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Cieľ: V učebniciach sa bežne počíta Berryho fáza pre spin ½ v magnetickom
poli, ktoré koná veľmi pomalý rotačný pohyb okolo fixnej osi. Toto sa
dá skomplikovať (a potom aj zrátať) na spin s v stave m v takom istom
magnetickom poli (pôvodná úloha má s=m=½).
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Anotácia: Majme kvantovo-mechanickú sústavu, ktorej hamiltonián obsahuje nejaké
parametre, napríklad vonkajšie magnetické pole. Ak sa tieto parametre
nemenia, riešime bezčasovú Schrödingerovu rovnicu, t.j. nájdeme vlastné
vektory príslušného hamiltoniánu atď. Ak sa tieto parametre menia, ale veľmi
pomaly (adiabaticky), už to, prísne vzaté, nie je bezčasový prípad. Pomalosť
zmeny parametrov však umožňuje usudzovať takto: keby sme vedeli riešenia
(vlastné stavy a ich energie) bezčasovej Schrödingerovej rovnice postupne
pre všetky hodnoty parametrov, cez ktoré pri svojom (veľmi pomalom) vývoji
prechádzajú, časový vývoj sústavy by zrejme spočíval v tom, že by sa postupne
darwinovsky prispôsobovala novým hodnotám parametrov. Špeciálne ak by
začala v n-tom stacionárnom stave pôvodného hamiltoniánu, zostávala by stále
v n-tom stacionárnom stave, ale vždy momentálneho hamiltoniánu. Týmto sa
zaoberá adiabatická veta v kvantovej mechanike a v podstate tvrdí, že to tak
(s istou presnosťou) je.
Vektor prislúchajúci stavu je však v kvantovej mechanike daný len s presnosťou
na fázový faktor. A výber fázového faktora sa dá (v uvažovanom n-tom stave)
urobiť pre každú hodnotu parametrov zvlášť. Tak urobíme. Zaujímavá situácia
teraz nastane, keď je vývoj parametrov cyklický, t.j. keď sa po istom (veľmi
dlhom) čase ich hodnota vráti k hodnote, ktorú mali na začiatku. Výber fázy
v tomto koncovom bode už totiž nie je ľubovoľný, lebo (pre tých, čo nedávali
pozor pripomíname, že) sa už urobil v čase, keď sa tento koncový bod ešte volal
začiatočný. To umožňuje porovnať fázu n-tého stavu na začiatku a na konci
a vysloviť výrok, k akej fázovej zmene došlo počas uvažovaného cyklu.
Toto sa vedelo dávno a ľudia sa jej výpočte obmedzovali na časť, dnes zvanú
dynamická fáza.
Až pokým si Michael Berry v roku 1984 neuvedomil, že ten výpočet bol
doteraz vždy tak trochu odfláknutý, zameditoval, sústredil sa viac a zistil, že
tam pristupuje navyše ešte tzv. geometrická fáza, ktorá sa, ako naznačuje názov
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mechaniky. A z Michaela Berryho sa stal Sir Michael Berry.
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Crucial object of this thesis is the Berry’s phase. If we consider quantum Hamil-
tonian with external parameters (such as magnetic field), that varies in time, we can
solve the time-dependent Schrödinger equation for arbitrary n-th stationary state of
the Hamiltonian. In this case, one does not garuantee, that the final state will be the
n-th stationary state too. However, if we assume, that the change of parameters will
be done very slowly (adiabatically), thanks to the adiabatic theorem we stay forever in
the n-th stationary state, if we started in it. This state (as every state in quantum me-
chanics) is given up to a phase factor. If we choose this factor and then change external
parameters cyclically (e.g. their values return after a long time to the initial values),
the state gets an extra phase consisting of the well-known dynamical phase and a new
geometric phase, that is the Berry phase. In our thesis, we compute the Berry phase
for spin s in state m in magnetic field in various ways (following the Berry’s original
paper from 1984, using differential geometry for particular cases s = 0, 1/2, 1, rotating
eigenstates of general spin operator ŝ, coupling spins and using canonical 1-form on
SU(2)).

Keywords: geometric phase, connection 1-form, curvature 2-form, spin, rotation,
canonical 1-form

v



Abstrakt

Autor : Samuel Beznák
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Kľúčovým objektom predkladanej práce je Beryho fáza. Uvažujme Hamiltonián s
vonkaǰśımi parametrami (ako je napr. magnetické pole), ktoré sa menia v čase. Potom
vieme vyriešǐt časovú Schrödingerovu rovnicu pre n-tý stacionárny stav Hamiltoniánu.
Nemáme ale zaručené, že výsledný stav bude taktiež n-tým stacionárnym stavom. Ak
však budeme predpokladať, že parametre sa budú menǐt vělmi pomaly (adiabaticky),
vďaka platnosti adiabatickej teorémy ostaneme navždy v n-tom stacionárnom stave, ak
sme v ňom začali. Tento stav (tak, ako každý kvantovo-mechanický stav) je daný až na
fázu. Vyberme teda na začiatku nejakú fázu. Ak teraz zmeńıme vonkaǰsie parametre
cyklicky (t.j. po vělmi dlhom čase sa ich hodnoty vrátia k východiskovým hodnotám),
tak samotný stav źıska fázový faktor pozostávajúci zo známej dynamickej fázy a z novej
geometrickej fázy, ktorá je Berryho fázou. V našej práci vypoč́ıtame Berryho fázu pre
spin s v stave m v magnetickom poli rôznymi spôsobmi (postupujúc poďla Berryho
originálneho článku z roku 1984, využ́ıvajúc diferenciálnu geometriu v konkrétnych
pŕıpadoch spinu s = 0, 1/2, 1, rotovańım vlastných stavov všeobecného operátora spinu
ŝ, skladańım spinov a nakoniec za pomoci kanonickej 1-formy na SU(2)).

Kľúčové slová: geometrická fáza, 1-forma konexie, 2-forma krivosti, spin, rotácia,
kanonická 1-forma
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Preface

If there would be someone, who would like to count, how many problems in physics
there are, he could probably not manage to do this in his entire life. However, there
are classes of problems, that have the same mathematical concept and physical basis.
That means, if we understand this concept in one situation, we can solve it there and
then the other situations from this class are allready solved for free (that could spare
his time).1

With no doubt, holonomy as a basic property of space is such a class, involving
plenty of beautiful and fascinating situations, where the holonomy comes to the game
(especially when the space is curved). One of them is the Berry phase being a relatively
new object (discovered in 1984 by Sir Michael Berry) in quantum theory.

The topic about the Berry phase is twice as interesting, because we will play with
exponential factors- the Berry phase itself is in exponent of such a factor (strong con-
nection to gauge transformations - another class of important physical situations). We
will palpate rotations in space of quantum states (mediated by angular momentum
operators - yet another wide class) ... We could continue in this spirit and cause, that
this preface woul be infinite, because one can barely imagine, how many insights for
one topic there are.

That is why, in my opinion, this topic is worth studying- it offers us to associate
(seemingly distant) theoretical fields. It brings us the possibility to use one theoretical
concept to prove a statement written in the language of another concept. And I
personally think, that this is beauty of physics - everything is related to everything.
Let us therefore learn something about this challenging, but yet fascinating topic!

1Let us give an example from secondary school:
Standard oscillation of a spring (mass m and spring constant k) can be characterised by its undamped

resonant frequency fspring = 1
2π

√
k
m . This formula comes from the fact, that when we displace the

spring (of mass m) from its equilibrium position by x, the spring shows us its will to come back to
its equilibrium position by the restoring force proportional to this displacement against its direction,
~F = −k~x. Using this result, we can now solve any problem, where the restoring force of some action
(after the object is being displaced) is proportional to this displacement with a minus sign. The only
thing we have to do, is to find the corresponding ”mass” and ”spring constant” of this system, even
though we deal with problems without springs - for example series RLC circuit, where the ”mass” is

its inductance L and the ”spring constant” is the inverse capacitance 1/C, so fRLC = 1
2π

√
1
LC .
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Introduction

The aim of this thesis is to present the Berry’s phase in its beauty seen from many
points of view. We will strictly deal with theoretical concepts of this phenomenon. You
can object to this decision, but the reason is simple: even the situation of spin s in
magnetic field (being only a particular choice of the external parameter of system) can
be seen from such a bunch of approaches, that it is wise to dedicate the whole thesis
to this single case.

In order to capture the context of giving birth to the phase, we will start with a
chapter about holonomy, because the Berrys’ one is only a ”special case”. However,
aim of this part is not to give the reader an exhaustive explanation of holonomy with
formulae from differential geometry2. We only want to give motivation and to activate
reflexes, that should our reader has, when we say something, that is the reader familiar
with.

Next chapter is dedicated to the original approach to the Berry’s phase, that Sir
Michael Berry underwent to obtain the result3. We will follow his way to get formula for
geometric phase for an adiabatic procces, when an external parameter of the examined
system closes a loop in a parametric space (it may seem a bit incomprehensible now,
but everything will explained later). In addition, we will see, how Berry computed his

phase for a spin s in magnetic field ~B.
At the same time, we will think of other possible formulations of this problem - we

will try to implement differential geometry. To this purpose, a brief summarisation of
basic concepts of differential geometry is needed. Consequently, when reading second
chapter again, we will rewrite formulae in the differential-geometric language. This all
will be done in chapter 3.

Fourth chapter will present computations of the phase for particular (small) values
of spin s in magnetic field. We will start with spin s = 1/2 and then continue to spins
s = 0, 1. The reason is, that we can (thanks to addition of angular momenta) check
results for s = 0, 1 using the result for s = 1/2. On this occation, we will sketch the
procedure of spin coupling as well.

To move on, the aim of the next chapter is to prove the result for the Berry’s phase
using methods introduced when dealing with particular situations. First part will
describe rotations of spin- eigenstates and consecutive computations and manipulations
with these states. Second part is based on spin coupling itself. However, this concept
is a bit too serious- that is why we will only sketch the idea.

The last chapter is dedicated to yet another approach. We will implement group
theory to our problem and then use the canonical 1-form as a crucial object to prove
the Berry’s result for the last time.

In the whole thesis, we abandon explicit citation of every single equation, that can
be found in the literature. We will, however, give the reader information about this
literature, that we follow computations from. In many situation, masses of articles

2You can find this kind of information in chapter 15 in [8].
3According to the spirit of this concept, where the original approach is treated as the first and then

another approaches (not mentioned in the original paper from 1984) as the second, we named chapters
in a bit provocative way. We do not claim, that Sir Berry was not aware of the physics described in
them - we would only like to lighten the whole thesis, that is sometimes a bit demanding.
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describe the same object in a similar way (for example Wigner matrices, that will be
used in 5.1). In these cases, we will give the appropriate piece of information only in
a passive way - not studying whether the sources vary from each other. We will, of
course, bibliograph there sources in References. This decision stems from the hope,
that it can make the whole text more fluent and coherent.

This thesis should be understandable to students of the third classes of bache-
lor study in physics. We take therefore basic knowledge in quantum mechanics for
granted4. However, from the third chapter on, differential geometry is used. Even
though we explain its fundamental concepts, without proper understanding it would
be difficult to follow our steps. Therefore a basic knowledge in differential geometry
is appreciated, or better necessary. Moreover, in the last chapter we use differential
geometry on Lie groups. That is why it would be desirable to have knowledge in this
theoretical field too.

At this point, nothing constrains us from undertaking an adventurous journey into
the world of theoretical physics. Let us go!

4Lectures on quantum mechanics can be found in [16] and [17], where in [17], R. Shankar provides
us with a lot of practical applications of explained theory (Berry’s phase as an example!).
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1 Menu: testing sample of the geometric phase

Before we start serious and sometimes nasty computations about the Berry’s phase,
we would like to say something about holonomy, that is in great connection with the
phase.5 Just imagine you are a member of a team of researchers, whose aim is to
explore the whole Earth. It is natural, that your team wants to be recognizable for
everyone. To gain some inspiration on how to do it, you read a lot of books with
historical content and consequently you suggest to carry a flag. As you came with
this idea, you are assigned to be the colour-bearer. The journey can finally start.

Figure 1: Exploring the Earth (sketch of journey holding
a flag; North pole is to the right) (http://www.quantum-
munich.de/fileadmin/media/media/Aharonov-
Bohm/Parallel-Transport-HiRes.jpg, [quoted 13.5.2015])

Your team starts at
the North pole (see Fig-
ure 1, to the right) and
asks you (for the sake of
perfection) to hold the
flag to the south. You
want to explore changes
in vegetation, settle-
ment etc. in depen-
dence on geographical
latitude. That is why
your team walks to the
south- you walk down
the meridian. Walking

in every moment forth, directly and straight you come to the equator (flag faces still
south). The next goal is to investigate mentioned properties in dependence on geo-
graphical longitude. It is clear, that you traverse along the equator. In order to be a
perfect colour-bearer, you do not change the direction (!) of the flag. If you are done
with this part of investigation (flag still to the south), you want to come back to the
North pole, where your base camp is. As you come there, something is weird- as you
hit for the journey, you held the flag in different direction! Your team accuses you of
incorrect flag holding, but you persuade them, you were the whole time rigorous. How
is it then possible?

The answer lies in geometrical properties of the space you walked on. Namely, one
aspect is importat- the curvature of the space. To sum it up, if you walk on a surface,
that has non-zero curvature, vectors (sympolized by the flag pointing everytime to the
south) can change their direction by walking down an enclosed circuit, even though you
held the flag directly (transferred the vector in a parallel way). In contrast, surfaces
with zero curvature (Figure 1, to the left) cause no change of vector’s direction. The
described phenomenon is called holonomy. It depends on the curvature of the surface,
of the way you transport the vectors (is encoded in connetion) and, of course, on the
shape of the circuit enclosed on this surface.

Even though this concept is perfectly imaginable and after introduction of some
mathematical topics easily computable too, its consequences in physics are far beyond
any attempt of imagination. For example, if we replace the flag by a spin and the walk
round the Earth by an enclosed cirtuit in magnetic field, we get the Berry’s phase for
a spin in magnetic field. That would be the aim of our thesis, so let us do it properly!

5In order to quicken your imagination, because the concept of the Berry’s phase is a bit abstract.
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2 How Sir Berry approached his phase?

In this paragraph, we will reconstruct the way Berry did to his famous phase6. We will
use standard bra-ket notation to derive a general formula for an extra phase factor in
solution of the Schrödinger equation for a system adiabatically changed by an external
parameter (that is the Berry’s phase). Later on, we will compute this phase for a
system with spin in external magnetic field.

2.1 Derivation of the formula

Let us now start with the Hamiltonian Ĥ(~R(t)). Here ~R(t) denotes set of external
parameters of Hamiltonian, that cause Hamiltonian varying with time (magnetic field
~B can be taken as an example of such a parameter). Note, that if system with such
a Hamiltonian undergoes an excursion between t = 0 and t = T , it can be depicted as
a curve ~R = ~R(t) in parametric space. Moreover, if ~R(T ) = ~R(0), then the curve is
closed (from now on, let us name this circuit C).

A state |ψ(t)〉 of the system evolves, of course, in agreement with the Schrödinger
equation as follows

Ĥ(~R(t))|ψ(t)〉 = i ~ ∂t |ψ(t)〉 (2.1)

Taking linearity of the Hamiltonian into account, one can express this solution as a
linear combination of eigenstates of the Hamiltonian operator

|ψ(t)〉 =
∑
n

an(t) |n(~R(t))〉 (2.2)

where
Ĥ(~R(t)) |n(~R(t))〉 = En(~R(t)) |n(~R(t))〉 (2.3)

However, nothing has been said about the relation between eigenstates in different
times. To be more precise - if (2.3) holds for some arbitrary time t0, what does the state
look like in any other time t 6= t0? To answer this, a crucial assumption is needed:
adiabatic approximation. It states, that if the parameters of such a system change
slowly ( = adiabacitally), then the particle will occur in the n-th eigenstate |n(~R(t))〉
of Ĥ(~R(t)) at any time t, if it started in the n-th eigenstate of the initial Ĥ(~R(0)).

To move further, let us try to solve (2.1). We will focus on the initial n-th eigenstate

of system (due to the expansion of state into eigenstates) |ψ(0)〉 = |n(~R(0))〉 and we are
asking, how it will change in time. A naive approach would be taking standard solution

|ψ(t)〉 = e−
i
~
∫ t
0 En(τ)dτ |n(~R(t))〉 (2.4)

where the exponential factor is well-known dynamical phase factor (because of time-
dependence of Hamiltonian). We used the adiabatic approximation- if one starts in

the state |n(~R(0))〉, one comes to the n-th state in different time |n(~R(t))〉, gaining the
only thing it can gain - an extra phase factor.

However, this is not true - if you try to verify correctness of this solution, you come
very quickly to contradiction. Many people tried to fix this problem and Sir Berry

6We will follow the original Berry’s paper from 1984, [3].
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came with an elegant modification. He added an extra phase factor to the solution in
(2.4):

|ψ(t)〉 = ei γn(t) e−
i
~
∫ t
0 En(τ)dτ |n(~R(t))〉 (2.5)

Inserting this ansatz into Schödinger equation one gets:

(
i ~ ∂t − Ĥ(~R(t))

)
|ψ(t)〉 = i~ i γ̇n(t)|ψ(t)〉+ i~

(
− i
~

)(
∂t

∫ t

0

E(τ)dτ

)
|ψ(t)〉

+ i~ eiγn(t) e−
i
~
∫ t
0 En(τ)dτ ∂~R|n(~R(t))〉 · ~̇R(t)− Ĥ(~R(t))|ψ(t)〉

!
= 0 (2.6)

Second term is equal to E(t)|ψ(t)〉, which is to be cancled by the last term (it is
Schödinger equation for |ψ(t)〉). The rest gives as condition on γn(t):

γ̇n(t)|n(~R(t))〉 = i ∂~R|n(~R(t)) · ~̇R(t) (2.7)

and multiplying both sides by 〈n(~R(t))| yields (n-th eigenstate is normalised)

γ̇n(t) = i 〈n(~R(t))| ∂~R |n(~R(t))〉 · d
~R(t)

dt
(2.8)

Finally, integration over a closed loop C gives the birth of the Berry’s phase in the
form

γn(C) =

∮
C

γ̇n(t) dt = i

∮
C

〈n(~R(t))| ∂~R |n(~R(t))〉 · d~R (2.9)

and the solution of (2.1) for the system in the n-th state is

|ψ(t)〉 = eiγn(C) e−
i
~
∫ t
0 En(τ)dτ |ψ(0)〉 (2.10)

Note, that the phase does not depend on how the circuit was travelled, because it is
given by an integral in the space of ~R. Moreover, it cannot be altered by slowing down
the rate of change of parameters.

This result may seem like a pointless shaking with the Schrödinger equation by
forcing the solution to have a special form and then revealing condition for when this
can be done. To disprove this argument, let us do some computation.

It is generally known, that if an extra phase factor comes to the game, we can choose
a new basis (note, that also eigenkets are defined only up to a phase factor) and get
rid of this phase. In this section, we will not compute the time derivative of function
composition n(~R(t)) explicitly, but we will be satisfied by ∂t |n(~R(t))〉 ≡ ∂t |n(t)〉.

Let us therefore start once more from (2.8) and construct a new basis7

|n′(t)〉 = eiχ(t) |n(t)〉 (2.11)

Hence (2.8) is of the form (new basis is normalised too, e.g. 〈n′(t)|n′(t)〉 = 1)

γ̇n(t) = i 〈n′(t)| ∂t |n′(t)〉 = i 〈n(t)| ∂t |n(t)〉 − ∂tχ(t) (2.12)

7We follow the proof from [17], p. 594.
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If we forget the fact, that C is closed loop, then eq. (2.12) can be solved for χ(t), such
that the phase factor in the new basis vanishes. However, we deal with closed one, so
Ĥ(~R(T )) = Ĥ(~R(0)), which yields

γn(C, χ) =

∮
C

i 〈n′(t)| ∂t |n′(t)〉 dt =

∮
C

i 〈n(t)| ∂t |n(t)〉 dt− (χ(T )− χ(0)) (2.13)

Now comes the most important fact - assumption of a single-valued basis (at least for
the region of the closed loop), that is quite natural to request. If we assume, that |n(t)〉
is single-valued, then |n′(t)〉 is single-valued too and so must be the exponential factor
eχ(T )−χ(0) - it should not change the geometric phase factor ei γC . However, this can

be done only if χ(T ) − χ(0)
!

= 2kπ, k ∈ Z, what means, that the function χ(t) is not
arbitrary.

To sum it up, there is no such a change of basis (2.11), that results in eliminating
of the phase factor.

It is great, that we have a closed formula for the Berry’s phase (2.9), but evaluating
the gradient with respect to the external parameter could be awkward. This can be
fixed by using the Stokes theorem. Berry did it for 3 dimensions and so will we do.
The generalization will be done in the next chapter and will be very simple.

γn(C) = i

∮
C

〈n(~R(t))| ∂~R |n(~R(t))〉 · d~R = i

∫∫
int C

(
~∇× 〈n|∇~R n〉

)
· d~S~R (2.14)

where int C stands for the region enclosed by closed curve C and we used the nabla-
notation for gradient of function n(t): ∂~R n(t) ≡ ∇~R n(t).

To move further, ~Vn(~R) ≡ i ~∇×〈n|∇~R n〉 = i 〈∇n| × |∇n〉 (using the Leibnitz rule
and the fact, that ∇× (∇φ) = 0 for a differentiable function φ) and inserting an unity
operator 1̂ =

∑
m |m〉 〈m| gives

~Vn(~R) = i
∑
m

〈∇~R n|m 〉 × 〈m|∇~R n〉 (2.15)

Let us now evaluate ∇~R 〈m |Ĥ(~R)| n〉 in two ways:

∇~R 〈m |Ĥ(~R)| n〉 = En∇~R 〈m | n〉 = En∇~R δmn = 0 (2.16)

= 〈∇~R m|Ĥ(~R)| n〉+ 〈m|∇~R Ĥ(~R)| n〉+ 〈m|Ĥ(~R)|∇~R n〉

Note, that Ĥ(~R) is hermitian- it can acts both to the left and to the right. Moreover,

|n(~R)〉 is orthonormalised, that gives:

∇~R 〈m|n〉 =∇~R δmn = 0

= 〈∇~R m|n〉+ 〈m|∇~R n〉 (2.17)

This all yields
0 = (En − Em) 〈∇~R m| n〉+ 〈m|∇~R Ĥ(~R)| n〉 (2.18)
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Note, that the term m = n in the sum in (2.14) is equal to zero - thanks to (2.16) it
is the cross product of a vector with itself (with extra minus sign). Therefore we can
modify the sum by omitting this term, which is very usefull:

~Vn(~R) = i
∑
m6=n

〈n |∇~R Ĥ|m〉 × 〈m |∇~R Ĥ|n〉
(En − Em)2 (2.19)

There is no need for panic - we are dealing with non-degenrated states8, so the fraction
is always well-defined (I should have mentioned it earlier). Thus we finally come to
the result we were searching for, namely a formula for the Berry’s phase in terms of
gradient of the Hamiltonian itself:

γn(C) =

∫∫
int C

~Vn(~R) · d~S~R = i

∫∫
int C

∑
m6=n

〈n |∇~R Ĥ|m〉 × 〈m |∇~R Ĥ|n〉
(En − Em)2 · d~S~R (2.20)

2.2 Berry’s phase for spin in magnetic field

We mentioned in the introduction to this chapter, as soon as we build up the formula
for the Phase, we will try it for a particle with spin s being in magnetical field ~B. Let
us do it! 9

Hamiltonian of such a system is

Ĥ = ~̂µ · ~̂B (2.21)

where ~̂µ = g q ~
2m
~̂s, g being numerical g-factor, q and m standing for the charge and

mass of particle respectivelly and ~̂s being the spin operator with eigenvalues n ∈
{−s, . . . ,+s} (note, thas s can be integer or half-integer only)10. This implies, that
eigenvalues of Hamiltonian are

En = κ ~nB (2.22)

following the Berry’s notation with κ = g q
2m

.

As we indicated in the previous text, ~B acts as the parameter of parametric space,
that should be changed adiabatically. Therefore

∇~R Ĥ(~R) = ∇ ~B ~̂µ · ~̂B = ~̂µ = κ ~ ~̂s (2.23)

Insterting this expression into (2.20) we get

~Vn( ~B) =
i

B2

∑
m 6=n

〈n, s( ~B)|~̂s|m, s( ~B)〉 × 〈m, s( ~B)|~̂s|n, s( ~B)〉
(m− n)2

(2.24)

8Here could be an extensive discussion about what should we do, if the Hamiltonian had a de-
generated spectrum. The approach could be even more advanced, if we would forget about adiabatic
approximation. However, this is not aim of our thesis. You can find the appropriate information for
example in the original Berry’s paper [3]. Moreover, we can abandon the Abelian gauge (concept,
where the Lagrangian of the system remains invariant after action of some continous group of local
transformations). This is an advanced topic, that can be found in [10] for example.

9If there is anyone who objects to this union, please speak now or forever hold your peace.
10In this section, we will use n instead of m, which stands for the mass of the particle. In other

sections we will return to the standard notation, where the spinor state is denoted |s,m〉.
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The only thing, we need to know, is the matrix element 〈n, s( ~B) | ~̂s |m, s( ~B)〉. A

standard way to do this is to rotate the axes so that ~B = (0, 0, B) (e.g. z-axis into

direction of ~B). Then acting of operators ŝ+, ŝ−, ŝz is known from the basic course of
quantum mechanics:

ŝ+|n, s〉 = (ŝx + iŝy) |n, s〉 =
√
s(s+ 1)− n(n+ 1) |n+ 1, s〉 = C+

n |n+ 1, s〉
ŝ−|n, s〉 = (ŝx − iŝy) |n, s〉 =

√
s(s+ 1)− n(n− 1) |n− 1, s〉 = C−n |n− 1, s〉

ŝz |n, s〉 = n |n, s〉 (2.25)

We can see, that only a few of the matrix elements are non-zero: 〈n+ 1, s | ŝ+| n, s〉,
〈n− 1, s | ŝ−| n, s〉 and 〈n, s| ŝz | n, s〉. Note, that x- and y- component of the result is
directly zero. The cross product results in product of matrix elements of ŝz with s±.
This is always zero, because ich we try to get non-zero element of ŝ±, then m = n± 1,
but the matrix of ŝz is diagonal, and therefore 〈n+1, s| ŝz|n, s〉 = 0. The only surviving

component of the ~Vn( ~B) is the z- axial one. On this purpose, let us write

〈n± 1, s( ~B)|ŝx|n, s( ~B)〉 = 〈n± 1, s( ~B)|
(
ŝ+ + ŝ−

2

)
|n, s( ~B)〉 =

=
1

2

√
s(s+ 1)− n(n± 1)

〈n± 1, s( ~B)|ŝy|n, s( ~B)〉 = 〈n± 1, s( ~B)|
(
ŝ+ − ŝ−

2i

)
|n, s( ~B)〉 =

=∓ i

2

√
s(s+ 1)− n(n± 1) (2.26)

and then finally

(Vn)z =
i

B2

∑
m 6=n

〈n, s( ~B)|ŝx|m, s( ~B)〉〈m, s( ~B)|ŝy|n, s( ~B)〉
(m− n)2

− i

B2

∑
m 6=n

〈n, s( ~B)|ŝy|m, s( ~B)〉〈m, s( ~B)|ŝx|n, s( ~B)〉
(m− n)2

(2.27)

From the whole sum only term with m = n ± 1 is non-zero (we used the same
argument at (2.24)). Hence we get the result

(Vn)z =
i

B2
(〈n | ŝx| n+ 1〉〈n+ 1 | ŝy| n〉 − 〈n | ŝy| n+ 1〉〈n+ 1 | ŝx| n〉+

+ 〈n | ŝx| n− 1〉〈n− 1 | ŝy| n〉 − 〈n | ŝy| n− 1〉〈n− 1 | ŝx| n〉) =

=
1

2B2

(
C−n+1C

+
n − C+

n−1C
−
n

)
=

=
1

2B2
((s+ n+ 1)(s− n)− (s+ n)(s− n+ 1)) =

=
n

B2
(2.28)

Coming back to our original basis, we simply obtain

~Vn( ~B) =
n~B

B3
(2.29)
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and we can finally compute the Berry’s phase for a particle with spin s in the state n
in magnetic field ~B according to (2.19):

γn(C) = −
∫∫
int C

~Vn(~R) · d~S~R = −n
∫∫
int C

~B · d~S ~B
B3

= −n
∫∫
int C

dΩ (2.30)

that is flux of a magnetic monopole living at the origin of the parametric space (mul-
tiplied by −n). The integral can be done and its result is

γn(C) = −n ΩC (2.31)

where ΩC stands for the solid angle, that is cut off by the circuit C at the origin of the
coordinate system. Note, that the phase depends only on the projection of spin along
the ~B- direction. Moreover, we can produce any phase change by travelling along a
suitable loop in the B- space.

To close this discourse about the Berry’s original approach to his phase, let us
give some elementary examples. For instance, taking fermions (that have half-integer
spin) and slowly making whole turn with the magnetic field the state gains a phase
eiγn(C) = e−i

n
2

2π = −1. That is a proof, that spinors of an electron become an extra
phase of −1 when being rotated by 2π. In contrast, bosons (integer spin) does not get

any phase by rotating about any axis. If we vary ~B round a cone of semiangle θ, its
solid angle is Ω = 2π (1 − cos θ), so taking θ = 60◦ results in a change of the sign of
the bosonic state from + to −.
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3 Caution: Differential geometry detected!

A short chapter is insterted between the original Berry’s approach to his phase and our
differential geometric one. We will (imaginary) read the previous section again and try
to uncover as many differential terms as possible and then rewrite the most important
formulae in the language of differential geometry, that turns up to be very benefitial.

This section, however, does not stand as a replacement of a proper course of differ-
ential geometry. It is only a brief reminder of those concepts from the course, that we
will use later11.

3.1 Basic concepts of differential geometry

First of all, let us define some basic concepts of differential geometry, we will use in
the following section. We will try to give a precise mathematical definition of the term
and then a short explanation, ”what does it actually do”. Crucial terms are p-form,
wedge product, differential form and exterior derivative.

We will start with so-called p-form. A tensor α ∈ T 0
p (L) is a p-form if it is skew-

symmetric in each pair of indices, e.g. for any two vectors v, w ∈ L one has

α(. . . , v, . . . , w, . . .) = −α(. . . , w, . . . , v, . . .) (3.1)

Here T 0
p (L) stands for the space of tensors of the type

(
0
p

)
over a linear space L. Defi-

nition (3.1) makes no sence for p < 2. Therefore, let us define Λ0L∗ = T 0
0 (L) ≡ R and

Λ1L∗ = T 0
1 (L) ≡ L∗, where L∗ has the meaning of a dual space to L (in other words,

0-forms are real numbers and 1-forms are covectors). Additionally, set of such p-forms
will be denoted as ΛpL∗. Note, that if dim L = n, then dim ΛpL∗ =

(
n
p

)
.

Next step would be definition of so-called wedge product. The idea of it is to make
a (p+ q)-form from p- and q-forms. Naive guess would be tensor product, that makes
a tensor of rank (p + q) from two tensors of rank p- and q respectivelly. However, the
result does not need to be skew-symmetric. To fix this, let us introduce an antisymetric
projection operator:

πA : T 0
p (L)→ ΛpL∗ ⊂ T 0

p (L) (3.2)

Thanks to this projector (πA ◦ πA = πA) we can define a new form as an exterior
(wedge) product of two forms (α ∈ ΛpL∗, β ∈ ΛqL∗):

∧ : ΛpL∗ × ΛqL∗ → Λp+qL∗

α ∧ β :=
(p+ q)!

p! q!
πA(α⊗ β) (3.3)

For practical use of the wedge product, one only has to know, that it is bilinear,
asociative, Z-graded commutative (e.g. α ∧ β = (−1)pqβ ∧ α) and skew-symmetric
(that means α ∧ α = 0 for any α). The last piece of information about p-form is its
decomposition into wedge product of base 1-forms (ea etc.)12

α =
1

p!
αa...b e

a ∧ · · · ∧ eb (3.4)

11We will follow an excellent book by M. Fecko, [8] - chapters 5 - 8
12Einstein’s summation convention is used.
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We can now define a special p-form in n-dimensional L - the metric volume form.
Recall, that dim ΛpL∗ =

(
n
p

)
. For p = n we get an 1-dimensional space of n-forms.

When we choose a base, then the most general n-form ω is ω = λ e1 ∧ · · · ∧ en. It
can be shown, that if we fix this only parameter (λ) by defining the value of the form
for some basis, then it is defined for any other basis automatically. The most natural
choise is the orthonormalised euclidian basis and then

ω = e1 ∧ · · · ∧ en (3.5)

Note, that its skew-symmetry (and the fact, that it is a tensor of type
(

0
n

)
) reminds

us of a definition for volume of parallelotope stretched on vectors ei. For the euclidian
basis the volume of such a parallelotope is 1. That is why we name this n-form the
volume form.

In a general basis f i we get (g being the metric tensor and o being orientation,
o(f) = ±1 for right- and left-handed basis respectivelly)

ωg = o(f)
√
|det g(fa, fb)| f 1 ∧ · · · ∧ fn (3.6)

Some geometry has been introduced, but it has not been differential yet. Let us
retrieve it. If we transport all previous concepts to a manifold M (by constructing a
tangent space in every point P ∈ M , where live vectors v ∈ L and covectors α ∈ L∗,
what imediatelly makes tensors live there too13), we get differential forms. Namely, in
region O equipped by local coordinates xi one has for vectors a coordinate basis ∂i,
then covector basis is a dual conjugate dxi and a p-form is of the form

α =
1

p!
αi...j(x) dxi ∧ · · · ∧ dxj︸ ︷︷ ︸

p− terms

(3.7)

Note, that space of p-forms is denoted as Ωp(M).
Additionally, if we have metric g on M , then the metric volume form on M is (o

stands again for orientation)

ωg = o(x)
√
|det(gij(x))| dx1 ∧ · · · ∧ dxn (3.8)

For example, the volume form on sphere (of radius R) S2 ⊂ E3 is ωg = R2 sin ϑ dϑ∧dϕ,
that will be crucial for us later on. The most important thing about the volume form
is, that its integral over a region D ⊂M gives exactly the volume of such a region:

vol(D) =

∫
D

ωg (3.9)

Everything is ready to introduce a special differential operator acting on differential
p-forms- the exterior derivative. From the name one would naively await, that partial

13For more details, I recommend [8], sections 2.5 and 6.1.
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derivative is sufficient, but it is not- it makes from a p-form an object with p+1 indices,
but it is not a tensor. But if we (again) make the result skew-symmetric in all indices,
we are done - the redundant terms in the result of partial derivative are symmetric in
every pair of indices and thus cancelled by antisymmetrisation:

d : Ωp(M)→ Ωp+1(M)

(dα)i...jk := (−1)p(p+ 1)α[i...j,k] (3.10)

where the symbol t[a...b] = (πAt)a...b := 1
p!

∑
σ(sgnσ) tσ(a,...,b), for σ being a permutation

of indices14 and abbreviated derivative notation is used, e.g. hi,j = ∂jhi.
Again, it is not necessary to master this definition. We only need to know, that

it is linear, nilpotent (dd = 0), it acts on a wedge product like graded Leibnitz rule
(d(α ∧ β) = (dα) ∧ β + (−1)p α ∧ (dβ) for α ∈ Ωp(M)) and for f ∈ Ω0(M) (a function
on M) we have df = grad f = f,i dx

i.

The last thing we need is the Stokes theorem - a central theorem of integral calculus
of differential forms on manifolds. It is a generalisation of the famous statement, that
any circuit integral over closed loop can be transcribed as a surface integral.

The most important observation is, that if we treat subintegrands as p-forms, we
get correct results when transforming to another coordinates.15, that can be written in
an elegant way. Let Φ: (r, ϕ)→ (x, y) be the map from Cartesian to polar coordinates.
Then for any region of integration C∫

Φ(C)

α =

∫
C

Φ∗α (3.11)

that holds not only in two dimensions with this particular map, but for n dimensions
and any (sufficiently smooth) map Φ. That is how differential forms enter the integral
calculus.

Finally, we will introduce the Stokes theorem (without proof or motivation - both
can be found in [8], section 7.5 for instance). For any n-dimensional region D on an
orientable n-dimensional manifold M and for any α ∈ Ωn−1(M) it is true, that∫

D

dα =

∫
∂D

α (3.12)

where ∂D is the exterior boundary of D with its orientation in the direction of the
external normal.

3.2 Berry could make it this way!

After an exhaustive and quite difficult introduction to some basic topics of differen-
tial geometry16 we can finally uncover differential forms in Berry’s computations and
rewrite his statements17.

14For example, t[ab] = 1
2! (tab − tba).

15For example, if dx dy ←→ dx ∧ dy, then change to polar coordinates gives rdr dϕ←→ rdr ∧ dϕ.
16I really feel sorry for that, but it was necessary.
17Sketch of this manipulation can be found in [1].
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From now on, the manifold M will be the parametric space of ~R. Let us now remind
of one property of the exterior derivative - it acts as a gradient on functions (being
0-forms n M). When we now look at the subintegrand in (2.8), we find, that

∂~R|n(~R(t)) 〉 · d~R = d |n(~R(t))〉 (3.13)

so there is directly a 1-form in the definition of the Berry’s phase. Moreover, when we
write

γn(C) = i

∮
∂D

〈n | d | n〉 (3.14)

where ∂D = C is the boundary of region D = int C, we are ready to use the Stokes
theorem:

i

∫
∂D

〈n | d | n〉 = i

∫
D

d(〈n | d | n〉) (3.15)

Using the fact, that d d = 0, we can compute the derivative under the integral (accord-
ing to remarks on how the derivative acts) and write down

γn(C) = i

∫
D

〈d n(~R(t))| ∧ |d n(~R(t))〉 (3.16)

That is how 1-form (Berry’s connection An) and 2-form (Berry’s curvature Ωn) come
into the game of the Berry’s phase:

An(~R) = i 〈n(~R) | d |n(~R)〉 = i 〈n(~R)| ∂i |n(~R)〉 dRi (3.17)

Ωn(~R) = i 〈d n(~R)| ∧ |d n(~R)〉 = i 〈∂i n(~R) | ∂j n(~R)〉 dRi ∧ dRj (3.18)

and then for C = ∂D we have

γn(C) =

∫
∂D

An(~R) =

∫
D

Ωn(~R) (3.19)

The remaining steps to the result for both general expression and for the particle with
spin in magnetic field follow the same ideas as mentioned above. We will not do it,
because we only wanted to show, how the differential geometry enters this topic. In
next sections, we will use it widely to get particular results for particular situations.
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4 Demo version: Particle with spin 1/2, 0 and 1

We are already full of general expressions and we would like to try, how it everything
works in particular situations. The first would be the most frequent example - particle
with spin s = 1

2
(e.g. electron) in external magnetic field. Once we obtain this result,

we can compute Berry’s phase for other spins either directly by computing the Berry’s
curvature or by combination of spins 1

2
.

4.1 Spin 1/2

Let us start with the Hamiltonian of this system according to (2.20), namely

Ĥ = g
q~
2m

~̂s · ~̂B = Ĥ = g
q~
2m

~̂σ

2
· ~̂B (4.1)

where σi are Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(4.2)

all having eigenvalues ±1. Let us set the basis so that ~B = (0, 0, B). Then eigenstates
of such a Hamiltonian are simply | + 1/2〉 =

(
1
0

)
, | − 1/2〉 =

(
0
1

)
with eigenvalues

(energies) ±g q~B
4m

respectively corresponding to the two spin states of such a particle.
When we now rotate the basis back to a general position given by a unit vector ~n =
(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), we get the spin operator in the form

~n · ~σ =

(
cos ϑ sin ϑ e−iϕ

sin ϑ eiϕ − cos ϑ

)
(4.3)

with eigenstates corresponding to the eigenvalues ±1 as follows∣∣∣∣+1

2

〉
=

(
cos ϑ

2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
,

∣∣∣∣−1

2

〉
=

(− sin ϑ
2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
(4.4)

that are the two states we were searching for (for the case n = ±1/2 in notation from
the previous chapter).

To move further, we need to compute the exterior derivative of the state - we simply
differentiate components themselves (Note, that we perform the exterior derivative on
a parametric manifold with coordinates ( = parameters) ϑ, ϕ, so the state itself is a
C2-valued 0-form on the manifold S2, giving birth to 1-form on the same manifold)18 :

d |+〉 =

(
d
(
cos ϑ

2
e−iϕ/2

)
d
(
sin ϑ

2
eiϕ/2

) ) =

(−1
2
e−iϕ/2 sin ϑ

2
1
2
eiϕ/2 cos ϑ

2

)
dϑ+

(− i
2
e−iϕ/2 cos ϑ

2
i
2
eiϕ/2 sin ϑ

2

)
dϕ =

=
1

2
|−〉 dϑ+

i

2

(− cos ϑ
2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
dϕ (4.5a)

d |−〉 =

(
d
(
− sin ϑ

2
e−iϕ/2

)
d
(
cos ϑ

2
eiϕ/2

) ) =

(−1
2
e−iϕ/2 cos ϑ

2

−1
2
eiϕ/2 sin ϑ

2

)
dϑ+

( i
2
e−iϕ/2 sin ϑ

2
i
2
eiϕ/2 cos ϑ

2

)
dϕ

= − 1

2
|+〉 dϑ+

i

2

(
sin ϑ

2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
dϕ (4.5b)

18We will sometimes use the expression spinor instead of state, because in some way we can treat
a n-component vector as a spinor. However, we will not use it in the proper way when concerning
spinor fields, etc. We hope it causes no confusion.
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Hence the Berry’s connection is

A+ = i 〈+| d |+〉 =
i

2
〈+ |−〉 dϑ− 1

2

(
eiϕ/2 cos

ϑ

2
, e−iϕ/2 sin

ϑ

2

)
·
(− cos ϑ

2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
dϕ

= − 1

2

(
− cos2 ϑ

2
+ sin2 ϑ

2

)
dϕ =

1

2
cos ϑ dϕ (4.6a)

A− = i 〈−| d |−〉 = − i
2
〈− |+〉 dϑ− 1

2

(
−eiϕ/2 sin

ϑ

2
, e−iϕ/2 cos

ϑ

2

)
·
(

sin ϑ
2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
dϕ

= − 1

2

(
− sin2 ϑ

2
+ cos2 ϑ

2

)
dϕ = −1

2
cos ϑ dϕ (4.6b)

and finally the Berry’s curvature

Ω+ = dA+ = d

(
1

2
cos ϑdϕ

)
= −1

2
sinϑ dϑ ∧ dϕ = −1

2
ωg (4.7a)

Ω− = dA− = d

(
−1

2
cos ϑdϕ

)
=

1

2
sinϑ dϑ ∧ dϕ = +

1

2
ωg (4.7b)

where according to the 3-rd chapter

ωg = sinϑ dϕ ∧ dϑ (4.8)

is the metric volume form for sphere S2 with radius R = 1, e.g. unit sphere (note,
that spinors of an electron live on such a sphere19 - we used unit vector parametrised
with spherical coordinates when obtaining spin operator in general direction). Then
the Berry’s phase is really what we awaited:

γ+1/2(C) =− 1

2

∫
intC

ωg = −1

2
ΩC (4.9a)

γ−1/2(C) =
1

2

∫
intC

ωg =
1

2
ΩC (4.9b)

where ΩC stands for the solid angle subtended by the C at origin of the unit sphere
S2. Note, that the solid angle hereby defined is exactly the area at the unit sphere
(again substended by the C at its origin). Therefore it is easy to understand, why∫
intC

ωg ≡ ΩC , what acts as a definition, though.

4.2 Spin 0

We will use the same procedure as sketched above. However, there is actually nothing
worth of computing. If we represent a state of particle with spin s by a spinor (n-tuple
of complex numbers, where the k-th one corresponds to the amplitude of probability,
that the particle is in the state defined by the k-th element of basis of space of such
spinors - eigenstate of the spin operator, that gives the k-th eigenvalue), then it is
clear, that n = 2s+ 1. In addition, the spin operator is then represented by a regular

19To be more precise, they live in the whole 3-dimensional parametric space (B, ϑ, ϕ). However,

the dependence on ~B is not present in the connection 1-form (due to computations, that were done -
we can see the B only in formula for energy of these eigenstates), so effectively they really live on the
sphere with unit radius.
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(2s + 1) × (2s + 1) hermitian matrix (for every matrix element i, j : aij = aji, or

equivalently for the matrix A = AT ≡ A†).
Let us now write a condition for our desired state20

ŝ|m〉 = sm|m〉 (4.10)

In case s = 0, the spin operator is represented by 1 × 1 hermitian matrix - a real
number. Note, that every regular matrix gets its eigenvalues onto the diagonal when
diagonalised. That is why our operator is simply ŝ = 0̂ ≡ 0 with any unit complex num-
ber as its eigenstate (do not forget, that it should still be the amplitude of probability).
We choose the form

|0〉 = 1 (4.11)

that is correct (1 · 0 = 0 and it is normalised too). Then the Berry’s connetion is

A0 = i 〈0| d |0〉 = 0 (4.12)

and immediately the Berry’s curvature

Ω0 = dA0 = 0 = −0ωg (4.13)

You can object, that we cheated in this section: what if we chose |0〉 = ei α(ϑ, ϕ)

instead of |0〉 = 1? The answer is simple and holds for any eigenstate |m〉 of any spin
operator ŝ. It is clear, that such a change of phase is mediated by an element of U(1)
group (any element of the group can be written as eiα for arbitrary α ∈ R) and U(1)-
gauge transformation changes only the Berry’s potential, but the curvature is invariant
under this transformation. Let us assume, that the new state is |m′〉 = ei α |m〉. Then

A′ = i〈m′|d|m′〉 = i 〈m|e−i α d
(
ei α|m〉

)
=

= i 〈m|e−i α
(
i ei α|m〉 dα + ei α d|m〉

)
=

= i 〈m|d|m〉 − dα = A− dα (4.14a)

that yields
Ω′ = dA′ = dA− d dα = dA = Ω (4.14b)

because the exterior derivative is nilpotent. This result allows us to forget the extra
phase factor in every single computation, that is to be done in this thesis.

What we do extra in comparison to the previous section, we will combine 1/2-spins
so that they give a state with both total spin s and its z-projection m equal to zero.

Let us now remind of how the mechanism of spin combination works. Denote V1 a
(2s1 + 1)-dimensional vector space with the basis |s1,m1〉, where m1 ∈ {−s1, . . . , s1}
and similarly V2 let be a (2s2 + 1)-dimensional vector space spanned by states |s2,m2〉
for m2 ∈ {−s2, . . . , s2} (with integer gaps between values of both m1, m2 and, of
course, s1, s2 being integer or half-integer). Then tensor product of these spaces is
a (2s1 + 1)(2s2 + 1)-dimensional vector space with uncoupled basis |s1,m1〉 |s2,m2〉 =

20As promised, we returned to the notation, where n stands mostly for the dimension of a vector
space and m is the z-projection of the total spin s.
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|s1,m1〉⊗|s2,m2〉. Operators act on these states like (Â⊗ 1̂)|s1,m1〉 |s2,m2〉 = Â|s1,m1〉
⊗ |s2,m2〉 and (1̂⊗ B̂)|s1,m1〉 |s2,m2〉 = |s1,m1〉⊗ ((B̂|s2,m2〉). In such a vector space
we can write any spin state as a linear combination of basis states with coefficients
being the famous Clebsch- Gordan coefficients:

|s,m〉 =
∑

m1+m2 =m

Cs1 s2 s
m1m2

|s1,m1〉 |s2,m2〉 (4.15)

We will now use the 2-dimensional basis |1/2,m1〉 , |1/2,m2〉 for coupling of two spins
(m1,m2 ∈ {−1/2, 1/2}). This can give as representation of spins s = 0 and s = 1,
when we find the appropriate normalised linear combination.

When checking the result for spin s = 0 (which implies m = 0), we get this only
combination:

|0, 0〉 =
1√
2

(|1/2, 1/2〉|1/2,−1/2〉 − |1/2,−1/2〉|1/2, 1/2〉) =
1√
2

(| ↑↓〉 − | ↓↑)〉

(4.16)
Note, that in the state representation we use the tensor product of two spins is tensor
products of two (2-dimensional) vectors, what means, that we get a 4-dimensional
vector representation of the spin s = 0. Precisely

| ↑↓〉 = | ↑〉 ⊗ | ↓〉 =

(
cos ϑ

2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
⊗
(− sin ϑ

2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
=

(
−1

2
e−iϕ sin ϑ, cos2 ϑ

2
,− sin2 ϑ

2
,
1

2
eiϕ sin ϑ

)T
(4.17a)

| ↓↑〉 = | ↓〉 ⊗ | ↑〉 =

(− sin ϑ
2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
⊗
(

cos ϑ
2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
=

(
−1

2
e−iϕ sin ϑ,− sin2 ϑ

2
, cos2 ϑ

2
,
1

2
eiϕ sin ϑ

)T
(4.17b)

Then from (4.15) we obtain

|0, 0〉 =
1√
2

(0, 1,−1, 0)T (4.18)

Then for calculating A = i 〈0, 0| d |0, 0〉 we need to make the exterior derivative of this
vector, that is immediatelly zero, what implies A = 0, then Ω0 = 0, hence γ0 = 0 and
we are succesfully done.

4.3 Spin 1

Following the procedure once again, we will start from the basis in that ~B = (0, 0, B),
which yields that eigenstates of Hamiltonian are simply |1〉 = (1, 0, 0)T , |0〉 = (0, 1, 0)T

and | − 1〉 = (0, 0, 1)T , because this three are directly the eigenvectors of a 3×3 matrix
sz for spin s = 1, that is sz = diag(1, 0,−1). Rotating back to an arbitrary direction
given by ~n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), we will get the operator of spin in general
position. Its eigenstates would be then our desired states needed for calculation of the
Berry’s phase. Recall therefore the two remaining operators in x− and y− direction:

sx =
1√
2

0 1 0
1 0 1
0 1 0

 , sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 (4.19)
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Then the spin operator in general direction ~̂sn = ~s · ~n is

~̂sn =
1√
2

√2 cos ϑ sin ϑ e−iϕ 0
sin ϑ eiϕ 0 sin ϑ e−iϕ

0 sin ϑ eiϕ −
√

2 cos ϑ

 (4.20)

Finding eigenstates of this matrix is slightly more difficult in comparison to the case
s = 1/2, that indicates serious problem when travelling to the destination called gen-
eral spin. However, this particular subtlety is not to be discussed here.21 Hence the
eigenstates are22

|1〉 =

1+cos ϑ
2

e−iϕ√
2 sin ϑ

2
1−cos ϑ

2
eiϕ

 , |0〉 =

−
√

2 sin ϑ
2

e−iϕ

cosϑ√
2 sin ϑ

2
eiϕ

 , | − 1〉 =

1−cos ϑ
2

e−iϕ

−
√

2 sin ϑ
2

1+cos ϑ
2

eiϕ

 (4.21)

To move further, let us d−te23 them:

d |1〉 =

−i 1+cos ϑ
2

e−iϕ

0
i 1−cos ϑ

2
eiϕ

 dϕ +

− sin ϑ
2
e−iϕ√

2 cos ϑ
2

sin ϑ
2
eiϕ

 dϑ (4.22a)

d |0〉 =

i
√

2 sin ϑ
2

e−iϕ

0

i
√

2 sin ϑ
2

eiϕ

 dϕ +

−
√

2 cos ϑ
2

e−iϕ

− sin ϑ√
2 cos ϑ

2
eiϕ

 dϑ (4.22b)

d | − 1〉 =

−i 1−cos ϑ
2

e−iϕ

0
i 1+cos ϑ

2
eiϕ

 dϕ +

 sin ϑ
2
e−iϕ

−
√

2 cos ϑ
2

− sin ϑ
2
eiϕ

 dϑ (4.22c)

Finally, for example the case m = 1 gives:

A1 = i 〈1| d |1〉 =

= i

(
1 + cos ϑ

2
eiϕ,

√
2 sin ϑ

2
,

1− cos ϑ

2
e−iϕ

)
·

−i 1+cos ϑ
2

e−iϕ

0
i 1−cos ϑ

2
eiϕ

 dϕ+

+ i

(
1 + cos ϑ

2
eiϕ,

√
2 sin ϑ

2
,

1− cos ϑ

2
e−iϕ

)
·

− sin ϑ
2
e−iϕ√

2 cos ϑ
2

sin ϑ
2
eiϕ

 dϑ =

=

((
1 + cos ϑ

2

)2

−
(

1− cos ϑ

2

)2
)
dϕ+ f(ϑ) dϑ =

= cos ϑ dϕ+ f(ϑ) dϑ (4.23)

where the face of f(ϑ) is not important for us, because the last step is d-ting again
to obtain the curvature and this second term of (4.23) then becomes identically zero:
d (f(ϑ)dϑ) = f(ϑ),ϑ dϑ ∧ dϑ = 0. Therefore Ω1 = dA1 = − sin ϑ dϑ ∧ dϕ = −ωg. The
two residual computations are not necessary, because one uncovers nothing new. To
sum up, one really gets Ω0 = 0 = 0ωg and Ω−1 = sinϑ dϑ ∧ dϕ = +ωg.

21We will deal with it in the next chapter.
22Can be found in [2] too.
23... has nothing to do with date, though.
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In the second approach via spin composition, we need to know Clebsch- Gordan
coefficients again. Following (4.15) and steps bellow, we can directly write down all 3
eigenstates as a appropriate composition of two 1/2− spins. Note, that 2 of 3 are trivial,
since m1 +m2 = 1 only if m1 = m2 = 1/2 and m1 +m2 = −1 only if m1 = m2 = −1/2:

|1〉 ≡ |1, 1〉 = |1/2, 1/2〉 |1/2, 1/2〉 = | ↑↑〉 (4.24a)

|0〉 ≡ |1, 0〉 =
1√
2

(|1/2, 1/2〉|1/2,−1/2〉+ |1/2,−1/2〉|1/2, 1/2〉) =

=
1√
2

(| ↑↓〉+ | ↓↑)〉 (4.24b)

| − 1〉 ≡ |1,−1〉 = |1/2,−1/2〉 |1/2,−1/2〉 = | ↓↓〉 (4.24c)

We need to calculate only 2 of them, because the case (4.24b) can be obtained from
(4.17a)- (4.17b) by a sign- swap in (4.16):

|1, 1〉 = | ↑〉 ⊗ | ↑〉 =

(
cos ϑ

2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
⊗
(

cos ϑ
2
e−iϕ/2

sin ϑ
2
eiϕ/2

)
=

=

(
cos2 ϑ

2
e−iϕ,

1

2
sin ϑ,

1

2
sin ϑ, sin2 ϑ

2
eiϕ
)T

(4.25a)

|1, 0〉 =
1√
2

(
−e−iϕ sin ϑ, cos(2ϑ),− cos(2ϑ), eiϕ sin ϑ

)T
(4.25b)

|1,−1〉 = | ↓〉 ⊗ | ↓〉 =

(− sin ϑ
2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
⊗
(− sin ϑ

2
e−iϕ/2

cos ϑ
2
eiϕ/2

)
=

=

(
sin2 ϑ

2
e−iϕ,−1

2
sin ϑ,−1

2
sin ϑ, cos2 ϑ

2
eiϕ
)T

(4.25c)

To move further, we need d−te theese eigenstates. Let us demontrate it on the (4.25c)
case24.

So, let us do some maths25:

A−1 = i 〈↓↓ | d | ↓↓〉 =

= i

(
sin2 ϑ

2
eiϕ,−1

2
sin ϑ,−1

2
sin ϑ, cos2 ϑ

2
e−iϕ

)
·


−i sin2 ϑ

2
e−iϕ

0
0

i cos2 ϑ
2
eiϕ

 dϕ+

+i

(
sin2 ϑ

2
eiϕ,−1

2
sin ϑ,−1

2
sin ϑ, cos2 ϑ

2
e−iϕ

)
·


sin ϑ e−iϕ

−1
2

cosϑ
−1

2
cosϑ

− sin ϑ eiϕ

 dϑ =

=

(
sin4 ϑ

2
− cos4 ϑ

2

)
dϕ+ f(ϑ) dϑ = − cos ϑ dϕ+ f(ϑ) dϑ (4.26)

and eventually Ω−1 = dA−1 = sin ϑ dϑ ∧ dϕ = ωg = −mωg for m = −1.

24In contrast to the previous section, where the |1〉- state was done explicitly.
25Eventually... :)
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To sum this section up, it seems, that both ways of finding the Berry’s curvature26

are straightforward and lead directly to a happy-end. However, in a general case (that
we are on to) is the situation complicated: is it possible to find a closed form for
eigenstates of a spin operator in a general direction? Can one explicitly compute the
tensor product of a general number of s = 1/2 spins? Let us now deal with it properly.

26Or better: proving, that in particular situations it has the form it should have.
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5 Berry would be proud!

5.1 Rotating spins

As we mentioned at the end of the previous section, we would like to deal with eigen-
states of spin operator in general direction for arbitrary spin s. However, the method
sketched above is rather instructive than useful.That is why we need something else.
The idea we will use is simple: instead of ”rotating operators” (evaluating eigenstates
of operators in general direction) we will directly rotate eigenstates to get the result,
we want. How does it work?

Let us start with a state of a particle with the total spin s and its z- projection
m, denoted |s,m〉. If we now take a state oriented in z- direction with total spin s,
z-projection is necessary of values {−s, . . . ,−1, 0, 1, . . . s}. The corresponding vector

representation is

{1
0
...

 , . . . ,

0
...
1

}.

Next step to the state in general direction is to rotate this state. If we rotate |s,m〉
about the z axis by angle ϕ and then about new (rotated) y′ axis by angle ϑ, we get a
quantum state with total spin s, its z- projection m in the direction of a general unit
vector ~n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ).

Recall now generators of such rotations, that are well-known spin operators ŝi. In
other words, if we want to rotate a ket- state |ψ〉 about an arbitrary axis ~n by angle
α, we need to act on this state with an exponential operator e−iα~n·~s:

|ψ′〉~n = e−i α~n·~s |ψ〉 (5.1)

As mentioned above, we deal with these 2 rotations:

R̂z(ϕ) = e−i ϕ ŝz (5.2a)

R̂y′(ϑ) = e−i ϑ ŝy′ = e−i ϕ ŝze−i ϑ ŝyei ϕ ŝz (5.2b)

and finally the operator rotating from z-axis to axis in general position is

R̂~n(ϕ, ϑ) = R̂y′(ϑ)R̂z(ϕ) = e−i ϕ ŝze−i ϑ ŝy (5.3)

It is important to remind us, that matrix of this operator is unitary, which means, that
in our basis the operator has matrix, that satisfies RR† = RR∗ = 1n, or in other words
R† = R−1. Formally, at this moment we could write our Berry’s connection in terms
of these matrices (note, that the state |s,m〉 itself does not depend on ϕ, ϑ):

A = i 〈s,m|R†(ϑ, ϕ) dR(ϑ, ϕ) |s,m〉 = i 〈s,m|R−1(ϑ, ϕ) dR(ϑ, ϕ) |s,m〉 (5.4)

but as you can see, it did not help us too much.
To move further, let us deal with the eigenstate in general dierction calculated via

(5.3):
|s,m〉~n = e−i ϕ ŝze−i ϑ ŝy |s,m〉~z (5.5)

First of all, the matrix of the z- operator is diagonal, e.g. sz = diag(−s, . . . , s) having
(2s + 1) values on its dianogal. Then the whole operator of the rotation about z axis
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is diagonal too, having exponentials of the eigenvalues of the dianogal:

e−iϕsz =
∞∑
k=0

(−iϕ)k

k!

s . . . 0
...

. . .
...

0 . . . −s


k

=
∞∑
k=0

(−iϕ)k

k!

s
k . . . 0
...

. . .
...

0 . . . (−s)k

 =

=


∑∞

k=0
(−iϕ)k

k!
sk . . . 0

...
. . .

...

0 . . .
∑∞

k=0
(−iϕ)k

k!
(−s)k

 =

e
−iϕs . . . 0
...

. . .
...

0 . . . e−iϕ(−s)

 (5.6)

The last thing we need to know, is to evaluate (in a similar way) elements of
the second rotation operator (about y- axis). This is, however, a serious problem.
The matrix of this operator is not diagonal, which causes problem in evaluating its
exponential.

Namely, recall the lowering and raising operators s±, that act on eigenstates of sz
and s2 (|s,m〉) in a well-known way:

s±|s,m〉 =
√
s(s+ 1)−m(m± 1) |s,m± 1〉 (5.7)

where s± = sx ± isy. This yields for an (k, l) element of the matrix of sy following
relation:27

(sy)k l =
1

2i
(δk, l+1 − δk+1, l)

√
(s+ 1)(k + l − 1)− kl (5.8)

We can see, that the matrix has only off-diagonal elements lying near to diagonal.
To avoid computing exponential of such a matrix28, let us introduce the Wigner D-
matrices.

It is true, that any arbitrary rotation can be made up from 3 particular rotations
defined by Euler angles:
- about z axis by α
- about (new) y′ axis by β
- about (new) z′′ axis by γ
Using arguments from the beginning of this section one has the corresponding rotation
operator:

R(α, β, γ) = e−i α ŝz e−i β ŝy e−i γ ŝy (5.9)

It is important, that this operator does not change s-value of the state it acts on. That
is why we can express the result in terms of |s,m′〉 states ”mixed up” by a particular
matrix, that is the Wigner D-matrix:

R(α, β, γ)|s,m〉 =
s∑

m′=−s

Dsm′,m(α, β, γ) |s,m′〉 (5.10)

27Compare with (4.18) for the case s = 1.
28Computing exponential of the spin matrix is generally a difficult, but frequently treated topic.

For example, it can be shown, that for spin s = 1/2 the following equality holds: exp
(
− i

2 α(~σ · ~n)
)

=
12 cos(α/2)−i (~σ ·~n) sin(α/2), that can be used to get the eigenstate in general direction by using this
formula 2-times: about z by ϕ and about y by ϑ. However, transition to higher spins is nontrivial. For
example, in case s = 1 (that we actually secretly used to find eigenstates of our 3× 3 matrix instead
of direct computation of eigenvectors) one gets (so called Rodrigues formula) exp (−i α (~s · ~n)) =
13 + i (~s · ~n) sin α + (~s · ~n)2(cos α − 1). A very exhaustive calculation on this topic can be found in
[6], where a closed formula for general spin is derived. However, it is of an awkward form, that is not
very useful for us.
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This equality acts as a definition of Wigner matrices. Thanks to (5.9) we see, that
when dealing with rotation about z axis (α, γ), we have to acts with exponential of
sz on its eigenstates |s,m′〉, that returns (in similar way to (5.6)) the eigenvalue to
the exponent. Therefore the only nontrivial part is (as awaited) associated with the
y-rotation:

Dsm′,m(α, β, γ) = e−im
′α e−imγ dsm′,m(β) (5.11)

that is definition of so-called Wigner (small) d−matrix, giving

dsm′,m(β) = 〈s,m′| e−i β sy |s,m〉 (5.12)

Thanks to this discourse, we can rewrite former results in terms of Wigner matrices.
Namely, R~n(ϕ, ϑ) = D(ϕ, ϑ, 0) = e−im

′ϕ dsm′,m(ϑ) and consequently

|s,m〉~n =
s∑

m′=−s

e−im
′ϕ dsm′,m(ϑ)|s,m′〉~z (5.13)

If we now use the vector representation of the eigenstates from the beginning of this
section, every component of the final vector is one term from the sum:

|s,m〉~n(ϕ,ϑ) =


dss,m(ϑ) e−i ϕ s

ds(s−1),m(ϑ) e−i ϕ (s−1)

...
ds−s,m(ϑ) ei ϕ s

 (5.14)

what means, that ϕ and ϑ are separated. That has some benefits in computation, as
we will see. To move further, we would like to d-te this expression. On this purpose,
we need an explicit formula for d−matrix. Thank God29 Eugene Wigner left us this
in his work about matrices from 192730. Note, that we use the original convention, in
which elements are all real:

djmm′(ϑ) =
√

(j +m′)! (j −m′)! (j +m)! (j −m)! ·

·
∑
s

(−1)m
′−m+s

(j +m− s)! s! (m′ −m+ s)! (j −m′ − s)!

(
cos

ϑ

2

)2j+m−m′−2s(
sin

ϑ

2

)m′−m+2s

(5.15)

Where the sumation runs though all such values s, that every factorial is well-defined.
This all yields:

A = i 〈s,m| d |sm〉 =

= i
(
dss,m(ϑ) eiϕs, . . . , ds−s,m(ϑ) e−iϕs

)
·

−i s d
s
s,m(ϑ) e−iϕs dϕ+

(
dss,m(ϑ)

)
,ϑ
e−iϕs dϑ

...
i s ds−s,m(ϑ) eiϕs dϕ+

(
ds−s,m(ϑ)

)
,ϑ
eiϕs dϑ


=

(
s∑

k=−s

k
(
dsk,m(ϑ)

)2

)
dϕ+ f(ϑ) dϑ (5.16)

29...or better unfortunatelly when seeing its form
30We deal in our thesis only with spin. When computing the total angular momentum being a sum

of spin angular momentum and orbital angular momentum j = s+ l, the matrix gets j-index instead
of s without change of its function.
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with second term in a form, that will not contribute to the value of Berry’s curvature.
The problem, we are facing, is to deal with the first term. On this purpose, we need

to make us familiar with a crucial identity, that holds for all Wigner matrices31:

j∑
k=−j

djmk(β1) djkm′(β2) e−ikϕ = e−imα djmm′(β) e−im
′γ (5.17)

provided

cotα = cos β1 cotϕ+ cot β2
sin β1

sinϕ
(5.18a)

cos β = cos β1 cos β2 − sin β1 sin β2 cosϕ (5.18b)

cot γ = cos β2 cotϕ+ cot β1
sin β2

sinϕ
(5.18c)

To move on, let us differentiate equation (5.17) with respect to ϕ (the sum to the left
is finite, what means, that the sum is differentiable). Note, that all Euler angles to the
right are implicit functions of ϕ: α = α(ϕ), etc. This yields:

j∑
k=−j

k djmk(β1) djkm′(β2) e−ikϕ =me−imα djmm′(β) e−im
′γ · dα

dϕ

+ i e−imα−im
′γ d d

j
mm′(β)

dβ
· dβ
dϕ

+m′ e−imα djmm′(β) e−im
′γ · dγ

dϕ
(5.19)

Thanks to (5.18a-c) one has

dα

dϕ
=
sin2α

sin2ϕ
· (cos β1 + cot β2 sin β1 cosϕ) (5.20a)

dβ

dϕ
= − sin β1 sin β2 sinϕ

sin β
(5.20b)

dγ

dϕ
=
sin2γ

sin2ϕ
· (cos β2 + cot β1 sin β2 cosϕ) (5.20c)

We will not insert it into (5.19) for the sake of beauty. In order to get the left-hand
side of (5.19) to the form in (5.16), we well set32

β2 = −β1 = ϑ, γ = 0, m′ = m (5.21)

Using one of the properties of Wigner matrices (djk l(x) = djl k(−x)) we immediatelly
get the desired expression. What does it do on the right-hand side? First of all, limits
of derivatives give us the following (note again, that α = α(ϕ) etc. from (5.18a-c), that
has to be taken into account here):

α,ϕ = cosϑ/2, β,ϕ = sinϑ, γ,ϕ = cosϑ/2 (5.22)

31Can be found in [20], p. 77
32More preciselly, we will do γ → 0+. The reason is, that in (5.20b), there exists no two-sided limit

as γ tends to 0, making change of sign when going from the other side (γ → 0−).
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Moreover, another useful expression for the derivative od d-matrix is available (again
in [20], p. 82)

d djmm′(β)

dβ
=
m′ −m cos β

sin β
djmm′(β)−

√
(j +m)(j −m+ 1) djm−1,m′(β) (5.23)

and this all gives the right-hand side of (5.19) the following face:

. . . =me−im(α+γ) djmm(β)
cosϑ

2

+ i e−im(α+γ)

(
m

1− cos β

sin β
djmm(β)−

√
(j +m)(j −m+ 1) djm−1,m(β)

)
sinϑ

+me−im(α+γ) djmm(β)
cosϑ

2
(5.24)

From (5.18a-c) using (5.21) one can see, that33

α = β = γ = 0 (5.25)

that extremly simplifies (5.24) - exponentials vanish and using the fact, that djk l(0) = δk l
we get

. . . = m
cosϑ

2
+ 0 +m

cosϑ

2
= m cosϑ (5.26)

and we are done34. The Berry’s connection from (5.16) is now

A = m cosϑ dϕ+ f(ϑ) dϑ (5.27)

Finally d-ting conjures the Berry’s curvature in the expected form:

Ωm = −m sinϑ dϕ ∧ dϑ = −mωg (5.28)

We have undergone a bit difficult, yet interesting way to obtain the result for the
Berry’s curvature using the whole machinery of Wigner matrices acting as crucial
objects in rotating spin states.

5.2 Combining spins

Another approach is to be discussed here, that has been allready sketched in the chapter
4 when dealing with particular values of spin s = 0, 1/2, 1. It is based on the spin
composition35.

We are pretty familiar with eigenstates of the spin operator for spin 1/2 and we
would like to use it in order to get a general expression for the state |s,m〉. We will

33In [20], a more general proposition can be found: if ϕ = 0 and β1 + β2 < π, then α = γ = 0 and
β = β1 + β2.

34As a defense for the 30th footnote we can say, that it is unimportant, whether we take the limit
γ → 0+ or → 0−, because terms in brackets of the second term in (5.28) cancell this whole term
irrespective of the sign of sinϑ from the derivative β,ϕ.

35We will follow section 4.10 from an excellent book from M. Chaichian and R. Hagedorn dedicated
to angular momentum, [4].
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deal with unrotated states (e.g. states oriented in the z-axial direction):

ŝ+ |+〉 = 0 (5.29a)

ŝ+ |−〉 = |+〉 (5.29b)

ŝ− |+〉 = |−〉 (5.29c)

ŝ− |−〉 = 0 (5.29d)

ŝz |+〉 =
1

2
|+〉 (5.29e)

ŝz |−〉 =− 1

2
|−〉 (5.29f)

where the meaning of symbols is taken from previous sections.
Let us now construct a system of 2p such single states of spin 1/2. Each single state

will be provided by a label (i = 1, 2, . . . , 2p):

|(1, 2, . . . , i)+ (i+ 1, . . . , 2p)−〉 = |+〉1 ⊗ · · · ⊗ |+〉i ⊗ |−〉i+1 ⊗ · · · ⊗ |−〉2p (5.30)

what is a system consisting of i spins with z-projection +1/2 and 2p− i spins with z-
prjection −1/2. It is clear, that any interchange of single states in the tensor product
within the section of ”up”- states or ”down”- states will not change properties of the
whole system. We have i! possibilities to swap states within the ”up”-states and then
(2p−i)! permutations in the other group. Moreover, we have (2p)! permutations paying

no attention in which set of states we are. Therefore, there are (2p)!
i!(2p−i)! =

(
2p
i

)
different

state- classes, that contain systems varying in permutations within the two sets of single
states. If we take systems from the same class, their scalar product is equal to 1 (they
are normalized), in case of different clases is equal to 0 (they are orthogonal to each
other). To sum it up, a typical state consisting of i up-states and (2p− i) down-states
is of the form | (σ1, . . . , σi)+ (σi+1, . . . , σ2p)−〉, where σi stands for permutation of i.

Let us now try to compute the z-projection of spin of the whole system or- in other
words- let us construct the ŝz operator for this system and then act with it on the
system state. Remembering the procedure in the 4-th chapter (above (4.15)) we will
construct an operator (capital letters will from now on stand for operators of the whole
system):

Ŝz = ŝ1
z + · · ·+ ŝ2p

z (5.31)

such, that the i-th operator will act only on the i-th state of the tensor product:

ŝiz = 1̂1 ⊗ · · · ⊗ 1̂i−1 ⊗ ŝz ⊗ 1̂i+1 ⊗ · · · ⊗ 1̂2p (5.32)

Then we get

Ŝz| (σ1, . . . , σi)+ (σi+1, . . . , σ2p)−〉 =

=

2p∑
i=1

(
1̂1 ⊗ · · · ⊗ 1̂i−1 ⊗ ŝz ⊗ 1̂i+1 ⊗ · · · ⊗ 1̂2p

)
| (σ1, . . . , σi)+ (σi+1, . . . , σ2p)−〉 =

=

(
1

2
· i+

(
−1

2

)
· (2p− i)

)
| (σ1, . . . , σi)+ (σi+1, . . . , σ2p)−〉 =

= (i− p) | (σ1, . . . , σi)+ (σi+1, . . . , σ2p)−〉 (5.32)
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And denoting i− p = m yields

Ŝz| (σ1, . . . , σp+m)+ (σp+m+1, . . . , σ2p)−〉 = m| (σ1, . . . , σp+m)+ (σp+m+1, . . . , σ2p)−〉
(5.33)

so every such a state of the system defined by a permutation of single states with p+m
up-states and p−m down states is an eigenstate of Ŝz with eigenvalue m.

To move further, we need to know the result of acting of Ŝ+ and Ŝ− on this state.
We can similarly build it together using ŝi+ = 1̂1 ⊗ · · · ⊗ 1̂i−1 ⊗ ŝ+ ⊗ 1̂i+1 ⊗ · · · ⊗ 1̂2p,
but we need to specify, how they act on the system state first. It is clear (5.29a) that if
i ∈ (σ1, . . . , σp+m), then the result is zero. Therefore i must be from (σp+m+1, . . . , σ2p).
If i really occurs in (σp+m+1, . . . , σ2p), then the system changes in the i-th compoud
due to (5.29a) like ŝi+|−〉i = |+〉i (otherwise the result is zero again). Consequently
the ”up” set of single states gets a new member, the mentioned i-th one:

ŝi+| (σ1, . . . , i, . . . , σp+m)+ (σp+m+1, . . . , σ2p)−〉 = 0 (5.34a)

ŝi+| (σ1, . . . , σp+m)+ (σp+m+1, . . . , i, . . . , σ2p)−〉 =

=| (σ1, . . . , σp+m, n)+ (σp+m+1, . . . , σ2p)−〉 (5.34b)

Note, that the final state has no more m as the eigenvalue of Ŝz - it becomes m + 1,
because we cutted one down-state and added one up-state.

This happens to all such operators ŝi+: they produce either zero or one of states

with m+ 1 as the eigenvalue of Ŝz. Hence the desired Ŝ+ will generate a sum of p−m
terms, every one being a different state with of m + 1 as the eigenvalue of Ŝz. This
puts us to the following idea: instead of one permutated system state let us take a sum
of all such states, that can be made from an arbitrary one (for example the one from
(5.30)) by a permutation σ:

|ŝ, m〉 =
1

(2s)!

∑
σ

| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 (5.35)

summed over all possible permutations. However, this state is not normalised yet
(labelled by the hat). The norm can be found very quickly.

As we mentioned in the beginning of this section, we deal with (2p)!
(2p−i)!i! = (2s)!

(s+m)!(s−m)!

different state classes with states orthogonal to each other (when taking two states from
different classes). Hence, we can make summation (int the sum from (5.35)) within the
classes and then summing only representatives of these classes:

|ŝ, m〉 =
(s+m)!(s−m)!

(2s)!

∑
class

|representative〉 (5.36)

The very last step is the realisation, that states from different classes are mutually
orthogonal (as allready mentioned). Then we get

〈ŝ, m|ŝ, m〉 =

(
(s+m)!(s−m)!

(2s)!

)2

· (2s)!

(s+m)!(s−m)!
(5.37)

where the second factor (making it being squared) comes from the bra-state and the
inverse comes from the summation. Hence

|s,m〉 =

√
(2s)!

(s+m)!(s−m)!

1

(2s)!

∑
σ

| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 (5.38)
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is the desired state given by a totally symmetrized direct ( = tensor) product of s = 1/2
up- and down- states. To prove it, we will compute Ŝz|s,m〉 and Ŝ+|s,m〉 (computation
of Ŝ− is analogous and does not need to be veryfied).

Ŝz|s,m〉 = Ŝz

(
csm

1

(2s)!

∑
σ

| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉

)
=

= csm
1

(2s)!

∑
σ

Ŝz| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 =

= csm
1

(2s)!

∑
σ

m| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 =

=m

(
csm

1

(2s)!

∑
σ

| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉

)
= m |s,m〉 (5.39)

where csm is the normalisation constant. Eventually

Ŝ+|s,m〉 = csm
1

(2s)!

∑
σ

Ŝ+| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 =

=
csm
(2s)!

∑
σ

2s∑
i=1

ŝi+| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 =

=
csm
(2s)!

∑
σ

2s∑
i=s+m+1

| (σ1, . . . , σs+m, i)+ (σs+m+1, . . . , σ2s)−〉 =

=
csm
(2s)!

2s∑
i=s+m+1

∑
σ

| (σ1, . . . , σs+m, i)+ (σs+m+1, . . . , σ2s)−〉 =

= (s−m)
csm
(2s)!

∑
σ

| (σ1, . . . , σs+m)+ (σs+m+1, . . . , σ2s)−〉 =

=
√

(s−m)(s+m+ 1) |s,m+ 1〉 (5.40)

where we allready took into account the normalisation of the |s,m + 1〉 state. The
coefficient in front of it is familiar so far (see (5.7) when defining matrix operators s±).

To sum this section up, we really constructed the |s,m〉 state by combining spin
s = 1/2 states, that has required behaviour when letting operators act on it. Note,
that we build the whole system-state from single states oriented in z-direction, that is
only one special case of the general direction given by ϑ, ϕ. Now the step would be to
rotate this state by particular angles about particular axes. For example, if we rotated
the state by ϑ about y-axis, then the single states will transform in the following way:

R̂y(ϑ) |+〉 = cosϑ |+〉+ sinϑ |−〉 (5.41a)

R̂y(ϑ) |−〉 = cosϑ |−〉 − sinϑ |+〉 (5.41b)

Inserting these expressions in the permutated sum and expanding them using bino-
mial theorem will immediatelly (after recollecting the terms with the same power of
sina ϑ cosb ϑ) give us the definition of Wigner d-matrix as displayed in (5.15). The aim
is not to show it now, but only to underline the connection between these approaches36.

36More detailed overview of this procedure can be found in Feynman lectures, [9].
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Eventually, we have to underline, that the construction depicted in this section
consists of using the same spin (single) states of spin s = 1/2 and then od deducting,
what should the normalisation constant look like. Another way to build the general
state |s,m〉 lies in (4.15), where the Clebsch- Gordan coefficients were introduced. It
offers us the possibility to couple different states of even different spins. However, this
is counter-productive: just imagine you want to compile spin state |s,m〉. Then you
can couple states of various spins s = 1/2, 1, 3/2, . . . , s and even in various amounts.
Then the concept using only s = 1/2 spins is just a small subset of many other available
concepts. Therefore, we will not go into it.37

In order not to end this section in such a pessimistic way, we give a pro-argument
for this idea, though. Recall once again the Wigner matrices. As we will see in a few
moments, they represent an irreducible representation of rotations in the space of spin
s (that is (2s + 1) - dimensional). When we then form a reducible representation as
a tensor product of two irreducible representations (given by matrices Dj and Dj′),
Dj ⊗Dj′ , we can reduce it into a direct sum of another irreducible representations (all
being invariant under rotations) using the following identity (for matrix elements):

Djkm(α, β, γ)Dj
′

k′m′(α, β, γ) =

j+j′∑
J=|j−j′|

J∑
M=−J

J∑
K=−J

Cj j′ J
mm′ C

j j′ J
k k′ D

J
M K(α, β, γ) (5.42)

what can be shortened into a very important formula from theory of group represen-
tations:

Dj ⊗Dj′ = Dj+j′ ⊕Dj+j′−1 ⊕ · · · ⊕ D|j−j′| (5.43)

The only reason for displaying it here is to emphasize, that the way of construtcing
|s,m〉 according to the main part of section (5.2) is not unique. We really are able to
couple various spins, represent them as a direct sum of irreducible spin representations
and then use them to build the general spin state. However, as mentioned, it is badly
difficult.

37It is clear, that coupling of two spins is thanks to (4.15) a trivial problem - the only difficulty is to
find the coefficient itself, but one has plenty of tables dedicated to this problem nowadays. However,
when considering combination of more than 2 spins, it becomes a serious problem. One can proceed
from 1 spin to another - just add a spin to a combination, that has allready been done. This is,
however, only a sketch, that is really difficult, when performing exactly using proper mathematical
concepts.
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6 Advanced: Berry would be fascinated!

The last chapter of this thesis is dedicated to an advanced approach to the Berry’s
phase. It is based on using benefitial facts about Lie groups (being manifolds at the
same time), their Lie algebras and representations. As this concept is a bit more de-
manding, we will explain basic ideas and terms from the group theory ”along the way”
giving definitions and descriptions of them38

We will start from the equation (5.4), that is the expression for the Berry’s connec-
tion in terms of rotation matrices R39

A = i 〈s,m|R−1(ϑ, ϕ) dR(ϑ, ϕ) |s,m〉 (6.1)

We have to admit, that in this formula something is only partly true. The rotation
matrices are generally matrices from SU(2) group (that is subgroup of GL(2,C), e.g.
2 × 2 matrices with complex values). That means the multiplication by them is only
possible for 2-component columns (representing the state |s,m〉). There is only one
value of spin, for which we represent its eigenstates as 2-compounded columns: s = 1/2
(see chapter 4). For other spins we need to represent these rotation matrices from SU(2)
by elements of the group GL(2s+ 1,C) in order rescue the validity of (6.1).

It is very important to say, that we did this (without mentioning it) in previous
sections - we used representation of SU(2) by GL(2s+1,C) in all cases. It was the well-
known irreducible representation of SU(2) given by D matrices (to be more precise:
the rows and columns of Wigner D-matrices span the irreducible representations of the
Lie algebras generated by operators of the total angular momentum j).

Therefore it is wise to correct the expression in the following way:

A = i 〈s,m| ρ
(
R−1(ϑ, ϕ)

)
dρ (R(ϑ, ϕ)) |s,m〉 (6.2)

where ρ : SU(2) → GL(2s + 1,C) is the mentioned irreducible representation. We
would now like to understand, what is hidden in the term ρ (R−1(ϑ, ϕ)) dρ (R(ϑ, ϕ)).

First of all, representation is an injective homomorphism, what allows us to rewrite
the term40

ρ(g−1) dρ(g) = ρ(g−1dg) (6.3)

where g = R(ϑ, ϕ) stands for the rotation matrix - an element of group G = SU(2)
(symbol dg stands for exterior derivative of each component of matrix R(ϑ, ϕ), that
is element g ∈ SU(2)41). The expression in brackets is very similar to the one for
so-called cannonical 1-form θ = x−1 dx and this object would be crucial for this whole
section. However, in order to trully understand how it works, we need to introduce the
theory first.

We will start with definition of a left-invariant p-form. A p-form α is left-invariant,
if it satisfies

L∗gα = α, ∀g ∈ G (6.4)

38To get more precise insight about Lie groups and its representations, I recommend chapters 10 -
12 from [8], that we follow in this part of our thesis.

39Tagging equation is not injective ...
40This is true for s ≥ 1/2, because for s = 0 the representation is not injective. However, for s = 0

we have ρ = 1̂, then dρ(g) = 0 and the whole connection and curvature is zero. Hence there is no
need to take this case into account.

41We operate with matrix groups from the beginning of the chapter.
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where the left translation

Lg : G→ G

h 7→ Lgh := gh (6.5)

is a diffeomorphism and its pull-back is the well-defined for every tensor field of type(
p
q

)
42.

As we are interested in representations of SU(2) by matrices from GL(2s + 1,C),
we would like to investigate left-invariant 1-forms on G = GL(2s + 1,C). Moreover,
we can take GL(2s+ 1,C) as GL(n,R) for a particular value of n (note, that complex
matrices can be realised by two real matrices - one for each real and imaginary part
respectively, n = 2s+ 1).

If we provide the (vector) space of matrices from GL(n,R) by a standard Weyl
basis Ei

j (such that (Ei
j)
k
l = δilδ

k
j ), then ∀x ∈ GL(n,R) : x = xijE

j
i . In this basis the

left translation by A ∈ GL(n,R) becomes xij 7→ (LAx)ij = Aikx
k
j . Then for an arbitrary

1-form α = αji (x)dxij the condition for left-invariance yields

L∗Aα = αik(A
a
bx

b
a)A

k
j dx

j
i

!
= αij(x) dxji (6.6)

that can be satisfied by taking

αij(x)C = Ci
k(x
−1)kj (6.7)

for arbitrary constant matrix Ci
j = αij(I). This is only one step from finding basis for

the space of left-invariant 1-forms on GL(n,R). We only need to take Ci
j = Ei

j and we
get

α(x)Ei
j
≡ α̂ij(x) = (x−1)ik dx

k
j (6.8)

where the hat distinguishes this base left-invariant 1-form from the component αij of a
general 1-form.

To move further, we would like to get this basis to any subgroup G ⊂ GL(n,R). For
this purpose, consider homomorphism f : G 7→ GL(n,R) of Lie groups and consider
the left-invariant 1-form α(x) = αij(x) dxji on GL(n,R). Then f ∗ α(x) is left-invariant
1-form on G:

L∗A ◦ f ∗α(x) = (f ◦ LA)∗α(x) = αik(Ax(zµ))Akl dx
l
j(z

µ) = αij(x(zµ)) dxji (z
µ) (6.9)

where the homomorphism maps f : zµ 7→ xij(z
µ) coordinates zµ in G to coordinates xij

in GL(n,R). If we now take injection j : G → GL(n,R), zµ 7→ xij(z
µ) as the desired

homomorphism f , we get j(G) ⊂ GL(n,R) an isomorphic copy of G in GL(n,R) and
the whole information about left-invariant 1-forms on G will we available from matrix
α = x−1dx (on GL(n,R)) by taking its pull-back to G:

αG = x−1(z) dx(z) = j∗(x−1 dx) = j∗(αGL(n,R)) (6.10)

It may seem that we deviated from our goal to describe the canonical 1-form in
order to conclude the discourse about Berry’s phase, but that is not true. Namely, if

42Note, that without being diffeomorphism, one have problem with pull-back of vectors.
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we now define the canonical 1-form and verify that the left-invariant 1-form is directly
what we are searching for, everything becomes brighter.

We will start immediatelly with definition of the canonical 1-form (a.k.a. Mauer-
Cartan 1-form): Let G be a Lie group, G being its Lie algebra (G ≡ TeG, e.g. the
Lie algebra is a tangent vector space of the identity element e ∈ G). Then a G-valued
cannonical 1- form θ ∈ Ω1(G,G) on G is defined by

〈θ(g), v〉 := Lg−1∗v, v ∈ TgG (6.11)

One can read this definition as follows: a vector from the tangent vector space of g ∈ G
can be mapped from g to e by an appropriate (unique) left translation43. Note, that
this definition holds for any Lie group G.

If we now take the computed left-invariant 1-form

θ = x−1 dx = (x−1 dx)ijE
j
i = (x−1)ik dx

k
j E

j
i (6.12)

we can easily check, that it has all properties it should have to be the canonical 1-form
on GL(n,R).

First of all, we see in (6.12), that it is decomposed using the Weyl basis as a basis
for the Lie algebra gl(n,R) (that are real matrices n×n without any restriction) That
is why the 1-form is gl(n,R)- valued.

To verify, that for θ the condition (6.11) holds, let us transform this condition into
equivalent (differential) form:

〈θ, VC〉 = C (6.13)

for VC being a general left-invariant vector field on GL(n,R) parametrised by constant
matrix C, namely VC = xik C

k
j ∂

j
i (then L∗AVC = VC for any A ∈ GL(n,R)). Then one

gets

〈θ, VC〉 = 〈(x−1)ik dx
k
j E

j
i , x

a
c C

c
b ∂

b
a〉 = (x−1)ik E

j
i C

c
a x

a
c 〈dxkj , ∂ba〉 =

= (x−1)ik E
j
i C

c
a δ

k
aδ

b
j = (x−1)ik x

k
c C

c
j E

j
i = IicCc

j E
j
i = Ci

j E
j
i = C (6.14)

To sum it up, θ is a canonical 1-form on GL(n,R) having values in gl(n,R).
Now, following the procedure of getting left-invariant 1-form from GL(n,R) to

G ⊂ GL(n,R), let us consider again the injective homomorphism j : G → GL(n,R)
mapping zµ 7→ xij(z

µ). Then the canonical 1-form on G is given by

θG = j∗(θGL(n,R)) = j∗(x−1 dx) = j∗((x−1)ik dx
k
j E

j
i ) = (θaµ dz

µ)Ea (6.15)

where Ea are base matrices spanning only the part G ⊂ gl(n,R). We can now see a
problem in (6.3), where ρ(g−1 dg) occurs, because the term is being represented.

However, after a few moments of trying to fix this problem, one comes to the
suggestion, that the following equality is true44

ρ(g−1 dg) = ρ′(θG) (6.16)

where ρ′ stands for derived representation of Lie algebras45. To prove this, we only
need to draw a picture and make us clear about where does the objects have their
values.

43Recall, that 〈α, V 〉 ≡ 1̂(V ;α) = (dxi ⊗ ∂i)(V ;α).
44As we mentioned, for s = 0 we have ρ = 1̂, then ρ′ = 0 and ρ′θ = 0, so the equality holds for

s = 0. We will therefore assume again s ≥ 1/2.
45If ρ : G → H is representation of Lie groups and the exponential map maps Lie algebras to Lie

groups like exp : G,H → G,H, then there exists a representation of their algebras ρ′ : G → H such
that ρ(eX) = eρ

′(X).
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Figure 2: Where is it? (Situation in our problem)
[made using Inkscape editor]

As we can see, the
pull-back j∗(θ) pulls the
form fromGL(n,R) (val-
ued in gl(n,R)) to SU(2)
(valued in su(2)), in
terms of local coor-
dinates zµ of su(2):
x−1(z)dx(z) = θaµ dz

µEa,
where Ea is basis of
su(2) (subset of the ba-
sis Ei

j for the whole
gl(n,R)). Then the de-
rived representation ρ′

represents this object back into gl(n,R) (precisely ρ′(su(2)) ⊂ gl(n,R)), so it is of
the face θaµ dz

µÊa, where the hat symbolizes the represented Ea base (again subset of
Ei
j in the isomorphic copy of SU(2) in GL(n,R)). As for the left-hand side of equation

(6.16), we represent an object g−1 dg directly to GL(n,R), that is valued in gl(n,R)
too (see text bellow (6.14)), that is of the form θaµ dz

µEa. Again- only basis can be
represented (leaving the rest untouched) and the represented one is, of course, the Weyl
base (the one sufficient to span the isomorphic copy in GL(n,R)). The construction
of the canonical 1-form is unique and here both ”adepts” have desired properties of
canonical 1-form, so it must be the same object. As a conclusion, (6.16) proves true.

The rest of our work is easy. If we know the canonical 1-form on SU(2) (that would
be the last untrivial part of this computation), we can continue from (6.16) in following
way:

ρ′(θSU(2)) = ρ′(eaEa) = eaρ′(Ea) (6.17)

where ea are left-invariant 1-forms on SU(2) (see (6.12), where we directly took left-
invariant 1-form as the canonical 1-form. The same situation is in this case). From
the theory of irreducible representations of SU(2) we know, that the represented base
element is proportional to the matrix of operator of total angular momentum. In our
case it yields

ρ′(Ea) = −i ŝa (6.18)

with ŝa being the spin operator in a-direction (a ∈ (x, y, z)). Hence the Berry’s con-
nection is

A = i 〈s,m| ρ′(θ) |s,m〉 = ea 〈s,m|ŝa|s,m〉 = e3〈s,m|ŝz|s,m〉 = me3 (6.19)

because only the ŝz operator leaves the |s,m〉 - state unchanged (contributing by factor
m - its eigenvalue).

Let us therefore compute the left-invariant 1-form(s) on SU(2). The most general
matrix A ∈ SU(2) is of the form

A =

(
z −w̄
w z̄

)
, |z|2 + |w|2 = 1, z, w ∈ C (6.20)

that can be fulfilled by 3 Euler angles ϑ ∈ 〈0, π〉, ϕ ∈ 〈0, 2π〉 and ψ ∈ 〈0, 4π〉 as follows:

z = cos
ϑ

2
e−i/2(ψ+ϕ), w = sin

ϑ

2
e−i/2(ψ−ϕ) (6.21)
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Then (using property of SU(2)-matrices, that A+ = A−1) the canonical 1-form is

θ =A−1(ϑ, ϕ, ψ) dA(ϑ, ϕ, ψ) = A+(ϑ, ϕ, ψ) dA(ϑ, ϕ, ψ) =

=

(
cos ϑ

2
ei/2(ψ+ϕ) sin ϑ

2
ei/2(ψ−ϕ)

− sin ϑ
2
e−i/2(ψ−ϕ) cos ϑ

2
e−i/2(ψ+ϕ)

)
· d
(

cos ϑ
2
e−i/2(ψ+ϕ) − sin ϑ

2
ei/2(ψ−ϕ)

sin ϑ
2
e−i/2(ψ−ϕ) cos ϑ

2
ei/2(ψ+ϕ)

)
(6.22)

The next few steps consist of d-ting the matrix and then matrix multiplication, that
will not be displayed here. Important is the result46:

θ = − i
2

(
e3 e1 − i e2

e2 + i e2 −e3

)
(6.23)

for

e1 = sinψ dϑ− sinϑ cosψ dϕ (6.24a)

e2 = cosψ dϑ+ sinϑ sinψ dϕ (6.24b)

e3 = dψ + cosϑ dϕ (6.24c)

Note, that the result in (6.23) can be reall written in terms of base elements of su(2),
the Pauli matrices (see (4.2)) multiplied by −i/2.

In our case, the rotation is given by ϑ, ϕ (ψ = 0)47, what cancels few terms in
(6.24). Mainly, e3 = cosϑ dϕ and eventually after inserting into (6.19) we get

A = m cosϑ dϕ (6.25)

and hence
Ωm = −m sinϑ dϑ ∧ dϕ = −mωg (6.26)

and we are done.48

46Can be found in [8], p. 264 too
47Note, that rotation given by the third Euler angle ψ would contribute to our state only by an extra

phase factor, because it is a rotation about the (new) z-axis. As we mentioned before, the curvature
2-form is U(1)-invariant, so we do not need to deal with this rotation. Moreover, if we let the dψ stay
in (6.24c), then consequental d-ting would cancel it immediately.

48As we mentioned, our parametric space is 3-dimensional space (B, ϑ, ϕ) (e.g. 3D without origin,
because for B = 0 one has degenerated spectrum). When we then want to find eigenstates of our
Hamiltonian, we can manage without any dependance on B - we get the same spinor for every value
of B. This fact is then reflected in the formula for Berry’s curvature- it does not depend on the
radial value (B) and therefore states effectively live only on sphere. However, when we deal with
rotations, the significant information about states is given by 2 rotations (ϑ, ϕ) and rotation given
by ψ contributes only by a phase factor to the whole spinor - the essential information about spins
is encoded in the 2 aout of 3 rotations. That means, spinors live on a manifold SU(2)/U(1) (we get
rid of the extra phase factor by factorisation of the whole rotation group by the group of redundant
rotations), that is (as a manifold) S2, so we are back to sphere, but we came to it in another way.
In this approach, when we are on SU(2) instead of S2, we need to be careful in our computations
too. For example, we should take e3 = dψ + cosϑ dϕ from (6.24c), use Mauer- Cartan equation
dea+ 1

2c
a
b c e

b∧ec = 0 (cab c are structure constants, [Eb, Ec] = cab cEa for the basis Ei of the Lie algebra,
in our case SU(2) we get cab c = εa b c) and we get de3 = −1/2c3a be

a∧eb = −c31 2e
1∧e2 = − sinϑ dϑ∧dϕ,

but this is on SU(2) and now the factorisation is needed (it is only a formal step in our mind, because
it does not change the formula, of course). Behind this all lies the fact, that the Berry’s curvature
2-form lives on the principal SU(2)- bundle and needs to be pull-backed (pull-back of the section
σ = ψ(ϑ, ϕ) - see text below (6.27)) to the basis of this bundle- SU(2)/U(1).

41



This approach via the canonical 1-form seems absolutely distant from that one in
previous sections, but it is not. The question is, what exactly is the object on the
left-hand side of (6.3), namely ρ(g−1) dρ(g)? It is a product of two represented group
elements- rotations in the (Hilbert) space of spins. As we mentioned in the beginning
of this section, such representations are mediated by Wigner D matrices. That means,
that ρ(g) = Ds(ϑ, ϕ, ψ) for an arbitrary spin s (e.g. the (2s+ 1)-dimensional represen-
tation of rotations). Then, however, the problematic term from (5.16) - sum of (by k
multiplied) Wigner d-matrices squared arises exactly from hereby (by putting ψ = 0,
etc.)

ρ(g−1) dρ(g) 
s∑

k=−s

k
(
dsk,m(ϑ)

)2
(6.27)

That means, we proved (5.16) - (5.27) for the second time by using group methods,
that is quite heart-warming4950.

49In fact, a lot of relations common to the one in (5.17) - (5.18) are often proved by means of group
calculus instead of direct computation. The way is rather abstract, yet more straightforward.

50As a top of this whole section, I would like to sketch, how can one see this whole calculation from
yet another point of view. It uses the theory of fiber bundles (as it is an advanced topic, we will not
explain the theory here): The canonical 1-form consists officialy of 3 terms - θ = θiEi (Ei again as
the basis of su(2) Lie algebra). However, as we saw in (6.19), only the 3-rd term does not vanish
and gives the birth of the Berry’s onnection 1-form. That means, that we already constructed the
connection form ω = e3E3 living on SU(2) in terms of fibre bundles. As it uses only 1 element of
basis, it is U(1)-connection (note, that U(1) is a subgroup of SU(2), when we construct its element as
follows: eαE3 = diag(e−i/2α, ei/2α) (see (5.6)), E3 being generator of this group). Then the horizontal
bundle is spanned by e1, e2 (because then 〈e3, e1〉 = 〈e3, e2〉 = 0, that acts as a definition of horizontal
bundle - one has to characterize, which vector fields (to the right) or 1-forms (to the left) define the
horizontal bundle). To sum it up, we have connection 1-form (depending on ψ on SU(2) being the
principal bundle) and hence curvature 2-form (without this dependence) on SU(2) too. However, as
mentioned, our states live on basis of this bundle and got to the bundle by a section σ = ψ(ϑ, ϕ)
(note, that the basis is sphere (ϑ, ϕ) and the bundle has extra coordinate ψ - we have to define, how
is ψ connetced with (ϑ, ϕ) - section ψ(ϑ, ϕ) does it excellently). The last step is to pull-back (towards
section) our curvature to the basis SU(2)/U(1) = S2 (formally, if we denote the former curvature on
SU(2) as ω̂, then our desired one on S2 is ω = σ∗ω̂). It is, again, only a formal step, because the face
of our curvature 2-form does not change after this pull-back. Only then we have the Berry’s curvature
on the sphere inhabited by spinors (spin states).
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Conclusion

When we glance back, we managed to prove the result ΩC = −mωg for Berry’s cur-

vature for spin s with its z-projection m in external magnetic fiel ~B in 3 different
ways preciselly (and we sketched the fourth one). This fact is inspirative, because we
conjoin different theoretical fields (e.g. group theory, theory of angular momentum,
etc.) to prove the same thing. As we mentioned in the last footnote, this occurs in
many situations, when we manage to see a problem (that seems to be insoluble) from
another point of view, yielding benefits for computations.

From the third chapter on, we widely used differential geometry in order to get
desired results. We computed the Berry’s phase directly using eigenstates of spin op-
erators for spin s = 0, 1/2, 1 in general direction given by ϑ, ϕ (living on a sphere S2)
and checked the results for s = 0, 1 using spin coupling, that is for 2 spins easy to
compute. We did not emphasise, why is the use of differential geometry so practical.
We hope, that it is clear, that the language of differential geometry is very elegant and
effective, having impact on size of formulae too51. To prove this statement even more,
one could investigate the holonomy itself in terms of Riemann curvature tensor and
other objects conneted to parallel transport and linear connexion (note, that parallel
transport of a vector corresponds to ”walking straightforward”). This would, however,
require even more theory introduced.

Eventually, Lie groups join the whole game and act symbiotic with differential ge-
ometry - its concept is arranged in such a way, that the continous structure of Lie group
naturally cooperates with differential geometry on this group, being manifold for the
geometry. In this chapter we described the idea of finding canonical 1-form on SU(2)
group. This can be trasferred to arbitrary group having a lot of possible applications
(in concept of the geometrical Berry’s phase too).

In our thesis, we omitted one other approach to the Phase, that could be under-
standable at this level too. One could simply take the central object e−im

∫
C ωg as

a functional integral (sometimes called Feynman path integral too). This concept is

51Recall one example for all: Maxwell equations. In standard (Newton- Leibnitz) formalism, the
whole system is:

∇ · ~E =
ρ

ε0

∇ · ~B = 0

∇× ~E =− ∂t ~B

∇× ~B =µ0
~j + 1/c2 ∂t ~E

If we rewrite it using differential p-forms, we get:

dF = 0

d ∗ F =− J

where F = Fαβ dx
α ∧ dxβ is a 2-form (the electromagnetic tensor), A = Aα dx

α is the potential

1-form with Aα being vector potential (Aα = (φ,− ~A) with well-known scalar and vector potentials
respectivelly) and J = ∗j is dual 3-form of electric current, if j = jαdx

α is the 1-form of current
(jα = (ρ,−~j)).
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worth investigating, because it can have connections to the field theories (e.g. quantum
field theory, etc.), that can be formulated via the path integral. However, the same
argument holds - this would require an extensive introduction to functional analysis52,
that would enlarge our thesis and we would digress from our aim.

To end this whole thesis with a vision (that is crucial to the science itself), we
can say that this topic has a great potential in further analysis - for instance, we
assumed, that our eigenstates are non-degenerated for the whole time. We escaped
from practical applications of the Berry’s phase- for example measurable consequences
(in optics)53. We assumed Abelian gauge in the whole thesis. In this spirit, we could
give an exhaustive list of possible upgrades for our thesis. And - as a top- spin in
magnetic field is only a drop in the whole wide ocean of geometrical phases born from
adiabatic changes of external parameter(s)... :)

52About path integrals for (not only) spin systems, a great lecture [12] is available.
53Is widely analysed in [1], [15], for example.
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