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Zadanie bakalarskej prace

Brachystochrona je krivka v zvislej rovine, po ktorej sa zosSmykne koralka medzi
dvoma bodmi s roznymi vyskami za najkratsi ¢as.V praci sa bude analyzovat zovse-
obecnenie tohoto pojmu na pripad, ked namiesto euklidovskej roviny a gravitacnej sily
uvazujeme ,Kkrivy priestor a v fiom l'ubovolné potencialové silové pole. Cielom bude
odvodit prislusna diferencidlnu rovnicu a skusit ju riesit pre nejaky iny pripad, ako ten,
z ktorého zovseobecnenie vzislo. Potrebné sa zakladné znalosti z teoretickej mechaniky
(varia¢né principy). Praca je vhodna pre zaujemcov o teoreticku fyziku.
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Abstrakt

JURZI, Milan. ZovSeobecnend brachystochrona [bakalarska pracal. Univerzita Komen-
ského v Bratislave. Fakulta matematiky, fyziky a informatiky. Skolitel: doc. RNDr.
Maridn Fecko, PhD. Komisia pre obhajoby: Fyzika 4.1.1. Stupenh odbornej kvalifikacie:
Bakalar fyziky.

Bratislava: FMFI UK, 2007. 38 s.

Studuje sa zovSeobecnenie klasickej tlohy o brachystochrone na pripad, ked sa ma
hmotny bod pohybovat medzi dvoma bodmi na riemannovskej variete pod vplyvom
daného (v8eobecného) potencidlového pola za najkratsi ¢as. Prezentuje sa detailné
odvodenie prislusnej diferencialnej rovnice, ktora sa nedéavno objavila v literature.

Kruacové slova: Brachystochrona. Variacny pocet. Metricky tenzor.



Predhovor

S klasickym problémom o brachystochrone sa stretne kazdy absolvent prednasky
z teoretickej mechaniky v casti, ktord sa venuje varia¢nym pristupom k mechanike.
Hoci je priklad zaujimavy a pou¢ny, mohlo by trochu prekvapit, Ze sa mu venuje cela
bakalarska praca. Pre tuto pracu je vSak podstatné slovo zovseobecnend. Co sa pod tym
mysli?

V nedavnych pracach vysetrovala skupina japonskych teoretikov isty optimalizacny
problém v kvantovej mechanike, ktory nazvali kvantova brachystochrona". Startom k
tejto problematike bola formulacia (a tiez vysledok) tlohy, ktora pripomina klasicku
tlohu o brachystorchrone - tito ulohu nazvali zovSseobecnena brachystochrona. Znie
nasledovne: na vseobecnej riemannovskej variete sa pohybuje z bodu A do bodu B
hmotny bod pod vplyvom sily danej v8eobecnym potencidlovym polom tak, aby mi-
nimalizoval ¢as presunu z A do B. Treba urcit tvar krivky (drétu, ktory prinuati bod
na tejto krivke zotrvat), na ktorej sa tento minimalny ¢as realizuje. V ich ¢lankoch je
vysledné rovnica, ale chyba jej detailné odvodenie. Cielom tejto prace je urobit toto
detailné odvodenie a overit spravnost uvedenej rovnice.

Uvodna ¢ast sa podrobne venuje pévodnej klasickej tilohe, vratane jej historie a
detailov rieSenia. Jadro prace obsahuje odvodenie rovnice zovSeobecnenej brachystoch-
rony, najprv pre [ubovolny parameter, potom ako $pecialny pripad aj pre ,prirodzeny*
parameter, v ktorom ju zapisali vyssie uvedeni autori. V poslednej kapitole st uvedené
zakladné pojmy z variacného poctu.



Obsah

Zadanie bakalarskej prace . . . . ... ..o
Abstrakt . . . ...
Predhovor . . . . . . . .
avod . .o

1 Historicky tvod

2 Riesenie klasickej brachystochréony
2.1 RieSenie brachystochrony v homogénnom gravita¢nom poli . . . . . . .
2.1.1 RieSenie s nulovou pociatoc¢nou rychlostou . . . .. ... .. ..
2.1.2  RieSenie s nenulovou poc¢iatocnou rychlostou . . . . . . . .. ..

3 Zovseobecnena brachystochréona
3.1 Zavedenie funkcionalu . . . . . .. ..o
3.2 VariaCny problém . . . . . . ..o
3.3 Prirodzeny parameter krivky . . . . .. .00
3.4 Kanénom na vrabce . . . . ... L
3.4.1 Klasicka brachystochrona z podkapitoly 2.1.1 . . . . . . . . . ..

4 Zaklady variaéného poctu
4.1 Nutna podmienka pre extremélu . . . . . . . ... ... ... .. ...,
4.2 Specidlne zjednodusenia Eulerovej rovnice . . . . . . .. ... .. ...
4.2.1 Prvy Eulerov integral . . . . . . . .. ..o
4.2.2 Druhy Eulerov integral . . . . . . .. .. .. ... L.
ZAVET . . . . e

O O W

10

15
15
15
20

22
22
25
27
28
28



Uvod

Brachystochrona je krivka, ktora spaja dva pevne zvolené body v priestore s pritom-
nym silovym polom tak, aby hmotny bod pohybujici sa po nej presiel tato vzdialenost
za najkratsi ¢as. Vo svojej praci sa najprv pozriem na korene tejto tlohy, na hlavnych
predstavitelov - velikdinov matematiky, ktori tlohu zadali a vyriegili. OpiSem detailne
klasicku tdlohu o brachystochréne v takom zneni, v akom bola pévodne formulovana
a jej rieSenie. f)alej pridam nejaké pociatoéné podmienky a pozriem sa, ako sa zmeni
rieSenie. V hlavnej téme zavediem zovSeobecnenia, ktoré tvoria jadro prace a pomocou
metod variacného poctu ich pretavim do diferencialnej rovnice, ktort vo svojej praci
o kvantovej brachystochréone odvodil Yosuke Okudaira a kol. Na zaver pre pohodlie
C¢itatela uvadzam minimalny subor poznatkov o variaénom pocte, potrebny (v pripade
zédujmu) k pochopeniu principu extremalizovania.



Kapitola 1
Historicky tvod

Nova vyzva pre matematikov 17. storocia, ktora nakoniec viedla ku vzniku tplne
novej tedrie v matematickej analyze - Varia¢ného poctu, bola poniknuta Janom Ber-
noullim (1677-1748) uverejnena roku 1696 v casopise Acta Eruditorum, ktorého vyda-
vatelom bol G. W. Leibniz (1646-1716). Ulohou bolo uréit drahu, ktora by spajala dva
body vo zvislej rovine (neleziace na spolo¢nej vertikile) a po ktorej by sa hmotny bod
pohyboval u¢inkom tiaze a bez odporu tak, zZe by z horného bodu dorazil do spodného
v najkratSom case.
Bernoulli doslova piSe: ,,Zmyslom 1ilohy je ndjst medzi nekonecne vela krivkami spd-
jajucimi oba body taki, pozdlZ ktorej, ak by bola nahradend prislusnou tenkou zakrive-
nou trubicou, by vloZend a volne vypustend gulicka dospela do druhého bodu za najkratsi
cas. Aby som vSak vylucil akikolvek dvojznacnost, pripominam vyslovne, Ze prijimam
Galileovu hypotézu, o ktorej Ziadny rozumnigj geometer nepochybuje, podla ktorej, ked
nedbdme na odpor pohybu, sa rychlost padajiceho telesa meni s druhou odmocninou z
prekonaného vyskového rozdielu.
Leibniz predostrety problém sam posudil a napisal, Ze ide o: "Velmi krdasnu a ne-
slychani ulohu”.
Vyzvu Jana Bernoulliho prijali jeho starsi brat Jakub Bernoulli (1654-1705), Leibniz,
L “Hospital (1661-1704), Newton (1642-1727) a Huygens (1629-1695). Kazdy z nich po-
dal spravne riesenie. Nejjednoduchsie riesenie vSsak podal sim Jan Bernoulli. Vychédzal
z Fermatovho principu, ktory pozname z optiky. Princip vysvetluje lom svetla v pro-
stredi s roznymi optickymi hustotami. Lic¢ svetla sa §iri a na rozhrani dvoch prostredi
lame tak, aby nestratil ani nanosekundu a prisiel z bodu A do bodu v B v ¢o najkrat-
Som Case.

Lu¢ prechéddza prostredim, v ktorom se 8iri rychlostou v, a dopada do prostredia s
rychlostou $irenia vs.
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Obrézok 1.1: Putovanie svetelného laca

7 obrazka l'ahko odvodime rovnicu:

_ N N VIE+ (a— )2
U1 (%)

t(x) (1.1)

Aby sme nasli minimum funkcie ¢(z), musime si zaderivovat a "zanulovat":

t(z) = —— a7 ~0 (1.2)

v/ + 22 - va/h3 + (a — x)?

Obrazok nas zvadza urobit jednoduché substiticie:

T a—x

sinqg = ——— sin(90 — =
v/ I3 + 22 ( P) va/h3 + (a — x)?
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Vztah % = w, ktory sme dostali, ndpadne pripomina Snellov zakon lomu,
pretoze to je Snellov zédkon lomu.

Tu si treba v8imnat metodu, ktora viedla (velmi jednoducho) k rieSeniu. VySetrovanim
extrémnych bodov funkcie nam déva moznost riesit mnohé praktické problémy napr.
aké rozmery ma mat sud na pivo, aby mal pri danom povrchu maximalny objem a

krémar mal z neho maximalnu radost.

Vratme sa teraz k nasej brachystochrone.
Uloha najst brachystochronu a drahu svetelného laca maju vyznamné spolo¢né ¢rty:

e obe maji jediné rieSenie, ktoré by sme naozaj pozorovali, keby sme pozorovali.

e intuitivne citime (a pri jednej z nich sme sa o tom presved¢ili), ze ide o hladanie
akychsi extrémov.

Kym doteraz sme hladali extrém funkcie, teraz budeme hladat akusi extrémnu funkciu,
¢o zo v8etkych moznych funkcii spajajicich dva pevné body ma prave tu vlastnost, ze
je brachystochrénou.

Patrilo by sa este spomentit Bernoulliho rieSenie. To on si v8imol analégiu s optikou a
problém vyriesil takto:

Klucova myslienka, ktora Barnoulliho priviedla k rieSieniu spocivala v tom, Ze si uve-
domil, Ze extremélne spravanie ma nielen cela krivka, ale kazda jej cast.

Na zaklade tohto predpokladu musi platit:

sina_ldx_l 1

() —;d8—51/1+y/2

Pismenko v oznacuje okamzitu rychlost, ktora sa vypocita zo zédkona zachovania ener-
gie, pricom v bode [0, 0] je energia nulova, ako vidno z obréazka (1.2)

A teda v = /29y

7, toho dostaneme:
1
y(1+y7)

= konst (1.3)

= konst , alebo tiez y(1+y”) = konst (1.4)

Problém sa tymto zvrhol na patranie po funkcii spliajticej rovnicu (1.4).

12



Obrazok 1.2: Oc¢akavany tvar brachystochrony
Bernulli videl v rovnici (1.4) krivku - cykloidu, ktort velmi dobre poznal (ja by som
to tam uréite nenasiel ani s baterkou). Cykloida v ,nésilnom” tvare y(z) sa da para-

metrizovat napr. parametrom ¢ :

T = ayp — asin g y:a—acos<p:2asin2§

Skusme to dosadit do (1.4). Potrebujeme eSte prvia derivaciu:

d : . :

, @ asin @ 2sin ¥ cos £ 2sin ¥ cos £ @

x) = —r — = = = arctan —

4 dz  q(1—cosp) 1—cos®?4sin®? 2sin? £ 2
dp 2 2 2

Teraz uz méame vsetko. Otestujme teda Bernulliho riesenie:

cos?
)

SIS

2a sin? g (1 + ) = 2a = konst.

S1n

RS

Vsetko je teda v poriadku.

13



Ostava este obrazok, ako taka brachystochrona vyzera.
KruZnica sa kotula po osi x a pevny bod P, ktory na nej lezi, kresli cykloidu.

X

L

Obréazok 1.3: Brachystochrona

Na zaver tejto kapitoly, ktoré nesie nazov ,Historicky tvod“ sa patri spomenut nieco
zo Zivota jedného z najvacich matematikov vSetkych ¢ias, Leonharda Eulera.
Leonhard Euler sa narodil 15. aprila 1707 v Bazileji (Svajéiarsko). Prvym uéitelom
matematiky mu bol jeho otec Paul Euler, protestantsky knaz. Uz ako 14 ro¢ny zacal
Studovat na Univerzite. Johann Bernoulli, jeho stikromny uéitel, v iom rychlo objavil
nadanie na matematiku. Stal sa magistrom filozofie a studoval aj teologiu. Ziskal druhé
miesto vo Velkej cene vypisanej Parizskou akadémiou za svoje rieSenie problému naj-
lepsieho umiestnenia stoziarov na lodi. 17. maja 1727 prisiel do St. Petersburgu, kde
bol menovany ¢lenom matematicko-fyzikalneho oddelenia tamojsej Akadémie vied. Z
finan¢énych dovodov sluzil ako porucik zdravotnej sluzby ruského ndmornictva, kym sa
v roku 1730 nestal profesorom fyziky a riadnym ¢lenom Akadémie. Zaoberal sa karto-
grafiou, vedeckym vzdelavanim, magnetizmom, mechanickymi strojmi a stavbou lodji.
V matematike tedriou ¢isel, diferencialnymi rovnicami, variaénym poctom a racional-
nou mechanikou. V roku 1740 vyhral velkt cenu Parizskej akadémie. Politicka situécia
v Rusku ho donutila odist do Berlina, kde sa stal riaditelom oddelenia matematiky na
novozalozenej Akadémii vied. Za 25 rokov tu publikoval 380 ¢lankov. Napisal knihy o
variacnom pocte, o vypoctoch drah planét, o delostrelectve a balistike, o stavbe lodi,
o namornej navigacii, o pohybe Mesiaca. Po nezhodach s kralom Friedrichom Velkym
odisiel spéat do St. Petersburgu, kde vSak tplne stratil zrak. Polovicu svojej vedeckej
prace publikoval, aj ked bol uplne slepy. Po jeho smrti v roku 1783 Akadémia v St.
Petersburgu este 50 rokov publikovala dovtedy nepublikované prace.

14



Kapitola 2

Riesenie klasickej brachystochrony

2.1 RieSenie brachystochrony v homogénnom gravi-
tac¢nom poli

2.1.1 RieSenie s nulovou poéiato¢nou rychlostou
VsSeobecné rieSenie

Aby nebol nazov pre ¢itatela métici, upresnim ho.

Ide o pohyb hmotného bodu v homogénnom gravitacnom poli medzi bodmi neleziacimi
na spolocnej vertikale ani horizontale s nulovou pociato¢nou kinetickou energiou. Pozri
obrazok (1.2).

Nech bod A ma stradnice [0, h] a bod B [zp, yg].

Tak, ako vac¢sina suchozemskych stavovcov z fyziky vela neviem, ale vzlah pre okamzita
rychlost v = % si eSte zo zékladnej skoly pamétam. Z toho si vyjadrim cas: dt = %.

Doba padu hmotného bodu je
’ d
s
t= — .
/e 2.)
A

Rychlost vypocitame zo zakona zachovania energie

1
§mv2 +mgy = mgh = v =+/2g9(h—y) (2.2)

15



Pytagorovu vetu tiez ndhodou poznam. ds = +/(dz)? + (dy)?

Po malej taprave:
,/1+ d:):— \/ 1+ y?dx (2.3)

Po dosadeni (2.2) a (2.3) do (2.1) dostanem kone¢ny tvar funkcionalu
1 +y”
/ + y Sl (2.4)

Vidime, Ze vo funkcii za integra¢nym znakom sa explicitne nevyskytuje x. PouZijem
preto Druhy integral (4.6), ktorého odvodenie sa nachadza v poslednej kapitole.

0 1+ y’2 1+ y’2
/
(i —— | =/ =—"— = C(konst
dy 29(h —y) 2g9(h —y) ( )

Vyraz \/2g(h — y) od 3 nezavisi, preto ho mézem dat na druht stranu rovnice.

/ 2
8 1+y’ —\/1+y?=C\29(h—y)

Po zderivovani dostavame

ﬂyi Sy — oy =y /\/ ,

+ 2

=\t [

Konstanta C' musi byt nutne zaporna.

1 /2
022g<h—y>_1:y/ Vi)

16



Rovnica

y/: \/1 _2902(E_y) (2.5)

je prijemna separovatelna.

Integrujme ju!
2gC%(h —y) /
dy= [ d
/\/1—2ngh )Y o

Pontka sa nam tu goniometricka substitucia

29C2(h — ) = sin? ¢
—2gC?dy = 2sin ¢ cos pdp

Zamerne som zvolil sinus na druht, aby parameter ¢ bol v ¢ase t =0 (y = h) nulovy.

1 /simp ) J 1 / 02 od

r = —— sin ¢ cos =——— [ sin =

008 | oy S COSPdY = — 5 pdyp
1 1 .

= 300 / (1 — cos2p)dp = —4g02(2<p —sin2¢p) + D

Aby mi krivka neutekala do IV. kvadrantu, zamenim parameter ¢ za —p.

Aby sa na to lepsie pozeralo, prihodim k tomu este zdmenu ¢ — 2.

Uz ostava len zverejnit (zatial) beta verziu brachystochrony

x = @%(ap—sinap) +D
sin? £ —cos
y=h- 2:h_14g02¢

Koeficient @% je konstanta s rozmerom dlzky, nazvem si ju R nie tplne nadhodne,
pretoZe tusim, ze pdjde o polomer nejakej kruznice, kedze sa vyskytuje raz pred sinusom
a raz pred kosinusom. A teda

{ r=R(p—sinp
2

)
y=nh—2Rsin" ¥ (2:6)

R ) )

Vidime, Ze ide o kruznicu, ktora je posunuta v x-ovom smere o D a o Ry a v y-ovom
smere o h — R. Parameter ¢ moze byt len z intervalu < 0,2). Je to preto, aby som
odstrihol periodické rieSenie.

17



Okrajové podmienky

e V3eobecné riesenie by sme mali. Chybaju este okrajové podmienky, ktoré mi nieco
posepkaji o konstantach R a D.
Dosadme teda bod A[0, h]

0= R(p—sinp)+ D
h=h— R(1—cosy)

7 druhej rovnice vidno, ze ¢ = 0. To dosadime do prvej rovnice a vyjde mi, ze
D =0.

(oo™ } o

o Ale ¢os R?
Ked sa pokisime dosadit bod B[z, yp] do veobecného riesenia (2.7), dostaneme
nieco takéhoto:

h— h—yg\’
rzg=R arccos(l— RyB)—\/1—<1— RyB)

Devit z desiatich psychiatrov neodporuca zistovat z toho, ¢omu je rovné R!
Krivka nepredé svoju kozu lacno, ale na bielu vlajku je eSte ¢as. Podme sa pozriet
aspon zhruba na jej tvar.

Zderivujme parametrické rovnice a polozme tuto derivaciu rovnu nule.

dy

dy 3 —Rsinp sin
dx dd—z R(1—cos) cosp—1 pe A

Tymto zistime kde ma brachystochréna minimum (je jasné, ze ide o minimum). Z
rovnice vypadlo R zavislé na okrajovych podmienkach. Mozno povedat, ze kazdé
cykloida daného tvaru mé vo ¢ = 7 svoje minimum. Pripady, ked ¢ = 0a ¢ = 27
st nezaujimavé a urcite nesuvisia s minimom krivky.

Polozme ¢ = 7 do (2.7). Dostaneme

Tmin = R’TF

Ymin = h — R(1 —cosm) = h — 2R

Ak vylic¢ime R-ko, zostane nam zavislost i = 5 (R — Ymin)-

18



1. Ak som si ndhodou zvolil okrajové pomienky tak Sikovne, Ze zp = 5(h—yg),
potom viem povedat, Ze krivka za¢ina vo svojom maxime v bode A a kon¢i
vo svojom minime v bode B.

Viem dokonca uré¢it polomer: R = h_y%

2. Niekomu sa mozno viac paci, ked xp < (h—yp). V tom pripade s vyuzitim
rovnic (2.7) vylezie podmienka

R(p —siny) < gR(l — cos @)

Vyraz (1 — cosp) je na (0, 27) ur¢ite kladné ¢islo. Preto mozno napisat:

@ —singp

<7T
1—cosp 2

Chystame sa zistit, ¢i ¢ < 7 alebo ¢ > 77 Nech ¢ = 7 + . Podla toho, ¢i
je € kladné alebo zaporné, zistim aké je .

T4+e—sin(r+e) w+e—[sinmcose +cosmsing] wH4e+sine

l1—cos(m+¢e) 1—[cosmcose —sinwsing] 1+ cose
Bez ohl'adu na ¢ plati odhad

m+e+sine wT+e+sine w
< <=, =>e<0
2 1+ cose 2}

Uhol ¢ nedosiahne hodnotu 7. Vskutku vieme povedat, ze krivka pada zo

svojho maxima v bode A do svojho minima v bode B. Polomer kruznice
R > h=Ymin
2

3. Rozoberme si este to, ¢o nam ostalo, a sice 3 > F(h — yp)

R(p —sing) > gR(l — cos )

Vyraz (1 — cosp) je na (0, 27) opét kladné ¢islo. Preto mozno napisat:

mT+e+sine @—sinp 7 s
= > - —
1+ cose 1—cosp 2 2

19



€+ sine - T—+e+Sine —m—TCOSE
1+ cose 2(1 + cose)
0
>

>0p=e>0

Uhol ¢ pocas svojho zivota presiahne 7. Krivka spdja body A a B a na
svojej ceste pritom dosiahne svoje minimum, ktoré je rozne od bodov A a

B. Polomer kruznice musi byt R > h_y%

Priamka z = 7 (h —y) tvori akusi deliacu ¢iaru pre tvar krivky. Pod touto ¢iarou
mé brachystochréna tvar 2, nad nou ma tvar 3.

2.1.2 RieSenie s nenulovou pociato¢nou rychlostou

Nech teraz hmotny bod padéa z vysky h z bodu A[0,h] do bodu Blzrg,ys| s podia-
tocnou rychlostou vy. Problém vyriesime lisiacky. Budeme sa tvarit, Ze rieSime intu
brachystochronu za¢inajicu v nejakom A’[7, 7], ktora len tak ndhodou prechédza bo-
dom A[0, k] s sychlostou vy a ponahla sa do Blrg,ys|. Rychlost HB v Tubovolnom
bode [z, y] vypocitam zo ZZE.

1 1
imv2 +mgy = imvg +mgh = v= \/vg +2g(h —v)

Pod odmocninou teraz dojde k malej reorganizacii ¢lenov:

2
v:\/zg(iw@—y) = \/29(H —y)
29

14 y?

Zostavme funkcional.

Teraz to vidno. Pohyb hmotného bodu z vysky h s poc¢iato¢nou rychlostou vy je rovnaky
ako pohyb toho istého hmotného bodu z vicsej vysky H s nulovou pociatocnou rych-
lostou. Jeden otéznik sme vyriesili. Mame A'[?, b+ %] Teraz sa musim spytat, o kol'ko
musime posunut pociatoéni podmienku dolava, aby sa ni¢ nezmenilo? V rovniciach
(2.6) je toto tajomstvo ukryté.
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(o)

Potrebujem vediet, pre ktoré ¢ je y = h.
Pozrime sa na druht rovnicu z (2.6).

heh+ Y pa ) = %
= -_— — — COS = arccos —_—
2 = 2R

Do prvej rovnice dosadime nase dlhé ¢ a x = 0 a zistime, ¢omu je rovné D.

2 2 2
Yo Yo Yo
arccos (1l ———= | —/=—= (1 — —=
( 29R) \/29R ( 29R)
Zaver je taky, ze brachystochrona s poc¢iatocnou rychlostou vy z bodu A[0, h] do bodu
Blzp,yg] je rovnaka ako brachystochréona s nulovou poéiatoénou rychlostou z bodu

o [_R [arccos (1-42) - \/2g_R (1- 2Q_R)| b+ g} do bodu Blzp, yz)-

D=-R
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Kapitola 3

ZiovSseobecnena brachystochrona

3.1 Zavedenie funkcionalu

Zacneme ako inak najjdednoduchsim pripadom a ten zovSeobecnime.
Skor, ako sa pozrieme, aké ¢leny vystupuju vo funkcionali

s
- o

vynasobme ¢itatel aj menovatel (z dévodov, ktoré sa ukazu neskér pri postupnom

zovieobeciiovani) vyrazom 4/im
ds

. / e e 52

1. Drahovy element ds ur¢uje metriku daného priestoru.
Da sa rozpisat takto:

l\’)l)—l

jﬁ
@N c%'

2

ds = /(dx)? + (dy)?

ds:\/(dx dﬂ(é?)(jﬁ) (3.3)

Ta matica v strede tej odmocniny sa nazyva metricky tenzor. Je jednotkova, lebo
ide o euklidovsky priestor v kartézskych siradniciach.
Drahovy element v polarnych siradniciach bude vyzerat kusok inak.

ale aj takto:
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ds:\/(dr d@(ég)(g;) (3.4)

Kto by rad matice 323, uvediem ds vo sférickych suradniciach:

1 0 0 dr
ds= |(dr d9 de )| 0 > 0 dv (3.5)
0 0 r2sin®v dy

Bystré oko si v8imne, Ze vo v8eobecnosti mozno ds vyjadrit ako

ds = vV gideide

Zavedme parametrizaciu nejakym vSeobecnym parametrom x

ds = 1/9iq:q ;dx (3.6)

. Predpokladame, Ze silové pole je potencidlové, plati zakon zachovania energie (pre
ststavu n hmotnych bodov):

L O LT e SRR S s G

5 19ij0; Vj + 2mgngz vy + anngl vy +
Tento pohyb n hmotnych bodov v k-rozmernom priestore mozno tiez chapat ako
pohyb jediného hmotného bodu v n - k£ rozmernom priestore. V om pozoruje-
me akési zovSeovecnené rychlosti v; = (v}, v2,...,v") a tenzor kinetickej energie
Ty = %(mlgij,mmij, -y MpGi;) vystupuje ako blokova matica. Tvar T;;, ktrory
som uviedol, nemusi byt vo vSeobecnosti taky jednoduchy. Ak ratame s vizbami
medzi jednotlivymi bodmi, pribudni aj nediagonalne ¢leny! V tomto zovseobec-
nenom n - k-rozmernom priestore mozno zékon zachovania energie formulovat v

jednoduchom tvare

1
§T,-jv,-vj —I—U = E
T

Z toho l'ahko vyjadrime bilinedrnu formu 7" reprezentujicu kineticka energiu
T=FE-U (3.7)

Vzhl'adom na novozavedeny n - k-rozmerny priestor rychlosti treba upravit vyraz
(3.6).
To, ¢o by platilo pre jediny hmotny bod

/1 /1
gmds =4[ omgi;q'qdr = /Ty q' ¢ jdx
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bude platit podobne v nasom zovSeobecnenom pripade

1 1
smds — \/§m19iqugq/;‘ +

1
5 SMagiq3qF + - de = [Ty

2

Skonkrétnime teda funkcional (3.1).

B T B 1
/ ”T dr = /\/T L da
A A

Cely vyraz ,/% 17414’ st mdzeme predstavit ako nejaky lagranzian L.
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3.2 Varia¢ny problém

Napisme Eulerove rovnice

dOL L _
dz 0¢'y,  Ogk B

pre nés lagranzian L = | /T;;q';q'; bez T.

oL ov/1iidd; 1 1
= = (T + Thi) ¢ = 7 Twd s
aq/k 8q’k 2L L
d OL d |1 1. 1 0T}, 1
— = — |=Twd. | = —=LTwqd, + ———4¢'.q . + =T1q". =
dﬂjaq/k dﬂf |iL qu:| L2 qu+Laq]q2q]+L kid

1. 1|1 /0T 0Ty, 1 /0Ty 0Ty,
— __LTZ ,. J— — J _ _ J /' /'

-~

symetricky antisymetricky

1 1 . 1 8Tk 8Tk 1
_TZ ”~:——LT7; /4 . 7 J /4 /' _TZ //4

OL OyTydsdy 10T ,

a—(]k 0qk N 2L 8qk 744 J

Teraz uz zostava len poukladat tieto kusky a postavit z nich Eulerove rovnice.

11 /0Ty 0Ty, 0T} 1
Z§< T ) i+ 7T’ = 0 (3.8)

56]3’ dq; oqy

-

1.
—— LT +

L? L

Vyraz I'y;; sa ucene nazyva Christoffelov symbol prvého druhu.

Prenasobme teraz rovnicu (3.8) Lagranzidnom a potom zlava inverznym tenzorom
~1
T

L
T Tii o+ Tie T s = = T T ¢
e Lkij 449 ; ke Lk d ; 7k ki d i

Fﬁj Sui 014

L
q"1 + Fi’jq,iq/j = zq/l (3.9)

r éj v rovnici (3.9) volame Christoffelov symbol druhého druhu a L, ktoré uz dlho po-
uzivam je totalna derivicia lagranzianu.
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Ucinme zameny:

L
L — —
VT
1
E]HTEJ

a zistime ako sa zmenia ¢leny, ktoré vystupuju v rovnici (3.9)

1 1 T VT VT
Tkij —Thij — ——= | Thi +7T —Ty—=—
kij T kij T3< k 8% kj 8 J 8%)
_ 1 ONT  _oNT . ONT
Féj = Tzklrkij — Féj \/T (5lz an 5!; a lesz]a—qk>

(L/VT) INT-LVTVT L T

LNT) T L L VT

I

Rozpisme teraz rovnicu (3.9) podla tychto novych vyrazov:

18\/7// 18\/T// 1 ) —18\/T (L \/_>

l

L T
L2

\§<

! !

(I'ql

2
k)

Ako vidime, prvy a druhy ¢len vo velkej okruhlej zatvorke st rovnakeé, lisia sa len

suma¢nym indexom. V tretom clene spoznavame lagranzidn. Uvedomme si, Ze \}aéqf
K2

sa da napisat ako dg; In/T. ¢len YL —T na pravej strane rovnice sa da vyjadrit tiez ako

\}_afq a tiez ako ¢/;0q; In V/T.

L
"+ Fqu 5 — 2414 ;0q; In VT + LT ' 8g, n VT = Zq/l — ¢4 ,0¢s In VT

Index j v tretom ¢lene je iba sumacény. Mozno ho nahradit napriklad k-ckom, aby sme
mohli dat vSetky ¢leny s logaritmom energie dokopy

L
+Fijqzq9 (¢4 — L*T};.") Oan lnﬁ+zq'l (3.10)
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Energiu 7' v rovnici (3.10) nahradme vyrazom (3.7), ktory sme vytazili zo zédkona za-
chovania energie. Dostaneme tak konecny tvar rovnice zovseobecnenej brachystochrony
vo v8eobecnom parametri x.

L
q" + Féjq/iq/j = (q/lq/k - L2ngl) O InvE —U + zq/l (3.11)

3.3 Prirodzeny parameter krivky

Konkurz na prirodzeny parameter krivky uréite vyhra jej dizka merana od jej zvoleného
pociatku. Vyhra hlavne preto, lebo nemé Ziadnych superov.
Tento parameter (ozna¢me ho s) mozno vyjadrit ako:

sz/\/Tz'jq/iq/j dx:/ 1 ds

Lagranzian sa v prirodzenom parametri zjednodusi na L = 1. Rovnica zovSeobecnene;j
brachystochrony v prirodzenom parametri bode vyzerat takto:

¢+ 50 ;= (d1ds — Tip') O m VE — U (3.12)
Posledny ¢len z rovnice (3.11) vypadol, lebo L = 0.

Nakoniec by nebolo odveci overit nasu rovnicu (3.11) na jednoduchom priklade, pre
ktory je vyhodnejsie pouzit vSeobecny parameter.
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3.4 Kanénom na vrabce

3.4.1 Klasickd brachystochréna z podkapitoly 2.1.1

V euklidovej rovine s klasickou euklidovskou metrikou je metricky tenzor rovny krone-
kerovej delte g;; = 0;; a tenzor kinetickej energie T;; = mélj

Zvol'me si sturadnice tak ako sa patri { Zl :Zj }
g =
Parameter nech je z.
V takejto parametrizacii budu derivacie vyzerat takto: { ;1 L yl }
Pod'me sa pozriet ako budu vyzerat jednotlivé ¢leny v rovnici (3.11)
Christoffelov symbol druhého druhu F bude nulovy, pretoze derivacie v iom vystu-

pujuce, posobiace na kroneker davaju nuly.
Rychlost v homogénnom gravitacnom poli sa vypocita z rovnice (3.7).

T=FE—-U=2(mgh—mgy) =2mg(h —y)

Pozrime sa na prvy ¢len na pravej strane rovnice (3.12):

1, , 1 ,0ln2mgh—y) 1, ,0ln2mg(h—vy) Yy’

= Oqi In 2 h—vy)=—=q - _ /

5019 k00 n2mg(h — y) = 54 pe gl g o =g
0

Nasleduje lagranzian

m m m
L= /Tz‘jq’iq’jz /Sdijq/in: /5 q’§+q’§= 13’/1—*-?/2

Ked uZ mame lagranzian, upravme dalsi ¢len

dln2mg(h — y)

1
5 LT 00k In 2mg (h — y) = (1 n ylz)

20q,
Ostal nam uZ len dekoraény doplnok £ Lq !
L, 14d 1 2y y'y”
- — 1 12 1 — =7 "/ — /
qu I de +yTq, 2LLZ/Q1 71+y,2%
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Dajme to vSetko dokopy.

e Nech [ = 1. Potom rovnica

1+y”
"
Y = —- (3.13)
2(h —y)
ktora z toho vzide by mala predstavovat rovnicu klasickej brachystochrony. Skus-
me, ¢i parametrické rovnice brachystochrony (2.7) riesia rovnicu (3.13)
Najskor vypocitajme

d :
,_dy é _ sing
==-=2=——T_
dx G, cosp— 1
a »
) = d_y’ B é B COS
= =2 =——T
de R(cosp —1)3
a teraz dosadme do (3.13)
sin?
Cos Y o + (cosgp—spl)2 . (COS(,O — 1>2 + sin? " COs
R(cosgp —1)3  —2R(cosp—1)3  —2R(cosgp —1)3  R(cosp — 1)3
e Zostavme rovnicu pre [ = 2
" y” L+y” g%y

_l_
2(h—y)  2(h—y) 14y
ktora sa po kratkej uprave ukaze byt totozné s rovnicou (3.13)

Zistili sme, ze klasicka brachystochrona je rieSenim rovnice (3.11)
Takto sme na jednoduchom priklade overili diferencialnu rovnicu zovSeobecnenej bra-
chystochrony.
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Kapitola 4

Zaklady varia¢ného poctu

4.1 Nutna podmienka pre extremalu

Budeme sa zaoberat varirovanim $pecialnej funkcie F'(x,y,y’)

Definicia 1 Nech B je mnoZina funkcii.
Zobrazenie Fly| : B — R nazgvame funkciondlom na mnoZine B.

Definicia 2 y € C? < a,b >& y,y/,y" st spojité na intervale < a,b > a y(a) =
A y(b) = B
*
Definicia 3 Na mnoZine C? < a,b > je definovand metrika o tak, Ze Yu(z),v(x) €
C? < a,b > plati:
o(u,v) = max |u—v|+ max |u —|

re<a,b> re<a,b>

Definicia 4

Ocly(x)] :== {u(x) € (;2 < a,b>:o(u(z),y(r)) < 5}

Definicia 5 Funkciu y(x) nazjvame relativnym mazimom funkciondlu F[y| prdve vte-

dy, ked:

30:[y] vy € Ocfy] : Fly] < F[y]
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Definicia 6 Funkciu y(x) nazgvame relativnym minimom funkciondlu F'ly| prdve vte-
dy, ked:
30.[y] Vy € Ofy] - Fly] > F[y]

Definicia 7 Relativne mazimum resp. minimum funkciondlu Fly| nazgvame extremd-
lou funkciondlu.

Veta 1 (Zdklidnd lemma variacného poctu)

e Nech f(x) je spojitd na intervale < a,b >

e Nech n(x) an'(x) su spojité na < a,b> a n(a)=n(b) =0

I
o

e Nech Vn(x) € C'*2 <a,b> fb f(z)n(z)dz

potom f(x) =0Vr €< a,b >

Doékaz 1 Vety 1 (Sporom)

Vetu znegujeme a upravime podla schémy: (—(a = b)) < (a A (—b)). UkdZeme, Ze nego-
vand veta neplati, ciZe plati pévodnd veta.

Tak teda, nech f(x) nie je identicky rovnd nule. Z toho vyplyva, Ze Ixg €< a,b > takeé,
Ze f(xo) > 0 (so zdapornou f(x) to ide tovnako dobre).

Zo spojitosti vyplgva, Ze 3&1,& : f(z) >0 na < &,& >

0 pre x € (a,&;)
Definujeme funkciu: n(x) = (x— &) (x —&)? pre x€<&,& > n(x) je iste
0 pre x € (&2,b)
spojitd na < a,b > a n(a) =n(b) = 0.
Overme spojitost jej derivacie: n'(x) :
0 pre x € (a,&;)
n(r) =% 2(x—-&)(r—&)2x—& — &) pre z€<&,6% > n/(x) je odividne spo-
0 pre x € (£2,0)

Jitd na intervale < a, &) U (&1,£2) U (&,b >
Problémy by mohli nastat v bodoch &1,&5. Podme sa teda presveddcit aj tam je spojitd.
Nasou podmienkou spojitosti bude:

lim 7'(z) = lim 7'(z)

e—€; 2=
To isté musi platit v bode &;.
lim 7(z) = lim 0=0 (4.1)
T—E T—E
lim, 7/(a) = lim 2(e— €)@ — €)(2r — &1 — ) = 0 (4.2)
T8y T8y

31



Obrazok 4.1: Funkcia eta

Zo (4.1) a (4.2) vyplyva spojitost n'(z) v bode &

lim 7'(z) = lim 0 =0

x—E&y =&y
lim 7'(z) = lim 2(x — &)(x —&)(2x — & — &) =0

Zo (4.3) a (4.4) vyplyva spojitost n'(x) v bode &
cize n(x),n'(x) su spojité na < a,b >

b
Vn(z) by malo platit, Ze [ f(x)n(z)dx =0

&2

Ale fb f@)(x— &) (x — &)%de = | @ (r— &)z — &) dr >0

&1 g
>0na <€1,62> >0na <&1,62>
NG

>0na;r51 &a>
To je spor. Tymto je veta dokdzand.
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Veta 2 Nutnd podmienka pre extremdlu funkciondlu.

Nutnou podmienkou k tomu, aby funkcia y(z) € C? < a,b >,spliajica okrajové pod-
mienky y(a) = A, y(b) = B, bola extremdlou funkciondlu

Dokaz 2 Nutnej podnienky.
OF OF 9F 0°F 9%F 0°F O°F 0°F 9%*F

Budeme predpokladat, Ze: 50, 50,5, 5e7 5y + 50+ 50y a0y + 3ydy SU SPOJité a y(z) €

C? < a,b >y je minimom funkciondlu J{y] < 3O.[y]Vy € O.[y] : J[g] < J[y]
Definujme si mnoZinu pripustnijch funkecii y(z, o) = y(z) + an(z)

Funkcia n(z) je spojitd, md spojiti prvi derivdciu na intervale < a,b > a spliia okra-
jJové podmienky: n(a) =n(b) =0

Nech y(x, o) patri e-okoliu g

Aké obmedzenie z toho plynie pre parameter o?

o, y+an) = max [f+an+ max [7+an —7|=
re<a,b> re<a,b>
/

= <

o | max [n(z)|+ max |n'(z)]| <e
Y]

A teda:

_Ea<c &
M M

Pre kazdu zvoleni funkciu n(x) sa dd ndjst prislusné a.
Fizujme teraz n(x).

b
V e-okoli extremdly plati: Jo] = [ F(x,y+ an,y +an')dx

Namiesto funkciondlu mdme zrazu obycajni funkciu premennej a.

Tdto funkcia md zrejme v bode o = 0 lokdlne minimum.

Ak chcem pouzit nutni podmienku existencie lokdlneho extrému funkcie, musim dokd-
zat, Ze Fla] je diferencovatelnd v premennej a.
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Funkcia je diferencovatelnd v nejakom bode prdve vtedy, ked v tomto bode existuje de-
rivdacia. Podme sa presveddcit:

b ._/L /JH b
dJ[a]_/dF@,ywn yran), /_F or ,dx
doo do 0
V bode o« = 0 je:
dJ[a] 0F 8F '
e N A

a

Posledny integrdl urcite existuje, pretoZe vietky funkcie za integracnym znakom su podla
predpokladov spojité.

Fla] je teda diferencovatelnd a md lokdlne minimum v bode o =0 = == =0
a=0
b b
dF[a] 8F oF /8F /8F
0 = '"de = | —nd —n'dr =
do |, ) " ") Tt ™
b

_ [oF . OF ”b_/g OFN

C S e, ) e \oy)
a T a
/ oF d (OF

-/ (a—y‘—(w))’?mdz

f(l‘)

Podla zdkladnej lemmy f(x) =0
Tym je dokaz hotovy.
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4.2 Specialne zjednodusenia Eulerovej rovnice

4.2.1 Prvy Eulerov integral

Aka bude podmienka extremély pre funkciu F(y,y', ), v ktorej sa nevyskytuje y? Na-
pisme Eulerovu rovnicu.

4 OF(Y,x) _ OF(y. )

dr 0y dy
0

=0

Ak sa v8ak derivacia nie¢oho rovné nule, potom to nieco je konStanta.

oF

— = konst 4.5

5 (15)
Ak namiesto Eulerovej rovnice vezmeme Lagrangeovu rovnicu, vyraz (4.5) predstavuje
zdkon zachovania zovSeobecnenej hybnosti k jednej zovseovecnenej siradnici konfigu-
ra¢ného priestoru.

4.2.2 Druhy Eulerov integral

Ak sa vo ,yarirovaniachtivej* funkcii F'(y,y’, z) explicitne nevyskytuje x, diferencialna
rovnica, z ktorej vylezie extremala vyzera takto:

F
y/g—y/ — F = konst (4.6)

Poktsme sa ju odvodit.
Zderivujme funkciu F(y,y’) podla x.

dF (y,y') OF 0y’ OF0y OF , OF ;)

dx - 8—y’8m+8—y8m_8—y’y 8—yy_
d (OF , d OF , OF ,
RGO
d (OF , doF OF\ , d (0F ,
) @(a—yy)‘(%ra—y)}:@(a—ﬂ)
0

Dajme derivécie na jednu stranu.
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d (OF )\ dF d (0F B
%(a—yy)‘%—dx(ayfy F)—O

Vyraz v zatvorke je urcite konstanta.
N4&s specialny pripad teda vyzera takto:

Na pode lagranzidnov nezavislych od ¢asu rovnica predstavuje zakon zachovania ener-
gie.
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ZAver

V tejto praci sme sa venovali vypoctom suvisiacim so zovSseobecnenou brachystoch-
ronou. Tento pojem zaviedli Okudaira a kol. v pracach, ktoré vySetrovali isty extrema-
liza¢ny problém v kvantovej mechanike. Podobne ako obyc¢ajna brachystochrona ma
minimalizovat Cas, za ktory sa gul6¢ka zoSmykne z bodu A do bodu B (v oby¢ajnom
priestore) pod vplyvom gravitacného pola, zovSeobecnena brachystochréna je krivka
na vsSeobecnej n-rozmernej riemannovskej variete, ktora minimalizuje ¢as prechodu z A
do B pod vplyvom vSeobecnej potencidlovej sily. V spominanej praci sice mozno najst
vysledni diferencialnu rovnicu (v prirodzenom parametri na krivke), nie je tam vSak
jej odvodenie. Cielom tejto préace bolo tuto rovnicu odvodit (a tym potvrdit, ze vyzera
naozaj tak, ako je v spominanych pracach prezentovana. To sa podarilo urobit, v tretej
kapitole podrobne opisujeme, ako sa da tato rovnica odvodit a tiez ukazujeme, ako by
sa zmenila (skomplikovala), keby sa zapisala cez vSeobecny parameter namiesto priro-
dzeného. Vyslednii rovnicu so vSeobecnym parametrom spétne testujeme na povodne;j
klasickej tlohe, kde sa ako parameter berie suradnica x (¢i vtedy vedie na cykloidu;
ukazuje sa, ze vedie).

Tato praca by mohla pokracovat sktiSanim vyrieSenia zékladnych rovnic v nejakej
novej situécii, k ¢ome sme sa uz nedostali (a nebude to zrejme velmi jednoduché).
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