave. Dej nijako nemusi suvisiet' s konkrétnou
suradnicovou sustavou, podstatné je iba to, Ze je ohraniéeny dvoma udalost’ami.



Meranie Casového intervalu, vlastny Cas

Pre niektoré deje vSak existuje jedna vyznacna suradnicova sustava, v ktorej dej
prebieha na jednom mieste a teda Specialne zacCina a konCi na jednom mieste.
Doba trvania takého deja je v tej sustave odmeratelna jednym trpaslikom, teda
jednymi hodinami. Cas trvania deja takto odmerany sa vola vlastny éas trvania
deja.

V kazdej inej suradnicovej sustave, ktora sa voci tej vyznaCnej pohybuje, treba na
odmeranie trvania toho deja dvoch trpaslikov a dvojo hodin.

Otazka, Ci Cas trvania deja takto namerany v inej sustave je alebo nie je rovnaky
ako vlastny Cas, vyzaduje starostlivé preskumanie a intuitivha odpoved na fu
moze byt nespravna.

Nasa intuicia nas méze sklamat, ak ta druha sustava sa pohybuje velmi rychlo,
rychlostou porovnatelnou s rychlostou svetla.

Budeme sa podrobne venovat tejto otazke pre Specialny dej: jedno tiknutie
hodin.



Hodiny

Hodiny sluzia na meranie Casovych intervalov. Ukazuju sice aj momentalny
casovy okamih, ale aj to je len interval od nejakej dohodnutej udalosti, pre
pocitacové hodiny je to Casto od 1.1.1970. Ako hodiny mozno v principe pouzit
hocijaky dej, ,ktory pravidelne (rovhomerne) tika“. Ako sa da testovat
pravidelnost' tikania, o tom sme sa bavili v zimnom semestri.

Presné hodiny su Casto velmi zlozité zariadenia, analyzovat ich z pohladu
dvoch réznych inercialnych sustav je netrivialne.

Einstein vymyslel jednoduchy dobre analyzovatelny model hodin, svetelné
hodiny. Realizované ako foton chodiaci hore-dole medzi dvoma paralelnymi
zrkadlami, alebo fotdn vyziareny zo zdroja a prijaty po odraze od protilahlého
zrkadla fotonkou. Jedna cesta fotonu hore a dolu znamena jedno tiknutie.
Elektronicky mechanizmus, pocitajuci jednotlive tiknutia uz nie je pre
relativisticku analyzu ddlezité, podstatné je iba, ze pocitadlo sa da
elektroinziniersky v principe vyrobit.
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Einsteinove hodiny vo viaku
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Trpaslik sa vezie vo vlaku, vedla neho stoja vo vagone Einsteinove svetelné
hodiny, trpaslik pocita ich tiknutia. Zisti (definuje), Ze jedno tiknutie trva dobu
2L

T =
C

Podla predchadzajucej diskusie sa tito doba vola vlastny €as jedného tiknutia
hodin.



Cerveny stani¢ny trpaslik
vidi, Ze foton Startuje na
1 spodnom zrkadle
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ZIty stani¢ny trpaslik vidi,
% ze fotdn sa odraza na

hornom zrkadle

Modry stanicny trpaslik
vidi, Zze fotdn pristava na
spodnom zrkadle




Co vidia staniéni trpaslici? Ze fotén cestuje Sikmo. Cerveny trpaslik si poznamena
cas t;, ked okolo neho letia hodiny a modry si poznaci Cas t;, ked letia okolo neho.
Séftrpaslik odgita tie dva 6asy, ktoré dostal v hlaseniach: T, = t; — t;. A bude tvrdit:
jedno tiknutie hodin vo vlaku trva podla mna Cas T;,. Podla obrazku foton z pohfadu
stanice vykona drahu 2v/L2 + (v1};/2)% = cT} a odtial Gpravou dostaneme

2L V2

T = =T 1——2<Tb
C C

Animacia: http://galileoandeinstein.physics.virginia.edu/more stuff/flashlets/lightclock.swf



http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/lightclock.swf

Dilatacia casu

. 2
Co sme to dostali? T = %=Tb\/1—v—2 <Ty
C C

Trpaslici na stanici povedia: ,Hodiny vo vlaku tikaju pomalsie, ako by tgké hodiny
tikali u nas na stanici.“ Alebo pouziju eSte menej opatrnu formulaciu: ,,Cas vo
vlaku plynie pomalSie ako u nas na stanici.”

Hovori sa tomu dilatacia casu.

Ked taketo vety poCuje nepouceny posluchac, pomyli ho to a hned vymysili
kontrapriklad: Ved z pohladu vlakovych trpaslikov je to tak, ze stanica s pohybuje
a vlak stoji, preto my by sme mali dospiet k opaCnému zaveru, ze Cas na stanici
plynie pomalSie ako u nas vo vlaku. No a oboje nemb6ze byt pravda, z Coho
vyplyva Ze dilatacia Casu neexistuje.

Argumentacia naznacuje, ze situacia vlak versus stanica musi byt symetricka.
Ale nie je to pravda. My sme porovnavali jedny hodiny vo vlaku s dvoma hodinami
na stanici. Tiknutie vlakovych hodin malo svoj zaciatok a koniec na jednom
mieste vo vlaku ale na dvoch ré6znych miestach na stanici. Vlakova sustava je
vyznacna pre hodiny stojace na jednom mieste vo vliaku. Symetria vlak
versus stanica sa nekona.



Dilatacia casu
Iny argument hovori: toto ste skumali nejaké divné svetelné hodiny. Normalne
hodiny by sa tak nespravali.

Ale spravali. Keby si trpaslik zobral spolu so svetelnymi hodinami aj ,normalne
hodiny® a tie by sa nespravali rovnako ako tie svetelné, potom by trpaslik pozoroval
Ze sa postupne viac a viac rozchadzaju. A z toho by usudil, zZe jeho sustava sa
pohybuje. A to je spor s postulatom relativity. Takze aj biologické hodiny budu ,tikat
rovhako ako svetelné®. Trpaslik sa musi holit rovnako Casto vo vlaku ako na
stanici, inak by poznal, Ze sa pohybuje

* Princip relativity: Nijakym experimentom nemozno rozhodnut, ktora z dvoch
navzajom sa pohybujucich inercialnych sustav sa hybe a ktora stoji.

Dal$i argument je paradox dvojéiat. Jedno dvoj¢a ostane na stanici, druhé
nasadne do vlaku, odcestuje a potom sa vrati a podla Einsteina by malo byt
mladsie ako jeho dvojca, Co ostalo na stanici. A to uz porovnavam ,jedny hodiny s
jednymi hodinami®. Situacia je symetricka, dilatacia Casu neméze byt pravda.

Ale je. Dvojca vo vilaku vie, ze to ono bolo na ceste a nie dvojCa na stanici, ktoré
,Sa vratilo aj so stanicou”. Vratit sa neda, ak vlak kona len rovnomerny priamociary
pohyb. Musi zabrzdit a urychlit v opachom smere. PoCas brzdenia hodi pasazierov
o stenu, takze oni vedia, ze sa brzdilo. Zrychleny pohyb sa rozpoznat’ da. To nie
je v spore s principom relativity



Kontrakcia dizok

Ako sa meria diZka stojacej tyce je jasné. Napriklad postupne prikladam metrovu
tyC. Mam na to dost Casu, lebo tyC stoji. Ina moznost je poziadat trpaslikov, ktori
stoja pri zaCiatku a konci tyCe aby mi poslali svoje suradnice. Suradnice odC€itam a
mam diZku tyce.

Ako sa meria diZka letiacej tyce, to si treba poriadne premysliet. K letiacej ty¢i
neviem dobre prikladat metrovu tyc.

Jedna moznost je takato. Dam inStrukcie svojim (stojacim) trpaslikom. Trpaslik,
ktory uvidi presne o dvanastej letiet okolo seba zaciatok tyCe zdvihne pravu ruku.
Trpaslik, ktory vidi okolo seba presne o dvanastej letiet’ koniec tyCe zdvihne lavu
ruku. Ostatni nerobia ni¢. Trpaslici so zdvihnutymi rukami su moje nepohybujuce
sa znacky zaciatku a konca ty¢e, odmeriam ich vzdialenost' ako keby to bola
stojaca ty¢ a definujem, Ze to je dizka letiacej tyce. Klucova poziadavka je, Ze ide
o sucasnu polohu zaciatku a konca tycCe. Ale suCasnost nie je absolutna, takze
nemusim sa divit, ak meranim zistim inG diZzku, ako by som zistil, keby ta ty& stéla.



Kontrakcia dizok

ldeme vypoditat dizku letiacej tyée. Na zadiatku aj konci ty&e sedia vo vlaku dvaja
trpaslici Na obrazkoch su oznacCené Casy, ktoré vidia jednotlivi trpaslici v
okamihoch naznacCenych na obrazkoch

!
tZK

Tento trpaslik v tomto okamihu este nevie, Ze to bude on, kto
v Case t;, uvidi letiet koniec tyCe. Ale spomenie si, Ze jeho
hodiny ukazovali ty,, ked videl okolo seba letiet' zaCiatok




Kontrakcia dizok

tZK Tento trpaslik v tomto okamihu este nevie, Ze to bude on, kto

v Case t,, uvidi letiet koniec tyCe. Ale spomenie si, Ze jeho lO je d i2 ka StOjacej tyée a ko j u
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hodiny ukazovali t, ked videl okolo seba letiet zagiatok ., , ..
nameraju vlakovi trpaslici
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nameraju stanicni trpaslici
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tKZ

[ = v(t12 — tKZ) staniCni trpaslici nameraju modrému vlakovému rychlost’ 4

R, v dvaja vlakovi trpaslici zistia, Ze jednému
t]_Q_tKZ—(tK_tZK) 1__2 v , rv 7 . .7 .

c¢2 cervenému staniCnemu tikaju hodiny
pomalSie (dilatacia ¢asu na stanici z

pohladu vlaku)

v? Stanicni trpaslici nameraju, zZe tyc je kratsia:
c? kontrakcia dizok




Dlhé auto v kratkej garazi

Ako to vyzera z pohladu garazmajstra

Ako to vyzera z pohladu Soféra




Zakladné postulaty Specialnej tedrie relativity

Vysvetlite pojem relativnost sucasnosti

Sformulujte presne, ¢o hovori poucka o dilatacii Casu
Ako je definovana diZka letiacej tyce

Sformulujte presne, ¢o hovori poucka o kontrakcii dizok



Udalosti vo vlaku a na stanici: prekladovy slovnik

Udalost videna zo stanice: x, t
Udalost vidend z vlaku: x', t’

Koordinacia stradnic a ¢asov je takdto (z=0,t=0) <= (2’ =0,t' =0)

!/ /
Prekladovy slovnik r =ax + bt

t = At' + Bz’

Sledujem zo stanice bod x' = 0: z =t
Ked bod x" = 0 je totozny s bodom x, ¢o vtedy ukazuju jeho hodiny t’ =?
Dilatacia Casu 02

xr = ax + bt

“U2 v t:At,—I—BCIZ‘I
vt=a.0+bt\/1— — = |b= —= 2
c | _ v t=At/1- =+ B0 = |A= ——




Udalosti vo vlaku a na stanici: prekladovy slovnik

r=ax +

1
N

t' + Bx'

| Sledujem z vlaku bod x = 0 stanice:

— —vt’l

Dilatacia ¢asu

0= —avt’ +
x + ot
€Tr =
2
-

tl
fUQ
62
Sedem vt = e
Dl
2
v 1
t'l— = = ——
c? [{_ 2
C2
v
B=-—=2
2
-
T+
— —
2
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Udalosti vo vlaku a na stanici: prekladovy slovnik
Lorentzove transformacie

x + ot t'+ S
xr = =

_v? v2
1 o — %

_ _
o xr — vt o t— =

2

_ v v2
1 c? — =z
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Relativna rychlost
' + vt U+

- = ———
2
-4 Ji-%

Z vlaku sledujem ¢asticu, hybe sa rychlostou w'. Akt rychlost w uvidim zo
stanice?

= w't w't + vt

€Tr =
Ji-s

B t' 4+ Sw't’

v2

c2

w' 4+ v

_1—|—'”(;‘§’

u =

~+ | 8

Skladanie rychlosti podla Einsteina, Galileo by mal iba w = w’ + v
Pre w' = ¢ dostanem w = c. Rychlost svetla je v oboch sustavach rovnaka.



Namietka proti Einsteinovi: konstantna sila > konstantné zrychlenie - prekrocim ¢

Ako vyzera Newtonova pohybova rovnica v teorii relativity?

NapiSem ju Standardne vo vlaku, z ktorého vidim casticu hybat sa velmi pomaly,
idealne tak ze vdanom okamihu castica stoji.

RieSim teda ulohu ako bude zo stanice vyzerat pohybova rovnica pre pohyb castice,
v(t)

pricom Castica tuto rychlost postupne ziskava posobenim konstantnej sily.

Castica kona nerovnomerny pohyb, ale m6Zem nasadnut do inercidlneho vlaku,

ktory sa v Case t, hybe prave rychlostou v(¢).V tom vlaku bude ¢astica stat a jej
rychlost sa zmeni za ¢as dt’ o malu hodnotu

1
dv' = — fat’
m !
Zatial na stanici uplynie doba At — dt
1 w2
Po uplynuti tejto doby bude mat castica voci stanici rychlost
v(t) + dv’

14 o)

v(t+dt) =



/ / 2
v(t + dt) = f(j) ;f:i) ~ (v(t) 4+ dv') (1 — dvcz(t)) ~o(t) + dv' — dfu’”c(;)
do—av(1- 20y g 20y S g [y O
c? m 2 m 2 2
3
s (
dt  m ( c?
dv 1
=f
& [ en

% 1 — ’L?Qgt)

Tato rovnica pripomina rovnicu p
P _
dt /
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Toto je vzorec pre hybnost, ak prijmeme hypotézu, Zze hmotnost Castice zavisi na
rychlosti. Pre jednoznacnost potom ¢asto namiesto m piSeme my, aby sme
zvyraznili, Ze ide o pokojovd hmotnost
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Kineticka energia

mo
b _ po 0,
dt 1 — v

Vypocitame pracu, ktoru vykona sila urychlujuca Casticu z kludu.

Wk—/ fodt = / P odt = /Udp:/ vd—pdvz[fvp]g—/ pdv
o dv 0

2
2 2 C
0 1-% 1 -7 0
2 2 2
mocC v v
Wy, (5 +1-—=) moc?
vZ C C
=l
moc? ) Pre male rychlosti dostanem priblizne
Wi = ——— — ¢ 2 1
v 2 2
- = Wi ~ moc?(1 + =) — moc® ={=mov
c k oc”( 202) 0 510
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oo
1

mc

Ak Castica Zije nemenne veéne, od¢itanie konstanty myc? nema Ziaden fyzikalny
vyznam a mozeme kludne pouzivat vzorec

F=—nn=mc

_ w2
(22

Ak je Castica neznicitelna a netransformovatelna na inu Casticu alebo iny
fyzikalny objekt, potom je energia nemoze nijako klesnut pod minimalnu

kludovu) energiu
( ) energ By — moc®
a v takom pripade (ak zabudneme na vSeobecnu tedriu relativity) nemozno tuto

energiu nijako vyuzit ani zistit.



E = mc? pre fotén

Fotdn je fyzikalny pojem, ktory nie je lahko porozumitelny bez prislusného
technického aparatu kvantovej tedrie pola. S prijatelnou didaktickou licenciou sa
vsak da povedat, Ze fotdn je Castica, ktora sa da chapat ako ,nositel energie”
svetla, svetelného lUca. Celkova energia prenasana svetelnym [i¢om sa da chapat
ako sucet energii prenasanych jednotlivymi foténmi luca.

Fotony teoretickou analyzou fotoefektu ,,objavil” Einstein, ktory zistil, ze energia
svetelného luca — viny o frekvencii w sa v interakcii s nabojmi pohlcuje ,,po
kuskoch” rovnakej velkosti E = hw, a to tak, ze sa vzdy pohlti,,cely fotén“ ktory
nesie energiu

=]

To, ze svetelny |UC prenasa energiu, je zrejmé, vsetci Zijeme z energie, ktoru na
Zem prinasa slnecné svetlo.
Menej znamy fakt je, Ze sveteny |U¢, a teda aj kazdy foton, prenasa aj hybnost.



E = mc? pre foton: svetelny tlak overeny Lebedevom

Na lavom obrazku je Crookesov radiometer, zariadenie, ktoré neregistruje svetelny

tlak ale energiu svetelného luca, ktory zohrieva vrtulku v banke so zriedenym plynom.
Listy vrtulky maju jeden povrch Cierny a druhy biely, preto inak pohlcuju svetelnu
energiu a inak odovzdavaju energiu molekulam zriedeného plynu, ¢o vrtulky

elegantne roztoci. Uvddzame Crookesov pokus preto, lebo ¢asto sa myli s

Lebedevovym pokusom na meranie svetelného tlaku. Lebedevov poklus sa dost
podoba na Crookesov, ale je ovela premakanejsi, pretoze efekt svetelného tlaku je
ovela slabsi. Tiez pouziva vrtulky, ale vo vysokom vakuu, aby nebolo rusenie tepelnym
pohybom molekul. Pri dopade svetla fotony odovzdaju vrtulkdm hybnost, ¢o ich otodi.
Na pravom obrazku su originalne Lebedevove vrtulky 47



Svetlo (fotdn) je teda nositefom aj hybnosti, ¢o vyplyva dokonca uz z klasickej
(nekvantovej) tedrie elektromagnetického pola (z Maxwellovych rovnic).
Medzi energiou foténu a hybnostou foténu je jednoduchy vztah,

E=cp
kde c je rychlost svetla.
Svetelny tlak ma r6zne, dobre pozorovatelné dosledky. Tlak sinecného svetla
napriklad vytvara ,chvost kométy“, ktory smeruje ,,0d sInka“.
Kozmicka lod' vysielajuca svojou parabolou elektromagnetické viny na Zem
odovzddva Zemi hybnost a podla zdkona o zachovani hybnosti musi tym sama
ziskat hybnost v opacnom smere. Podobne ako chlapec na skateboarde, ked'
odhodi loptu, pohne sa v opacnom smere.




E = mc? pre fotén: Einsteinov vagén

Anténa vyziari fotdn, vagon ziska hybnost v opacnom smere a za¢ne sa pohybovat.
Ked protilahla anténa pohlti fotdn, vagon ziska hybnost v smere letu fotdnu,
presne opaénu ako predtym a teda sa zastavi. TaZisko celého systému ,vagon plus

foton“ sa nesmie pohnut, ale tazisko vagéna sa posunulo, preto prenosom fotdnu
muselo dbjst k prenosu hmotnosti.



E = mc? pre fotén: Einsteinov vagén

v )y

(@) (@)

X i

Q) @)

Vagén ma dizku L, hmotnost M. Fotén md hybnost p, leti dobu L/c.
Vagon ziska hybnost Mv =p I
TaZisko vagdna sa posunie o vzdialenost rE
Foton sa posunie o L ¢

Aby sa celkové tazisko neposunulo, musi mat foton hmotnost m tyaku aby
platilo

M L

3

ra
M

™T"m =

oI o
Q|

‘E mec2




Snimka z bublinovej komory
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Snimka z bublinovej komory, vytvorenie paru elektron pozitron
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Vzorce Lorentzovej transformacie

Relativisticky vzorec pre hybnost ¢astice

Einsteinov vzorec pre energiu Castice

Preco v tedrii relativity nemoze pre relativnu rychlost voci dvom
rozli¢nym suradnicovym sustavam platit Galileov vzorec w = w’ + v



Elektron pozitronova anihilacia
e"+e -2y

PET — Pozitronova emisna tomografia
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Priestorocas

Udalost (x, t)
Udalosti zodpoveda bod v abstraktnom x, t priestore, ktorému hovorime

priestorocas
Vizualizacia udalosti: ta ista udalost zaznamenana na stanici a vo vlaku

/
t t S T t— Sz
2 2
* (z,1) V& i7E
9
z' + vt t'+ 5 ®

na stanici vo vlaku



!/
t t s x—=ut o=
¢ 1- % 1-%
(:U,t) 2 o2
z' + vt/ t'+ L ®
= : t = £ - / /
l=Z /1_:-;_? ('T ?t )
xT JUI
vo vlaku

na stanici

Ta ista udalost ma iné ,suradnice” pre pozorovatela na stanici a vo vlaku.

Analdgia
Ten isty vektor ma iné ,,suradnice” pre pozorovatelov navzajom otocenych




!/
t t s x—=ut o=
¢ 1- % 1-%
(:U,t) 2 o2
z' + vt/ t'+ L ®
= : t = £ - / /
l=Z /1_:-;_? ('T ?t )
xT JUI
vo vlaku

na stanici

Ta ista udalost ma iné ,suradnice” pre pozorovatela na stanici a vo vlaku.

Ten isty vektor ma iné ,,suradnice” pre pozorovatelov navzajom otocenych

Analdgia
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xr — vt t—c—zm

z = t =
Hyperbolické funkcie
1 : 1
coshn = - (exp(n) + exp(—1)) sinh 7 = 5 (exp(n) — exp(=n))

cosh®n — sinh®*n = 1

Niekto si vSimol, Ze sa Lorentzova transformacia da napisat ako

x' = x coshn — ctsinhn ct' = —xsinhn + ctcoshn

kd
€ v sinhnp exp(n) — exp(—n) B exp(2n) — 1

¢ coshn exp(n) +exp(—n) exp(2n) + 1

v v
exp(2n)(1 — E) :1+E
1 147
n==In

i




’ —

x' = x coshn — ctsinhn ct' = —xsinhn + ctcoshn
cosh? 7 — sinh®n = 1
Désledok
(ct')? — 2% = 22 sinh? n — 2zct sinh 7y cosh n + (ct)? cosh?

— 22 cosh? n + 2zt coshnsinh n — (ct)? sinh? 7

= (ct)? — 2*

Invariantna kombinacia zo suradnic udalosti

(ct’)2 - 3312 — (Ct)Q - $2

pripomina Pytagorovu vetu ale s divnym znamienkom



Energia a hybnost

/ 452 nn . , : w +v
Rychlost Castice videna z vlaku (w'")a zo stanice ( w): W=
c2
, . , , mow’ , moc?
Hybnost a energia videna z vlaku p = E' =
/1 - w;2 1 . wf22
C C

, . . ) . mow

Hybnost a energia videna zo stanice p= ——— = —/—
2 2

Vi-% 1-%

Pracne mozno overit, Ze plati invariantny vztah

a Lorentzova transformacia pre energiu a hybnost

E FE E
— = —coshn —psinhnp  p' = ——=sinhn + pcoshn
c c c




Zaverecné poznamky

Nas svet je priestorovo trojrozmerny, tu sme si vSimali ,,len jedny kolajnice a
na nich vlaky®. Vlaky jazdia v principe vo vsetkych smeroch, takze Lorentzove
transformacie su vSeobecnejsie.

Pri porovnavani s vlakom, ktory ide v smere osi x sa suradnice y, z
netransformuju, teda Lorentzove transformacie vo stvorrozmernom
priestorocase maju vtedy tvar

x,:L'Ut t’:ﬁ_—c_zm y’:y 2= 5

_ 22 v2
c? =

V stvorrozmernom priestorocase plati ,,podivna Pytagorova veta“ so
zapornymi znamienkami, takze pri takej transformacii sa zachovava
,pseudovelkost Stvorvektora“

(Ct)2 . :12‘2 - y2 . 22 _ (Ct/)Q - 56’2 - y/2 . y/2
Pre Stvorvektor energie — hybnosti

E2 —2 2

— — P~ = (moc)

C

Vzorec pre relativnu rychlost, ak tato nema smer osi x je komplikovanejsi

(vyhladajte si napriklad vo Wikipédii)



Fyzika na prelome 19. a 20. storocia

objavuje sa mikrosvet na urovni nm

molekuly a atomy ako herci v termodynamike a statistickej fyzike sa
objavili okolo 1860 a definitivne sa tam usadili po Einsteinovej praci
o Brownovom pohybe 1905

1897 objaveny elekrén J.J.Thomson

1912 Rutherford objavil atdmové jadro, co viedlo na planetarny
model atdmu

1842 A.Comte: nikdy nebudeme vediet chemické zloZenie planét a
hviezd

okolo 1860 Kirchhoff zakony o spektrach plynov a hviezdy boli
skumatelné: 1868 P.Janssen objavil hélium na Slnku, ktoré az v roku
1895 bolo potvrdené na Zemi.



Zahadna diskrétnost mikrosveta

Zahadna rovnakost atdmov

Planetarny model atdmov: elektrony obiehaju okolo jadra ako planéty
okolo Sinka

Lenze nik si nemysli, Ze keby sa naslo niekde vo vesmire hviezda podobna
Sinku a pri nej planéta podobna Zemi, tak by vzdialenost tej planéty od
hviezdy mala byt presne rovnaka ako v nasej sustave vzdialenost Zeme od
Slnka.

Ale v atdbmovom svete je to tak! Atdm vodika vyrobeny vo Viedni
napriklad elektrolyzou vody je presne rovnaky ako atom vodika vyrobeny
v Bratislave uplne inou technoldgiou, napriklad reakciou zinku a kyseliny
sirovej. Je nanajvys podivné, ze elektrony vo vodiku obiehaju okolo jadra
,presne v tej istej vzdialenosti®. Tak to vyzeralo vyjadrené v reci
Newtonovej mechaniky.



V spojitom svete Castic, ktoré sa riadia zakonmi Newtonovej mechaniky,
mozno len o malicko zmenit pociatocné podmienky a rovnice ,,si najdu”
prislusné riesenie, ktoré bude tiez fungovat.

Keby prisiel velky asteroid a narazil do Zeme, tak to bude mat
katastrofalne nasledky pre zZivot na Zemi, ale z vesmirneho hladiska
len Zem zacne obiehat okolo Sinka po trochu inej elipse.

Bombardovanie velkymi telesami vo svete planét je nastastie zriedkavé,
ale v mikrosvete velmi Casté, kvoli tepelnému pohybu molekul a
atomov.

Takze je naozaj extrémne cudné ze vSetky atdmy toho istého prvku su
presne rovnakeé.



Tepelny pohyb atomov

Okolo roku 1860 Maxwell a Boltzmann prisli s myslienkou, ze vlastnosti
plynov ako tlak a teplota sa daju vysvetlit predpokladom o chaotickom
tepelnom pohybe molekul. Tak tlak vznika v désledku staleho narazania
molekul plynu na steny nadoby, mechanizmom podobnym ako v akénom
filme: ked' projektily zasiahnu zloCinca, tak toho zlocCinca az tak odhodi
dozadu pod vplyvom tych narazov.

O pohybe molekul sa predpoklada, ze je chaoticky, podlieha
pravdepodobnostnym zakonom. Takze ked',, ulovim nejaku molekulu
neviem deterministicky urcit aku rychlost jej nameriam. Rychlost molekul
sa sprava ako nahodny vektor (resp. tri nahodné priemety rychlosti).
KedZe ide o spojité nahodné velic¢iny, musime pravdepodobnost popisovat
pomocou hustoty pravdepodobnosti. Explicitny tvar objavil Maxwell:



Maxwellovo rozdelenie rychlosti

m\3/2 m(v2 + v2 + v?)
p(%’”y’”Z):(zwkT) s V7

To umoznuje vypocitat strednu kinetickd energiu molekul a dostane sa

Hodnoty Exin : priizbovejteplote typicky 0.02 eV, pri 12000K: 1 eV
Na rozbitie (ionizaciu) atdomu vodika treba 13.6 eV. Za normalnych
podmienok je teda len zanedbatelné percento atomov vodika
ionizovanych.

Ale bombardovanie molekulami s energiou 0.02 eV by sa malo prejavit
zmenami trajektorie elektronu okolo jadra a teda nie vSetky vodiky by
mali byt rovnaké



Zaver:

Vyzera to tak, ako keby elektron obiehajuci okolo jadra
nemohol zmenit svoju energiu ,, len o trosku”.



Zahadna diskrétnost mikrosveta

Diskrétne spektra atomov

Spektralny rozklad svetla (Newton)

Newton's experiment for splitting white light into a spectrum

Spektrum svetla vydavané rozpalenym tuhym telesom

73



Spektrum atomu vodika

Elektricka vybojka plnena vodikom
Nieco ako horské sInko, ktoré moze byt
plnené ortutovymi parami.

Hydrogen lamp set

Hycrogen emission spsclrum
in Ihe visible egion

r
{ .1
=

434 nm

£
.



....planets..... we can never known anything of their chemical or mineralogical
structure

Auguste Comte, The Positive Philosophy, Book Il, Chapter 1 (1842)

G.R.Kirchhoff okolo 1860
spektralna analyza chemického zlozenia

1868 P.Janssen objavil na Sinku spektrum
na Zemi neznameho plynu (hélium), ktory
bol na Zemi potvrdeny az po 30 rokoch

spektrum hélia




Zahadna diskrétnost mikrosveta

Diskrétne spektra atomov

Hycrogen emission spsclrum
in Ihe visiblereqgion

{
¢ r

434 nm

- . 0]

Ak atdom vyZiari svetlo, musi zmenit svoj stav, lebo vyziaril nejaku energiu,
teda jeho energia po vyZiareni musi byt ind ako pred vyziarenim.

Ale preco je frekvencia diskrétna. Co to hovori o stavoch atémov.
Odpoved: Einstein v teorii fotoefektu.




Einstein a fotoefekt

(A)  Ultraviolet rays (B) Uttraviolet rays
r

BN
(3

Light
rays Electron

00 0| e |
@ ) W ‘
@ @ @ @ @ Elcelcrlrgit No current

Fotoefekt: dopadom svetla na kov mozno z neho vyrazit elektrony do
okolitého priestoru (vakua). Ak je na blizku kladna elektréda, ta elektrény
pritiahne, teda vakuom prechadza prud. Pri opacnej polarite elektrod prud
neprechadza. Ale ak je , protinapatie” malé, nejaké elektrony prejdu, z
¢oho sa da usudit, Ze boli nielen vytrhnuté z kovu ale dostali este aj nejaku
rychlost (kinetickl energiu) takze treba vykonat nejaku pracu, aby
nedoleteli. M6Zzem odmerat kol'ko ,,zdpornych voltov” je treba aby
nedoleteli a tym odmeriam energiu, s ktorou boli vystrelené.



Zavery na zaklade experimentov:

e sUtam nejaké elementarne procesy

* energia odovzdana elektronu v jednom
elementarnom procese zavisi len na
frekvencii svetla, nie na jeho intenzite

* vacSia intenzita sa prejavi len zvysenim
pocCtu elementarnych procesov

Ma K

Na fic f

energia je umerna frekvencii



Einstein:

* elementarny proces je pohltenie svetelného kvanta elektronom
e energia svetelného kvanta je umerna frekvencii svetla

E =hw
Values of h Units
1.054 571 726(4T) =107 J-s
6.58211928(15) = 107"% | &V-s

Aby elektrén vobec vyletel (s nulovou kinetickou energiou) musi platit

E=hw>W

kde W je tzv. vystupna praca potrebna pre vytrhnutie elektronu z
daného kovu. Pre Na je to 2.36 eV, pre Cu okolo 5 eV.

Pre Na treba 525 nm (viditelné) pre Cu 250 nm (ultrafialové)



Prenos energie svetla sa deje po kvantach — fotony.
Energiu jedného fotonu urcuje frekvencia svetla

F = hw

IntenzivnejsSie svetlo rovnakej frekvencie: prud vacsieho poctu fotonoy,
kazdy foton ma rovnaku energiu ako pri nizsej intenzite.

Foton mozno ,vidiet”, ako
vyrobi par elektrén
pozitron v bublinovej
komore

foton -> elektron+pozitron




Svetlo prenasa nielen energiu ale aj hybnost.

smeroveé vysielanie signalu spésobuje
reakény pohyb satelitu v opacnom
smere, podobne ako ked na
skateboarde striekam vodovodnou
hadicou dopredu, zacnem sa hybat
dozadu

Drahu vysielajuceho satelitu treba z
¢asu na cas korigovat malymi
raketovymi motormi

Zaver: foton ma nielen energiu ale aj hybnost

2
E=hw p=Hh==hk=Hh=

A
Vlnavsmere osix:  E,(t,z) = Eyexp(—iwt + tkx)



Zahadna diskrétnost mikrosveta

Diskrétne spektra atomov

Hycrogen emission speclrum

in the wvisiblersgion

{
¢ r

434 nm

Ak atdom vyziari svetlo, musi zmenit svoj stav, lebo vyZiaril fotén, teda
nejaku energiu, teda jeho energia po vyziareni musi byt ina ako pred
vyziarenim.
Vidno ale Ze atém vie vyzarovat len celkom urcité diskrétne frekvencie,
teda fotony len celkom urcitych diskrétnych energii.
Teda rozdiely energii atomovych stavov su len celkom urcité diskrétne
cisla.

Energie atdmovych stavov su teda len celkom urcité diskrétne Cisla



Diskrétne spektra = diskrétne energie

Hy Crogen @mISsion spectum

in the visitsler egion

3 Transition of . | 3—2 |42 |52 62
. 1 Name H-a | Hf | Hy | H-B
Empiricky vzorec: ——
Wavelength (nm) =~ |656.3|486.1 434 1 410 2
l — R 1 _ 1 Color Red | Cyan| Blue [ Violet |
A m2  n?
v ’ . ’ ’ 13.6
Mozné energie atomu vodika: E, =——F¢€V
T
V spojitom svete sa objavuju diskrétne hodnoty velicCin 111!

Diskrétne hodnoty sa daju vyjadrit pomocou celych Eisel
(hovori sa im kvantové cisla)



Ako je to mozné, ze celé Cisla, ktoré fudstvo povodne vymyslelo na
pocitanie dobytka hraju ulohu vo "fyzikalnom zverinci"?

Prvy, kto sa tak prekvapil bol Pytagoras.




Tony strun stizvudia, ked' ich dizky
su v pomere malych celych Cisel
2:1 oktava

3:2 Cista kvinta

Dnes rozumieme, ako sa objavuju celé
cisla v porozumeni zvuku struny:

Vlastnosti rieSeni vinovej rovnice



Vinova rovnica: okrajové podmienky

V rovnici pre zvukove viny v jednorozmernej ty¢i sme mali okrajové
podmienky takéto:
O*u(t,z)  50%u(t,x)

c , s okrajovou podmienkou u(t,0) = u(t,L) =0

o2 Ox?

Pre koaxialny kabel ukon¢eny odporom sme mali okrajovu
podmienku takuto:
9%I(t,z) 1 92I(t,x) s okrajovou Clor_ or
o2 LC 0x? podmienkou Cox Ot

Parcidlna diferencialna rovnica teda potrebuje zadat okrajové podmienky,
az tie vyberu z moznych rieseni to fyzikalne spravne k danému problému.

Okrajové podmienky moézu byt velmi rézne od pripadu k pripadu, treba
ich urcit na zaklade dokladnej fyzikalnej analyzy toho, ¢o sa deje na
okrajoch systému, ktory skimame.




Vinova rovnica: analytické riesenie
O*u(t,z)  50%u(t,x)

952 ¢ gz 8 okrajovou podmienkou wu(t,0) = u(t,L) =0
Genialny Fourierov ndpad: hladajme riedenie v tvare
u(t, z) = Z:l en(t) sin(—2)

Tym sa obmedzime len na funkcie, ktoré
automaticky spinaju okrajové podmienky

Po dosadem’ do vlnovej rovnice dostaneme

_ = m2n2c? ™
Z ) sin( ) = — Z 73 Cn (¢ )sm(fa:)
n=1 n=1

Z jednoznacnosti Fourierovho rozkladu dostaneme rovnice

En(t) = —wicp(t), kde w, = %

Su to rovnice nezavislych harmonickych oscilatorov



En(t) = —w2cp(t), kde w, = e

vseobecné riesenie pre jeden oscilator (teda konkrétne n)

ma tvar
cn(t) = ay, cos(wnt) + by, sin(w,t)

teda vSeobecné riesenie vinovej rovnice na intervale (0, L) je

Z Ay, coS(wnt) + by sm(wnt))sin(%x), kde w, = e
n=1



n[a):= Animate [Flot [Sin[omegat] Sin[kx], {x, 0, L}, PlotRange — {-1., 1.1}],
{t, 0, 10}]

out[a]=
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Video ukazuje, ze kazdy rez tyCe kmita ako oscilator, stale rovnakou
frekvenciou a amplitudou. Niektoré rezy tyce nekmitaju vobec, to su
takzvané uzly. RieSenie

u(t, z) = ay, cos(wyt) sin(k,x)

popisuje tzv. staciondarne kmity tycCe (stojatu vinu). Slovom stojaty
mame na mysli to, Ze po tyCi sa nepremiestnuje energia ani amplituda
oscilacii. VSimnime si, Ze stojata vina je monofrekvencna, vsetky body
kmitaju jednou a tou istou frekvenciou



M)
—————

Ot [3]=
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Fourierovskou metodou sme hladali rieSenia uz hned vo velmi
Specialnom tvare, lebo nulové okrajové podmienky nam to napovedali.

o0
u(t, x) = Z () Sin(%x)
n=1
Skusili sme to hladat aj v menej Specidlnom tvare, ale takom, aby sme
mali Sancu, ze vlastne najdeme novy pseudofourierovsky rozklad.
Fourier bol zalozeny na konkrétnych sinusovkach, ale naozaj esencialne
boli len nejaké ich vlastnosti. Skisme vymenovat nejaké vlastnosti,
ktoré by sa nam na Specialnych rieseniach pacili:
e casova a priestorova zavislost su separované ako sucin dvoch
funkcii, jednej len casovo zavislej, druhej len priestorovo zavislej
* splnené su okrajové podmienky
e priestorové funkcie su ortogonalne
e priestorové funkcie tvoria uplny systém, t.j. ze hocijaka priestorova
funkcia s pozadovanymi vlastnostami sa da napisat ako ich
superpozicia
e casovo zavislé casti tych specialnych funkcii s monofrekvencné



Zopakujme si, €o sme uz robili:
O%u(t, ) 5 0%u(t, x)

=c , s okrajovou podmienkou u(t,0) = u(t,L) =10
542 53 j p (t,0) = u(t, L)
Zacnime prvou z tych vlastnosti, separaciou ¢asovej a priestorovej

zavislosti. Hfadajme riesenie v tvare(nedbame na okrajové podmienky):

u(t, ) = f(t)w(z)
Dosadime do vinovej rovnice:
82

w(-’ﬁ)? (1) = sz(t)a—xagw(ﬂj)
1 92 , 1 82
f(t) ot2 () =c w(x) 8:1;2w(x)

'ava strana zdvisi len od ¢asu, prava len od suradnice, ale musia byt
rovnaké pre kazdu hodnotu ¢asu a kazdu hodnotu suradnice. To je mozné
len tak, ze obe strany su rovné jednej a tej istej neznamej konstante,
nazvime ju X. Dostali sme dve rovnice. Ked sme zacali navyse Ziadat, aby
boli splnené okrajové podmienky, ukazalo sa, ze vhodné riesenia existuju
len pre nejaké specidlne diskrétne hodnoty konstanty X.



Pri rieSeni vinovej rovnice (alebo inych podobnych parcialnych
diferencialnych rovnic) sa teda objavuju Specidlne stacionarne
diskrétne riesenia.

Uloha na hl'adanie istych $pecidlnych (pre fyziku stacionarnych)
rieSeni bola v matematike asi jedina znama uloha zo spojitej
matematiky, ktora viedla na diskrétne riesenia.

Lenze to bolo o vinach a mikrosvet je vystavany z Castic!

Pri svetle, o ktorom sa dokazalo, ze je to vinenie, sa ale prekvapivo
objavili "Casticové vlastnosti".

Myslienka (de'Broglie): co ak castice maju naopak vinové vlastnosti
a namiesto Newtonovymi rovnicami sa maju popisovat ako vinenie?
Skusme prekladovy slovnik, platny pre fotény

27

E = hw pzhkzh)\



Ale Citajme ten slovnik naopak, nie takto
27

E=h = hk = h—
w P )

ale takto:

teda skisme casticu, ktord ma energiu E a hybnost p povazovat za
vinu s frekvenciou w a vinovym cislom k.

E.Schrodinger zobral tento napad doslova a skusil zostavit
pohybovu rovnicu pre Castice ako rovnicu pre vinenie.

Prvé, Co asi skusil, bola obycajna vinova rovnica, ktora by mohla
popisovat volnu ¢asticu, na ktoru ni¢ neposobi



O%u(t, ) _ 2 O%u(t, x)

Ot? Ox?

Ak hladdme riesSenie, ktoré by malo zodpovedat castici s energiou E,
potom by to rieSenie malo mat urcitu frekvenciu, teda malo by to byt
monofrekvencné rieSenie. Predstavme si, ze hfadame rieSenia,
zodpovedajuce volnym cCasticiam uzavretym v "krabici", nieCo ako
idealny plyn. Ocakavame ze prislusna de'Broglieho vina bude nulova
mimo krabice a teda aj na stenach. Také monofrekvencné riesenia
vinovej rovnice pozname, su to Fourierove sinusovky tvaru

mn Tne

(an, cos(wpt) + by, sin(wyt)) sin(fa:), kde w,, = —

mnc
Dostali sme diskrétne hodnoty energii  £n = hw, = N

™n
Su&asne aj diskrétne hodnoty hybnosti  Pn = ik, = T



mTne ™
— = - n = hk,
FE, = hw,, p 7

Lenze odtial dostdvame nejaky divny suvis medzi energiou a hybnostou

En = CPDn

Asi ale nechceme "zrusit celého Newtona". Chceme si dovolit
modifikovat Newtona pre mikrosvet (pre castice s malymi hmotnostami
a malymi energiami, radove eV) ale pre velké energie by mal ostat platny
(aspon ako priblizenie) stary dobry Newton.

Takze pacilo by sa nam, aby pre velké energie (teda velké n) platilo Cosi
ako

1
E,=—up;
omn

ale obycajna vinova rovnica dava pre malé aj velké n stale rovnako

En = C Dn



Preco dostdvame taky vztah?
Lebo ked hladame rieSenie vinovej rovnice

O%u(t, ) _ 2 O%u(t, x)

Ot? Ox?

vV separovanom tvare

u(t, ) = f(t)w(x)
dostaneme dve rovnice
1 07 o, 19
f(t) ot2 () =c w(x) 8$2w($)

V obidvoch rovniciach su druhé derivacie, takze dostaneme
,oscilatorové riesenia” typu  u(t,x) = sin(wt) sin(kx) a druhé
derivécie z toho vyrobia w” =’k resp E2 = c2p?

=X

teda kvadrat v energii aj hybnosti. Kvadrat pochadza z toho ze je
tam druha derivacia.



1
E=—p?

My potrebujeme om

teda linearne v energii, kvadraticky v hybnosti. Napad na zmenu je
jednoduchy, skusit rovnicu , kde bude prva derivacia podla ¢asu a druhd
derivacia podla suradnic. Naivny napad skusit rovnicu

ou(t,z)  O*u(t,z)

«

ot Ox?
ale nebude fungovat. Separované rieSenia typu u(t,z) = f(t)w(z) daju
1 0 1 02

maf(t) - aw(:r:) 8$2w(zc) =4

Lenze rovnica o
Ef(t) — Xf(t)

nema ako riesenie sinusovky ale realne exponencialy a rieSenia typu
f(t) = exp(X f(2))

su neakceptovatelné tak pre zaporné X (riesenie ,vymrie®), ako aj pre
kladné X (rieSenie exponencialne ,vybuchne®).



Chceme teda zdanlivo nemozné, rovnicu s prvou derivaciou, ktorej
riesenie je kmitanie, teda ,imaginarna exponenciala“

Napad: ilo by to, ale v rovnici by museli byt komplexné é&isla. Co tak

skusit rovnicu
A(‘?u(t z)  O0%ult,x)

“ ot 0x2
to povedie na 9 _
() = X f(2)
S riesenim f(t) = exp(—iXt)

Takze nakoniec dostaneme vinu typu
u(t, z) = exp(—iwt) sin(kz)

a vztah 1
w=—ak® resp. FE = —aﬁpQ
Sikovne este definujeme )

o= ——
2m



a dostaneme (pouzijuc obvyklé oznacenie % namiesto u)

- 0U(t,x) B 9%yt )
ot  2m  Ox2

Toto je Schrodingerova rovnica (v jednorozmernom svete), zakladna
rovnica kvantovej mechaniky. Prave sme boli svedkami jej zrodu.

Zaver: s Casticou nejako suvisi komplexna vina, ktora spifia Schrédingerovu
rovnicu.

Pozoruhodné: ako keby sme tvrdili, ze priroda vie, ¢o su to komplexné
cCisla a pouziva ich.

My sme uz pouzivali komplexné Cisla, ale bol to len taky matematicky trik,
aby sme nemali starosti s goniometrickymi vztahmi. Pisali sme komplexné
exponencialy ale chapali sme to tak, ze fyzikalny vyznam maju len ich
realne Casti.

Toto je iné: de’Broglieho vina je naozaj komplexna.



L OU(tT) BT 0%(t, )
‘ ot  2m  0z2

Co hovori Schrédingerova rovnica o volnych &asticiach (idedlnom plyne) v
nadobe (kontajneri) v jednorozmernom svete? V jednorozmernom svete je

kontajnerom usecka (0,L). Monofrekvencné rieSenia pozname, su to
Fourierove sinusovky

U(t, z) = exp(—iwnt) sin(%:c)
T2h* 9

FE, = hw,, =
w 2mL2n

V trojrozmernom svete bude mat Schrédingerova rovnica pre volnu
Casticu tvar

., OY(t,x,y,2) n? (0%Y(tx,y,2) | Oty z) | O%(t @y, 2)
i ot " om u u

- Ox? Oy? 0z2




Hodnoty energii zodpovedajucich stacionarnym stavom volnej Castice v
nadobe tvaru kocky o hrane L budu
D
m“h

T (i + j4° + k?) (1)

Eijr = hwijr =

Znamena to toto: ak mam nadobu plnu Castic, vyberiem si jednu z nich
a odmeriam jej energiu (podobne ako policajti radarom odmeraju
rychlost auta na dialnici, ktoré si vybrali), potom meranim ziskana
hodnota energie bude rovna niektorej z hodnot (1), teda ze existuju
celé Cislai,j,k také, Ze namerana hodnota bude rovnd Eijx

Spravnost formuly pre mozné hodnoty energii ¢astic (takmer)
idedIneho plynu sa dd experimentalne overit. Zavisia na nej niektoré
jemné predpovede tedrie o predpokladanych vlastnostiach plynov a
vychadza to spravne.



Schrodinger teda napisal rovnicu pre volnu Casticu

W) _ K (8%(1&,?) | () +82w(t,f?))

A.h _
o om \ 02 2 922

Otazka znela, ako napisat rovnicu pre nieco zaujimavejsSie, napriklad
pre elektron ,,obiehajuci okolo jadra“ v atdome vodika

Uhadnutie spravnej rovnice bolo genialne: Rovnica pre volnu casticu

je symbolickym zapisanim vztahu
1 2

E = %p
Derivacia podla €asu totiz z viny ,vytiahne” energiu a druhé derivacie
podla suradnic kvadraty komponent hybnosti. Pre elektron v poli
jadra pribudne klasicky do vztahu pre energiu este potencialna
energia elektronu v Coulombovom elektrickom poli jadra, klasicky
vztah je
1 1 e?

2mp B deg r



Schrodinger teda odvazne napisal rovnicu

2 OY(tT) (6%(127?7 L Pu(,n) 62w(t,F)) 1 &

o 2m Ox? Oy? i 022  4reg 7w(t’ ")

A stal sa zazrak: ak hfadame riesenie tej rovnice v tvare
N
U(t,7) = exp(—i=1)2(7)
a pozadujeme okrajové podmienky tak, Zze chceme aby funkcia @(7)
dostatocne rychlo v nekonecne klesala k nule, zistime, ze také riesenie
neexistuje pre [ubovolné Cislo E. Existuje len pre nejaké vybrané diskrétne

hodnoty, konkrétne pre hodnoty

13.6
E,=——reV
n

To bol gol !




Ostava otazka:

Ta vinova funkcia v prirode naozaj niekde je? Vo filozofickom zmysle
,existencie”.

Odpoved: zda sa, ze nie. Je to zrejme len pomocny matematicky pojem.
Castice sa nestali po objave kvantovej mechaniky vinami.

Nazov Castica ostava primerany, vina len sluzi na predpoved buducnosti
v hasledovnom zmysle.

Vinova funkcia ¥ (t,7) sldzi na vypocet hustoty pravdepodobnosti, kde
v priestore o¢akdvam ndjst Casticu v Case t.

Presnejsie takto: poloha Castice v Case t je predpovedatelna len
pravdepodobnostnym spb6sobom. Jej poloha 7 je nahodnou
veliCinou charakterizovanou v ¢ase t hustotou pravdepodobnosti
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Schrodingerova rovnica umoznuje predpovedat
mozné energie elektronov viazanych pri jadre
vodika.

Podobne vieme dnes vypocitat mozné energie
elektronov v zlozitych atdmoch a molekulach.

Ba vieme nieco povedat aj o moznych energiach
elektronov v tuhych latkach.

Povieme si nieco kvalitativne o vodicoch,
nevodicoch a polovodicoch



Typicky energeticke spektrum tuhej latky vyzera ako na
obrazku. Na osi energii su oblasti husto zaplnené
hodnotami "povolenych energii" striedavo s oblastami,
kde sa nevyskytuje ziadna "povolena energia".
Upozornime este, ze Ciara na obrazku zodpoveda
moznej hodnote energie, nie jednému moznému stavu.
V skutoCnosti Casto existuje vela rozlicnych stavov,
ktorym zodpoveda jedina energeticka hladina.

Hladiny su v skutocnosti extrémne husto vedla seba,
takze vznika dojem "energetického pasu".

Hovori sa o pasovom energetickom spektre a o
povolenych a zakazanych pasoch.

Druhym klt€ovym faktom pre pochopenie druhov
vodivosti je Pauliho princip. Podla neho méze byt v
urcitom stave nanajvys jeden elektron.



Vodic

Vedenia elektrického prudu sa v tuhej latke zucastnuju
len valencné elektrony, ktoré sa stavaju spoloCnymi
pre vSetky atomy mriezky. To, Co mame nakreslené su
hladiny tychto spolo¢nych valencnych elektronov.

Nech tych elektronov je N. Spocitame, kolko stavov
zodpoveda energetickym hladinam v spodnom pase.
Vo vodici je tych stavov spravidla 2N. Znamena to, ze
elektrony maju k dispozicii viac stavov ako je ich pocet.
Pri normalnych teplotach obsadia tie elektrony N
obrazku nakreslené modro). Ak sa na vzorku pripoji
napatie, elektronom o trosku zvysi energiu. Umoznené
je to tym, ze su k dispozicii stavy s len o trochu vyssimi
energiami ako maju tie obsadené. Elektrony, ktoré
preskocCia do stavov s mierne vyssimi energiami su tie,
ktoré sa zucastnia vedenia elektrického prudu.



Nevodic

Valencnych elektronov je N. Spocitame, kolko stavov
zodpoveda energetickym hladinam v spodnom pase.
Vo nevodici je tych stavov spravidla N. Znamena to, ze
elektrony maju k dispozicii prave tolko stavov z nizSimi
energiami, kolko ich je. Pri normalnych teplotach
hodnotami energii (tie su na obrazku nakreslené
modro). Lebo podla Pauliho principu nemo6zu dva
elektréony zdielat spolu jeden stav. Ak sa na vzorku
pripoji napatie, elektrénom "by chcelo" o trosku zvysit
energiu (aby mohli viest elektricky prud). Ale neda sa.
NajnizsSia energia, ktora by sa musela dodat elektrénu,
je dana Sirkou zakazaného pasa. Zakazany pas je v
pripade nevodicov velmi Siroky, niet dost energie na
jeho prekonanie. Vzorkou nebude prechadzat prud.



Polovodic

Situacia je podobna ako v nevodici. Len Sirka
zakazaného pasa je mensia. Znamena to, ze aj pri
normalnych teplotadch mozu niektoré elektrény ziskat v
zrazkach s tepelne sa pohybujucimi atdbmami mriezky
dostatocnu energiu aby prekonali zakazany pas a
ocitnu sa v hornom vodivostnom pase. Potom mézu uz
l'ahko ziskat esSte dodatocnu energiu od elektrického
pola a zucastnit sa vedenia prudu. Takych elektrénov
je ale velmi malo, preto polovodic je zly vodic
elektrického prudu



Polovodic typu N

Polovodic typu N vznikne, ak do Cistého polovodica,
napriklad krystalu 4-mocného kremika pridame "ako
necistoty" 5-mocné atdmy napriklad fosforu. Na
spektre vzniknutej vzorky sa to prejavi tak, ze sa
objavia energetické hladiny v predtym zakazanom
pase, a to blizko spodného okraja vodivostného pasa
(na obr. Cerveno). Volaju sa donoroveé hladiny a pri
velmi nizkych teplotach su obsadené elektronmi. Ale
pri normalnych teplotach donorové elektrony lahko
ziskaju tepelnu energiu, ktora ich vyhodi az do
vodivostého pasa. Elektrony donorovych hladin sa
zUcastnuju vedenia prudu, vodivost je tym vacsia, ¢im
viac primesovych atomov do vzorky pridame.



Polovodic typu P
Polovodic typu P vznikne, ak do Cistého polovodica,
napriklad krystalu 4-mocného kremika pridame "ako
necistoty" 3-mocné atomy napriklad hlinika. Na
spektre vzniknutej vzorky sa to prejavi tak, ze sa
objavia energetické hladiny v predtym zakazanom
pase, a to blizko horného okraja obsadeného
valenéného pasa (na obr. Cerveno). Volaju sa
akceptorove hladiny a pri velmi nizkych teplotach nie
su obsadené elektronmi. Ale pri normalnych teplotach
elektrony valencného pasa lahko ziskaju tepelnu
energiu a obsadia akceptorové hladiny.



Polovodic typu P
Polovodic typu P vznikne, ak do Cistéeho polovodica,
napriklad krystalu 4-mocného kremika pridame "ako
necistoty" 3-mocné atomy napriklad hlinika. Na
spektre vzniknutej vzorky sa to prejavi tak, ze sa
objavia energetické hladiny v predtym zakazanom
pase, a to blizko horného okraja obsadeného
valenéného pasa (na obr. Cerveno). Volaju sa
akceptorové hladiny a pri velmi nizkych teplotach nie
su obsadené elektronmi. Ale pri normalnych teplotach
elektrony valencného pasa lahko ziskaju tepelnu
energiu a obsadia akceptorové hladiny.
Tym vo valenénom pase vznikne neobsadeny stav
"diera,, (na obr. zeleno). Do toho neobsadeneého stavu
moze pod vplyvom napatia preskodit iny valencny
elektron a diera sa objavi na inom mieste. Vzniknuty
pohyb elektronov vyvolava efektivhe dojem, ako keby
prud viedli kladne nabité diery.



Continuous spectrum

Emiz=ion lines et

Absorption lines
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