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Zadanie bakalárskej práce

Brachystochróna je krivka v zvislej rovine, po ktorej sa zošmykne korálka medzi
dvoma bodmi s rôznymi výškami za najkratší čas.V práci sa bude analyzovať zovše-
obecnenie tohoto pojmu na prípad, keď namiesto euklidovskej roviny a gravitačnej sily
uvažujeme „krivý priestor“ a v ňom ľubovoľné potenciálové silové pole. Cieľom bude
odvodiť príslušnú diferenciálnu rovnicu a skúsiť ju riešiť pre nejaký iný prípad, ako ten,
z ktorého zovšeobecnenie vzišlo. Potrebné sú základné znalosti z teoretickej mechaniky
(variačné princípy). Práca je vhodná pre záujemcov o teoretickú fyziku.
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Abstrakt

JURčI, Milan. Zovšeobecnená brachystochróna [bakalárska práca]. Univerzita Komen-
ského v Bratislave. Fakulta matematiky, fyziky a informatiky. školiteľ: doc. RNDr.
Marián Fecko, PhD. Komisia pre obhajoby: Fyzika 4.1.1. Stupeň odbornej kvalifikácie:
Bakalár fyziky.
Bratislava: FMFI UK, 2007. 38 s.

Študuje sa zovšeobecnenie klasickej úlohy o brachystochrone na prípad, keď sa má
hmotný bod pohybovať medzi dvoma bodmi na riemannovskej variete pod vplyvom
daného (všeobecného) potenciálového poľa za najkratší čas. Prezentuje sa detailné
odvodenie príslušnej diferenciálnej rovnice, ktorá sa nedávno objavila v literatúre.

Kľúčové slová: Brachystochrona. Variačný počet. Metrický tenzor.
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Predhovor

S klasickým problémom o brachystochrone sa stretne každý absolvent prednášky
z teoretickej mechaniky v časti, ktorá sa venuje variačným prístupom k mechanike.
Hoci je príklad zaujímavý a poučný, mohlo by trochu prekvapiť, že sa mu venuje celá
bakalárska práca. Pre túto prácu je však podstatné slovo zovšeobecnená. Čo sa pod tým
myslí?

V nedávnych prácach vyšetrovala skupina japonských teoretikov istý optimalizačný
problém v kvantovej mechanike, ktorý nazvali „kvantová brachystochrona". Štartom k
tejto problematike bola formulácia (a tiež výsledok) úlohy, ktorá pripomína klasickú
úlohu o brachystorchrone - túto úlohu nazvali zovšeobecnená brachystochrona. Znie
nasledovne: na všeobecnej riemannovskej variete sa pohybuje z bodu A do bodu B
hmotný bod pod vplyvom sily danej všeobecným potenciálovým poľom tak, aby mi-
nimalizoval čas presunu z A do B. Treba určiť tvar krivky (drôtu, ktorý prinúti bod
na tejto krivke zotrvať), na ktorej sa tento minimálny čas realizuje. V ich článkoch je
výsledná rovnica, ale chýba jej detailné odvodenie. Cieľom tejto práce je urobiť toto
detailné odvodenie a overiť správnosť uvedenej rovnice.

Úvodná časť sa podrobne venuje pôvodnej klasickej úlohe, vrátane jej histórie a
detailov riešenia. Jadro práce obsahuje odvodenie rovnice zovšeobecnenej brachystoch-
rony, najprv pre ľubovoľný parameter, potom ako špeciálny prípad aj pre „prirodzený“
parameter, v ktorom ju zapísali vyššie uvedení autori. V poslednej kapitole sú uvedené
základné pojmy z variačného počtu.

7



Obsah

Zadanie bakalárskej práce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Abstrakt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Predhovor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
úvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Historický úvod 10

2 Riešenie klasickej brachystochróny 15

2.1 Riešenie brachystochróny v homogénnom gravitačnom poli . . . . . . . 15
2.1.1 Riešenie s nulovou počiatočnou rýchlosťou . . . . . . . . . . . . 15
2.1.2 Riešenie s nenulovou počiatočnou rýchlosťou . . . . . . . . . . . 20

3 Zovšeobecnená brachystochróna 22

3.1 Zavedenie funkcionálu . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Variačný problém . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Prirodzený parameter krivky . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Kanónom na vrabce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Klasická brachystochróna z podkapitoly 2.1.1 . . . . . . . . . . . 28

4 Základy variačného počtu 30

4.1 Nutná podmienka pre extremálu . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Špeciálne zjednodušenia Eulerovej rovnice . . . . . . . . . . . . . . . . 35

4.2.1 Prvý Eulerov integrál . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Druhý Eulerov integrál . . . . . . . . . . . . . . . . . . . . . . . 35

Záver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8



Úvod

Brachystochróna je krivka, ktorá spája dva pevne zvolené body v priestore s prítom-
ným silovým poľom tak, aby hmotný bod pohybujúci sa po nej prešiel túto vzdialenosť
za najkratší čas. Vo svojej práci sa najprv pozriem na korene tejto úlohy, na hlavných
predstaviteľov - velikánov matematiky, ktorí úlohu zadali a vyriešili. Opíšem detailne
klasickú úlohu o brachystochróne v takom znení, v akom bola pôvodne formulovaná
a jej riešenie. Ďalej pridám nejaké počiatočné podmienky a pozriem sa, ako sa zmení
riešenie. V hlavnej téme zavediem zovšeobecnenia, ktoré tvoria jadro práce a pomocou
metód variačného počtu ich pretavím do diferenciálnej rovnice, ktorú vo svojej práci
o kvantovej brachystochróne odvodil Yosuke Okudaira a kol. Na záver pre pohodlie
čitateľa uvádzam minimálny súbor poznatkov o variačnom počte, potrebný (v prípade
záujmu) k pochopeniu princípu extremalizovania.
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Kapitola 1

Historický úvod

Nová výzva pre matematikov 17. storočia, ktorá nakoniec viedla ku vzniku úplne
novej teórie v matematickej analýze - Variačného počtu, bola ponúknutá Jánom Ber-
noullim (1677-1748) uverejnená roku 1696 v časopise Acta Eruditorum, ktorého vyda-
vateľom bol G. W. Leibniz (1646-1716). Úlohou bolo určiť dráhu, ktorá by spájala dva
body vo zvislej rovine (neležiace na spoločnej vertikále) a po ktorej by sa hmotný bod
pohyboval účinkom tiaže a bez odporu tak, že by z horného bodu dorazil do spodného
v najkratšom čase.

Bernoulli doslova píše: „Zmyslom úlohy je nájsť medzi nekonečne veľa krivkami spá-
jajúcimi oba body takú, pozdĺž ktorej, ak by bola nahradená príslušnou tenkou zakrive-
nou trubicou, by vložená a voľne vypustená gulička dospela do druhého bodu za najkratší
čas. Aby som však vylúčil akúkoľvek dvojznačnosť, pripomínam výslovne, že prijímam
Galileovu hypotézu, o ktorej žiadny rozumný geometer nepochybuje, podľa ktorej, keď
nedbáme na odpor pohybu, sa rýchlosť padajúceho telesa mení s druhou odmocninou z
prekonaného výškového rozdielu.“

Leibniz predostretý problém sám posúdil a napísal, že ide o: "Veľmi krásnu a ne-
slýchanú úlohu".
Výzvu Jána Bernoulliho prijali jeho starší brat Jakub Bernoulli (1654-1705), Leibniz,
L´Hospital (1661-1704), Newton (1642-1727) a Huygens (1629-1695). Každý z nich po-
dal správne riešenie. Nejjednoduchšie riešenie však podal sám Jan Bernoulli. Vychádzal
z Fermatovho princípu, ktorý poznáme z optiky. Princíp vysvetľuje lom svetla v pro-
stredí s rôznymi optickými hustotami. Lúč svetla sa šíri a na rozhraní dvoch prostredí
láme tak, aby nestratil ani nanosekundu a prišiel z bodu A do bodu v B v čo najkrat-
šom čase.
Lúč prechádza prostredím, v ktorom se šíri rýchlosťou v1, a dopadá do prostredia s

rýchlosťou šírenia v2.
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Obrázok 1.1: Putovanie svetelného lúča

Z obrázka ľahko odvodíme rovnicu:

t(x) =

√

h2
1 + x2

v1

+

√

h2
2 + (a − x)2

v2

(1.1)

Aby sme našli minimum funkcie t(x), musíme si zaderivovať a "zanulovať":

t′(x) =
x

v1

√

h2
1 + x2

− a − x

v2

√

h2
2 + (a − x)2

= 0 (1.2)

Obrázok nás zvádza urobiť jednoduché substitúcie:

sin α =
x

v1

√

h2
1 + x2

sin(90 − β) =
a − x

v2

√

h2
2 + (a − x)2
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Vzťah sinα
v1

= sin(90−β)
v2

, ktorý sme dostali, nápadne pripomína Snellov zákon lomu,
pretože to je Snellov zákon lomu.
Tu si treba všimnúť metódu, ktorá viedla (veľmi jednoducho) k riešeniu. Vyšetrovaním
extrémnych bodov funkcie nám dáva možnosť riešiť mnohé praktické problémy napr.
aké rozmery má mať sud na pivo, aby mal pri danom povrchu maximálny objem a
krčmár mal z neho maximálnu radosť.

Vráťme sa teraz k našej brachystochróne.
Úloha nájsť brachystochrónu a dráhu svetelného lúča majú významné spoločné črty:

• obe majú jediné riešenie, ktoré by sme naozaj pozorovali, keby sme pozorovali.

• intuitívne cítime (a pri jednej z nich sme sa o tom presvedčili), že ide o hľadanie
akýchsi extrémov.

Kým doteraz sme hľadali extrém funkcie, teraz budeme hľadať akúsi extrémnu funkciu,
čo zo všetkých možných funkcií spájajúcich dva pevné body má práve tú vlastnosť, že
je brachystochrónou.
Patrilo by sa ešte spomenúť Bernoulliho riešenie. To on si všimol analógiu s optikou a
problém vyriešil takto:
Kľúčová myšlienka, ktorá Barnoulliho priviedla k riešieniu spočívala v tom, že si uve-
domil, že extremálne správanie má nielen celá krivka, ale každá jej časť.
Na základe tohto predpokladu musí platiť:

sin α

v
=

1

v

dx

ds
=

1

v

1
√

1 + y′2
= konst (1.3)

Písmenko v označuje okamžitú rýchlosť, ktorá sa vypočíta zo zákona zachovania ener-
gie, pričom v bode [0, 0] je energia nulová, ako vidno z obrázka (1.2)
A teda v =

√
2gy

Z toho dostaneme:

1
√

y(1 + y′2)
= konst , alebo tiež y(1 + y′2) = konst (1.4)

Problém sa týmto zvrhol na pátranie po funkcii spĺňajúcej rovnicu (1.4).
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Obrázok 1.2: Očakávaný tvar brachystochróny

Bernulli videl v rovnici (1.4) krivku - cykloidu, ktorú veľmi dobre poznal (ja by som
to tam určite nenašiel ani s baterkou). Cykloida v „násilnom“ tvare y(x) sa dá para-
metrizovať napr. parametrom ϕ :

x = aϕ − a sin ϕ y = a − a cos ϕ = 2a sin2 ϕ

2

Skúsme to dosadiť do (1.4). Potrebujeme ešte prvú deriváciu:

y′(x) =

dy

dϕ

dx
dϕ

=
a sin ϕ

a(1 − cos ϕ)
=

2 sin ϕ

2
cos ϕ

2

1 − cos2 ϕ

2
+ sin2 ϕ

2

=
2 sin ϕ

2
cos ϕ

2

2 sin2 ϕ

2

= arctan
ϕ

2

Teraz už máme všetko. Otestujme teda Bernulliho riešenie:

2a sin2 ϕ

2

(

1 +
cos2 ϕ

2

sin2 ϕ

2

)

= 2a = konst.

Všetko je teda v poriadku.
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Ostáva ešte obrázok, ako taká brachystochróna vyzerá.
Kružnica sa kotúľa po osi x a pevný bod P, ktorý na nej leží, kreslí cykloidu.

Obrázok 1.3: Brachystochrona

Na záver tejto kapitoly, ktorá nesie názov „Historický úvod“ sa patrí spomenúť niečo
zo života jedného z najväčích matematikov všetkých čias, Leonharda Eulera.

Leonhard Euler sa narodil 15. apríla 1707 v Bazileji (Švajčiarsko). Prvým učiteľom
matematiky mu bol jeho otec Paul Euler, protestantský kňaz. Už ako 14 ročný začal
študovať na Univerzite. Johann Bernoulli, jeho súkromný učiteľ, v ňom rýchlo objavil
nadanie na matematiku. Stal sa magistrom filozofie a študoval aj teológiu. Získal druhé
miesto vo Veľkej cene vypísanej Parížskou akadémiou za svoje riešenie problému naj-
lepšieho umiestnenia stožiarov na lodi. 17. mája 1727 prišiel do St. Petersburgu, kde
bol menovaný členom matematicko-fyzikálneho oddelenia tamojšej Akadémie vied. Z
finančných dôvodov slúžil ako poručík zdravotnej služby ruského námorníctva, kým sa
v roku 1730 nestal profesorom fyziky a riadnym členom Akadémie. Zaoberal sa karto-
grafiou, vedeckým vzdelávaním, magnetizmom, mechanickými strojmi a stavbou lodí.
V matematike teóriou čísel, diferenciálnymi rovnicami, variačným počtom a racionál-
nou mechanikou. V roku 1740 vyhral veľkú cenu Parížskej akadémie. Politická situácia
v Rusku ho donútila odísť do Berlína, kde sa stal riaditeľom oddelenia matematiky na
novozaloženej Akadémii vied. Za 25 rokov tu publikoval 380 článkov. Napísal knihy o
variačnom počte, o výpočtoch dráh planét, o delostrelectve a balistike, o stavbe lodí,
o námornej navigácii, o pohybe Mesiaca. Po nezhodách s kráľom Friedrichom Veľkým
odišiel späť do St. Petersburgu, kde však úplne stratil zrak. Polovicu svojej vedeckej
práce publikoval, aj keď bol úplne slepý. Po jeho smrti v roku 1783 Akadémia v St.
Petersburgu ešte 50 rokov publikovala dovtedy nepublikované práce.
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Kapitola 2

Riešenie klasickej brachystochróny

2.1 Riešenie brachystochróny v homogénnom gravi-
tačnom poli

2.1.1 Riešenie s nulovou počiatočnou rýchlosťou

Všeobecné riešenie

Aby nebol názov pre čitateľa mätúci, upresním ho.
Ide o pohyb hmotného bodu v homogénnom gravitačnom poli medzi bodmi neležiacimi
na spoločnej vertikále ani horizontále s nulovou počiatočnou kinetickou energiou. Pozri
obrázok (1.2).
Nech bod A má súradnice [0, h] a bod B [xB, yB].
Tak, ako väčšina suchozemských stavovcov z fyziky veľa neviem, ale vzľah pre okamžitú
rýchlosť v = ds

dt
si ešte zo základnej školy pamätám. Z toho si vyjadrím čas: dt = ds

v
.

Doba pádu hmotného bodu je

t =

B∫

A

ds

v
(2.1)

Rýchlosť vypočítame zo zákona zachovania energie

1

2
mv2 + mgy = mgh ⇒ v =

√

2g(h − y) (2.2)
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Pytagorovu vetu tiež náhodou poznám. ds =
√

(dx)2 + (dy)2

Po malej úprave:

ds =

√

1 +

(
dy

dx

)2

dx =

√

1 + y′2dx (2.3)

Po dosadení (2.2) a (2.3) do (2.1) dostanem konečný tvar funkcionálu

t[y] =

xB∫

xA

√

1 + y′2

2g(h − y)
dx (2.4)

Vidíme, že vo funkcii za integračným znakom sa explicitne nevyskytuje x. Použijem
preto Druhý integrál (4.6), ktorého odvodenie sa nachádza v poslednej kapitole.

y′ ∂

∂y′





√

1 + y′2

2g(h − y)



−
√

1 + y′2

2g(h − y)
= C(konst)

Výraz
√

2g(h − y) od y′ nezávisí, preto ho môžem dať na druhú stranu rovnice.

y′∂
√

1 + y′2

∂y′
−
√

1 + y′2 = C
√

2g(h − y)

Po zderivovaní dostávame

y′2

√

1 + y′2
−
√

1 + y′2 = C
√

2g(h − y)

/

.

√

1 + y′2

−1 = C
√

2g(h − y)(1 + y′2)

/

(...)2

Konštanta C musí byť nutne záporná.

1

C22g(h − y)
− 1 = y′2

/
√

(...)
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Rovnica

y′ =

√

1 − 2gC2(h − y)

2gC2(h − y)
(2.5)

je príjemná separovateľná.
Integrujme ju!

∫
√

2gC2(h − y)

1 − 2gC2(h − y)
dy =

∫

dx

Ponúka sa nám tu goniometrická substitúcia
∣
∣
∣
∣

2gC2(h − y) = sin2 ϕ
−2gC2dy = 2 sin ϕ cos ϕdϕ

∣
∣
∣
∣

Zámerne som zvolil sínus na druhú, aby parameter ϕ bol v čase t = 0 (y = h) nulový.

x = − 1

gC2

∫
sin ϕ

cos ϕ
sin ϕ cos ϕdϕ = − 1

gC2

∫

sin2 ϕdϕ =

= − 1

2gC2

∫

(1 − cos 2ϕ)dϕ = − 1

4gC2
(2ϕ − sin 2ϕ) + D

Aby mi krivka neutekala do IV. kvadrantu, zamením parameter ϕ za −ϕ.
Aby sa na to lepšie pozeralo, prihodím k tomu ešte zámenu ϕ → ϕ

2
.

Už ostáva len zverejniť (zatiaľ) beta verziu brachystochróny
{

x = 1
4gC2 (ϕ − sin ϕ) + D

y = h − sin2 ϕ
2

2gC2 = h − 1−cos ϕ

4gC2

}

Koeficient 1
4gC2 je konštanta s rozmerom dĺžky, nazvem si ju R nie úplne náhodne,

pretože tuším, že pôjde o polomer nejakej kružnice, keďže sa vyskytuje raz pred sínusom
a raz pred kosínusom. A teda

{
x = R(ϕ − sin ϕ) + D
y = h − 2R sin2 ϕ

2
= h − R(1 − cos ϕ)

}

(2.6)

Vidíme, že ide o kružnicu, ktorá je posunutá v x-ovom smere o D a o Rϕ a v y-ovom
smere o h − R. Parameter ϕ môže byť len z intervalu < 0, 2π). Je to preto, aby som
odstrihol periodické riešenie.
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Okrajové podmienky

• Všeobecné riešenie by sme mali. Chýbajú ešte okrajové podmienky, ktoré mi niečo
pošepkajú o konštantách R a D.
Dosaďme teda bod A[0, h]

0 = R(ϕ − sin ϕ) + D
h = h − R(1 − cos ϕ)

Z druhej rovnice vidno, že ϕ = 0. To dosadíme do prvej rovnice a vyjde mi, že
D = 0.

{
x = R(ϕ − sin ϕ)
y = h − R(1 − cos ϕ)

}

(2.7)

• Ale čo s R?
Keď sa pokúsime dosadiť bod B[xB , yB] do všeobecného riešenia (2.7), dostaneme
niečo takéhoto:

xB = R



arccos

(

1 − h − yB

R

)

−

√

1 −
(

1 − h − yB

R

)2




Deväť z desiatich psychiatrov neodporúča zisťovať z toho, čomu je rovné R!
Krivka nepredá svoju kožu lacno, ale na bielu vlajku je ešte čas. Poďme sa pozrieť
aspoň zhruba na jej tvar.
Zderivujme parametrické rovnice a položme túto deriváciu rovnú nule.

0 =
dy

dx
=

dy

dϕ

dx
dϕ

=
−R sin ϕ

R(1 − cos)
=

sin ϕ

cos ϕ − 1

}

⇒ ϕ = 0, π, 2π

Týmto zistíme kde má brachystochróna minimum (je jasné, že ide o minimum). Z
rovnice vypadlo R závislé na okrajových podmienkach. Možno povedať, že každá
cykloida daného tvaru má vo ϕ = π svoje minimum. Prípady, keď ϕ = 0 a ϕ = 2π
sú nezaujímavé a určite nesúvisia s minimom krivky.
Položme ϕ = π do (2.7). Dostaneme

xmin = Rπ
ymin = h − R(1 − cos π) = h − 2R

Ak vylúčime R-ko, zostane nám závislosť xmin = π
2
(h − ymin).
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1. Ak som si náhodou zvolil okrajové pomienky tak šikovne, že xB = π
2
(h−yB),

potom viem povedať, že krivka začína vo svojom maxime v bode A a končí
vo svojom minime v bode B.
Viem dokonca určiť polomer: R = h−ymin

2

2. Niekomu sa možno viac páči, keď xB < π
2
(h−yB). V tom prípade s využitím

rovníc (2.7) vylezie podmienka

R(ϕ − sin ϕ) <
π

2
R(1 − cos ϕ)

Výraz (1 − cosϕ) je na (0, 2π) určite kladné číslo. Preto možno napísať:

ϕ − sin ϕ

1 − cos ϕ
<

π

2

Chystáme sa zistiť, či ϕ < π alebo ϕ > π? Nech ϕ = π + ε. Podľa toho, či
je ε kladné alebo záporné, zistím aké je ϕ.

π + ε − sin(π + ε)

1 − cos(π + ε)
=

π + ε − [sin π cos ε + cos π sin ε]

1 − [cos π cos ε − sin π sin ε]
=

π + ε + sin ε

1 + cos ε

Bez ohľadu na ε platí odhad

π + ε + sin ε

2
<

π + ε + sin ε

1 + cos ε
<

π

2

}

⇒ ε < 0

Uhol ϕ nedosiahne hodnotu π. Vskutku vieme povedať, že krivka padá zo
svojho maxima v bode A do svojho minima v bode B. Polomer kružnice
R > h−ymin

2

3. Rozoberme si ešte to, čo nám ostalo, a síce xB > π
2
(h − yB)

R(ϕ − sin ϕ) >
π

2
R(1 − cos ϕ)

Výraz (1 − cosϕ) je na (0, 2π) opäť kladné číslo. Preto možno napísať:

π + ε + sin ε

1 + cos ε
=

ϕ − sin ϕ

1 − cos ϕ
>

π

2

/

− π

2
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ε + sin ε

1 + cos ε
︸ ︷︷ ︸

>0

>
π + ε + sin ε − π − π cos ε

2(1 + cos ε)
> 0







⇒ ε > 0

Uhol ϕ počas svojho života presiahne π. Krivka spája body A a B a na
svojej ceste pritom dosiahne svoje minimum, ktoré je rôzne od bodov A a
B. Polomer kružnice musí byť R > h−ymin

2
.

Priamka x = π
2
(h− y) tvorí akúsi deliacu čiaru pre tvar krivky. Pod touto čiarou

má brachystochróna tvar 2, nad ňou má tvar 3.

2.1.2 Riešenie s nenulovou počiatočnou rýchlosťou

Nech teraz hmotný bod padá z výšky h z bodu A[0, h] do bodu B[xB, yB] s počia-
točnou rýchlosťou v0. Problém vyriešime lišiacky. Budeme sa tváriť, že riešime inú
brachystochrónu začínajúcu v nejakom A′[?, ?], ktorá len tak náhodou prechádza bo-
dom A[0, h] s sýchlosťou v0 a ponáhľa sa do B[xB, yB]. Rýchlosť HB v ľubovoľnom
bode [x, y] vypočítam zo ZZE.

1

2
mv2 + mgy =

1

2
mv2

0 + mgh ⇒ v =
√

v2
0 + 2g(h − y)

Pod odmocninou teraz dôjde k malej reorganizácii členov:

v =

√

2g

(

h +
v2
0

2g
− y

)

=
√

2g(H − y)

Zostavme funkcionál.

t[y] =

xB∫

xA

√

1 + y′2

2g(H − y)
dx

Teraz to vidno. Pohyb hmotného bodu z výšky h s počiatočnou rýchlosťou v0 je rovnaký
ako pohyb toho istého hmotného bodu z väčšej výšky H s nulovou počiatočnou rých-
losťou. Jeden otáznik sme vyriešili. Máme A′[?, h+

v2
0

2g
]. Teraz sa musím spýtať, o koľko

musíme posunúť počiatočnú podmienku doľava, aby sa nič nezmenilo? V rovniciach
(2.6) je toto tajomstvo ukryté.
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{
x = R(ϕ − sin ϕ) + D
y = H − R(1 − cos ϕ)

}

Potrebujem vedieť, pre ktoré ϕ je y = h.
Pozrime sa na druhú rovnicu z (2.6).

h = h +
v2
0

2g
− R(1 − cos ϕ) ⇒ ϕ = arccos

(

1 − v2
0

2gR

)

Do prvej rovnice dosadíme naše dlhé ϕ a x = 0 a zistíme, čomu je rovné D.

D = −R

[

arccos

(

1 − v2
0

2gR

)

−
√

v2
0

2gR

(

1 − v2
0

2gR

)]

Záver je taký, že brachystochróna s počiatočnou rýchlosťou v0 z bodu A[0, h] do bodu
B[xB , yB] je rovnaká ako brachystochróna s nulovou počiatočnou rýchlosťou z bodu

A′

[

−R

[

arccos
(

1 − v2
0

2gR

)

−
√

v2
0

2gR

(

1 − v2
0

2gR

)]

, h +
v2
0

2g

]

do bodu B[xB, yB].
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Kapitola 3

Zovšeobecnená brachystochróna

3.1 Zavedenie funkcionálu

Začneme ako inak najjdednoduchším prípadom a ten zovšeobecníme.
Skôr, ako sa pozrieme, aké členy vystupujú vo funkcionáli

t =

B∫

A

ds

v
(3.1)

vynásobme čitateľ aj menovateľ (z dôvodov, ktoré sa ukážu neskôr pri postupnom

zovšeobecňovaní) výrazom
√

1
2
m

t =

B∫

A

√
1
2
mds

√
1
2
mv

=

B∫

A

√
1
2
mds

√
1
2
mv2

=

B∫

A

√
1
2
mds

√
T

(3.2)

1. Dráhový element ds určuje metriku daného priestoru.
Dá sa rozpísať takto:

ds =
√

(dx)2 + (dy)2

ale aj takto:

ds =

√

(
dx dy

)
(

1 0
0 1

)(
dx
dy

)

(3.3)

Tá matica v strede tej odmocniny sa nazýva metrický tenzor. Je jednotková, lebo
ide o euklidovský priestor v kartézskych súradniciach.
Dráhový element v polárnych súradniciach bude vyzerat kúsok inak.
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ds =

√

(
dr dϕ

)
(

1 0
0 r2

)(
dr
dϕ

)

(3.4)

Kto by rád matice 3x3, uvediem ds vo sférických súradniciach:

ds =

√
√
√
√
√
(

dr dϑ dϕ
)





1 0 0
0 r2 0
0 0 r2 sin2 ϑ









dr
dϑ
dϕ



 (3.5)

Bystré oko si všimne, že vo všeobecnosti možno ds vyjadriť ako

ds =
√

gijdqidqj

Zaveďme parametrizáciu nejakým všeobecným parametrom x

ds =
√

gijq′iq
′
jdx (3.6)

2. Predpokladáme, že silové pole je potenciálové, platí zákon zachovania energie (pre
sústavu n hmotných bodov):

1

2
m1gijv

1
i v

1
j +

1

2
m2gijv

2
i v

2
j + · · ·1

2
mngijv

n
i vn

j + U = E

Tento pohyb n hmotných bodov v k-rozmernom priestore možno tiež chápať ako
pohyb jediného hmotného bodu v n · k rozmernom priestore. V ňom pozoruje-
me akési zovšeovecnené rýchlosti vi = (v1

i , v
2
i , ..., v

n
i ) a tenzor kinetickej energie

Tij = 1
2
(m1gij, m2gij , ..., mngij) vystupuje ako bloková matica. Tvar Tij , ktrorý

som uviedol, nemusí byť vo všeobecnosti taký jednoduchý. Ak rátame s väzbami
medzi jednotlivými bodmi, pribudnú aj nediagonálne členy! V tomto zovšeobec-
nenom n · k-rozmernom priestore možno zákon zachovania energie formulovať v
jednoduchom tvare

1

2
Tijvivj

︸ ︷︷ ︸

T

+U = E

Z toho ľahko vyjadríme bilineárnu formu T reprezentujúcu kinetickú energiu

T = E − U (3.7)

Vzhľadom na novozavedený n · k-rozmerný priestor rýchlostí treba upraviť výraz
(3.6).
To, čo by platilo pre jediný hmotný bod

√

1

2
mds =

√

1

2
mgijq′iq

′
jdx =

√

Tijq′iq
′
jdx
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bude platiť podobne v našom zovšeobecnenom prípade
√

1

2
mds →

√

1

2
m1gijq′

1
i q

′1
j +

1

2
m2gijq′

2
i q

′2
j + · · ·dx =

√

Tijq′iq
′
j

Skonkrétnime teda funkcionál (3.1).

t =

B∫

A

√
Tijq′iq

′
j√

T
dx =

B∫

A

√

1

T
Tijq′iq

′
j dx

Celý výraz
√

1
T
Tijq′iq

′
j si môžeme predstaviť ako nejaký lagranžián L.
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3.2 Variačný problém

Napíšme Eulerove rovnice
d

dx

∂L

∂q′k
− ∂L

∂qk

= 0

pre náš lagranžián L =
√

Tijq′iq
′
j bez T .

∂L

∂q′k
=

∂
√

Tijq′iq
′
j

∂q′k
=

1

2L
(Tik + Tki) q′i =

1

L
Tkiq

′
i

d

dx

∂L

∂q′k
=

d

dx

[
1

L
Tkiq

′
i

]

= − 1

L2
L̇Tkiq

′
i +

1

L

∂Tki

∂qj

q′iq
′
j +

1

L
Tkiq

′′
i =

= − 1

L2
L̇Tkiq

′
i +

1

L








1

2

(
∂Tki

∂qj

+
∂Tkj

∂qi

)

︸ ︷︷ ︸

symetrický

+
1

2

(
∂Tki

∂qj

− ∂Tkj

∂qi

)

︸ ︷︷ ︸

antisymetrický








q′iq
′
j +

+
1

L
Tkiq

′′
i = − 1

L2
L̇Tkiq

′
i +

1

2L

(
∂Tki

∂qj

+
∂Tkj

∂qi

)

q′iq
′
j +

1

L
Tkiq

′′
i

∂L

∂qk

=
∂
√

Tijq′iq
′
j

∂qk

=
1

2L

∂Tij

∂qk

q′iq
′
j

Teraz už zostáva len poukladať tieto kúsky a postaviť z nich Eulerove rovnice.

− 1

L2
L̇Tkiq

′
i +

1

L

1

2

(
∂Tki

∂qj

+
∂Tkj

∂qi

− ∂Tij

∂qk

)

︸ ︷︷ ︸

Γkij

q′iq
′
j +

1

L
Tkiq

′′
i = 0 (3.8)

Výraz Γkij sa učene nazýva Christoffelov symbol prvého druhu.
Prenásobme teraz rovnicu (3.8) Lagranžiánom a potom zľava inverzným tenzorom
Tlk

−1.

Tlk
−1Γkij

︸ ︷︷ ︸

Γl
ij

q′iq
′
j + Tlk

−1Tki
︸ ︷︷ ︸

δli

q′′i =
L̇

L
Tlk

−1Tki
︸ ︷︷ ︸

δli

q′i

q′′l + Γl
ijq

′
iq

′
j =

L̇

L
q′l (3.9)

Γl
ij v rovnici (3.9) voláme Christoffelov symbol druhého druhu a L̇, ktoré už dlho po-

užívam je totálna derivácia lagranžiánu.
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Učiňme zámeny:

L 7−→ L√
T

Tij 7−→ 1

T
Tij

T−1
ij 7−→ TT−1

ij

a zistime ako sa zmenia členy, ktoré vystupujú v rovnici (3.9)

Γkij 7−→ 1

T
Γkij −

1√
T 3

(

Tki

∂
√

T

∂qj

+ Tkj

∂
√

T

∂qi

− Tij

∂
√

T

∂qk

)

Γl
ij = T−1

lk Γkij 7−→ Γl
ij −

1√
T

(

δli

∂
√

T

∂qj

+ δlj

∂
√

T

∂qi

− T−1
lk Tij

∂
√

T

∂qk

)

L̇

L
7−→ (L/

√̇
T )

(L/
√

T )
=

L̇
√

T − L
√̇

T

T

√
T

L
=

L̇

L
−

√̇
T√
T

Rozpíšme teraz rovnicu (3.9) podľa týchto nových výrazov:

q′′l+Γl
ijq

′
iq

′
j−










1√
T

∂
√

T

∂qj

q′jq
′
l +

1√
T

∂
√

T

∂qi

q′iq
′
l

︸ ︷︷ ︸

2√
T

∂
√

T
∂qj

q′jq′l

− 1√
T

Tijq
′
iq

′
j

︸ ︷︷ ︸

L2

T−1
lk

∂
√

T

∂qk










=

(

L̇

L
−

√̇
T√
T

)

q′l

Ako vidíme, prvý a druhý člen vo veľkej okrúhlej zátvorke sú rovnaké, líšia sa len
sumačným indexom. V treťom člene spoznávame lagranžián. Uvedomme si, že 1√

T

∂
√

T
∂qi

sa dá napísať ako ∂qi ln
√

T . člen
√̇

T√
T

na pravej strane rovnice sa dá vyjadriť tiež ako
1√
T

∂
√

T
qi

q′i a tiež ako q′i∂qi ln
√

T .

q′′l + Γl
ijq

′
iq

′
j − 2q′lq

′
j∂qj ln

√
T + L2T−1

lk ∂qk ln
√

T =
L̇

L
q′l − q′lq

′
k∂qk ln

√
T

Index j v treťom člene je iba sumačný. Možno ho nahradiť napríklad k-čkom, aby sme
mohli dať všetky členy s logaritmom energie dokopy

q′′l + Γl
ijq

′
iq

′
j =

(
q′lq

′
k − L2T−1

lk

)
∂qk ln

√
T +

L̇

L
q′l (3.10)

26



Energiu T v rovnici (3.10) nahraďme výrazom (3.7), ktorý sme vyťažili zo zákona za-
chovania energie. Dostaneme tak konečný tvar rovnice zovšeobecnenej brachystochróny
vo všeobecnom parametri x.

q′′l + Γl
ijq

′
iq

′
j =

(
q′lq

′
k − L2T−1

lk

)
∂qk ln

√
E − U +

L̇

L
q′l (3.11)

3.3 Prirodzený parameter krivky

Konkurz na prirodzený parameter krivky určite vyhrá jej dĺžka meraná od jej zvoleného
počiatku. Vyhrá hlavne preto, lebo nemá žiadnych súperov.
Tento parameter (označme ho s) možno vyjadriť ako:

s =

x∫

x0

√

Tijq′iq
′
j

︸ ︷︷ ︸

L

dx =

s∫

s0

1
︸︷︷︸

L

ds

Lagranžián sa v prirodzenom parametri zjednoduší na L = 1. Rovnica zovšeobecnenej
brachystochróny v prirodzenom parametri bode vyzerať takto:

q′′l + Γl
ijq

′
iq

′
j =

(
q′lq

′
k − T−1

lk

)
∂qk ln

√
E − U (3.12)

Posledný člen z rovnice (3.11) vypadol, lebo L̇ = 0.

Nakoniec by nebolo odveci overiť našu rovnicu (3.11) na jednoduchom príklade, pre
ktorý je výhodnejšie použiť všeobecný parameter.
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3.4 Kanónom na vrabce

3.4.1 Klasická brachystochróna z podkapitoly 2.1.1

V euklidovej rovine s klasickou euklidovskou metrikou je metrický tenzor rovný krone-
kerovej delte gij = δij a tenzor kinetickej energie Tij = 1

2
mδij .

Zvoľme si súradnice tak ako sa patrí
{

q1 = x
q2 = y

}

.

Parameter nech je x.

V takejto parametrizácii budú derivácie vyzerať takto:
{

q′1 = 1
q′2 = y′

}

.

Poďme sa pozrieť ako budú vyzerať jednotlivé členy v rovnici (3.11)

Christoffelov symbol druhého druhu Γl
ij bude nulový, pretože derivácie v ňom vystu-

pujúce, pôsobiace na kroneker dávajú nuly.
Rýchlosť v homogénnom gravitačnom poli sa vypočíta z rovnice (3.7).

T = E − U = 2(mgh − mgy) = 2mg(h − y)

Pozrime sa na prvý člen na pravej strane rovnice (3.12):

1

2
q′lq

′
k∂qk ln 2mg(h − y) =

1

2
q′l

∂ ln 2mg(h − y)

∂x
︸ ︷︷ ︸

0

+
1

2
q′ly

′∂ ln 2mg(h − y)

∂y
= − y′

2(h − y)
q′l

Nasleduje lagranžián

L =
√

Tijq′iq
′
j =

√
m

2
δijq′iq

′
j =

√
m

2

√

q′21 + q′22 =

√
m

2

√

1 + y′2

Keď už máme lagranžián, upravme ďalší člen

1

2
L2T−1

lk ∂qk ln 2mg(h − y) =
(

1 + y′2
) ∂ ln 2mg(h − y)

2∂ql

Ostal nám už len dekoračný doplnok L̇
L
q′l

L̇

L
q′l =

1

L

d

dx

√

1 + y′2q′l =
1

2L

2y′

L
y′′q′l =

y′y′′

1 + y′2
q′l
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Dajme to všetko dokopy.

• Nech l = 1. Potom rovnica

y′′ =
1 + y′2

2(h − y)
(3.13)

ktorá z toho vzíde by mala predstavovať rovnicu klasickej brachystochróny. Skús-
me, či parametrické rovnice brachystochróny (2.7) riešia rovnicu (3.13)
Najskôr vypočítajme

y′ =
dy

dx
=

dy

dϕ

dx
dϕ

=
sin ϕ

cos ϕ − 1

a

y′′ =
dy′

dx
=

dy′

dϕ

dx
dϕ

=
cos ϕ

R(cos ϕ − 1)3

a teraz dosaďme do (3.13)

cos ϕ

R(cos ϕ − 1)3
=

1 + sin2 ϕ

(cos ϕ−1)2

−2R(cos ϕ − 1)3
=

(cos ϕ − 1)2 + sin2 ϕ

−2R(cos ϕ − 1)3
=

cos ϕ

R(cos ϕ − 1)3

• Zostavme rovnicu pre l = 2

y′′ = − y′2

2(h − y)
+

1 + y′2

2(h − y)
+

y′2y′′

1 + y′′

ktorá sa po krátkej úprave ukáže byť totožná s rovnicou (3.13)

Zistili sme, že klasická brachystochróna je riešením rovnice (3.11)
Takto sme na jednoduchom príklade overili diferenciálnu rovnicu zovšeobecnenej bra-
chystochróny.
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Kapitola 4

Základy variačného počtu

4.1 Nutná podmienka pre extremálu

Budeme sa zaoberať varírovaním špeciálnej funkcie F (x, y, y′)

Definícia 1 Nech B je množina funkcií.
Zobrazenie F [y] : B 7→ R nazývame funkcionálom na množine B.

Definícia 2 y ∈
⋆

C2 < a, b >⇔ y, y′, y′′ sú spojité na intervale < a, b > a y(a) =
A, y(b) = B

Definícia 3 Na množine
⋆

C2 < a, b > je definovaná metrika ̺ tak, že ∀u(x), v(x) ∈
⋆

C2 < a, b > platí:
̺(u, v) = max

x∈<a,b>
|u − v| + max

x∈<a,b>
|u′ − v′|

Definícia 4

Oε[y(x)] :=

{

u(x) ∈
⋆

C2 < a, b >: ̺(u(x), y(x)) < ε

}

Definícia 5 Funkciu y(x) nazývame relatívnym maximom funkcionálu F [y] práve vte-
dy, keď:

∃Oε[y] ∀y ∈ Oε[y] : F [y] < F [y]
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Definícia 6 Funkciu y(x) nazývame relatívnym minimom funkcionálu F [y] práve vte-
dy, keď:

∃Oε[y] ∀y ∈ Oε[y] : F [y] > F [y]

Definícia 7 Relatívne maximum resp. minimum funkcionálu F [y] nazývame extremá-
lou funkcionálu.

Veta 1 (Zákládná lemma variačného počtu)

• Nech f(x) je spojitá na intervale < a, b >

• Nech η(x) a η′(x) sú spojité na < a, b > a η(a) = η(b) = 0

• Nech ∀η(x) ∈
⋆

C2 < a, b > :
b∫

a

f(x)η(x)dx = 0

potom f(x) ≡ 0 ∀x ∈< a, b >

Dôkaz 1 Vety 1 (Sporom)
Vetu znegujeme a upravíme podľa schémy: (¬(a ⇒ b))⇔ (a∧ (¬b)). Ukážeme, že nego-
vaná veta neplatí, čiže platí pôvodná veta.
Tak teda, nech f(x) nie je identicky rovná nule. Z toho vyplýva, že ∃x0 ∈< a, b > také,
že f(x0) > 0 (so zápornou f(x) to ide tovnako dobre).
Zo spojitosti vyplýva, že ∃ξ1, ξ2 : f(x) > 0 na < ξ1, ξ2 >

Definujeme funkciu: η(x) =







0 pre x ∈ (a, ξ1)
(x − ξ1)

2(x − ξ2)
2 pre x ∈< ξ1, ξ2 >

0 pre x ∈ (ξ2, b)
η(x) je iste

spojitá na < a, b > a η(a) = η(b) = 0.
Overme spojitosť jej derivácie: η′(x) :

η′(x) =







0 pre x ∈ (a, ξ1)
2(x − ξ1)(x − ξ2)(2x − ξ1 − ξ2) pre x ∈< ξ1, ξ2 >
0 pre x ∈ (ξ2, b)

η′(x) je očividne spo-

jitá na intervale < a, ξ1) ∪ (ξ1, ξ2) ∪ (ξ2, b >
Problémy by mohli nastať v bodoch ξ1,ξ2. Poďme sa teda presvedčiť aj tam je spojitá.
Našou podmienkou spojitosti bude:

lim
x→ξ−

1

η′(x) = lim
x→ξ+

1

η′(x)

To isté musí platiť v bode ξ2.

lim
x→ξ−

1

η′(x) = lim
x→ξ−

1

0 = 0 (4.1)

lim
x→ξ+

1

η′(x) = lim
x→ξ+

1

2(x − ξ1)(x − ξ2)(2x − ξ1 − ξ2) = 0 (4.2)
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Obrázok 4.1: Funkcia eta

Zo (4.1) a (4.2) vyplýva spojitosť η′(x) v bode ξ1

lim
x→ξ−

2

η′(x) = lim
x→ξ−

2

0 = 0 (4.3)

lim
x→ξ+

2

η′(x) = lim
x→ξ+

2

2(x − ξ1)(x − ξ2)(2x − ξ1 − ξ2) = 0 (4.4)

Zo (4.3) a (4.4) vyplýva spojitosť η′(x) v bode ξ2

čiže η(x),η′(x) sú spojité na < a, b >

∀η(x) by malo platiť, že
b∫

a

f(x)η(x)dx = 0

Ale
b∫

a

f(x)(x − ξ1)
2(x − ξ2)

2dx =
ξ2∫

ξ1

f(x)
︸︷︷︸

>0 na <ξ1,ξ2>

(x − ξ1)
2(x − ξ2)

2

︸ ︷︷ ︸

>0 na <ξ1,ξ2>
︸ ︷︷ ︸

>0 na <ξ1,ξ2>

dx > 0

To je spor. Týmto je veta dokázaná.
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Veta 2 Nutná podmienka pre extremálu funkcionálu.

Nutnou podmienkou k tomu, aby funkcia y(x) ∈
⋆

C2 < a, b >,spĺňajúca okrajové pod-
mienky y(a) = A, y(b) = B, bola extremálou funkcionálu

J [y] =

b∫

a

F (x, y(x), y′(x))dx

je podmienka, že y(x) musí byť riešením Eulerovej diferenciálnej rovnice:

d

dx

∂F

∂y′
− ∂F

∂y
= 0

Dôkaz 2 Nutnej podnienky.
Budeme predpokladať, že: F ,∂F

∂x
,∂F

∂y
, ∂F
∂y′ ,∂2F

∂x2 ,∂2F
∂y

,∂2F
∂y′ , ∂2F

∂x∂y
, ∂2F
∂x∂y′ , ∂2F

∂y∂y′ sú spojité a y(x) ∈
⋆

C2 < a, b > y′ je minimom funkcionálu J [y] ⇔ ∃Oε[y] ∀y ∈ Oε[y] : J [y] ≤ J [y]
Definujme si množinu prípustných funkcií y(x, α) = y(x) + α η(x)
Funkcia η(x) je spojitá, má spojitú prvú deriváciu na intervale < a, b > a spĺňa okra-
jové podmienky: η(a) = η(b) = 0
Nech y(x, α) patrí ε-okoliu y
Aké obmedzenie z toho plynie pre parameter α?

̺(y, y + α η) = max
x∈<a,b>

|y + α η| + max
x∈<a,b>

|y′ + αη′ − y′| =

= |α|
[

max
x∈<a,b>

|η(x)| + max
x∈<a,b>

|η′(x)|
]

︸ ︷︷ ︸

M

< ε

A teda:
− ε

M
< α <

ε

M

Pre každú zvolenú funkciu η(x) sa dá nájsť príslušné α.
Fixujme teraz η(x).

V ε-okolí extremály platí: J [α] =
b∫

a

F (x, y + α η, y′ + α η′)dx

Namiesto funkcionálu máme zrazu obyčajnú funkciu premennej α.
Táto funkcia má zrejme v bode α = 0 lokálne minimum.
Ak chcem použiť nutnú podmienku existencie lokálneho extrému funkcie, musím doká-
zať, že F [α] je diferencovateľná v premennej α.
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Funkcia je diferencovateľná v nejakom bode práve vtedy, keď v tomto bode existuje de-
rivácia. Poďme sa presvedčiť:

dJ [α]

dα
=

b∫

a

dF (x,

y
︷ ︸︸ ︷

y + α η,

y′

︷ ︸︸ ︷

y′ + α η′)

dα
dx =

b∫

a

∂F

∂y
η +

∂F

∂y′
η′dx

V bode α = 0 je:

dJ [α]

dα

∣
∣
∣
∣
α=0

=

b∫

a

∂F

∂y
η +

∂F

∂y′ η
′dx

Posledný integrál určite existuje, pretože všetky funkcie za integračným znakom sú podľa
predpokladov spojité.

F [α] je teda diferencovateľná a má lokálne minimum v bode α = 0 ⇒ dJ [α]
dα

∣
∣
∣
α=0

= 0

0 =
dF [α]

dα

∣
∣
∣
∣
α=0

=

b∫

a

∂F

∂y
η +

∂F

∂y′ η
′dx =

b∫

a

∂F

∂y
ηdx +

b∫

a

∂F

∂y′ η
′dx =

=

b∫

a

∂F

∂y
ηdx +

∂F

∂y′ η

∣
∣
∣
∣

x=b

x=a
︸ ︷︷ ︸

0

−
b∫

a

d

dx

(
∂F

∂y′

)

ηdx =

=

b∫

a

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

︸ ︷︷ ︸

f(x)

η(x)dx

Podľa základnej lemmy f(x) ≡ 0 .
Tým je dôkaz hotový.
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4.2 Špeciálne zjednodušenia Eulerovej rovnice

4.2.1 Prvý Eulerov integrál

Aká bude podmienka extremály pre funkciu F (y, y′, x), v ktorej sa nevyskytuje y? Na-
píšme Eulerovu rovnicu.

d

dx

∂F (y′, x)

∂y′
− ∂F (y′, x)

∂y
︸ ︷︷ ︸

0

= 0

Ak sa však derivácia niečoho rovná nule, potom to niečo je konštanta.

∂F

∂y′
= konst (4.5)

Ak namiesto Eulerovej rovnice vezmeme Lagrangeovu rovnicu, výraz (4.5) predstavuje
zákon zachovania zovšeobecnenej hybnosti k jednej zovšeovecnenej súradnici konfigu-
račného priestoru.

4.2.2 Druhý Eulerov integrál

Ak sa vo „varírovaniachtivej“ funkcii F (y, y′, x) explicitne nevyskytuje x, diferenciálna
rovnica, z ktorej vylezie extremála vyzerá takto:

y′∂F

∂y′
− F = konst (4.6)

Pokúsme sa ju odvodiť.
Zderivujme funkciu F (y, y′) podľa x.

dF (y, y′)

dx
=

∂F

∂y′

∂y′

∂x
+

∂F

∂y

∂y

∂x
=

∂F

∂y′
y′′ +

∂F

∂y
y′ =

=
d

dx

(
∂F

∂y′
y′

)

− d

dx

∂F

y′
y′ +

∂F

∂y
y′ =

=
d

dx

(
∂F

∂y′
y′

)

−
(

d

dx

∂F

y′
+

∂F

∂y

)

︸ ︷︷ ︸

0

y′ =
d

dx

(
∂F

∂y′
y′

)

Dajme derivácie na jednu stranu.
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d

dx

(
∂F

∂y′
y′

)

− dF

dx
=

d

dx

(
∂F

∂y′
y′ − F

)

= 0

Výraz v zátvorke je určite konštanta.
Náš špeciálny prípad teda vyzerá takto:

∂F

∂y′
y′ − F = konst

Na pôde lagranžiánov nezávislých od času rovnica predstavuje zákon zachovania ener-
gie.
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Záver

V tejto práci sme sa venovali výpočtom súvisiacim so zovšeobecnenou brachystoch-
rónou. Tento pojem zaviedli Okudaira a kol. v prácach, ktoré vyšetrovali istý extrema-
lizačný problém v kvantovej mechanike. Podobne ako obyčajná brachystochróna má
minimalizovať čas, za ktorý sa guľôčka zošmykne z bodu A do bodu B (v obyčajnom
priestore) pod vplyvom gravitačného poľa, zovšeobecnená brachystochróna je krivka
na všeobecnej n-rozmernej riemannovskej variete, ktorá minimalizuje čas prechodu z A
do B pod vplyvom všeobecnej potenciálovej sily. V spomínanej práci síce možno nájsť
výslednú diferenciálnu rovnicu (v prirodzenom parametri na krivke), nie je tam však
jej odvodenie. Cieľom tejto práce bolo túto rovnicu odvodiť (a tým potvrdiť, že vyzerá
naozaj tak, ako je v spomínaných prácach prezentovaná. To sa podarilo urobiť, v tretej
kapitole podrobne opisujeme, ako sa dá táto rovnica odvodiť a tiež ukazujeme, ako by
sa zmenila (skomplikovala), keby sa zapísala cez všeobecný parameter namiesto priro-
dzeného. Výslednú rovnicu so všeobecným parametrom spätne testujeme na pôvodnej
klasickej úlohe, kde sa ako parameter berie súradnica x (či vtedy vedie na cykloidu;
ukazuje sa, že vedie).

Táto práca by mohla pokračovať skúšaním vyriešenia základných rovníc v nejakej
novej situácii, k čome sme sa už nedostali (a nebude to zrejme veľmi jednoduché).
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