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Mnoho fyzikov je posadnutych myslienkou najst teoriu vsetkého. Jeden
z prvych pokusov pochadza od Theodora Kaluzu, ktory sa pokisil spojit
gravitaciu a elektromagnetizmus. My sa pozrieme na zovSeobecnenie tejto
tedrie, najskor bez skalarneho pola, bertc najprv do uvahy vSeobecnii
kalibra¢na grupu. Dalej sa sustredime uz len na grupu U(1), ale priddme
skalarne pole. Hlavnym technickym nastrojom bude v oboch pripadoch

vyuzitie pojmu vertikalny stupen diferencalnych foriem.
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Many physicist are obsessed by finding a theory of everything. On of
the first attempts come from Theodor Kaluza merging gravity and elec-
tromagnetism. First we are going to take a look on a generalization of
this theory, yet without a scalar field, by assuming a general gauge group.
In the next part we focus just on the U(1) group, but we add the scalar
field. The main technical apparatus will in both cases rely on utilizing the

concept of vertical degree of differential forms.



Foreword

Ones my lecturer in the elementary course on mechanics said that physics
is a Babylonian science. What he meant, is that when a part of physics
gets lost or forgotten it can be knitted back from the parts that are left.
In contrast, mathematics is based on axioms which can not be restored
once lost. The example that provided Theodor Kaluza shows that also
previously unknown parts can be knitted out of the already familiar parts.
Kaluza took the then modern "pattern" developed by Einstein, and knitted
something out of it in five dimensions and discover a little miracle. What
previously in four dimensions gave "just" gravity, in five dimensions, when
done correctly, gave in addition also electromagnetism. In this thesis we
take just a little step further and see if it is possible to unravel this theory
and knit it back together in a slightly other, arguably more elegant way
and may be also knit a bit further. And since the "patterns" of local
coordinates used by Kaluza are out of fashion and we like to go with the
newer fashion we are going to use frame fields and bundles instead. But
since scientist discovered a species who call themselves hipsters and fancy
everything "old school", in order not to discriminate them, we are also
going to mention local coordinates. What’s left to say? I hope you enjoy

reeding this thesis if only half as much as I enjoyed writing it.
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Introduction

The Klauza-Klein theory, is one of the first unified field theories, unifying
gravitation and electromagnetism in a classical way. The first attempt
was by Gunnar Nordstrom in 1914 [9]. However this was pre general
relativity. He used his own theory of gravitation, where the gravitational
field was given as an four-vector and the electromagnetic field by a six-
vector. He assumed the theory to take place in a five dimensional space
where neither the gravitational four-vector, nor the electromagnetic six-
vector were dependent on the fifth coordinate.

A similar idea (independently from Nordstrém) had Theodor Kaluza
in 1921|6]. He considered our space-time as a four dimensional part of
R5. It showed up, that the Einstein’s general relativity equations in the
5 dimensional space consists of Einstein’s equations, as we know it from
the usual 341 dimensional case, and Maxwell’s equations. Since we are
aware only of space and time, he argued, that the derivatives with respect
to the fifth dimension are either zero or negligible in terms of higher order,
thereby suggesting the so called "cylinder condition". This could be seen
as just hand waving.

An improvement came by Oskar Kein, whose idea was the compacti-
fication of the extra dimension and, in context of then recent discoveries

(1926) by Heisenberg, Schrodinger and de Broglie, he gave also a quantum



interpretation of the theory. As seen in [7], he assumed that the space
is closed in the direction of the coordinate of the extra dimension with
a period [. He managed to calculate this period { = 0.8 - 1073?m which
together with the periodicity supported the theory of Kaluza. This also
gave hint why the fifth dimension might not contribute to the physics. A
more detailed tratmenrt is given in [§].

Another approach came in the thirties by Oswald Veblen and Banesh
Hoffmann [15]. Instead of using affine geometry they used projective geom-
etry. That meant, that we do not need to worry about the extra dimension,
since it gets "absorbed into" the ordinary space-time.

The approach we are going to take is a more recent one. We are going
to formulate the theory in terms of a G-principal bundle 7 : P — M and
a connection on P [1], [I3]. What may be new is the use of vertical degree

of forms when computing connection forms.

10



Chapter 1

Data of the theory

Let us consider a principal G-bundle 7 : P—(M, g) with RLC connection
Hon M. M is a space-time (in physics 143 dimensional), G is a general
compact Lie group - the symmetry group of our theory. On M we have
a orthonormal frame field denoted €,, hence the coframe field is é*. The
metric tensor on M is

9 =nue" ® e, (1.1)

and the covariant derivative:
Vo = = (v)é, (1.2)

where wj are the connection forms. In this text we are going to denote
everything which comes from M with a hat ~ .

Further, we have a G-connection on P, characterized by its connection
forms w’. Note that this connection has nothing to do with RLC. Since w*

are just one forms (and also linear independent) they can be used as part

IThe standard name for this connection is either Riemann connection or Levi-Civita connection,
since both were great mathematicians, not to discriminate we will therefore use the abbreviation RLC

connection.(see [3])
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of a coframe field on P. So our (co)frame field on P is

e =E&p egi=é" (1.3)

el i=w' et = el (1.4)

Because of the connection w’, every vector in P can be decomposed in
its horizontal and vertical parts. The vertical part is by definition the one
which projects to 0 by m,. For the horizontal part we first need to define

a connection in P.

Definition 1. A connection on a principal G-bundle 7 : P — M is a(n
arbitrary) horizontal G-invariant distribution D" on the total space P (or

anything which is equivalent to this object)P|[3]

As a result, each tangent space 1), P of the manifold P can be uniquely

decomposed into the sum of its vertical and horizontal parts:
T,P = Ver, P @ Hor,P (1.5)

For convenience in the following text we use indices a, b, ¢ for the horizontal

part and ¢, j, k for the vertical part of vectors on P.

1.1 Metric on P

By default we have no metric on P so our first task is to construct one.
The crucial point in Kaluza’s construction was that the components of the
metric are independent from the fifth coordinate. Only then were gravity
and electromagnetism merged. When we translate this into our modern

language, it means that we demand its invariance with respect to the action

2A connection in this sense may also be encoded into the connection form.

12



of G on P. The arguments of a metric tensor g(U, V') can be decomposed
to its vertical and horizontal parts. Therefore we can define the metric

tensor g as follows:
e ¢ is such that horizontal vectors are perpendicular to vertical vectors.
e For the horizontal part g(horU, horV') := g(m. U, 7,V).

e For the vertical part we take g(£x,&y) = K(X,Y) , where K is an

Ad-invariant metric in the Lie algebra G.

An Ad invariant metric in G can be obtained e.g. by defining the

Killing-Cartan form in the Lie algebra G
K(X,Y) :=Tr(adxady) = (E', adyady Ei) . (1.6)

This form is symmetric, bilinear and Ad-invariant. The symmetry follows
from a property of trace - operators do commute within trace. Bilinearity

follows from linearity of adyx:

K(X+X2)Y) = Tr(adxiazady) = Tr((adx + Aady)ady)

= Tr((adxady) + ATr(adzady) (1.7)
K(X,)Y +XZ) = Tr(adxady;az) = Tr(adx(ady + Aady))
(

= Tr(adyxady+) + AXT'r(adxady) (1.8)
Ad-invariance:

K(Ang, Ade) = TT((AdgadxAdg—l)(AdgadyAdg—l) (19)
= Tr(adyady) = K(X,Y) (1.10)

3 (1.9) holds, since we put the represented values of the inputs of the Killing-Cartan form and ad

is the derived representation of Ad
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Its matrix of components with respect to the basis E; € G is

b—l
—_
e

kij K(EZ, EJ) = <Ek, ad,'a,djEk>

—_
—_
A\

e e N
b—\
—_
w

—_  —

= (E"[E;, |E;, By)]) = (E*,d\ [Ei, EY)

- <E jkcll > jkczl <Ek m> jk:czl 6k

k l
Zlcjk

.
—_
e~

So the metric tensor on P reds:
g :7r*§+lC:nabea®eb+mjei®ej, (1.15)

where e; = &g, and e, = " P|and €%, e’ are the corresponding dual bases,
see (1.3)(1.4). Note that such metric tensor is not only G-invariant as a

whole, but it vertical and horizontal parts are G-invariant separately.

1.2 Vertical degree of forms

Let us abandon our G-principal bundle for a while to introduce the concept
of vertical degree of forms in a more general setting. We are going to
proceed as in [4].

Let us have a space L which is composed of two subspaces L = L1 @ Lo

and call them [

L D Ly = vertical

L O Lo = horizontal

4In general we have k;i;, but since these are just constants we can digonalize the matric by choseing

a suitable basis, hance get 7;;
()" indicates the horizontal lift, such that m.é" = é, and é" € Hor, P.
6There is no deeper reason two call L; vertical and Ly horizontal, we could chose it the other way

round and it would not make any difference. It is a bit like with dual spaces, you effectively can
not distinguish which space is the reference (L) and which is the dual to it (L*), since (L*)* = L

canonically.

14



We choose a basis in both of this spaces, e; € L; and e, € Ly. So the
adapted basis on L is e, = (e;,e,) and the adapted dual basis in L* is

e® = (€', e*). Then the duality condition
(e, ep) = 03,
decomposes into four cases:
(" ey =067 (e'ej) =06 (% ey =0 (e eq) =0 (1.16)
A general p-form « in L can be written as:
_ o B
a—aaa“ﬂe A...Ne. (1.17)
Since e® is either e’ or €%, a can be alternatively expressed as:
a = G+e ANd+e Nel Ndy+ ... (1.18)
= aq) +aq) +ag + ... (1.19)

where & in (1.18)) only contains e®. Note that oy in is a well defied
object, since it is independent with respect to a change of frame, so together
with (1.18)), we can use this as a definition of the terms on the right hand
side of the equation. Hence we see that a p-form o« € L = L; @ Ly is
characterized by another integer (in addition to p), namely ¢, which we

can call the vertical degree.
Definition 2. The vertical degree of o) is q € Z.
Now we can introduce the concept of a horizontal form.

Definition 3. A p-form in L = L1 ® Ly is called horizontal, if its vertical

degree is 0 — a =

15



1.2.1 Some useful observations

One can first of all notice, that if a is horizontal, any vertical argument

makes it 0.

ie,(0) = 0 (1.20)

This can be further generalized as:

e, =0 & a=qq)

—_
(\)
()

leyle; 0 =0 = = qq + )

—_
[\)
W

ieliekieja — O <:> o = OZ(Q) + Oé(l) + 05(2)

ect.

As the last observation, I would like to introduce a operator which gives

back the vertical degree of the form on which it is acting:
Q=% ip=i.,, Jjfa=e"ANa (1.25)

Qoyg) = qa(y) (1.26)

For the proof see appendix [l

1.2.2 Example: Calculation of the curvature forms on a G-

principal bundle

Back to our G-principal bundle. One of our desires is to calculate the cur-
vature 2-forms €, since it will be helpful when calculating the connection

forms of the RLC connection.

We have in P (see ([1.3)),(1.4))):

o = (€i,e0), €*=(e',e"), (" e5) =05 (1.27)

16



We decompose each tangent space L = T, P into its vertical and hor-
izontal part in the sense of connection theory. Now, we see that this de-
composition matches the decomposition studied in this section, included

the meaning of vertical and horizontal.
L, :=VerT,P  Ly:=Horl,P (1.28)

By definition, the curvature 2-form € is the exterior covariant derivative

D := hor o d of the connection form w.
Q' := Dw' := hor(dw') = (de') () (1.29)
The defining properties of a connection form w are:

Rw = Adgw (1.30)

iy w = X (1.31)
The infinitesimal version of the first one is:
Leow=—adyw = —[X, w| (1.32)

And since the Lie derivative on forms is £, = di, + 7,d, this reduces to:

[,gxw = ding + igxdw (1.33)
= dX + g dw = i, dw (1.34)
ieydw = —[X,w] (1.35)

Finally for X = E;, w = w'E;, €' = w' we get:

ie,(de"\E; = —[Ej,w'E)] = —chw'E), (1.36)

e, (de’) = —c'p.e’ (1.37)

17



Now, when we act by an interior product (with a vertical argument) on

(11.37) we get:

ey de, (de") = —C?k

e ieyie; (de') = 0

(1.38)
(1.39)

When we recall the useful observations ([1.22)-({1.24)) from previous section

we conclude:
de' = (dei)(o) + (dei)(l) + (dei)(z)
Then from (1.38) we get

. 1
(de') ) = —3 k€ A e”,

and from (|1.37)) we get
(dei)(l) = 0.

So together we get
i i L ik
de' = (de") o) — 5Cke Ne”.
And by abusing the notation:

. 1
(dw")@) = dw"+ éc}kaﬂ A wP

—=: hor(dw")

So we derived the celebrated Cartan structure equations:

. 1,
QZ:dw“réc;koﬂ/\wk

18
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Chapter 2

KK-theory on a principle G-bundle

without a scalar field

This chapter is meant only as a mathematical exercise to hone our skills,
since in general we are not allowed to put an ansatz (like setting ® = 0)
in to the action (or the Lagrangian). The equations obtained by such an
action often leaner than when we do it the right way - computing all the
equations from the action and only then apply the ansatz. It shows up
that in this case it is even worse, as this ansatz (setting ® = 0) violates
a field equation for ®. For further informations why see [12]. Nonetheless
this exercise proves itself handy when we proceed to the more elaborate

case with the scalar field.

2.1 Connection form on P

In this section we are going to calculate the RLC connection forms on P.
This can be done using an ansatz [1]. Rather than guessing an appropriate
ansatz and hoping that we have not missed some important part of it, we

are going to use the concept of vertical degree of forms. By this method we

19



can preform a rather elegant direct calculation, we need only in to know
what properties are expected from the connection forms.
This means, for the RLC connection, that we want our connection forms

to be symmetric (zero torsion)
T"Edeo‘—i—wg‘/\eﬁz : (2.1)

which rewritten in terms of our horizontal and vertical indexes is

0 = de"+wiNe’ +wiAe (2.2)
0 = dei—i—wé/\e“—kcu;/\ej, (2.3)

and metric
Wah = —Why  Wai = —Wjq  Wij = —Wji (2.4)

with respect to the orthonormal basis ([1.3) on P. This gives

b b
NapW 5 = —NapWi
b
= =N Wic,
_ be 7
= —Nab" MijW ¢,
) .
w' = —n"n;iw'. (2.5)

Our goal is to find such wj so that this holds. The forms de, de’ are

already known from (|1.46]), and (2.1)) on M

de = —m* (Qp N e (2.6)
. 1.
de' = Q' — 5 k€ A e’ (2.7)

We can rewrite this in terms of vertical degree []
de® = (de")o, (2.8)
de' = (de")o + (de)s. (2.9)

!Since by the mapping 7* we get only horizontal forms, Q is horizontal by definition and c; pel nek

has clearly of vertical degree 2.

20



The connection forms are 1-forms so the decomposition in terms of vertical

degree is
wy = (wy)o + (wy)1, (2.10)
Wy = (Walo + (@i, (2.11)
w! = (wh)o+ (Wh)1. (2.12)

Now when we combine everything and add it to equations (2.2)) and (2.3

we get:

0 = (de)o+(wi Yo (€)oF (i) 1A o=n"msj (wh oA (€)1=n"ns () LA ()
(2.13)
0 = (de")o+ (de )2+ (wh)oA(e)o+ (wh)1 Ale)o+ (W )oA(e) )1+ (w))1A(ed)
(2.14)
Since on the LHS of both equations is zero, the form in each vertical degree

separately must be zero. For vertical degree 0:

0 = (de)o+ (wh)o A (") (2.15)
0 = (de")g+ (w))o A (e%)o (2.16)

For vertical degree 1:
0 = (@i A (o —1"mij(w)o A (e (2.17)
0 = (Wi Ao+ (WoA (e (2.18)

For vertical degree 2:
0 = 5ni(wi A (e (2.19)
0 = (dei)g + (w§)1 N (ej)l (220)

21



When we add concrete familiar objects from (2.6) and (2.7,we get from

vertical degree 0:

0 = —m" (@ A éb) + (wio A e’ (2.21)
= (wp)o = 7" (@) (2.22)
1 .
0 = —§szeb A et + (wl)o N e (2.23)
. 1 .
= (W) = 5%77*@" (2.24)

from vertical degree 1:

0 = (whHine— %nabnijﬂ‘gcﬂ*éc Ae! (2.25)
0 = (W) A — %Qﬂbﬂ*éb A e’ (2.26)
= (W) = —%Qﬂbwi (2.27)

0 = (W AT+ (wh)o Aw? (2.28)
0 = (w)jw ATe" 4 (w))am e Aw’ (2.29)
= (wa)j = (@))a (2.30)

from vertical degree 2:

0 = 5"ny(wpi A (e (2.31)
= (W= 0= («)o (2:32)

0 = —% L A wh + (Wi Aw? (2.33)

i Li &
= (Wi = —5w (2.34)

22



When we combine all this together we get the connection forms on P:

wy = W*d)g—%ﬁiabei (2.35)
wl = %ngeb (2.36)
wi = _%Qiabeb (2.37)
wj- = —% ;kek (2.38)

The same formulas can be find [1] (see equation (5.3)).

2.2 Scalar curvature R and Hilbert action

Scalar curvature is, in general, easily calculated from the curvature forms,
see appendix [[IL When we do all the computing we get the final result:

N 1 . 1 . ‘
R = TR+ Zﬂgbﬂib“ -1 i (2.39)

The Hilbert action of a gravitational field is (up to a conventional fac-
tor (—1/16m)) the volume integral of the scalar curvature, regarded as a
functional of the metric tensor

1

Ryw,

where R, = R is the scalar curvature of the RLC connection on (M, g)

and wy is the metric volume form [3]. In our case:

1

A 1 . ) :
SH = (W*R + ZszQiba — ZC}kaJ> wn (240)

167 Jp

So we see that the action consists of three parts. The last one is con-
stant, so it is physically uninteresting. The first term on its own is the
Hilbert action as we know it from the general relativity on M. The second

term is the action of the gauge field, so after variation we get something like
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a generalized Maxwell equation in vacuum.(When we do this for G = U(1)

we in fact get the Maxwell equations in vacuum).

2.3 Equations of motion

The equations of motion are obtained from the geodesic equations. The

acceleration is defined as

a = V,v.

(2.41)

A geodesics is a curve on which is the acceleration zero, so it has to satisfy

the following equation:
0 = V,v%,

0 = % + 0w (v)eg

0 = 0%+ vﬁwg‘(v)

This decomposes in to two equations in indices 7, a:

0 = 04+ v'wi(v) + v'w(v)

0 = 0"+ v'w,(v) + vwi(v)

We put in the connection forms:

. 1 :
wy = mwy — =%
2
‘ 1
w, = —szeb
2
1
wi = —§Qi“beb
. 1 .
A S
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(2.42)
(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
(2.48)
(2.49)

(2.50)



So we get:

P = §v%bﬁgb - ivjvkc;k = (2.51)

= o' = const. (2.52)

0 = —évbvl Sy — évzvbﬂiab (2.53)

0" o (Qf(e)) = vt (2.54)

In the equation ([2.54)) we see on the left hand side is the covariant derivative
of v® which can be obtain by lifting from M. Since v’ = const. we can

denote this ¢F{" = v'Q;%,. So we get the equations of motion

Vo = olqFL. (2.55)

But this are the well known equations for the motion of charged particle in

an electromagnetic field due to the Lorentz force (at leas in case G = U(1)).

2.4 Field equations

When we perform a variation, with respect to the metric tensor g,;, of the

Hilbert action (2.40) we get Einstein’s equations in vacuum:

Gay =10 (2.56)
It turns out that this is equivalent to

Ry =0 (2.57)

So to obtain the equations of motion, we need to calculate the Ricci ten-
sor. Our data are the curvature forms Qg For a detailed calculation see

appendix [T, The Ricci tensor is:
~ 1 )
Rab = W*Rab - §QZ‘CQQZCZ) (2.58)
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1
Ry = —§VbQiba (2.59)

1 1

So finally we get the equations of motion:

. 1 .
TRy = SO W, (2.61)
Vs = 0 (2.62)
1 1
ZQjabQiba = Zcflcicj (2.63)

Term on the right hand side of the first equation resembles the
stress-energy tensor of the gauge field. So the first equation looks like the
Einstein’s gravitational equation on M with an external source from the
gauge field

The second equation is a generalized version of the Maxwell equa-
tion. It is similar to V,F? = 0, which is the Maxwell equation in vacuum
(in a curved space). The difference is in the index i from the Lie algebra,
so there are multiple copies of the Maxwell equation for each .

The third one(2.63) is doubtful, since this would be analogous (in the
case of electromagnetic field) to F*F),, = const., which does not hold in
general. But after all we can not be surprised to get a strange field equation
since we used the wrong procedure (namely ignored altogether the
scalar field) to obtain it.

This proves how dangers is to put an ansatz into the action, since two
out of three equations look fairly reasonable. In the case of the original
Kaluza-Klein theory it took about twenty years to discover this mistake,
and realizing that the original KK-theory in fact does not provide a satis-

factory unification of gravity and electromagnetism.
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Chapter 3

Kaluza-Klein theory with scalar field
for U(1)

In order to remedy the fiasco from the last chapter we need to add more
degrees of freedom. Since by adding the scalar field, we add only one
additional degree of freedom, we will reduce our calculation just for U(1).
In the case of an higher dimensional field it would be necessary to add an
tensor field to cover up all the necessary degrees of freedom. If we would
just add one scalar field, in case of a general compact Lie group, it would
be a similar mistake as in the case of no scalar field. Even if it would be
a slight improvement, it would not be the whole story.

Before we introduce the scalar field, we write down, at first, the metric

on P in terms of local coordinates (x,y), where
- x = x* are coordinates lifted from M
-y = yP are coordinates on the fibre (p =1,...,dim G)

Recall our metric on P is

= 1§+ K (w,w) (3.1)
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The local coordinates relate to the frame field as follows:

e’ = e (z)da" (3.2)

¢ = e(x,y)de’ + e, (x,y)dy (3.3)
The first half of the metric we get by lifting it from M:
G = gu(z)dz" @ dz” = 70 = gu(z)dz" @ dz” (3.4)

Then, we have to take a look at the second half. First of all, it is worth
mentioning that eZ(a:, y) and e;(x, y) also depend on y. On the other hand

e(z) depends only on z, since we obtain it by lifting from M. This has

to be compatible with the defining properties of w’ - (1.31)) and (1.32). If

we insert this in (3.1]) we get:

g = (Mg +K,)da! @ da”

+E ypdat @ dy? + ICpdy? @ da’

+Cpdy” © dy? (3.5)
where
Ko = kijeze{/ (3.6)
Kup = K = kijezefo (3.7)
Ky = kijeel (3.8)

3.1 Introducing the scalar field

There are several ways for introducing the scalar field into the theory! In

this text we are going to stick a similar approach as in [12].

'For example see [11] or [12].

28



However, as in most other paper also in [12] it is done only for the special
case where G = U(1). That means for us, in order to compare to
the metric use in [12], we have to rewrite for U(1). That means we
have to calculate the Killing-Cartan form. But in case of U(1), it is easy,
since U(1) is abelian group, so this form is identically zero. In order to get
something interesting, i.e. something which is non zero, we have to ask,
first, why we used the Killing-Cartan form in the first place. We did that
in order to get an Ad invariant metric. And this is needed, since this was a
crucial fact in Kaluza’s construction. In the five dimensional case we need
that the components of the metric are independent of the fifth coordinate.
Only then were gravity and electromagnetism merged.

Since U(1) is abelian, Ad = id, so any metric is Ad invariant. So we
can simply choose k11 = 1. The Lie algebra u(1) = iR with a basis Fy = i.
We have just one y! = y, so the &; is just 0,. From the conditions

and ((1.32)) we get:

w' =e' = iA,(z)dx" + idy (3.9)
This gives
K = ALA, (3.10)
Kp = Kpu = Ay (3.11)
Kpg =1 (3.12)

g = (Tr*g/u/ + A,MAV) d[l’)'u ® dﬂ?y
+A,dx" ® dy + A,dy @ dx*

+dy @ dy (3.13)
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That means, the matrix of the metric tensor looks like:

gw +AA, A
gs= " (3.14)
A, 1
Well, the component gs5 is surely not the most general one. To get some-

thing more general we can introduce the scalar field, e.g. as in [12]:

g+ e2PAA, 2POA,

. 3.15
9as g 250 (3.15)

That means for our orthonormal frame field:

e’ =Pl et = Pl (3.16)

es :=e "% e, = e %" (3.17)

Now we can see, that as an supplement to the original metric tensor,
the scalar fields provides just one additional degree of freedom, which is
not enough for a general G. On the other hand for U(1) it is enough and

gives actually the whole story.

3.2 Connection forms with ¢

To calculate the connection form on P with ® we use as previously the
vertical degree of forms. In this case this technique proves itself even more
useful, than in the case without the scalar field, since to write down the
most general ansatz with a scalar field is a quite tricky task. This happens
mainly, because there are many places where we can add the scalar field
in an ansatz. Luckily, with this technique, we do not need to worry about

that.
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We want a RLC connection on P, i.e. to be symmetric (zero torsion)

0 = aley®)e’ Ae® + exp{a®}a*(dé”) + wi A e’ + wi Ae® (3.18)

0 = Blea®)e” Ae® + exp{pP}dw’® + w? Ae” + wi A’ (3.19)
and metric
Wah = —Why ~ Was = —Wsq W55 = —Ws5=0 (3.20)
with respect to the orthonormal basis on P. As before
wls = —n"w’y, (3.21)

Our goal is to find wj for which this holds. The forms de?, dw’ are already
known from (1.46)), and (2.1)) on M
mide" = —r* (&f AeY) (3.22)

do' = Q! (3.23)

The equation (2.7)) reduces in case of U(1) to (3.23)), since the structure

constants are zero. We can rewrite this as

m'de" = (m"dé")g (3.24)

do' = (dw')g (3.25)

The connection forms are 1-forms so

wy = (wy)o+ (wy (3.26)
wy = (w)o+ (W) (3.27)
w? =0 (3.28)

Now when we combine everything and add it to equations (3.18)) and ([3.19)
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we get: (3.19) we get:

0 = a(e®)(e’)o A (e%)g + exp{ad}(dr*e?),
+(wp)o A ()0 + (widi A (€")o

—n"nss(wp)o A (€7)1 — n™nss(wp)1 A (7)1 (3.29)

0 = Blea®)(e")o A (€)1 + exp{ P} (dw’)o

(W) A ()0 4 (W2)1 A (e%)o (3.30)

Since on the LHS of both equations is zero, so the form in each vertical

degree separately must be zero. For vertical degree 0:

0 = aley®)(e’)o A (") + exp{ad}(dr*eé)o + (wi)o A (€)o(3.31)

0 = exp{BP}(dw’)y+ (wW)o A (e“)g (3.32)
For vertical degree 1:

0 = (wi)1 A ("o —n"nss(wp)o A (e (3.33)
0 = Blea®)(e)o A (€)1 + (Wi A (e")o (3.34)

Since we have only one vertical form e’ the vertical degree 2 does not

exists.

When we add concrete familiar objects from (3.22)) and (3.23,we get
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from vertical degree 0 [|f]

=

aley®)e’ A e — (T Of) A e + (wi)o A€ (3.35)
aley®)e” A e’ + (T of) A e

08 + aj® (ia(es®)e’ — n“nepiv(e.P)el)

Wy + o€ (n“d(ebq))chl — n“encf(eeq))ébf)

(wio =m0 + o ((es®)e” — n™mpa(e-P)e?) (3.36)
—% exp{(8 — 20)®}QL e’ A e + (w?)g A e (3.37)

(5
Wio=13

exp{(f — 2a)P}Q}, e (3.38)

from vertical degree 1:

For the sake of simplicity we denote Q!

=

(wi)1 A e’ — 77ab7755

1 .
—exp{(B — 2a)®}Q e A€

2
(W) Ael + %exp{(ﬂ —2a)®}%e’ A el (3.39)
(Wi = —= eXp{(ﬂ — 20) 0}, %€’ (3.40)
Blea®)e® Ae® + (w?)i A e (3.41)
(wi)1 = Blea®)e” (3.42)

Fap- When we combine this

ab_

all together we get the connection forms on P:

5
Ws

—eX

mop + o ((es®)e” — n™ma(e.P)e”) — %exp{(ﬁ — 20)®} F"e?
p{(B — 20)P} Fue’ + Ble,P)e’

—5 exp{ (8 — 2a)®}fabeb — ﬁn“b(eb®)65

(3.43)

2For solution to the first one see apendix in 2]

305 =

100, (62 A éb) = Lexp{—2a®}Q5 e A €
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Note that a and § are not completely arbitrary. For a deeper under-

standing why see [12]. Let us just use the result obtained there and state:

2 _ 1 _
o) I E R g =—(D-2)a, (3.44)

where D = dim M.

3.3 Hilbert action and field equations

Similarly as in the previous chapter we calculate the Scalar curvature from
the connection forms. If you are interested, the whole calculation is listed

in appendix [[V]. Here we list just the result:
. A 1
R = exp{—2a®}7"R — 2a exp{—2ad} (D) — §n“b(ea®)(eb®)
1
2 exp{—2Da®}) F, F® (3.45)

No we can with fanfare announce the long awaited Hilbert action with

scalar curvature:

1 - A
Sulg, ®] = Tor P(exp{—Qo@}ﬂ*R—2ozeXp{—2a<I>}(DQ))

—%n“b(ea(f[))(ebq)) - iexp{—ZDaCI)})fabFab> 0, (3.46)

Now we can work out the field equations, similar as in the case without
the scalar field they are R,g = 0. The calculation of the Ricci tensor can

be found in appendix [V} Our field equations are:

- 1
T Raypy = omabDCD—I—exp{204<1>}§(ea(1>)(ebcl>)

—% exp{—2(D — 1)a®} FF (3.47)
0 = Vilexp{—2(D —1)ad}F?) (3.48)
O = —mexp{—zw—l)a@}fgfg (3.49)

From the last equation it is clearly visible, that we can not set ® = 0.
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Conclusion

We convinced ourselves that Kaluza’s original idea was not complete since
the lack of the scalar field led to a doubtful field equation . The
remedy came when we included the scalar field. There we can see that
the scalar field can not be simply set to zero, as tempting as it can be,
since would be violating the field equation for ® (3.49)). But regardless the
mistake that Kaluza and Klein made their discovery opened the door for
discovering new physics by calculating things in other (higher-dimensional)
spaces than is our usual Minkowski space. It also provided a cornerstone
for developing the geometry of bundles which can be now used to interpret
higher dimensional theories as string theories in our space-time.

An interesting future study could be to take a deeper look at the case of
a general compact Lie group and corresponding additional fields (analogous
of our scalar field for the five dimensional case) and work out how to add

the missing degrees of freedom.
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Appendix I

Proof of QO‘(q) — qoz(q>

Here we are going to prove Qay, = qoyg) which was listed in (|1.26)) as a

useful observation.
Q = j"ix (1.1)

The definitions of i, an j, are:

(tpa)(u,...,w) = a(v,u,...,w) o€ AL p>1 (L.2)
Jo = UAa  0=g(v,-) (L.3)

It is enough to prove this on a monomial e’ A... Ael Ae® A ... A€’ which
is a p form with vertical degree q.

7 (ike' Ao AE N AN = j’“(6,@.../\ej/\e“A.../\eb+...+(—1)q6iei/\.../\e“A.../\eb)
After acting by the interior product they are just ¢ terms left (see ((1.20))).
= (5,@ekA...AejAe“A.../\eb+...+(—1)q5ieMe"A...Aea/\...Aeb>
(Ao ned N Ao A+ (D) AE A AE AL AE)
= (A NN N N+ AL AN NN AE)

= qe' N NE NN NE (L4)
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Appendix 11

Calculation of scalar curvature

without scalar field

Before we start calculating the scalar curvature, we are going to prove

some theorems which come in handy in the calculation.

Theorem 1. Let Ry, be the Ricci tensor. Ry, may be encoded into Ricci
forms R, and that these forms are simply related to the curvature forms

Qf and the scalar curvature R
R,:= Ry’ R,=4Q iR, =i"Q =R
Proof. The curvature forms are defined:
Q= %Rgcd(ec A ) (IL1)

By direct computation we get:

1 1 1
ibQZ = ZbRacd(ec A ed) - §Rgcdéged T

05 Rb
b = bde 9

RZcbec
(I1.2)

acd

Let us use the antisymmetry in the last two indices of the Riemann tensor:
1 1
= R ba€ Rabcec = §Raded + 5Raded = Ruge’ = R, (I1.3)

]
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Theorem 2. for the RLC connection the Ricci (and then also Einstein)

tensor is symmetric
RLC connection = Ry = Rpy Gy = G
Proof. The Einstein tensor is:
1
Gap = Ryb — §Rgab (IT.4)

The metric tensor is symmetric (and non-degenerate) by definition so it
is enough to show that RLC = symmetry of Ricci tensor. From Ricci
identity we get:

QNe=0 (IL.5)

So if we act on the LHS by 4, we get also 0:

in(Q2Ae) = () Ae® + Q8 A (ipe®) = Rype’ Ae®+ Q068 = Rupe’ Ae +Q°
(11.6)
However, in an orthonormal basis is {2¢ = 0, thus necessarily:

Rape” A =0 (I1.7)

Since wedge is an antisymmetric product this is only (non-trivially) satis-

fied by a symmetric Ricci tensor. ]
We calculate the scalar curvature R using the curvature forms.

R = i“gQ = n™iigQ’ (11.8)
= iaisQ7 = QP es, e,) (I1.9)
= Q%4 ep) + Q%eq, €) + Qe e0) + QY (e4,e5)  (11.10)

)

= Q%(eq, e3) +29%(eq, €;) + Q2 (e;, €) (IL.11
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Luckily we do not need know the full reading of the curvature forms. We
just need to know what it looks like when adding the needed arguments.
To express the curvature forms from already known connexion forms we

are going to use the Cartan structure equation:
§ = dwi +w Awy (I1.12)
This means for us:
Q%(eq,e5) = 1" (eq, ep) (I1.13)

— gt (dw? + w§ A w4+ wd A wé) (€a,ep)  (I1.14)

= (dw™ + Wi Aw® + Wi Aw?) (eq, ep) (IL.15)
For the first term:

. 1 1 .
dwy = 7m'dwy — §(in“b) Ne' — E(Qi“b)dez

. 1 .
= 7mdwy — §(in“b) Ae'

1 . 1 o
—ZQi“ledec Aed + Zﬂﬂbc;-kej A eV

C

1 .
dw® = T d™ — 5(dQﬂb) Ael
1 , 1 o
—ZQi“szdec Aet + Zﬂiabcgkej AP
. 1 .
dw™(eq, e5) = mdw™(eq, ep) — ZQﬂ”di((Sg(Sgl — 6509
1 , 1 ,
= 7™ (eq, e5) — ~ U+~
4 4
o 1 ab L abeyi
= |7 do™(eq, €p) — §QZ QL (I1.16)
For the second term:
a db * A 1 a i * ~ db 1 db 1
Wi Aw®(eq,ep) = | TG — §QZ € | N 7Y — §QZ e' | (eq,ep)
— |7 (@5 A D) (eq, 1) (11.17)




For the third term:

w?/\wib(ea,eb) = (—iﬁﬂcec

1

1

) ()

= =000 (007 — 5507)

1

a ib
— __Qi aQb

4

1 .
_Qia sz
+ PRl

But !, = —Q! so %, = Q};b = 0. So together we get

(I1.18)

O (eq, e) = T (dzu@b 8 A @db) (€a, €p) — —Q Qi 2 QZ Qb (I1.19)

In the first term we recognize the scalar curvature R on M:

~ 3 .
Q% (eq,e5) = TR + ZQi“nga

For the other terms of R:

O (€a,€:)

dw(eq, €;) =

= (dw" +wi A wh + wji A w'') (eq, €;)

L\le—x L\le—\

Qza)éb(ez) _

(4
¥

1 . 1
= (w*@g — §Qj“b€3> A (—§Qibec> (€, €)

(dU™) A e’ — —dee ) (€q,€;)

1
(dU*) A € +2 o (@? /\e)) (€q, €;)

S (d)(e) = 0

1 o
= —Q-abQ’beJ N €°(eq, €;)

= ——Q pU6] 5
_ __Qia Qib _ __QiabQi
4 b a 4 ba
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(I1.21)

(I1.22)

(11.23)



wi A w(eq, ;)

1
- (o

“beb> A (%c,iiek) (€, €;)

1 3
- ZQjabc{;eb A ek(ea, ei)

1 3
= 79600

1
4

7

Q,%c" =0

, 1 ,
Q" (ea, €1) = =%,

(dw” + wl A w® + w), Aw) (e, ;)

Qij(ei,ej) =
ij L ik
dw" (e;,ej) = —§ck de"(e;, ;)
1 ..
= —ch” (Q’;bea/\eb—c
1 ..
= Lot atap - aamy
1 .. 1 ..
1 ..
= §ck”c§j

lm

LN em) (€i,€))

1 { 1 ja c
<§Qabeb> A <—§Qf: e > (ei,e;)

y

1
——=C €
2 kl

z)A(_

1

kjem

1 . .
: kj 1 m
= JCHCm ‘et Ne (e, e;)

1

= Lo, sy — sl

4

4

1.

i, kj
CkiCj

1

4

(
ijcl'

kj

41

) (i, €;)

(I1.24)

(11.25)

(11.26)

(11.27)
(I1.28)
(11.29)

(I1.30)

(I1.31)

(I1.32)

(11.33)

(I1.34)

(11.35)

(I1.36)

(I1.37)



Using Jcaobi identity we can show c;ﬂ-cjkj = 0, so we get

- 1.
QY (e, e)) = Zcﬁﬂjcikj : (I1.38)

So putting equations ([1.20), (I1.25) and (I1.38) together we get the

scalar curvature on P:

N 1 . 1 . .
R = W*R—I—Zﬂleiba—Zc}qu] (11.39)

a
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Appendix III

Calculation of Ricci tensor without

scalar field

The procedure to obtain the Ricci tensor out of the curvature forms will

be as following:

(07

0,05 =

i1, =

« —
Ry =

So for the Ricci tensor we get:

Rap = R’

ayB

1
= §ngge’y A el

iP%Rg‘weV A el
5B (5167 = 80)
% (Rg/ﬁe(s - ngev)
% (Rgp(Se(s - Rgmev)
B €
io 1,
5,00

5,2
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That decouples into 3 equationd']

Ry, = QZ(BC, Gb) + QZ(GZ’, €b> (IH.ll)
Raz’ = QZ(eb, 62‘) + Qé(ej, 62') <11112)
Rij = Q?(ea, €j) + Qf(ek, ej) (IHl3)

We start by computing R,
Q(ecrep) = (dw + wi A wi +wf Awl) (ec, ep) (IT1.14)

1 | ,
dwg(ec, eb) = (w*ddzg — §(dﬂica) Ae — é(Qica)dez) (ec, Bb) (11115)

1 | 1
= (g et e 100 A ()

1 , 1 ,
= w*dwg(ec,eb)—ZQicanead(stQica Lodee  (111.17)

c

1 1 .

= W*dﬁbg(ec, eb) — ZQZC@QZCID + ZQZ‘CG ,lL)C (11118)
1 |

= 7mdw; (e, ep) — §QicaQéb (ITI.19)

1 1 |
wi Awi(ec,e;) = (W*@fz - §Qz‘cd61> A (W*@g - §dea‘f]> (eH])20)

= (05 A0 (e, ep) (I11.21)

wi ANwg(ec,ep) = <—§Qicded> A <§waee> (ee,ep)  (111.22)
1

- _ZQiCdQée (8285 — 676¢) (111.23)
1 . 1 .
— 2O+ =050 I11.24
4 ab T 4 b3 fac ( )
1 .
= 7 (111.25)

L Just 3, no 4 since the Ricci tensor is symmetric.
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(e ep) = (dw) +wl Awl + w! Aw)) (e, ep) (I11.26)

: 1 . 1
dw! (e;, ep) = §(dew)ec(ei,eb) —|—§Qflc(dec)(ei,eb) (IT1.27)
1 , 1 .
5 (A% ()05 — 5" (@ A ") (e, ep) (I11.28)
[V
= é(dQﬁLb)(ei)iO (I11.29)

This is zero, since the Ricci tensor is symmetric in indexes a, b, but Q,

is antisymmetric.

. 1 . 1 ;
wi A wl(e;, ep) = (5 zlcec> A <7r*obg - EdeaeJ) (s, ep) (IT1.30)
1 i sc j
= 7 L0507 (I11.31)
1 .
= ZQZCbQica (II1.32)

, . 1. 1 .
wi Awy(ei ep) = (—5 ékek) A <§Qﬁwec) (ei,ep)  (II1.33)

(PR
= ;@%Qgﬁ; (IT1.34)

So the R,, component of the Ricci tensor reads

Ry = 7 dit(ee,ep) + (05 A 0% (e, ep) (IT1.36)
1 - 1 - 1 .

— =0, + =, -, Q% I11.37

2 cb+ 4 b ac+ 4 cb ( )

- 1 , 1 , 1 :

~ 1 .
= | 7" Rap — 508, (I11.39)

We proceed to R;:

Q(epe;) = (dwl +wd Al + w? Awl) (ep, €;) (I11.40)
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1 .
dwl(ep,e)) = d (ﬂ*@z — §ijae]> (ep, €;) (II1.41)

= —§(dQJ a)(€p)o (I11.42)
1
= —§(QZQZ a)(€ep) (I11.43)
b c ~b 1 b _j * A C 1 c k

we Awi(ep e;) = | mw, — §Qj N A §Qk ") (entldi)44)

1 1
= —§7T W (eb)Qk a5k + Eijc(S] ( ) (HI 45)

1 1

= —§cha7r*wb(eb) + §Qibc7r*d)2(eb) (IT1.46)

w?/\wg(eb,e,-) = <——Qj Ce> < Qe ) (ep,€;)  (II1.47)
_— (IIL.48)

Ol (ej,e;) = (dwg +wl AW+ wl A wf) (ej,€i) (I11.49)

dwl(ej,e;) = d( Qabe> (ej,€) (II1.50)
_ 0 (IIL51)

, 1 . 1
w! AN wg(ej,e) = <§Qﬁbeb> A (W*fug — 5&%%6’“) (ej,€;) (111.52)
0 (I11.53)

wl Awk(ej,e) = (—%cﬁ%leo ( Qabe) (ej,e;)  (II1.54)

~ 0 (ITL.55)
Rui = —5(d00) () — 304 elles) + 50l af(es) (1156
= %(dmﬁwﬂ — Qe @E) (en) (I11.57)
1
=~ (DOL) (@) (I11.58)
- —%VbQ (I11.59)
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When, we put R,;, together, we spot something familiar - the three terms
give together just one, with covariant exterior derivativd? which can be

further simplified using the definition of the covariant derivative along a
vector fieldPl
And finally R

Q(eq,e;) = (dw® 4wl Aw? 4w Awk) (eq, €; I11.60
i J i b i k 7 J

1
dw(eq,e;) = d <—§Qi“beb> (€q, €5) (IT1.61)

= L) ()8 = S(d) (e)) =0 (ITL62)

1 1
wy /\wf(ea,ej) = (W*djg‘ — §Qkabek) A (—§Qibcec) (€q, e{I11.63)
1

— _ngab(s;mibcég (111.64)

— _inabQiba (111.65)

o nakenes) = (=300 ) A (—3eke!) (eae) - (1106)
_ igkab(sgcgg; (IT1.67)

— igkaacgzo (T11.68)

Qf (e, ej) = (dw! +wh Aw! +w) Aw!) (er, €)) (I11.69)

2See exercise 21.7.6 in [3].
3See exercise 21.3.6 in [3]. V, = V.,

47



dwf(ek, e;) =

wy A wi(eg, e;)

culk /\wll-(ek,ej)

1 k
= <_§Clm€

chuch, (0757 — 77)

—Cj,,, C:
4 Im“in

1

kol
—Cj.Ci i —
4lk 1J

1kl

4Cljcik:

“CGilCrj — Zcilcjk

1
m) A (—§c§ne"> (ex, €;)

1
k1
4 17>k

So the R;; component of the Ricci tensor reads

Rij =

1kl 1kl

1 b
_EQjabQi o T 5CCkj = CUiCin

1 a b
_ZQj bQi a

1 k1
+ Zcilck]'
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(I11.71)

(111.72)
(I11.73)

(I11.74)

(IT1.75)
(I11.76)

(I11.77)

(I11.78)
(I11.79)

(I11.80)

(I11.81)

(111.82)



Appendix IV

Calculation of scalar curvature with

scalar field for U(1)

To compute the scalar curvature with the scalar field we are going to
proceed as in appendix [[]
R = iaiﬁﬁﬂa = Qﬁa(eg, ea) (IV.l)
= Q%e,, e5) + QP (eq, e5) + Q% (es, e4) + Q% (e5,e5)  (IV.2)
= Q%e,, e) + 29 (eq, €5) (IV.3)
%°(e5, e5) = 0 because, in general QY = —Q/¢

We proceed with the firs term of R - Q%(e,,e;). As before we are going

to use the Cartan structure equation:

Qg e) = (dw™ + wi A w® + wi Aw™) (eq, ep) (IV.4)
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dw™(eq,e5) = md(OP)(eq, €))
+ (ombc(edecq))ed A e — an®(e. D) (m*wl) A ed) (€as€p)
— (omac(edeccb)ed A el — an™(e. ) (r*wWh) A ed) (€a,€p)
2 e {(28 — 20)2) F0N e, 1)
= 7 d(W™)(eq, )
+an*(eqe.P) (5d(5b 5552)
—an"(e.®) ((m*w§)(ea)dy — (7°wf)(es)d7)
—an™(eqe.®) (550, — 050,)
“(ec®) ((r*wi)(ea)dy — (mwg)(es)dy)
—% exp{—2Da®} FPF.qe¢ A e (eq, €))

+am

= 7 d(0™)(eq, )
(D = 1f(enec®) — an(eB) ('l (ea)
—a(D — 1)1™(eqec®) — an®(e.P)(r*w?)(ep)
—% exp{—2Da®} FPF,,
= 7 d(0™)(eq, ) — 2(D — Dan®(e,e,®) (IV.5)

~20(e®)(r°w")(ex) — 5 exp{~2Da®} FU
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Wi AwP(e, e) = (@5 A (Ddb) (€, €p)

+an® (e, @) (7*08) A e(eq, )
—an®(e,®)(7*0%) A €’ (eq, )
+aleg®)e A (T*0™) (eq, )
+a? " (e4®) (e ®)e® A el(eq, €)
—a’n"(eq®)(e,P)e” A €’ (eq, 1)
—an™ng(e.D)e’ A (™) (eq, )
— 1" ngen™ (e.®) (e ®)e’ A e(eq, €)
+a? 1" ngen™ (e. D) (e,®)e A €¥(eq, )

= 7 (obg A oDdb) (€as€p)
+a(ep®) (7" 0™) (ey) — (D — 1)a(ep®) (7* &™) (e4)
+(D — Da(ep®)(7*0") (eq) + (D — 1)a*n™ (e, ®) (ep®)
—(D?* — D)a*n®(e,®)(ey®) — ey ®)(m* ") (e,)
+(D — 1)a?*n™(e,®)(e,®)

= 7 (0 A d}db) (€as€p)

—2(D — 2)a(ey®) (™) (e,)

—(D —2)(D — 1)a*n™(e,®) (e, @) (IV.6)
1
Wi AW (eq, ) = 2 exp{—2Da®} FFlel A e (eq, €))
1
= Zexp{—2Dom1>}f[;lf§ (IV.7)
e, e0) = (dw™ +wj A wba) (e5,€q) (IV.8)
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dw(es,eq) = d (% exp{—Da®})Fle’ + Enab(eb®)65) (e5,€q)
= %exp{—DozCI)})(d}"g) A eb(e5, €q)
+67]“b(eceb<b)ec A€ (es, eq)
+8(6 — a)n “b(ebCID)(eCCID)eC A€’ (es, eq)

= —"(eaes®) — B(B — a)n™(e,P)(er®) (IV.9)

w) Awh(es,e,) = —i exp{—2Da®})Fy.F % A €5(es, €,)
+B(er®)e” A (mw") (es, €q)
+a B (e,®)(eq®)e’ A ¥(es, eq)
—afBn* (e ®) (eq®)e® A e (es, €,)
= 1exp{ 2Dad}) Fop F® (IV.10)

+B(er®) (&™) (eq) — (D — 1)afn™(e,@)(er®)
Combining it altogether gives:

R = exp{—2a®}r*R
—[2(D = V)a + 28] (eaer®) — [2(D — 1)a + 26] (e ®) (m* ™) (e4)
—[(D =2)(D = 1)a® +28(8 — @) + 2(D — 1)af]n™(e,P) (es®)
—i exp{—2Dad})F, F*
= exp{—2a®}r*R
—20 exp{ —20®}(OP) — %nab(eacb)(ebcb)
—i exp{—2Da®})F,, F*

(IV.11)

The terms in the second line give together a covariant d’Alembert operator

(see exercise 15.2.9 in [3]). Since we want to take a look at the physics on
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M we are going to express this in terms of the d’Alembert operator on M,

hence the hat and extra exp{—2a®}.
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Appendix V

Calculation of Ricci tensor with scalar

field for U(1)

For calculating the Ricci tensor we proceed as in appendix [[T1]

We start by calculating the R,, component

Ry, = Qe ep) +Q(es,e) (V.1)

= (dwf 4+ Wi A w4+ Wi Awd 4+ dw? + W) Awd) (e, ep) (V.2)

o4



dwi (e, ep)

T (dwg)(ec, ep)
Fa(eacad)ed A e(en, o)
—a(ea®)(@§) A e(ec, en)
oo (ecea®)el A e (e, )
g (€a®) (@) A Hlen )

—% exp{(28 — 20) D} FQ (e, e1)

T (dwg) (ec, ep)

(D = 1)a(eqes®)

—a(e,P)(wp)(ec)

—amagyn(e.eq®) + ae,er®)
+an™(eg®) (@Wap) (ec) + a(eqa®)(@5) (en)
—i expl (28 — 20) D} FFae A e (e0, 1)
T (dwg)(ec, ep) — ale, ) (@) (ec)

+an (eq®) (@a) (ec) + a(ea®) (@) (en)
—(D = 2)a(eaes®) — anan™ (ecea®)

1
+§ exp{ (26 — 2a) P} F: Fy.

95



Wi Awalee ) = (W AD™) (e, ep)
+a(eg®)(70S) A e (e, ep)
—andenaf(eecb)(w*@fi) A el (e e)
+a(eq®)e’ A (0 (e, ep)
+02(e,®)(eq®)el A (e, ep)
—042ndenaf(ed<l>)(ee(b)ec A el (e, e)
—ar“ng (e.®)e! A (1°07) (e, en)
— @ “nap(e.®) (ea®)e’ A (e, )

+?0 1 nan(e.®) (e,@)e! A€ (e, )

= 7 (Q5 A D™) (e, ep)
+a(ea®)(mwp) (ec)
—anay(ea®) (0 ) (ec) + ale.P) (7G5 ) (en)
+Da(eq®)(m0y) (en) — alea®)(m*wy)(ep)
+Da’(e,®)(ep®) — (e, P) (e @)
— Do (e.®)(ea®) + a*nan ™ (e.P) (ea®)
—a(eq®)(705) (en) + an(ea®) (m*Wpa) (ec)

—a*(e,®)(ep®) + a®(e,®)(ep®)

+? a1 (e:P) (ea®) — o (e, ®) (esP)

= 7 (Q5A Q™) (e, )
+(D —2)a*(e,®)(esP)
—(D — 2)a” 1™ (e.®)(ea®)
+a(e,®)(mwp) (ec)
—anap(ea®) () (e.) + an(es®) (7 Wra) (ec)

+(D — 3)a(eg®) (%) (ep) (V.4)
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ws A wi(ec, ep)

dwg(eg,, ep) =

wg A wi(es, ep)

1
= -3 exp{—2Da®} F5Fae’ A e(e., ep)

1
1 exp{—2Da®} F; Fu.

1
5 exp{—Dad}(dF,.) N e(es, ep)

+8(8 — a)(e,®)(e.P)ef A €°(es, ep)
+B(eqe.P)ef A e’(es, ep)
% exp{—Dad}(dFy)(cs)

—B(8 — a)(e,P)(ep®) — B(eqer®) (V.6)

—i exp{ —2Da®} F.aFe’ A e(es, )
+B(e.D)e’ A (7°0C) (5, €p)

+aB(e.D)(e,D)e’ A e(es, €)
—aBn“nap(ec®) (e, D)’ A el (e5,e)

% exp{—2Da®} F,, F¢

+0(ec®)(m Wy ) (en)

+aB(e.P)(ep®)

—aBnan™(e.®)(ea®) (V.7)
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When we put everything together we get

Ry = exp{—2a®}7*(R)

1

-|-§ exp{ —2Da®} FFy.
1

—5 (ea(I)) (6[;@)

_@naand(ecedq)) - anab(ed@)(ﬂ*d)c‘i)(ec)
R A 1 1
= |exp{—2a®} (W*Rab — anaqu)) — 5(66@)(6;)(1)) + 5 exp{—2Da®} FFp.

(V.8)

The terms in the fourth line give together a covariant d’Alembert operator
(see exercise 15.2.9 in [3]). Since we want to take a look at the physics on
M we are going to express this in terms of the d’Alembert operator on M,
hence the hat and extra exp{—2a®}.

We continue the calculation for Rs:

Rys = (e, es) (V.9)
= (dw? + Wh A w4+ W A W) (e, e5) (V.10)
1
duw’ (e, e5) = —52(5 — a)(e.®) exp{—Dad®} Fle® A € (ey, e5)

_% exp{—Da®}(dF?) A & (ep, e5)
= —(8—a)(@®) exp{—Da®}F}
_% exp{—Da®} (dF)(e;) (V.11)
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1
Wi A wey, e5) = —3 exp{—Da® Y FUr* &%) A € (ey, e5)

1

—5 exp{—Da®} Fia(ea®)e’ A e’(ep, e5)

1

+§ exp{—Da®} Flan*ng.(e.P)e A e (ey, e5)
1

~3 exp{—Da®}FleS A (7*0) (ey, €5)
1

—5 exp{=Da®} Fja(e,®)e’ A e(es, e5)
+% exp{—Da®} Foan™n..(e.D)e’ A e (e, e5)
— _% exp{—Da®}FI(7*&}) (ep)
+5 exp{—Da®} Fi(x o) (e)
1

—§(D — 2) exp{—Da®} Fla(e,d) (V.12)

1
Wi Awd(ep,e5) = —5 exp{—Da®}F’B(e,P)e A €°(ep, e5)

1
~3 exp{—Da®}F,q.8n"(e.D)e’ A e(ey, e5)

_ _% exp{—Da®} 3F! (e,®) (V.13)

R = —5ep{-Dad}(dF) (o)
—%exp{ Da®} Fl(rah)(e)
+;exp{ Da®} (') (ey)

+(D — Daexp{—Da®}F’(e,d)
_ —%exp{—(D — 1)a®}(V,F?)
+(D — Daexp{—Da®}F’(e,®)

_ _% exp{(D — 3)a®}Vy(exp{—2(D — 1)ad}F)| (V.14)

The terms in the first three lines give together the covariant derivative of

F? (this is almost the same as in ([I1.59))). Then we just add the remaining
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two terms together to obtain the result.

At last for the component Rss:

R55 = Qg(@a, 65) (V15)

= (dw? + Wl A wb)(eq, es) (V.16)
a 1 Q b
dwi(eq, e5) = ~3 exp{—Da®}(dF}) Ne

—Bn“b(ecebfb)ec A 65(6a, es)
—B(B — a)(ey®)(e.P)e A €’(ey, e5)
B (ear®) — BB — a)(eaB)(s®)  (V17)

wh Awi(eq,e5) = —Bn"(e.)(m*@p) A €’(eq, e5)
—afn*(e,®)(e.P)e” A €5 (eq, e5)
+a B0’ (ec®) (ec®)e? A €®(eq, e5)
+i exp{ —2Dad} FIFle A (g, e5)
= —f1"(e.®)(r" @) (ea)
—(D — Dafn™(e,®)(e,®)

1
~1 exp{—2Da®} FLF? (V.18)

Rss = —577ab(6a€bq)) - ((D - 1)045 + 5(5 - a))(ea@)(eb@
B (e, B) (70 (ea) — iexp{—2Doz(I>}]:,?]:£
= (D - 2)an“b(eaeb®) + (D — Z)Q(qu))(ﬂ*@“b)(ea)

1
~1 exp{—2Da®} FF?

A 1
= [(D —2)aexp{—2a®}0D — 1 exp{—2Da®} F{F| (V.19)

Here we get by the same manner as in (V.8) the covariant d’Alembert

operator.
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