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Školitel’: doc. RNDr. Marián Fecko, PhD.

Miesto: Bratislava

Dátum: 5.5.2023
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Je dobre známe, že Lieova derivácia je jedným zo základných prostriedkov
použ́ıvaných v matematickej fyzike. Možno už menej známym faktom je, že
okrem tenzorových poĺı sa dá spoč́ıtat’ aj Lieova derivácia lineárnej konexie ∇
na variete (M,∇). V práci najskôr predstav́ıme tento koncept využit́ım dife-
omorfizmu f medzi dvomi varietami na zavedenie pullbacku lineárnej kone-
xie, na základe čoho následne definujeme samotnú Lievou deriváciu lineárnej
konexie. Sformulujeme podmienky platné pre symetrie lineárnych konexíı v
rôznych pŕıpadoch a študujeme vlastnost’ týchto symetríı zachovávat’ geode-
tické krivky. Na záver skúmame aplikácie týchto myšlienok v Newtonovej-
Cartanovej teórii gravitácie.
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V



Abstract

Author: Frederik Ďalak
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It is well known that one of the fundamental tools used in mathematical
physics is the Lie derivative. Perhaps a less known fact is that, apart from
tensor fields, one can also compute the Lie derivative of a linear connection ∇
on a manifold (M,∇). Here we first introduce the concept by showing how
to use a diffeomorphism f between two manifolds to compute a pullback of
linear connection, based on which the Lie derivative of linear connection itself
is defined. We formulate conditions valid for linear connection symmetries in
different cases and study the geodesic preserving properties of these symmet-
ries. Finally, we examine the applications of these ideas in Newton-Cartan
theory of gravity.
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Introduction

Let us begin with a brief history lesson on the subject of the Lie derivative.
The notion of Lie differentiation, nowadays known to everyone lucky enough
to have at least a basic background in mathematical physics, has its roots in
the works of David Hilbert and Élie Cartan [Hilbert, 1915] [Cartan, 1922]. In
these early papers, the foundations for the Lie derivative of the metric tensor
and differential forms were laid. Later on, in 1931, Wladyslaw Ślebodziński
introduced an operator acting on any geometrical object, based on the idea
of expressing it in infinitesimally shifted coordinates, in a way he described
as ‘dragging it’ along a vector field [Ślebodziński, 1931]. The operator was
later called the Lie derivative by David van Dantzig. The general formulation,
presented by Ślebodziński, allows one to perform the Lie differentiation, in
addition to the largely familiar case of tensor fields, also on any other object
which can be expressed in different sets of coordinates [Trautman, 2008].

The linear connection is a structure on a manifold, fully determined by
the corresponding coefficients of connection Γi

jk (or equally well by the forms
of connection ωi

j). Since these are objects with well-defined transformation
laws under a change of coordinates, naturally also the Lie derivative of linear
connection was introduced. It was later studied by Kentaro Yano, Shoshichi
Kobayashi, and others [Yano, 1967] [Kobayashi, 1995]. Owing to these works,
we know today for instance that the symmetries of linear connection, simi-
larly to those of the metric, constitute a Lie algebra. It was also shown that
the Lie derivative of linear connection is represented by a tensor field of
type

(
1
2

)
. Some of the more recent papers concerned with this topic were

published by Tsamparlis, Paliathanasis, Hauer, Jüttler, and other authors
[Tsamparlis and Paliathanasis, 2009] [Hauer and Jüttler, 2018].

In the present work, we reformulate the concept of the Lie derivative
of linear connection using non-component language. In the first chapter, we
familiarize the reader with the pullback connection, deriving its definition
and exploring its basic properties. These ideas are then used in the second
chapter to derive the definition of the Lie derivative of linear connection. It
is first defined as an operator acting on the tensor algebra. Afterwards, the

2



possibility of establishing the corresponding type
(
1
2

)
tensor L∇

U is introduced.
We also present a useful formula expressing the L∇

U tensor in terms of the
curvature tensor R and the torsion tensor T assigned to the given linear
connection∇. In chapters three and four, the symmetries of linear connection
are discussed. We formulate conditions valid for the symmetries of linear
connection as demand for vanishing of the L∇

U tensor and also in terms of
forms of connection. A useful reformulation of the condition for symmetries,
valid specifically in the case of the Levi-Civita connection, is then derived.
The fifth chapter is dedicated to the geometrical interpretation of the Lie
derivative of linear connection, studying the geodesic preserving properties
of linear connection symmetries. Finally, in the sixth chapter, applications of
these ideas in Newton-Cartan theory of gravity are examined.
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Chapter 1

The pullback connection

The idea of the Lie derivative of linear connection is based on the possi-
bility of introducing a pullback of a linear connection in a similar way as in
the case of the pullback of tensor fields [Stein, 2017]. This way one is able to
define a linear connection called the pullback connection on a manifold with
no linear connection previously established if there is another manifold with
a linear connection and a diffeomorphism between the two manifolds. In the
first chapter, we explain how the pullback connection is introduced and we
look at some of its properties.

1.1 Definition of the pullback connection

To introduce the concept of the pullback connection let us consider two
manifolds M and N . We will assume that on the manifold N there is a
structure of linear connection ∇, whereas on the manifold M there is a priori
no linear connection present. Moreover, we consider a diffeomorphic map
from M to N f : M → N . As we know, the diffeomorphism f also induces
the existence of bijective maps between arbitrary types of tensor fields on
both manifolds: pullback f ∗ and push-forward f∗:

f ∗ : T p
q (N) → T p

q (M) (1.1)

f∗ : T p
q (M) → T p

q (N) (1.2)

The linear connection on (N,∇) represents a possibility to compute a
covariant derivative on the manifold N . This practically means that to any
vector field V ∈ X(N) and arbitrary tensor Ṽ ∈ T p

q (N) we are able to assign

a tensor field ∇V Ṽ ∈ T p
q (N) called the covariant derivative of Ṽ in the
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direction of V . The question which we would like to answer is: can we come
up with a way to establish a linear connection on the manifold M , based on
the existence of the linear connection ∇ on N and the diffeomorphism f?
In other words, is there a way to introduce a covariant derivative on M ?
Fortunately, the answer to these questions is positive (otherwise there would
not be much to discuss in the rest of the thesis). The way to establish a
covariant derivative on M is actually fairly natural and straightforward. We
would like to be able to compute a covariant derivative of a tensor Ũ ∈ T p

q (M)
in the direction of a vector U ∈ X(M) resulting in a tensor of the same type(
p
q

)
on M . Since there is no linear connection present on M , the first step

we should take is to compute the pushforward of both U and Ũ resulting
in a vector f∗U and a tensor f∗Ũ on the manifold N . Since the resulting
objects reside on (N,∇), it allows us to compute the covariant derivative
∇f∗Uf∗Ũ ∈ T p

q (M). That brings us one step closer to our goal of having a

covariant derivative of Ũ in the direction of U . The resulting tensor ∇f∗Uf∗Ũ
is a tensor field on the manifold N though. Therefore, we need to use the
diffeomorphism f once more to compute the pullback of the created tensor,
thus getting our result back to the original manifold M (see Figure 1). Hence,
we obtain the tensor field f ∗[∇f∗V f∗Ṽ ].

Figure 1: Definition of the pullback connection

It is quite simple to make sure that the term f ∗[∇f∗Uf∗Ũ ] actually sa-
tisfies all the properties required for it to be a covariant derivative on the
manifold M (see Appendix A). This leads us to define the pullback connec-
tion f ∗∇ on the manifold M by introducing the covariant derivative (f ∗∇)U

5



corresponding to this connection based on the formula we derived above.
The covariant derivative represents an operator assigned to every vector field
V ∈ X(M) which acts on a tensor T ∈ T p

q (M) in the following way:

(f ∗∇)V T = f ∗[∇f∗V f∗T ] (1.3)

1.2 Coefficients of the pullback connection

To help create a more clear image of what kind of object the pullback
connection represents, let us work out the formula describing the coefficients
of the pullback connection f ∗∇ based on the known coefficients of the original
linear connection ∇. Here we continue working with the geometrical objects
set up in the previous section: we consider manifolds M and (N,∇) while
considering a diffeomorphism f : M → (N,∇).

Let yα be a set of coordinates on the manifold (N,∇). Then the linear
connection ∇ is fully determined by the coefficients Γα

βγ defined in the stan-
dard way:

∇∂γ∂β := Γα
βγ∂α (1.4)

Furthermore, let xi be a set of coordinates on the manifold M . (We may
notice that there are as many α indices as there are i ones since both mani-
folds need to be of the same dimension in order for f to be a diffeomorphism.)
The diffeomorphism f then provides a set of functions yα(x) mapping the
points of M to the ones in N . We denote the corresponding Jacobi matrices
as follows:

Jα
i :=

∂yα

∂xi
(1.5)

(J−1)iα :=
∂xi

∂yα
(1.6)

The coefficients of the pullback connection f ∗∇ are then given in analogy
with the definition (1.4). We denote these Πi

jk:

(f ∗∇)∂k∂j := Πi
jk∂i (1.7)

Using the defining formula (1.3) of the covariant derivative (f ∗∇)V yields:

(f ∗∇)∂k∂j := f ∗[∇f∗∂kf∗∂j] (1.8)
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From the obtained expression one may derive the formula for the co-
efficients Πi

jk in terms of the original Γα
βγ coefficients by using the Jacobi

matrices (1.5) and (1.6) to express the pullback and push-forward in the
corresponding terms:

(f ∗∇)∂k∂j = f ∗
[
∇Jγ

k ∂γ
Jβ
j ∂β

]
= f ∗

[
Jγ
k J

β
j ,γ ∂β + Jγ

k J
β
j Γ

α
βγ∂α

]
=

[
Jγ
k J

β
j ,γ (J

−1)iβ + Jγ
k J

β
j (J

−1)iαΓ
α
βγ

]
∂i

=

[
∂yγ

∂xk

(
∂

∂yγ
∂yβ

∂xj

)
∂xi

∂yβ
+

∂yγ

∂xk

∂yβ

∂xj

∂xi

∂yα
Γα
βγ

]
∂i

=

[
∂2yβ

∂xk∂xj

∂xi

∂yβ
+

∂yγ

∂xk

∂yβ

∂xj

∂xi

∂yα
Γα
βγ

]
∂i

(1.9)

The obtained result might now be compared to the defining formula (1.7).
Doing so reveals that the coefficients of the pullback connection Πi

jk are given
by the formula:

Πi
jk =

[
∂2yα

∂xk∂xj

∂xi

∂yα
+

∂yγ

∂xk

∂yβ

∂xj

∂xi

∂yα
Γα
βγ

]
(1.10)

We may notice that the resulting expression looks quite familiar. It is the
same formula one would use when converting the coefficients of the origi-
nal connection ∇ from the yα coordinates into the xi coordinates, using the
diffeomorphism f which would be the corresponding change of coordinates
f : M [xi] → M [yα], mapping M to itself. As we see, computing the coeffi-
cients of the connection ∇ in the transformed coordinates, in this case, is
the same as using the diffeomorphism f to compute the coefficients of the
pullback connection.

1.3 Pullback connection for a vector field flow

For the sake of future reference, let us try to use the formula (1.10) for
the case of a specific automorphism of a manifold (M,∇) given by a flow
Φt : M → M of a vector field U . The relationship (1.10) for the coefficients
of the pullback connection is identical to the one corresponding to a change
of coordinates. Based on that one may realize that considering a change of
coordinates, for which the new coordinates are introduced as the original ones
shifted by a flow of a vector field, is exactly the idea which led Ślebodziński
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to introduce the operator, nowadays known as the Lie derivative (see the
Introduction). Only formulated in the language of a vector field flow. Here
we attempt to recreate the procedure presented by Ślebodziński, expressing
the coefficients of connection in coordinates shifted by an infinitesimal flow
Φϵ of the vector field U and computing, to the first order in ϵ, the relations-
hip between the two coordinate expressions. The vector U is given using its
components U i(x) with respect to xi coordinates:

U = U i(x)
∂

∂xi
(1.11)

Suppose there are coordinates yi defined as the xi ones shifted by Φϵ:

yi = xi + ϵ U i(x) (1.12)

Then to the first order in ϵ the xi coordinates are expressed using yi as:

xi = yi − ϵ U i(y) (1.13)

The corresponding Jacobi matrices of this coordinate change are:

∂ya

∂xi
= δai − ϵUa,i (x) (1.14)

∂xi

∂ya
= δia − ϵU i,a (y) = δia − ϵU i,a (x) +O(ϵ2) (1.15)

Once we name the functions expressing the coefficients of connection in
the xi coordinates Πi

jk(x) and the ones for the coefficients in the ya coordina-
tes Γa

bc(y), we may use the formula (1.10) to obtain the following relationship:

Πi
jk(x) =

[
∂2ya

∂xk∂xj

∂xi

∂ya
+

∂yc

∂xk

∂yb

∂xj

∂xi

∂ya
Γa
bc(y(x))

]
(1.16)

To express the difference to the first order in ϵ we need one more identity
for the Γi

jk(y(x)) term:

Γi
jk(y(x)) = Γi

jk(x+ ϵ U(x) ) = Γi
jk(x) + ϵ Um(x)Γi

jk,m (x) (1.17)

We are finally ready to use the obtained relationships (1.12), (1.13),
(1.14), (1.15) and (1.17) in the formula (1.16) to get:

Πi
jk(x) =Γi

jk(x) + ϵ
[
U i,jk +UmΓi

jk,m −U i,m Γm
jk+

+Um,j Γ
i
mk + Um,k Γ

i
jm

]
(x)

(1.18)
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Therefore the coefficients Πi
jk(x) in the coordinates xi may be expressed

by ‘plugging’ the xi coordinates into the functions Γi
jk in place of the yi

coordinates and then adding the infinitesimal term in the brackets. This
reduces just to replacing the coordinates in the Γi

jk functions in the special
case when the term in the brackets vanishes:

U i,jk +UmΓi
jk,m −U i,m Γm

jk + Um,j Γ
i
mk + Um,k Γ

i
jm = 0 (1.19)

As we shall see in Chapter 2, this term is actually nothing else but the
expression for the Lie derivative of the connection ∇ in the direction of the
vector field U . Further examination reveals that the term in the equation
(1.19) represents components of a type

(
1
2

)
tensor (see chapter 2). This also

leads to the familiar fact that a difference of two terms Πi
jk and Γi

jk in the
identity (1.18) corresponding to two different sets of linear connection coef-
ficients is given by a tensor field (even though the coefficients themselves do
not transform as components of a tensor field).
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Chapter 2

Lie derivative of linear
connection

Based on the case of tensor fields, we know that if there is a possibility
to compute a pullback of a geometric object residing on a manifold M , it
also allows us to define the Lie derivative of the object. The concept of the
Lie derivative stems from considering a pullback f ∗ for a specific case when
the diffeomorphic map is a flow Φt of a vector field U on the manifold M .
This way the pullback creates another object on the same manifold M . The
next step is to consider an infinitesimal transformation of the given object
by computing a pullback Φ∗

ϵ for a small parameter ϵ. The Lie derivative is
then defined as the difference between the original object and its pullback to
the first order in ϵ.

In this chapter, we apply the recipe for the Lie derivative described above
to the case of linear connection. We draw inspiration from the familiar case of
tensor fields to define the Lie derivative of linear connection first as an ope-
rator acting on the tensor algebra, and then we show that all the information
it carries is included in a tensor field of type

(
1
2

)
.

2.1 Lie derivative of linear connection as an

operator on the tensor algebra T (M)

As we mentioned, to compute the Lie derivative of an object the first
ingredient we need is a vector field U ∈ X(M) and the flow Φt : M → M
corresponding to it:

Φt ↔ U (2.1)

10



Now let us briefly remind ourselves of the way these objects are used
to define the Lie derivative in the case of tensor fields. For a tensor field
T ∈ T p

q (M) we define the Lie derivative of T in the direction of the vector
U ∈ X(M) in the following way:

LUT := lim
ϵ→0

[
Φ∗

ϵT − T

ϵ

]
(2.2)

Here the flow Φt is a diffeomorphism satisfying:

(Φt)
−1 = Φ−t (2.3)

Therefore, if there is a linear connection ∇ on M one may also use the
flow Φt to compute the pullback connection Φ∗

ϵ∇. Consequently, after we look
at the defining formula (2.2), there is a fairly clear way to come up with the
definition of the Lie derivative of linear connection as well: one could simply
replace the letter T denoting the tensor field with the symbol ∇ denoting
the linear connection. This motivates the following defining formula for the
Lie derivative of linear connection:

LU∇ := lim
ϵ→0

[
Φ∗

ϵ∇−∇
ϵ

]
(2.4)

An equivalent expression for LU∇ is given by the following identity valid
to the first order in ϵ:

ϵLU∇ := Φ∗
ϵ∇−∇ (2.5)

We see that the Lie derivative of the linear connection ∇ in the direction
of the vector U is defined as the difference between two linear connections
on the manifold M to the first order in ϵ: one of them being the original ∇
connection and the other one is the Φ∗

ϵ∇ connection which is the pullback of∇
in the direction of U . Based on the comparison with tensor fields this matches
our idea of what the Lie derivative of linear connection should represent. The
equations (2.4) and (2.5) however are so far just abstract formulas, defining
a new geometrical object LU∇ as a difference between two other structures
on a manifold. However, there is not an obvious way to directly compute the
difference between two structures of linear connection on a manifold.

Usually, when we deal with a linear connection, we commonly describe
it in terms of the covariant derivative. So to get a more specific idea of
what the newly defined Lie derivative of the connection LU∇ represents we
need to express the linear connections ∇ and Φ∗

ϵ∇ using their respective
covariant derivatives. To each vector V ∈ X(M) we can assign the operator
∇V expressing the covariant derivative for the ∇ connection and the operator
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(Φ∗
ϵ∇)V of the covariant derivative for the pullback connection Φ∗

ϵ∇ which is
defined by the formula (1.3). Since both the covariant derivatives reside on
the same manifold, and act on the tensor algebra T (M), we can see that also
the Lie derivative of linear connection LU∇ can be expressed as an operator
of the Lie derivative of linear connection (LU∇)V , defined by reformulating
the equation (2.5) in terms of the covariant derivatives:

ϵ(LU∇)V := (Φ∗
ϵ∇)V −∇V (2.6)

Therefore, to any vector V ∈ X(M) we can assign the (LU∇)V operator
which acts on a tensor T ∈ T p

q (M) as the difference of the two covariant
derivatives to the first order in ϵ:

(LU∇)V T := lim
ϵ→0

[
(Φ∗

ϵ∇)V T −∇V T

ϵ

]
(2.7)

The next step is to find a formula for the operator (LU∇)V . In other
words, to determine how it acts on the tensor algebra T (M) and what specific
operations should one perform on the tensor T to obtain the result (LU∇)V T .
To do this we first express the covariant derivative (Φ∗

ϵ∇)V in (2.6) making
use of the definition (1.3):

ϵ(LU∇)V := Φ∗
ϵ [∇Φϵ∗VΦϵ∗]−∇V (2.8)

Here we recall a formula expressing the pullback Φ∗
t with respect to a flow

Φt of a vector field U as the exponent of the Lie derivative:

Φ∗
t = etLU (2.9)

Consequently, our result can be obtained by expressing the defining for-
mula (2.7) using the identity (2.9) as:

(LU∇)V T := lim
ϵ→0

[
(Φ∗

ϵ [∇Φϵ∗VΦϵ∗T ]−∇V T

ϵ

]
= lim

ϵ→0

[
eϵLU [∇e−ϵLU V e

−ϵLUT ]−∇V T

ϵ

]
= lim

ϵ→0

[
ϵ[LU∇V T −∇VLUT −∇LUV T ] + O(ϵ2)

ϵ

]
= [LU∇V −∇VLU −∇LUV ]T

(2.10)

12



Hence, the formula for the operator (LU∇)V acting on the tensor algebra
T (M) is:

(LU∇)V = LU∇V −∇VLU −∇LUV =: [LU ,∇V ]−∇LUV (2.11)

2.2 Lie derivative of linear connection as a

type
(
1
2

)
tensor field

In this section, we take a closer look at the properties of the (LU∇)V
operator. We show that a tensor field of type

(
1
2

)
carrying all the information

about the Lie derivative of linear connection can be defined and we derive a
specific formula for the tensor.

From the fact that the operator (LU∇)V is defined by the formula (2.6)
as a linear combination of two covariant derivatives, one can extract some of
its basic properties. Let us consider a function f ∈ F(M), vectors V,W ∈
X(M) and any contraction of tensors C. The (LU∇)V operator satisfies the
following:

1. it is a derivation of tensor algebra T (M) preserving the degree of ten-
sors:

(LU∇)V : T p
q (M) → T p

q (M) (2.12)

2. it commutes with contractions (since both the covariant derivatives
have this property):

(LU∇)V ◦ C = C ◦ (LU∇)V (2.13)

3. it vanishes on functions:

ϵ(LU∇)V f := (Φ∗
ϵ∇)V f −∇V f = V f − V f = 0 (2.14)

4. it is F(M)-linear with respect to the vector field V :

(LU∇)V+fW = (LU∇)V + f(LU∇)W (2.15)
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As we can see, the operator (LU∇)V inherited most of its properties from
the covariant derivatives in its defining formula. However, there is a difference
in the way it acts on functions described by the property 3. which means
that the operator (LU∇)V itself is not a covariant derivative. A derivation
of tensor algebra T (M) which preserves the tensor degree, commutes with
contractions, and vanishes on functions, is fully described by a tensor field
of type

(
1
1

)
[Fecko, 2006]. Therefore, based on the properties 1., 2. and 3., we

see that for any V ∈ X(M), the action of the operator (LU∇)V is determined
by a type

(
1
1

)
tensor field. Moreover, property 4. tells us that the tensor field

of type
(
1
1

)
is assigned to the vector field V F(M)-linearly. In conclusion,

this means that it is possible to define a tensor field of type
(
1
2

)
which fully

describes the Lie derivative of linear connection LU∇. Here the added vector
field slot accounts for the F(M)-linearity in V .

2.2.1 Definition of the L∇
U tensor

Let us consider a Lie derivative LU∇ of a linear connection ∇ on (M,∇).
The derived properties of the corresponding operator (LU∇)V motivate the
following definition of a tensor field L∇

U ∈ T 1
2 (M). For vector fields X, Y ∈

X(M) and a covector α ∈ T 0
1 (M):

L∇
U (Y,X;α) := ⟨α , (LU∇)XY ⟩ (2.16)

To show that the tensor L∇
U fully determines how the operator (LU∇)X

acts on T (M) let us consider a vector basis ea ∈ X(M) and the dual covector
basis ea ∈ T 0

1 (M). Based on the properties of the (LU∇)X operator the result
for (LU∇)XY is given as:

(LU∇)XY = XaY b (LU∇)eaeb = XaY b (L∇
U )

c
baec (2.17)

Action of (LU∇)X on a covector α is then determined by the fact that
(LU∇)X commutes with contractions and vanishes on functions:

(LU∇)X ⟨α , Y ⟩ 1.
= 0
2.
= ⟨(LU∇)Xα , Y ⟩+ ⟨α , (LU∇)XY ⟩

(2.18)

Which leads to:

⟨(LU∇)Xα , Y ⟩ = −⟨α , (LU∇)XY ⟩
= −αaX

bY c (L∇
U )

a
cb

(2.19)
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Based on that we may conclude that the tensor L∇
U also describes the

action of (LU∇)X on covectors:

(LU∇)Xα = −αaX
b(L∇

U )
a
cbe

c (2.20)

Combined with the fact that (LU∇)X is a derivation of the tensor algebra
T (M) which acts according to the Leibniz rule on the tensor product, the
formulas (2.17) and (2.20) allow us to compute the action of the (LU∇)X
operator on an arbitrary tensor field in T (M) if we have the formula for
the tensor L∇

U . Based on the definition (2.16) it is not difficult to obtain the
component expression for L∇

U . If Γ
i
jk are the coefficients of ∇ one gets:

(L∇
U )

i
jk = U i,jk +UmΓi

jk,m −U i,m Γm
jk + Um,j Γ

i
mk + Um,k Γ

i
jm (2.21)

We may recognize this is exactly the result (1.19) obtained in Chapter 1.
Looking at the result (2.21) it is straightforward to see that in the case of
symmetric linear connection ∇, i.e. if the connection coefficients are symmet-
ric in their lower indices: Γi

jk = Γi
kj, the tensor L∇

U also is symmetric in the
lower pair of indices. In the following section 2.2.2, we also derive a useful
non-component reformulation of the expression for the L∇

U tensor.

2.2.2 Formula for the L∇
U tensor

As the notation suggests, the tensor L∇
U is an object we can assign to

a linear connection ∇ on a manifold (M,∇) and a vector field U ∈ X(M).
Therefore, one should be able to express it in terms of some kind of a combi-
nation of the vector field U and tensors describing the linear connection ∇.
Here we show how to obtain such an expression for L∇

U . To do so, however,
we first need to mention a few objects and operations which correspond to
the linear connection ∇ and are essential to derive the result. In this part
of the text we work with vector fields X, Y , Z ∈ X(M) and covectors α,
β ∈ T 0

1 (M).
Based on the covariant derivative ∇Z being F(M)-linear with respect to

Z one may establish the operator, called the covariant gradient of a tensor
T ∈ T p

q (M), as follows:

∇ : T p
q (M) → T p

(q+1)(M)

(∇T )(X, ...Y, Z;α, ..., β) := (∇ZT )(X, ..., Y ;α, .., β)
(2.22)

Going forward we also make use of an identity valid for a covariant gra-
dient of a type

(
1
1

)
tensor field. Let us consider a tensor field A ∈ T 1

1 (M).
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Filling A with X results in a vector A(X; •) and adding α to the other slot
results in a function. Applying Y to a function as a differential operator is the
same as considering a covariant derivative∇Y of the function. Then using the
fact that ∇Y commutes with contractions and acts according to the Leibniz
rule on the tensor product allows us to reformulate the term Y [A(X;α) ] in
two different ways. First as ∇Y acting on the tensor product of A, X and
the covector α:

Y [A(X;α) ] = (∇YA)(X;α) + A(∇YX;α) + A(X;∇Y α)

= (∇A)(X, Y ;α) + ⟨α,A(∇YX; •)⟩+ ⟨∇Y α,A(X; •)⟩
(2.23)

And then as ∇Y acting on the tensor product of the vector A(X; •) and
the covector α:

Y [A(X;α) ] = ⟨∇Y α,A(X; •)⟩+ ⟨α,∇Y [A(X; •)]⟩ (2.24)

Once we compare the equations (2.23) and (2.24), the following identity
for ∇A ∈ T 1

2 (M) is obtained:

(∇A)(X, Y ;α) = ⟨α,∇Y [A(X; •)]⟩ − ⟨α,A(∇YX; •)⟩ (2.25)

Moving on to the next important objects on our list, we recall that for
the linear connection ∇ one also defines the curvature tensor R ∈ T 1

3 (M) as:

R(X, Y, Z;α) =
〈
α,∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

〉
(2.26)

The torsion tensor T ∈ T 1
2 (M) is given as:

T (X, Y ;α) = ⟨α,∇XY −∇YX − [X, Y ]⟩ (2.27)

Let us also take one (more or less unnecessary) step, for mostly aesthetic
reasons, which is to define two tensors TU ∈ T 1

1 (M) and RU ∈ T 1
2 (M), simply

by considering the torsion tensor T and the curvature tensor R and inserting
the vector U in one of the slots as follows:

TU(X;α) := T (U,X;α) (2.28)

RU(Y,X;α) := R(Y, U,X;α) (2.29)

16



The last useful identity on our list is the relationship between the Lie deri-
vative LU and the covariant derivative ∇U given as the following relationship
between tensor algebra T (M) derivations [Fecko, 2006]:

LU = ∇U −∇U − T (U, • ; •) (2.30)

Having thus undergone this preparation, let us examine the definition of
the tensor L∇

U with these relationships in mind. Expressing L∇
U in (2.16) using

(2.11) yields:

L∇
U (Y,X;α) := ⟨α , LU∇XY −∇XLUY −∇LUXY ⟩ (2.31)

Using the identity (2.25) in the first two terms, one may express it as:

L∇
U (Y,X;α) = ⟨α , ∇U∇XY ⟩ − ⟨α , ∇∇XYU⟩ − ⟨α , T (U,∇XY ; •)⟩−

− ⟨α , ∇X∇UY ⟩+ ⟨α , ∇X∇YU⟩+ ⟨α , ∇X [T (U, Y ; •)]⟩−
−

〈
∇[U,X]Y

〉
(2.32)

Here we can recognize the appearance of the pair of type
(
1
1

)
tensors: ∇U

and TU :

L∇
U (Y,X;α) = ⟨α , ∇U∇XY ⟩ − ⟨α , ∇U(∇XY ; •)⟩ − ⟨α , TU(∇XY ; •)⟩−

− ⟨α , ∇X∇UY ⟩+ ⟨α , ∇X∇U(Y ; •)⟩+ ⟨α , ∇X [TU(Y ; •)]⟩−
−

〈
∇[U,X]Y

〉
(2.33)

In the resulting terms, one may identify two copies of the identity (2.25):
one with the tensor TU , defined in (2.28), and another one with the tensor
∇U playing the role of A. The remaining terms constitute the curvature
tensor R:

L∇
U (Y,X;α) = [∇∇U ](Y,X;α) +R(Y, U,X;α) +∇TU(Y,X;α) (2.34)

Finally, we may use the tensor RU , defined by the relation (2.29), to
provide a slight cosmetic treatment for the equation (2.34). Thus obtaining
the good-looking formula:

L∇
U = ∇∇U +RU +∇TU (2.35)
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2.3 About the defined geometrical objects

To conclude the chapter, we would like to add a few words about the
geometrical objects which were introduced here. We have shown that the Lie
derivative of linear connection can be expressed as an operator acting on
the tensor algebra T (M) as well as a type

(
1
2

)
tensor field. In the context of

the present work, our aim is to use the Lie derivative of linear connection
mostly as a tool to look for the symmetries of linear connections in different
cases. As we know, symmetries correspond to the vectors in the direction of
which the Lie derivative vanishes. Therefore, in the following chapters, when
considering a Lie derivative LU∇ we view both the operator (LU∇)V and the
corresponding tensor field L∇

U mainly as the objects which need to vanish in
order for U to be a symmetry of ∇. One may notice that the good-looking
formula (2.35) allows us to identify what influence the curvature (represented
by the RU term) and the torsion (∇TU term) have on the condition for
symmetries given by the demand for L∇

U to vanish.
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Chapter 3

Symmetries of linear
connection

In the previous chapter, we described the objects which one may use to
express the Lie derivative of linear connection. Here we use the acquired
knowledge to study the symmetries of linear connection. The core concept
is fairly simple: if a Lie derivative LU∇ vanishes then the vector field U is
a symmetry of the linear connection ∇. We begin with providing equations
expressing the condition for the vector U to be a symmetry of the linear
connection ∇. These may be formulated as a condition for vanishing of the
tensor L∇

U as well as in terms of forms of connection. We also present a proof
that the symmetries of linear connection form a Lie algebra.

3.1 Condition for the symmetries of ∇
As we have seen in previous chapter, one of the ways to express the Lie

derivative of linear connection is using the tensor L∇
U . The condition for the

Lie derivative to vanish can therefore be formulated simply as a requirement
for the tensor L∇

U to be equal to zero. Hence, based on the good-looking
formula (2.35), one may obtain the corresponding condition as:

∇∇U +RU +∇TU = 0 (3.1)

For the frequent case of linear connections with vanishing torsion, the
equation (3.1) is then reduced to:

∇∇U +RU = 0 (3.2)
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3.1.1 Symmetries of ∇ in terms of forms of
connection

Just as in many other areas of geometry and physics, also in the case of
linear connection, the formalism of differential forms serves as an effective
tool to describe the geometrical objects appearing in the theory. Therefore,
we formulate the condition for a symmetry U of a given linear connection
∇ in terms of forms of connection as well. We start with the case of ∇ with
vanishing torsion and then use a natural generalization to obtain the formula
also for a general case of linear connection.

Let us, therefore, first consider a linear connection ∇ with vanishing tor-
sion. As we know, one may describe the linear connection ∇ in terms of the
coefficients of connection Γi

jk. Alternatively, the connection ∇ may equally
well be described using the forms of connection ωa

b which may be viewed as
a ‘matrix of 1-forms’ (or gl(n,R)-valued 1-form for n = dim(M)). These are
1-forms defined, with respect to the frame field ea, by the identity:

∇V eb =: ωa
b (V )ea (3.3)

To find a symmetry condition in this language, it is sufficient to find the
formula also for the forms of the pullback connection (Φ∗

ϵ∇). Based on the
equation (2.6), we find that for a symmetry U the two covariant derivatives,
and therefore also the corresponding forms of connection, must be equal. We
will consider an infinitesimal pullback with respect to the flow Φϵ of a vector
field U :

U ↔ Φt (3.4)

We may also express the forms of the pullback connection σa
b with respect

to the same frame field ea. These are then given as:

(Φ∗
ϵ∇)V eb =: σa

b (V )ea (3.5)

After we use the definition of the covariant derivative (Φ∗
ϵ∇)V (2.6) on

the left-hand side of the identity (3.5), we get the following result valid to
the first order in ϵ:

σa
b (V ) = ⟨ea,∇V eb + ϵLU∇V eb − ϵ∇VLUeb − ϵ∇LUV eb⟩ (3.6)

To reformulate the resulting forms σa
b we can use the relationship between

the Lie derivative LU and the covariant derivative ∇U (the formula (2.30)
from the previous chapter). For the covariant derivative corresponding to a
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linear connection with vanishing torsion this relationship can be expressed
using the covariant gradient ∇U of the vector field U :

LU = ∇U −∇U (3.7)

To avoid possible confusion with the notation we will denote the covariant
gradient ∇U as a tensor A:

Aa
b := (∇U)ab = ⟨ea,∇bU⟩ (3.8)

It is once again going to prove useful to view the components of A as a
matrix of functions on M . Finally we denote Ωa

b the forms of curvature for
the connection ∇:

Ωa
b (U, V ) =

〈
ea, (∇U∇V −∇V∇U −∇[U,V ])eb

〉
(3.9)

These may also be viewed as a matrix of 2-forms. Expressing the Lie
derivative LU in the equation (3.6) using the relationship (3.7) yields the
following result:

σa
b (V ) =

〈
ea,∇V eb + ϵ(∇U∇V −∇V∇U −∇[U,V ])eb − ϵ ωc

b(V )∇cU+

+ϵ∇V (A
c
bec) ⟩ =

= ωa
b (V ) + ϵ [Ωa

b (U, V )− Aa
cω

c
b(V ) + ωa

c (V )Ac
b + dAa

b (V )]

(3.10)

Here is where, the possibility to express the geometrical objects in (3.10)
as matrices, proves useful, allowing us to write in the matrix notation:

σ = ω + ϵ(iUΩ− Aω + ωA+ dA) (3.11)

If U is a symmetry of ∇, the covariant derivaties ∇V and (Φ∗
ϵ∇)V have

to be equal:

LU∇ = 0 ⇐⇒ (Φ∗
ϵ∇)V = ∇V ⇐⇒ σ = ω (3.12)

Consequently, looking at the equation (3.11) we see that our condition
for U is:

iUΩ− Aω + ωA+ dA = 0 (3.13)

Finally, to generalize the result also for a linear connection with a non-
zero torsion tensor T , we have to consider a different relationship between
the Lie and the covariant derivative. Instead of the identity (3.7), the formula
(2.30) has to be used. However, as it turns out this does not complicate the
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situation significantly. All one has to do here is consider another matrix of
functions given as the components of the tensor TU defined in (2.28). With
respect to the frame field ea, we get:

(TU)
a
b := ⟨ea, T (U, eb)⟩ (3.14)

Using the identity (2.30) it is now possible to use the analogy with the
case of vanishing torsion. One may simply repeat the whole procedure of
deriving the equation (3.11), using tensor A + TU instead of just A. Thus
arriving at the formula for the forms σa

b of the Φ∗
ϵ∇ connection based on

forms ωa
b of ∇. In matrix notation, this leads to the result:

σ = ω + ϵ{ iUΩ− (A+ TU)ω + ω(A+ TU) + d(A+ TU) } (3.15)

And the corresponding equation for symmetries of ∇ is:

iUΩ− (A+ TU)ω + ω(A+ TU) + d(A+ TU) = 0 (3.16)

3.2 Lie algebra of the linear connection

symmetries

Symmetries of a structure of linear connection ∇ correspond to vector
fields U for which the Lie derivative vanishes:

LU∇ = 0 (3.17)

This means that also the operator (LU∇)X vanishes in direction of an
arbitrary vector field X:

(LU∇)XT = 0 for all T ∈ T (M) (3.18)

Here we show that the symmetries of ∇ form a Lie algebra. To prove this,
one has to make sure that for any two vector fields U ,V which are symmetries
of ∇ also their linear combination and their commutator are symmetries of
the connection ∇:

LU∇ = 0 ; LV∇ = 0 =⇒ L(U+λV )∇ = 0 for λ ∈ R (3.19)

LU∇ = 0 ; LV∇ = 0 =⇒ L[U,V ]∇ = 0 (3.20)
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In the case of the linear combination of vector fields it is rather trivial to
show that the condition (3.19) is satisfied because the operator (L(V+λW ))U
can be expressed as:

(L(U+λV )∇)X = (LU∇)X + λ(LV∇)X (3.21)

In the case of the commutator, the following expression for the operator
(L[U,V ]∇)X acting on a tensor T ∈ T (M) may be derived:

(L[U,V ]∇)XT = LU [(LV∇)XT ]− LV [(LU∇)XT ] +

+ (LV∇)X(LV T )− (LV∇)X(LUT )+

+ (LU∇)LV XT − (LV∇)LUXT

(3.22)

Based on the condition (3.18) we know, that the operators (LU∇)X and
(LV∇)X vanish in direction of an arbitrary vector when acting on an ar-
bitrary tensor and therefore if both U and V are symmetries, all six terms
on the right in the equation (3.22) vanish. This means that the operator
(L[U,V ]∇)X vanishes as well and so the condition (3.20) is satisfied too. Since
both the conditions (3.19) and (3.20) are satisfied we may conclude that the
symmetries of a linear connection ∇ constitute a Lie algebra.

3.3 Relevance of linear connection

symmetries in physics

The content of the thesis up to this point could be summed up in the
following way: we have learned how to introduce a pullback of a linear con-
nection, then we have shown how to use it on a manifold (M,∇) to introduce,
except for the original connection ∇, also another connection Φ∗

ϵ∇ and we
have gone through a decent amount of trouble to define and study the pro-
perties of the operator (LU∇)V expressing the difference of these two linear
connections, only to then claim that we are actually interested mostly in
the case when the two connections ∇ and Φ∗

ϵ∇ are equal and the opera-
tor (LU∇)V vanishes. To make this look less like nonsense, we dedicate the
ending of this chapter to explaining our view of the relevance of the linear
connection symmetries for the study of properties of physical theories which
use the covariant derivative.

In the geometrical description of physics, the covariant derivative is a
widely used tool, the most well-known example being Einstein’s theory of
general relativity. Nevertheless, it would be hard to imagine a physically re-
levant situation in which one would need two different covariant derivatives
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on the same manifold for the description of physics (although, far be it from
us to call it impossible). What could be more interesting, from the physi-
cist’s point of view though, is learning about the properties of the covariant
derivative that is already established on the studied manifold. And that is
exactly what finding the symmetries of the given linear connection allows us
to do. If we manage to find symmetry vector field U of a linear connection
∇, then for the flow Φϵ of U the covariant derivatives (Φ∗

ϵ∇)V and ∇V are
equal which, based on the identity (2.6), leads to the relation for T ∈ T (M):

∇V T = Φ−ϵ∗∇(Φϵ∗V )(Φϵ∗T ) (3.23)

This tells us that the flow Φϵ represents a transformation with the fol-
lowing property: let us consider U = ∂φ which generates rotations as an
example. If U is a symmetry of ∇ and we need to compute a covariant deri-
vative of T in the direction of V , the result is the same as first rotating both
these objects, then computing the derivative for the rotated ones, and rota-
ting it backwards. Moreover, based on the results (1.18) and (1.19) derived in
the first chapter (see section 1.3), these flows also generate coordinate trans-
formations which lead to the coefficients of connection given by the same
functions of the transformed coordinates as the original ones. That means
one could just perform this change of coordinates and continue using the
covariant derivative ‘without even noticing that the coordinate change hap-
pened’ and obtain correct results for the covariant derivative. As we shall
see in the following chapters, these properties of the connection symmetries
lead to uncovering useful facts about the behavior of the covariant derivative
itself as well as the geodesic curves on the manifold (M,∇) which often carry
important information about the physics of the theory.
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Chapter 4

Symmetries of the Levi-Civita
connection

The Levi-Civita connection is the most common case of linear connection
(and the only one many people come in contact with). It is canonically present
on every Riemannian manifold (M, g) and is fully determined by the metric
g and vanishing torsion. Because of its popularity and widespread use, it
certainly deserves our special attention. Here we show how to derive a useful
reformulation of the condition for symmetries, valid specifically for the Levi-
Civita connection, expressing it in terms of the Lie derivative of the metric
tensor g [Paliathanasis, 2021]. Consequently, that is going to enable us to
make some observations concerning the properties of these symmetries.

4.1 Formula for the Levi-Civita connection

symmetries

Here we derive a useful identity satisfied for the Lie derivative of the
metric LUg in direction of a vector field U which is a symmetry of Levi-Civita
connection. We start by briefly recalling a couple of definitions concerned with
the Levi-Civita connection and deriving a few identities which we then use
to obtain the formula.

The Levi-Civita connection ∇ is uniquely determined by two require-
ments. The first one says that the lenghts of vectors must be preserved under
parallel transport:

∇g = 0 (4.1)
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And the second demand is that the torsion tensor vanishes:

∇UV −∇VU − [U, V ] = 0 (4.2)

The corresponding covariant derivative∇X for the Levi-Civita connection
can be expressed in terms of the metric g by the following defining formula.
For vector fields X, Y, Z ∈ X(M):

g(∇XY, Z) :=
1

2
{Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )+

+ g([X, Y ], Z)− g([X,Z], Y )− g(X, [Y, Z])}
(4.3)

To find the symmetries of a linear connection means to identify vectors U
for which the opperator (LU∇)X vanishes. Since it is a derivation of the tensor
algebra T (M) vanishing on functions and commuting with contractions, it
is sufficient for us to prove that it vanishes on vector fields. This allows one
to formulate the condition for the vector field U to be a symmetry of the
Levi-Civita connection ∇ as follows:

(LU∇)XY := LU∇XY −∇XLUY −∇LUXY = 0

∀ X, Y ∈ X(M)
(4.4)

Here we use the fact that the metric tensor g is non-degenerate and re-
formulate this condition in the following way (which is actually equivalent to
lowering the index of L∇

U using g):

g(LU∇XY, Z)− g(∇XLUY, Z)− g(∇LUXY, Z) = 0

∀ X, Y, Z ∈ X(M)
(4.5)

Let us continue by listing a few helpful identities for expressions con-
taining the metric tensor g with different combinations of Lie and covariant
derivatives of vector fields inserted in both slots. These are going to be essen-
tial to obtain our result. Both the Lie derivative and the covariant derivative
are derivations of the tensor algebra T (M) that commute with contractions
and act on tensor product according to the Leibniz rule. Based on this fact,
one may derive useful identities by applying a vector field as a differential
operator to g (or any other tensor for that matter) with inserted combinations
of vectors.
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This way we obtain the following four relationships:

Ug(∇XY, Z) = (LUg)(∇XY, Z) + g(LU∇XY, Z) + g(∇XY,LUZ) (4.6)

X(LUg) (Y, Z) = XUg(Y, Z)−Xg([U, Y ], Z)−Xg(Y, [U,Z]) (4.7)

(LUg) ([X, Y ], Z) = Ug([X, Y ], Z)−g([U [X, Y ]], Z)−g([X, Y ], [U,Z]) (4.8)

[∇(LUg)] (X, Y, Z) = Z(LUg)(X, Y )− (LUg)(∇ZX, Y )− (LUg)(X,∇ZY )
(4.9)

Having thus undergone this preparation, we may proceed to deriving our
formula. We may express the first term in the condition (4.5) using (4.6) to
obtain:

Ug(∇XY, Z)− (LUg) (∇XY, Z)− g(∇XY,LUZ)−
−g(∇XLUY, Z)− g(∇LUXY, Z) = 0

(4.10)

This allows us to use the definition of the Levi-Civita connection (4.3)
in all the terms except for the one containing the Lie derivative LV g. Doing
that yields a rather unpleasantly looking result consisting of 25 expressions
given as:

1

2
{ UXg(Y, Z) + UY g(X,Z)− UZg(X, Y )+

+ Ug([X, Y ], Z)− Ug([X,Z], Y )− Ug(X, [Y, Z])+

−Xg(Y, [U,Z])− Y g(X, [U,Z]) + [U,Z]g(X, Y )+

− g([X, Y ], [U,Z]) + g([X, [U,Z]], Y ) + g(X, [Y, [U,Z]])+

−Xg([U, Y ], Z)− [U, Y ]g(X,Z) + Zg(X, [U, Y ])+

− g([X, [U, Y ]], Z) + g([X,Z], [U, Y ]) + g(X, [[U, Y ], Z])+

− [U,X]g(Y, Z)− Y g([U,X], Z) + Zg([U,X], Y )+

− g([[U,X], Y ], Z) + g([[U,X], Z], Y ) + g([U,X], [Y, Z]) }−
− (LUg) (∇XY, Z) = 0

(4.11)
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To make the result look less intimidating we may use the equations (4.7)
and (4.8) (and utilize the Jacobi identity for some of the vector field com-
mutators). That reduces the condition (4.11) to:

1

2
{ X(LUg) (Y, Z) + (LUg) ([X, Y ], Z)+

+ Y (LUg) (X,Z)− (LUg) ([X,Z], Y )+

− Z(LUg) (X, Y )− (LUg) (X, [Y, Z]) } −
− (LUg) (∇XY, Z) = 0

(4.12)

The next step stems from vanishing of the torsion tensor in (4.2) which
implies one may express the commutator in terms of a combination of co-
variant derivatives of the correspnding vectors. After doing that in (4.12)
we can make use of the relationship (4.9) valid for the covariant gradient of
Lie derivative of metric ∇(LUg). Consequently, our symmetry condition is
expressed in terms of the ∇(LUg) tensor as:

[∇(LUg)] (Y, Z,X) + [∇(LUg)] (Z,X, Y )− [∇(LUg)] (X, Y, Z) = 0 (4.13)

Or in components:

(LUg)ij;k + (LUg)jk;i − (LUg)ki;j = 0 (4.14)

In the resulting equation (4.14) we may notice that expressing the same
relationship for a permutation of indices: ijk 7→ kij leads to:

(LUg)ki;j + (LUg)ij;k − (LUg)jk;i = 0 (4.15)

After computing a sum of the expressions (4.14) and (4.15) we get the
result. The condition for a symmetry U of the Levi-Civita connection ∇ is
given by the formula:

(LUg)ij;k = 0 (4.16)

Or going back to the non-component language:

∇LUg = 0 (4.17)
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4.2 Killing fields and homothetic vectors

The obvious take away from the obtained condition for the Levi-Civita
connection symmetries (4.17) is that it is clearly satisfied for the Killing
vectors ξ, i.e. those which satisfy:

Lξg = 0 (4.18)

We can therefore see that the Lie algebra of Killing fields is a subalgebra
of the Lie algebra of symmetries of the Levi-Civita connection ∇. This is an
expected and a very natural result. Since geodesics (at least those of the Levi-
Civita connection) are curves connecting points with the line of the shortest
possible lenght, isometries automatically preserve them by preserving all the
distances on the manifold (M, g).

Moreover, the formula (4.17) allows us to also examine tha case of con-
formal transformations χ ∈ X(M). These are automorphisms of M which
satisfy the condition:

Lχg = fg (4.19)

Here f ∈ F(M) is an arbitrary function on M . A quick analysis reveals
that these constitute symmetries of ∇, if and only if f is a constant. In case
of constant f these are called the homothetic vectors.

In conclusion, this reveals that the Lie algebra of the Levi-Civita con-
nection symmetries contains the subalgebras of Killing fields and homothetic
vectors of (M, g) [Paliathanasis, 2021].
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Chapter 5

Geometrical interpretation:
preservation of geodesics

Having thus learned how to look for the symmetries of a given linear
connection ∇ we may proceed to ask the next, perhaps even more important
question: why should one be interested in finding these? In this chapter, we
show that the pullback generated by a symmetry of ∇ acts on the covariant
derivative in a particularly useful manner. This, among other things, leads
to the fact that symmetries of linear connection preserve the geodesic curves
on the given manifold (M,∇).

5.1 Symmetries act naturally on the

covariant derivative

Consider a vector field U which is a symmetry of the connection∇. Then a
brief look at the equation (2.7) reveals that the covariant derivatives (Φ∗

ϵ∇)V
and ∇V in this case have to be equal. For the corresponding flow Φϵ of the
field U that leads to an identity valid for any tensor T ∈ T(M):

∇V T = Φ∗
ϵ [∇Φϵ∗VΦϵ∗T ] (5.1)

Here one may act on the equation (5.1) with another pullback Φ∗
−ϵ and

use the relation: Φ∗
−ϵ = Φϵ∗. Leading to the formula:

Φ∗
ϵ [∇V T ] = ∇Φ∗

ϵVΦ
∗
ϵT (5.2)

This is called a natural behavior of the pullback Φ∗
ϵ corresponding to

a symmetry U when acting on the covariant derivative. In other words, the
symmetries are, in this sense, compatible with the covariant derivative. When
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computing a pullback of a tensor ∇V T , the pullback acts separately on the
vector V and the tensor T .

Based on what we learned so far, we only know that the equation (5.2)
clearly holds for the infinitesimal value of the parameter ϵ. Nevertheless, one
may act on the result with another pullback Φ∗

ϵ which once again acts natu-
rally. Then, due to the composition property of the flow Φt, we may iterate
this procedure resulting in the fact that the natural behavior is exhibited by
the flow Φt for an arbitrary value of the parameter t:

Φ∗
t [∇V T ] = ∇Φ∗

tV
Φ∗

tT (5.3)

5.2 Affinely parametrised geodesics

The fact that symmetries exhibit the property (5.2) derived above is par-
ticularly useful once we consider the geodesic equation. The affinely paramet-
rized geodesics on a manifold (M,∇) are the curves γ for which their tangent
vector γ̇ is parallel to itself. This condition may be expressed as follows:

∇γ̇ γ̇ = 0 (5.4)

Computing a pullback Φ∗
ϵ of the geodesic equation (5.4) and using the

property (5.2) yields an interesting result:

∇Φ∗
ϵ γ̇Φ

∗
ϵ γ̇ = 0 (5.5)

The equation (5.5) reveals that if the tangent vector γ̇ to the original
curve γ satisfied the condition (5.4), so does the transformed vector Φ∗

ϵ γ̇.
This actually is the tangent vector to the curve Φ−ϵ ◦ γ created by shifting
the original γ in the direction of the vector field flow (the negative sign of the
parameter is not an issue here, since it may be chosen arbitrarily). Meaning
that the flows generated by symmetry vectors of the connection ∇ always
transform a geodesic curve into another geodesic curve.

5.2.1 Preservation property determines symmetries of
linear connection

Once we have learned that all the symmetries of linear connection have
the property of preserving the affinely parametrized geodesics, it would be
interesting to know if the statement may be reversed: are all the transforma-
tions preserving the affinely parametrized geodesic equation also symmetries
of the linear connection ∇ ? As it turns out, the answer to this question is
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positive. To prove this statement we may consider a vector field X ∈ X(M)
which is not a symmetry of ∇ and its flow Ψϵ. Once we shift a geodesic
γ using Ψϵ, we obtain the curve Ψϵ ◦ γ. Consequently, we may express the
analogical term ∇Ψϵ∗γ̇Ψϵ∗γ̇ term corresponding to the tangent vector to our
shifted curve. Using the relationship (2.6) between the covariant derivatives
∇V and (Ψ∗

ϵ∇)V yields the following relationship:

∇(Ψϵ∗γ̇)(Ψϵ∗γ̇) = Ψϵ∗∇γ̇ γ̇ + ϵΨϵ∗(LX∇)γ̇ γ̇ (5.6)

Here the first term on the right containing ∇γ̇ γ̇ vanishes since γ, being
an affinely parametrized geodesic, satisfies the condition (5.4). In the second
term though, the operator (LX∇)γ̇ does not vanish sinceX is not a symmetry
of ∇ (and Ψϵ∗ is a linear isomorphism, so it can’t make it vanish as well).
Hence we conclude that the only continuous transformations preserving the
equation (5.4) are the symmetries of the linear connection ∇. This may be
formulated as an equivalence of the two statements:

flow of U ∈ X(M,∇) preserves ∇γ̇ γ̇ = 0 ⇐⇒ U is a symmetry of ∇

5.3 Non-affinely parametrised geodesics

As it turns out though, examining the geodesic preservation transforma-
tions even further, yields more interesting results. Let us have a torsionless
connection, implying symmetric coefficients Γi

jk = Γi
kj and hence also sym-

metric tensor L∇
U :

(L∇
U )

i
jk = (L∇

U )
i
kj (5.7)

Once again we consider here a curve γ and the corresponding tangent
vector given in components as:

γ ↔ xi(t) ; γ̇ ↔ ẋi(t) (5.8)

Except for the geodesic curves with affine parameterization, the geodesic
may also be parametrized non-affinely, leading to its covariant derivative of
the tangent vector given as:

∇γ̇ γ̇ = σγ̇ (5.9)

Here σ is an arbitrary function of the curve parameter. First of all, we
may realize the following: if a certain vector field U is a symmetry of the
linear connection ∇, then it does also preserve the equation of non-affinely
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parametrized geodesic. That may be seen from the following equation gained
by computing the pullback of (5.9) (Φt is the flow of U):

∇(Φϵ∗γ̇)(Φϵ∗γ̇) = Φϵ∗∇γ̇ γ̇ = Φϵ∗σ (Φϵ∗γ̇) (5.10)

We find that the original geodesic γ in (5.9) is just shifted to another
non-affinely parametrized geodesic Φϵ ◦ γ with the tangent vector Φϵ∗γ̇ and
the original function σ is just replaced by the transformed function Φϵ∗σ.
This means that, indeed, the symmetry U also preserves the non-affinely
parametrized geodesic.

However, one may now ask the question if the symmetries of ∇ are
the only transformations preserving the non-affinely parametrized geode-
sics as well. As it turns out, the answer here is negative. There is a sepa-
rate class of projective transformations, which are generally all the trans-
formations that preserve the non-affinely parametrized geodesic equations
[Tsamparlis and Paliathanasis, 2009]. For the projective transformations ge-
nerated by a vector V ∈ X(M), one gets a separate condition on the form of
the tensor L∇

V expressed in components in the following way:

(L∇
V )

i
jk = δijβk + δikβj (5.11)

Here β ∈ T 0
1 (M) represents an arbitrary 1-form. Let us verify if indeed

these preserve the geodesic equations. We may consider a geodesic γ given in
(5.9), a vector field V satisfying (5.11) and we denote Ψt its corresponding
flow. Consequently, one can once again apply the relation (2.6) to express
the corresponding term ∇Ψϵ∗γ̇Ψϵ∗γ̇ as:

∇(Ψϵ∗γ̇)(Ψϵ∗γ̇) = Ψϵ∗∇γ̇ γ̇ + ϵΨϵ∗(LV∇)γ̇ γ̇ =

= Ψϵ∗σ (Ψϵ∗γ̇) + ϵΨϵ∗(LV∇)γ̇ γ̇
(5.12)

The first expression obtained on the right this time does not vanish but is
instead expressed using (5.9) and to reformulate the second term, we use the
relationship (2.17) between the tensor L∇

V and the (LV∇)γ̇ operator. Then
using the component expressions (5.8):

(LV∇)γ̇ γ̇ = (L∇
V )

i
jkẋ

jẋk∂i =
[
δijβk + δikβj

]
ẋjẋk∂i

= 2β(γ̇)γ̇
(5.13)
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Pluging the result in (5.13) into the equation (5.12) then leads to the
identity:

∇(Ψϵ∗γ̇)(Ψϵ∗γ̇) = Ψϵ∗σ (Ψϵ∗γ̇) + 2ϵΨϵ∗ [ β(γ̇)γ̇ ] =

= Ψϵ∗ [σ + 2ϵβ(γ̇)] (Ψϵ∗γ̇)
(5.14)

Since the term Ψϵ∗ [σ + 2ϵβ(γ̇)] also is a function of the curve parameter
t we may conclude that the geodesic γ whose non-affine parametrisation was
given by the function σ was transformed into another non-affinely paramet-
rized by the Ψϵ∗ [σ + 2ϵβ(γ̇)] function.

One may notice, however, that these transformations do not constitute
symmetries of the linear connection∇ because the L∇

U tensor does not vanish.
From the point of view of physics, we are more interested in actual symmet-
ries of the linear connection, as those are the transformations that actually
preserve the covariant derivative which we use to describe the physical situ-
ation. Therefore, those tell us more about the properties of our theory. The
transformations given as (5.11) do not preserve the covariant derivative, but
instead shift it into one which differs by the action of the non-zero operator
(LV∇)X . For X ∈ X(M) we get:

∇X = Ψ∗
ϵ∇Ψϵ∗XΨϵ∗ + (LV∇)X ̸= Ψ∗

ϵ∇Ψϵ∗XΨϵ∗ (5.15)

For that reason, we did not pay as much attention to these transforma-
tions here as we did to the proper symmetries of linear connection ∇. They
definitely deserve to be mentioned in context of the geodesic preservation
though. For the sake of completeness, we also add that the geodesic equati-
ons might be preserved by certain non-continuous transformations as well,
such as the reflections in Euclidean spaces. These cannot be expressed as a
continuous flow of a vector field and therefore cannot be studied using the
Lie derivative.

5.4 Example: En

Finally, let us illustrate the geodesic preserving transformations menti-
oned above in the example of Euclidean space En. Our goal in this section is
to first work out the Lie algebra of symmetries of the Levi-Civita connection
in En and secondly, we shall also look at the corresponding projective trans-
formation given by the condition (5.11) from the previous section. Therefore,
we consider a manifold (En, g,∇) where ∇ is the Levi-Civita connection. To
look for the symmetries of the connection ∇ we may use the good-looking
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formula (2.35). Since En is not curved and the Levi-Civita connection is tor-
sionless, the corresponding two terms in the formula (2.35) vanish and the
condition for a symmetry U , given by the demand for L∇

U to vanish, simply
becomes:

∇∇U = 0 (5.16)

Furthermore, after one chooses to work with the Cartesian coordinates
xi, this leads to all the coefficients of the Levi-Civita connection vanishing as
well. Therefore, when expressed in components, the condition for the vector
U i reads:

U i,jk = 0 (5.17)

Which leads to U given as:

U i = ki
jx

j + qi (5.18)

Here ki
j ∈ R and qi ∈ R represent constant coefficients. As expected ba-

sed on the results of chapter four, the symmetries clearly contain translations
and rotations which are the isometries of Euclidean spaces. We may realize
that this result is meaningful also because geodesics (at least those of the
Levi-Civita connection) are the curves on the manifold which connect every
two points with the line of the shortest possible length. Therefore, isomet-
ries automatically preserve these curves by preserving all the distances on
the manifold. If each pair of points on the geodesic are in the shortest dis-
tance from each other, then isometries map them to another pair of points
in the same (also the shortest) distance which induces the geodesic preser-
vation. The isometries are spanned by the vectors (5.18) with the additional
condition:

ki
j = −kj

i (5.19)

Except for the isometries, there are other symmetries that do not satisfy
(5.19). These also transform each geodesic into another geodesic, but they
do so while changing the distances between points. Once again verifying the
results of the fourth chapter, we may identify among these the (only) ho-
mothetic vector in Euclidean space. This is the vector given by the following
coefficients:

k1
1 = k2

2 = ... = kn
n (5.20)

While all the remaining constants ki
j vanish. The rest of the symmetry

vectors are symmetries only of the connection ∇ (not of the metric g).
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Let us now move on to the projective transformations V ∈ X(M) of the
linear connection ∇. The condition for these may be obtained by combining
the condition (5.11) with the simple form of the tensor L∇

V we see in (5.17).
It is given in components as follows:

V i,jk = δijβk + δikβj (5.21)

Where β ∈ T 0
1 (M) may be an arbitrary 1-form. Solving these equations

leads to the Lie algebra of projective transformations:

V i = ki
jx

j + (pjx
j)xi + qi (5.22)

Here ki
j, pj and qi again represent constant coefficients.

Figure 2: Geodesic transformations in E2 corresponding to: a) isometry x∂y−y∂x
b) non-isometric symmetry of linear connection x∂y + y∂x c) projective transfor-
mation x2∂x + xy∂y (points of the same color are images of the same point on the
shifted curves).
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We may recognize that the result (5.22) again contains the subalgebra of iso-
metries satisfying the condition (5.19), the homothetic vector (5.20) and the rest of
the proper symmetries of ∇ (5.18). In addition to that, there are now n = dim(M)
extra vector fields spanned by the constants pi which represent the proper projec-
tive symmetries (the geodesic preserving properties of different types of transfor-
mations are illustrated for the case of E2 in Figure 2). Since in Euclidean space
we are dealing with the Levi-Civita connection, for which the curve parameter of
the affinely parametrized geodesic may be identified with the actual length of the
curve, the difference between various types of transformations is manifested in the
way in which points on the shifted geodesics are mapped. We may notice that for
an isometry (figure 2 a)), each couple of points remains in constant distance after
shifting the geodesic. For the non-isometric symmetries (figure 2 b)) the distances
do change but the geodesic remains affinely parametrized. Therefore the distance
between each pair of shifted points is the same multiple of the distance of the
original two points for every couple of points on γ (in other words: if the blue
point and the red one are in the same distance from the green point, this remains
the case on the shifted curves as well, although the distance itself may change).
In the case of a projective transformation (figure 2c)), the resulting geodesic is
non-affinely parametrized which means not even these ratios of distances remain
the same.
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Chapter 6

Newton-Cartan structures

The geometrical properties of the Lie derivative of linear connection, discussed
in the previous chapters, make it an exceptionally useful instrument for a physicist
to have in his toolbox as well. The structure of linear connection plays an impor-
tant role in many theories of modern physics [Misner et al., 1973]. Therefore, the
study of the corresponding symmetries is a topic that is discussed by physicists as
well [Duval and Horváthy, 2009]. To illustrate one of the possible physical appli-
cations of these ideas, we use the example of Newton-Cartan structures. We begin
with a short introduction of the physical situation, comparing the relativistic and
the classical spacetime geometries and briefly presenting to the reader the basic
concepts behind the Newton-Cartan theory of gravity. Consequently, we investi-
gate the corresponding linear connection of the Newton-Cartan theory and find its
symmetries, allowing us to see their importance for the geometrical description of
classical physics.

In the whole chapter, we work with a four-dimensional spacetime manifold
M with coordinates xµ ; µ ∈ {0, 1, 2, 3} where x0 = t is the time coordinate and
xi ; i ∈ {1, 2, 3} are the cartesian spatial coordinates.

6.1 Relativistic and Newtonian spacetime

Although we mainly aim to explore the geometrical structures in classical spa-
cetime, one of the best ways to appreciate their importance is in contrast to their
more familiar relativistic counterparts. Let us, therefore, begin with comparing the
basic geometrical objects in relativistic and classical spacetimes [Künzle, 1972]. In
the well-known relativistic case, a metric may be introduced on the spacetime ma-
nifold M based on the requirement for its invariance under transformations of the
Lorentz group. This condition yields the famous Minkowski metric expressed using
the ηµν = diag(1,−1,−1,−1) matrix as:

g = ηµνdx
µ ⊗ dxν (6.1)
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The symmetry group of (M, g) is then the Poincaré group, consisting of spa-
cetime translations, rotations, and boosts. Their generators form the familiar Po-
incaré algebra of vectors X ∈ X(M):

Xµ = Aµ
νx

ν +Bµ (6.2)

The coefficients Aµ
ν and Bµ are constants satisfying: Ai

j = −Aj
i , A

0
i = Ai

0,

A0
0 = 0. Thus, we see that in the relativistic case, we arrive at a very intuitive re-

sult. The obtained metric g represents a structure on the spacetime manifold whose
symmetry group consists of exactly those transformations that correspond to the
coordinate changes which should leave the laws of physics invariant according to
special relativity. The complete description of physics in the relativistic spacetime
is given also by the Levi-Civita connection ∇ corresponding to the metric g. As
we have seen in Chapter 4 though, the condition for the symmetries of the met-
ric is stronger that the one for the symmetries of the corresponding Levi-Civita
connection. Therefore, the symmetries of the relativistic structure (M, g,∇) are
determined only by the symmetries of the metric g.

Inspired by the simple beauty of relativistic geometry, one might hope to re-
plicate this result in classical spacetime. As it turns out though, it is quite a bit
more intricate in this case. In classical physics, we consider the principle of Gali-
lean relativity, meaning essentially that the laws of physics should remain invariant
under the coordinate changes associated with switching inertial reference frames
of the classical observers. The corresponding non-relativistic counterparts of the
Poincaré group transformations are those of the Galilei group, generated by space-
time translations, rotations, and Galilei boosts. The algebra of generating vectors
is the Galilei algebra, consisting of the vectors V ∈ X(M):

V = s∂t +
[
kij x

j + li t+ qi
]
∂i (6.3)

Here s, li, qi and kij = −kji are constant coefficients. Contrary to the relativistic
case though, one finds that no metric can be introduced in Newtonian spacetime
which would be invariant under the Galilei group transformations. However, it
is possible to introduce the Galilei structure (M,h, θ). It consists of h ∈ T 2

0 (M)
which is a degenerate symmetric tensor of type

(
2
0

)
and a 1-form θ ∈ T 0

1 (M) which
determines a submanifold T = M/ker(θ). The submanifold T then represents the
absolute Newtonian time, flowing at the exact same rate for all the observers.
These tensors satisfy:

hµνθν = 0 (6.4)

The pair of tensors partially substitutes the role of a ‘metric’ in Newtonian
spacetime: the 1-form θ presents a possibility to measure time intervals and h may
be used to raise the indices of the spatial components of tensors. For the purpose
of our investigation here, it is sufficient to work with the most common, standard
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case of the Galilei structure which consists of M = R×R3 and the pair of tensors
is defined as follows:

h = δij∂i ⊗ ∂j (6.5)

θ = dt (6.6)

Let us now examine the symmetries of the standard Galilei structure given by
(6.5) and (6.6). These are simply vectors W ∈ X(M) preserving h and θ:

LWh = 0 ; LW θ = 0 (6.7)

Solving the equations (6.7) results in the infinite-dimensional Coriolis algebra
[Duval, 1993]:

W = σ∂t +
[
ωi
j(t)x

j + κi(t)
]
∂i (6.8)

Where: ωi
j = −ωj

i . Here σ is a constant, but ωi
j and κi are abitrary functions of

time. Comparing the result to the vectors of the Galilei algebra in (6.3), we see that
the Galilei transformations constitute a subalgebra of the Coriolis algebra. Nevert-
heless, we may notice that by considering the symmetries of the Galilei structure
(M,h, θ), we do not reach a result similar to the relativistic case, where there is a
structure (M, g) with its symmetry group consisting purely of the Poincaré trans-
formations. As we shall see, to find such a structure in Newtonian spacetime, one
needs to also introduce a linear connection.

6.2 Newton-Cartan theory

Similarly to general relativity, also in the classical case, it is possible to un-
derstand the gravitational phenomena using the language of geometry. The cor-
responding theory is called the Newton-Cartan theory of gravity, introduced by
Élie Cartan in 1923 [Cartan, 1923]. Cartan’s idea is based on the possibility to
endow Newtonian spacetime with a linear connection ∇. That results in obtaining
the Newton-Cartan structure (M,h, θ,∇). The corresponding connection ∇ is the
Newton-Cartan connection. Cartan developed this concept inspired by the (at the
time recently published) theory of general relativity. His linear connection in clas-
sical spacetime leads to, just as in the relativistic case, trajectories of the moving
points of mass being represented by the geodesic curves in (M,h, θ,∇). Here we
briefly sum up the key components of the Newton-Cartan theory of gravity.

So let us try to recreate Cartan’s train of thought as he derived the theory.
When describing the trajectory of a moving massive object in classical spacetime,
one may naturally adopt the Newtonian time x0 = t as the curve parameter along
its spacetime path: γ(t) ↔ xµ(t). This convenient parametrization then leads to
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the following identities valid for the derivatives of the x0(t) component along the
curve γ:

ẋ0 = 1 ; ẍ0 = 0 (6.9)

Since Cartan’s aim was to identify the point mass trajectories with the geode-
sics of the connection ∇, he simply choose to seek such coefficients of connection
Γi
jk that would make the geodesic equation equal to the equation of Newton’s

gravitational law:

ẍi = −∂iφ ⇐⇒ ẍµ + Γµ
νρẋ

ν ẋρ = 0 (6.10)

Here φ ∈ F(M) is a function representing the Newtonian gravitational po-
tential. The condition (6.10), along with considering a vanishing torsion, lead to
a uniquely determined linear connection ∇ given by the following three non-zero
coefficients:

Γi
00 = ∂iφ (6.11)

The rest of the Γµ
νρ coefficients vanish. One may easily check that the con-

nection ∇ defined by (6.11) indeed leads to the Newtonian equations of motion
being equivalent to the equation of (affinely parametrized) geodesic. We have thus
succeeded at constructing a geometrical formulation of classical Newtonian gravity.

6.3 Symmetries of the flat Newton-Cartan

structure

As we have learned in section 6.1, considering the Galilei structure (M,h, θ) did
not bring about an analogy of the relativistic result, where the Minkowski metric
(6.1) represents a structure which has a symmetry group consisting purely of the
Poincaré group transformations. The Newton-Cartan structure though, consists, in
addition to h and θ also of the linear connection ∇. Therefore, let us now work out
the symmetries of the Newton-Cartan structure (M,h, θ,∇). We consider here the
simplest, so-called flat case. This means that our spacetime manifold once again
is M = R× R3 and the tensors h and θ are defined as in the equations (6.5) and
(6.6). Moreover, the gravitational potential φ vanishes. This actually describes the
situation with no gravitational effects, so it represents a classical analogy to the
spacetime of special relativity with the Minkowski metric. Based on (6.11) that
leads to a linear connection ∇ with all the connection coefficients vanishing:

Γµ
νρ = 0 (6.12)

For a vector field U to be symmetry of the flat Newton-Cartan structure
(M,h, θ,∇), there is a demand that it preserves h, θ and the connection ∇. The-
refore, U has to satisfy the condition (6.7) (meaning it also has to be a symmetry
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of the corresponding Galilei structure). In addition to that though, here also the
condition for U to preserve the linear connection ∇ has to be considered. Thus the
demand for U to be a symmetry of (M,h, θ,∇) is to satisfy the following three
equations:

LUh = 0 ; LUθ = 0 ; LU∇ = 0 (6.13)

In order for U to preserve h and θ, it has to be in the Coriolis algebra, therefore
it has to have the form (6.8). Moreover, the condition for U to preserve the linear
connection ∇, in case of all the coefficients Γµ

νρ vanishing, is just analogical to the
condition obtained in case of euclidean space En:

U = [aµνx
ν + bµ] ∂µ (6.14)

Here aµν and bµ are constant, but otherwise arbitrary coefficients. Once we com-
bine the conditions (6.8) and (6.15), the resulting symmetries of the flat Newton-
Cartan structure (M,h, θ,∇) are exactly the Galilei group transformations (6.3)
[Duval, 1993].

In conclusion, to find a Newtonian structure that has, as its symmetry group,
the Galilean transformations, we need to consider the Newton-Cartan structure
(M,h, θ,∇), not just the Galilei structure (M,h, θ). In other words, to find a non-
relativistic analog of the Minkowski metric (6.1), representing a structure with its
symmetry group given by the corresponding spacetime transformations, one has to
also consider the Newton-Cartan connection ∇. This presents a quite illuminating
example of a physical situation in which considering a linear connection and its
symmetries is essential to obtain the desired result (the symmetry algebras of
geometric objects, discussed in this chapter so far, are summed up schematically
in Figure 3).

Figure 3: Symmetry algebras in relativistic and Newtonian spacetimes.
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6.4 Symmetries depending on potential

After introducing the Newton-Cartan connection ∇ and explaining its rele-
vance for the geometrical description of classical gravitational physics, we may
further examine the symmetries of ∇ also in other cases than the one corres-
ponding to vanishing gravitation. Before we start though, let us think about the
meaning of these symmetries. Since we are looking for proper symmetry vectors U
of ∇ for which LU∇ = 0, these vectors generate flows preserving the affinely para-
metrized geodesic equations of ∇. Since those represent the trajectories of moving
massive objects (based on (6.10)), we see that such flows will map one possible
trajectory to another one. To find these transformations, we begin by formulating
the corresponding equation. Because we are dealing here with a case of torsionless
connection, one can obtain the condition for a symmetry vector field U based on
the equation (3.2):

∇∇U +RU = 0 (6.15)

Going forward we consider a gravitational potential Φ depending on (cartesian)
spatial coordinates xi only, leading to vanishing time derivative Φ,0. We derive the
equations for a general case of time-independent potential Φ here first and then we
study some of the most common cases. To obtain our equations for a symmetry U
we first need the Riemann curvature tensor. Using the coefficients of the Newton-
Cartan connection (6.11) we get:

Ri
0j0 = −Ri

00j = ∂j∂iΦ (6.16)

Similarly, we may use the (6.11) coefficients to compute the components of the
tensor ∇∇U , resulting in (not the best looking) identity:

(∇∇U)µνρ =Uµ,νρ+δµi δ
0
νU

0,ρ Γ
i
00 + δµi δ

0
νU

0Γi
00,ρ−

− δ0νδ
0
ρU

µ,i Γ
i
00 + δ0ρδ

µ
i U,ν Γ

i
00

(6.17)

That allows us to finally formulate the equations for a symmetry U (the sum-
mation convention holds also for two identical lower indices here):

U0,ij = U0,i0= U i,jk = 0 (6.18)

U0,00= U0,iΦ,i (6.19)

U i,0j = −U0,j Φ,i (6.20)

U i,00= U i,j Φ,j −2U0,0Φ,i−U jΦ,ij (6.21)
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One may notice that the first condition (6.18) is the same for any function
representing the time-independent potential Φ. Solving it leads to the general time
and spatial components of the vector field U expressed as:

U0 = θ(t) + γk x
k (6.22)

U i = ai(t) + bij(t)x
j (6.23)

As we can see, the coefficients θ(t), ai(t) and bij(t) are arbitrary functions of
time, while γk are constants. The formulae (6.22) and (6.23) represent the basic
form of the symmetry vector U for time-independent potential. Further restric-
tions are then applied on the parameters θ(t), ai(t), bij(t) and γk based on the
other three equations (6.19), (6.20) and (6.21), which depend on the specific func-
tion representing the gravitational potential Φ(xi). In the rest of this section, we
examine some of the most common specific cases of functions Φ(xi) and find the
corresponding symmetry algebras.

6.4.1 If everything is falling, then nothing is falling

After one examines the additional conditions for the symmetry vector U stem-
ming from the relationships (6.19), (6.20) and (6.21), it becomes clear that the
possible solutions differ heavily based on one specific distinction: whether the po-
tential Φ is a linear function of all three spatial coordinates (leading to Φ,i= const.)
or not. Here we dissect the case of linear potential to explain the prominent role
it plays. Let us, therefore, consider a potential Φ, known from elementary physics
classes, given as:

Φ = gix
i (6.24)

The constant coefficients gi are the well-known components of the constant
gravitational acceleration vector g⃗. The conditions (6.19), (6.20) and (6.21) impo-
sed on the general form of the vector U with components (6.22) and (6.23) then
lead to:

θ̈(t) = γigi (6.25)

ḃij(t) = −γjgi (6.26)

äi(t) = bij(t)gj − 2θ̇(t)gi (6.27)

We may notice that the resulting system of equations only involves one space-
time variable which is the time t. Solving these equations leads to the symmetry
algebra of the Newton-Cartan connection ∇ for the linear potential (6.24). After
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one considers constant (but otherwise arbitrary) coefficients: α, β, γk, c
i
j , d

i and

hi, the components of the symmetry vector U are given as follows:

U0 =
1

2
γkgkt

2 + γkx
k + αt+ β (6.28)

U i = −1

2
gigkγkt

3 − giγkx
kt+

1

2
cikgkt

2 + cikx
k − αgit

2 + dit+ hi (6.29)

One may realize that the resulting symmetry algebra is of exactly the same
dimension as the symmetry algebra (6.15) corresponding to the case of vanishing
(or constant) potential. This result makes a lot of sense after one performs a simple
change of coordinates in Newtonian spacetime and expresses the symmetry algebra
afterward. Let us consider a different set of spacetime coordinates x̃µ, established
by leaving the time component unchanged: t̃ = t, while introducing the spatial
coordinates x̃i by shifting the original ones in the following way:

x̃i = xi +
1

2
git

2 (6.30)

These are clearly the coordinates of an observer in Newtonian spacetime who
is ‘falling’ under the influence of gravity (it is also a coordinate change which leads
to vanishing coefficients in (6.11)). Computing the components of the symmetry
vector field U after the coordinate change (6.30) yields the following result:

Ũ0 = αt̃+ γkx̃
k + β (6.31)

Ũ i = cij x̃
j + dit̃+ hi (6.32)

This is, of course, nothing else but the symmetry algebra (6.15) for the vanis-
hing potential with renamed constant coefficients. To make sense of this result, it
is sufficient to realize that the situation in which all the massive objects are equally
accelerated by gravitation and move with a constant acceleration g⃗, from the point
of view of the observer who is accelerated in such way as well, is just equivalent to
the situation in which there is no gravitation at all. The case of linear potential is
then linked by a simple coordinate change to the case of vanishing (or constant)
gravitational potential Φ.

6.4.2 Spherically symmetrical potential

The next case we examine is the gravitational potential proportionate to the
distance from the center of coordinates r =

√
x2 + y2 + z2. We consider here the

potential given as a function:

Φ = rm (6.33)
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The case of m = −1 then represents the familiar gravitational potential desc-
ribing, in Newtonian theory, the gravitation around a massive object placed in the
origin of the spatial coordinates (moreover, we consider here only the case of non-
constant Φ: m ̸= 0). Let us, once again, begin with imposing the three conditions
(6.19), (6.20) and (6.21) on the general form of the symmetry vector U given by
identities (6.22) and (6.23). This time for the case of the spherically symmetrical
potential (6.33). After considering the conditions we obtain the equations:

θ̈(t) = γimrm−2xi (6.34)

ḃij(t) = −γj mrm−2xi (6.35)

äi(t) = bij(t)mrm−2xj − 2θ̇(t)mrm−2xi−
−
[
ai(t) + bij(t)

] [
mrm−2δij +m(m− 2)rm−4xixj

] (6.36)

Let us now find the solution to the acquired system of equations. All the three
equations (6.34) and (6.35) and (6.36) demand a function of time to be equal to a
function of spatial coordinates. Thus the only possibility is that both sides of the
equation must vanish, leading to:

γi = 0 (6.37)

θ(t) = αt+ β (6.38)

ai(t) = dit+ hi (6.39)

bij(t) = cij = const. (6.40)

Here α, β, cij , d
i and hi are arbitrary constants. The resulting conditions (6.37),

(6.38), (6.39) and (6.40), as a matter of fact, hold for an arbitrary form of the (time-
independent) gravitational potential, other than the cases of linear or constant Φ
which were discussed in the previous sections. The obtained conditions lead to the
equations (6.34) and (6.35) being satisfied automatically and also to the vanishing
of the left side of (6.36). All that is left to do now is to make sure that the non-
trivial right side of (6.36) vanishes as well. Using (6.37), (6.38), (6.39) and (6.40),
one may now reformulate the last equation (6.36) to obtain the following formula:

0 = −2αmrm−2xi − cjkm(m− 2)rm−4xixjxk−
−
[
djt+ hj

] [
mrm−2δij +m(m− 2)rm−4xixj

] (6.41)
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The task to find symmetries is then reduced to identifying the appropriate
combinations of constants which lead to satisfying the equation (6.41). The first
obvious observation is that it is solved for an arbitrary value of the constant β,
introduced in the equation (6.38), since it does not show up in the condition at all.
This corresponds to the time translation symmetry of the theory which is obvious,
since the considered potential Φ is time-independent. Furthermore, one may find
after quick examination that the constants di and hi must vanish:

di = hi
!
= 0 (6.42)

The constants cjk clearly satisfy the condition (6.41) in case they are antisym-
metric in their indices (since they are summed over with xjxk term):

cij
!
= −cji (6.43)

These correspond to the rotational symmetry of the theory which is, once again,
no surprise since we consider a spherically symmetrical gravitational potential Φ.
What is a bit more interesting though, is that the condition (6.41) is satisfied for
one more combination of the constants which is:

c11 = c22 = c33 =
α(

1− m
2

) (6.44)

This combination of constants corresponds to the vector field
(
1− m

2

)
t∂t+xi∂i

or in spherical coordinates:
(
1− m

2

)
t∂t + r∂r. To make sense of this result let us

consider the most familiar case of gravitational potential 1/r by choosing m = −1.
The corresponding symmetry vector field then is 3/2 t∂t + r∂r. One may already
recognize, based on the factor 3/2 representing the ratio of transforming space
and time, that this symmetry vector has to do with Kepler’s third law of planetary
motion. Indeed, after we compute the vector field flow Ψλ : M → M corresponding
to this symmetry we get:

t 7→ te3/2λ

r 7→ reλ
(6.45)

Based on the geodesic preserving property of the flow Ψλ (discussed in chapter 5)
we know that each trajectory of a moving massive body in Newtonian spacetime,
represented by a geodesic of the Newton-Cartan connection ∇, is transformed into
another possible trajectory. That leads to the fact that for the coordinates t and r
on these trajectories, as they transform under the flow (6.45), the following ratio
remains constant:

t2

r3
= const. (6.46)
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Although we are a few centuries late with this discovery of Kepler’s third law
[Kepler, 1619], this represents an interesting example of how the formalism of the
Lie derivative of linear connection may help us uncover symmetries of the solutions
for geodesic equations which are not clearly visible at the first sight. We can also
see that we obtain, from the symmetry (6.44), a transformation corresponding only
to the scaling of space and time, while the information about the form of possible
planetary orbits which may be scaled in that way is not contained here (this point
of view on Kepler’s third law is illustrated in a comic version in Appendix B). We
may also see, based on this result, what the analogy of Kepler’s third law would
look like for the potential given by a different function, provided we pick a different
value of the parameter m.

The complete Lie algebra of the symmetries of the Newton-Cartan connection
for the spherically symmetrical potential (6.33) is then given as:

U0 = α
(
1− m

2

)
t+ β (6.47)

U i = cijx
j + αxi (6.48)

With constant coefficients α, β and cij = −cji .
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Appendix A

Properties of the pullback
connection

The pullback connection f∗∇ on a manifold M is introduced, based on a dif-
feomorphism f : M → (N,∇), by defining the corresponding covariant derivative
for V ∈ X(M) and T ∈ T (M) as:

(f∗∇)V T := f∗ [∇f∗V f∗T ] (A.1)

Here we examine the properties of the covariant derivative defined in (A.1) to
make sure that the defining formula actually satisfies all the conditions required
for it to be a covariant derivative. We list the requirements for an operator to be
a covariant derivative [Fecko, 2006] and for each one, we provide proof that it is
satisfied for the operator (f∗∇)V . Let us consider tensors A, B ∈ T (M), vectors
V , W ∈ X(M), a function φ ∈ F(M) and a constant λ ∈ R. The properties of the
covariant derivative are:

1. it acts linearly (satisfied because the operator (f∗∇)V is defined as a com-
position f∗ ◦ ∇f∗V ◦ f∗ and all of these operators act linearly):

(f∗∇)V (A+ λB) = (f∗∇)V A+ λ(f∗∇)V B (A.2)

2. it preserves the degree of tensors (once again satisfied because all the ope-
rators f∗, ∇f∗V and f∗ have this property):

(f∗∇)V : T p
q (M) → T p

q (M) (A.3)
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3. it acts on the tensor product according to the Leibniz rule (we use the fact
that for a diffeomorphism: f−1

∗ = f∗):

(f∗∇)V (A⊗B) = f∗ [∇f∗V f∗(A⊗B)] = f∗ [∇f∗V (f∗A⊗ f∗B)] =

= f∗ [(∇f∗V f∗A)⊗ f∗B] + f∗ [f∗A⊗ (∇f∗V f∗B)] =

= (f∗∇)V A⊗B +A⊗ (f∗∇)V B

(A.4)

4. on functions it is equal to the Lie derivative:

(f∗∇)V φ = f∗ [∇f∗V f∗φ] = f∗ [f∗V f∗φ] = f∗ ⟨df∗φ , f∗V ⟩ =
= f∗ 〈d(f−1)∗φ , (f−1)∗V

〉
= f∗(f−1)∗ ⟨dφ , V ⟩ =

= V φ =: LV φ

(A.5)

5. it commutes with contractions (again satisfied because it is satisfied for the
operators f∗, ∇f∗V and f∗), for any contraction C:

(f∗∇)V ◦ C = C ◦ (f∗∇)V (A.6)

6. it is F(M)-linear with respect to the vector field V :

(f∗∇)(V+φW )A = f∗ [∇f∗(V+φW )f∗A
]

= f∗ [∇f∗V f∗A+ f∗φ∇f∗V f∗A]

= (f∗∇)V A+ φ(f∗∇)WA

(A.7)

Since all of these are satisfied, we may conclude that (f∗∇)V is a covariant
derivative, and therefore the pullback connection f∗∇ is a well-defined linear con-
nection.
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Appendix B

How two wrongs make a right
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[Misner et al., 1973] Misner, C., Thorne, K., and Wheeler, J. (1973). Gravitation.
W. Freeman.

53



[Paliathanasis, 2021] Paliathanasis, A. (2021). Projective collineations of decom-
posable spacetimes generated by the lie point symmetries of geodesic equations.
Symmetry, 13(6).
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