
JBuilder® X

Getting Started with Java™

Borland Software Corporation
100 Enterprise Way
Scotts Valley, California 95066-3249
www.borland.com

Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list
of files that you can distribute in accordance with the JBuilder License Statement and Limited
Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1997–2003 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All other marks are
the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JXE0010WW21000gsjava 5E5R1103
0304050607-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1
Documentation conventions 3
Developer support and resources 5

Contacting Borland Developer Support 5
Online resources 5
World Wide Web 5
Borland newsgroups 6
Usenet newsgroups 6
Reporting bugs 6

Chapter 2
Java language elements 7
Terms . 7

Identifier . 7
Data type . 8

Primitive data types 8
Composite data types. 9

Strings . 9
Arrays . 9
Variable. 10
Literal. . 10

Applying concepts 10
Declaring variables 10
Methods 11

Chapter 3
Java language structure 13
Terms . 13

Keywords 13
Operators. 14
Comments 15
Statements 17
Code blocks 17
Understanding scope 17

Applying concepts 18
Using operators 18

Arithmetic operators 19
Logical operators 20
Assignment operators. 21
Comparison operators 22
Bitwise operators 22
?:, the ternary operator 24

Using methods 24
Using arrays 25

Using constructors 25
Member access 26

Arrays. 27

Chapter 4
Java language control 29
Terms . 29

String handling. 29
Type casting and conversion. 30
Return types and statements 31
Flow control statements 31

Applying concepts 31
Escape sequences 31

Strings 32
Determining access 33
Handling methods 35
Using type conversions 35

Implicit casting 36
Explicit conversion 36
Flow control 36

Loops 36
Loop control statements 39

Conditional statements 39
Handling exceptions 41

Chapter 5
The Java class libraries 43
Java 2 Platform editions. 43

Standard Edition 44
Enterprise Edition 44
Micro Edition 45

Java 2 Standard Edition packages 45
The Language package: java.lang. 46
The Utility package: java.util 47
The I/O package: java.io 47
The Text package: java.text 47
The Math package: java.math 47
The AWT package: java.awt 48
The Swing package: javax.swing 48
The Javax packages: javax 49
The Applet package: java.applet. 49
The Beans package: java.beans. 50
The Reflection package: java.lang.reflect . . 50
XML processing 50
The SQL package: java.sql 51

Contents

ii

The RMI package: java.rmi. 51
The Networking package: java.net 52
The Security package: java.security 52

Chapter 6
Object-oriented programming
in Java 71

Classes . 72
Declaring and instantiating classes 72
Data members 73
Class methods 73
Constructors and finalizers 74
Case study: A simple OOP example 74
Class inheritance. 78

Calling the parent’s constructor 80
Access modifiers 81

Access from within class’s package. . . . 81
Access outside of a package 82

Accessor methods 82
Abstract classes 85

Polymorphism 86
Using interfaces 87
Adding two new buttons 91
Running your application 92

Java packages. 93
The import statement 93
Declaring packages 93

Chapter 7
Threading techniques 95
The lifecycle of a thread 95

Customizing the run() method 96
Subclassing the Thread class. 96
Implementing the Runnable interface . . . 97

Defining a thread 99
Starting a thread 99
Making a thread not runnable 100
Stopping a thread 100

Thread priority 101
Time slicing. 101

Synchronizing threads. 101
Thread groups 102

Chapter 8
Serialization 103
Why serialize? 103
Java serialization 104

Using the Serializable interface 104

Using output streams 105
ObjectOutputStream methods 107

Using input streams. 107
ObjectInputStream methods 109

Writing and reading object streams. 109

Chapter 9
An introduction to the
Java Virtual Machine 111

Java VM security 112
The security model 113

The Java verifier 113
The Security Manager and the

java.security Package. 114
The class loader 115

What about Just-In-Time compilers? 116

Chapter 10
Working with the Java Native
Interface (JNI) 117

How JNI works 118
Using the native keyword 118
Using the javah tool 119

Appendix A
Java language quick reference 121
Java 2 platform editions. 121
Java class libraries 122
Java keywords 123

Data and return types and terms 123
Packages, classes, members, and

interfaces. 123
Access modifiers. 124
Loops and flow controls 124
Exception handling 125
Reserved 125

Converting and casting data types 125
Primitive to primitive 126
Primitive to String 127
Primitive to reference 128
String to primitive 130
Reference to primitive 132
Reference to reference 134

Escape sequences 138
Operators . 139

Basic operators 139
Arithmetic operators 140
Logical operators 140

iii

Assignment operators 141
Comparison operators 141
Bitwise operators 141
Ternary operator 142

Appendix B
Learning more about Java 143
Online glossaries 143
Books . 143

Index 145

iv

Chapter 1 : Introduct ion 1

C h a p t e r

1
Chapter 1Introduction

Java is an object-oriented programming language. Switching to
object-oriented programming (OOP) from other programming paradigms can
be difficult. Java focuses on creating objects (data structures or behaviors)
that can be assessed and manipulated by the program.

Like other programming languages, Java provides support for reading and
writing data to and from different input and output devices. Java uses
processes that increase the efficiency of input/output, facilitate
internationalization, and provide better support for non-UNIX platforms. Java
looks over your program as it runs and automatically deallocates memory that
is no longer required. This means you don’t have to keep track of memory
pointers or manually deallocate memory. This feature means a program is less
likely to crash and that memory can’t be intentionally misused.

This book is intended to serve programmers who use other languages as a
general introduction to the Java programming language. The Borland
Community site provides an annotated list of books on Java programming and
related subjects at http://community.borland.com/books/java/0,1427,c|3,00.html.
Examples of applications, APIs, and code snippets are at
http://codecentral.borland.com/codecentral/ccweb.exe/home.

This book includes the following chapters:
� Java syntax: Chapter 2, “Java language elements,” Chapter 3, “Java

language structure,” and Chapter 4, “Java language control.”

These three chapters define basic Java syntax and introduce you to
object-oriented programming concepts. Each section is divided into two
main parts: “Terms” and “Applying concepts.” “Terms” builds vocabulary,
adding to concepts you already understand. “Applying concepts”

2 Get t ing Star ted wi th Java

Introduct ion

demonstrates the use of concepts presented up to that point. Some
concepts are revisited several times, at increasing levels of complexity.

� Chapter 5, “The Java class libraries”

This chapter presents an overview of the Java 2 class libraries and the
Java 2 Platform editions.

� Chapter 6, “Object-oriented programming in Java”

This chapter introduces the object-oriented features of Java. You will create
Java classes, instantiate objects, and access member variables in a short
tutorial. You will learn to use inheritance to create new classes, use
interfaces to add new capabilities to your classes, use polymorphism to
make related classes respond in different ways to the same message, and
use packages to group related classes together.

� Chapter 7, “Threading techniques”

A thread is a single sequential flow of control within a program. One of the
powerful aspects of the Java language is you can easily program multiple
threads of execution to run concurrently within the same program. This
chapter explains how to create multithreaded programs, and provides links
to other resources with more in-depth information.

� Chapter 8, “Serialization”

Serialization saves and restores a Java object’s state. This chapter
describes how to serialize objects using Java. It describes the Serializable
interface, how to write an object to disk, and how to read the object back
into memory again.

� Chapter 9, “An introduction to the Java Virtual Machine”

The JVM is the native software that allows a Java program to run on a
particular machine. This chapter explains the JVM’s general structure and
purpose. It discusses the major roles of the JVM, particularly in Java
security. It goes into more detail about three specific security features: the
Java verifier, the Security Manager, and the Class Loader.

� Chapter 10, “Working with the Java Native Interface (JNI)”

This chapter explains how to invoke native methods in Java applications
using the Java Native Method Interface (JNI). It begins by explaining how
the JNI works, then discusses the native keyword and how any Java
method can become a native method. Finally, it examines the JDK’s javah
tool, which is used to generate C header files for Java classes.

� Appendix A, “Java language quick reference”

This appendix contains a partial list of class libraries and their main
functions, a list of the Java2 platform editions, a complete list of Java
keywords as of JDK 1.3, extensive tables of data type conversions between

Chapter 1 : Introduct ion 3

Documentat ion convent ions

primitive and reference types, Java escape sequences, and extensive
tables of operators and their actions.

� Appendix B, “Learning more about Java”

Resources on the Java language abound. This chapter has links to, and
ideas for finding, good sources of information about the Java language.

Documentation conventions
The Borland documentation for JBuilder uses the typefaces and symbols
described in the following table to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj
(Borland Compiler for Java), and compiler options. For
example: javac, bmj, -classpath.

Italics Italicized words are used for new terms being defined, for book
titles, and occasionally for emphasis.

Keycaps This typeface indicates a key on your keyboard, such as “Press
Esc to exit a menu.”

Monospaced type Monospaced type represents the following:

� text as it appears onscreen

� anything you must type, such as “Type Hello World in the
Title field of the Application wizard.”

� file names

� path names

� directory and folder names

� commands, such as SET PATH

� Java code

� Java data types, such as boolean, int, and long.

� Java identifiers, such as names of variables, classes,
package names, interfaces, components, properties,
methods, and events

� argument names

� field names

� Java keywords, such as void and static

[] Square brackets in text or syntax listings enclose optional
items. Do not type the brackets.

4 Get t ing Star ted wi th Java

Documentat ion convent ions

JBuilder is available on multiple platforms. See the following table for a
description of platform conventions used in the documentation.

< > Angle brackets are used to indicate variables in directory paths,
command options, and code samples.

For example, <filename> may be used to indicate where you
need to supply a file name (including file extension), and
<username> typically indicates that you must provide your user
name.

When replacing variables in directory paths, command options,
and code samples, replace the entire variable, including the
angle brackets (< >). For example, you would replace
<filename> with the name of a file, such as employee.jds, and
omit the angle brackets.

Note: Angle brackets are used in HTML, XML, JSP, and other
tag-based files to demarcate document elements, such as
 and <ejb-jar>. The following convention
describes how variable strings are specified within code
samples that are already using angle brackets for delimiters.

Italics, serif This formatting is used to indicate variable strings within code
samples that are already using angle brackets as delimiters.
For example,
<url="jdbc:borland:jbuilder\\samples\\guestbook.jds">

... In code examples, an ellipsis (...) indicates code that has been
omitted from the example to save space and improve clarity. On
a button, an ellipsis indicates that the button links to a selection
dialog box.

Table 1.2 Platform conventions

Item Meaning

Paths Directory paths in the documentation are indicated with a
forward slash (/).

For Windows platforms, use a backslash (\).

Home directory The location of the standard home directory varies by platform
and is indicated with a variable, <home>.

� For UNIX and Linux, the home directory can vary. For
example, it could be /user/<username> or /home/<username>

� For Windows NT, the home directory is
C:\Winnt\Profiles\<username>

� For Windows 2000 and XP, the home directory is
C:\Documents and Settings\<username>

Screen shots Screen shots reflect the Metal Look & Feel on various
platforms.

Table 1.1 Typeface and symbol conventions (continued)

Typeface Meaning

Chapter 1 : Introduct ion 5

Developer suppor t and resources

Developer support and resources
Borland provides a variety of support options and information resources to
help developers get the most out of their Borland products. These options
include a range of Borland Technical Support programs, as well as free
services on the Internet, where you can search our extensive information base
and connect with other users of Borland products.

Contacting Borland Developer Support
Borland offers several support programs for customers and prospective
customers. You can choose from several categories of support, ranging from
free support on installation of the Borland product to fee-based
consultant-level support and extensive assistance.

For more information about Borland’s developer support services, see our
web site at http://www.borland.com/devsupport/, call Borland Assist at
(800) 523-7070, or contact our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information about
your environment, the version of the product you are using, and a detailed
description of the problem.

For support on third-party tools or documentation, contact the vendor of the tool.

Online resources
You can get information from any of these online sources:

World Wide Web

Check www.borland.com/jbuilder regularly. This is where the Java Products
Development Team posts white papers, competitive analyses, answers to
frequently asked questions, sample applications, updated software, updated
documentation, and information about new and existing products.

You may want to check these URLs in particular:
� http://www.borland.com/jbuilder/ (updated software and other files)
� http://www.borland.com/techpubs/jbuilder/ (updated documentation and

other files)
� http://community.borland.com/ (contains our web-based news magazine for

developers)

World Wide Web http://www.borland.com/
http://www.borland.com/techpubs/jbuilder/

Electronic newsletters To subscribe to electronic newsletters, use the
online form at:
http://www.borland.com/products/newsletters/
index.html

6 Get t ing Star ted wi th Java

Developer suppor t and resources

Borland newsgroups

When you register JBuilder you can participate in many threaded discussion
groups devoted to JBuilder. The Borland newsgroups provide a means for the
global community of Borland customers to exchange tips and techniques
about Borland products and related tools and technologies.

You can find user-supported newsgroups for JBuilder and other Borland
products at http://www.borland.com/newsgroups/.

Usenet newsgroups

The following Usenet groups are devoted to Java and related programming
issues:
� news:comp.lang.java.advocacy
� news:comp.lang.java.announce
� news:comp.lang.java.beans
� news:comp.lang.java.databases
� news:comp.lang.java.gui
� news:comp.lang.java.help
� news:comp.lang.java.machine
� news:comp.lang.java.programmer
� news:comp.lang.java.security
� news:comp.lang.java.softwaretools

Note These newsgroups are maintained by users and are not official Borland sites.

Reporting bugs
If you find what you think may be a bug in the software, please report it to
Borland at one of the following sites:
� Support Programs page at http://www.borland.com/devsupport/namerica/.

Click the “Reporting Defects” link to bring up the Entry Form.
� Quality Central at http://qc.borland.com. Follow the instructions on the

Quality Central page in the “Bugs Reports” section.

When you report a bug, please include all the steps needed to reproduce the
bug, including any special environmental settings you used and other
programs you were using with JBuilder. Please be specific about the expected
behavior versus what actually happened.

If you have comments (compliments, suggestions, or issues) for the JBuilder
documentation team, you may email jpgpubs@borland.com. This is for
documentation issues only. Please note that you must address support issues
to developer support.

JBuilder is made by developers for developers. We really value your input.

Chapter 2 : Java language e lements 7

C h a p t e r

2
Chapter2Java language elements

This section provides you with foundational concepts about the elements of
the Java programming language that will be used throughout this chapter. It
assumes you understand general programming concepts, but have little or no
experience with Java.

Terms
The following terms and concepts are discussed in this chapter:
� Identifier
� Data type
� Strings
� Arrays
� Variable
� Literal

Identifier

The identifier is the name you choose to call an element (such as a variable or
a method). Java will accept any valid identifier, but for reasons of usability, it’s
best to use a plain-language term that’s modified to meet the following
requirements:
� It should start with a letter. Strictly speaking, it can begin with a Unicode

currency symbol or an underscore (_), but some of these symbols may be
used in imported files or internal processing. They are best avoided.

8 Get t ing Star ted wi th Java

Terms

� After that, it may contain any alphanumeric characters (letters or numbers),
underscores, or Unicode currency symbols (such as £ or $), but no other
special characters.

� It must be all one word (no spaces or hyphens).

Capitalization of an identifier depends on the kind of identifier it is. Java is
case-sensitive, so be careful of capitalization. Correct capitalization styles are
mentioned in context.

Data type

Data types classify the kind of information that certain Java programming
elements can contain. Data types fall into two main categories:
� Primitive or basic
� Composite or reference

Naturally, different kinds of data types can hold different kinds and amounts of
information. You can convert the data type of a variable to a different type,
within limits: you cannot cast to or from the boolean type, and you cannot cast
an object to an object of an unrelated class.

Java will prevent you from risking your data. This means it will easily let you
convert a variable or object to a larger type, but will try to prevent you from
converting it to a smaller type. When you change a data type with a larger
capacity to one with a smaller capacity, you must use a type of statement
called a type cast.

Primitive data types
Primitive, or basic, data types are classified as Boolean (specifying an on/off
state), character (for single characters and Unicode characters), integer (for
whole numbers), or floating-point (for decimal numbers). In code, primitive
data types are all lower case.

The Boolean data type is called boolean, and takes one of two values: true or
false. Java doesn’t store these values numerically, but uses the boolean data
type to store these values.

The character data type is called char and takes single Unicode characters
with values up to 16 bits long. In Java, Unicode characters (letters, special
characters, and punctuation marks) are put between single quotation marks:
‘b’. Java’s Unicode default value is \u0000, ranging from \u0000 to \uFFFF.

Briefly, the Unicode numbering system takes numbers from 0 to 65535, but
the numbers must be specified in hexadecimal notation, preceded by the
escape sequence \u.

Not all special characters can be represented in this way. Java provides its
own set of escape sequences, many of which can be found in the “Escape
sequences” table on page 138.

In Java, the size of primitive data types is absolute, rather than
platform-dependent. This improves portability.

Chapter 2 : Java language e lements 9

Terms

Different numeric data types take different kinds and sizes of numbers. Their
names and capacities are listed below:

Composite data types
Each of the data types above accepts one number, one character, or one
state. Composite, or reference, data types consist of more than a single
element. Composite data types are of two kinds: classes and arrays. Class
and array names start with an upper case letter and the first letter of each
natural word within the name is capitalized also, for instance, NameOfClass.

A class is a complete and coherent piece of code that defines a logically
unified set of objects and their behavior. For more information on classes, see
Chapter 6, “Object-oriented programming in Java.”

Any class can be used as a data type once it has been created and imported
into the program. Because the String class is the class most often used as a
data type, we will focus on it in this chapter.

Strings

The String data type is actually the String class. The String class stores any
sequence of alphanumeric characters, spaces, and normal punctuation
(termed strings), enclosed in double quotes. Strings can contain any of the
Unicode escape sequences and require \" to put double quotes inside of a
string, but, generally, the String class itself tells the program how to interpret
the characters correctly.

Arrays

An array is a data structure containing a group of values of the same data
type. For instance, an array can accept a group of String values, a group of int
values, or a group of boolean values. As long as all of the values are of the
same data type, they can go into the same array.

Type Attributes Range

double Java’s default. A floating-point type that takes an 8-byte
number to about fifteen decimal places.

+/– 9.00x1018

int Most common option. An integer type that takes a
4-byte whole number.

+/– 2x109

long An integer type that takes an 8-byte whole number. +/– 9x1018

float A floating-point type that takes a 4-byte number to about
seven decimal places.

+/– 2.0x109

short An integer type that takes a 2-byte whole number. +/– 32768

byte An integer type that takes a 1-byte whole number. +/– 128

10 Gett ing Started with Java

Apply ing concepts

Arrays are characterized by a pair of square brackets. When you declare an
array in Java, you can put the brackets either after the identifier or after the
data type:

int studentID[];
char[] grades;

Note that the array size is not specified. Declaring an array does not allocate
memory for that array. In most other languages the array’s size must be
included in its declaration, but in Java you don’t specify its size until you use it.
Then the appropriate memory is allocated.

Variable

A variable is a value that a programmer names and defines. Variables need an
identifier and a value.

Literal

A literal is the actual representation of a number, a character, a state, or a
string. A literal represents the value of an identifier.

Alphanumeric literals include strings in double quotes, single char characters
in single quotes, and boolean true/false values.

Integer literals may be stored as decimals, octals, or hexadecimals, but think
about your syntax: any integer with a leading 0 (as in a date) will be interpreted
as an octal. Floating point literals can only be expressed as decimals. They
will be treated as double unless you specify the type.

For a more detailed explanation of literals and their capacities, see The Java
Handbook by Patrick Naughton.

Applying concepts
The following sections demonstrate how to apply the terms and concepts
introduced earlier in this chapter.

Declaring variables

The act of declaring a variable sets aside memory for the variable you declare.
Declaring a variable requires only two things: a data type and an identifier, in
that order. The data type tells the program how much memory to allocate. The
identifier labels the allocated memory.

Declare the variable only once. Once you have declared the variable
appropriately, just refer to its identifier in order to access that block of memory.

Chapter 2 : Java language e lements 11

Apply ing concepts

Variable declarations look like this:

Methods

Methods in Java are equivalent to functions or subroutines in other languages.
The method defines an action to be performed on an object.

Methods consist of a name and a pair of parentheses:

getData()

Here, getData is the name and the parentheses tell the program that it is a
method.

If the method needs particular information in order to get its job done, what it
needs goes inside the parentheses. What’s inside the parentheses is called
the argument, or arg for short. In a method declaration, the arg must include a
data type and an identifier:

drawString(String remark)

Here, drawString is the name of the method, and String remark is the data type
and variable name for the string that the method must draw.

You must tell the program what type of data the method will return, or if it will
return anything at all. This is called the return type. You can make a method
return data of any primitive type. If the method doesn’t need to return anything
(as in most action-performing methods), the return type must be void.

Return type, name, and parentheses with any needed args give a very basic
method declaration:

String drawString(String remark);

Your method is probably more complex than that. Once you have typed and
named it and told it what args it will need (if any), you must define it
completely. You do this below the method name, nesting the body of the

boolean isOn; The data type boolean can be set to true or false.
The identifier isOn is the name that the programmer
has given to the memory allocated for this variable.
The name isOn has meaning for the human reader
as something that would logically accept true/false
values.

int studentsEnrolled; The data type int tells you that you will be dealing
with a whole number of less than ten digits. The
identifier studentsEnrolled suggests what the number
will signify. Since students are whole people, the
appropriate data type calls for whole numbers.

float creditCardSales; The data type float is appropriate because money
is generally represented in decimals. You know that
money is involved because the programmer has
usefully named this variable creditCardSales.

12 Gett ing Started with Java

Apply ing concepts

definition in a pair of curly braces. This gives a more complex method
declaration:

String drawString(String remark) { //Declares the method.
 remark = "My, what big teeth you have!"; //Defines what's in the method.
} //Closes the method body.

Once you have defined the method, you only need to refer to it by its name
and pass it any args it needs to do its job right then:

drawString(remark);.

Chapter 3: Java language structure 13

C h a p t e r

3
Chapter3Java language structure

This section provides you with foundational concepts about the structure of the
Java programming language that will be used throughout this chapter. It
assumes you understand general programming concepts, but have little or no
experience with Java.

Terms
The following terms and concepts are discussed in this chapter:
� Keywords
� Operators
� Comments
� Statements
� Code blocks
� Understanding scope

Keywords

Keywords are reserved Java terms that modify other syntax elements.
Keywords can define an object’s accessibility, a method’s flow, or a variable’s
data type. Keywords can never be used as identifiers.

Many of Java’s keywords are borrowed from C/C++. Also, as in C/C++,
keywords are always written in lowercase. Generally speaking, Java’s

14 Gett ing Started with Java

Terms

keywords can be categorized according to their functions (examples are in
parentheses):
� Data and return types and terms (int, void, return)
� Package, class, member, and interface (package, class, static)
� Access modifiers (public, private, protected)
� Loops and loop controls (if, switch, break)
� Exception handling (throw, try, finally)
� Reserved words—not used yet, but unavailable (goto, const)

Some keywords are discussed in context in these chapters. For a complete list
of keywords and what they mean, see the “Keywords” table on page 123.

Operators

Operators allow you to access, manipulate, relate, or refer to Java language
elements, from variables to classes. Operators have properties of precedence
and associativity. When several operators act on the same element (or
operand), the operators’ precedence determines which operator will act first.
When more than one operator has the same precedence, the rules of
associativity apply. These rules are generally mathematical; for instance,
operators will usually be used from left to right, and operator expressions
inside parentheses will be evaluated before operator expressions outside
parentheses.

Operators generally fall into six categories: assignment, arithmetic, logical,
comparison, bitwise, and ternary.

Assignment means storing the value to the right of the = inside the variable to
the left of it. You can either assign a value to a variable when you declare it or
after you have declared it. The machine doesn’t care; you decide which way
makes sense in your program and your practice:

double bankBalance; //Declaration
bankBalance = 100.35; //Assignment
double bankBalance = 100.35; //Declaration with assignment

In both cases, the value of 100.35 is stored inside the memory reserved by the
declaration of the bankBalance variable.

Assignment operators allow you to assign values to variables. They also allow
you to perform an operation on an expression and then assign the new value
to the right-hand operand, using a single combined expression.

Arithmetic operators perform mathematical calculations on both integer and
floating-point values. The usual mathematical signs apply: + adds, - subtracts,
* multiplies, and / divides two numbers.

Logical, or Boolean, operators allow the programmer to group boolean
expressions in a useful way, telling the program exactly how to determine a
specific condition.

Comparison operators evaluate single expressions against other parts of the
code. More complex comparisons (like string comparisons) are done
programmatically.

Chapter 3: Java language structure 15

Terms

Bitwise operators act on the individual 0s and 1s of binary digits. Java’s
bitwise operators can preserve the sign of the original number; not all
languages do.

The ternary operator, ?:, provides a shorthand way of writing a very simple
if-then-else statement. It consists of a Boolean condition statement followed
by two expressions:

condition1 ? expression2 : expression3 ;

The conditional expression is evaluated first; if it’s true, the second expression
is evaluated; if the second expression is false, then the third expression is
used.

Below is a partial list of other operators and their attributes:

Comments

Commenting code is excellent programming practice. Good comments can
help you scan your code more quickly, keep track of what you’ve done as you
build a complex program, and remind you of things you want to add or tune.
You can use comments to hide parts of code that you want to save for special
situations or keep out of the way while you work on something that might
conflict. Comments can help you remember what you were doing when you

Operator Operand Behavior

. object member Accesses a member of the object.

(<type>) data type Casts a data type.1

1. It’s important to distinguish between operation and punctuation. Parentheses are used
around args as punctuation. They are used around a data type in an operation that
changes a variable’s data type to the one inside the parentheses.

+ String Joins up strings (concatenator).

number Adds.

- number This is the unary2 minus (reverses number sign).

2. A unary operator takes a single operand, a binary operator takes two operands, and a
ternary operator takes three operands.

number Subtracts.

! boolean This is the boolean NOT operator.

& integer, boolean This is both the bitwise (integer) and boolean AND
operator. When doubled (&&), it is the boolean
conditional AND.

= most elements
with variables

Assigns an element to another element (for
instance, a value to a variable, or a class to an
instance). This can be combined with other
operators to perform the other operation and assign
the resulting value. For instance, += adds the
left-hand value to the right, then assigns the new
value to the right-hand side of the expression.

16 Gett ing Started with Java

Terms

return to one project after working on another, or when you come back from
vacation. In a team development environment or whenever code is passed
between programmers, comments can help others understand the purpose
and associations of everything you comment on, without having to parse out
every bit of it to be sure they understand.

Java uses three kinds of comments: single-line comments, multi-line
comments, and Javadoc comments.

Here are some examples:

/* You can put as many lines of
 discussion or as many pages of
 boilerplate as you like between
 these two tags.
*/

/* Note that, if you really get carried away,
 you can nest single-line comments
 //inside of the multi-line comments
 and the compiler will have no trouble
 with it at all.
*/

/* Just don't try nesting
 /* multi-line types of comments
 */
 /** of any sort
 */
 because that will generate a
 compiler error.
*/

Comment Tag Purpose

Single-line // ... Suitable for brief remarks on the function or structure of
a statement or expression. They require only an
opening tag: as soon as you start a new line, you’re
back into code.

Multi-line /* ... */ Good for any comment that will cover more than one
line, as when you want to go into some detail about
what’s happening in the code or when you need to
embed legal notices in the code. It requires both
opening and closing tags.

Javadoc /** ... */ This is a multi-line comment that the JDK’s Javadoc
utility can read and turn into HTML documentation.
Javadoc has tags you can use to extend its
functionality. It’s used to provide help for APIs, generate
to do lists, and embed flags in code. It requires both
opening and closing tags. To learn more about the
Javadoc tool, go to Sun’s Javadoc page at
http://java.sun.com/j2se/1.3/docs/tooldocs/
javadoc/.

Chapter 3: Java language structure 17

Terms

/**Useful information about what the code
 does goes in Javadoc tags. Special tags
 such as @todo can be used here to take
 advantage of Javadoc's helpful features.
*/

Statements

A statement is a single command. One command can cover many lines of
code, but the compiler reads the whole thing as one command. Individual
(usually single-line) statements end in a semicolon (;), and group (multi-line)
statements end in a closing curly brace (}). Multi-line statements are generally
called code blocks.

By default, Java runs statements in the order in which they’re written, but Java
allows forward references to terms that haven’t been defined yet.

Code blocks

A code block is everything between the curly braces, and includes the
expression that introduces the curly brace part:

class GettingRounder {
 ...
}

Understanding scope

Scope rules determine where in a program a variable is recognized. Variables
fall into two main scope categorizes:
� Global variables: Variables that are recognized across an entire class.
� Local variables: Variables that are recognized only in the code block where

they were declared.

Scope rules are tightly related to code blocks. The one general scope rule is: a
variable declared in a code block is visible only in that block and any blocks
nested inside it. The following code illustrates this:

class Scoping {
 int x = 0;
 void method1() {
 int y;
 y = x; // This works. method1 can access y.
 }
 void method2() {
 int z = 1;
 z = y; // This does not work:
 // y is defined outside method2's scope.
 }
}

18 Gett ing Started with Java

Apply ing concepts

This code declares a class called scoping, which has two methods: method1()
and method2(). The class itself is considered the main code block, and the two
methods are its nested blocks.

The x variable is declared in the main block, so it is visible (recognized by the
compiler) in both method1() and method2(). Variables y and z, on the other hand,
were declared in two independent, nested blocks; therefore, attempting to use
y in method2() is illegal since y is not visible in that block.

Note A program that relies on global variables can be error-prone for two reasons:

1 Global variables are difficult to keep track of.

2 A change to a global variable in one part of the program can have an
unexpected side effect in another part of the program.

Local variables are safer to use since they have a limited life span. For
example, a variable declared inside a method can be accessed only from that
method, so there is no danger of it being misused somewhere else in the
program.

End every simple statement with a semicolon. Be sure every curly brace has a
mate. Organize your curly braces in some consistent way (as in the examples
above) so you can keep track of the pairs. Many Java IDEs (such as JBuilder)
automatically nest the curly braces according to your settings.

Applying concepts
The following sections demonstrate how to apply the terms and concepts
introduced earlier in this chapter.

Using operators

Review There are six basic kinds of operators (arithmetic, logical, assignment,
comparison, bitwise, and ternary), and operators affect one, two, or three
operands, making them unary, binary, or ternary operators. They have
properties of precedence and associativity, which determine the order they’re
processed in.

Operators are assigned numbers that establish their precedence. These
numbers vary by circumstances and are determined by a complex set of rules.
The higher the number, the higher the order of precedence (that is, the more
likely it is to be evaluated sooner than others). An operator of precedence 1
(the lowest) will be evaluated last, and an operator with a precedence of 15
(the highest) will be evaluated first.

Operators with the same precedence are normally evaluated from left to right.

Precedence is evaluated before associativity. For instance, the expression
a + b - c * d will not be evaluated from left to right; multiplication has
precedence over addition, so c * d is evaluated first. Addition and subtraction

Chapter 3: Java language structure 19

Apply ing concepts

have the same order of precedence, so associativity applies: a and b are
added next, then the product of c * d is subtracted from that sum.

It’s good practice to use parentheses around mathematical expressions you
want evaluated first, regardless of their precedence, for instance:
(a + b) - (c * d). The program will evaluate this operation the same way, but
for the human reader, this format is clearer.

See also
� “Expressions, Statements, and Blocks” in the Java Tutorial, at

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html

Arithmetic operators
Java provides a full set of operators for mathematical calculations. Java,
unlike some languages, can perform mathematical functions on both integer
and floating-point values. You will probably find these operators familiar.

Here are the arithmetic operators:

Whether you use pre-increment/decrement or post-increment/decrement
matters only when you return the initial value of the incremented/decremented
variable. Use pre- or post-increment/decrement depending on when you want
the new value to be assigned:

int y = 3; //1. variable declaration
int b = 9; //2.
int x; //3.
int a; //4.
x = ++y; //5. pre-increment: y and x return 4.
a = b--; //6. post-decrement: b returns 9, a returns 8.

In statement 4, pre-increment, the y variable’s value is incremented by 1, and
then its new value (4) is assigned to x. Both x and y originally had a value of 3;
now they both have the value of 4.

In statement 5, post-decrement, b’s current value (9) is assigned to a and then
the value of b is decremented (to 8). b originally had a value of 9 and a had no
value assigned; now a is 9 and b is 8.

Operator Definition Prec. Assoc.

++/–– Auto-increment/decrement: Adds one to, or
subtracts one from, its single operand. If the value
of i is 4, ++i is 5. See below for more information.

1 Right

+/- Unary plus/minus: sets or changes the positive/
negative value of a single number.

2 Right

* Multiplication. 4 Left

/ Division. 4 Left

% Modulus: Divides the first operand by the second
operand and returns the remainder. See below for
a brief mathematical review.

4 Left

+/- Addition/subtraction 5 Left

20 Gett ing Started with Java

Apply ing concepts

The modulus operator requires an explanation to those who last studied math a
long time ago. Remember that when you divide two numbers, they rarely
divide evenly. What is left over after you have divided the numbers (without
adding any new decimal places) is the remainder. For instance, 3 goes into 5
once, with 2 left over. The remainder (in this case, 2) is what the modulus
operator evaluates for. Since remainders recur in a division cycle on a
predictable basis (for instance, an hour is modulus 60), the modulus operator is
particularly useful when you want to tell a program to repeat a process at
specific intervals.

Logical operators
Logical (or Boolean) operators allow the programmer to group boolean
expressions to determine certain conditions. These operators perform the
standard Boolean operations AND, OR, NOT, and XOR.

The following table lists the logical operators:

The evaluation operators always evaluate both operands. The conditional
operators, on the other hand, always evaluate the first operand, and if that

Operator Definition Prec. Assoc.

! Boolean NOT (unary)

Changes true to false or false to true. Because of
its low precedence, you may need to use
parentheses around this statement.

2 Right

& Evaluation AND (binary)

Yields true only if both operands are true. Always
evaluates both operands.

Rarely used as a logical operator.

9 Left

^ Evaluation XOR (binary)

Yields true if only one operand is true. Evaluates
both operands.

10 Left

| Evaluation OR (binary)

Yields true if one or both of the operands is true.
Evaluates both operands.

11 Left

&& Conditional AND (binary)

Yields true only if both operands are true. Called
“conditional” because it only evaluates the second
operand if the first operand is true.

12 Left

|| Conditional OR (binary)

Yields true if either one or both operands is true;
returns false if both are false. Doesn’t evaluate
second operand if first operand is true.

13 Left

Chapter 3: Java language structure 21

Apply ing concepts

determines the value of the whole expression, they don’t evaluate the second
operand. For example:

if (!isHighPressure && (temperature1 > temperature2)) {
 ...
} //Statement 1: conditional

boolean1 = (x < y) || (a > b); //Statement 2: conditional

boolean2 = (10 > 5) & (5 > 1); //Statement 3: evaluation

The first statement evaluates !isHighPressure first. If !isHighPressure is false
(that is, if the pressure is high; note the logical double-negative of ! and false),
the second operand, temperature1 > temperature2, doesn’t need to be
evaluated. && only needs one false value in order to know what value to return.

In the second statement, the value of boolean1 will be true if x is less than y. If x
is more than y, the second expression will be evaluated; if a is less than b, the
value of boolean1 will still be true.

In the third statement, however, the compiler will compute the values of both
operands before assigning true or false to boolean2, because & is an evaluation
operator, not a conditional one.

Assignment operators
You know that the basic assignment operator (=) lets you assign a value to a
variable. With Java’s set of assignment operators, you can perform an
operation on either operand and assign the new value to a variable in one
step.

The following table lists assignment operators:

Operator Definition Prec. Assoc.

= Assign the value on the right to the variable on the
left.

15 Right

+= Add the value on the right to the value of the
variable on the left; assign the new value to the
original variable.

15 Right

-= Subtract the value on the right from the value of
the variable on the left; assign the new value to the
original variable.

15 Right

*= Multiply the value on the right with the value of the
variable on the left; assign the new value to the
original variable.

15 Right

/= Divide the value on the right from the value of the
variable on the left; assign the new value to the
original variable.

15 Right

22 Gett ing Started with Java

Apply ing concepts

The first operator is familiar by now. The rest of the assignment operators
perform an operation first, and then store the result of the operation in the
operand on the left side of the expression. Here are some examples:

int y = 2;
y *= 2; //same as (y = y * 2)

boolean b1 = true, b2 = false;
b1 &= b2; //same as (b1 = b1 & b2)

Comparison operators
Comparison operators allow you to compare one value to another.

The following table lists the comparison operators:

The equality operator can be used to compare two object variables of the
same type. In this case, the result of the comparison is true only if both
variables refer to the same object. Here is a demonstration:

m1 = new Mammal();
m2 = new Mammal();
boolean b1 = m1 == m2; //b1 is false

m1 = m2;
boolean b2 = m1 == m2; //b2 is true

The result of the first equality test is false because m1 and m2 refer to different
objects (even though they are of the same type). The second comparison is
true because both variables now represent the same object.

Note Most of the time, however, the equals() method in the Object class is used instead
of the comparison operator. The comparing class must be subclassed from Object
before objects of the comparing class can be compared using equals().

Bitwise operators
Bitwise operators are of two types: shift operators and Boolean operators. The
shift operators are used to shift the binary digits of an integer to the right or the
left. Consider the following example (the short integer type is used instead of
int for conciseness):

short i = 13; //i is 0000000000001101
i = i << 2; //i is 0000000000110100

Operator Definition Assoc.

< Less than Left

> Greater than Left

<= Less than or equal to Left

>= Greater than or equal to Left

== Equal to Left

!= Not equal to Left

Chapter 3: Java language structure 23

Apply ing concepts

In the second line, the bitwise left shift operator shifted all the bits of i two
positions to the left.

Both of these are positive numbers. They can be represented from the first 1,
like this: 1101, 110100. Unless otherwise specified, the signed bit is assumed
to be positive: 0...1101, 0...110100. To reverse the sign of a binary number,

1 Reverse all the bits:

0000000000001101 becomes
1111111111110010

2 Then add 1:

1111111111110011

Note The shifting operation is different in Java than in C/C++ in how it is used with
signed integers. A signed integer is one whose left-most bit is used to indicate the
integer’s positive or negative sign: the bit is 1 if the integer is negative, 0 if positive.
In Java, integers are always signed, whereas in C/C++ they are signed only by
default. In most implementations of C/C++, a bitwise shift operation does not
preserve the integer’s sign; the sign bit would be shifted out. In Java, however, the
shift operators preserve the sign bit (unless you use the >>> to perform an
unsigned shift). This means that the sign bit is duplicated, then shifted.

The following table lists Java’s bitwise operators:

Operator Definition Assoc.

~ Bitwise NOT

Inverts each bit of the operand, so each 0 becomes 1 and vice
versa.

Right

<< Signed left shift

Shifts the bits of the left operand to the left, by the number of
digits specified in the right operand, with 0’s shifted in from the
right. High-order bits are lost.

Left

>> Signed right shift

Shifts the bits of the left operand to the right, by the number of
digits specified on the right. If the left operand is negative, 0’s
are shifted in from the left; if it is positive, 1’s are shifted in. This
preserves the original sign.

Left

>>> Zero-fill right shift

Shifts right, but always fills in with 0’s.

Left

& Bitwise AND

Can be used with = to assign the value.

Left

| Bitwise OR

Can be used with = to assign the value.

Left

^ Bitwise XOR

Can be used with = to assign the value.

Left

<<= Left-shift with assignment Left

>>= Right-shift with assignment Left

>>>= Zero-fill right shift with assignment Left

24 Gett ing Started with Java

Apply ing concepts

?:, the ternary operator
?: is a ternary operator that Java borrowed from C. It provides a handy
shortcut to create a very simple if-then-else kind of statement.

This is the syntax:

<expression 1, a Boolean condition> ? <expression 2> : <expression 3>;

The Boolean condition, expression 1, is evaluated first. If it resolves true or if its
resolution depends on the rest of the ternary statement, then expression 2 is
evaluated. If expression 2 is false, expression 3 is used. For example:

int x = 3, y = 4, max;
max = (x > y) ? x : y;

Here, max is assigned the value of x or y, depending on which is greater. The
value of x is not greater than the value of y, so the value of y is assigned to max.

Using methods

You know that methods are what get things done. Methods cannot contain
other methods, but they can contain variables and class references.

Here is a brief example to review. This method helps a music store with its
inventory:

//Declare the method: return type, name, args:
public int getTotalCDs(int numRockCDs, int numJazzCDs, int numPopCDs) {
 //Declare the variable totalCDs. The other three variables are declared
 elsewhere:
 int totalCDs = numRockCDs + numJazzCDs + numPopCDs;
 //Make it do something useful. In this case, print this line on

the screen:
 System.out.println("Total CDs in stock = " + totalCDs);
}

In Java, you can define more than one method with the same name, as long
as the different methods require different arguments. For instance, both public
int getTotalCDs(int numRockCDs, int numJazzCDs, in numPopCDs) and public int
getTotalCDs(int salesRetailCD, int salesWholesaleCD) are legal in the same
class. Java will recognize the different patterns of arguments (the method
signatures) and apply the correct method when you make a call. Assigning the
same name to different methods is called method overloading.

To access a method from other parts of a program, you must first create an
instance of the class the method resides in, and then use that object to call the
method:

//Create an instance totalCD of the class Inventory:
Inventory totalCD = new Inventory();

//Access the getTotalCDs() method inside of Inventory, storing the value
 in total:
int total = totalCD.getTotalCDs(myNumRockCDs, myNumJazzCDs, myNumPopCDs);

Chapter 3: Java language structure 25

Apply ing concepts

Using arrays

Note that the size of an array is not part of its declaration. The memory an
array requires is not actually allocated until you initialize the array.

To initialize the array (and allocate the needed memory), you must use the new
operator as follows:

int studentID[] = new int[20]; //Creates array of 20 int
elements.
char[] grades = new char[20]; //Creates array of 20 char
elements.
float[][] coordinates = new float[10][5]; //2-dimensional, 10x5 array
 of float elements.

Note In creating two-dimensional arrays, the first array number defines number of
rows and the second array number defines number of columns.

Java counts positions starting with 0. This means the elements of a
20-element array will be numbered from 0 to 19: the first element will be 0, the
second will be 1, and so on. Be careful how you count when you’re working
with arrays.

When an array is created, the value of all its elements is null or 0; values are
assigned later.

Note The use of the new operator in Java is similar to that of the malloc command in
C and the new operator in C++.

To initialize an array, specify the values of the array elements inside a set of
curly braces. For multi-dimensional arrays, use nested curly braces. For
example:

char[] grades = {'A', 'B', 'C', 'D', 'F');
float[][] coordinates = {{0.0, 0.1}, {0.2, 0.3}};

The first statement creates a char array called grades. It initializes the array’s
elements with the values ‘A’ through ‘F’. Notice that we did not have to use
the new operator to create this array; by initializing the array, enough memory is
automatically allocated for the array to hold all the initialized values. Therefore,
the first statement creates a char array of 5 elements.

The second statement creates a two-dimensional float array called
coordinates, whose size is 2 by 2. Basically, coordinates is an array consisting
of two array elements: the array’s first row is initialized to 0.0 and 0.1, and the
second row to 0.2 and 0.3.

Using constructors

A class is a full piece of code, enclosed in a pair of curly braces, that defines a
logically coherent set of variables, attributes, and actions. A package is a
logically associated set of classes.

Note that a class is just a set of instructions. It doesn’t do anything itself. It’s
analogous to a recipe: you can make a cake from the right recipe, but the

26 Gett ing Started with Java

Apply ing concepts

recipe is not the cake, it’s only the instructions for it. The cake is an object you
have created from the instructions in the recipe. In Java, we would say that we
have created an instance of cake from the recipe Cake.

The act of creating an instance of a class is called instantiating that object.
You instantiate an object of a class.

To instantiate an object, use the assignment operator (=), the keyword new, and
a special kind of method called a constructor. A call to a constructor is the
name of the class being instantiated followed by a pair of parentheses.
Although it looks like a method, it takes a class’s name; that’s why it’s
capitalized:

<ClassName> <instanceName> = new <Constructor()>;

For example, to instantiate a new object of the Geek class and name the
instance thisProgrammer:

Geek thisProgrammer = new Geek();

A constructor sets up a new instance of a class: it initializes all the variables in
that class, making them immediately available. It can also perform any start-up
routines required by the object.

For example, when you need to drive your car, the first thing you do is open
the door, climb in, put the clutch in, and start the engine. (After that, you can
do all the things normally involved in driving, like getting into gear and using
the accelerator.) The constructor handles the programmatic equivalents of the
actions and objects involved in getting in and starting the car.

Once you have created an instance, you can use the instance name to access
members of that class.

For more information on constructors, see “Case study: A simple OOP
example” on page 74.

Member access

The access operator (.) is used to access members inside of an instantiated
object. The basic syntax is:

<instanceName>.<memberName>

Precise syntax of the member name depends on the kind of member. These
can include variables (<memberName>), methods (<memberName>()), or subclasses
(<MemberName>).

You can use this operation inside of other syntax elements wherever you need
to access a member. For example:

setColor(Color.pink);

This method needs a color to do its job. The programmer used an access
operation as an arg to access the variable pink within the class Color.

Chapter 3: Java language structure 27

Apply ing concepts

Arrays
Array elements are accessed by subscripting, or indexing, the array variable.
To index an array variable, follow the array variable’s name with the element’s
number (index) surrounded by square brackets. Arrays are always indexed
starting from 0. If you have an array with 9 elements, the first element is the 0
index and the last element is the 8 index. (Coding as if elements were
numbered from 1 is a common mistake.)

In the case of multi-dimensional arrays, you must use an index for each
dimension to access an element. The first index is the row and the second
index is the column.

For example:

firstElement = grades[0]; //firstElement = 'A'
fifthElement = grades[4]; //fifthElement = 'F'
row2Col1 = coordinates[1][0]; //row2Col1 = 0.2

The following snippet of code demonstrates one use of arrays. It creates an
array of 5 int elements called intArray, then uses a for loop to store the
integers 0 through 4 in the elements of the array:

int[] intArray = new int [5];
int index;
for (index = 0; index < 5; index++) intArray [index] = index;

This code increments the index variable from 0 to 4, and at every pass, it stores
its value in the element of intArray indexed by the variable index.

28 Gett ing Started with Java

Chapter 4 : Java language control 29

C h a p t e r

4
Chapter4Java language control

This section provides you with foundational concepts about control of the Java
programming language that will be used throughout this chapter. It assumes
you understand general programming concepts, but have little or no
experience with Java.

Terms
The following terms and concepts are discussed in this chapter:
� String handling
� Type casting and conversion
� Return types and statements
� Flow control statements

String handling

The String class provides methods that allow you to get substrings or to index
characters within a string. However, the value of a declared String can’t be
changed. If you need to change the String value associated with that variable,
you must point the variable to a new value:

String text1 = new String("Good evening."); // Declares text1 and assigns
 a value.
text1 = "Hi, honey, I'm home!" // Assigns a new value to
 text1.

30 Gett ing Started with Java

Terms

Indexing allows you to point to a particular character in a string. Java counts
each position in a string starting from 0, so that the first position is 0, the
second position is 1, and so on. This gives the eighth position in a string an
index of 7.

The StringBuffer class provides a workaround. It also offers several other
ways to manipulate a string’s contents. The StringBuffer class stores your
string in a buffer (a special area of memory) whose size you can explicitly
control; this allows you to change the string as much as necessary before you
have to declare a String and make the string permanent.

Generally, the String class is for string storage and the StringBuffer class is for
string manipulation.

Type casting and conversion

Values of data types can be converted from one type to another. Class values
can be converted from one class to another in the same class hierarchy. Note
that conversion does not change the original type of that value, it only changes
the compiler’s perception of it for that one operation.

Obvious logical restrictions apply. A widening conversion—from a smaller type
to a larger type—is easy, but a narrowing conversion—converting from a
larger type (for instance, double or Mammal) to a smaller type (for instance, float
or Bear)—risks your data, unless you’re certain that your data will fit into the
parameters of the new type. A narrowing conversion requires a special
operation called a cast.

The following table shows widening conversions of primitive values. These
won’t risk your data:

To cast a data type, put the type you want to cast to in parentheses
immediately before the variable you want to cast: (int)x. This is what it looks
like in context, where x is the variable being cast, float is the original data
type, int is the target data type, and y is the variable storing the new value:

float x = 1.00; //declaring x as a float
int y = (int)x; //casting x to an int named y

This assumes that the value of x would fit inside of int. Note that x’s decimal
values are lost in the conversion. Java rounds decimals down to the nearest
whole number.

Original Type Converts to Type

byte short, char, int, long, float, double

short int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

Chapter 4 : Java language control 31

Apply ing concepts

Return types and statements

You know that a method declaration requires a return type, just as a variable
declaration requires a data type. The return types are the same as the data
types (int, boolean, String, and so on), with the exception of void.

void is a special return type. It signifies that the method doesn’t need to give
anything back when it’s finished. It is most commonly used in action methods
that are only required to do something, not to pass any information on.

All other return types require a return statement at the end of the method. You
can use the return statement in a void method to leave the method at a certain
point, but otherwise it’s needless.

A return statement consists of the word return and the string, data, variable
name, or concatenation required:

return numCD;

It’s common to use parentheses for concatenations:

return ("Number of files: " + numFiles);

Flow control statements

Flow control statements tell the program how to order and use the information
that you give it. With flow control, you can reiterate statements, conditionalize
statements, create recursive loops, and control loop behavior.

Flow control statements can be grouped into three kinds of statements:
iteration statements such as for, while, and do-while, which create loops;
selection statements such as switch, if, if-else, if-then-else, and if-else-if
ladders, which conditionalize the use of statements; and the jump statements
break, continue, and return, which shift control to another part of your program.

A special form of flow control is exception handling. Exception handling
provides a structured means of catching runtime errors in your program and
making them return meaningful information about themselves. You can also
set the exception handler to perform certain actions before allowing the
program to terminate.

Applying concepts
The following sections demonstrate how to apply the terms and concepts
introduced earlier in this chapter.

Escape sequences

A special type of character literal is called an escape sequence. Like C/C++,
Java uses escape sequences to represent special control characters and
characters that cannot be printed. An escape sequence is represented by a

32 Gett ing Started with Java

Apply ing concepts

backslash (\) followed by a character code. The following table summarizes
these escape sequences:

Non-decimal numeric characters are escape sequences. An octal character is
represented by three octal digits, and a Unicode character is represented by
lowercase u followed by four hexadecimal digits. For example, the decimal
number 57 is represented by the octal code \071 and the Unicode sequence
\u0039.

The sample string in the following statement prints out the words Name and
"Hildegaard von Bingen" separated by two tabs on one line, and prints out ID
and "1098", also separated by two tabs, on the second line:

String escapeDemo = new
 String("Name\t\t\"Hildegaard von Bingen\"\nID\t\t\"1098\"");

Strings
The string of characters you specify in a String is a literal; the program will use
exactly what you specify, without changing it in any way. However, the String
class provides the means to chain strings together (called string
concatenation), see and use what’s inside of strings (compare strings, search
strings, or extract a substring from a string), and convert other kinds of data to
strings. Some examples follow:
� Declare variables of the String type and assign values:

String firstNames = "Joseph, Elvira and Hans";
String modifier = " really ";
String tastes = "like chocolate.";

� Get a substring from a string, selecting from the ninth column to the end of
the string:

String sub = firstNames.substring(8); // "Elvira and Hans"

Character Escape Sequence

Backslash \\

Backspace \b

Carriage return \r

Double quote \"

Form feed \f

Horizontal tab \t

New line \n

Octal character \DDD

Single quote \'

Unicode character \uHHHH

Chapter 4 : Java language control 33

Apply ing concepts

� Compare part of the substring to another string, convert a string to capital
letters, then concatenate it with other strings to get a return value:

boolean bFirst = firstNames.startsWith("Emine"); // Returns false in
 this case.
String caps = modifier.toUpperCase(); // Yields " REALLY "
return firstNames + caps + tastes; // Returns the line:
 // Elvira and Hans
 REALLY like chocolate.

For more information on how to use the String class, see Sun’s API
documentation at http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html.

StringBuffer
If you want more control over your strings, use the StringBuffer class. This
class is part of the java.lang package.

StringBuffer stores your strings in a buffer so that you don’t have to declare a
permanent String until you need it. Some of the advantages to this are that
you don’t have to redeclare a String if its content changes. You can reserve a
size for the buffer larger than what is already in there.

StringBuffer provides methods in addition to those in String that allow you to
modify the contents of strings in new ways. For instance, StringBuffer’s
setCharAt() method changes the character at the index specified in the first
parameter, to the new value specified in the second parameter:

StringBuffer word = new StringBuffer ("yellow");
word.setCharAt (0, 'b'); //word is now "bellow"

Determining access

By default, classes are available to all of the members inside them, and the
members within the class are available to each other. However, this access
can be widely modified.

Access modifiers determine how visible a class’s or member’s information is to
other members and classes. Access modifiers include:
� public: A public member is visible to members outside the public member’s

scope, as long as the parent class is visible. A public class is visible to all
other classes in all other packages.

� private: A private member’s access is limited to the member’s own class.
� protected: A protected member can be accessed by other members of its

class and by members of classes in the same package (as long as the
member’s parent class is accessible), but not from other packages. A
protected class is available to other classes in the same package, but not to
other packages.

� If no access modifier is declared, the member is available to all classes
inside the parent package, but not outside the package.

34 Gett ing Started with Java

Apply ing concepts

Let’s look at this in context:

class Waistline {
 private boolean invitationGiven = false; // This is private.
 private int weight = 170; // So is this.

 public void acceptInvitation() { // This is public.
 invitationGiven = true;
 }

 //Class JunkFood is declared and object junkFood is
 instantiated elsewhere:
 public void eat(JunkFood junkFood) {

 /*This object only accepts more junkFood if it has an invitation
 * and if it is able to accept. Notice that isAcceptingFood()
 * checks to see if the object is too big to accept more food:
 */
 if (invitationGiven && isAcceptingFood()) {

 /*This object's new weight will be whatever its current weight
 * is, plus the weight added by junkFood. Weight increments
 * as more junkFood is added:
 */
 weight += junkFood.getWeight();
 }
 }

 //Only the object knows if it's accepting food:
 private boolean isAcceptingFood() {
 // This object will only accept food if there's room:
 return (isTooBig() ? false : true);
 }

 //Objects in the same package can see if this object is too big:
 protected boolean isTooBig() {
 //It can accept food if its weight is less than 185:
 return (weight > 185) ? true : false;
 }
}

Notice that isAcceptingFood() and invitationGiven are private. Only members
inside this class know if this object is capable of accepting food or if it has an
invitation.

isTooBig() is protected. Only classes inside this package can see if this object’s
weight exceeds its limit or not.

The only methods that are exposed to the outside are acceptInvitation() and
eat(). Any class can perceive these methods.

Chapter 4 : Java language control 35

Apply ing concepts

Handling methods

The main() method deserves special attention. It is the point of entry into a
program (except an applet). It’s written like this:

public static void main(String[] args) {
 ...
}

There are specific variations allowed inside the parentheses, but the general
form is consistent.

The keyword static is important. A static method is always associated with its
entire class, rather than with any particular instance of that class. (The
keyword static can also be applied to classes. All of the members of a static
class are associated with the class’s entire parent class.) static methods are
also called class methods.

Since the main() method is the starting-point within the program, it must be
static in order to remain independent of the many objects the program may
generate from its parent class.

static’s class-wide association affects how you call a static method and how
you call other methods from within a static method. static members can be
called from other types of members by simply using the name of the method,
and static members can call each other the same way. You don’t need to
create an instance of the class in order to access a static method within it.

To access nonstatic members of a nonstatic class from within a static
method, you must instantiate the class of the member you want to reach and
use that instance with the access operator, just as you would for any other
method call.

Notice that the arg for the main() method is a String array, with other args
allowed. Remember that this method is where the compiler starts working.
When you pass an arg from the command line, it’s passed as a string to the
String array in the declaration of the main() method, and uses that arg to start
running the program. When you pass a data type other than a String, it will still
be received as a string. You must code into the body of the main() method the
required conversion from String to the data type needed.

Using type conversions

Review Type conversion is the process of converting the data type of a variable for the
duration of a specific operation. The standard form for a narrowing conversion
is called a cast; it may risk your data.

36 Gett ing Started with Java

Apply ing concepts

Implicit casting
There are times when a cast is performed implicitly by the compiler. The
following is an example:

if (3 > 'a') {
 ...
}

In this case, the value of 'a' is converted to an integer value (the ASCII value
of the letter a) before it is compared with the number 3.

Explicit conversion

Syntax for a widening cast is simple:

<nameOfOldValue> = (<new type>) <nameOfNewValue>

Java doesn’t want you to make a narrowing conversion, so you must be more
explicit when doing so:

floatValue = (float)doubValue; // To float "floatValue"
 // from double "doubValue".

longValue = (long)floatValue; // To long "longValue"
 // from float "floatValue".
 // This is one of four possible
 constructions.

(Note that decimals are rounded down by default.) Be sure you thoroughly
understand the syntax for the types you want to cast; this process can get
messy.

For more information, see “Converting and casting data types” on page 125.

Flow control

Review There are three types of loop statements: iteration statements (for, while, and
do-while) create loops, selection statements (switch and all the if statements)
tell the program under what circumstances the program will use statements,
and jump statements (break, continue, and return) shift control out to another
part of the program.

Loops
Each statement in a program is executed once. However, it is sometimes
necessary to execute statements several times until a condition is met. Java
provides three ways to loop statements: while, do and for loops.

Chapter 4 : Java language control 37

Apply ing concepts

� The while loop

The while loop is used to create a block of code that will execute as long as
a particular condition is met. This is the general syntax of the while loop:

while (<boolean condition statement>) {
 <code to execute as long as that condition is true>
}

The loop first checks the condition. If the condition’s value is true, it
executes the entire block. It then reevaluates the condition, and repeats this
process until the condition becomes false. At that point, the loop stops
executing. For instance, to print “Looping” 10 times:

int x = 0; //Initiates x at 0.
while (x < 10){ //Boolean condition statement.
 System.out.println("Looping"); //Prints "Looping" once.
 x++; //Increments x for the next iteration.
}

When the loop first starts executing, it checks whether the value of x is less
than 10. Since it is, the body of the loop is executed. In this case, the word
“Looping” is printed on the screen, and then the value of x is incremented.
This loop continues until the value of x equals 10, when the loop stops
executing.

Unless you intend to write an infinite loop, make sure there is some point in
the loop where the condition’s value becomes false and the loop
terminates. You can also terminate a loop by using the return, continue, or
break statements.

� The do-while loop

The do-while loop is similar to the while loop, except that it evaluates the
condition after the statements instead of before. The following code shows
the previous while loop converted to a do loop:

int x = 0;
do{
 System.out.println("Looping");
 x++;
}
while (x < 10);

The main difference between the two loop constructs is that the do-while
loop is always going to execute at least once, but the while loop won’t
execute at all if the initial condition is not met.

38 Gett ing Started with Java

Apply ing concepts

� The for loop

The for loop is the most powerful loop construct. Here is the general syntax
of a for loop:

for (<initialization> ; <boolean condition> ; <iteration>) {
 <execution code>
}

The for loop consists of three parts: an initialization expression, a Boolean
condition expression, and an iteration expression. The third expression
usually updates the loop variable initialized in the first expression. Here is
the for loop equivalent of the previous while loop:

for (int x = 0; x < 10; x++){
 System.out.println("Looping");
}

This for loop and its equivalent while loop are very similar. For almost every
for loop, there is an equivalent while loop.

The for loop is the most versatile loop construct, but still very efficient. For
example, a while loop and a for loop can both add the numbers one
through twenty, but a for loop can do it in one line less.

While:

int x = 1, z = 0;
while (x <= 20) {
 z += x;
 x++;
}

For:

int z = 0;
for (int x=1; x <= 20; x++) {
 z+= x;
}

We can tweak the for loop to make the loop execute half as many times:

for (int x=1,y=20, z=0; x<=10 && y>10; x++, y--) {
 z+= x+y;
}

Let’s break this loop up into its four main sections:

a The initialization expression: int x =1, y=20, z=0

b The Boolean condition: x<=10 && y>10

c The iteration expression: x++, y--

d The main body of executable code: z+= x + y

Chapter 4 : Java language control 39

Apply ing concepts

Loop control statements
These statements add control to the loop statements.
� The break statement

The break statement will allow you to exit a loop structure before the test
condition is met. Once a break statement is encountered, the loop
immediately terminates, skipping any remaining code. For instance:

int x = 0;
while (x < 10){
 System.out.println("Looping");
 x++;
 if (x == 5)
 break;
 else
 ... //do something else
}

In this example, the loop will stop executing when x equals 5.
� The continue statement

The continue statement is used to skip the rest of the loop and resume
execution at the next loop iteration.

for (int x = 0 ; x < 10 ; x++){
 if(x == 5)
 continue; //go back to beginning of loop with x=6
 System.out.println("Looping");
}

This example will not print “Looping” if x is 5, but will continue to print for 6, 7,
8, and 9.

Conditional statements

Conditional statements are used to provide your code with decision-making
capabilities. There are two conditional structures in Java: the if-else
statement, and the switch statement.
� The if-else statement

The syntax of an if-else statement is as follows:

if (<condition1>) {
 ... //code block 1
}
else if (<condition2>) {
 ... //code block 2
}
else {
 ... //code block 3
}

40 Gett ing Started with Java

Apply ing concepts

The if-else statement is typically made up of multiple blocks. Only one of
the blocks will execute when the if-else statement executes, based on
which of the conditions is true.

The else-if and else blocks are optional. Also, the if-else statement is not
restricted to three blocks: it can contain as many else-if blocks as needed.

The following examples demonstrate the use of the if-else statement:

if (x % 2 == 0)
 System.out.println("x is even");
else
 System.out.println("x is odd");
if (x == y)
 System.out.println("x equals y");
else if (x < y)
 System.out.println("x is less than y");
else
 System.out.println("x is greater than y");

� The switch statement

The switch statement is similar to the if-else statement. Here is the general
syntax of the switch statement:

switch (<expression>){
 case <value1>: <codeBlock1>;
 break;
 case <value2>: <codeBlock2>;
 break;
 default : <codeBlock3>;
}

Note the following:
� If there is only one statement in a code block, the block does not need to

be enclosed in braces.
� The default code block corresponds to the else block in an if-else

statement.
� The code blocks are executed based on the value of a variable or

expression, not on a condition.
� The value of <expression> must be of an integer type, or a type that can

be safely converted to int, such as char.
� The case values must be constant expressions that are of the same data

type as the original expression.
� The break keyword is optional. It is used to end the execution of the

switch statement once a code block executes. If it’s not used after
codeBlock1, then codeBlock2 executes right after codeBlock1 finishes
executing.

� If a code block should execute when expression is one of a number of
values, each of the values must be specified like this: case <value>:.

Chapter 4 : Java language control 41

Apply ing concepts

Here is an example, where c is of type char:

switch (c){
 case '1': case '3': case '5': case '7': case '9':
 System.out.println("c is an odd number");
 break;
 case '0': case '2': case '4': case '6': case '8':
 System.out.println("c is an even number");
 break;
 case ' ':
 System.out.println("c is a space");
 break;
 default :
 System.out.println("c is not a number or a space");
 }

The switch will evaluate c and jump to the case statement whose value is
equal to c. If none of the case values equal c, the default section will be
executed. Notice how multiple values can be used for each block.

Handling exceptions

Exception handling provides a structured means of catching run-time errors in
your program and making them return meaningful information about
themselves. You can also set the exception handler to perform certain actions
before allowing the program to terminate. Exception handling uses the
keywords try, catch, and finally. A method can declare an exception by using
the throws and throw keywords.

In Java, an exception can be a subclass of the class java.lang.Exception or
java.lang.Error. When a method declares that an exception has occurred, we say
that it throws an exception. To catch an exception means to handle an exception.

Exceptions that are explicitly declared in the method declaration must be
caught, or the code will not compile. Exceptions that are not explicitly declared
in the method declaration could still halt your program when it runs, but it will
compile. Note that good exception handling makes your code more robust.

To catch an exception, you enclose the code which might cause the exception
in a try block, then enclose the code you want to use to handle the exception
in a catch block. If there is important code (such as clean-up code) that you
want to make sure will run even if an exception is thrown and the program gets
shut down, enclose that code in a finally block at the end. Here is an example
of how this works:

try {
 ... // Some code that might throw an exception goes here.
}
catch(Exception e) {
 ... // Exception handling code goes here.
 // This next line outputs a stack trace of the exception:
 e.printStackTrace();
}

42 Gett ing Started with Java

Apply ing concepts

finally {
 ... // Code in here is guaranteed to be executed,
 // whether or not an exception is thrown in the try block.
}

The try block should be used to enclose any code that might throw an
exception that needs to be handled. If no exception is thrown, all of the code in
the try block will execute. If, however, an exception is thrown, then the code in
the try block stops executing at the point where the exception is thrown and
the control flows to the catch block, where the exception is handled.

You can do whatever you need to do to handle the exception in one or more
catch blocks. The simplest way to handle exceptions is to handle all of them in
one catch block. To do this, the argument in parentheses after catch should
indicate the class Exception, followed by a variable name to assign to this
exception. This indicates that any exception which is an instance of
java.lang.Exception or any of its subclasses will be caught; in other words, any
exception.

If you need to write different exception handling code depending on the type of
exception, you can use more than one catch block. In that case, instead of
passing Exception as the type of exception in the catch argument, you indicate
the class name of the specific type of exception you want to catch. This may
be any subclass of Exception. Keep in mind that the catch block will always
catch the indicated type of exception and any of its subclasses.

Code in the finally block is guaranteed to be executed, even if the try block
code does not complete for some reason. For instance, the code in the try
block might not complete if it throws an exception, but the code in the finally
block will still execute. This makes the finally block a good place to put
clean-up code.

If you know that a method you’re writing is going to be called by other code,
you might leave it up to the calling code to handle the exception that your
method might throw. In that case, you would simply declare that the method
can throw an exception. Code that might throw an exception can use the
throws keyword to declare an exception. This can be an alternative to catching
the exception, since if a method declares that it throws an exception, it does
not have to handle that exception.

Here is an example of using throws:

public void myMethod() throws SomeException {
 ... // Code here might throw SomeException, or one of its subclasses.
 // SomeException is assumed to be a subclass of Exception.
}

You can also use the throw keyword to indicate that something has gone
wrong. For instance, you might use this to throw an exception of your own
when a user has entered invalid information and you want to show them an
error message. To do this, you would use a statement like:

throw new SomeException("invalid input");

Chapter 5: The Java c lass l ibrar ies 43

C h a p t e r

5
Chapter 5The Java class libraries

Most programming languages rely on pre-built libraries of classes to support
certain functionality. In the Java language, these groups of related classes
called packages vary by Java edition. Each edition is used for specific
purposes, such as applications, enterprise applications, and consumer
products.

Java 2 Platform editions
The Java 2 Platform is available in several editions used for various purposes.
Because Java is a language that can run anywhere and on any platform, it is
used in a variety of environments: Internet, intranets, consumer electronic
products, and computer applications. Due to Java’s varied applications, it has
been packaged in several editions: Java 2 Standard Edition (J2SE), Java 2
Enterprise Edition (J2EE), and Java 2 Micro Edition (J2ME). In some cases,
as in the development of enterprise applications, a larger set of packages is
used. In other cases, as in consumer electronic products, only a small portion
of the language is used. Each edition contains a Java 2 Software

44 Gett ing Started with Java

Java 2 Plat form edit ions

Development Kit (SDK) used to develop applications and a Java 2 Runtime
Environment (JRE) used to run applications.

Standard Edition

The Java 2 Platform, Standard Edition (J2SE) provides developers with a
feature-rich, stable, secure, cross-platform development environment. This
Java edition supports such core features as database connectivity, user
interface design, input/output, and network programming and includes the
fundamental packages of the Java language.

See also
� Java 2 Platform Standard Edition Overview at http://java.sun.com/j2se/1.4/
� “Introducing the Java Platform” at http://developer.java.sun.com/developer/

onlineTraining/new2java/programming/intro/

� “Java 2 Standard Edition packages” on page 45

Enterprise Edition

The Java 2, Enterprise Edition (J2EE) provides the developer with tools to
build and deploy multitier enterprise applications. J2EE includes the J2SE
packages as well as additional packages which support Enterprise JavaBeans
development, Java servlets, JavaServer Pages, XML, and flexible transaction
control.

See also
� “Java 2 Platform Enterprise Edition Overview” at http://java.sun.com/j2ee/

overview.html

� Java 2 Enterprise Edition technical articles at http://developer.java.sun.com/
developer/technicalArticles/J2EE/index.html

Table 5.1 Java 2 Platform editions

Java 2 Platform Abbreviation Description

Standard Edition J2SE Contains classes that are the core of the
Java language.

Enterprise Edition J2EE Contains J2SE classes and additional
classes for developing enterprise
applications.

Micro Edition J2ME Contains a subset of J2SE classes and
is used in consumer electronic products.

Chapter 5: The Java c lass l ibrar ies 45

Java 2 Standard Edi t ion packages

Micro Edition

The Java 2, Micro Edition (J2ME) is used in a variety of consumer electronic
products, such as pagers, smart cards, cell phones, hand-held PDAs, and
set-top boxes. While J2ME provides the same Java language advantages of
code portability across platforms, the ability to run anywhere, and safe network
delivery as J2SE and J2EE, it uses a smaller set of packages. J2ME includes
a subset of the J2SE packages with an additional package specific to the
Micro Edition, javax.microedition.io. In addition, J2ME applications are
upwardly scalable to work with J2SE and J2EE.

See also
� “Java 2 Platform Micro Edition Overview” at http://java.sun.com/j2me/
� Consumer & Embedded Products technical articles at

http://developer.java.sun.com/developer/technicalArticles/ConsumerProducts/
index.html

Java 2 Standard Edition packages
The Java 2 Platform, Standard Edition (J2SE) comes with a very impressive
library that includes support for database connectivity, user interface design,
input and output (I/O), and network programming. These libraries are
organized into groups of related classes called packages. The following table
briefly describes some of these packages.

Table 5.2 J2SE packages

Package Package Name Description

Language java.lang Classes that contain the main core of the
Java language.

Utilities java.util Support for utility data structures.

I/O java.io Support for various types of input/output.

Text java.text Localization support for handling text,
dates, numbers, and messages.

Math java.math Classes for performing arbitrary-precision
integer and floating-point arithmetic.

AWT java.awt User interface design and event-handling.

Swing javax.swing Classes for creating all-Java, lightweight
components that behave similarly on all
platforms.

Javax javax Extensions to the Java language.

Applet java.applet Classes for creating applets.

Beans java.beans Classes for developing JavaBeans.

Reflection java.lang.reflect Classes used to obtain runtime class
information.

46 Gett ing Started with Java

Java 2 Standard Edi t ion packages

Note Java packages vary by Java 2 Platform edition. The Java 2 Software
Development Kit (SDK) is available in several editions used for various
purposes: Standard Edition (J2SE), Enterprise Edition (J2EE), and Micro
Edition (J2ME).

See also
� “Java 2 Platform editions” on page 43
� “Java 2 Platform, Standard Edition, API Specification” in the JDK API

Documentation
� Sun’s tutorial, “Creating and using packages” at

http://www.java.sun.com/docs/books/tutorial/java/interpack/packages.html

� “Packages” in “Managing paths” in Building Applications with JBuilder

The Language package: java.lang

One of the most important packages in the Java class library is the java.lang
package. This package, which is automatically imported into every Java
program, contains the language’s main support classes which are
fundamental to the design of the Java programming language.

See also
� java.lang in the JDK API Documentation
� “Key java.lang classes” on page 53

XML
processing

org.w3c.dom
org.xml.sax
javax.xml.transform
javax.xml.parsers

Java API for XML processing (JAXP)
includes the basic facilities for working
with XML documents: Document Object
Model (DOM), Simple API for XML
Parsing (SAX), XSL Transformations
(XSLT), and a pluggability layer for
parsers.

SQL java.sql
javax.sql

Support for accessing and processing
data in databases using the JDBC API.

RMI java.rmi Support for distributed programming.

Networking java.net Classes that support development of
networking applications.

Security java.security Support for cryptographic security.

Table 5.2 J2SE packages (continued)

Package Package Name Description

Chapter 5: The Java c lass l ibrar ies 47

Java 2 Standard Edi t ion packages

The Utility package: java.util

The java.util package contains various utility classes and interfaces that are
crucial for Java development. Classes in this package support the collections
framework and date and time facilities.

See also
� java.util in the JDK API Documentation
� “Key java.util classes” on page 59

The I/O package: java.io

The java.io package provides support for reading and writing data to and from
different devices. Java also supports input and output of character streams. In
addition, the File class in the java.io package uses an abstract,
system-independent representation of file and directory pathnames for better
support of non-UNIX platforms. The classes in this package are divided into
the following groups: input stream classes, output stream classes, file classes,
and the StreamTokenizer class.

See also
� java.io in the JDK API Documentation
� “Key java.io classes” on page 62

The Text package: java.text

The java.text package provides classes and interfaces that provide
localization support for handling text, dates, numbers, and messages. Classes
in this package, such as NumberFormat, DateFormat, and Collator, can format
numbers, date and time, and strings in a locale-specific way. Other classes
support parsing, searching, and sorting of strings.

See also
� java.text in the JDK API Documentation
� “Internationalizing programs with JBuilder” in Building Applications with

JBuilder

The Math package: java.math

The java.math package, not to be confused with the java.lang.Math class,
provides classes for performing arbitrary-precision integer arithmetic
(BigInteger) and arbitrary-precision floating point arithmetic (BigDecimal).

48 Gett ing Started with Java

Java 2 Standard Edi t ion packages

The BigInteger class provides support for representing arbitrarily large
integers.

The BigDecimal class is used for calculations requiring decimal support, such
as monetary calculations, and also provides operations for basic arithmetic,
scale manipulation, comparison, format conversion, and hashing.

See also
� java.math in the JDK API Documentation
� java.lang.Math class in the JDK API Documentation
� “Arbitrary-Precision Math” in the JDK Guide to Features

The AWT package: java.awt

The Abstract Window Toolkit (AWT) package, part of the Java Foundation
Classes (JFC), provides support for Graphical User Interface (GUI)
programming and includes such features as user interface components,
event-handling models, layout managers, graphics and imaging tools, and
data transfer classes for cut and paste.

See also
� java.awt in the JDK API Documentation
� “Abstract Window Toolkit (AWT)” in the JDK Guide to Features
� “AWT Fundamentals” at http://developer.java.sun.com/developer/

onlineTraining/awt/

� “Tutorial: Building an applet” in Introducing JBuilder
� “Visual Design with JBuilder” in Designing Applications with JBuilder

The Swing package: javax.swing

The javax.swing package provides a set of “lightweight” (all-Java language)
components that automatically have the look and feel of any OS platform.
Swing components are 100% Pure Java versions of the existing AWT
component set, such as button, scrollbar, and label, with an additional set of
components, such as tree view, table, and tabbed pane.

Note javax packages are extensions to the core Java language.

See also
� javax.swing in the JDK API Documentation
� “Java Foundation Classes (JFC)” at http://java.sun.com/docs/books/

tutorial/post1.0/preview/jfc.html

� Sun’s Swing tutorial, “Trail: Creating a GUI with JFC/Swing” at
http://www.java.sun.com/docs/books/tutorial/uiswing/index.html

Chapter 5: The Java c lass l ibrar ies 49

Java 2 Standard Edi t ion packages

� Related chapters in Designing Applications with JBuilder:
� “Introduction”
� “Managing the component palette”
� “Using layout managers”
� “Using nested panels and layouts”
� “Tutorial: Building a Java text editor”

The Javax packages: javax

The many javax packages are extensions to the core Java language. These
include such packages as javax.swing, javax.sound, javax.rmi,
javax.transactions, and javax.naming. Developers can also author their own
custom javax packages.

See also
� javax.accessibility in the JDK API Documentation
� javax.naming in the JDK API Documentation
� javax.rmi in the JDK API Documentation
� javax.sound.midi in the JDK API Documentation
� javax.sound.sampled in the JDK API Documentation
� javax.swing in the JDK API Documentation
� javax.transaction in the JDK API Documentation

The Applet package: java.applet

The java.applet package provides the classes for creating applets, as well as
classes that applets use to communicate with its applet context, usually a web
browser. Applets are Java programs that are not intended to run on their own,
but rather to be embedded inside another application. Commonly, applets are
stored on an Internet/intranet server, called by an HTML page, and
downloaded to multiple client platforms where they are run in a Java Virtual
Machine (JVM) provided by the browser on the client machine. This delivery
and execution is done under the supervision of a Security Manager, which can
prevent applets from performing such tasks as formatting the hard drive or
opening connections to “untrusted” machines.

Due to security issues and browser JDK compatibility, it is important to fully
understand applets before developing them. Applets do not have the full
functionality of Java programs for security reasons. Applets also rely on the
browser’s JDK version which may not be current. Many of the browsers at the
time of this writing do not fully support the most recent JDK. For example,
most browsers include an older JDK version that does not support Swing.
Therefore, applets using Swing components do not run in these browsers.

50 Gett ing Started with Java

Java 2 Standard Edi t ion packages

See also
� java.applet in the JDK API Documentation
� Sun’s tutorial, “Trail: Writing applets” at http://www.java.sun.com/docs/books/

tutorial/applet/index.html

� Chapter 9, “An introduction to the Java Virtual Machine”
� “Working with applets” in the Web Application Developer’s Guide
� “Tutorial: Building an applet” in Introducing JBuilder

The Beans package: java.beans

The java.beans package contains classes related to JavaBeans development.
JavaBeans, Java classes that serve as self-contained, reusable components,
extend the Java platform’s “write once, run anywhere” capability to reusable
component development. These reusable pieces of code can be manipulated
and updated with minimal impact on the testing of the program.

See also
� java.beans in the JDK API Documentation
� JavaBeans Technology technical articles at

http://developer.java.sun.com/developer/technicalArticles/jbeans/index.html

� “Creating JavaBeans with BeansExpress” in Building Applications with
JBuilder

The Reflection package: java.lang.reflect

The java.lang.reflect package provides classes and interfaces for examining
and manipulating classes at runtime. Reflection allows access to information
about fields and methods and constructors of loaded classes. The Java code
can use this reflected information to operate on counterparts of objects.

Classes in this package provide applications such as debuggers, interpreters,
object inspectors, class browsers, and services such as Object Serialization
and JavaBeans access to public members or members declared by a class.

See also
� java.lang.reflect in the JDK API Documentation
� “Reflection” in the JDK Guide to Features

XML processing

Java, in conjunction with XML (Extensible Markup Language), provides a
portable, flexible framework for creating, exchanging, and manipulating
information between applications and over the Internet, as well as

Chapter 5: The Java c lass l ibrar ies 51

Java 2 Standard Edi t ion packages

transforming XML documents into other document types. The Java API for
XML processing (JAXP) includes the basic facilities for working with XML
documents: Document Object Model (DOM), Simple API for XML Parsing
(SAX), XSL Transformations (XSLT), and a pluggability layer for parsers.

See also
� org.w3c.dom in the JDK API Documentation
� org.xml.sax in the JDK API Documentation
� javax.xml.transform in the JDK API Documentation
� javax.xml.parsers in the JDK API Documentation
� “Java Technology & XML Home Page” at http://java.sun.com/xml/
� “XML in the Java 2 Platform” in the JDK Guide to Features
� Sun’s XML Tutorial at http://java.sun.com/xml/tutorial_intro.html

The SQL package: java.sql

The java.sql package contains classes that provide the API for accessing and
processing data in a data source. The java.sql package is also referred to as
the JDBC 2.0 (Java Database Connectivity) API. This API includes a
framework for dynamically installing different drivers to access different types
of data sources. JDBC is an industry standard that allows the Java platform to
connect with almost any database, even those written in other languages such
as Structured Query Language (SQL).

The java.sql package includes classes, interfaces, and methods for making
database connections, sending SQL statements to a database, retrieving and
updating query results, mapping SQL values, providing information about a
database, throwing exceptions, and providing security.

See also
� java.sql in the JDK API Documentation
� Sun’s tutorial, “Trail: JDBC Database Access” at http://java.sun.com/docs/

books/tutorial/jdbc/index.html

� JBuilder’s “SQL reference” in the JDataStore Developer’s Guide

The RMI package: java.rmi

The java.rmi package provides classes for Java Remote Method Invocation
(RMI). Remote Method Invocation (RMI) enables you to create distributed
Java-to-Java applications, in which the methods of remote Java objects can
be invoked from other Java virtual machines, possibly on different hosts. A
Java program can make a call on a remote object once it obtains a reference
to the remote object, either by looking up the remote object in the bootstrap
naming service provided by RMI or by receiving the reference as an argument

52 Gett ing Started with Java

Java 2 Standard Edi t ion packages

or a return value. A client can call a remote object in a server, and that server
can also be a client of other remote objects. RMI uses object serialization to
marshal and unmarshal parameters and does not truncate types, supporting
true object-oriented polymorphism.

A sample RMI application, SimpleRMI.jpr, is installed in the samples/Rmi
directory of your JBuilder installation. See the HTML project file,
SimpleRMI.html, for a description of the sample application. (This sample is a
feature of JBuilder Developer and Enterprise.)

An example of writing a distributed database application using RMI and
DataSetData is located in the samples/DataExpress/StreamableDataSets directory of
your JBuilder installation. This example includes a server application that will
take data from the employee sample table and send the data via RMI in the
form of DataSetData. A client application communicates with the server through
a custom Provider and a custom Resolver, and displays the data in a grid. (This
sample is a feature of JBuilder Enterprise.)

See also
� java.rmi in the JDK API Documentation
� “Java Remote Method Invocation (RMI)” in the JDK Guide to Features
� “The Java Remote Method Invocation - Distributed Computing for Java (a

White Paper)” at http://java.sun.com/marketing/collateral/javarmi.html

The Networking package: java.net

The java.net package contains classes for developing networking
applications. Using the socket classes, you can communicate with any server
on the Internet or implement your own Internet server. Classes are also
provided for data retrieval from the Internet.

See also
� java.net in the JDK API Documentation
� “Networking Features” in the JDK Guide to Features

The Security package: java.security

The Security package, java.security,defines classes and interfaces for the
security framework. There are two category of classes:
� Classes that implement access control and prevent untrusted code from

performing sensitive operations.
� Authentication classes that implement message digests and digital

signatures and authenticate classes and other objects.

Using these classes, developers can protect access to applets and Java code,
including applications, beans, and servlets, by creating permissions and
security policies. When code is loaded, it is assigned permissions based on

Chapter 5: The Java c lass l ibrar ies 53

Java 2 Standard Edi t ion packages

the security policy. Permissions specify which resources can be accessed,
such as read/write or connection access. The policy, which controls which
permissions are available, is usually initialized from an external configurable
policy file which defines the code’s security policy. The use of permissions and
policy allow for flexible, configurable, and extensible access control to the
code.

See also
� java.security in the JDK API Documentation
� “Security” in the JDK Guide to Features

Key java.lang classes

The Object class: java.lang.Object

The Object class in the java.lang package is the parent class or superclass of
all Java classes. This simply means that the Object class is the root of the
class hierarchy and that all Java classes are derived from it. The Object class
itself contains a constructor and several methods of importance, including
clone(), equals(), and toString().

An object that uses the clone() method simply makes a copy of itself. When a
copy is made, the new memory is allocated for the clone first, then contents of
the original object is copied into the clone object. In the following example
where the Document class implements the Cloneable interface, a copy of the
Document class containing a text and author property is created using the
clone() method. An object is not seen as cloneable unless it implements the
Cloneable interface.

Document document1 = new Document("docText.txt", "Joe Smith");
Document document2 = document1.clone();

The equals() method compares two objects of the same type for equality by
comparing the properties of both objects. It simply returns a boolean value
depending on the results of the object that calls it and the object that is passed
to it. For instance, if equals() is called by an object that passes it an object that
is identical, the equals() method returns a true value.

The toString() method returns a string representing the object. For this
method to return proper information about different types of objects, the
object’s class must override it.

Method Argument Description

clone () Creates and returns a copy of an object.

equals (Object obj) Indicates whether another object is “equal to” the
specified object.

toString () Returns a string representation of an object

54 Gett ing Started with Java

Java 2 Standard Edi t ion packages

See also
� java.lang.Object in the JDK API Documentation

Type wrapper classes

Due to performance reasons, primitive data types are not used as objects in
Java. These primitive data types include numbers, booleans, and characters.

However, some Java classes and methods require primitive data types to be
objects. Java uses wrapper classes to wrap or encapsulate the primitive type
as an object as shown in the following table.

The constructor for the wrapper classes, such as Character(char value), simply
takes an argument of the class type it is wrapping. For example, the following
code demonstrates how a Character wrapper class is constructed.

Character charWrapper = new Character('T');

Although each of these classes contains its own methods, several methods
are standard throughout each object. These methods include methods that
return a primitive type, toString(), and equals().

Each wrapper class has a method, such as charValue(), that returns the
primitive type of the wrapper class. The following code demonstrates this
using the charWrapper object. Notice that charPrimitive is a primitive data type
(declared as a char). Using this method, primitive data types can be assigned
to type wrappers.

char charPrimitive = charWrapper.charValue();

The toString() and equals() methods are used similarly as in the Object class.

Primitive type Description Wrapper

boolean True or False (1 Bit) java.lang.Boolean

byte -128 to 127 (8-bit signed integer) java.lang.Byte

char Unicode character (16-bit) java.lang.Character

double +1.79769313486231579E+308 to
+4.9406545841246544E-324 (64-bit)

java.lang.Double

float +3.40282347E+28 to +1.40239846E-45
(32-bit)

java.lang.Float

int -2147483648 to 2147483647
(32-bit signed integer)

java.lang.Integer

long -9223372036854775808 to
9223372036854775807 (64-bit signed
integer)

java.lang.Long

short -32768 to 32767 (16-bit signed integer) java.lang.Short

void An uninstantiable placeholder class to hold
a reference to the Class object representing
the primitive Java type void.

java.lang.Void

Chapter 5: The Java c lass l ibrar ies 55

Java 2 Standard Edi t ion packages

The Math class: java.lang.Math

The Math class in the java.lang package, not to be confused with the java.math
package, provides useful methods that implement common math functions.
This class is not instantiated and is declared final, so it cannot be subclassed.
Some of the methods included in this class are: sin(), cos(), exp(), log(),
max(), min(), random(), sqrt(), and tan(). The following are several examples
of these methods.

double d1 = Math.sin(45);
double d2 = 23.4;
double d3 = Math.exp(d2);
double d4 = Math.log(d3);
double d5 = Math.max(d2, Math.pow(d1, 10));

Some of these methods are overloaded to accept and return different data
types.

The Math class also declares the constants PI and E.

Note The java.math package, unlike java.lang.Math, provides support classes for
working with arbitrarily large numbers.

See also
� java.lang.Math in the JDK API Documentation
� java.math in the JDK API Documentation

The String class: java.lang.String

The String class in the java.lang package is used to represent character
strings. Unlike C/C++, Java does not use character arrays to represent strings.
Strings are constant, meaning their values cannot change once they are
created. The String class is typically constructed when the Java compiler
encounters a string in quotes. However, strings can be constructed several
ways. The following table lists several of the String’s constructors and the
arguments they accept.

Constructor Argument Description

String () Initializes a new String object.

String (String value) Initializes a new String object with the
contents of the String argument.

String (char[] value) Creates a new String that contains the
array in the same sequence.

String (char[] value, int
offset, int count)

Creates a new String that contains a
subarray of the argument.

String (StringBuffer
buffer)

Initializes a new String object with the
contents of the StringBuffer argument.

56 Gett ing Started with Java

Java 2 Standard Edi t ion packages

The String class contains several important methods that are essential when
dealing with strings. These methods are used to edit, compare, and analyze
strings. Because strings are immutable and cannot be changed, none of these
methods can change the character sequence. The StringBuffer class,
discussed in the next section, provides methods for changing strings.

The following table lists some of the more crucial methods and declares what
they accept and return.

A very efficient feature associated with many of these methods is that they are
overloaded for more flexibility. The following demonstrates how the String
class and some of its methods can be used.

Important Remember that array and String indexes begin at zero.

String s1 = new String("Hello World.");

char cArray[] = {'J', 'B', 'u', 'i', 'l', 'd', 'e', 'r'};
String s2 = new String(cArray); //s2 = "JBuilder"

int i = s1.length(); //i = 12
char c = s1.charAt(6); //c = 'W'
i = s1.indexOf('e'); //i = 1 (index of 'e' in "Hello
 World.")

String s3 = "abcdef".substring(2, 5); //s3 = "cde"
String s4 = s3.concat("f"); //s4 = "cdef"
String s5 = String.valueOf(i); //s5 = "1" (valueOf() is static)

See also
� java.lang.String in the JDK API Documentation

Method Argument Returns Description

length () int Returns the number of characters in
the string.

charAt (int index) char Returns the character at the
specified index of the string.

compareTo (String value) int Compares a string to the argument
string.

indexOf (int ch) int Returns the index location of the first
occurrence of the specified
character.

substring (int beginIndex,
int endIndex)

String Returns a new string that is a
substring of the string.

concat (String str) String Concatenates the specified String to
the end of this string.

toLowerCase () String Returns the string in lowercase.

toUpperCase () String Returns the string in uppercase.

valueOf (Object obj) String Returns the string representation of
the Object argument.

Chapter 5: The Java c lass l ibrar ies 57

Java 2 Standard Edi t ion packages

The StringBuffer class: java.lang.StringBuffer

The StringBuffer class in the java.lang package, like the String class,
represents a sequence of characters. Unlike a string, the contents of a
StringBuffer can be modified. Using various StringBuffer methods, the length
and content of the string buffer can be changed. Additionally, the StringBuffer
object can grow in length when necessary. Finally, after modifying the
StringBuffer, you can create a new string representing the contents in the
StringBuffer.

The StringBuffer class has several constructors shown in the following table.

There are several important methods that separate the StringBuffer class from
the String class: capacity(), setLength(), setCharAt(), append(), insert() and
toString(). The append() and insert() methods are overloaded to accept
various data types.

The capacity() method, which returns the amount of memory allocated for the
StringBuffer, can return a larger value than the length() method. Memory
allocated for a StringBuffer can be set with the StringBuffer(int length)
constructor.

Constructor Argument Description

StringBuffer () Creates an empty string buffer which can hold up to
16 characters.

StringBuffer (int length) Creates an empty string buffer which can hold the
number of characters specified by length.

StringBuffer (String str) Creates a string buffer which contains a copy of the
String str.

Method Argument Description

setLength (int newLength) Sets the length of the Stringbuffer.

capacity () Returns the amount of memory allocated to the
StringBuffer.

setCharAt (int index,
char ch)

Sets the character at the specified index of the
StringBuffer to ch.

append (char c) Adds the string representation of the data type in
the argument to the StringBuffer. This method is
overloaded to accept various data types.

insert (int offset,
char c)

Inserts the string representation of the data type in
the argument into this StringBuffer. This method
is overloaded to accept various data types.

toString () Converts the StringBuffer to a String.

58 Gett ing Started with Java

Java 2 Standard Edi t ion packages

The following code demonstrates some of the methods associated with the
StringBuffer class.

StringBuffer s1 = new StringBuffer(10);

int c = s1.capacity(); //c = 10
int len = s1.length(); //len = 0

s1.append("Bor"); //s1 = "Bor"
s1.append("land"); //s1 = "Borland"

c = s1.capacity(); //c = 10
len = s1.length(); //len = 7

s1.setLength(2); //s1 = "Bo"

StringBuffer s2 = new StringBuffer("Helo World");
s2.insert(3, "l"); //s2 = "Hello World"

See also
� java.lang.StringBuffer in the JDK API Documentation

The System class: java.lang.System

The System class in the java.lang package contains several useful class fields
and methods for accessing platform-independent system resources and
information, copying arrays, loading files and libraries, and getting and setting
properties. For example, the currentTimeMillis() method provides access to
the current system time. It’s also possible to retrieve and change system
resources using the getProperty and setProperty methods. Another convenient
feature that the System class provides is the gc() method, which requests that
the garbage collector perform a thorough garbage collection; and finally, the
System class allows developers to load dynamic link libraries with the
loadLibrary() method.

The System class is declared as a final class and can’t be subclassed. It also
declares its methods and variables as static. This simply allows them to be
available without the class being instantiated.

The System class also declares several variables which are used to interact
with the system. These variables include in, out, and err. The in variable
represents the system’s standard input stream, whereas the out variable

Chapter 5: The Java c lass l ibrar ies 59

Java 2 Standard Edi t ion packages

represents the standard output stream. The err variable is the standard error
stream. Streams are discussed in more detail in the I/O package section.

See also
� java.lang.System in the JDK API Documentation

Key java.util classes

The Enumeration interface: java.util.Enumeration

The Enumeration interface in the java.util package is used to implement a
class capable of enumerating values. A class that implements the Enumeration
interface can facilitate the traversal of data structures.

The methods defined in the Enumeration interface allow the Enumeration object to
continuously retrieve all the elements from a set of values, one by one. There
are only two methods declared in the Enumeration interface, hasMoreElements()
and nextElement().

The hasMoreElements() method returns true if more elements remain in the data
structure. The nextElement() method is used to return the next value in the
structure being enumerated.

Method Argument Description

arrayCopy arraycopy(Object src, int
src_position, Object dst,
int dst_position, int
length)

Copies the specified source
array, beginning at the
specified position, to the
specified position of the
destination array.

currentTimeMillis () Returns the current time in
milliseconds.

loadLibrary (String libname) Loads the system library
specified by the argument.

getProperty (String key) Gets the system property
indicated by the key.

gc () Runs the garbage collector
which deletes objects that
are no longer in use.

load (String filename) Loads a code file from the
local file system as a
dynamic library.

exit (int status) Exits the current program.

setProperty (String key, String value) Sets the system property
specified by the key.

60 Gett ing Started with Java

Java 2 Standard Edi t ion packages

The following example creates a class called CanEnumerate, which implements
the Enumeration interface. An instance of that class is used to print all the
elements of the Vector object, v.

Enumeration enum = CanEnumerate.v.elements();

while (enum.hasMoreElements()) {
 System.out.println(enum.nextElement());
}

There is one limitation on an Enumeration object; it can only be used once.
There is no method defined in the interface that allows the Enumeration object
to backtrack to previous elements. So, once it enumerates the entire set of
values, it’s consumed.

See also
� java.util.Enumeration in the JDK API Documentation

The Vector class: java.util.Vector

Java does not include support for all dynamic data structures; it only defines a
Stack class. However, the Vector class in the java.util package provides an
easy way to implement dynamic data structures.

The Vector class is efficient, because it allocates more memory than needed
when adding new elements. Therefore, a Vector’s capacity is usually greater
than its actual size. The capacityIncrement argument in the fourth constructor,
shown in the following table, defines a Vector’s capacity increase whenever an
element is added to it.

Constructor Argument Description

Vector () Constructs an empty vector with an array
size of 10 and a capacity increment of
zero.

Vector (Collection c) Constructs a vector containing the
elements of the collection, in the order
they are returned by the collection’s
iterator.

Vector (int initialCapacity) Constructs an empty vector with the
specified initial capacity and a capacity
increment of zero.

Vector (int initialCapacity,
int capacityIncrement)

Constructs an empty vector with the
specified initial capacity and capacity
increment.

Chapter 5: The Java c lass l ibrar ies 61

Java 2 Standard Edi t ion packages

The following table lists some of the more important methods of the Vector
class and the arguments they accept.

The following code demonstrates the use of the Vector class. A Vector object
called vector1 is created and enumerates its elements in three ways: using
Enumeration’s nextElement() method, using Vector’s elementAt() method, and
using Vector’s toString() method. An AWT component, textArea, is created to
display the output. The text property is set using the setText() method.

Vector vector1 = new Vector();

for (int i = 0; i < 10;i++) {
 vector1.addElement(new Integer(i)); //addElement accepts object or
 //composite types
} //but not primitive types

//enumerate vector1 using nextElement()
Enumeration e = vector1.elements();
textArea1.setText("The elements using Enumeration's nextElement():\n");
while (e.hasMoreElements()) {
 textArea1.append(e.nextElement()+ " | ");
}
textArea1.append("\n\n");

//enumerate using the elementAt() method
textArea1.append("The elements using Vector's elementAt():\n");
for (int i = 0; i < vector1.size();i++) {
 textArea1.append(vector1.elementAt(i) + " | ");
}
textArea1.append("\n\n");

//enumerate using the toString() method
textArea1.append("Here's the vector as a String:\n");
textArea1.append(vector1.toString());

Method Argument Description

setSize (int newSize) Sets the size of a vector.

capacity () Returns the capacity of a vector.

size () Returns the number of elements stored in a
vector.

elements () Returns an enumeration of elements of a
vector.

elementAt (int) Returns the element at the specified index.

firstElement () Returns the first element of a vector
(at index 0).

lastElement () Returns the last element of a vector.

removeElementAt (int index) Removes the element at the specified index.

addElement (Object obj) Adds the specified object to the end of a
vector, increasing its size by one.

toString () Returns a string representation of each
element in a vector.

62 Gett ing Started with Java

Java 2 Standard Edi t ion packages

The following figure demonstrates what this code would accomplish if it was
used within an application.

Figure 5.1 Vector and Enumeration example

See also
� java.util.Vector in the JDK API Documentation

Key java.io classes

Input stream classes

An input stream is used to read data from an input source, such as a file, a
string, or memory. Examples of input stream classes in the java.io package
include InputStream, BufferedInputStream, DataInputStream, and FileInputStream.

The basic method of reading data using an input stream class is always the
same:

1 Create an instance of an input stream class.
2 Tell it where to read the data from.

Note Input stream classes read data as a continuous stream of bytes. If no data is
currently available, the input stream class blocks or waits until data becomes
available.

In addition to the input stream classes, the java.io package provides reader
classes (except for DataInputStream). Examples of reader classes include
Reader, BufferedReader, FileReader, and StringReader. Reader classes are
identical to input stream classes, except that they read Unicode characters
instead of bytes.

InputStream class: java.io.InputStream
The InputStream class in the java.io package is an abstract class and the
superclass of all other input stream classes. It provides the basic interface for
reading a stream of bytes. The following table lists some of the methods

Chapter 5: The Java c lass l ibrar ies 63

Java 2 Standard Edi t ion packages

defined in the InputStream class and the arguments these methods accept.
Each of these methods returns an int value, except the close() method.

See also
� java.io.InputStream in the JDK API Documentation

FileInputStream class: java.io.FileInputStream
The FileInputStream class in the java.io package is very similar to the
InputStream class, only it’s designed specifically for reading files. It contains
three constructors: FileInputStream(String filename), FileInputStream(File
fileobject), and FileInputStream(FileDescriptor fdObj). The first constructor
takes the file’s name as an argument, while the second simply takes a file
object. The third constructor takes a file descriptor object. File classes are
discussed later.

Method Argument Description

read () Reads the next byte from the input stream and
returns it as an integer. When it reaches the
end of the stream, it returns -1.

read (byte b[]) Reads multiple bytes and stores them in array
b. It returns the number of bytes read or -1
when the end of the stream is reached.

read (byte b[], int
off, int len)

Reads up to len bytes of data starting from
offset off from the input stream into an array.

available () Returns the number of bytes that can be read
from an input stream without blocking by the
next caller of a method for the input stream.

skip (long n) Skips over and discards n bytes of data from
an input stream.

close () Closes an input stream and releases system
resources used by the stream.

Constructor Argument Description

FileInputStream (String filename) Creates a FileInputStream by
opening a connection to the file
named by the path name filename in
the file system.

FileInputStream (File fileobject) Creates a FileInputStream by
opening a connection to the file
named by the fileobject file in the
file system.

FileInputStream (FileDescriptor
fdObj)

Creates a FileInputStream by using
the file descriptor fdObj, which
represents an existing connection to
an actual file in the file system.

64 Gett ing Started with Java

Java 2 Standard Edi t ion packages

The following example demonstrates the use of the FileInputStream class.

import java.io.*;

class FileReader {
 public static void main(String args[]) {
 byte buff[] = new byte[80];
 try {
 InputStream fileIn = new FileInputStream("Readme.txt");
 int i = fileIn.read(buff);
 String s = new String(buff);
 System.out.println(s);
 }
 catch(FileNotFoundException e) {
 }
 catch(IOException e) {
 }
 }
}

In this example, a character array that stores the input data is created. Then, a
FileInputStream object is instantiated and the input file’s name is passed to its
constructor. Next, the FileInputStream read() method is used to read a stream
of characters and store them in the buff array. The first 80 bytes are read from
the Readme.txt file and stored in the buff array.

Note The FileReader class could also be used in place of the FileInputStream()
method. The only changes needed would be a char array used in place of the
byte array, and the reader object would be instantiated as follows:

Reader fileIn = new FileReader("Readme.txt");

Finally, to see the result of the read call, a String object is created using the
buff array and then passed to the System.out.println() method.

As mentioned earlier, the System class defined in java.lang provides access to
system resources. System.out, a static member of System, represents the
standard output device. The println() method is called to send the output to
the standard output device. The System.out object is of type PrintStream, which
is discussed below.

The System.in object, another static member of the System class, is of type
InputStream and represents the standard input device.

See also
� java.io.FileInputStream in the JDK API Documentation

Output stream classes
The output stream classes are the counterparts to the input stream classes.
They are used to output streams of data to various output sources. The main
output stream classes in Java, located in the java.io package, are
OutputStream, PrintStream, BufferedOutputStream, DataOutputStream,and
FileOutputStream.

Chapter 5: The Java c lass l ibrar ies 65

Java 2 Standard Edi t ion packages

OutputStream class: java.io.OutputStream
To output a stream of data, an OutputStream object is created and directed to
output the data to a particular output source. As expected, there are also
corresponding writer classes for each class, except the DataOutputStream class.
Some of the methods defined in the OutputStream class include:

See also
� java.io.OutputStream in the JDK API Documentation

PrintStream class: java.io.PrintStream
The PrintStream class in the java.io package, primarily designed to output data
as text, has two constructors. The first constructor flushes the buffered data
based on specified conditions, while the second flushes the data when it
encounters a new line character (if autoflush is set to true).

Several of the methods defined in the PrintStream class are shown in the
following table.

The print() and println() methods are overloaded to receive different data types.

Method Argument Description

write (int b) Writes b to an output stream.

write (byte b[]) Writes array b to an output stream.

write (byte b[], int
off, int len)

Writes len bytes from the byte array starting at
offset off to the output stream.

flush () Flushes the output stream and forces the
output of any buffered data.

close () Closes the output stream and releases any
system resources associated with it.

Constructor Argument Description

PrintStream (OutputStream out) Creates a new print stream.

PrintStream (OutputStream out,
boolean autoflush)

Creates a new print stream.

Method Argument Description

checkError () Flushes the stream and returns a false value if
an error is detected.

print (Object obj) Prints an object.

print (String s) Prints a string.

println () Prints and terminates the line using the line
separator string which is defined by the
system property line.separator and is not
necessarily a single newline character ('\n').

println (Object obj) Prints an object and terminates the line. This
method behaves as though it invokes
print(Object) and then println().

66 Gett ing Started with Java

Java 2 Standard Edi t ion packages

See also
� java.io.PrintStream in the JDK API Documentation

BufferedOutputStream class: java.io.BufferedOutputStream
The BufferedOutputStream class in the java.io package implements a buffered
output stream which increases output efficiency by storing values in a buffer
and writing them only when the buffer is full or the flush() method is called.

BufferedOutputStream has three methods to flush and write to the output stream.

See also
� java.io.BufferedOutputStream in the JDK API Documentation

DataOutputStream class: java.io.DataOutputStream
A data output stream allows an application to write primitive Java data types to
an output stream in a portable binary format. An application can then use a
data input stream to read the data back in.

The DataOutputStream class in the java.io package has a single constructor,
DataOutputStream(OutputStream out), that creates a new data output stream used
to write data to an output stream.

The DataOutputStream class uses a variety of write() methods to output
primitive data types, as well as a flush() and size() method.

Constructor Argument Description

BufferedOutputStream (OutputStream out) Creates a new 512-byte buffered
output stream to write data to the
output stream.

BufferedOutputStream (OutputStream out,
int size)

Creates a new buffered output
stream to write data to the output
stream with the specified buffer
size.

Method Argument Description

flush () Flushes the buffered output stream.

write (byte[] b, int
off, int len)

Writes len bytes from the byte array starting at
offset off to the buffered output stream.

write (int b) Writes the byte to the buffered output stream.

Method Argument Description

flush () Flushes the data output stream.

size () Returns the number of bytes written to the
data output stream.

write (int b) Writes the byte to the output stream.

writeType (type v) Writes the specified primitive type to the
output stream as bytes.

Chapter 5: The Java c lass l ibrar ies 67

Java 2 Standard Edi t ion packages

See also
� java.io.DataOutputStream in the JDK API Documentation

FileOutputStream class: java.io.FileOutputStream
A file output stream is an output stream for writing data to a file or to a
FileDescriptor. Whether or not a file is available or may be created depends
upon the underlying platform. Some platforms allow a file to be opened for
writing by only one FileOutputStream at a time. In such situations the
constructors in this class fail if the file involved is already open.
FileOutputStream in the java.io package, a subclass of OutputStream, has
several constructors.

FileOutputStream has several methods, including close(), finalize(), and
several write() methods.

See also
� java.io.FileOutputStream in the JDK API Documentation

File classes

The FileInputStream and FileOutputStream classes in the java.io package only
provide basic functions for handling file input and output. The java.io package
provides the File class and RandomAccessFile class for more advanced file

Constructor Argument Description

FileOutputStream (File file) Creates a file output stream to write to
the file specified.

FileOutputStream (FileDescriptor
fdObj)

Creates an output file stream to write to
the file descriptor, which represents an
existing connection to an actual file in the
file system.

FileOutputStream (String name) Creates an output file stream to write to
the file with the specified name.

FileOutputStream (String name,
boolean append)

Creates an output file stream to write to
the file with the specified name.

Method Argument Description

close () Closes the file output stream and releases any
associated system resources.

finalize () Cleans up the connection to the file and calls
the close() method when there are no more
references to the stream.

getFD () Returns the file descriptor associated with the
stream.

write (byte[] b, int
off, int len)

Writes len bytes from the byte array starting at
offset off to the file output stream.

68 Gett ing Started with Java

Java 2 Standard Edi t ion packages

support. The File class provides easy access to file attributes and functions,
while the RandomAccessFile class provides various methods for reading and
writing to and from a file.

File class: java.io.File
Java’s File class uses an abstract, platform-independent representation of file
and directory pathnames. The File class has three constructors listed in the
following table.

The File class also implements many important methods which check for the
existence, readability, writeability, type, size, and modification time of files and
directories, as well as making new directories and renaming and deleting files
and directories.

See also
� java.io.File in the JDK API Documentation

RandomAccessFile class: java.io.RandomAccessFile
The RandomAccessFile class in the java.io package is more powerful than the
FileInputStream and FileOutputStream classes, which only provide sequential
access to a file. The RandomAccessFile class allows you to read and write
arbitrary bytes, text, and Java data types to or from any specified location in a

Constructor Argument Description

File (String path) Creates a new File instance by converting the
given pathname string into an abstract
pathname.

File (String parent,
String child)

Creates a new File instance from a parent
pathname string and a child pathname string.

File (File parent,
String child)

Creates a new File instance from a parent
abstract pathname and a child pathname
string.

Method Argument Returns Description

delete () boolean Deletes the file or directories.

canRead () boolean Tests whether the application can read the file
denoted by the abstract pathname.

canWrite () boolean Tests whether the application can write to the
file.

renameTo (File
dest)

boolean Renames the file.

getName () String Returns the name string of the file or directory.

getParent () String Returns the pathname string of the parent
directory of the file or directory.

getPath () String Converts the abstract pathname into a
pathname string.

Chapter 5: The Java c lass l ibrar ies 69

Java 2 Standard Edi t ion packages

file. It has two constructors: RandomAccessFile(String name, String mode) and
RandomAccessFile(File file, String mode). The mode argument indicates whether
the RandomAccessFile object is used for reading (“r”) or reading/writing (“rw”).

There are many powerful methods implemented by the RandomAccessFile class.
Some of these methods include:

See also
� java.io.RandomAccessFile in the JDK API Documentation

The StreamTokenizer class: java.io.StreamTokenizer

The StreamTokenizer class in the java.io package is used to read an input
stream and break it up or parse it into individual tokens that can then be
processed one by one. Tokens are groups of characters that represent a
number or word. The stream tokenizer can recognize strings, numbers,
identifiers, and comments. This technique of processing streams into tokens is
perhaps most commonly used in writing parsers, compilers, or programs that
process character input.

Constructor Argument Description

RandomAccessFile (String name,
String mode)

Creates a random access file stream to
read from, and optionally to write to, a file
with the specified name.

RandomAccessFile (File file,
String mode)

Creates a random access file stream to
read from, and optionally to write to, the file
specified by the File argument.

Method Argument Description

seek (long pos) Sets the file-pointer offset, measured from the
beginning of this file, at which the next read or
write occur.

read () Reads the next byte of data from the input
stream.

read (byte b[], int
off, int len)

Reads up to len bytes of data starting from
offset off from the input stream into an array.

readType () Reads the specified data type from a file, such
as readChar, readByte, readLong.

write (int b) Writes the specified byte to the file.

write (byte b[], int
off, int len)

Writes len bytes from the byte array starting at
offset off to the output stream.

length () Returns the length of the file.

close () Closes the file and releases any associated
system resources.

70 Gett ing Started with Java

Java 2 Standard Edi t ion packages

This class has one constructor, StreamTokenizer(Reader r), and defines the four
following constants.

The StreamTokenizer class uses instance variables nval, sval, and ttype to hold
the number value, string value, and type of the token respectively.

The StreamTokenizer class implements several methods used to define the
lexical syntax of tokens.

Follow these steps when using a stream tokenizer:

1 Create a StreamTokenizer object for a Reader.

2 Define how to process the characters.

3 Use the nextToken() method to get the next token.

4 Read the ttype instance variable to find the token type.

5 Read the value of the token from the instance variable.

6 Process the token.

7 Repeat steps 3 to 6 above until nextToken() returns StreamTokenizer.TT_EOF.

See also
� java.io.StreamTokenizer in the JDK API Documentation

Constant Description

TT_EOF Indicates that the end of the file has been read.

TT_EOL Indicates that the end of the line has been read.

TT_NUMBER Indicates that a number token has been read.

TT_WORD Indicates that a word token has been read.

Method Argument Description

nextToken () Parses the next token from the input stream.
Returns TT_NUMBER if the next token is a number,
TT_WORD if the next token is a word or a character.

parseNumbers () Parses the numbers.

lineno () Returns the current line number.

pushBack () Returns the current value in the ttype field on the
next call of the nextToken() method.

toString () Returns the string equivalent of the current token.

Chapter 6: Object-oriented programming in Java 71

C h a p t e r

6
Chapter6Object-oriented programming

in Java
Object-oriented programming has been around since the introduction of the
language Simula ‘67 in 1967. It really came to the forefront of programming
paradigms in the mid-1980s, however.

Unlike traditional structured programming, object-oriented programming
places the data and the operations that pertain to the data within a single data
structure. In structured programming, the data and the operations on the data
are separate and data structures are sent to procedures and functions to be
operated on. Object-oriented programming solves many of the problems
inherent in this design because the attributes and operations are part of the
same entity. This more closely models the real world, in which all objects have
both attributes and activities associated with them.

Java is a pure object-oriented language, meaning that the outermost level of
data structure in Java is the object. There are no stand-alone constants,
variables, or functions in Java. Everything is accessed through classes and
objects. This is one of the nicest features of Java. Other hybrid object-oriented
languages have aspects of structured languages in addition to object
extensions. For example, C++ and Object Pascal are object-oriented
languages, but you can still write structured programming constructs, which
dilutes the effectiveness of the object-oriented extensions. You just can’t do
that in Java!

This chapter assumes you have some knowledge about programming in other
object-oriented languages. If you don’t, you should refer to other sources to

72 Gett ing Started with Java

Classes

find a more in-depth explanation of object-oriented programming. This chapter
attempts to highlight and summarize the object-oriented features of Java.

Classes
Classes and objects are not the same thing. A class is a type definition,
whereas an object is a declaration of an instance of a class type. Once you
create a class, you can create as many objects based on that class as you
want. The same relationship exists between classes and objects as between
cherry pie recipes and cherry pies; you can make as many cherry pies as you
want from a single recipe.

The process of creating an object from a class is referred to as instantiating an
object or creating an instance of a class.

Declaring and instantiating classes

A class in Java can be very simple. Here is a class definition for an empty
class:

class MyClass {
}

While this class is not yet useful, it is legal in Java. A more useful class would
contain some data members and methods, which you’ll add soon. First,
examine the syntax for instantiating a class. To create an instance of this
class, use the new operator in conjunction with the class name. You must
declare an instance variable for the object:

MyClass myObject;

Just declaring an instance variable doesn’t allocate memory and other
resources for the object, however. Doing so creates a reference called
myObject, but it doesn’t instantiate the object. The new operator performs this
task.

myObject = new MyClass();

Notice that the name of the class is used as if it were a method. This is not
coincidental, as you will see in an upcoming section. Once this line of code
has executed, the member variables and methods of the class, which don’t yet
exist, can be accessed using the “.” operator

Once you have created the object, you never have to worry about destroying
it. Objects in Java are automatically garbage collected, which means that
when the object reference is no longer used, the virtual machine automatically
deallocates any resources allocated by the new operator.

Chapter 6: Object-oriented programming in Java 73

Classes

Data members

As stated above, a class in Java can contain both data members and
methods. A data member or member variable is a variable declared within the
class. A method is a function or routine that performs some task. Here is a
class that contains just data members:

public class DogClass {
 String name, eyeColor;
 int age;
 boolean hasTail;
}

This example creates a class called DogClass that contains data members:
name, eyeColor, age, and a flag called hasTail. You can include any data type as
a member variable of a class. To access a data member, you must first create
an instance of the class, then access the data using the “.” operator.

Class methods

You can also include methods in classes. In fact, there are no standalone
functions or procedures in Java. All subroutines are defined as methods of
classes. Here is an example of DogClass with a speak() method added:

public class DogClass {
 String name,eyeColor;
 int age;
 boolean hasTail;

 public void speak() {
 JOptionPane.showMessageDialog(null, "Woof! Woof!");
 }
}

Notice that when you define methods, the implementation for the method
appears directly below the declaration. This is unlike some other
object-oriented languages where the class is defined in one location and the
implementation code appears somewhere else. A method must specify a
return type and any parameters received by the method. The speak() method
takes no parameters. It also doesn’t return a value, so its return type is void.

To call the method, you would access it just like you would access the
member variables; that is, using the .” operator. For example,

DogClass dog = new DogClass();
dog.age = 4;
dog.speak();

74 Gett ing Started with Java

Classes

Constructors and finalizers

Every Java class has a special purpose method called a constructor. The
constructor always has the same name as the class and it can’t specify a
return value. The constructor allocates all the resources needed by the object
and returns an instance of the object. When you use the new operator, you are
actually calling the constructor. You don’t need to specify a return type for the
constructor because the instance of the object is always the return type.

Most object-oriented languages have a corresponding method called a
destructor that is called to deallocate all the resources that the constructor
allocated. But because Java deallocates all the resources for you
automatically, there is no destructor mechanism in Java.

There are situations, however, that require you to perform some special
cleanup that the garbage collector can’t handle as the class goes away. For
example, you might have opened some files in the life of the object and you
want to make sure the files are closed properly when the object is destroyed.
There is another special purpose method that can be defined for a class called
a finalizer. This method (if present) is called by the garbage collector
immediately before the object is destroyed. Therefore, if there is any special
cleanup that needs to be performed, the finalizer can handle it for you. The
garbage collector runs as a low priority thread in the virtual machine, however,
so you can never predict when it will actually destroy your object. So, you
shouldn’t put any time-sensitive code in the finalizer because you can’t predict
when it will be called.

Case study: A simple OOP example

In this section, you’ll see a simple example of defining classes and
instantiating objects. You’ll develop an application that creates two objects (a
dog and a man) and show their attributes on a form.

If you are completely new to JBuilder, you should put this chapter aside and
learn about JBuilder’s integrated development environment before you begin
this sample. Begin with the Introducing JBuilder book, especially the “Building
an application” tutorial and the following chapters that introduce the JBuilder
integrated development environment. Also study the early chapters of
Designing Applications with JBuilder to learn about using the UI designer.

You are ready to resume this chapter once you are comfortable performing
these tasks:
� Beginning an application using JBuilder’s Application wizard.
� Selecting components from the component palette and placing them on the

UI designer.
� Setting component properties using the Inspector.
� Switching between the editor and the UI designer in JBuilder’s content

pane.
� Using the editor.

Chapter 6: Object-oriented programming in Java 75

Classes

This is what the running sample application you will build looks like:

Figure 6.1 Sample application showing two instantiated objects

Follow these steps listed in this section to create a simple UI for this sample
application.

1 Start creating the application and designing its UI:

a Start a new project. Choose File|New Project to start the Project wizard.

b Enter oop1 in the Project Name field and click Finish. A new project
opens.

c Choose File|New, click the General tab, and click the Application icon to
start the Application wizard.

d Accept the default class name. The package name will be oop1.

e Click Next and then Finish to create a Frame1.java and an
Application1.java file.

f Click the Design tab in the content pane to display the UI designer for
Frame1.java.

g Select contentPane in the structure pane. In the Inspector set the layout
property of contentPane to XYLayout (if you are a Foundation user, set layout
to null). XYLayout and null are seldom ideal for an application, but until
you learn about using layouts, you can use them to create a
quick-and-dirty UI.

2 Place the needed components on the UI designer, using the above screen
shot as a reference:

a Click the Swing tab on the component palette and click the JTextField
component. (When you position your cursor over a component, a tooltip
appears labeling the component. Click the component labeled
javax.swing.JTextField.) Click in the UI designer and hold down the
mouse button as you draw the component onscreen. Repeat this step
five more times until you have two groups of three JTextField
components on your form.

b Hold down the Shift key as you click each JTextField on the UI designer
so that all of them are selected. Select the text property in the Inspector

76 Gett ing Started with Java

Classes

and delete the text that appears there. This will delete all the text in each
JTextField component.

c Change the name property value of each JTextField. Name the first one
txtfldDogName, the second txtfldDogEyeColor, the third txtfldDogAge, the
fourth txtfldManName, the fifth txtfldManEyeColor, and the sixth
txtfldManAge.

d Draw six JLabel components on the form, each one adjacent to a
JTextField component.

e Change the text property values for these components to label each
JTextField component appropriately. For example, the text property of
the JLabel at the top of the form should be Name, the second Eye Color, and
so on.

f Place two JCheckBox components on the form. Place the first one below
the first group of three JTextField components, and the second check
box beneath the second group of JTextField components.

g Select each JCheckBox component on the form in turn and change the first
one’s text property to Has Tail, and second one’s text property to Is
Married.

h Change the value of the name property for the first check box to chkboxDog,
and change the name of the second check box to chkboxMan.

i Place two JButton components on the form, one to the right of the top
group of components, and the second to the right of the bottom group of
components.

j Change the text property of the first button to Create Dog, and change the
text property of the second button to Create Man.

The final step is to save the project by choosing File|Save All.

You’re now ready to begin programming. First create a new class:

1 Choose File|New Class to start the Class wizard.

2 Keep the name of the package as oop1, specify the Class Name as DogClass,
and don’t change the Base Class.

3 Check only the Public and Generate Default Constructor options,
unchecking all other options.

4 Click OK.

The Class wizard creates the DogClass.java file for you. Modify the code it
created so that your code looks like this:

package oop1;

public class DogClass {
 String name, eyeColor;
 int age;
 boolean hasTail;

Chapter 6: Object-oriented programming in Java 77

Classes

 public DogClass() {
 name = "Snoopy";
 eyeColor = "Brown";
 age = 2;
 hasTail = true;
 }
}

You defined DogClass with some member variables. There is also a constructor
to instantiate DogClass objects.

Using the Class wizard, create a ManClass.java file by following the same steps
except specifying the Class Name as ManClass. Modify the resulting code so
that it looks like this:

package oop1;

public class ManClass {
 String name, eyeColor;
 int age;
 boolean isMarried;

 public ManClass() {
 name = "Steven";
 eyeColor = "Blue";
 age = 35;
 isMarried = true;
 }
}

The two classes are very similar. You’ll take advantage of this similarity in an
upcoming section.

Click the Frame1 tab at the top of content pane to return to the Frame1 class.
Click the Source tab at the bottom to return to open the editor. Declare two
instance variables as references to the objects. Here is the source listing of
the Frame1 variable declarations shown in bold; add the lines in bold to your
class:

public class Frame1 extends JFrame {
 // Create a reference for the dog and man objects
 DogClass dog;
 ManClass man;

 JPanel contentPane;
 JPanel jPanel1 = new JPanel();
 . . .

Click the Design tab at the bottom of content pane to return to the UI you
designed. Double-click the Create Dog button. JBuilder creates the beginning
of an event handler for that button and places your cursor within the event

78 Gett ing Started with Java

Classes

handler code. Fill in the event handler code so that you instantiate a dog
object and fill in the dog text fields. Your code should look like this:

void jButton1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.name);
 txtfldDogEyeColor.setText(dog.eyeColor);
 txtfldDogAge.setText(Integer.toString(dog.age));
 chkboxDog.setSelected(true);
}

As the code shows, you are calling the constructor for the dog object and then
accessing its member variables.

Click the Design tab to return to the UI designer. Double-click the Create Man
button. JBuilder creates an event handler for the Create Man button. Fill in the
event handler so that it looks like this:

void jButton2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.name);
 txtfldManEyeColor.setText(man.eyeColor);
 txtfldManAge.setText(Integer.toString(man.age));
 chkboxMan.setSelected(true);
}

You can now compile and run your application. Choose Project|Make Project
“oop1.jpx” to compile it. If you have no errors, choose Run|Run Project.

If all goes well, the form appears on your screen. When you click the Create
Dog button, a dog object is created and the dog values appear in the dog fields.
When you click the Create Man button, a man object is created and the man
values appear in the appropriate fields.

Class inheritance

The dog and man objects you created have many similarities. One of the
benefits of object-oriented programming is the ability to handle similarities like
this within a hierarchy. This ability is referred to as inheritance. When a class
inherits from another class, the child class automatically inherits all the
characteristics (member variables) and behavior (methods) from the parent
class. Inheritance is always additive; there is no way to inherit from a class
and get less than what the parent class has.

Inheritance in Java is handled through the keyword extends. When one class
inherits from another class, the child class extends the parent class. For
example,

public class DogClass extends MammalClass {
. . .
}

The items that men and dogs have in common could be said to be common to
all mammals; therefore, you can create a MammalClass to handle these
similarities. You can then remove the declarations of the common items from

Chapter 6: Object-oriented programming in Java 79

Classes

DogClass and ManClass, declare them in MammalClass instead, and then subclass
DogClass and ManClass from MammalClass.

Using the Class wizard, create a MammalClass. Fill in the resulting code so that it
looks like this:

package oop1;

public class MammalClass {
 String name, eyeColor;
 int age;

 public MammalClass() {
 name = "The Name";
 eyeColor = "Brown";
 age = 0;
 }
}

Notice that the MammalClass has common characteristics from both the DogClass
and the ManClass. Now, rewrite DogClass and ManClass to take advantage of
inheritance.

Modify the code of DogClass so that it look like this:

package oop1;

public class DogClass extends MammalClass {

 boolean hasTail;

 public DogClass() {
 // implied super()
 name = "Snoopy";
 age = 2;
 hasTail = true;
 }
}

Modify the code of ManClass so that it looks like this:

package oop1;

public class ManClass extends MammalClass{

 boolean isMarried;

 public ManClass() {
 name = "Steven";
 eyeColor = "Blue";
 age = 35;
 isMarried = true;
 }
}

80 Gett ing Started with Java

Classes

Notice that DogClass doesn’t specifically assign an eyeColor value, but ManClass
does. DogClass doesn’t need to assign a value to eyeColor because the dog
Snoopy has brown eyes and DogClass inherits brown eyes from the MammalClass,
which declares an eyeColor variable and assigns it the value of “Brown”. The
man Steven, however, has blue eyes, so its necessary to assign the value
“Blue” to the eyeColor variable inherited from MammalClass.

Try compiling and running your project again. (Choosing Run|Run Project will
compile and then run your application.) You’ll see that the UI of your program
looks just as it did before, but now the dog and man objects inherit all common
member variables from MammalClass.

As soon as DogClass extends MammalClass, DogClass has all the member variables
and methods that the MammalClass has. In fact, even MammalClass is inherited
from another class. All classes in Java ultimately extend the Object class; so if
a class is declared that doesn’t extend another class, it implicitly extends the
Object class.

Classes in Java can inherit from only one class at a time (single inheritance).
Unlike Java, some languages (such as C++) allow a class to inherit from
several classes at once (multiple inheritance). A class can extend just one
class at a time. Although there is no restriction on how many times you can
use inheritance to extend the hierarchy, you must do so one extension at a
time. Multiple inheritance is a nice feature, but it leads to very complex object
hierarchies. Java has a mechanism that provides many of the same benefits
without so much complexity, as you’ll see later.

The MammalClass has a constructor that sets very practical and convenient
default values. It would be nice if the subclasses could access this constructor.

In fact, they can. You can do this in Java two different ways. If you don’t call
the parent’s constructor explicitly, Java automatically calls the parent’s
default constructor for you as the first line of the child constructor. The
only way to prevent this behavior is to call one of the parent’s constructors
yourself as the first line of the child class constructor. Constructor calls are
always chained like this, and you can’t defeat this mechanism. This is a very
nice feature of the Java language, because in other object-oriented
languages, failing to call the parent’s constructor is a common bug. Java will
always do this for you if you don’t. That is the meaning of the comment in the
first line of the DogClass constructor, // implied super(). The MammalClass
constructor is called at that point automatically. This mechanism relies on the
existence of a superclass (parent class) constructor that takes no parameters.
If the constructor doesn’t exist and you don’t call one of the other constructors
as the first line of the child constructor, the class won’t compile.

Calling the parent’s constructor
Because you frequently want to call the superclass constructor explicitly, there
is a keyword in Java that makes this easy. super() will call the parent’s
constructor that has the appropriate supplied parameters.

It’s also possible to have more than one constructor in a class. When more
than one method with the same name exists within a single class, the methods

Chapter 6: Object-oriented programming in Java 81

Classes

are referred to as overloaded. It’s common for a class to have multiple
constructors.

For the sample application, the change in the hierarchy is the only difference
between the first two versions of the sample. The instantiation of the objects
and the main form haven’t changed at all. However, the design of the
application is more efficient, because now if you must modify any of the
mammal characteristics, you can do so in the MammalClass and just recompile
the child classes. The changes you make flow to the child classes.

Access modifiers

It’s important to understand when members (both variables and methods) in
the class are accessible. There are several options in Java to allow you to
closely tailor how accessible you want these members to be.

Usually you want to limit the scope of program elements, including class
members, as much as possible. The fewer places something is accessible, the
fewer places it can be accessed incorrectly.

There are four different access modifiers for class members in Java: private,
protected, public, and default (or the absence of any modifier). This is slightly
complicated by the fact that classes within the same package have different
access than classes outside the package. Therefore, here are two tables that
show both the accessibility and inheritability of classes and member variables
from within the same package and from outside the package (packages are
discussed in a later section).

Access from within class’s package

This table shows how class members are accessed and inherited from with
respect to other members in the same package. For example, a member that
is declared to be private cannot be accessed by, or inherited from, other
members of the same package. On the other hand, members declared using
the other modifiers could be accessed by and inherited from all other
members of that package. All parts of the sample application are part of the
oop1 package, so you don’t have to worry about accessing classes in another
package.

Access Modifier Inherited Accessible

default (no modifier) Yes Yes

Public Yes Yes

Protected Yes Yes

Private No No

82 Gett ing Started with Java

Classes

Access outside of a package
The rules change if you access code outside of your class’s package:

For example, this table shows that a protected member could be inherited
from, but not accessed, by classes outside its package.

Note that in both access tables public members are available to anyone who
wants to access them (notice that constructors are always public), whereas
private members are never accessible nor inheritable outside the class. So,
you should declare any member variable or method you want to keep internal
to the class private.

A recommended practice in object-oriented programming is to hide
information within the class by making all of the member variables of the class
private and accessing them through methods that are in a specific format
called accessor methods.

Accessor methods

Accessor methods (sometimes called getters and setters) are methods that
provide the outward public interface to the class while keeping the actual data
storage private to the class. This is a good idea because you can, at any time
in the future, change the internal representation of the data in the class without
touching the methods that actually set those internal values. As long as you
don’t change the public interface to the class, you don’t break any code that
relies on that class and its public methods.

Accessor methods in Java usually come in pairs: one to get the internal value,
and another to set the internal value. By convention, the Get method uses the
internal private variable name with “get” as a prefix. The Set method does the
same with “set”. A read-only property would only have a Get method. Usually,
Boolean Get methods use “is” or “has” as the prefix instead of “get”. Accessor
methods also make it easy to validate the data that is assigned to a particular
member variable.

Here is an example. In your DogClass, make all of the internal member
variables private and add accessor methods to access the internal values.
DogClass creates just one new member variable, tail.

Access Modifier Inherited Accessible

default (no modifier) No No

Public Yes Yes

Protected Yes No

Private No No

Chapter 6: Object-oriented programming in Java 83

Classes

package oop1;

public class DogClass extends MammalClass{

 // accessor methods for properties
 // Tail
 public boolean hasTail() {
 return tail;
 }

 public void setTail(boolean value) {
 tail = value;
 }

 public DogClass() {
 setName("Snoopy");
 setAge(2);
 setTail(true);
 }

 private boolean tail;
}

The variable tail has been moved to the bottom of the class and now is
declared as private. The location of the definition is not important, but it’s
common in Java to place the private members of the class at the bottom of the
class definition (after all, you can’t get to them outside the class; therefore, if
you are reading the code, you are interested in the public aspects first).
DogClass now has public methods to retrieve and set the value of tail. The
getter is hasTail() and setter is setTail().

Follow the same patterns and revise ManClass so that it looks like this:

package oop1;

 public class ManClass extends MammalClass {

 public boolean isMarried() {
 return married;
 }

 public void setMarried(boolean value) {
 married = value;
 }

 public ManClass() {
 setName("Steven");
 setAge(35);
 setEyeColor("Blue");
 setMarried(true);
 }

 private boolean married;
}

84 Gett ing Started with Java

Classes

Note that the constructors for these two classes now use accessor methods to
set the values of the variables of MammalClass. But the MammalClass doesn’t have
accessor methods for setting those values yet, so you must add them to
MammalClass.

Change MammalClass so that its code looks like this:

public class MammalClass {

 // accessor methods for properties
 // name
 public String getName() {
 return name;
 }

 public void setName(String value) {
 name = value;
 }

 // eyecolor
 public String getEyeColor() {
 return eyeColor;
 }

 public void setEyeColor(String value) {
 eyeColor = value;
 }

 // sound
 public String getSound() {
 return sound;
 }

 public void setSound(String value) {
 sound = value;
 }

 // age
 public int getAge() {
 return age;
 }

 public void setAge(int value) {
 if (value > 0) {
 age = value;
 }
 else
 age = 0;
 }

Chapter 6: Object-oriented programming in Java 85

Classes

 public MammalClass() {
 setName("The Name");
 setEyeColor("Brown");
 setAge(0);
 }

 private String name, eyeColor, sound;
 private int age;
}

Also note that a new sound member variable has been added to MammalClass. It
too has accessor methods. Because DogClass and ManClass extend MammalClass,
they also have a sound property.

The event handlers in Frame1.java should also use the accessors. Modify the
event handlers so they look like this:

 void jButton1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.getName());
 txtfldDogEyeColor.setText(dog.getEyeColor());
 txtfldDogAge.setText(Integer.toString(dog.getAge()));
 chkboxDog.setSelected(true);
 }

 void jButton2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.getName());
 txtfldManEyeColor.setText(man.getEyeColor());
 txtfldManAge.setText(Integer.toString(man.getAge()));
 chkboxMan.setSelected(true);
 }

Abstract classes

It’s possible to declare a method in a class as abstract, meaning that there will
be no implementation for the method within this class, but all classes that
extend this class must provide an implementation.

For example, suppose you want all mammals to have the ability to report their
top running speed, but you want each mammal to report a different speed. In
the mammal class you should create an abstract method called speed(). Add
a speed() method to MammalClass just above the private member variable
declarations at the bottom of the source code:

abstract public void speed();

Once you have an abstract method in a class, the entire class must also be
declared as abstract. This indicates that a class that includes at least one
abstract method (and is therefore an abstract class) cannot be instantiated. So

86 Gett ing Started with Java

Polymorphism

add the abstract keyword to the beginning of the MammalClass declaration so
that it looks like this:

abstract public class MammalClass {

 public String getName() {
 ...

Now each class that extends MammalClass must implement a speed() method. So
add this method to the DogClass code below the DogClass() constructor:

public void speed() {
 JOptionPane.showMessageDialog(null, "30 mph", "Dog Speed", 1);
}

Add this speed() method to the ManClass code:

public void speed() {
 JOptionPane.showMessageDialog(null, "17 mph", "Man Speed", 1);
}

Because each speed() method creates a JOptionPane component, which is a
Swing component, add this statement just after the package statement to the
top of both DogClass and ManClass:

import javax.swing.*;

This statement makes the entire Swing library available to these classes.
You’ll read more about import statements soon.

Polymorphism
Polymorphism is the ability for two separate yet related classes to receive the
same message but to act on it in their own way. In other words, two different
(but related) classes can have the same method name, but they implement
the method in different ways.

Therefore, you can have a class method that is also implemented in a child
class, and you can access the code from the parent’s class (similar to the
automatic constructor chaining discussed earlier). Just as in the constructor
example, you can use the keyword super to access any methods or member
variables of the superclass.

Here is a simple example. We have two classes, Parent and Child.

class Parent {
 int aValue = 1;
 int someMethod(){
 return aValue;
 }
}

class Child extends Parent {
 int aValue; // this aValue is part of this class
 int someMethod() { // this overrides Parent's method

Chapter 6: Object-oriented programming in Java 87

Polymorphism

 aValue = super.aValue + 1; // access Parent's aValue with super
 return super.someMethod() + aValue;
 }
}

The someMethod() of Child overrides the someMethod() of Parent. A method of a
child class with the same name as a method in the parent class, but that is
implemented differently and therefore has different behavior is an overridden
method.

Can you see how the someMethod() of the Child class would return the value of 3?
The method accesses the aValue variable of Parent using the super keyword, adds
the value of 1 to it, and assigns the resulting value of 2 to its own aValue variable.
The last line of the method calls the someMethod() of Parent, which simply returns
Parent.aValue with a value of 1. To that, it adds the value of Child.aValue, which
was assigned the value of 2 in the previous line. So 1 + 2 = 3.

Using interfaces

An interface is much like an abstract class but with one important difference:
an interface cannot include any code. The interface mechanism in Java is
meant to replace multiple inheritance.

An interface is a specialized class declaration that can declare constants and
method declarations, but not method implementations. You can never put
code in an interface.

Here is an interface declaration for our sample application:

You can use the JBuilder Interface wizard to start an interface:

1 Choose File|New to open the object gallery and click the General tab.
Double-click the Interface icon to display the Interface wizard.

2 Specify the name of the interface as SoundInterface, keeping all other values
unchanged. (You can uncheck the Generate Header Comments to omit
headers.)

3 Choose OK to generate the new interface.

Within the new SoundInterface, add a speak() method declaration so that the
interface looks like this:

package oop1;

public interface SoundInterface {

 public void speak();
}

Note that the interface keyword is used instead of class. All methods declared
in an interface are public by default, so there is no need to specify
accessibility. A class can implement an interface by using the implements
keyword. Also, a class can extend only one other class, but a class can
implement as many interfaces as necessary. This is how situations that are

88 Gett ing Started with Java

Polymorphism

usually handled by multiple inheritance in other languages are handled by
interfaces in Java. In many cases, you can treat the interface as if it were a
class. In other words, you can treat objects that implement an interface as
subclasses of the interface for convenience. Note, however, that you can only
access the methods defined by that interface if you are casting an object that
implements the interface.

The following is an example of both polymorphism and interfaces. We want
the MammalClass definition to implement the new SoundInterface. You do that by
adding the words implements SoundInterface to the class definition. Then, you
must define and implement a speak() method for MammalClass. Modify your
MammalClass so that it implements SoundInterface and a speak() method. Here is
the code for MammalClass in its entirety:

package oop1;

import javax.swing.*;

abstract public class MammalClass implements SoundInterface {

 // accessor methods for properties
 // name
 public String getName() {
 return name;
 }

 public void setName(String value) {
 name = value;
 }

 // eyecolor
 public String getEyeColor() {
 return eyeColor;
 }

 public void setEyeColor(String value) {
 eyeColor = value;
 }

 // sound
 public String getSound() {
 return sound;
 }

 public void setSound(String value) {
 sound = value;
 }

 // age
 public int getAge() {
 return age;
 }

Chapter 6: Object-oriented programming in Java 89

Polymorphism

 public void setAge(int value) {
 if (value > 0)
 {
 age = value;
 }
 else
 age = 0;
 }

 public MammalClass() {
 setName("The Name");
 setEyeColor("Brown");
 setAge(0);
 }

public void speak() {
 JOptionPane.showMessageDialog(null, this.getSound(),
 this.getName() + " Says", 1);
 }

 abstract public void speed();

 private String name, eyeColor, sound;
 private int age;
}

The MammalClass definition now implements the SoundInterface fully. Because
the speak() method implementation uses the JOptionPane component, which is
part of the Swing library, you must add an import statement near the top of the
file:

import javax.swing.*;

This import statement makes the entire Swing library available to MammalClass.
You’ll read more about import statements in “The import statement” on
page 93.

Because DogClass and ManClass extend MammalClass, they now automatically
have access to the speak() method defined in MammalClass. They don’t have to
specifically implement speak() themselves. The value of the sound variable
passed to the speak() method is set in the constructors of DogClass and
ManClass. Here is how the DogClass class should look:

package oop1;
import javax.swing.*;

public class DogClass extends MammalClass{

 public boolean hasTail() {
 return tail;
 }

90 Gett ing Started with Java

Polymorphism

 public void setTail(boolean value) {
 tail = value;
 }

 public DogClass() {
 setName("Snoopy");
 setSound("Woof, Woof!");
 setAge(2);
 setTail(true);
 }

 public void speed() {
 JOptionPane.showMessageDialog(null, "30 mph", "Dog Speed", 1);
 }

 private boolean tail;
}

This is how ManClass should look:

package oop1;
import javax.swing.*;

 public class ManClass extends MammalClass {

 public boolean isMarried() {
 return married;
 }

 public void setMarried(boolean value) {
 married = value;
 }

 public ManClass() {
 setName("Steven");
 setEyeColor("Blue");
 setSound("Hello there! I'm " + this.getName() + ".");
 setAge(35);
 setMarried(true);
 }

 public void speed() {
 JOptionPane.showMessageDialog(null, "17 mph", "Man Speed", 1);
 }

 private boolean married;
}

Chapter 6: Object-oriented programming in Java 91

Polymorphism

Adding two new buttons
Although you’ve added speak() and speed() methods to the sample application,
so far the application never calls them. To change this, add two more buttons
to the Frame1.java class:

1 Click the Frame1 tab in the content pane.

2 Click the Design tab to display the UI designer.

3 Place two additional buttons on the form.

4 Change the value of text property of the first button to Speed in the
Inspector, and change the value of the text property of the second button to
Speak.

Figure 6.2 New version of the sample application with Speed and Speak buttons added

Click the Source tab to return to the Frame1.java code and add code shown
here in bold to the class definition:

// Create a reference for the objects
DogClass dog;
ManClass man;

//Create an Array of SoundInterface
SoundInterface soundList[] = new SoundInterface[2];

//Create an Array of Mammal
MammalClass mammalList[] = new MammalClass[2];

You have added code that creates two arrays: one for Mammals and one for
SoundInterfaces.

Also add code to the Create Dog and Create Man event handlers that add
references to the dog and man objects to the arrays:

void button1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.getName());
 txtfldDogEyeColor.setText(dog.getEyeColor());
 txtfldDogAge.setText(Integer.toString(dog.getAge()));
 chkboxDog.setSelected(true);
 mammalList[0] = dog;

92 Gett ing Started with Java

Polymorphism

 soundList[0] = dog;
}

void button2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.getName());
 txtfldManEyeColor.setText(man.getEyeColor());
 txtfldManAge.setText(Integer.toString(man.getAge()));
 chkboxMan.setSelected(true);
 mammalList[1] = man;
 soundList[1] = man;
 }

Return to the UI designer and double-click the Speed button, and fill in the
event handler JBuilder starts for you so that the code looks like this:

void button3_actionPerformed(ActionEvent e) {
for (int i = 0; i <= 1; i++) {
 mammalList[i].speed();
 }
}

The code loops through the list of mammals held in the array (all two of them!)
and tells each object to display its speed. The first time through the list, the
dog displays its speed, the second time through the list, the man displays its
speed. This is polymorphism in action—two separate but related objects
receiving the same message and reacting to it in their own way.

The code for the Speak button is very similar.

void button4_actionPerformed(ActionEvent e) {
for (int i = 0; i <= 1; i++) {
 soundList[i].speak();
 }
}

Choose File|Save All to save all your changes.

You can see that you can treat the SoundInterface as a class when it is
convenient. Note that the interface gives you many of the benefits of multiple
inheritance without the added complexity.

Running your application
You’re ready to run your modified application. Choose Run|Run Project to
recompile your project and then run it.

When your application begins running, be sure that you click the Create Dog
and Create Man buttons to create the dog and man objects before you try the
Speed and Speak buttons or you will get a NullPointerException.

Once your objects exist and you click the Speed button, a message box
appears reporting the speed of the first mammal in the mammalList array, the
dog. When you click OK to remove the message box, the second message
box appears. It reports the speed of the second mammal, the man. Clicking
the Speak button results in similar behavior, but the messages displayed are
sounds each mammal might make.

Chapter 6: Object-oriented programming in Java 93

Java packages

Java packages
To facilitate code reuse, Java allows you to group several class definitions
together in a logical grouping called a package. If, for instance, you create a
group of business rules that model the work processes of your organization,
you might want to place them together in a package. This makes it easier to
reuse code that you have previously created.

The import statement

The Java language comes with many predefined packages. For instance, the
java.applet package contains classes for working with Java applets:

public class Hello extends java.applet.Applet {

This code refers to the class called Applet in the Java package java.applet.
You can imagine that it might get quite tedious to have to repeat the entire full
class name java.applet.Applet every time you refer to this class. Instead, Java
offers an alternative. You can choose to import a package you will use
frequently:

import java.applet.*;

This tells the compiler “if you see a class name you do not recognize, look in
the java.applet package for it.” Now, when you declare a new class, you can
say,

public class Hello extends Applet {

This is more concise. You have a problem, however, if you have two classes
by the same name defined in two different imported packages. In this case,
you must use the fully qualified name.

Declaring packages

Creating your own packages is almost as easy as using them. For instance, if
you want to create a package called mypackage, you would simply use a package
statement at the beginning of your file:

package mypackage;

public class Hello extends java.applet.Applet {

 public void init() {
 add(new java.awt.Label("Hello World Wide Web!"));
 }

} // end class

Now, any other program can access the classes declared in mypackage with the
statement:

import mypackage.*;

94 Gett ing Started with Java

Java packages

Remember, this file should be in a subdirectory called mypackage. This allows
your Java compiler to easily locate your package. JBuilder’s Project wizard will
automatically set the directory to match the project name. Also, keep in mind
that the base directory of any package you import must be listed in the Source
Path of the JBuilder IDE or the Source Path of your project. This is good to
remember if you decide to relocate a package to a different base directory.

For more information about working with packages in JBuilder, see
“Packages” in Building Applications with JBuilder.

Chapter 7: Threading techniques 95

C h a p t e r

7
Chapter7Threading techniques

Threads are a part of every Java program. A thread is a single sequential flow
of control within a program. It has a beginning, a sequence, and an end. A
thread cannot run on its own; it runs within a program. If your program is a
single sequence of execution, you don’t need to set up a thread explicitly, the
Java Virtual Machine (VM) will take care of this for you.

One of the powerful aspects of the Java language is that you can easily
program multiple threads of execution to run concurrently within the same
program. For example, a web browser can download a file from one site, and
access another site at the same time. If the browser can’t do two simultaneous
tasks, you’d need to wait until the file had finished downloading before you
could browse to another site.

The Java VM always has multiple threads, called daemon threads, running.
For example, a continually running daemon thread performs garbage
collection tasks. Another daemon thread handles mouse and keyboard
events. It is possible for your program to lock up one of the Java VM threads. If
your program appears to be dead, with no events being sent to your program,
try using threads.

The lifecycle of a thread
Every thread has a definite lifecycle—it starts and stops, it can pause and wait
for an event, and it can notify another thread while it is running. This section
will introduce some of the more common aspects of the thread lifecycle.

96 Gett ing Started with Java

The l i fecyc le of a thread

Customizing the run() method
Use the run() method to implement the thread’s running behavior. This
behavior can be anything a Java statement can accomplish—calculations,
sorting, animations, etc.

You can use one of two techniques to implement the run() method for a
thread:
� Subclass the java.lang.Thread class
� Implement the java.lang.Runnable interface

Subclassing the Thread class
If you are creating a new class whose objects you want to execute in separate
threads, you need to subclass the java.lang.Thread class. The Thread class’s
default run() method does not do anything, so your class will need to override
the run() method. The run() method is the first thing that executes when a
thread is started.

As an example, the following class, CountThread, subclasses Thread and
overrides its run() method. In this example, the run() method identifies a
thread and prints its name to the screen. The for loop counts integers from the
start value to the finish value and prints each count to the screen. Then,
before the loop finishes execution, the method prints a string that indicates the
thread has finished executing.

public class CountThread extends Thread {
 private int start;
 private int finish;

 public CountThread(int from, int to) {
 this.start = from;
 this.finish = to;
 }

 public void run() {
 System.out.println(this.getName()+ " started executing...");
 for (int i = start; i <= finish; i++) {
 System.out.print (i + " ");
 }
 System.out.println(this.getName() + " finished executing.");
 }
}

To test the CountThread class, you can create a test class:

public class ThreadTester {
 static public void main(String[] args) {
 CountThread thread1 = new CountThread(1, 10);
 CountThread thread2 = new CountThread(20, 30);
 thread1.start();
 thread2.start();
 }
}

Chapter 7: Threading techniques 97

The l i fecyc le of a thread

The main() method in the test application creates two CountThread objects:
thread1 that counts from 1 to 10, and thread2 that counts from 20 to 30. Both
threads are then started by calling their start() methods. The output from this
test application could look like this:

Thread-0 started executing...
1 2 3 4 5 6 7 8 9 10 Thread-0 finished executing.
Thread-1 started executing...
20 21 22 23 24 25 26 27 28 29 30 Thread-1 finished executing.

Notice that the output does not show the thread names as thread1 and thread2.
Unless you specifically assign a name to a thread, Java will automatically give
it a name of the form Thread-n, where n is a unique number, starting with 0. You
can assign a name to a thread in the class constructor or with the
setName(String) method.

In this example, Thread-0 started executing first and finished first. However, it
could have started first and finished last, or partially started and been
interrupted by Thread-1. This is because threads in Java are not guaranteed to
execute in any particular sequence. In fact, each time you execute
ThreadTester, you might get a different output. Basically, the process of
scheduling threads is controlled by the Java thread scheduler, and not the
programmer. For more information, see the topic called “Thread priority” on
page 101.

Implementing the Runnable interface
If you want objects of an existing class to execute in their own threads, you
can implement the java.lang.Runnable interface. This interface adds threading
support to classes that do not inherit from the Thread class. It provides only one
method, the run() method, which you have to implement for your class.

Note If your class subclasses a class other than Thread, for example, Applet, you
should use the Runnable interface to create threads.

To create a new CountThread class that implements the Runnable interface, you
need to change the class definition of the CountThread class. The class
definition code, with the changes highlighted in bold-faced type, would look
like this:

public class CountThread implements Runnable {

You would also have to change the way the name of the thread is obtained.
Because you are not instantiating the class Thread, you cannot call the
getName() method of CountThread's superclass, in this case, java.lang.Object.
This method is not available. Instead, you need to specifically use the
Thread.currentThread() method, which returns the thread’s name in a format
that is slightly different from the getName() method.

The entire class, with changes highlighted in bold-faced type, would then look
like this:

public class CountThread implements Runnable {
 private int start;
 private int finish;

98 Gett ing Started with Java

The l i fecyc le of a thread

 public CountThread(int from, int to) {
 this.start = from;
 this.finish = to;
 }

 public void run() {
 System.out.println(Thread.currentThread() + " started executing...");
 for (int i=start; i <= finish; i++) {
 System.out.print (i + " ");
 }
 System.out.println(Thread.currentThread() + " finished executing.");
 }
}

The test application would need to change the way its objects are created.
Instead of instantiating CountThread, the application needs to create a Runnable
object from the new class and pass it to one of the thread’s constructors. The
code, with the changes highlighted in bold-faced type, would look like this:

public class ThreadTester {
 static public void main(String[] args) {
 CountThreadRun thread1 = new CountThreadRun(1, 10);
 new Thread(thread1).start();
 CountThreadRun thread2 = new CountThreadRun(20, 30);
 new Thread(thread2).start();
 }
}

The output from this program would look like this:

Thread[Thread-0,5,main] started executing...
1 2 3 4 5 6 7 8 9 10 Thread[Thread-0,5,main] finished executing.
Thread[Thread-1,5,main] started executing...
20 21 22 23 24 25 26 27 28 29 30 Thread[Thread-1,5,main] finished
 executing.

Thread-0 is the name of the thread, 5 is the priority the thread was given when it
was created, and main is the default ThreadGroup to which the thread was
assigned. (The priority and the group are assigned by the Java VM if none are
specified.)

See also
� “Thread priority” on page 101
� “Thread groups” on page 102

Chapter 7: Threading techniques 99

The l i fecyc le of a thread

Defining a thread

The Thread class provides seven constructors. These constructors combine the
following three parameters in various ways:
� A Runnable object whose run() method will execute inside the thread.
� A String object to identify the thread.
� A ThreadGroup object to assign the thread to. The ThreadGroup class organizes

groups of related threads.

If you want to associate state with a thread, use a ThreadLocal object when you
create the thread. This class allows each thread to have its own independently
initialized copy of a private static variable, for example, a user or transaction
ID.

Starting a thread

To start a thread call the start() method. This method creates the system
resources necessary to run the thread, schedules the thread, and calls the
thread’s run() method.

After the start() method returns, the thread is running and is in a runnable
state. Because most computers have only a single CPU, the Java VM must
schedule threads. For more information see the topic called “Thread priority”
on page 101.

Constructor Description

Thread() Allocates a new Thread object.

Thread(Runnable target) Allocates a new Thread object so that it
has target as its run object.

Thread(Runnable target, String name) Allocates a new Thread object so that it
has target as its run object and the
specified name as its name.

Thread(String name) Allocates a new Thread object so that it
has the specified name as its name.

Thread(ThreadGroup group, Runnable
target)

Allocates a new Thread object so that it
belongs to the thread group referred to
by group and has target as its run object.

Thread(ThreadGroup group, Runnable
target, String name)

Allocates a new Thread object so that it
has target as its run object, the specified
name as its name, and belongs to the
thread group referred to by group.

Thread(ThreadGroup group, String
name)

Allocates a new Thread object so that it
belongs to the thread group referred to
by group and has the specified name as its
name.

100 Gett ing Star ted with Java

The l i fecyc le of a thread

Making a thread not runnable

To put a thread into a not runnable state, use one of following techniques:
� A sleep() method: these methods allow you to specify a specific number of

seconds and nanoseconds to not run.
� The wait() method: this method causes the current thread to wait for a

specified condition to be met.
� Block the thread on input or output.

When the thread is not runnable, the thread will not run, even if the processor
becomes available. To exit the not runnable state, the condition for the
entrance to the not runnable state must be met. For example, if you used the
sleep() method, the specified number of seconds must have passed. If you
used the wait() method, another object must tell the waiting thread (with
notify() or notifyAll()) of a change in condition. If a thread is blocked by input
or output, the input or output must finish.

You can also use the join() method to have a thread wait for an executing
thread to finish. You call this method for the thread being waited on. You can
specify a timeout for a thread by passing a parameter to the method in
milliseconds. The join() method waits on the thread until either the timeout
has expired or the thread has terminated. This method works in conjunction
with the isAlive() method—isAlive() returns true if the thread has been
started and not stopped.

Note that the suspend() and resume() methods have been deprecated. The
suspend() method is deadlock-prone. If the target thread is locking a monitor
that protects a critical system resource when it is suspended, no thread can
access this resource until the target thread is resumed. A monitor is a Java
object used to verify that only one thread at a time is executing the
synchronized methods for the object. For more information, see the topic
called “Synchronizing threads” on page 101.

Stopping a thread

You can no longer stop a thread with the stop() method. This method has
been deprecated, as it is unsafe. Stopping a thread will cause it to unlock all of
the monitors it has locked. If an object previously protected by one of these
monitors is in an inconsistent state, other threads will see that object as
inconsistent. This can cause your program to be corrupted.

To stop a thread, terminate the run() method with a finite loop.

For more information, see the topic in the Java 2 SDK, Standard Edition
Documentation called “Why are Thread.stop, Thread.suspend,
Thread.resume and runtime.runFinalizersOnExit Deprecated?”.

Chapter 7 : Threading techniques 101

Thread pr ior i ty

Thread priority
When a Java thread is created, it inherits its priority from the thread that
created it. You can set a thread’s priority using the setPriority() method.
Thread priorities are represented as integer values ranging from MIN_PRIORITY
to MAX_PRIORITY (constants in the Thread class). The thread with the highest
priority is executed.

When that thread stops, yields, or becomes not runnable, a lower priority
thread will be executed. If two threads of the same priority are waiting, the
Java scheduler will choose one of them to run in a round-robin fashion. The
thread will run until:
� A higher priority thread becomes runnable.
� The thread yields, by use of the yield() method, or its run() method exits.
� Its time allotment has expired. This only applies to systems that support

time slicing.

This type of scheduling is based on a scheduling algorithm called fixed priority
scheduling. Threads are run based on their priority when compared to other
threads. The thread with the highest priority will always be running.

Time slicing

Some operating systems use a scheduling mechanism knows as time-slicing.
Time-slicing divides the CPU into time slots. The system gives the highest
priority threads that are of equal priority time to run, until one or more of them
finishes, or until a higher priority thread is in a runnable state. Because
time-slicing is not supported on all operating systems, your program should
not depend on a time-slicing scheduling mechanism.

Synchronizing threads
One of the central problems of multithreaded computing is handling situations
where more than one thread has access to the same data structure. For
example, if one thread was trying to update the elements in a list, while
another thread was simultaneously trying to sort them, your program could
deadlock or produce incorrect results. To prevent this problem, you need to
use thread synchronization.

The simplest way to prevent two objects from accessing the same method at
the same time is to require a thread to obtain a lock. While a thread holds the
lock, another thread that needs a lock has to wait until the first thread releases
the lock. To keep a method thread-safe, use the synchronized keyword when
declaring methods that can only be executed by one thread at a time. Note
than you can also synchronize on an object.

For example, if you create a swap() method that swaps values using a local
variable and you create two different threads to execute the method, your

102 Gett ing Star ted with Java

Thread groups

program could produce incorrect results. The first thread, due to the Java
scheduler, might only be able to execute the first half of the method. Then, the
second thread might be able to execute the entire method, but using incorrect
values (since the first thread did not complete the operation). The first thread
would then return to finish the method. In this case, it would appear as if the
swapping of values never took place. To prevent this from happening, use the
synchronized keyword in your method declaration.

As a basic rule, any method that modifies an object’s property should be
declared synchronized.

Thread groups
Every Java thread is a member of a thread group. A thread group collects
multiple threads into a single object and manipulates all those threads at once.
Thread groups are implemented by the java.lang.ThreadGroup class.

The runtime system puts a thread into a thread group during thread
construction. The thread is either put into a default group or into a thread
group you specify when the thread is created. You cannot move a thread into
a new group once the thread has been created.

If you create a thread without specifying a group name in its constructor, the
runtime system places the new thread in the same group as the thread that
created it. Usually, unspecified threads are put into the main thread group.
However, if you create a thread in an applet, the new thread might be put into
a thread group other than main, depending on the browser or viewer the applet
is running in.

If you construct a thread with a ThreadGroup, the group can be:
� A name of your own creation
� A group created by the Java runtime
� A group created by the application in which your applet is running

To obtain the name of the group your thread is part of, use the getThreadGroup()
method. Once you know a thread’s group, you can determine what other
threads are in the group and manipulate them all at once.

Chapter 8: Ser ial izat ion 103

C h a p t e r

8
Chapter8Serialization

Object serialization is the process of storing a complete object to disk or other
storage system, ready to be restored at any time. The process of restoring the
object is known as deserialization. In this section, you’ll learn why serialization
is useful and how Java implements serialization and deserialization.

An object that has been serialized is said to be persistent. Most objects in
memory are transient, meaning that they go away when their references drop
out of scope or the computer loses power. Persistent objects exist as long as
there is a copy of them stored somewhere on a disk, tape, or in ROM.

Why serialize?
Traditionally, saving data to a disk or other storage device required that you
define a special data format, write a set of functions to write and read that
format, and create a mapping between the file format and the format of your
data. The functions to read and write data were either simple and lacked
extensibility, or they were complex and difficult to create and maintain.

Java is completely based around objects and object-oriented programming
and provides a storage mechanism for objects in the form of serialization.
Using the Java way of doing things, you no longer have to worry about details
of file formats and input/output (I/O). Instead, you can concentrate on solving
your real-world tasks by designing and implementing objects. If, for instance,
you make a class persistent and later add new fields to it, you don’t have to
worry about modifying routines that read and write the data for you. All fields in
a serialized object will automatically be written and restored.

104 Gett ing Star ted with Java

Java seria l izat ion

Java serialization
Serialization first appeared as a feature of JDK 1.1. Java’s support for
serialization consists of the Serializable interface, the ObjectOutputStream class
and the ObjectInputStream class, as well as a few supporting classes and
interfaces. We’ll examine all three of these items as we demonstrate an
application that can save user information to a disk and read it back.

Suppose, for instance, you wanted to save information about a particular user
as shown here.

Figure 8.1 Saving a user name and password

After the user types in his or her name and password into the appropriate
fields, the application should save information about this user to disk. Of
course, this is a very simple example, but you can easily imagine saving data
about user application preferences, the last document opened, and so on.

Using JBuilder, you can design a user interface like the one shown above. See
the Designing Applications with JBuilder book if you need help with this task.
Name the Name text field textFieldName, and the password field
passwordFieldName. Besides the two labels you can see, add a third one near the
bottom of the frame and name it labelOutput.

Using the Serializable interface

Create a new class that represents the current user. It must have properties
that represent the user’s name and the user’s password.

To create the new class,

1 Choose File|New Class to display the Class wizard.

2 In the Class Information section, specify the new class name as UserInfo.
Leave the other fields unchanged.

3 In the Options section, check just the Public and Generate Default
Constructor options, unchecking all others.

4 Choose OK.

Chapter 8: Ser ial izat ion 105

Using output s treams

The Class wizard creates the new class file for you and adds it to the project.
Modify the generated code so that it looks like this:

package serialize;

public class UserInfo implements java.io.Serializable {
 private String userName = "";
 private String userPassword = "";

 public UserInfo() {
 }

 public String getUserName() {
 return userName;
 }

 public void setUserName(String s) {
 userName = s;
 }

 public String getUserPassword() {
 return userPassword;
 }

 public void setUserPassword(String s) {
 userPassword = s;
 }
}

You’ve added a variable that holds the user’s name and another for the user’s
password. You’ve also added accessor methods to both fields.

You’ll note that the UserInfo class implements the java.io.Serializable
interface. Serializable is known as a tagging interface because it specifies no
methods to be implemented, but merely “tags” its objects as being of a
particular type.

Any object that you expect to serialize must implement this the Serializable
interface. This is critical because the techniques used later in this chapter
won’t work otherwise. If, for instance, you try to serialize an object that does
not implement this interface, a NotSerializableException will be raised.

At this point, you should import the java.io package so that your application
has access to the input and output classes and interfaces to needs to write
and read objects. Add this import statement to those at the top of your frame
class:

import java.io.*

Using output streams
Before you serialize the UserInfo object, you must instantiate it and set it up
with the values that the user enters into the text fields. When the user enters

106 Gett ing Star ted with Java

Using output s treams

information in the fields and clicks the Serialize button, the values the user
entered are stored in the UserInfo object instance:

void jButton1_actionPerformed(ActionEvent e) {
 UserInfo user = new UserInfo(); // instantiate a user object
 user.setUserName(textFieldName.getText());
 user.setUserPassword(textFieldPassword.getText());
}

If you are using JBuilder’s UI designer, double-click the Serialize button and
JBuilder starts the jButton1_actionPerformed() event code for you. Instantiate a
user object, then add the user.setUserName() and user.setUserPassword()
method calls to the event handler.

Next, open a FileOutputStream to the file that will contain the serialized data. In
this example, the file will be called C:\userInfo.ser. Add this code to the
Serialize button event handler:

try {
 FileOutputStream file = new FileOutputStream("c:\userInfo.ser");

Create an ObjectOutputStream that will serialize the object and send it to the
FileOutputStream by adding this code to the event handler:

ObjectOutputStream out = new ObjectOutputStream(file);

Now you’re ready to send the UserInfo object to the file. Do this by calling the
ObjectOutputStream’s writeObject() method. Call the flush() method to flush the
output buffer to ensure that the object is actually written to the file.

out.writeObject(u);
out.flush();

Close the output stream to free up any resources, such as file descriptors,
used by the stream.

 out.close();
}

Add code to the handler that catches an IOException if there were any
problems writing to the file or if the object does not support the Serializable
interface.

catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
}

This is how the event handler for the Serialize button should look in its entirety:

void jButton1_actionPerformed(ActionEvent e) {
 UserInfo user = new UserInfo();
 user.setUserName(textFieldName.getText());
 user.setUserPassword(textFieldPassword.getText());
 try {
 FileOutputStream file = new FileOutputStream("c:\userInfo.ser");
 ObjectOutputStream out = new ObjectOutputStream(file);
 out.writeObject(user);
 out.flush();
 }

Chapter 8: Ser ial izat ion 107

Using input s treams

 catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
 }
 finally {
 out.close();
 }
}

Now compile your project and run it. Enter values in the Name and Password
fields and click the Serialize button. You can verify that the object has been
written by opening it in a text editor. (Don’t try to edit it, or the file will probably
be corrupted!) Notice that a serialized object contains a mixture of ASCII text
and binary data:

Figure 8.2 The serialized object

ObjectOutputStream methods

The ObjectOutputStream class contains several useful methods for writing data
to a stream. You aren’t restricted to writing objects. Calling writeInt(),
writeFloat(), writeDouble(), and so on, will write any of the fundamental types
to a stream. If you want to write more than one object or fundamental type to
the same stream, you can do so by repeatedly calling these methods against
the same ObjectOutputStream object. When you do this, however, you must read
the objects back in the same order.

Using input streams
You have now written the object to the disk, but how do you get if back? Once
the user clicks the Deserialize button, you want to read the data back from the
disk into a new object.

You can begin the process by creating a new FileInputStream object to read
from the file you just wrote. If you are using JBuilder, double-click the
Deserialize button in the UI Designer, and in the event handler that JBuilder
creates for you, add the highlighted code:

void jButton2_actionPerformed(ActionEvent e) {
try {
 FileInputStream file = new FileInputStream("c:\userInfo.ser");

Next, create an ObjectInputStream, which gives you the capability to read
objects from that file.

ObjectInputStream input = new ObjectInputStream(file);

108 Gett ing Star ted with Java

Using input s treams

After this, call the ObjectInputStream.readObject() method to read the first object
from the file. readObject() returns type Object, so you’ll want to cast it to the
appropriate type (UserInfo).

UserInfo user = (UserInfo)input.readObject();

When you’re done reading, remember to close the ObjectInputStream, so you
free up any resources associated with it, such as file descriptors.

input.close();

Finally, you can use the user object as you would any other object of the
UserInfo class. In this case, you display the name and password in the third
label field you added to the dialog box:

labelOutput.setText("Name is " + user.getUserName() +
 ", password is: " +
 user.getUserPassword());

Reading from a file could cause an IOException, so you should handle this
exception. You might also get a StreamCorruptedException (a subclass of
IOException) if the file has been corrupted in any way:

catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
}

There’s another exception you must deal with. The readObject() method can
throw a ClassNotFoundException. This exception can occur if you attempt to
read an object for which you have no implementation. For instance, if this
object was written by another program, or you have renamed the UserInfo
class since the file was written, you’ll get a ClassNotFoundException.

 catch (ClassNotFoundException cnfe) {
 labelOutput.setText("ClassNotFoundException");
 }
}

Here is the Deserialize button event handler in its entirety:

void jButton2_actionPerformed(ActionEvent e) {
 try {
 FileInputStream file = new FileInputStream("c:\userInfo.ser");
 ObjectInputStream input = new ObjectInputStream(file);
 UserInfo user = (UserInfo)input.readObject();
 input.close();
 labelOutput.setText("Name is " + user.getUserName() +
 ", password is: " +
 user.getUserPassword());
 }
 catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
 }
 catch (ClassNotFoundException cnfe) {
 labelOutput.setText("ClassNotFoundException");
 }
}

Chapter 8: Ser ial izat ion 109

Writ ing and reading object s treams

Now when you compile and run your project, enter Name and Password
values and click the Serialize button to store the information on your disk.
Then click the Deserialize button to read the serialized UserInfo object back
again.

Figure 8.3 The object restored

ObjectInputStream methods

ObjectInputStream also has methods such as readDouble(), readFloat(), and so
on, which are the counterparts to the writeDouble(), writeFloat(), and such
methods. You must call each method in sequence, the same way the objects
were written to the stream.

Writing and reading object streams
You might wonder what happens when an object you are serializing contains a
field that refers to another object, rather than a primitive type. In this case,
both the base object and the secondary object will be written to the stream.
You should realize, however, that both objects written to the stream need to
implement the Serializable interface. If they don’t, a NotSerializableException
will be thrown when the writeObject() method is called.

Recall that object serialization can create potential security problems. In the
example above, we wrote a password to a serialized object. While this
technique might be acceptable in some circumstances, keep security issues in
mind when you choose to serialize an object.

Finally, if you want to create a persistent object, but don’t want to use the
default serialization mechanism, the Serializable interface documents two
methods, writeObject() and readObject(), which you can implement to perform
custom serialization. The Externalizable interface also provides a similar
mechanism. Consult the JDK documentation for information about these
techniques.

110 Gett ing Star ted with Java

Chapter 9: An in troduct ion to the Java Virtua l Machine 111

C h a p t e r

9
Chapter 9An introduction to the

Java Virtual Machine
This chapter provides an introduction to the Java Virtual Machine (JVM). While
it is important for you to be familiar with basic information concerning the JVM,
unless you get into very advanced Java programming, the JVM is typically
something you don’t need to worry about. This chapter is for your information
only.

Before exploring the Java Virtual Machine, we will explain some of the
terminology used in this chapter. First, the Java Virtual Machine (JVM) is the
environment in which Java programs execute. The Java Virtual Machine
specification essentially defines an abstract computer, and specifies the
instructions that this computer can execute. These instructions are called
bytecodes. Generally speaking, Java bytecodes are to the JVM what an
instruction set is to a CPU. A bytecode is a byte-long instruction that the Java
compiler generates, and the Java interpreter executes. When the compiler
compiles a .java file, it produces a series of bytecodes and stores them in a
.class file. The Java interpreter can then execute the bytecodes stored in the
.class file.

Other terminology used in this chapter involves Java applications and applets.
It is sometimes appropriate to distinguish between a Java application and a
Java applet. In some sections of this chapter, however, that distinction is
inappropriate. In such cases, we will use the word app to refer to both Java
applications and Java applets.

It is important here to clarify what Java really is. Java is more than just a
computer language; it is a computer environment. This is because Java is

112 Gett ing Star ted with Java

Java VM secur i ty

composed of two separate main elements, each of which is an essential part
of Java: the design-time Java (the Java language itself) and the runtime Java
(the JVM). This interpretation of the word Java is a more technical one.

Interestingly enough, the practical interpretation of the word Java is that it
stands for the runtime environment — not the language. When you say
something like “this machine can run Java,” what you really mean is that the
machine supports the Java Runtime Environment (JRE); more precisely, it
implements a Java Virtual Machine.

A distinction should be made between the Java Virtual Machine Specification
and an implementation of the Java Virtual Machine. The JVM specification is a
document (available from Sun’s website) which defines how to implement a
JVM. When an implementation of the JVM correctly follows this specification, it
essentially ensures that Java apps can run on this implementation of the JVM
with the same results those same Java apps produce when running on any
other implementation of the JVM. The JVM specification ensures that Java
programs will be able to run on any platform.

The JVM specification is platform independent, because it can be
implemented on any platform. Note that a specific implementation of the JVM
is platform dependent. This is because the JVM implementation is the only
portion of Java that directly interacts with the operating system (OS) of your
computer. Because each OS is different, any specific JVM implementation
must know how to interact with the specific OS for which it is intended.

Having Java programs run under an implementation of the JVM guarantees a
predictable runtime environment, because all implementations of the JVM
conform to the JVM specification. Even though there are different
implementations of the JVM, they all must meet certain requirements to
guarantee portability. In other words, whatever differs among the various
implementations does not affect portability.

The JVM is responsible for performing the following functions:
� Allocating memory for created objects
� Performing garbage collection
� Handling register and stack operations
� Calling on the host system for certain functions, such as device access
� Monitoring the security of Java apps

Throughout the remaining chapter, we will focus on the last function: security.

Java VM security
One of the JVM’s most important roles is monitoring the security of Java apps.
The JVM uses a specific mechanism to force certain security restrictions on
Java apps. This mechanism (or security model) has the following roles:
� Determines to what extent the code being run is “trusted” and assigns it the

appropriate level of access

Chapter 9: An in troduct ion to the Java Virtua l Machine 113

Java VM secur i ty

� Assures that bytecodes do not perform illegal operations
� Verifies that every bytecode is generated correctly

In the following sections, we will see how these security roles are taken care of
in Java.

The security model

In this section, we will look at some of the different elements in Java’s security
model. In particular, we will examine the roles of the Java Verifier, the Security
Manager and java.security package, and the Class Loader. These are some
of the components that make Java apps secure.

The Java verifier
Every time a class is loaded, it must first go through a verification process. The
main role of this verification process is to ensure that each bytecode in the
class does not violate the specifications of the Java VM. Examples of
bytecode violations are type errors and overflowed or underflowed arithmetic
operations. The verification process is handled by the Java verifier, and it
consists of the following four stages:

1 Verifying the structure of class files.

2 Performing system-level verifications.

3 Validating bytecodes.

4 Performing runtime type and access checks.

The first stage of the verifier is concerned with verifying the structure of the
class file. All class files share a common structure; for example, they must
always begin with what is called the magic number, whose value is 0xCAFEBABE.
At this stage, the verifier also checks that the constant pool is not corrupted
(the constant pool is where the class file’s strings and numbers are stored). In
addition, the verifier makes sure that there are no added bytes at the end of
the class file.

The second stage performs system-level verifications. This involves verifying
the validity of all references to the constant pool, and ensuring that classes are
subclassed properly.

The third stage involves validating the bytecodes. This is the most significant
and complex stage in the entire verification process. Validating a bytecode
means checking that its type is valid and that its arguments have the
appropriate number and type. The verifier also checks that method calls are
passed the correct type and number of arguments, and that each external
function returns the proper type.

The final stage is where runtime checks take place. At this stage, externally
referenced classes are loaded, and their methods are checked. The method
check involves checking that the method calls match the signature of the
methods in the external classes. The verifier also monitors access attempts by
the currently loaded class to make sure that the class does not violate access

114 Gett ing Star ted with Java

Java VM secur i ty

restrictions. Another access check is done on variables to ensure that private
and protected variables are not accessed illegally.

From this exhaustive verification process, we can see how important the Java
verifier is to the security model. It is also important to note that the verification
process must be done at the verifier level, and not at the compiler’s, since any
compiler can be programmed to generate Java bytecodes. Clearly then,
relying on the compiler to perform the verification process is dangerous, since
the compiler can be programmed to bypass it. This point illustrates why the
JVM is necessary.

If you need more information on the Java verifier, please see the Java Virtual
Machine Specification at http://java.sun.com/docs/books/vmspec/index.html.

The Security Manager and the java.security Package
One of the classes defined in the java.lang package is the SecurityManager
class. This class checks the security policy on Java apps to determine if the
running app has permission to perform certain dangerous operations. The
security policy’s main role is to determine access rights. In Java 1.1, the
SecurityManager class was solely responsible for setting the security policy, but
in Java 2 and above, a much more detailed and robust security model is
achieved using the new java.security package. The SecurityManager class has
several methods that begin with “check”. In Java 1.1, the default
implementation of those “check” methods was to throw a SecurityException.
Since Java 2, the default implementation of most of the “check” methods calls
SecurityManager.checkPermission(), and that method’s default implementation in
turn calls java.security.AccessController.checkPermission(). It is
AccessController which is responsible for the actual algorithm for checking
permissions.

The SecurityManager class contains many methods used to check whether a
particular operation is permitted. The checkRead() and checkWrite() methods,
for example, check whether the method caller has the right to perform a read
or write operation, respectively, to a specified file. They do this by calling
checkPermission(), which in turn calls AccessController.checkPermission(). Many
of the methods in the JDK use the SecurityManager before performing
dangerous operations. The JDK does this for legacy reasons; SecurityManager
existed in earlier versions of the JDK when there was a much more limited
security model. In your apps, you may want to call
AccessController.checkPermission() directly, instead of using the SecurityManager
class (which calls the same method indirectly anyway).

The static System.setSecurityManager() method can be used to load the default
security manager into the environment. Now, whenever a Java app needs to
perform a dangerous operation, it can consult with the SecurityManager object
that is loaded into the environment.

The way Java apps use the SecurityManager class is generally the same. An
instance of SecurityManager is first created, either by using a special command

Chapter 9: An in troduct ion to the Java Virtua l Machine 115

Java VM secur i ty

line argument when the app is started (“-Djava.security.manager”), or in code
similar to the following:

SecurityManager security = System.getSecurityManager();

The System.getSecurityManager() method returns an instance of the currently
loaded SecurityManager. If no SecurityManager has been set using the
System.setSecurityManager() method, System.getSecurityManager() returns null;
otherwise, it returns an instance of the SecurityManager that was loaded into the
environment. Now, let’s assume that the app wants to check whether it can
read a file. It does so as follows:

if (security != null) {
 security.checkRead (fileName);
}

The if statement first checks whether a SecurityManager object exists, then it
makes the call to the checkRead() method. If checkRead() does not permit the
operation, a SecurityException is thrown and the operation never takes place;
otherwise, all goes well.

There is typically a security manager loaded when an applet is running,
because most Java-enabled browsers automatically use one. An application,
on the other hand, does not automatically use a security manager, unless one
is loaded into the environment using the System.setSecurityManager() method,
or from the command line when starting the application. To use the same
security policy for an application as for an applet, you must make sure the
security manager is loaded.

In order to specify your own security policy, you will need to work with the
classes in the java.security package. Important classes in this package
include Policy, Permission, and AccessController. You should not subclass
SecurityManager except as a last resort, and then with extreme caution. An
in-depth discussion of the security package is outside the scope of this book.
The default security policy should suffice for most beginning Java developers.
When you do find you are concerned with more advanced security topics, or
just for more information on the java.security package, please see the
“Security Architecture” document in the JDK documentation.

The class loader
The class loader works alongside the security manager to monitor the security
of Java apps. The main roles of the class loader are summarized below:
� Determines whether the class it is attempting to load has already been

loaded
� Loads class files into the Virtual Machine
� Determines the permissions assigned to the loaded class in accordance

with the security policy
� Provides certain information about loaded classes to the security manager
� Determines the path from which the class should be loaded (System

classes are always loaded from the BOOTCLASSPATH)

116 Gett ing Star ted with Java

Java VM secur i ty

Each instance of a class is associated with a class loader object, which is an
instance of a subclass of the abstract class java.lang.ClassLoader. Class
loading happens automatically when a class is instantiated. It is possible to
create a custom class loader by subclassing ClassLoader or one of its existing
subclasses, but in most cases this is not necessary. If you need more
information about the class loader mechanism, see the documentation for
java.lang.ClassLoader and the “Security Architecture” document in the JDK
documentation.

So far, we’ve seen how the Java verifier, the SecurityManager, and the class
loader work to ensure the security of Java apps. In addition to these, there are
other mechanisms not described in this chapter, such as those in the
java.security package, which add to the security of Java apps. There is also a
measure of security built into the Java language itself, but that is outside the
scope of this chapter.

What about Just-In-Time compilers?

It is appropriate to include a brief discussion of Just-In-Time (JIT) compilers in
this chapter. JIT compilers translate Java bytecodes into native machine
instructions to be directly executed by the CPU. This obviously boosts the
performance of Java apps. But if native instructions are executed instead of
bytecodes, what happens to the verification process mentioned earlier?
Actually, the verification process does not change because the Java verifier
still verifies the bytecodes before they are translated.

Chapter 10: Work ing wi th the Java Nat ive In ter face (JNI) 117

C h a p t e r

10
Chapter 10Working with the Java Native

Interface (JNI)
This chapter explains how to invoke native methods in Java applications using
the Java Native Method Interface (JNI). It begins by explaining how the JNI
works, then discusses the native keyword and how any Java method can
become a native method. Finally, it examines the JDK’s javah tool, which is
used to generate C header files for Java classes.

Even though Java code is designed to run on multiple platforms, there are
certain situations where it may not be enough by itself. For example,
� The standard Java class library doesn’t support platform-dependent

features needed by your application.
� You want to access an existing library from another language and make it

accessible to your Java code.
� You have code you want to implement in a lower-level program like

assembly, then have your Java application call it.

The Java Native Interface is a standard cross-platform programming interface
included in the JDK. It enables you to write Java programs that can operate
with applications and libraries written in other programming languages, such
as C, C++, and assembly.

Using JNI, you can write Java native methods to create, inspect, and update
Java objects (including arrays and strings), call Java methods, catch and
throw exceptions, load classes and obtain class information, and perform
runtime type checking.

118 Gett ing Star ted with Java

How JNI works

In addition, you can use the Invocation API to embed the Java Virtual Machine
into your native applications, then use the JNI interface pointer to access VM
features. This allows you to make existing applications Java-enabled without
having to link with the VM source code.

How JNI works
In order to achieve Java’s main goal of platform independence, Sun did not
standardize its implementation of the Java Virtual Machine; in other words,
Sun did not want to rigidly specify the internal architecture of the JVM, but
allowed vendors to have their own implementations of the JVM. This does not
preclude Java from being platform-independent, because every JVM
implementation must still comply with certain standards needed to achieve
platform independence (such as the standard structure of a .class file).

The only problem with this scenario is that accessing native libraries from Java
apps becomes difficult, since the runtime system differs across the various
JVM implementations. For that reason, Sun came up with the JNI as a
standard way for accessing native libraries from Java applications.

The way native methods are accessed from Java applications changed in the
JDK 1.1. The old way allowed a Java class to directly access methods in a
native library. The new implementation uses the JNI as an intermediate layer
between a Java class and a native library. Instead of having the JVM make
direct calls to native methods, the JVM uses a pointer to the JNI to make the
actual calls. This way, even if the JVM implementations are different, the layer
they use to access the native methods (the JNI) is always the same.

Using the native keyword
Making Java methods native is very easy. Below is a summary of the required
steps:

1 Delete the body of the method.

2 Add a semicolon at the end of the method’s signature.

3 Add the native keyword at the beginning of the method’s signature.

4 Include the method’s body in a native library to be loaded at runtime.

For example, assume the following method exists in a Java class:

public void nativeMethod () {
 //the method's body
}

This is how the method becomes native:

public native void nativeMethod ();

Now that you’ve declared the method to be native, its actual implementation
will be included in a native library. It is the duty of the class, of which this

Chapter 10: Work ing wi th the Java Nat ive In ter face (JNI) 119

Using the javah tool

method is a member, to invoke the library so its implementation becomes
globally available. The easiest way to have the class invoke the library is to
add the following to the class:

static
{
 System.loadLibrary (nameOfLibrary);
}

A static code block is always executed once when the class is first loaded.
You can include virtually anything in a static code block. However, loading
libraries is the most common use for it. If, for some reason, the library fails to
load, an UnsatisfiedLineError exception will be thrown once a method from that
library is called. The JVM will add the correct extension to its name (.dll in
Windows, and .so in UNIX)—you don’t have to specify it in the library name.

Using the javah tool
The JDK supplies a tool called javah, which is used to generate C header files
for Java classes. The following is the general syntax for using javah:

javah [options] className

className represents the name of the class (without the .class extension) for
which you want to generate a C header file. You can specify more than one
class at the command line. For each class, javah adds a .h file to the class’s
directory by default. To put the .h files in a different directory, use the -o
option. If a class is in a package, you must specify the package along with the
class name.

For example, to generate a header file for the class myClass in the package
myPackage, do the following:

javah myPackage.myClass

The generated header file will include the package name, (myPackage_myClass.h).

Below is a list of some of the javah options:

The contents of the .h file generated by javah include all the function
prototypes for the native methods in the class. The prototypes are modified to
allow the Java runtime system to find and invoke the native methods. This
modification basically involves changing the name of the method according to
a naming convention established for native method invocation. The modified

Option Description

-jni Creates a JNI header file

-verbose Displays progress information

-version Displays the version of javah

-o directoryName Outputs the .h file in specified directory

-classpath path Overrides the default class path

120 Gett ing Star ted with Java

Using the javah tool

name includes the prefix Java_ to the class and method names. So, if you have
a native method called nativeMethod in a class called myClass, the name that
appears in the myClass.h file is Java_myClass_nativeMethod.

For more information on JNI, see the following:
� Java Native Interface at http://java.sun.com/j2se/1.3/docs/guide/jni/
� Java Native Interface Specification at http://java.sun.com/j2se/1.3/docs/

guide/jni/spec/jniTOC.doc.html

� The Java Tutorial, “Trail: Java Native Interface” at http://java.sun.com/docs/
books/tutorial/native1.1/index.html

The following books on Java Native Interface are also available:
� “The Java Native Interface: Programmer’s Guide and Specification (Java

Series)” by Sheng Liang

� “Essential Jni: Java Native Interface (Essential Java)”, by Rob Gordon

amazon.com http://www.amazon.com/exec/obidos/ASIN/0201325772/
inprisecorporati/103-7218087-8544625

fatbrain.com http://btob.barnesandnoble.com/
home.asp?userid=2UT912FFK4&btob=Y

amazon.com http://www.amazon.com/exec/obidos/ASIN/0136798950/
inprisecorporati/103-7218087-8544625

fatbrain.com http://btob.barnesandnoble.com/
home.asp?userid=2UT912FFK4&btob=Y

Appendix A: Java language quick reference 121

A p p e n d i x

A
Appendix AJava language quick reference

Java 2 platform editions
The Java 2 Platform is available in several editions used for various purposes.
Because Java is a language that can run anywhere and on any platform, it is
used in a variety of environments and has been packaged in several editions:
Java 2 Standard Edition (J2SE), Java 2 Enterprise Edition (J2EE), and Java 2
Micro Edition (J2ME). In some cases, as in the development of enterprise
applications, a larger set of packages is used. In other cases, as in consumer
electronic products, only a small portion of the language is used. Each edition
contains a Java 2 Software Development Kit (SDK) used to develop
applications and a Java 2 Runtime Environment (JRE) used to run
applications.

Table A.1 Java 2 Platform editions

Java 2 Platform Abbreviation Description

Standard Edition J2SE Contains classes that are the core of the
Java language.

Enterprise Edition J2EE Contains J2SE classes and additional
classes for developing enterprise
applications.

Micro Edition J2ME Contains a subset of J2SE classes and is
used in consumer electronic products.

122 Gett ing Star ted with Java

Java c lass l ibrar ies

Java class libraries
Java, like most programming languages, relies heavily on pre-built libraries to
support certain functionality. In the Java language, these groups of related
classes called packages vary by Java edition. Each edition is used for specific
purposes, such as applications, enterprise applications, and consumer
products.

The Java 2 Platform, Standard Edition (J2SE) provides developers with a
feature-rich, stable, secure, cross-platform development environment. This
Java edition supports such core features as database connectivity, user
interface design, input/output, and network programming and includes the
fundamental packages of the Java language. Some of these J2SE packages
are listed in the following table.

Table A.2 J2SE packages

Package Package Name Description

Language java.lang Classes that contain the main core of the
Java language.

Utilities java.util Support for utility data structures.

I/O java.io Support for various types of input/output.

Text java.text Localization support for handling text, dates,
numbers, and messages.

Math java.math Classes for performing arbitrary-precision
integer and floating-point arithmetic.

AWT java.awt User interface design and event-handling.

Swing javax.swing Classes for creating all-Java, lightweight
components that behave similarly on all
platforms.

Javax javax Extensions to the Java language.

Applet java.applet Classes for creating applets.

Beans java.beans Classes for developing JavaBeans.

Reflection java.lang.reflect Classes used to obtain runtime class
information.

SQL java.sql Support for accessing and processing data in
databases.

RMI java.rmi Support for distributed programming.

Networking java.net Classes that support development of
networking applications.

Security java.security Support for cryptographic security.

Appendix A: Java language quick reference 123

Java keywords

Java keywords
These tables cover the following types of keywords:
� Data and return types and terms
� Packages, classes, members, and interfaces
� Access modifiers
� Loops and flow controls
� Exception handling
� Reserved

Data and return types and terms

Packages, classes, members, and interfaces

Keyword Use Keyword Use

boolean Boolean values. char 16 bits, one character.

byte one byte, integer. float 4 bytes, single-precision.

short 2 bytes, integer. double 8 bytes, double-precision.

long 8 bytes, integer. int 4 bytes, integer.

strictfp (proposed)

Method or class to use
standard precision in
floating-point
intermediate
calculations.

void Return type where no
return value is required.

return Exit the current code block
with any resulting values.

Keyword Use Keyword Use

package Declares a package
name for all classes
defined in source files
with the same package
declaration.

import Makes all classes in the
imported class or
package visible to the
current program.

class Declares a Java class. new Instantiates a class.

super Inside a subclass, refers
to the superclass.

instanceof Checks an object’s
inheritance.

final This class can’t be
extended.

abstract This method or class
must be extended to be
used.

124 Gett ing Star ted with Java

Java keywords

Access modifiers

Loops and flow controls

extends Creates a subclass.

Gives a class access to
public and protected
members of another
class.

Allows one interface to
inherit another.

implements In a class definition,
implements a defined
interface.

interface Abstracts a class’s
interface from its
implementation (tells
what to do, not how to do
it).

synchronized Makes a code block
thread-safe.

native The body of this method
is provided by a link to a
native library.

this Refers to the current
object.

static Member is available to
the whole class, not just
one object.

transient This variable’s value
won’t persist when the
object is stored.

volatile This variable’s value can
change unexpectedly.

Keyword Use Keyword Use

public Class: accessible from
anywhere.

Subclass: accessible as
long as its class is
accessible.

protected Access limited to member’s
class’s package.

private Access limited to
member’s own class.

package Default access level; don’t
use it explicitly.

Cannot be subclassed by
another package.

Keyword Use Keyword Use

if Selection statement. else Selection statement.

switch Selection statement. case Selection statement.

break Breakout statement. default Fallback statement.

for Iteration statement. do Iteration statement.

while Iteration statement. continue Iteration statement.

assert Checks a condition before allowing a statement to be executed.

Keyword Use Keyword Use

Appendix A: Java language quick reference 125

Conver t ing and cast ing data types

Exception handling

Reserved

Converting and casting data types
An object or variable’s data type can be altered for a single operation when a
different type is required. Widening conversions (from a smaller class or data type
to a larger) can be implicit, but it’s good practice to convert explicitly. Narrowing
conversions must be explicitly converted, or cast. Novice programmers should
avoid casts; they can be a rich source of errors and confusion.

For narrowing casts, put the type you want to cast to in parentheses
immediately before the variable you want to cast:(int)x. This is what it looks
like in context, where x is the variable being cast, float is the original data
type, int is the target data type, and y is the variable storing the new value:

float x = 1.00; //declaring x as a float
int y = (int)x; //casting x to an int named y

This assumes that the value of x would fit inside of int. Note that x’s decimal
values are lost in the conversion. Java rounds decimals down to the nearest
whole number.

Note that Unicode sequences can represent numbers, letters, symbols, or
nonprinting characters such as line breaks or tabs. For more information on
Unicode, see http://www.unicode.org/

This section contains tables of the following conversions:
� Primitive to primitive
� Primitive to String
� Primitive to reference
� String to primitive
� Reference to primitive
� Reference to reference

Keyword Use Keyword Use

throws Lists the exceptions a
method could throw.

throw Transfers control of the
method to the exception
handler.

try Opening
exception-handling
statement.

catch Captures the exception.

finally Runs its code before
terminating the program.

Keyword Use Keyword Use

goto Reserved for future use. const Reserved for future use.

126 Gett ing Star ted with Java

Convert ing and cast ing data types

Primitive to primitive

Java doesn’t support casting to or from boolean values. In order to work around
Java’s strict logical typing, you must assign an appropriate equivalent value to
the variable and then convert that. 0 and 1 are often used to represent false
and true values.

Syntax Comments

From other primitive type p
To boolean t:

t = p != 0;

Other primitive types include
byte, short, char, int, long,
double, float.

From boolean t
To byte b:

b = (byte)(t ? 1 : 0);

From boolean t
To int, long, double, or float m:

m = t ? 1 : 0;

From boolean t
To short s:

s = (short) (t ? 1 : 0);

From boolean t
To byte b:

b = (byte) (t?1:0);

From boolean t
To char c:

c = (char) (t?'1':'0');

From short, char, int, long, double, or float n
To byte b:

b = (byte)n;

From byte b
To short, int, long, double, or float n:

n = b;

From byte b
To char c:

c = (char)b;

Appendix A: Java language quick reference 127

Conver t ing and cast ing data types

Primitive to String

Primitive data types are mutable; reference types are immutable objects.
Casting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work around
Java’s strict logical typing, you must assign an appropriate equivalent value to
the variable and then convert that. 0 and 1 are often used to represent false
and true values.

Syntax Comments

From boolean t
To String gg:

gg = t ? "true" : "false";

From byte b
To String gg:

gg = Integer.toString(b);
or

gg = String.valueOf(b);

The following may be substituted for toString,
where appropriate:

toBinaryString
toOctalString
toHexString

Where you are using a base other than 10 or 2
(such as 8):

gg = Integer.toString(b, 7);

From short or int n
To String gg:

gg = Integer.toString(n);
or

gg = String.valueOf(n);

The following may be substituted for toString,
where appropriate:

toBinaryString
toOctalString
toHexString

Where you are using a base other than 10
(such as 8):

gg = Integer.toString(n, 7);

From char c
To String gg:

gg = String.valueOf(c);

From long n
To String gg:

gg = Long.toString(n);
or

gg = String.valueOf(n);

The following may be substituted for toString,
where appropriate:

toBinaryString
toOctalString
toHexString

Where you are using a base other than 10 or 2
(such as 8):

gg = Integer.toString(n, 7);

128 Gett ing Star ted with Java

Convert ing and cast ing data types

Primitive to reference

Java provides classes that correspond to primitive data types and provide
methods that facilitate conversions.

Note that primitive data types are mutable; reference types are immutable
objects. Casting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work around
Java’s strict logical typing, you must assign an appropriate equivalent value to
the variable and then convert that. 0 and 1 are often used to represent false
and true values.

From float f
To String gg:

gg = Float.toString(f);
or

gg = String.valueOf(f);

For decimal protection or scientific
notation, see next column.

These casts protect more data.

Double precision:

java.text.DecimalFormat df2
= new java.text.DecimalFormat("###,##0.00");
gg = df2.format(f);

Scientific notation (protects exponents) (JDK
1.2.x and up):

java.text.DecimalFormat de
= new java.text.DecimalFormat("0.000000E00");

gg = de.format(f);

From double d
To String gg:

gg = Double.toString(d);
or

gg = String.valueOf(d);

For decimal protection or scientific
notation, see next column.

These casts protect more data.

Double precision:

java.text.DecimalFormat df2
= new java.text.DecimalFormat("###,##0.00");
gg = df2.format(d);

Scientific notation (JDK 1.2.x and up):

java.text.DecimalFormat de
= new java.text.DecimalFormat("0.000000E00");

gg = de.format(d);

Syntax Comments

From boolean t
To Boolean tt:

tt = new Boolean(t);

From Primitive type p (other than
boolean)
To Boolean tt

tt = new Boolean(p != 0);

For char, see next column.

For char c, put single quotes around the
zero:

tt = new Boolean(c != '0');

From boolean t
To Character cc:

 cc = new Character(t ? '1' : '0');

Syntax Comments

Appendix A: Java language quick reference 129

Conver t ing and cast ing data types

From byte b
To Character cc:

cc = new Character((char) b);

From char c
To Character cc:

cc = new Character(c);

From short, int, long, float, or
double n
To Character cc:

cc = new Character((char)n);

From boolean t
To Integer ii:

ii = new Integer(t ? 1 : 0);

From byte b
To Integer ii:

ii = new Integer(b);

Fromshort, char, or int n
To Integer ii:

ii = new Integer(n);

From long, float, or double f
To Integer ii:

ii = new Integer((int) f);

From boolean t
To Long nn:

nn = new Long(t ? 1 : 0);

From byte b
To Long nn:

nn = new Long(b);

From short, char, int, or long s
To Long nn:

nn = new Long(s);

From float, double f
To Long nn:

nn = new Long((long)f);

From boolean t
To Float ff:

ff = new Float(t ? 1 : 0);

From byte b
To Float ff:

ff = new Float(b);

Syntax Comments

130 Gett ing Star ted with Java

Convert ing and cast ing data types

String to primitive

Note that primitive data types are mutable; reference types are immutable
objects. Casting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work around
Java’s strict logical typing, you must assign an appropriate equivalent value to
the variable and then convert that. The numbers 0 and 1, the strings “true” and
“false”, or equally intuitive values are used here to represent true and false
values.

From short, char, int, long, float,
or double n
To Float ff:

ff = new Float(n);

From boolean t
To Double dd:

dd = new Double(t ? 1 : 0);

From byte b
To Double dd:

dd = new Double(b);

From short, char, int, long, float,
or double n
To Double dd:

dd = new Double(n);

Syntax Comments

From String gg
To boolean t:

t = new
Boolean(gg.trim()).booleanValue();

Caution: t will only be true when the
value of gg is “true” (case insensitive); if
the string is “1”, “yes”, or any other
affirmative, this conversion will return a
false value.

From String gg
To byte b:

try {
 b = (byte)Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

For bases other than 10, such as 8:

try {
 b = (byte)Integer.parseInt(gg.trim(),
 7);
}
catch (NumberFormatException e) {
 ...
}

Syntax Comments

Appendix A: Java language quick reference 131

Conver t ing and cast ing data types

From String gg
To short s:

try {
 s = (short)Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

For bases other than 10, such as 8:

try {
 s = (short)Integer.parseInt(gg.trim(),
 7);
}
catch (NumberFormatException e) {
 ...
}

From String gg
To char c:

try {
 c = (char)Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

For bases other than 10, such as 8:

try {
 c = (char)Integer.parseInt(gg.trim(),
 7);
}
catch (NumberFormatException e) {
 ...
}

From String gg

To int i

try {
 i = Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

For bases other than 10, such as 8:

try {
 i = Integer.parseInt(gg.trim(), 7);
}
catch (NumberFormatException e) {
 ...
}

From String gg
To long n:

try {
 n = Long.parseLong(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

Syntax Comments

132 Gett ing Star ted with Java

Convert ing and cast ing data types

Reference to primitive

Java provides classes that correspond to the primitive data types. This table
shows how to convert a variable from one of these classes to a primitive data
type for a single operation.

To convert from a reference type to a primitive, you must first get the value of
the reference as a primitive, then cast the primitive.

Primitive data types are mutable; reference types are immutable objects.
Converting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work around
Java’s strict logical typing, you must assign an appropriate equivalent value to
the variable and then convert that. 0 and 1 are often used to represent false
and true values.

From String gg
To float f:

try {
f = Float.valueOf(gg.trim()).floatValue;
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

For JDK 1.2.x or better:

try {
 f = Float.parseFloat(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From String gg
To double d:

try {
d = Double.valueOf(gg.trim()).doubleValue;
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

For JDK 1.2.x or better:

try {
 d = Double.parseDouble(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Syntax Comments

From Boolean tt
To boolean t:

t = tt.booleanValue();

From Boolean tt
To byte b:

b = (byte)(tt.booleanValue() ? 1 : 0);

Syntax Comments

Appendix A: Java language quick reference 133

Conver t ing and cast ing data types

From Boolean tt
To short s:

s = (short)(tt.booleanValue() ? 1 : 0);

From Boolean tt
To char c:

c = (char)(tt.booleanValue() ? '1' : '0');

From Boolean tt
To int, long, float, or double n:

n = tt.booleanValue() ? 1 : 0);

From Character cc
To boolean t:

t = cc.charValue() != 0;

From Character cc
To byte b:

b = (byte)cc.charValue();

From Character cc
To short s:

s = (short)cc.charValue();

From Character cc
To char, int, long, float, or double n:

n = cc.charValue();

From Integer ii
To boolean t:

t = ii.intValue() != 0;

From Integer ii
To byte b:

b = ii.byteValue();

From Integer, Long, Float, or Double nn
To short s:

s = nn.shortValue();

From Integer, Long, Float, or Double nn
To char c:

c = (char)nn.intValue();

From Integer, Long, Float, or Double nn
To int i:

i = nn.intValue();

From Integer ii
To long n:

n = ii.longValue();

Syntax Comments

134 Gett ing Star ted with Java

Convert ing and cast ing data types

Reference to reference

Java provides classes that correspond to the primitive data types. This table
shows how to convert a variable from one of these classes to another for a
single operation.

Note For legal class to class conversions apart from what’s shown here, widening
conversions are implicit. Narrowing casts use this syntax:

castToObjectName = (CastToObjectClass)castFromObjectName;

You must cast between classes that are in the same inheritance hierarchy. If
you cast an object to an incompatible class, it will throw a ClassCastException.

Reference types are immutable objects. Converting between reference types
is risky.

From Long, Float, or Double dd
To long n:

n = dd.longValue();

From Integer, Long, Float, or Double nn
To float f:

f = nn.floatValue();

From Integer, Long, Float, or Double nn
To double d:

d = nn.doubleValue();

Syntax Comments

Syntax Comments

From String gg
To Boolean tt:

tt = new Boolean(gg.trim());

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

Alternative:

tt = Boolean.valueOf(gg.trim());

From String gg
To Character cc:

cc = new Character(gg.charAt(<index>);

Appendix A: Java language quick reference 135

Conver t ing and cast ing data types

From String gg
To Integer ii:

try {
 ii = new Integer(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

Alternative:

try {
 ii = Integer.valueOf(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From String gg
To Long nn:

try {
 nn = new Long(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

Alternative:

try {
 nn = Long.valueOf(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From String gg
To Float ff:

try {
 ff = new Float(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

Alternative:

try {
 ff = Float.valueOf(gg.trim());
}
catch
 ...
}

From String gg
To Double dd:

try {
 dd = new Double(gg.trim());
}
catch
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you
don’t use trim(), make sure there’s no
trailing white space.

Alternative:

try {
 dd = Double.valueOf(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Syntax Comments

136 Gett ing Star ted with Java

Convert ing and cast ing data types

From Boolean tt
To Character cc:

cc = new
 Character(tt.booleanValue() ?'1':'0');

From Boolean tt
To Integer ii:

ii = new Integer(tt.booleanValue() ?
 1 : 0);

From Boolean tt
To Long nn:

nn = new Long(tt.booleanValue() ? 1 : 0);

From Boolean tt
To Float ff:

ff = new Float(tt.booleanValue() ? 1 : 0);

From Boolean tt
To Double dd:
dd = new Double(tt.booleanValue() ? 1 : 0);

From Character cc
To Boolean tt:

tt = new Boolean(cc.charValue() != '0');

From Character cc
To Integer ii:

ii = new Integer(cc.charValue());

From Character cc
To Long nn:

nn = new Long(cc.charValue());

From any class rr
To String gg:

gg = rr.toString();

From Float ff
To String gg:

gg = ff.toString();

These variations protect more data.

Double precision:

java.text.DecimalFormat df2
 = new
 java.text.DecimalFormat("###,##0.00");
gg = df2.format(ff.floatValue());

Scientific notation (JDK 1.2.x on up):

java.text.DecimalFormat de
 = new
 java.text.DecimalFormat("0.000000E00");
gg = de.format(ff.floatValue());

Syntax Comments

Appendix A: Java language quick reference 137

Conver t ing and cast ing data types

From Double dd
To String gg:

gg = dd.toString();

These variations protect more data.

Double precision:

java.text.DecimalFormat df2
 = new
 java.text.DecimalFormat("###,##0.00");
gg = df2.format(dd.doubleValue());

Scientific notation (JDK 1.2.x on up):
java.text.DecimalFormat de
 = new
 java.text.DecimalFormat("0.0000000000E00");
gg = de.format(dd.doubleValue());

From Integer ii
To Boolean tt:

tt = new Boolean(ii.intValue() != 0);

From Integer ii
To Character cc:

cc = new Character((char)ii.intValue());

From Integer ii
To Long nn:

nn = new Long(ii.intValue());

From Integer ii
To Float ff:

ff = new Float(ii.intValue());

From Integer ii
To Double dd:

dd = new Double(ii.intValue());

From Long nn
To Boolean tt:

tt = new Boolean(nn.longValue() != 0);

From Long nn
To Character cc:

cc = new Character((char)nn.intValue());

Note: Some Unicode values may be
rendered as nonprintable characters.
Consult http://www.unicode.org/

From Long nn
To Integer ii:

ii = new Integer(nn.intValue());

From Long nn
To Float ff:

ff = new Float(nn.longValue());

From Long nn
To Double dd:

dd = new Double(nn.longValue());

Syntax Comments

138 Gett ing Star ted with Java

Escape sequences

Escape sequences
An octal character is represented by a sequence of three octal digits, and a
Unicode character is represented by a sequence of four hexadecimal digits.
Octal characters are preceded by the standard escape mark, \, and Unicode
characters are preceded by \u. For example, the decimal number 57 is
represented by the octal code \071 and the Unicode sequence \u0039. Octal
code accepts 0, 1, 2, or 3 in the left-most position, and any number from 0–7 in
the other two positions. Unicode sequences can represent numbers, letters,

From Float ff
To Boolean tt:

tt = new Boolean(ff.floatValue() != 0);

From Float ff
To Character cc:

cc = new Character((char)ff.intValue());

Note: Some Unicode values may be
rendered as nonprintable characters.
Consult http://www.unicode.org/

From Float ff
To Integer ii:

ii = new Integer(ff.intValue());

From Float ff
To Long nn:

nn = new Long(ff.longValue());

From Float ff
To Double dd:

dd = new Double(ff.floatValue());

From Double dd
To Boolean tt:

tt = new Boolean(dd.doubleValue() != 0);

From Double dd
To Character cc:

cc = new Character((char)dd.intValue());

Note: Some Unicode values may be
rendered as nonprintable characters.
Consult http://www.unicode.org/

From Double dd
To Integer ii:

ii = new Integer(dd.intValue());

From Double dd
To Long nn:

nn = new Long(dd.longValue());

From Double dd
To Float ff:

ff = new Float(dd.floatValue());

Syntax Comments

Appendix A: Java language quick reference 139

Operators

symbols, or nonprinting characters such as line breaks or tabs. For more
information on Unicode, see http://www.unicode.org/

Operators
This section lists the following:
� Basic operators
� Arithmetic operators
� Logical operators
� Assignment operators
� Comparison operators
� Bitwise operators
� Ternary operator

The order in which operations in a compound statement are evaluated
depends on associativity (left/right, parentheses) and precedence (hierarchy.)
The rules of precedence are complicated. For a quick summary, see
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html.

Basic operators

Character Escape Sequence

Backslash \\

Backspace \b

Carriage return \r

Double quote \"

Form feed \f

Horizontal tab \t

New line \n

Octal character \DDD

Single quote \'

Unicode character \uHHHH

Operator Operand Behavior

. object member Accesses a member of the object.

(<type>) data type Casts a variable to a different data type.1

+ String Joins up strings (concatenator).

number Adds.

- number This is the unary2 minus (reverses number sign).

number Subtracts.

! boolean This is the boolean NOT operator.

140 Gett ing Star ted with Java

Operators

Arithmetic operators

Logical operators

& integer, boolean This is both the bitwise (integer) and boolean
AND operator. When doubled (&&), it is the
boolean conditional AND.

= most elements with
variables

Assigns an element to another element (for
instance, a value to a variable, or a class to an
instance). This can be combined with other
operators to perform the other operation and
assign the resulting value. For instance, += adds
the left-hand value to the right, then assigns the
new value to the right-hand side of the
expression.

1. It’s important to distinguish between an operator and a delimiter. Parentheses are used
around args (for instance) as delimiters that mark the args in the statement. They are
used around a data type as operators that change a variable’s data type to the one inside
the parentheses.

2. A unary operator affects a single operand, a binary operator affects two operands, and a
ternary operator affects three operands.

Operator Assoc. Definition

++/-- Right Auto-increment/decrement: Adds one to, or subtracts
one from, its single operand. Can be used before or
after operand, depending on when you want the
original value changed.

+/- Right Unary plus/minus: sets or changes the positive/
negative value of a single number.

* Left Multiplication.

/ Left Division.

% Left Modulus: Divides the first operand by the second
operand and returns the remainder (not the result).

+/- Left Addition/subtraction

Operator Assoc. Definition

! Right Boolean NOT (unary)

Changes true to false or false to true. Because of its
low precedence, you may need to use parentheses
around this statement.

& Left Evaluation AND (binary)

Yields true only if both operands are true. Always
evaluates both operands.

Operator Operand Behavior

Appendix A: Java language quick reference 141

Operators

Assignment operators

Comparison operators

Bitwise operators

Note A signed integer is one whose left-most bit is used to indicate the integer’s
positive or negative sign: the bit is 1 if the integer is negative, 0 if positive. In

^ Left Evaluation XOR (binary)

Yields true if only one operand is true. Evaluates both
operands.

| Left Evaluation OR (binary)

Yields true if one or both of the operands is true.
Evaluates both operands.

&& Left Conditional AND (binary)

Yields true only if both operands are true. Called
“conditional” because it only evaluates the second
operand if the first operand is true.

|| Left Conditional OR (binary)

Yields true if either one or both operands is true;
returns false if both are false. Doesn’t evaluate
second operand if first operand is true.

Operator Assoc. Definition

= Right Assign the value on the right to the variable on the left.

+= Right Add the value on the right to the value of the variable on the
left; assign the new value to the original variable.

-= Right Subtract the value on the right from the value of the variable
on the left; assign the new value to the original variable.

*= Right Multiply the value on the right with the value of the variable
on the left; assign the new value to the original variable.

/= Right Divide the value on the right from the value of the variable on
the left; assign the new value to the original variable.

Operator Assoc. Definition

< Left Less than

> Left Greater than

<= Left Less than or equal to

>= Left Greater than or equal to

== Left Equal to

!= Left Not equal to

Operator Assoc. Definition

142 Gett ing Star ted with Java

Operators

Java, integers are always signed, whereas in C/C++ they are signed only by
default. In Java, the shift operators preserve the sign bit, so that the sign bit is
duplicated, then shifted. For example, right shifting 10010011 by 1 is
11001001.

Ternary operator

The ternary operator ?: performs a very simple if-then-else operation inside of
a single statement. For example:

<expression 1, a Boolean condition> ? <expression 2> : <expression 3>;

The Boolean condition, expression 1, is evaluated first. If it resolves true or if its
resolution depends on the rest of the ternary statement, then expression 2 is
evaluated. If expression 2 is false, expression 3 is used. For example:

int x = 3, y = 4, max;
max = (x > y) ? x : y;

Here, max is assigned the value of x or y, depending on which is greater. The
frst expression evaluates which is greater. The value of x (expression 2) is not
greater than the value of y (expression 3), so the value of y is assigned to max.

Operator Assoc. Definition

~ Right Bitwise NOT

Inverts each bit of the operand, so each 0 becomes 1 and
vice versa.

<< Left Signed left shift

Shifts the bits of the left operand to the left, by the number of
digits specified in the right operand, with 0’s shifted in from
the right. High-order bits are lost.

>> Left Signed right shift

Shifts the bits of the left operand to the right, by the number
of digits specified in the right operand. If the left operand is
negative, 0’s are shifted in from the left; if it is positive, 1’s
are shifted in. This preserves the original sign.

>>> Left Zero-fill right shift

Shifts right, but always fills in with 0’s.

& Left Bitwise AND

Can be used with = to assign the value.

| Left Bitwise OR

Can be used with = to assign the value.

^ Left Bitwise XOR

Can be used with = to assign the value.

<<= Left Left-shift with assignment

>>= Left Right-shift with assignment

>>>= Left Zero-fill right shift with assignment

Appendix B: Learn ing more about Java 143

A p p e n d i x

B
Appendix BLearning more about Java

Resources on the Java language abound. The http://java.sun.com web site of
Sun Microsystems is a good place to search for more information; you’ll find
many interesting links. If you’re new to Java, you’ll especially want to see
Sun’s online Java tutorial at http://java.sun.com/docs/books/tutorial/.

Online glossaries
To quickly find definitions of Java terms, see one of Sun’s online glossaries:
� Sun Microsystem’s Java Glossary in HTML: http://java.sun.com/docs/

glossary.nonjava.html#top

� Sun Microsystem’s Java Glossary in Java: http://java.sun.com/docs/
glossary.html

Books
There are many excellent books about programming with Java. To see a list of
Java titles on the Borland Developer Network, go to
http://bdn.borland.com/books/java/0,1427,c|3,00.html.

Sun also publishes a set of books called the Java Series. See the list of titles
at http://java.sun.com/docs/books/. You’ll find books for all levels of Java
programming.

144 Gett ing Star ted with Java

Books

Besides browsing through Java books at your favorite book store, you might
also simply type Java books into your favorite web search engine to find lists of
books that Java programmers recommend or that favorite publishers are
offering.

Index 145

Symbols
. (dot) operator 72
?: ternary operator 15

A
abstract classes 85
abstract keyword 123
access modifiers 33, 81

default 81
not specified 81
outside of a package 82
table of 124
within a package 81

AccessController class 114
accessing members 26
accessor methods 82
applet package 49
applications

example for developing 74
arithmetic operators

defined 14
table of 19, 140
using 19

arrays
accessing 27
defined 9
indexing 27
representing strings 60
using 25

assert keyword 124
assignment operators

defined 14
table of 21, 141

AWT package 48

B
basic data types 8
basic operators

table of 139
beans package 50
binary numbers

reversing sign 23
bits

shifting, signed and unsigned 22
bitwise operators 22

defined 14
table of 23, 141

bitwise shifts 22

boolean keyword 123
boolean operators

defined 14
table of 20

Borland
contacting 5
developer support 5
e-mail 6
newsgroups 6
online resources 5
reporting bugs 6
technical support 5
World Wide Web 5

break keyword 124
break statements 39
BufferedOutputStream class 66
bugs, reporting 6
byte keyword 123
bytecodes 111

translating into native instructions 116
violations 113

C
C header files 119
calling methods 73
case keyword 124
casting 30

See also type conversions
catch keyword 125
char keyword 123
character arrays 60
character literals 31

See also escape sequences
checkPermission() 114
checkRead() 114
checkWrite() 114
child classes 78
class definitions 72

grouping 93
class files

compilation 111
structure of 113

class inheritance 78
class keyword 123
class libraries 43
class loader 115
classes

accessing members 81
defined 72
implementing interfaces 87

Index

146 Gett ing Star ted with Java

objects vs. 72
type wrapper 54

ClassLoader class 115
ClassNotFoundException exception 108
code

comments 15
reusing 93

code blocks
defined 17
static 119

comments 15
comparison operators

defined 14
table of 22, 141

compilers
just-in-time (JIT) 116

composite data types 9
arrays 9
Strings 9

conditional statements 39
if-else 39
switch 40

constructors 74
calling parent 80
multiple 80
superclasses 80
syntax 26
using 25

continue keyword 124
continue statements 39
control characters 31

See also escape sequences
control statements 39
conversions

primitive to primitive 126
primitive to String 127
primitives to reference types 128
reference to primitive 132
reference to reference 134
String to primitive 130
tables of 125

creating a thread 99
creating an object 25

D
daemon threads 95
data and return types

table of 123
data members 73

accessing 81
data types

arrays 9
composite 9

converting and casting 30
defined 8
numeric, table of 9
primitive 8, 54
reading 109
Strings 9
writing to streams 107

DataOutputStream class 66
declaring a variable 10
declaring classes 72
declaring packages 93
decrement/increment 19
default keyword 81, 124
defining classes 72
deserialization

defined 103
example 107

deserializing objects 103
Developer Support 5
developing applications 74
do keyword 124
do loops

using 37
documentation conventions 3

platform conventions 4
dot operator 72
double keyword 123

E
else keyword 124
Enterprise Edition (J2EE) 44
Enumeration interface 59
escape sequences 31

table of 138
exception handling 41

defined 31
keywords, table of 125

exceptions 41
catch blocks 42
finally blocks 42
statements 41
throw keyword 42
throws keyword 42
try blocks 42

extends keyword 78, 123
external packages

importing 93
Externalizable interface 109

F
File class 68
file classes 67, 68

RandomAccessFile class 68

Index 147

file input/output 67
FileInputStream class 63, 107
FileOutputStream class 67, 105
final keyword 123
finalizers 74
finally keyword 125
float keyword 123
flow control

defined 31
using 36

flush() 106
fonts

documentation conventions 3
for keyword 124
for loops

using 38
freeing stream resources 107
functions 11

See also methods

G
garbage collection 72, 74

role of JVM 112
getter methods 82
grouping threads 102

H
handling exceptions 41

See also exceptions
header files 119

I
identifiers

defined 7
if keyword 124
if-else statements

using 39
implements keyword 87, 123
implicit type casting

defined 36
import keyword 123
import statements 93
increment/decrement 19
inheritance 78

multiple 80
single 80

input stream classes 62
FileInputStream 63
InputStream 62

input streams 107
input/output (io) package 47
InputStream class 62

instance of keyword 123
instance variables 72
instantiating

abstract classes 85
classes 72
defined 25, 72

int keyword 123
interface keyword 87, 123
Interface wizard 87
interfaces

defined 87
Java Native Interface 117, 118
replacing multiple inheritance 87

J
J2EE (Java 2 Enterprise Edition) 44
J2ME (Java 2 Micro Edition) 45
J2SE (Java 2 Standard Edition) 44, 122
Java

defined 112
object-oriented language 71

Java 2 Enterprise Edition 44
Java 2 Micro Edition 45
Java 2 Standard Edition 44, 45, 122
Java bytecodes 111
Java class libraries 43
Java class loader 115
Java editions 43, 121

table of 43, 121
Java language

glossaries 143
resources 143

Java Native Interface 117, 118
See also JNI

Java Runtime Environment 112
See also JRE

Java security package 114
Java verifier 113
Java Virtual Machine 111

See also JVM
java.applet package 49
java.awt package 48
java.beans package 50
java.io package 47
java.lang package 46
java.lang.reflect package 50
java.math package 47
java.net package 52
java.rmi package 51
java.security package 52
java.sql package 51
java.text package 47
java.util package 47

148 Gett ing Star ted with Java

javah 119
options 119

javax packages 49
javax.swing package 48
JBuilder

newsgroups 6
reporting bugs 6

JIT compilers (just-in-time) 116
JNI (Java Native Interface)
JRE (Java Runtime Environment)

relation to JVM 112
just-in-time compilers (JIT) 116
JVM (Java Virtual Machine)

advantages 112
and JNI 118
class loader 115
definition 111
instructions 111
introduction 111
main roles 112
memory management 112
portability 112
relation to JRE 112
security 112
specification vs. implementation 112
verifier 113

K
keywords

access modifiers 33, 124
data and return types 123
defined 13
exception handling 125
loops 124
packages, classes, members, interfaces 123
reserved 125
tables of 123

L
language package 46

Math class 55
Object class 53
String class 55
StringBuffer class 57
System class 58
type wrapper classes 54

libraries
accessing native 118
Java class 43
static code blocks 119

literals
defined 10

logical operators
defined 14
table of 20, 140

long keyword 123
loop controls

break statements 39
continue statements 39

loop statements
defined 31

loops
conditional statements 39
controlling execution 39
keywords, table of 124
terminating 37

loops, using 36
do 37
for 38
if-else 39
switch 40
while 37

M
Math class 55
math functions 55
math operators

table of 19
using 19

math package 47
member access 26
member variables 73
memory allocation

getting StringBuffer 57
memory management

role of JVM 112
method calls 73, 118
methods 11

accessing 118
declaration 73
defined 73
implementation 73
main 35
overloading 80
overriding 86
static 35
using 24

Micro Edition (J2ME) 45
multiple inheritance 80

replaced by interfaces 87
multiple threads 95

Index 149

N
narrowing type conversions 36
native code interface 117, 118

See also JNI
native keyword 118, 123
native machine instructions 116
negative binary numbers 23
networking package 52
new keyword 123
new operator 72
newsgroups 6

Borland and JBuilder 6
public 6
Usenet 6

nonprinting characters 31
See also escape sequences

NotSerializableException exception 105
numeric data types, table of 9

O
Object class 53
object references 72
object streams

read/writes 109
ObjectInputStream class 104, 107

methods 109
object-oriented programming 71

example 74
ObjectOutputStream class 104, 106

methods 107
objects

allocating memory for 72
classes vs. 72
deallocating memory for 72
defined 72
deserialization 103
referencing 109
serializing 103

operators
access 26
arithmetic 19
arithmetic, table of 140
assignment, table of 21, 141
basic 139
bitwise 22
bitwise, table of 141
comparison, table of 22, 141
defined 14
logical or boolean 20
logical, table of 140
tables of 139
ternary 24, 142

using 18
output stream classes 64

BufferedOutputStream 66
DataOutputStream 66
FileOutputStream 67, 105
OutputStream 65
PrintStream 65

OutputStream class 65
overloading methods 80
overriding methods 86

P
package keyword 123, 124
package statements 93
packages

accessing class members 81
accessing members outside 82
declaring 93
defined 93
importing 93
Java, table of 45

parent classes 78
persistent objects 103
platform independence 118
pointers 118
polymorphism 86

example 88
portability

of Java 112
pre- and post-increment/decrement 19
primitive data types 8

converting to other primitive types 126
converting to reference 128
converting to Strings 127
defined 54

PrintStream class 65
private keyword 81, 124
protected keyword 81, 124
prototypes 120
public keyword 33, 81, 124

R
RandomAccessFile class 68
reading data types 109
reading object streams 109
readObject() 107, 109
reference data types

converting to other reference 134
converting to primitive 132

referencing objects 72, 109
reflections package 50
reporting bugs 6

150 Gett ing Star ted with Java

reserved keywords
table of 125

resources
freeing stream 107

restoring objects 103
return keyword 123
return statements 31
return types 31
RMI package 51
run() 96
Runnable interface

implementing 97
runtime environment, Java 112

See also JRE

S
saving objects 103
scope

defined 17
security

applet vs. application 115
class loader 115
in the JVM 112
serialization and 109

security manager 114
security package 52, 114
security policy 114
SecurityManager class 114
Serializable interface 104
serialization

defined 103
reasons for 103
security and 109

serializing objects 103
setSecurityManager() 114
setter methods 82
setting thread priority 101
short keyword 123
single inheritance 80
source code

reusing 93
SQL package 51
Standard Edition (J2SE) 44, 122
starting a thread 99
statements

defined 17
static code blocks 119
static keyword 33, 123
stopping a thread 100
storing objects to disk 103
stream resources

freeing 107

streams 105, 107
input streams 62
output streams 64
partitioning as tokens 69
read/writes 109

StreamTokenizer class 69
strictfp keyword 123
String class 55
String data type

converting to primitive 130
defined 9

StringBuffer class 57
strings 29

constructing 55
handling 29, 32
manipulating 29

subroutines 11
See also methods

super keyword 80, 123
superclasses 80
Swing package 48
switch keyword 124
switch statements 40
synchronized keyword 123
synchronizing threads 101
System class 58

T
ternary operator 24, 142

defined 15
test conditions, aborting 39
text package 47
this keyword 123
Thread class

subclassing 96
Thread constructors 99
ThreadGroup class 102
threads 95

creating 99
customizing run() method 96
daemon threads 95
groups 102
implementing Runnable interface 97
lifecycle 95
making not runnable 100
multiple threads 95
priority 101
starting 99
stopping 100
synchronizing 101
time-slicing 101

throw keyword 125
throws keyword 125

Index 151

time-slicing 101
tokens 69
transient keyword 123
transient objects 103
try keyword 125
type casting 30

See also type conversions
type conversions 30

implicit casting 36
narrowing explicit 36
tables of 125
widening conversions, table of 30

type wrapper classes 54
types

reading 109
writing to streams 107

U
UnsatisfiedLineError exceptions 119
Usenet newsgroups 6
utility classes 47
utility package 47

Enumeration interface 59
Vector class 60

V
values

comparing 22
variable declarations 10

variables
defined 10
instance 72
member 73
objects as 72

Vector class 60
verification

of Java bytecodes 113
Virtual Machine, Java 111

See also JVM
void keyword 33, 123
void return type

defined 31

W
while keyword 124
while loops

using 37
widening conversions

table of 30
wrapper classes 54
writeObject() 106, 109
writing object streams 109
writing to file streams 105

X
XML processing 50

152 Gett ing Star ted with Java

	Getting Started with Java™
	Contents
	Ch 1: Introduction
	Documentation conventions
	Developer support and resources
	Contacting Borland Developer Support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups
	Reporting bugs

	Ch 2: Java language elements
	Terms
	Identifier
	Data type
	Primitive data types
	Composite data types

	Strings
	Arrays
	Variable
	Literal

	Applying concepts
	Declaring variables
	Methods

	Ch 3: Java language structure
	Terms
	Keywords
	Operators
	Comments
	Statements
	Code blocks
	Understanding scope

	Applying concepts
	Using operators
	Arithmetic operators
	Logical operators
	Assignment operators
	Comparison operators
	Bitwise operators
	?:, the ternary operator

	Using methods
	Using arrays
	Using constructors
	Member access
	Arrays

	Ch 4: Java language control
	Terms
	String handling
	Type casting and conversion
	Return types and statements
	Flow control statements

	Applying concepts
	Escape sequences
	Strings

	Determining access
	Handling methods
	Using type conversions
	Implicit casting

	Explicit conversion
	Flow control
	Loops
	Loop control statements

	Conditional statements
	Handling exceptions

	Ch 5: The Java class libraries
	Java 2 Platform editions
	Standard Edition
	Enterprise Edition
	Micro Edition

	Java 2 Standard Edition packages
	The Language package: java.lang
	The Utility package: java.util
	The I/O package: java.io
	The Text package: java.text
	The Math package: java.math
	The AWT package: java.awt
	The Swing package: javax.swing
	The Javax packages: javax
	The Applet package: java.applet
	The Beans package: java.beans
	The Reflection package: java.lang.reflect
	XML processing
	The SQL package: java.sql
	The RMI package: java.rmi
	The Networking package: java.net
	The Security package: java.security

	Ch 6: Object-oriented programming in Java
	Classes
	Declaring and instantiating classes
	Data members
	Class methods
	Constructors and finalizers
	Case study: A simple OOP example
	Class inheritance
	Calling the parent’s constructor

	Access modifiers
	Access from within class’s package
	Access outside of a package

	Accessor methods
	Abstract classes

	Polymorphism
	Using interfaces
	Adding two new buttons
	Running your application

	Java packages
	The import statement
	Declaring packages

	Ch 7: Threading techniques
	The lifecycle of a thread
	Customizing the run() method
	Subclassing the Thread class
	Implementing the Runnable interface

	Defining a thread
	Starting a thread
	Making a thread not runnable
	Stopping a thread

	Thread priority
	Time slicing

	Synchronizing threads
	Thread groups

	Ch 8: Serialization
	Why serialize?
	Java serialization
	Using the Serializable interface

	Using output streams
	ObjectOutputStream methods

	Using input streams
	ObjectInputStream methods

	Writing and reading object streams

	Ch 9: An introduction to the Java Virtual Machine
	Java VM security
	The security model
	The Java verifier
	The Security Manager and the java.security Package
	The class loader

	What about Just-In-Time compilers?

	Ch 10: Working with the Java Native Interface (JNI)
	How JNI works
	Using the native keyword
	Using the javah tool

	App A: Java language quick reference
	Java 2 platform editions
	Java class libraries
	Java keywords
	Data and return types and terms
	Packages, classes, members, and interfaces
	Access modifiers
	Loops and flow controls
	Exception handling
	Reserved

	Converting and casting data types
	Primitive to primitive
	Primitive to String
	Primitive to reference
	String to primitive
	Reference to primitive
	Reference to reference

	Escape sequences
	Operators
	Basic operators
	Arithmetic operators
	Logical operators
	Assignment operators
	Comparison operators
	Bitwise operators
	Ternary operator

	App B: Learning more about Java
	Online glossaries
	Books

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

