Marian Fecko
Differential Geometry and Lie Groups for Physicists
Some additional material to the book
Version from January 13, 2026. In progress.

Here one finds some comments, improvements, more detailed hints and additional (solved) problems. All this
should hopefully make the book more useful.

p-8: In the definition of a chart a homeomorphism ¢ : O — R"™ is mentioned. In fact, a homeomorphism
on an open subset of R™ might be more precise statement.

p.9: In (i) the general (n-dimensional) case might be treated as follows.
Let the sphere S™ be realized as

pP+22=R? p=(z ... 2"
The South pole and the North pole, respectively, read
S =(0,—R) N =(0,R)

Let P = (p, z) be a point on S™ (other then S or N). Then the line from S through P may be written as
p(t)\ _( O pY_( O
< 2(t) ) B < “r) T\ “r)|!

p(t) = pt
z(t)=(R+2)t—R

i.e.

This line crosses, in a unique point (r, R), where r is to be determined, the (hyper)plane touching the North
pole, i.e. the plane z = R. A simple computation leads to

2R

¥ The crossing happens for ¢ = ¢; such that z(¢;) = (R+ 2)t; — R = R, so that t; = 2R/(R + z). Then

2R
r=p(ti) =pt1 = RiaP
A

From a similar computation we learn, that the line from N through P crosses, in a unique point (1, R),
where 1’ is to be determined, the (hyper)plane touching the South pole, i.e. the plane z = —R. Here, we get

. 2R

So, we see that the two vectors are parallel
r =M\r

and one only has to determine A. In order to do that, notice that

, 2R 2R , 0>

rr’ = P = (ZR)QR2 —

= (2R)?
R—zR+=z (2F)

from where we easily get A = (2R)?/r?, or, finally
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p.10: In (iv) the fact S? = CP! is to be proved. The following simple observation makes it easy:
consider in general two n-dimensional manifolds M, N. Suppose each of them may be covered by exactly two
charts, (x1,x2) and (y1,y2) respectively, such that ”change of coordinates” expressions on the corresponding
intersections, i.e. xo(x1) and y2(y1), happen to be given by the same formulas.

[Here z; denotes the whole n-tuple (1,22, ...,2%) and similarly for 22, y1, y2. Then xo(z1) means in detail
w3 (xy, 22, ..., 2]) a=1,...,n

and similarly for ya(y1).]
Then, M and N are diffeomorphic, the coordinate expression for the diffeomorphism being simply (check)

a __ _.a Al
Y1 =0 Yz = Ty

In particular, concerning CP! and S?, the coordinates introduced in 1.3.2(ii) (for p = 1) and 1.3.5 do have
the needed properties. (The common ”change of coordinates” formula is, in complex language, of the form
z(w) = 1/w.)

The same trick clearly works for more than just two charts per manifold as well.
p.16: There is a flaw in the Theorem (assumptions are not stated correctly).
The Theorem deals with constraints in Cartesian space R™ as a tool for defining a manifold.

In particular it says that, given independent constrains ¢'(z) = --- = ¢™(z) = 0, the resulting manifold M
is (n — m)-dimensional, i.e.

each constraint reduces the dimension by one unit.

More generally, according to the theorem, if the rank of the Jacobian matrix

T () = 8?;(1@

is constant on the set M (i.e. at points satisfying the constrains), the dimension of the resulting manifold is
n — k, where k := Rank J. (The case of mazimum rank, i.e. k = m, corresponds to independent constraints
mentioned above.)

So we can state more precisely that, if the assumptions of the theorem are fulfilled,
each constraint reduces the dimension at most by one unit.

Well, consider the following simple example: Take n = 5 and

What we get is clearly M = {the z°-axis in R®} as an one-dimensional manifold. (The constraints are indepen-
dent.)

Now, on the same starting R®, consider just a single constraint
¢ =(6")*+ (%) + (¢°)* + (¢*)?
so that
¢(x1,x2,x3,x4,x5) — (1‘1)2 T (1‘2)2 T (1‘3)2 T (1‘4)2

It is clear that this constraint alone produces the same one-dimensional resulting M = the z°-axis in R®. So
this particular constraint reduces the dimension by as many as four units!

Then, perhaps, the assumptions of the theorem are not satisfied. Let us check:



The Jacobian matrix reduces to a single-raw matrix
J =2(zt, 22, 23, 2%,0)
and, on M = the z%-axis in R®, it takes the value
J =(0,0,0,0,0) on M

so that k = rank J = 0 and dim M = n —k =5 — 0 = 5. In spite of the fact that the rank of the Jacobian
matrix is constant on M (it is namely vanishing there, k& = 0), the statement dim M = n — k does not hold,
here. So,

the theorem (as it stands in the book) is not true in general.

It turns out that what one should really assume is that
the rank is constant on a neighbourhood of M

rather than just on M alone!
What this improved version of the theorem says for our example?

We can see that although the rank of the Jacobian matrix is k = 0 right on M, we have k = 1 at any point
outside M. So the rank k is not constant on a neighborhood of M, the assumptions of the (correct version of the)
theorem are not fulfilled and therefore the theorem says mothing about the number of dimensions reduced by
our particular constraint. Reduction by four units is perfectly compatible with the theorem (although unusual
and slightly counter-intuitive).

Actually, the situation, when a single function (used as a constraint) reduces dimension by more than one
unit, is well known in the context of the standard radial coordinate r (in polar coordinates (r, ) in plane as
well as in cylindrical or spherical polar coordinates (r, ¢, z) or (1,9, ) in space). Namely we all know that the
coordinate r is defective when r = 0. In particular, consider the family of constraints

¢(T,30):T_C

in the plane, where ¢ is a nonnegative constant. For ¢ positive, the constraint reduces dimension by one unit
(resulting in circle with radius ¢). For ¢ = 0, however, the dimension is reduced by as many as two units
(resulting in a point). The same constraint

¢(T,’l9,(p) =r—c

regarded as a function in the space reduces (for ¢ = 0) the dimension even by three units (resulting in a point
again). And this is exactly the reason why one should ezclude the point where r = 0 from the part of (say)
the plane, where r may be used as a coordinate. Coordinate functions should have the property of reducing the
dimension by ezactly one unit. This leads, then, to the fact that points (zero-dimensional subsets) are labeled
by exactly n values of coordinate functions (we need n steps to reduce the dimension from n to zero).

Moral: One should be careful about the character of some innocently looking (smooth) constraints. They
may behave rather unexpectedly.

p.19: One can check explicitly, that the formula leads (via the idea from the Exercise (1.5.6)) to the
following equivalences in the (u,v)-plane:

(u,v) ~ (u,v + 2m)
(u,v) ~ (u+ 27,27 — v)

This means that
- we can forget about the points of the (u,v)-plane outside the square (0,2m) x (0, 2)
- at the boundary of the square, there is equivalence of the type K2 in (1.5.11)

The only thing to check is that all points inside the square are inequivalent. Try to prove it yourself, i.e.
prove that, inside the square, if (u,v) # (u’,v’), then resulting points in R* are different (injectivity of the map
(0,27) x (0,27) — R%).
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- p-24-25: Here we recapitulate general strategy of how to introduce, in terms of the concept of
mutually tangent curves, the tangent space Tp M as a vector space canonically associated with a point P € M.

We think of curves «(t) such that v(0) = P (no other curves are of interest for us). In a neighborhood of P,
choose coordinates x*. Then, near P, we have first order approximation

2 (y(t)) = ' (P) + ta’ + ... where a' = —| z'(y(t))

So, with respect to coordinates x!, the only data needed to first order approximation of a curve (within the
family of curves 7(t) such that v(0) = P) consist in n-tuple of real numbers (a',...,a").

Two curves with identical n-tuples a® (i.e. such that their first order approximations coincide) are called
tangent to one another.
v This fact does not depend on the choice of coordinates (i.e. the concept is well-defined). Indeed, if 2% < a’
and z¥ < a', then o' = J},aj, where J;-J = (92" /0x7)(P) is the Jacobi matriz of the change of coordinates
2'(x), evaluated at P. Therefore, if for two curves v; and 7y, holds a® = a} (i.e. they are tangent to one another

with respect to x), then it also holds aﬁl = ag (i.e. they are also tangent to one another with respect to z’; one
just multiplies the first equation by the Jacobi matrix). A

One easily checks that the concept of tangency of curves introduces equivalence relation into the family of
curves of our interest. An equivalence class is denoted [y] and the set of all equivalence classes is denoted Tp M
(the tangent space at P € M).

v All this is also well-defined: equivalent curves have equal n-tuples (a',...,a") and equality of n-tuples
does not depend on the choice of coordinates. A

So, for each choice of coordinates, there is a bijection between the equivalence classes of curves and n-tuples
a’ (elements of R™):

TpM > [y] ¢ acR"” w.rt.

< d eR” w.r.t. x’
Now recall that R™ has natural linear structure
(ab,...,a™) + AL, ... 0" = (al + AbL, ... a™ 4 A7)
Therefore, we can steal, via a bijection, the linear structure from R™ and donate it to TpM (well, in official

parlance we induce the linear structure).

A small complication in this robbery presents the fact that there is no canonical bijection, but rather infinitely
many bijections, all of them of exactly the same value (each local coordinate system provides a bijection).
Fortunately, it turns out that each choice of coordinates (and, consequently, of the corresponding bijection)
leads to the same linear structure in TpM. So, there is the linear structure in Tp M.

v Indeed, let [y] and [o] be two elements from Tp M such that

[y]<>a and [o]<b w.I.t. T
<~ a and = w.r.t. o’
Then, by definition,
(V] + Alo] <> a+ Ab wrt. @
< a + N\ w.r.t. a2’

Do both prescriptions (via x and via z’) lead to the same result? They do, if (and only if)
J(a+Ab) =a + \V

(i.e. if first performing the linear combination via z and then translating the result into the language of the
a’-tribe gives the same object as performing the linear combination directly via z’). But this is clearly so, since

J(a+Ab) =Ja+AJb=a + N\
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This shows that we can induce linear structure into Tp M using any bijection Tp M <> R™ (i.e. using any local
coordinate system x). The result is always the same: there is canonical linear structure in Tp M. A

Finally, let’s have a look at an appropriate basis in TpM. Well, since there is a standard (”natural”) basis
E; in R™ (number 1 at the j-th place of the n-tuple and 0 at all remaining places), the bijection via coordinates
x gives us unique equivalence class [y;] which corresponds to E;. And then, for general [7] <+ a = a’ E;, we get

(Y] = o [v]

And what about the representative y; (i.e. the j-th curve itself) generating the class [y;]? Well, we need to
return back to the general formula ‘ ‘ .
' (y(t)) =2 (P) +ta* + ...

and set a* corresponding to the basis vector Ej, i.e. a* = d%. We get
(v (t) = ' (P) + 8% + ...
Any curve +;(t) with this first order approximation induces the class [y;]. The simplest one is clearly the curve
a'(7;(t)) = 2" (P) + t6;

(i.e. such that there are "no dots at all” at the end of the expansion). Such curves v;(¢) (for all j =1,...,n)
are known as coordinate curves. (For j-th coordinate curve, v;(t), the only coordinate whose value changes as ¢
increases is 7, namely the coordinate 27 increases linearly.) So, in this approach to vectors on a manifold, we
can take as a basis of the tangent space TpM the vectors [v;(t)], equivalence classes generated by coordinate
curves 7, ().

Recall that there is an alternative notation < for the equivalence class [v] (see p.24 in the book; actually
is used much more frequently than [y]). Using both notations, we can write for a general vector v

v=4=hl=dln =%

, p-35: A slightly more detailed discussion of higher dual spaces might be useful. In particular,
we show here, first, how natural bases are introduced in all those spaces. And second, how one easily gains,
from elementary properties of those bases, an alternative insight into the canonical isomorphism L — L** from
(2.4.3).

Recall that the n-th dual space of L is simply the dual space of the (n—1)-st one. That’s why the construction
of the dual basis from (2.4.2) may be repeated for each pair of adjacent duals. So, as soon as we pick up a basis
eq in L, the whole (infinite) chain of bases in all higher duals is canonically defined. Now, a change of basis
eq > €, = Ale, in L by means of a non-singular matrix A results, according to (2.4.2), in the change of basis
e? — e/" = (A71)¢eb by means of A~! in L*. Then, however, we also get E, — E, = (A~1)"1)bE, = AYE,,
B B = ((A~H)™H HeEb = (A71)EE? ete.

So, the overall situation reads as follows:

space L L* L** L*** L**** L***** ete.
basis €q e E, E° & &g° etc.
scrambled by A At A At A At etc.

where
0y = (e ep) = (Ep, %) = (B, Ep) = (&, B) = (€%, &) = etc.

Now it is clear that the correspondence
e, & E, & &, < ete.
provides the canonical isomorphisms between members of the (infinite) chain of the spaces

L & L™ & L™ & ete.
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First, it is clearly a bijection (i.e. a linear isomorphism, when extended by linearity from the basis to the entire
space L). Moreover, and this is crucial observation, it does not depend on the choice of a basis in L, since the
bases within all members of the chain are scrambled in the same way - in terms of the matrix A.

[Compare this with the similarly looking correspondence e, <> e®. It gives a perfect isomorphism of L and
L* as long as we keep the basis e, fixed. However, as soon as we change the basis e, in L, the isomorphism is
replaced by a different one, given by the new correspondence Ale;, <> (A71)%eb.]

And, perhaps, one should not be overly surprised that the isomorphism L <+ L** introduced here is nothing
but the one proposed in the hint to (2.4.3), i.e. the isomorphism f given by the formula

f:L— L™ (f(v),a) := {a,v)

Indeed, since f is clearly a linear mapping L — L** we have, in terms of the bases e, and E, in L and L**,

respectively,
flea) = BZEb

for some - yet unknown - matrix B. Then

(f(ea),e®) & (BEE,, e*) = BS(E,,e") = BY

so that

2.4.18 | p.44: For a general linear map A : Ly — Lo, the statement is only true for positive (or negative) definite
metric tensor h in Lo. If h fails to be positive (or negative) definite, induced tensor A*h still may be ”good”,
i.e. non-degenerate, but one must be careful in choosing ”good” map A.)

Consider, to illustrate the matter, the two-dimensional ”Minkowski” (linear) space, i.e. the (indefinite) space
h=e'®e —e?@e?

Let Ly be one-dimensional, spanned by é;. A general linear map A : L1 — Lo is given as
A é1 — uep + vey u,v € R
Then (check)
A*h=---=(u? —0v?) et @é!
So the resulting induced tensor A*h is
- positive definite (= non-degenerate) for u? — v? > 0
- negative definite (= non-degenerate) for u? — v? < 0

- vanishing (most degenerate possible)) for u? — v? =0 (i.e. for u = +v)

The problem lies in the third possibility. Although, say,
A: él — e+ e

is a perfect mazimum-rank linear map L; — Lo (the rank being 1 :-), the resulting induced tensor A*h vanishes,
i.e., it is definitely not a metric tensor in L. (Actually, it is induced from an isotropic subspace of Ls.)

p.52: At the end of the page, gradf, the gradient of f, is introduced as a vector field (rather than the
covector field df ). Tt’s important property should be mentioned: at any point x, the vector gradf is orthogonal
to the level surface of f passing through z (i.e. the hypersurface f = const.). [Meaning it is orthogonal to any
vector v tangent to the surface.] Indeed, for any vector v we have

g(gradf7 7)) = <df7 U> =uf

due to . _ _
g(gradf,v) = gij(gradf)'v/ = gi;g" (df )i’ = (df)rv® = (df,v)



(the first equal sign) and 2.5.3(i) (the second equal sign). Then
glgradf,v) =0 & ovf=0 < v istangent to the hypersurface {f = const.}

There is a "skew” analog of all this (see Chapter 14): the ”"skew gradient” of f (= the "hamiltonian field” (
generated by f) is ”skew-orthogonal” to the hypersurface f = const., meaning

w(ls,v)=0 & vf=0 < v istangent to the hypersurface {f = const.})

(” Skew-orthogonality” is defined with respect to w.)

p.52: The components of the gradient (as a wector field) are given by (gradf)’ = ¢"*0xf. You may
be disappointed with this result, however, trying to compute it, say, in spherical polar coordinates and then
checking it versus the result in your favorite book on, say, electrodynamics. The two results differ. Why?
Because in your electrodynamics book orthonormal components are displayed whereas the result mentioned
here refers to coordinate components, respectively. See more details in Chapter 8 (e.g. 8.5.10).

p-59: In order to prove

f*OC:COf*

for a diffeomorphism f : M — N, one should realize that contractions are performed on different manifolds (M
and N, respectively) where, consequently, different frame fields are used.

Assume that e; and e’ is a (mutually dual) frame and co-frame field on (a part of) M and the same is true
for e, and e® on (a part of) N. Then
(ffoCt)(V,...50,...) = (C)(fiV,...; fear,...)
=t(f V.o eay- 5 ey e )

whereas

(Cof*t)V,...;0,...) = (fOV,...,e5...;0,...,€"...)
=t(f Voo fuliso s feay oo fuet )
So, the second result may be obtained from the first one by the replacement e, + f.e; and e® — f.e’. Notice
however that, f being a diffeomorphism, fie; and f.e' is an equally good mutually dual frame/co-frame field

on N as is e, and e®. And since in (2.4.8) we learned that contraction does not depend on the choice of the
frame/co-frame field (provided that they satisfy the duality condition), we are done.

p.74: A useful fact about commutator of vector fields is that it is preserved by maps. Let us explain in
more detail what does it mean and prove it is really the case.

Consider two vector fields U,V on M. Let f: M — N be a map and suppose the fields U,V are projectable
with respect to f (see the text before 3.1.3). Denote the images U,V (they are vector fields on N)
fU=T LV =V

Notice that the fact that U is projectable (and f.U = f]) may also be expressed in terms of action of fields on
functions as follows (recall that (Ux)(m) = Uy, x)

(Uy)of=U(of) (=U(f*)
or Uf(m)w =Un(yof) (= Un(f*9))

where v is a function on N. The same is clearly true for V. Then, the straightforward calculation shows that

(felU V)Y = [U, V(¥ o f)
=Un(V(@o f)) = Vn(Uof))
= Un((VY) o f) = Ve (U) © f)
= Uy (m) (V) = Vi) (U¥)
= U, V¥



i.e.

I+ [Uv V}m = [ﬁv f/]f(m)

or, finally, we get the preservation of commutator of (f-projectable, otherwise the r.h.s. makes no sense) vector
fields in the form

.U,V = [£.U, £.V]]

Note: this fact is (implicitly) also present for the particular case of a diffeomorphism f : M — M (where
f* = f71) in the result f*Ly = Ly+v f* of 8.3.7. Indeed, when applied on U we get

FHLvU) = VU] = Ly £7U = [f*V, f7U]

The computation displayed above shows its validity for a general (smooth) map f: M — N.

[4.6.10], [4.6.16], [4.6.22] pp.84, 87, 89: Tn 4.6.10 we completely solved Killing equations for the (pseudo-
)Euclidean space, i.e. for EP? = (R",n). We discovered that they can be written as

€= (Alad +a')0, =€) (4,a) € s0(p,q) x R

i.e. they are parametrized by a pair (A, a) from the above mentioned Lie algebra.

The Killing equations themselves read
§ij+&,i=0 & = ni¢
For homotheties of EP4 = (R™,n) we get, see 4.6.16, slightly more complicated equations
&g+ & = 2An & = nijfj , AER

where \ is unknown constant.

In order to solve these equations, notice that after differentiation we get the same equations as was the case
for isometries:

§ijk + &k =0

So, we can again deduce that '
& = Bija? +a; B,a = const.

After decomposition of the matrix B into skew-symmetric and symmetric parts
B=A+S Ay =—Ay Si; = Sji
and plugging into the initial equations, we find the following restrictions:
A;; arbitrary Sij = Anij
So, the new part is the symmetric term S;; = An;; (and nothing else). We have
& = Bija? +a; = Az + a; + A2’

§'=Aix? +a' + Ao’

Then, the most general generator of homotheties of EP*? = (R™,n) reads
gAaN) — g(Aa) 4 \pig,
So, in addition to isometries (generated by Killing fields £(4:®)), we have just a single generator
z'0; & 2t elat

producing dilation x — e‘z in R™.

For general conformal transformations (when A is no longer a constant) the situation becomes more complex.



p-99: We want to prove the useful formula
ebA...AeC:p!e[b®...®€C] (1)

Let’s do it by induction. We have seen in 5.2.8 that it does hold for p = 2. So let’s assume it is true for p and
we want to prove that it is then true for p 4 1.

If it holds for p, we have for the componets
(A ne) =D (el @ - @ed)(ej,... ex) =p! 6][.b . (5;] (2)
(for the p-form; b.t.w. this is the answer to 5.2.12). Now consider the (p + 1)-form
NN NeC=e AP Ao Ae)

(the form in the bracket is a p-form) and apply to it the general definition of the wedge product

|
(p+q)-7TA

h= plq!

°o® (3)

We know from 5.2.2iv) that the alternating projector 7 is realized, at the level of components, as the complete

anti-symmetrization (the square bracket ¢j...&k > [ij...k]). Then, using (2) and (3),

1+p' a c p+1‘ a clb c
( ) (e )[i(eb/\"'/\e)j...k]:( o )p! 5[1-5; ...5k]]

(e*NeP A Ne)ijn =
Y 1!p!

But, using the wisdom from 5.2.6, we have

ad[b

% -

.5l

laglt 5l _slage 5l _glagh s
0=l ol =alrat . o) =olot oy

j k] = [ 0%-0k = 9i 95

Therefore
(€ AP A Ae)ijn = (p+1)16°50 ... 6]

This is, however, exactly the formula (2) for p + 1. Which is nothing by the component version of the formula
(1) for p+1, ie. of
NN AN =p+ D) e @@ @€ (4)

So, from the validity of (1) for p we can deduce the validity of a corresponding statement (4) for p + 1.

p.127: The concept of the (graded) derivation of degree k looks a bit artificial. In particular one may
wonder why, in the graded Leibniz’s rule, the strange looking sign before the second term is as it is

Dk(aib) = (Dga;)b+ (—1)ikai(Dkb) (1)
and why we simply do not require the validity of the usual Leibniz’s rule
Dy.(a;b) = (Dra;)b + a;(Dgd) (2)

Well, it turns out that the usual Leibniz’s rule simply does not work (is not consistent). Let’s check!

So what we assume is graded commutativity
aibj = (=1)bja; (a)
and the tentative form of a Leibniz-like rule
Dy (a;bj) = (Dra;)b; + Ak, 4, j)a;(Dib;) (b)

Then of course
Dk(bjaz’) = (Dkbj)ai + )\(k’,j, Z)bj (Dkai) (c)
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If we use the property (a) in all three terms of (c¢) we get
(—1)" Di(aibj) = (—=1)"V M a;(Dybs) + Ak, 5,1) (—1)7 T (Drai )b;

ie. ' 4

Dy.(aibj) = (=1)"ai(Dxbs) + Ak, 4, 1) (=1)* (Dya;)b; (d)
Consistency of (b) and (d) (plus assumption that Dy # 0) then needs

Ak, g, D) (=1)F =1 Ak, i, j) = (=1)™*
so that .
)‘<ka27]> = (_l)m (e)

and (1) is valid! (Notice that A(k, 4, j) is independent of j, the degree of the left element alone matters.)

Note: The difference between (1) and (2) only occurs when both k and i are odd. The result shows that if we
were to insist on the validity of the usual Leibniz’s rule even in this case, the only solution would be Dy = 0,
the case of no interest. So, if we are looking for a

- non-vanishing
- general (valid for all degrees (k,i,7)) formula
- for graded commutative algebra,

the graded Leibniz’s rule (1) alone is of interest.

, p.131: the hint for the proof might be even simpler. We are to prove (in 6.2.8, say) the Cartan’s
"magic formula”

CV = ivd + div

It is written in the hint, that the formula to be proved is an equality of two derivations (of degree 0) of the
algebra Q(M) and therefore it is enough to verify it on degrees 0 and 1, ”where it is easy (e.g. in components”).
Now, for the degree 1 case, no components are needed. Actually 1-forms of the structure dy (i.e. exact 1-forms)
suffice. (Observe that all p-forms are sums of expressions of the structure fdi) A---Ady, i.e. products of 0-forms
and ezact 1-forms. This is, btw. used in the hint for 6.2.11!) So, one is only to prove

Lyf=(ivd+diy)f
Lydf = (ivd+ div)df

which is evident (just definitions are needed).

6.3.11 | p.138: The formulas
xdz’ = g dY;
#(dzt A da?) = g* gld¥y,
etc.

from part ¢) may be rewritten as 4 - ,
*(Aldl'l) = Aig”de = Alei

#(Ayda’ ANda?) = Ayjg* gt dSy = AYdY;
So we get, in general,
#(A;dxt) = A'dY;
*(Aljdl‘l A dJCJ) = A”dEU
etc.
Recall that the (n — 1), (n — 2), ... -forms on the right are defined as follows (see the p.138 in the book :-)

1
(n—1)!

1
(n—1)!

dy; = wij_”kdxj Ao Adat = lg(x)] sij,,.kd:cj A AdaF
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1
(n —2)!

l

d¥;; = wij}cmzdxk/\~-~/\dxl = lg(x)] Ez‘jk“.ldxk/\"' Adzx

1
(n—2)!

etc.

p.148: Some more details to the hint: Denote P;, and @;, the j-th coordinate of the points P, and
Q. respectively (j = 1,...,n, p = 0,1,...,n). Then the fact, that z — Az 4+ a maps P, into @, (for each
w=0,1,...,n) leads to the system of equations

Aij P+ a; = Qiy uw=0,1,....n

We are to show that, given the points P, and @, a unique pair (A4, a) emerges. If we choose Py = (0,...,0), P, =
(1,...,0),...,P, =(0,...,1), so that Pjo = 0, Pj, = J,, the equations read

a; = Qio  Aijdjk + ai = Qi
so that
a; = Qi Aij = Qi; — Qio

(one can also obtain the same result without any computation after some contemplation). So, any simplex may
be obtained from the standard one by means of a unique affine transformation. Consequently, any two simplices
may be mapped into one another by means of a unique affine transformation. [Map the first simplex to the
standard one (by the inverse of (4, a) given above) and then, in the second step, map the standard one to the
second simplex.]

p.149: In part (ii) the third, more explicit (and useful), characterization of the standard simplex 5, may
be mentioned:

Sp: (zh, ..., 2P) such that 0<ax'<1

0<a?<1-—2z!
0<a®<1—za!—2?

0<aP <1—gl—... —gP!

Therefore, integration over 5, amounts to

1 pp— 1—(zt 4 4P
/(...):/dxl/ dx2~--/ dx? (...)
5p 0 0 0
1_(ml+...+mp)
/ (...):/ / a1 (..)
Sp+1 Sp 0

where s, at the r.h.s. is the base s, of the 5,1 (such face of the boundary, where 2P™! = 0). So, as an example,

/53(...)=/Oldx/01_mdy/ol_(m+y)dz (...):/32/01_(“7!)@ ()

where so at the r.h.s. is the base sy of the 33 (such face of the boundary, where z = 0; the "floor” of the
3-simplex).

p.153: more details for arbitrary p:
1.: The boundary of the standard simplex 5,41 = (Py, P1, ..., Pp41) contains p + 1 terms. Among them, there

are p — 1 7internal” terms, where the points P, ..., P, are omitted (in each term a single point). Realize that
when Py (the k-th one) is omitted, the corresponding p-simplex does not ”stick into the k-th dimension” (for
all the points ¥ = 0 holds). This means, however, that the pull-back of the differential dz* with respect to
the map @ (into the standard simplex 5,) vanishes (®;dz* = d0 = 0). This leads to vanishing of the complete
form ®5n = ®;(fdx' A--- A daP) to be integrated over this particular 5,. Since this is true for all ”internal”

Notice that
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points Py, ..., P, mentioned above, there are just two terms of the boundary which do contribute to the integral
- those in which the first and the last points are omitted respectively. They read explicitly

951 =0(Po, P1, ..., Ppy1)
=(P1,...,Ppy1) + (=1)PTY(Py, P1,..., P,) (plus irrelevant terms)
= (=P (P, Py,..., Py) — (Pys1, Py .., Py)]
2.: So, the "boundary” side of the Stokes theorem is

[ a=tof 0= i
6§p+1 (P(],Pl,.A.,Pp) (Pp+1,P1,...,Pp)

ni=f(x',. .. 2P, 2P dat Ao A da?

where

3.: The ”bulk” side of the Stokes theorem may be expressed, as mentioned in the book (see also comment to
(7.2.6) in this text), in the form

[ dn = (_1)P+1[/ ot e (2P, 0) — f@ 2P — (2 e 2]

1 1—g! 1—(xt4 4Pl
/dxl...dxp(...)z/dxl/ d:v2~-~/ dx? (...)
s 0 0 0

P

where

4.: Then, the statement | L dn= Jos L, 7 s true if
p p

/ f(ml,...,xp7xp+1)dx1/\-~-/\dxp:/ det ... dxPf(z!,. .., zP,0)
(Po,Pr,.-.,Pp)

Sp

/ f(xl,...,:cp,xp“)dzl/\~~/\d:cp:/ det ... dxPf(at,. .. 2P 1 — (z' 4 -+ 2P7h))
(PP+17P17"'>PP)

Sp

5.: The p-simplex (P, P, ..., P,) forms the base (floor) of the standard (p + 1)-simplex 5,41 (so 2P =0 on
it). It is clearly the ®-image of the standard p-simplex 5):

(P, Py,y...,Py) = ®(5,) O (ut,.. . uP) = (ub ... uP,0)

Using the definition f o(s,) 1= f§p ®*n we immediately get the first equality in 4.

6.: The p-simplex (Ppy1, P1,. .., P,) forms the slant face of the standard (p + 1)-simplex 5p4+1. (One obtains
(Ppt1, Pr,..., Py) from (Py, Py, ..., P,) by lifting the vertex Py to the height 1 along zP™! and a general point
(x',...,2P) inside to the height 1 — (2! + --- + aP); draw the pictures for p = 1,2.) It is the ®-image of the
standard p-simplex 5,:

(PPJrlaPlv"'aPP) :(P(gp) P (ul’”.’up) = (ulv"wupal - (ul ++U‘p))
Using again the definition f@(gp) n= fgp ®*n for this @, we get the second equality in 4.

p-155: First, let us simplify the problem by replacing the rectangle by the unit square O treated in 7.6.2.
So, in order to make the idea as clear as possible, put a = ¢ =0, b = d = 1. The novelty is, in comparison with
7.6.2, that a general 2-form « = f(z,y)dz A dy, rather than just dx A dy, is to be integrated.

We are to integrate a over sum of two simplices o and o3. So take two mappings from the “parametric”
space R%[u, v] (where the standard 2-simplex 5, lives) to “the manifold” R?[z,y| (where the square [J lives):

Dy : (u,v) — (z,9) = (u,v) Dy : (u,v) = (z,y) = (1 —u,1 —v)
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(Since @3 (dzAdy) = ®5(dx Ady) = duNdv, both &1 and $, preserve orientation, see 7.6.1.) We are to calculate

1211+12:/ (I)TOK—F/ @;O&
5o 52

Now
Oia = f(u,v)du A dv Pla=f(l—u,l —v)duAdv

So, the last step of the recipe of computing integral (switching to Riemannian integral, including Fubini, see
the text prior to 7.4.1) says that

1 1—u 1 1—u
I=1 —l—Ig:/ du/ dvf(u,v)—i—/ du/ dvf(l—wu,1—wv)
0 0 0 0

These are standard Riemannian integrals, so standard tricks may be used for their computation. In the first

one we just rename variables:
1 1—z
n=[a| e
0 0

For the second one we perform substitution
l—u=a2 1—-v=y so that du=—dxr dv=—dy

and we get (not forgetting to calculate new limits of integration :-)

b= [ can [ cantew = o [T asen= [ a [ ey

Then, adding the two integrals, we get

111+12/01dx (/0”+/11w) dyf(w,y)/oldx/oldyf(fc,y)

and this is clearly the standard way how the integral of f(z,y) over the unit square is to be computed.

For general bounderies a, b, ¢, d the idea remains the same but computations become more tedious.

p.165: Here we learned the (generalized) ”integration by parts” formula

/Ddoz/\ﬂz—/Dﬁa/\dﬂ—l-/aDa/\ﬂ

which holds for any two forms « and 8 such that their degrees fulfil dega + deg 8+ 1 = n and D being an
n-dimensional domain, and, as a simplest special case, the ”ordinary” 1-dimensional formula

b b
/ f(@)g(x)de = — / @) @)z + [fg!

Let us mention (here) what the general formula offers in vector analysis context (see Section 8.5. for treatment
of vector analysis in terms of forms).

Here (in E?), we have deg a + deg 3 = 2, leaving just two cases of interest,

1. dega =0 deg 5 =2

2. dega =1 degf =1
From (8.5.2) then

1. a=f g=A-dS

2. a=A dr 8 =B-dr
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so that (from (8.5.4))

1. da = (Vf).dr dg = (divA) dV
2. da = curl A - dS dB = curl B - dS

Therefore, taking int account

(A.dr) A (B.dr) = (A x B).dS
(A.dr) A (B.dS) = (AB)dV

from (8.5.8), the ”general by parts” formula gives us the following two integral identities:

1. /D(Vf~A) dV:—/Df(divA) dV—i—/aD(fA)-dS

2. /(B-curlA) dV:/(A-curlB) dV+/ (A xB)-dS
D D oD

p.166: see additional material to (8.5.6) here

p-174: Tt is useful to realize that ji depends actually on as many as two tensor fields, V' and g. So, the
more precise way is to write it as jy,q:
jvga:=gV, .)ANa

Then, the fact that it is natural with respect to diffeomorphisms reads

’ [rivga = jrvof a ‘

This is indeed readily verified:
frGvga) = gV, ) Na) = g(Ve ) A fra=(Fg)(fV, )N fra=jpvygf a
Or, alternatively, one can use the flat symbol by to express
Jvge = (V) ANa
and write

[ Gvga) = fH(bgV) Na) = (FF0gV)) A(fTa) = bpeg f V) N (fT0) = Gpevipeg f e
where we used naturalness of b, (see 8.3.8)

p.181: Two-dimensional vector analysis (in E? rather than E?) is mentioned (in a footnote, p.179) as a
simpler realization of the usual one. Perhaps some additional remarks might be useful concerning this topics.
(See also additional material to (8.5.6) here.)

First, rewrite the diagram (8.5.4) (valid for three dimensions)

QM) —4 t(M) —2 02(M) —L Q3 (M)

D T
FM) —— X(M) —— X(M) —— F(M)

grad curl div

in the form
QM) —%— at(M) —L Q2(M) —2— Q3(M)

o o o [
FM) —— (M) —— X(0M) —— F(I)
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where ag, a1, as,as denote isomorphisms encoding scalar and vector fields into forms of various degrees and
Ay, As, Az are the effective differential operators from vector analysis. Then, clearly
Ai=a1 day !
Ay =as d al_l
A3 = as d a;l
so that
Ay A1 =0 Az Ay =0

These are, in reality, the statements
curl grad =0 div rot =0

Now, the corresponding general counterpart in two dimensions reads

QM) —L— Qt(m) —L Q2(M)

aol lal laz

FM) —— X(M) —— F(M)

Alzalda(}l Azzazdafl A2A1:0

Notice, however, that on a two-dimensional M the star operator %, when applied to "middle degree forms”,
is an operator on Q' (so it does not connect forms of different degrees, Q'(M) <+ Q2(M), as is the case
in E3). Therefore, there are as many as two distinct natural identifications of vector fields with one-forms,
QY M) < X(M): via t : QY(M) — X(M) and via #* : QY(M) — X(M). Or, when looking from the other
side, there are two ways how vector fields may be encoded into one-forms, via b : X(M) — QY(M) and
#h: X(M) — QY (M).

Therefore we get, instead of the single diagram in three dimensions, as many as two corresponding general
diagrams in two-dimensional vector analysis:

QM) —2— at(m) —L Q2(M) QM) —%— Qt(Mm) —% Q2(M)
ao l J{al lﬂa and bo l lbl J{bz
F(M) — X(M) — F(M) F(M) — X(M) — F(M)
Alzaldagl Agzagdal_l A2A1:0
By =by d by* By =by d by* By By =0

When concrete isomorphisms a; and b; are inserted, we get

QM) —4 Qi(M) —2— 2(M) QM) —4 Qt(M) —2— Q2(M)
idl U l* and idl lﬁ* l*
F(M) — X(M) —— F(M) F(M) — X(M) — F(M)
gra o 1 —div
and
grad =fd Dy =xdb Dy grad =0
Dy=4#xd div =+t d xb div D1 =0

(We have, on vector fields in E?,

xd(fx) P =xdx b= —xdxb=—xndxb=—x""dxb=x""dxih = 0b = —div
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due to * 71 = %7}, see 5.8.2, and 6V = —divV, see 8.3.4).

So, in comparison with the three-dimensional case, there are still, in two dimensions, the two good old
operations grad and div, but, first, curl (as an operation vector field — vector field) is missing and, second,
two "new” differential operations (denoted here as D; and Ds) emerged.! The first, Dy, is of type scalar
vector (like the gradient) whereas the second, D, is of type vector — scalar (like the divergence). In particular,
in Cartesian coordinates in E? we have

grad : f = (01f,02f)
Dy : f = (=02f,01f)
Dy : (A1, A3) — (0143 — D2 A4)
div : (A1, As) — (0141 + 0245)

Observe that the composition of two operators belonging to the same diagram indeed vanishes (since it is just
masked dd = 0)

Dy grad : f = (O1f,02f) = (0102f — 0201 f) =0
div Dy : f — (—82f, 81f) — (81(—82f) + 82(81f)) =0

Composition of two operators belonging to distinct diagrams leads (for both possibilities) to the Laplace operator.
Abstractly
div grad =Dy Dy =*dxd = A

and in particular, in Cartesian coordinates

div grad : f = (01f,02f) = (0101 f + 0101 f) = Af
Dy Dy : f = (=02f,00f) = (01(01f) — 02(=0af)) = Af

There is still another (and perhaps the most natural) point of view: the manifold E? is, at the same time,
Riemannian and symplectic manifold (see Chapter 14).2 The symplectic form is just dz A dy, the standard
(metric) volume form in E2. Therefore, there are as many as two natural ways of identifying vectors with
1-forms (i.e. two natural ways of raising and lowering of indices) - in terms of the metric tensor g and in terms
of the symplectic form w. Therefore,

- two vector fields may be associated with gradient df as a covector field, the gradient V f = grad f as well
as the Hamiltonian field (; the latter is nothing but Dy f :-)

- two ways of lowering indices on a vector field W result in two distinct 1-forms associated with the vector
field; then the exterior derivative d produces two distinct 2-forms, both of them proportional, however, to
the (metric) volume form; so, the ”"proportionality coefficients” may be regarded as (two distinct) functions
associated to the vector field; they turn out to be (check) DoW (for the metric version) and divW (for the
symplectic version) respectively.

As a simple (and perhaps useful) application, consider 2-dimensional incompressible fluid flow. Incom-
pressibility gives (from continuity equation)
dive =10

So, at least locally
v=D1Y =(y

for some function ¢ (see the right diagram above). This function ("potential” of the velocity field) is known as
stream function in 2D-hydrodynamics. Why? Since D11 is nothing but the Hamiltonian field generated by ,
we get

v =Gt = {9, 9} =0

(Poisson bracket of two equal entries). So 1 is constant along stream-lines. Put it differently, the fluid flow
is everywhere parallel to contours (level lines) of . So, by plotting level sets (lines, here) of v, we can ”see”,
modulo direction, the fluid flow.

INotice on component expressions below, however, that Do A is just the 3-rd component of the three-dimensional curl f. Also
D1 f may be regarded as hamiltonian vector field generated by f, since the (metric) volume form w can be viewed as a symplectic
form (see below; also Chapter 14).

2Manifolds like E?, where both Riemannian and symplectic structure is available (and, in addition, these structures are related
in a specific way) are known as Kdahler manifolds.
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Notice also that when Laplace operator is applied on 1, we get vorticity function w
Ay =w
Indeed, we get
A?/J:DQ Dlip:DQU:*dbU:* (d’lj)

Now dv is just vorticity form, which, being a two-form, is necessarily proportional to the volume form, the
proportionality factor being (by definition) the vorticity function . And since Hodge star gives just 1 when
applied on the volume form, we get the desired result.

p.182: When the general Stokes theorem | pda = fa p @ is applied on statements obtained from three
individual blocks (three appearances of d) of the combined diagram

QM) —4 t(M) —2 02(M) —L Q3 (M)

D !

grad curl div

we get the following triple of ”classical” integral theorems

idl l” o (Vf).dr = df o /C(Vf).dr = f(B) - f(A)

E [# o (wlAdS=dAd) o / (curlA).dS = ¢ A.dr
S oS

Q2(M) — 3(M)
| & (divA)dV = d(A.dS) / (divA)dV = ¢ A.dS
D

[
oD
div
(the gradient one, the Stokes one and the Gauss one). Now, we can mimic the procedure for both two-dimensional
diagrams (see comment to 8.5.4 here in this text)

QM) —2— at(m) —L 02(M) QM) —2— oty —L Q2(M)

idJ, lﬁ J{* and idJ{ lﬁ* l*

F(M) —d> X(M) T> F(M) F(M) T> X(M) T) F(M)
gras > 1 —div

What we get is the following quadruple of ”classical” (two-dimensional) integral theorems:

QM) —L— QY (M)

idl l“ o (Vf).dr = df & /C(Vf).dr = f(B) = f(A)

al B 6 wD ) de=—df o /C (D1 f).dr = f(A) - f(B)
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Q' (M) —L— Q%(M)

E | o (D2A)dS = d(A.dr) o /S (D,A)IS = § Addr
xX(M) P F(M)
QL) —L (M)

[ | & (divA)dS = d(x(Adr))  © /S(div A)dS = ?{;s +(A.dr)
X(M) —— F(M)

The first and the second integral statements just say (in cartesian coordinates) the same (and well-known)
thing, namely that (check)

/C (0, f)dz + (0, f)dy = f(B) — (A)

The third and the fourth integral statements say the following (check):

/(@CAy — 0yAy)dxdy = j{ Agdr + Aydy
s a8

/(amAa; + 0, Ay)dxdy = Agdy — Aydx
s as
Although these two statements perhaps look different at first sight, a bit closer look shows (just rename

(Az, Ay) — (—A,, A;) in the first one and You get the second one) that it is actually a single statement
again, namely the classical Green theorem

/(amg — 0y f)dxdy = f{ fdz + gdy
S oS

(see 8.1.4). So, there are altogether no more than two independent statements emerging from [}, dor = fa p @ in
two-dimensional vector analysis.

p.182: see additional material to (8.1.3) here

p.183: The following immediate consequences from the results listed in (ii) might be useful:

(Adr)(B)=A B
(A.dS)(B,C) = A- (B x C)
(hdV)(A,B,C) = h(A - (B x C))

p.193: Here we add some useful properties (not mentioned in the book) of the homotopy operator

ha = —/ dt®lica (1)
0

introduced in (9.2.3), where the flow ®; of the vector field ¢ shrinks M to a point.3

Its basic property (mentioned in the book, the one for which we were actually interested in it) reads
hd + dh = 1 (2)
(see (9.2.3)). This enables one ”to solve the (differential) equation”

doao=0 (3)

3Different choices of ¢ lead to different homotopy operators h.
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on contractible M. Just apply (2) onto o and get
a=dpj 8= ha (4)

So 1) the statement is that closed form is (on contractible M) necessarily exact plus 2) we have the formula for
a potential. The general solution of (3) (on contractible M) then reads

a=dg B =ha+dp p arbitrary (5)
We can treat (5) slightly differently. Namely consider the (differential) equation®
df =« B unknown , « given (6)

Then 1) validity of (3) is compulsory (”integrability condition”; just apply d on (6)) plus 2) 5 from (5) is the
general solution (so we need do evaluate the integral (1) in order to "integrate” (= solve) the equation).

Example: On M = Rx], let £ = —z0,, i.e. &, :x— e tx. Let B = f(z) and o = g(z)dz. Then (6) is
equivalent to f’'(z) = g(z) and 8 = ha is equivalent (check) to f(x) = fow 9(y)dy. So we get the standard result
usually obtained via separation of variables (df /dz = g = df = g(x)dx = ...).

Now the stuff not mentioned in the book. Observe that & is also nilpotent (just as the exterior derivative d
is well-known to be)

hh =0 (7)

fzﬁaz/ dt@;‘ig/ dT@iiga:/ dt/ dr®ficiePrla =0
0 0 0 0

since i¢ig = 0. Commutation of i¢ and ®F was used (notice that & generates the flow ®, and therefore it is
invariant w.r.t. the flow, ®,.& = &; alternatively, ®* = e7%¢, see (4.4.1), and [i¢, L¢] = 0 according to (6.2.9)).

Multiplication of (2) by d and h (and using dd = 0 = hh) results in

Indeed,

hdh = h dhd = d
and, consequently, to
hdhd = hd dhdh = dh (8)
So, introducing operators on forms
7o = dh 7, := hd (9)
we can rewrite (2) and (4) as
’ﬂ'e +m, =1 MeTe = e Mg = Tq (10)
and consequently, also
TeTg = 0 = T T, (11)

So the two projectors, w. and 74, provide the decomposition of the space of p-forms on M to the direct sum of
two subspaces
QP(M) = (M) & Q5 (M) (7)

The corresponding forms are called exact and anti-exact. So, each form o may be written as a sum of two terms,

©

the first being exact and the second anti-exact. (The decomposition depends on the choice of £.)

480 finding B may be regarded as kind of inverting operator d; d3 = o = 8 ="d~'a”. And (4) shows, that 7d~! = h”. This
is, in a sense, true on closed forms (when the term hd drops out in (2)).
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10.2.6 | p.212: The group of the upper-triangular matrices

1
Aa,b,e)=1|0
0

O = Q
= S0

mentioned here, with the composition law (check)
A(a,b,c)A(a,b,¢) = Ala+a,b+b,c+ ¢+ ab)

is also known as the Heisenberg group. Why? Let us compute its Lie algebra. Using the method of computation
introduced in (11.7.5) we can immediately see that it is a vector space consisting of the matrices of the form

0 = =z
X(z,y,2)=(0 0 y | =xFE +yEs+ 2E3
0 0 0
where
0 1 0 0 0 O 0 0 1
Ei=10 0 0 Ey=10 0 1 Es=10 0 O
0 0 O 0 0 O 0 0 O

The commutation relations read
[E1,Es)=FE3 [E1,E35]=0 [Es,E3=0

Now compare these relations with the celebrated Heisenberg (”canonical”) commutation relations (CCR)
[p, #] = —ihl [p,ihl] =0 [z,ih1] = 0

We can see that this is the same (abstract) Lie algebra.

In order to match the Heisenberg commutation relations for more canonical variables
[pi, 2] = —ihdi1 [pj,ihl] =0 [2,ih1] = 0

we promote x,y to become n-dimensional columns (z remains to be a number). Namely, a Lie algebra element
is, in general,
T

0 =x
X(:z:,y,z) = 0 On :SCZ‘EZ' +y1Fl+zG
0

o W

Then one checks that
[E;, Fj] = 0i;G [E;,G] =0 [F;,G]=0

and so we are done.

In the coordinates introduced so far (for n = 1, to be specific), we have the following obvious possibility to
relate the coordinates on the group and on the Lie algebra respectively:

Afa,b,¢) =T+ X(2,y,2)

i.e.
1 =z =z ’ 1 a c
01 y|]=]10 15 *)
0 0 1 0 0 1

i.e.

a(x,y,z) =x
b(z,y,2) =y

c(z,y,2) =z
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So, the coordinates on the Lie algebra can directly serve as coordinates on the group.

There is also another standard parametrization of the group. Note that for a general Lie algebra element we
have

0 =z =z 0 0 =zy 0 0 O
X=10 0y X2=10 0 0 X3=10 0 0
0 0 O 0 0 O 0 0 O
so that the exponential of X is simply
1 1 =z z—i—%xy 1 c
X _ 2 _ L *%
e —H+X+§X =101 Yy =10 109 (**)
0 0 1 0 0 1

which provides an alternative parametrization of upper-triangular matrices: We can, again, use (x,y,x) as
coordinates on the group (so we can use coordinates on the Lie algebra as coordinates on the group). However,
their relation to “original” (a, b, ¢)-type coordinates is more complicated, namely

1
c(r,y,2) =2+ 5%

One can check that the composition law in the group within these particular (“exponential”) coordinates (, y, 2)
reads

R ~ _ .1 _
(Sﬁ,y,Z)O(ZIJ,y,Z):(Z+$,y+y,2+2+§(l'y—yﬁﬁ))

11.2.2 | p.223: We introduced the commutator [X, Y] of two vectors from G = T.G by the formula
[X, Y] = [Lx, Ly](e) ()

Bilinearity and skew-symmetry is clear. Here, let us discuss in more detail how Jacobi identity emerges (i.e.
why the commutator is well-defined by this formula :-)

So, let us have X, Y, Z € G. Construct corresponding left-invariant fields Lx, Ly, Lz. Since Jacobi indentity
does hold for commutator of vector fields (in general, see 4.3.6), we have

([Lx,Ly],Lz] + [[Lz, Lx], Lyl + [[Ly, Lz], Lx] = 0
Evaluating both sides in e € G we get
[[Lx,Ly],Lz](e) + [[Lz, Lx],Ly|(e) + [[Ly, Lz], Lx](e) = 0 (**)
Now, [Lx, Ly] is a left-invariant field due to 8.3.7 (or 4.3.6 - see the additional material to the latter). Then,
due to 11.1.4i), it is Ly for some W € G. From (*) we see, that W = [X,Y], so [Lx, Ly] = Lix,y]. Therefore

we can rewrite (**) as

[Lix,y), Lz|(e) + [Liz.x), Ly](e) + [Ly,z), Lx](e) = 0 (**%)

Using once more (*) we are done:
(X, Y], Z]+ (2, X]. Y]+ [[Y, 2], X] =0
11.4.4 | p.229: It might be instructive to treat in parallel both additive and multiplicative groups of real numbers,

i.e. the groups

(R,+) :m(z,y) =z +y
and GL(1,R) :m(z,y) ==xy
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The corresponding basis left-invariant vector fields are 9, and xd, respectively, so we get

group left-invariant fields one-parameter subgroups exponential map
(R,+) kO, z(t) =kt kE—z(l)=k
GL(1,R) kx0, z(t) = et ks a(l) =é*

Now think of the additive group and its Lie algebra. Note that the Lie algebra structure just adds the multi-
plication by scalars and the (trivial) commutator to the structure of the group. Therefore, there is a natural
identification (!) of the group manifold R with the Lie algebra manifold R, namely x <+ x. After the identifica-
tion, the exponential map comes out to be just the ”identity” map k — k on R.

For the multiplicative group, the Lie algebra manifold R is mapped (via the ”ordinary” exponential map
k +— e*, as mentioned in the assignment of the exercise) onto the subgroup GL,(1,R) of the group GL(1,R)
(the connected component of the identity).

11.5.2 ] p.230: in (ii) we are to inspect that L (xy = f.Lx. It is computed straightforwardly. First note, that
homomorphism property of f may be written as f o Ly, = Ly o f. Then

Lex)(f(9) = Lgyef (X) = Ly f+X = (Lggy 0 f)«X = (fo Lyg) X = fiLx(g)

which is just detailed version of the statement L (x) = f«Lx.

’ 11.7.20 ‘, ’ 11.7.21 ‘ p-241: Let us discuss the method of computation of the canonical 1-form on matrix groups
even more explicitly (the method described here is very convenient so one should not feel sorry for additional
few minutes spent on full understanding of the matter).

So, first, consider Lie groups G and H and a smooth injective homomorphism

f:G—H
Let

fl:G—H
be the corresponding derived homomorphism of Lie algebras. If F; is a basis in G and F, is a basis in ‘H, then
the matrix f® of f’ is given by

f'(Ei) = f{'Ea (1)
The fact that f is homomorphism
f(g192) = f(g1)f(g2)

may be rewritten as a condition
foLgZLf(g)Of (2)

relating left translations L, and Ly on G and H respectively.

Now recall (see 11.2.6) that the definition of the canonical 1-forms #¢ and 0 (on G and H respectively)
reads

05 ==Ly : T,G > T..G=G
0 =Ly, TWH - T.,H=H

(Here 9? denotes the 1-form A% at point ¢ € G and eg is the unit element on G. The Lie algebra G of G is
identified with the tangent space TG at eq.) Therefore, taking (... ). of both sides of (2) we get

foo8S =04, 0. (3)
The canonical 1-forms may be decomposed (see 11.2.6) as follows:

0% = ¢'E; (4)
6 = e°E, (5)
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Then (3) gives _
fuo(egEi) = (ef(g)Ea) © fu (6)
Notice that both side are mappings T4G — H. On argument v € T;G we obtain

({eg, ) Bi) = (eg. v) f'(Ei) = (eg f'(Ei))(v)
?‘ (9)° f* > a — <( e )g,’U>Ea: (( *ea)gEa)(v)

(fx o (egEi)(v) := f.
((ef(g)Ea) 0 fe)(v) := (e

or '
e'f'(Ei) = f*(e"Ea) (7)
This can be briefly written as

=09  where  f(09) = f/(€'Ei) = €' f (B (8)

So, performing pull-back f* of the canonical 1-form 0 we get ”almost” canonical 1-form 09, the difference lies
in that the resulting 1-form takes values in f’(G) C H rather than in G itself.

Now, let us specify H to be GL(n,R). Then f = p becomes representation of G in R™
p:G— GL(n,R)
Natural (”Weyl”) basis in the Lie algebra gl(n,R) is labeled by as many as two indices, so (1) becomes
o' (Bi) = po, Ef (%)

and (5) takes the form
gELR) — el EY = (7 dx)P L

where we already used the explicit coordinate expression of the canonical 1-form on GL(n,R) known from
11.7.19. In this particular case we get from (7)

(p* (27 d2)g) By = e'p(Ei) = (paie’) iy (10)

Taking into account that the representation p : G — GL(n,R) has coordinate expression

z = x(z) i.e. in detail 2H s 28 (2) (11)
we get from (10) 4
(a7 1)e(2)dag (2) = pse’ (12)
Finally, recalling that
Phi = (€ (13)

are nothing but (...)%-elements of generators
& = p'(Ei) (14)

of the representation p (see 12.1.4), we can rewrite (12) as

“H2)da(z) = €'E; (15)

This is the final formula enabling one to compute basis left-invariant 1-forms e (and, consequently, the canonical
I-form #% = €' E; on matrix Lie group G'). One has to perform the following steps

- write down the formula (11) (i.e. parametrize the matrix group G)
- compute the expression x~!(z)dz(z)
- identify coefficients (1-forms) e’ standing by the generators &;

Normally, one uses the ”identity” representation p = id, p(A) = A, of the matrix group G. See explicit
examples in 11.7.22 and 11.7.23.
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12.1.13 | p.251: More general and elegant result may be obtained virtually with the same effort: If we start

with a bilinear form (not necessarily symmetric!) given by a general real matrix, the procedure (1/2m) 0277 do
(averaging over SO(2)) leads to (check)

ab+_>a+d10+b*0 0 1
c d 2 \0 1 2 \—-1 0

This nicely shows that the only invariant bilinear forms are (any multiple of) the ordinary scalar product and
(any multiple of) the ordinary volume form. You can also check that repeated averaging already does nothing

(the map behaves as a projector)
a b (e b
b a b a

12.2.5 | p.254: Here, it might be not clear what precisely N; mean (although a reader may deduce it from
description of so(r, s) in 11.7.6) so I add a more detailed account of so(1, 3), which is important in its own right.

See also 12.2.8.

Consider matrices C from the Lie algebra so(1,3) (the Lie algebra of the Lorentz group), i.e. (see 11.7.6)
real 4 x 4 matrices, satisfying

T 1 07
(nC)" +nC =0 1=y _g

(0 is the 3-dimensional null column and I is the 3 x 3 unit matrix). Check that
i) in the 143 block form (similar to the form of the matrix 7) we can parameterize the matrices C' as follows

C(u,X):<0 “T> xXT=-Xx

(u is a 3-dimensional real column and X is a 3 X 3 real antisymmetric matrix, i.e. X € so(3))
11) the natural decomposition of the resulting most general matrix

(5)=0 %)+ %)

C(u,X)=0C(0,X)+ C(u,0)

may be regarded as a decomposition of the total 6-dimensional linear space so(1,3) into the direct sum of two
3-dimensional subspaces

i.e.

s0(1,3) = s0(1,3)rot + 50(1,3)boo

and the elements of the corresponding subspaces generate rotations and boosts (= ,,genuine” Lorentz transfor-

mations). So, if z = a# = ¢, 2!, 2%, 23 is a point in the Minkowski space, then the rules

z— (1+eC(0, X))z and z i+ (14 eC(u,0))x

describe infinitesimal rotations and infinitesimal boosts respectively
i4i) the commutation relations in the Lie algebra read

[C(ul, Xl), C(U27 XQ)] = C(X1u2 — Xgul, [Xl, Xz] + u1u2T — uzuf)

and, in particular

[C(0,X),C(0,Y)] = C(0,[X,Y])
[C(u,0),C(v,0)] = C0,uv” —vuT)
[C(0,X),C(u,0)] = C(Xu,0)

From this we see that so(1, 3)y0t is a (Lie) subalgebra (isomorphic to so(3)), but so(1, 3)peo fails to be a subalgebra
(being just a subspace)

[s0(1,3)rot, 50(1, 3)r0t] C $0(1,3)rot
[50(1,3)boo, $0(1, 3)boo] C s0(1,3)rot
[s0(1, 3)rot, 50(1, 3)boo] C $0(1,3)boo
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iv) if we choose natural bases in the spaces of X’s and u’s (for X’s the matrices /; from exercise 11.7.13 and for
u’s the columns e; with a single 1 and all others 0, formally (e;) := d;1), we get as a basis of the Lie algebra
so(1,3) the matrices

0 of 0 €
- ) — - ) — J -
s; = C(0,1;) (0 L ) N; = C(e;,0) (ej 5 ) ji=1,2,3
Their commutation relations read
[Sm Sj] = €ijkSk
[Ni, N;] = —€ijisk
[si, Nj] = €iju N

v) to find a representation of the Lie algebra so(1, 3), then, means to find any operators (matrices) §;, N; whose
commutation relations exactly copy those for s;, N; from iv)

Now, I hope, the problem 12.2.5 should be crystal clear (and easy).

’ 12.3.16 ‘, ’ 13.1.10 ‘pp.267,292: More on conjugation (and conjugation classes, in particular for the group SO(3)).

Let G act on a set M. Let an element g perform z — y = gx. What kind of transformation does then the
element hgh™'? Since
(hgh™")(ha) = h(gz) = hy

we can deduce the following (simple albeit important) piece of wisdom:

if action of g performs Ty

then action of hgh™* performs hx — hy

and read it in a more wordy way as follows: In general, the h-conjugated element hgh~! does ”the same job”
on h-transformed set M as the original element g does on the original set M.

Now, let us apply it to the group SO(3) acting in the standard way (via rotations) in the 3-dimensional Euclidean
space:

if action of A performs rotation Xy

then action of BAB™! performs rotation Bx — By

Let A perform the rotation through angle o about n. So A = e®™1. If (e, e, n) is an orthonormal right-handed
bases, then

A performs e — e cosa+ exsina
ey — —ejsina + eg cos a

n—n
Then, according to the general wisdom,

BAB™! performs Be; — Bejcosa + Bessina
Bes — —Bej sina + Bes cos a
Bn — Bn

Since (Bey, Bey, Bn) is an orthonormal right-handed bases, too, this means that BAB~! performs the rotation
through the same angle o about the transformed vector Bn. In formulas:

| Beonip—1 = ea(Bw)1] or | BB~ = (Bn)1|

We see, that the conjugacy class of an element A = ™!

about arbitrary vectors n.

consists of all rotations through the same angle «
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12.4.6 | p.272, an alternative (and instructive) hint: Modify the solution of 12.2.5 presented here (see above).
Actually, one can treat both cases, so(1,3) as well as so(4), in parallel starting from the following more general
condition

mey +nc=0  g=(1 O
“\0 =)l
where
A=1 for so(1,3)
A=-1 for so(4)

Then, modifying the calculations to the A-case we obtain

[8i,85] = €ijusk
[Ni, Nj] = —)\fijksk
[si, Nj] = € Nk
In order to split the Lie algebra to the direct sum of two Lie subalgebras (spanned by A; and B; respectively)
we introduce )
Ai =S8 —|— CLNZ‘
B; :=s; + bN;
Then
[Ath} = €ijk ((1 — A(Ib) Sk + (Cl + b) Nk))

If this is to vanish (as it should for the direct sum), one has to choose

a+b=0 1—Xab=0
or, equivalently
Ai = S; + CLNZ'
Bi = 8; — CLNi A= —CLQ

Then the complete set of commutation relations becomes

[Ais Aj] = 2 eijr Ag
[BZ',BJ'] = 2 Eijk Bk
[Ai’ Bj] =0

so that (s, N) — (A, B) provides a desired direct sum decomposition. This only occurs, however, when
A= —a?

is satisfied.
In the case of so(4), i.e. when A\ = —1, this is easily fulfilled by a =1

Aj = 3]+Nj
Bj = Sj—Nj

and we get the decomposition needed in 12.4.6 .
In the case of so(1,3), however, when X\ = +1, we badly need a =i (or a = —i)
Aj = Sj —+ ZNJ
Bj ZZSj—iNj iE\/—l
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and this is not acceptable as long as we understand so(1,3) to denote the (usual) real Lie algebra (where, of
course, complex linear combinations are not allowed). So, so(1,3) (regarded as a real Lie algebra) cannot be
(contrary to so(4)) decomposed in this way.

[The needed complex combinations can be used if we think of so(1,3) as a complex Lie algebra (the complexi-
fication of the real so(1,3)). (This is also standardly done in physics, when 2-component relativistic (”dotted”
and "undotted”) spinors are introduced. The matrices, representing s; and N; act in complex spaces and,
consequently, their complez linear combinations are as good as real ones.)]

12.5.4 | p.281: Maybe a bit more systematic formulation: 7%® and 74 are invariant tensors for O(r, s), €** and
€q...» are invariant tensors for SL(n). Then, consequently, all of them are invariant tensors for SO(r, s).

12.6.2 | p.283: The complex constructed here is often called the Chevalley-Eilenberg complex (and corresponding
Lie algebra cohomologies then become Chevalley-Filenberg cohomologies)

13.1.10 | p.292: see 12.3.16, p.267 (in this text)
13.2.7 | p.296: In the hint to (i) the map f given as

7(g) — 7'(9) or, in another notation lg] — [g]

is, unfortunately, not well defined. Indeed, take two elements of gH, say g and gh. They both, by definition of
m, project to w(g). So they both can play the role of ”¢” in the formula (the role of a representative). However,
7'(g) # 7' (gh), since h ¢ H' = kHk~"' in general. So we have to invent another map to prove the statement :-(

A way to find it might be based on using more general result mentioned in ii): each homogeneous space
(M, L) is isomorphic to some canonical space (G/H, L) (with canonical action Ly[g] = g - § := [94]).

v Indeed, choose m € M an denote H,, its stabilizer (f/hm =m,h € Hy,). Arbitrary point in M is g - m.
(In addition to g, the same job does any gh, h € H,,, see additional material to 13.2.7). Define

om M — G/Hp, g-mw gl < gHn
(Because of (gh) - m — [gh] = [g], @m is well-defined.) Then it is clearly bijective and it also fulfills

Lgopm=pmo jig
(Lg °Pm)(g-m) = Lg[g] = [99] = om((93) -m)) = om(g- (G- m)) = (Pm o [A/g)(g -m)

So, ¢m provides isomorphism of an arbitrary homogeneous space (M, ﬁg) to the canonical homogeneous space
(G/H, Ly) with H := H,,. A

Notice that the isomorphism ¢, depends on the choice of m € M. If
m =k-m
is another point in M, we get, in the same way, another isomorphism
Om M — G/Hyy g-m' g < gHuw

Now it is clear, that we can obtain an isomorphism of two canonical homogeneous spaces simply by composition
of ot and @,/
¥ :G/Hy — G/Hp W = Pms 0 0}

or
identity
—_—

M M

o | [

G/Hy —— G/Hpy
P
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Let us compute explicit formula. We have

Ym:g-m— gH,
O 2 g - = gHpp m =k-m
o' gHp = g-m
(we use notation gH,, instead of [g] for the point of G/H,, in order to make computation more transparent).

Then
V=ppogy tgHn g -m=g- (k7" -m/) = (gk™") - m' — (gk™" ) Hyp

so that
P(gHm) = (gk™ ") Hypn

or, in square bracket notation,
Ylg] = [gk™Y (rather than 1[g] = [g]" from the hint in the book!)

It is clearly a bijection from G/H,, to G/H,, . Let us check it is also equivariant:

§-W(gHn)) =g (g™ ") Hu)) = 99k~ ) Hyr = (G9)k™ ) Hynr = 0((99)Hin) = $(§ - (9Hn))

so that
L;}Ow:wOLg

v Let us also check directly that the "k~!-correction” to the original (wrong) formula makes the mapping
already well-defined (see the beginning of this additional text): Indeed, if we use representative gh instead of g,
we get

[gh] = [(gh)k ™" = [ghk™"] = [(gk™")(khk ™))" = [(gk~ )R = [gk~"]'

regardless of h € H (since khk=! =1 € H' = kHk™1). A

The map ¥ may be expressed even more simply. Notice that v is fully specified by ascribing its value to
a single point (the value on any other point is already fixed by equivariancy). Then, taking this point to be
H,, < [e], we get
V(Hp) =k Hyy or, equivalently Yle] = [k

We can also proceed in the following alternative way: Let H, H be any two subgroups of G' and let
v:G/H — G/H'

be an isomorphism. Because of equivariancy of 1, it is enough to tell the result of ¢[e]. Since the result is in
G/H', it has to have the form

for some (yet unknown) g € G. Now, the map 1) should not depend on representatives (should be well-defined).
This gives

. YR
Yle] = ¥[h] = (h-[e]) = h- (Yle]) = h- [g]" = [hg]" = [9)
for any h € H. This gives the following restriction on §: for each h € H,

hg = gh' WeH

or, equivalently,
G thg =1 n' € H

This means, that conjugation of H by g—! (which gives clearly a subgroup of G isomorphic to H itself) is to be

a subgroup of H'. Since we know, however, that #H = #H' (otherwise v : G/H — G/H’ cannot be bijection),>
we get equality

50r, using symmetry argument, by the same computation with H and H’ interchanged we get that by conjugation of H' we
get a subgroup of H :-)
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This may be reformulated as follows: ¢ : G/H — G/H' is an isomorphism (if and) only if H' is a conjugated
subgroup w.r.t. H,ie. H' = kHk™! for some k € G, and then

13.2.7 | p-296: Here we learned that any homogeneous space (M, f/q) is isomorphic to the canonical homogeneous
space (G/Gy, Ly). The following (simple) useful fact remained, however, somehow hidden (it is not mentioned
explicitly):

Let z € O, and let y = gz € O, be another point of the orbit O,. As we see, starting from z, we can reach
y by the action of g. The question then arises: Are there also other group elements which do the same job
(perform x +— y)? The answer says that the set of all those elements is just the coset gG,. (This gives a useful
interpretation of the coset gG,.)

[Indeed, it is clear that elements from gG, do shift  to gz, since G, ”does nothing” and g shifts = to gx. Now,let
k be another group element with the same property, so that kx = gx. Then ¢~ 'k € G, and, consequently,
ke 9G]

It might seem that we can enlarge the set G, to Gy gG, (since G, at the end ”does nothing” when acting on
y in the same way as G, ”does nothing” when acting on z). However, we learned in 13.1.10 that G, = gG,g*
and therefore
Gnga: = (gGacg_1>gGa: =g9G,.G, = gG,

13.2.9 | p.297: we learned in this problem that the formula

SN . A_<Z 2)6GL(2,(C)

(the Mdébius or linear-fractional transformation) defines a left action of GL(2,C) in the (extended) complex
plane and that A and AA result in the same action (so that "only SL(2,C) matters”). Here we present a
useful interpretation of the formula in more geometric terms. The new point of view shows clearly why the
strange looking formula works (why it provides an action). It also leads straightforwardly to a more dimensional
generalization.

Consider the complex vector space C™ (the needed modification for the real case will be evident). There is
a natural action of GL(n,C) on C" given by

Lau:= Au

We know from 1.3.2(ii) that the rays in C™ (complex lines in C™ passing through the origin) form a new set
(manifold) called the complex projective space CP"~!. Now it is intuitively clear that the action on vectors
passes to the action on rays (by means of the representatives). Namely, if [u] denotes the ray given by the vector
u, we have

Lalu] := [Lau] = [Au]

Indeed, the formal check reads
Lagplu] = [(AB)u] = [A(Bu)] = La[Bu] = (LaLs)[u]

Note that
Laalu] = [(AA)u] = [MAu)] = [Au] = Lafu]

so that
Lya=1Ly

So, the lesson is that

i) GL(n,C) (as well as any subgroup) not only naturally acts on the vector space C™ (the action being linear,
i.e. a representation), but also on a more complicated manifold, the projective space CP"~! (here, of course,
the action is not linear)

ii) in this action, A produces the same result as AA does
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Let us compute explicitly the coordinate expression of the action in the simplest case, on CP!. The original

action of GL(2,C) on C? reads
2! L (a b 2!
22 c d 22

Introduce the standard two charts on CP! given by (complex) coordinates ¢! or n' (see the hint to 1.3.2)

(;)“’(511)“'(7711) where ' =1/¢!
¢+ d¢t

1
(0 ) (é)- () —emen(a)~ () €T
a b\ (n'\ _[(an*+b\ _ ik ik 4 ant+b
(0 ) (1) -G Ta) = (D)~ (1) w-0r

We get

—_

782

So, effectively,

L ctde!
= e
1
1 1 an +b
—> =
K K ent+d

We see that the expression of the transformation in terms of the variable n' is given by the M&bius (linear-
fractional) transformation. Concerning &', we obtained a modification of the M&bius (linear-fractional) trans-
formation and one can easily check that it (i.e. the composition rule) really works.

It is also instructive to check, that both formulas describe the same abstract transformation
L,:CP! - CP! (or, equivalently, S% — S?)

We have to check that
nt=1/¢! implies ft=1/¢
which is straightforward:
g an'+b _a+b/nt  atbet 1
Cept+d  c+d/nt T c+det &

The reader is invited to show that the explicit formula for the transformation of CP?~! in terms of the coordi-
nates (nt,...,n"" 1) reads
_ A+ A

Apn® + An

AQ

[Note: we obtained an action of SL(2,C) on S2. One can check that the action of the unitary subgroup, SU(2),
gives nothing but rotations of the (standard round) sphere. This can be ultimately traced back to the fact that
unitary group preserves the natural "hermitian” scalar product in C" and, consequently, the induced so called
Fubini-Study scalar product on CP™ (not mentioned in the book)]

p-300: in (ii) a method is described in which a covering group steals a representation from the covered
group (by composition with the covering homomorphism f, i.e. p = po f). It should be clear that any
homomorphism can be used for this purpose (if f is ¢ homomorphism G — G and p is a representation of G,
then po f is a representation of G if p is irreducible, the same is true for p).

13.4.7 | p.315 In the hint to 13.4.7iv) a reference to 4.6.10 might be useful

’ 13.4.7‘ - ’ 13.4.10‘ p.315-16 Prove that the trace and the determinant are the only (independent) invariants of
a symmetric 2 x 2 matrix A with respect to A~ B~ AB, B special orthogonal.

Solution: The problem is from linear algebra. Nevertheless, a useful idea might be to treat the problem
infinitesimally, introduce the fundamental field of the action and find (in this way!) the most general invariant
function.
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For infinitesimal B = I + eC, where CT = —C, we have

A BT'AB = (1 - eC)A(I+€C) = A+ ¢(AC — CA) + ...

a= (e n)m () () (5 8- (5 9 0)
(e ) e ()

(u,v,w) — (u(€),v(e),w(e)) = (u+ ke(—2v),v + ke(u — w), w + ke(2v))

Then,

so that

The generator (fundamental field) £ of the action reads

&= =200, + (u — w)dy + 200,
= 20(0y — Oy) + (u — w)J,

We are to find the most general function ®(u, v, w), which is invariant with respect to the flow of ¢, i.e. such
that '
P =0

This greatly simplifies in appropriate coordinates. We see from the structure of £ that variables u — w, v play
an important role. So try a change of coordinates (u,v,w) — (x,y, 2) given by

Mu—w)==x
v=y
Mu+w)=z2
Then we get
§ = (1/\)z0y — (4N)y0,
or, for A =1/2,

& =2(x0y — y0Oz)

This field clearly generates rotations in xyz-space about z-axis. So, introducing further standard cylindrical
coordinates 7, ¢, z according to

T =T7Cosp
Yy =7rsing
z=z

we come to the most simple coordinate form of the field &:

Then, the invariance condition reads
! !
EP =0 & — =0

and the obvious general solution is
O(r, ¢, 2) = f(r,2)

But note, that

TrA=T(u,v,w)=u+w=22=T(r,z)
det A= D(u,v,w) =uw —v> = (z4x)(z —x) —y? = 22 — (@* +y?) = 2> =2 = D(r, 2)
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so that T, D are just two independent combinations of r, z.

[Since dT' ANdD = --- = —4rdz A dr, the combinations T, D are independent. One can easily express explicitly
r,z in terms of T, D]

This means, that any invariant function of matrix elements of A is of the form f(r,z) or, equivalently, of
just two particular combinations of matrix elements of A, namely Tr A and det A. Q.E.D.

14.2.4 | p.339 In this exercise, we study canonical transformations as such coordinate tranformations,

(q"spa) = (Q*(q,p), Pulq, p))

which preserve canonical (Darboux) expression of the symplectic form, i.e. such that

w = dpy N dg® L dP, N dQ* = dP,(q,p) A dQ"(q,p)

holds. This is, however, equivalent to several alternative ways of expressing the same fact. First, the (canonical)
form of the corresponding Poisson tensor is preserved

p_ 0 A a 0 A 0
~ Opa 0q* 0P, 0Q°
(since P ow = —1), resulting then in equally simple (canonical) explicit formulas of Poisson bracket in old and

new coordinates

of 0Og of 0Og af 0Jg af 0Jg

U9t = 50 00"~ 9qi opa 9P 0Q°  9Q" OF

This is, in turn, equivalent to the statement, that the component matriz P¥ has, in both coordinates, (¢%,p,)
and (Q%, P,) the canonical form
On _Hn

P = (3 o) =Pr@n
Now, because
- components are just the values of a tensor on basis arguments, i.e. P¥(2) = P(dz?, dz")
- the Poisson bracket is defined as {f, g} = P(df,dg), so that P (z) = {2*, 27}
we see that we can rewrite the equation above in the form

ij _ {qavqb} {q%, v} _ (0 =6 _ {Qanb} {Q, By} _ pij
P <q’p)({pa,qb} {pa,pb})(éz ob)<{Pa,Qb} {Pa,Pb}>7’ @P)

And this, at last, can be rephrased as the statement, that canonical transformations are such coordinate tran-
formations,

(q"spa) = (Q*(q,p), Pulq; p))

which preserve canonical Poisson brackets between the coordinate functions, i.e. for which

{¢“.¢"} ={Q*Q"} =0

{paaqb} = {PaaQb} = 63

| {pam} = {Pu, P} = 0]

In quantum mechanics, after replacing of the Poisson bracket (of functions on phase space) by a constant
multiple of the commutator (of operators in the corresponding Hilbert space), canonical transformations of
operators are such transformations,

(G, Ba) = (Q*(4. D), Pald, )

which preserve the canonical commutation relations (CCR

[4%,6"] = [Q*, Q" =0
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[ﬁaa qb] = [Ptu Qb] = —Zh(SZ
maaﬁd::[jz;ﬁ%}zzo
Or, finally, when expressed in terms of annihilation and creation operators

;r = (¢" — iPa)

as such transformation of operators

a) = (Aa(a,a™), A (a,a™))

(aa? a’a

which preserve the CCR in the form

([0, 1] = [Aa, 4] = 0]

[0, 0] = [Aa, 4] = b

lag )] = [A7, A]]=0

a

14.3.4 | p.342 The concept of relative invariance of a form was introduced in 14.3.2 and 14.3.3, but I somehow
forgot to mention the corresponding version of integral invariants :-(. Here the gap is filled.

Consider an invariant p-form « and a relative invariant p-form S. This means

,Cva =0
Lyp=dp

for some (p — 1)-form p. Let ®; <> V be the corresponding flow. Then, because of
O =1+4+tLy + (2/2)Ly Ly + ...
we have

Pia=a

Qi3 =B+ doy ¢ =tp+ (t*/2)Lyp+...

Jo=
Jo?= Lo o

So, we see that « leads to an integral invariant, but the situation with 8 is more delicate. There is a term which
spoils the ”integral invariant property”. But still there is a possibility to construct an integral invariant. We
should just restrict ourself to closed chains c. Indeed, clearly

Oc=0 = [pt(c)ﬁ:/cﬁ

So, whenever we find a form 8 obeying L8 = d(...) for some V, there is a relative integral invariant given by
the integral

Upon integration over a p-chain ¢ we get

/6 ¢ such that dc=10
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Now back to Hamiltonian mechanics (with time-independent Hamiltonian H (g, p)). We know (from 14.1.6iii
and 14.3.3) that

‘CCf
Le(wAw)=0
Le(wAwAw)=0

etc.

w=0

So, we have the (absolute) integral invariants described in the book. Now, for 6 such that w = df, we get
Lot =i¢,df + di¢, 0 = d(igfe —f)=d(...)

But then, we have

&

=d(
ch(Q/\w) df...
Leo,(0NwAw)=d(..
Le(0ANwAwAw) =d(

etc.

—_— — — —

since, for example
Lo (0Aw) =d(ic,0 — f) ANw=d[(ic,0 — f) Nw] =d(...)

Therefore we have, in time-independent Hamiltonian mechanics, absolute integral invariants

I E/ w for any Do
Do

145/ wAw for any D,
Dy

165/ wAwAw for any Dsg
Dg

etc.

and relative integral invariants

I, = / 0 for any closed ¢y (O¢; = 0)

I3 = / 0Aw for any closed c3 (Ocz = 0)

Is = / ONwAw for any closed c5 (0cs = 0)
Cs

etc.

Interested reader might find useful to consult my (mostly tutorial) article ”Modern geometry in not-so-high
echelons of physics: Case studies”, Acta Physica Slovaca 63, No.5, 261 359 (2013) (99 pages) (available online
at http://www.physics.sk/aps or http://arxiv.org/abs/1406.0078)

14.5.3 | p.351 Here we show a concrete example of a moment map. Namely, the moment map of a standard
action of the rotation group SO(3) on the common two-dimensional "round” sphere S? (treated as a symplectic
manifold, see 14.2.3).

The first way of computation:

The generators of the action are displayed in 13.4.6 (or in any textbook of Quantum Mechanics :-):

&, = —sinpdy — ctg v cos w0,
&1, = cos w0y — ctg¥sin 0,
glg = 6477
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(Here E; = I, is the standard basis in so(3), see 11.7.13). The volume = symplectic form (on unit sphere) reads

w = sin¥dd A dy

Therefore
ig w == —d(—sindcosp)
ig,w ="+ = —d(—sindsinyp)
ig,w ="+ = —d(—cos)

The functions in the brackets are, however, nothing but (restriction to the sphere of) minus standard coordinate
functions (x,v,2) = (1,72, 73) in the ambient space E3. So, we get

e, w0 = —d(—2;(0,9))
Since P;(V, ¢) should be after —d symbol, we get

Pj (19’ QD) = —Tj (19) 90)

or ‘ ‘
P =PE’ = —z;(¥,p)E’
The second way of computation:

Recall that orbits of the co-adjoint action for G = SO(3) are just spheres (see 14.6.7). On the unit sphere,
the canonical symplectic form (see 14.6.3) is a 2-form

w= f(0,p)dI Ndp

obeying
wx = (fluglz) = <X*7 [llv lQ]) = <X*a 13> = x3 = cos?
Plugging explicit expressions for &, and &, gives f(¢, ) = sind. So, this is exactly the standard volume form.

But there is an explicit result for the moment map for any co-adjoint orbit in 14.6.5iv):
P:0—G" X = X
So, a point on the sphere with spherical coordinates (¥4, ), i.e. sitting in
X* & (21(9,0),22(9, ¢), z3(9, ¢) = (sin ¥ cos @, sin I sin p, cos ¥)

of G* = 50(3)" = R?® maps to the point ‘
X" & {ITjE]

in G* = s0(3)" = R3. Put it another way, the three components of the moment map are just the three
Cartesian coordinates of the point. This is, modulo sign, in agreement with the first way of computation. (The
sign probably comes from the freedom in the sign of the symplectic form on S2, i.e. w is equally good as —w.
But I am not sure, the reader is invited to fill this gap herself :-)

Two simple checks of the result:

1. Consider a Hamiltonian on S? invariant with respect to the action. So, it is (completely!) rotational-
invariant. So constant. There are three conserved quantities, xy,x2,x3. This means, however, there is no
motion on the sphere. But this is OK for constant Hamiltonian :-)

2. Consider a Hamiltonian on S? invariant just with respect to rotation about the z3-axis. So, it only depends
on ¥, H = H(¥). The relevant part of the action is the action of SO(2) generated by &,. Then P; = x3 is
conserved (and nothing more). But this is OK for Hamiltonian dependent on just ¢, since d=---=0, so that
¥(t) = const., so that x5 is const.

14.5.7 | p.354 We learned that, for each dimension (each basis element F;) of the Lie algebra G, we get conserved
quantity P;(z). A natural question arises whether these conserved quantities are functionally independent. Put
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it another way, whether each dimension of the symmetry Lie algebra G adds a fully-fledged conserved quantity
rather than quantities, which are just functions of those already obtained before.

Imagine f(z) and g(x) are two conserved quantities (f = 0 = §). Then h(f(x),g(z)) is clearly conserved
quantity as well. Indeed,

Oh . Oh
T g =0

of
Note that, in this case,

oh oh

dh = —d —d

o If + =~dg
so the differentials of the three functions f, g, h are linearly dependent. On the contrary, linear independence
of dfy,...,df, implies functional independence of fi(z),..., fn(x), which means there is no F' such that

or equivalently, one cannot express any particular fj in terms of the rest members f;.

Therefore, in the case of our interest, we are interested in (point-wise) linear independence of the differentials
dPi(x),...,dP,(x) n=dimg
Now, hamiltonian character of symmetry generators
ig 5,W = —dP;

(see the text between 14.5.1 and 14.5.2; p.350) and non-degeneracy of w shows that linear independence of
the differentials is the same thing as linear independence of the generators {g;. So, when the generators are
(point-wise) linearly independent? The answer: the action is to be free. Indeed, otherwise elements X of the
Lie sub-algebra, which corresponds to (non-vanishing) stabilizer of a point x result in wvanishing generators
{x. So, in an adapted basis E;, some of {g; vanish and the (whole set of) generators {g, cease to be linearly
independent.

14.6.3 | p.355 There is an arbitrary choice hidden in the definition of the celebrated Kirillov-Kostant symplectic
form on coadjoint orbit

WZ*(§X7§Y) = <Z*v[X7Y]> (A)
and one should - as usually - check whether the form is, because of the freedom, actually well-defined.

So recall that the generators (fundamental fields) x, &y are there because of the observation, that arbitrary
vector tangent to the orbit may be expressed as £x for some X. This is true, but X (present then at the r.h.s.
of the formula) is, in general, not unique.

Namely, if {x = {4, then {4 = 0, so that the generator associated with X=X-X produces no (non-

zero) action, i.e. it corresponds to the stabilizer of the group (one-parameter subgroup e!* is in the stabilizer).
So, we are to identify the stabilizer of the coadjoint action of G on G*.

Now
(Ad,Z", X) = (Z",Ad ,X)
so that
Ad;Z" =7~ & Adg X=X
So we need to find stabilizer of the adjoint action of G on G. Infinitesimally (for g = )
Ad, X=X & X+edyX=X & ady X =[Y,X]=0

So elements of the Lie algebra of the stabilizer consists of those elements Y from G which commute with all
elements of G (it is known as the center of the Lie algebra).

That means that the freedom in X,Y in (A) reads

(X,Y)~ (X +X,Y +Y)
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where X and Y commute with all elements in G. Then, however,
(Z*[X + XY +Y]) = (Z*,[X,Y])
and wz« is well defined by the formula (A).

14.7.1 | p.361 Some more details concerning the proof of the statement are presented here.

First, let us see in more detail, why ”the complement of the complement turns out to be the initial subspace
once again”. (This is a well-known fact in Fuclidean case, but perhaps it is less clear for the case of symplectic
orthogonality.)

So, let L1 C L be a k-dimensional subspace of an n-dimensional linear space L. Then, there is a distinguished
(n — k)-dimensional subspace Ly C L* in the dual space, the annihilator of L; (see 2.4.9, 10.1.13)

(Ly, L) =0 LicL, LicL*

(If (eq,€;) is an adapted basis in L (i.e. e, € Ly), then i-part of the dual basis (e?,e?) of L* serves as a basis of
1)

Now, we have two (mutually inverse) linear isomorphisms

~»

w:L—L" v wv, )

whi =L a—w a, )

(They are isomorphisms because of non-degeneracy of w.) Let Ly C L be the image of Ly wrt. w?

Since w™! is isomorphism, the dimension of L, is the same as the dimension of ﬁl, i.e. (n—k) (complementary

dimension w.r.t. L)

dimL; =k = dimLy=n—-k (n=dimL)
Now, let v € L; and w = w~ (o, . ) € Ly. Then

ww,w) =wv,w Ha, .)) =w v = —ap® = —(a,v)

This shows that Lo is nothing but the symplectic-orthogonal complement Li- of L;. (Vanishing of the LHS
holds for exactly those w which are images of a € L;.) So, the dimension of the complement Li is always
complementary to the dimension of L;

dim I = dim L; + dim L n=k+(n—k)

Consequently, the dimension of the complement of the complement is complementary to the dimension of the
complement and this is nothing than the dimension of the original subspace Ly:

dim(L{ )t = dim L — dim L = dim L,
(since n — (n — k) = k :-). Now, by definition (of L7)
w(Li, L) =0

The same formula, however, shows (!) that L; C (Li)* (only the fact that it is a subspace is clear at once).
But since we already know that L; and (Li )" have the same dimension, the spaces are actually equal:

(L)t =1Ly

So, in general, making orthogonal complement (of a subspace) twice is doing nothing, we return to the subspace
again

Utt=vu
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[Looking at the proof we see, that this fact is true for both symmetric and skew-symmetric ”scalar products” in
L. The symmetric case needs not be positive definite, it works in pseudo-Euclidean cases as well. What really
matters is non-degeneracy of the product. Notice, however, that only these two cases - symmetry and skew-
symmetry - make the very notion of orthogonality (and, consequently, the orthogonal complement) meaningful!
For a ”"general” (even though non-degenerate) bilinear form, the value of the ”scalar product” B(v,w) depends
on the order of the pair, so it can happen B(v,w) = 0 and B(w,v) # 0. So, orthogonality depends on the
order.]

B.t.w., the fact that the dimensions of L1 and Li add to the full dimension of L (i.e. dimL = dim Ly +
dim Li-) does not mean, that the subspaces themselves do add (i.e. that L = L; @ Li")! Consider, as a simple
example, two dimensional symplectic space with w = e! A e?. Let L; = Span e;. Then L{ = L; - it is the
subspace itself (!). Such subspaces are called Lagrangian and they play important role in the theory.

Finally, let us mention, just for fun, a direct proof of the opposite implication (not based on the fact that
UL+ = U; notice that this very implication is crucial in the proof of 14.7.6). What we want to prove is the
following statement: any vector which is symplectic-orthogonal to the subspace tangent to M, is necessarily
of the form £x for some X € G. Well, being tangent to M, is the same thing as annihilate all 1-forms dP;.
So, the annihilator of the subspace of vectors tangent to M, is spanned by the covectors dP;. The orthogonal
complement to the subspace of vectors v tangent to M, consists of all vectors w such that w(w,v) = 0 (by
definition). Equivalently, of such w that the 1-form w(w, . ) belongs to the annihilator. Since the latter is
spanned by dP;, there are numbers X* such that

w(w, . )= X"dP;
Applying "raising of indices” operation on both sides of the equation we get
w=X"(p, = X'¢p, =&x
And that’s all :-)
p.385 The coordinate-free expression of the RLC-connection from (iii) is called the Koszul formula

p.385, p.389), p.411 and p.665:

In 15.3.4, the classical (coordinate) expression
Iy, = %gil(glj,k + Gik,j — Gjk.1) Le. 2Lk = Gijk + Gikj — Gjk.i (al)

for Christoffel symbols of the metric and symmetric (= RLC) connection is derived.

In 15.3.14, it is generalized to just metric connection (torsion allowed, still coordinate frame).

In 15.6.9, metric and symmetric connection in orthonormal frame is discussed.

In 22.5.4, metric connection coefficients in orthonormal frame enter Dirac operator in ”curved space”.
It might be of interest to learn what the situation looks like for the most general case, i.e. when

i) torsion as well as non-metricity may not vanish (connection is neither metric nor symmetric)

ii) the frame field e, is general (neither orthonormal nor coordinate; we have [eq, €p] = cpee).

Recall that we found the above mentioned expressions for I';;; (for the RLC case!) by solving system of
equations

Cijk + Ujik = Gijk since it is metric
Lijk —Likj =0 since it is symmetric

Now, the system is to be generalized to

Fabc + 1—‘bac = Aabc Aabc = Abac (342)
Fabc - Facb = Babc Babc = *Bacb (343)

where the following abbreviations are used:

Aabc = Gab,c — YGab;c
Bape _(Cabc + Tabc)
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and
Gab,c *= €cYab
Yabse = (Veq)ab non-metricity tensor
v Indeed:
Yab;e = (Veg)(easen)
= VC(Q(em eb)) - g(vceaa eb) - g(em vceb)
= ecgab — L' ogar — TeGad
= Gab,c — Fbac - Fabc
Tapee = T(eq; ep)
= Vaey — Vieq — [eq, €]
=Tjec —T'pec — copec
so that

Tcab = gchgb = ch(rga - ng - Cgb) = 1—‘cbu, - 1_‘cab — Ccab
A

Notice that the non-metricity tensor is a natural measure of deviation from metricity of a connection. We
will not assume this tensor to vanish, now. Rather we will only assume this tensor to be given.

Now, what was the trick which enabled us to solve the equations (a2) and (a3)? We see from the result (al)
that what very much helps is to make the following combination

Gijk + 9kij — Gjk.i

from (a2) and then use (a3) whenever needed. (Here, the expression is written in a form when each term begins
with a different index.)

In order to formalize (and then to repeat) the trick, one can introduce, for any three-index quantity Qapc,
the contortion operation (also known® as the Schouten braces)

’ Q{abc} = Qabe + Qcab — Qbea (34)

Then, clearly, (al) reads
2%k = 91ijk} for the RLC-connection (ab)

But the real goal to introduce Schouten braces, as indicated above, is to use them to solve the general system
(a2) and (a3). So, let us repeat the trick there:

Apply the Schouten braces to (a2) and, when needed, use (a3).

In this way we get unique solution:
2l ape = A{abc} - B{acb}

v Indeed:

Atabey = Aave + Acab — Abea
= (Lave + Tpac) + (Leab + Tach) — (Toea + Teba)
= (Cape + Tact) + Toac — Tvca) + (Feas — Leva)
= (Cabe + (Tave — Bave)) + (Bpac) + (Beab)
= 2T 4pe — Babe + Bbac + Beab

6See page 132, formula 3.7 in J.A.Schouten: Ricci Calculus, Springer-Verlag 1954; Schouten braces are not to be confused with
a completely different (and much more profound!) object, the Schouten bracket (known also as Schouten-Nijenhuis bracket).)
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so that
2L abe = A{abc} + Babe — Boac — Beab

The last three terms clearly resemble Schouten braces of (perhaps) Byp.. Unfortunately,
Babe — Boac — Beab 7é B{abc} : _(

(check). But, fortunately, there still is a possibility to write it as

Bave — Bhac — Beab = _B{acb} : _)
(check, use skew symmetry Bgp. = —Bgep). So, in order to express the result in terms of Schouten braces,
one also has to perform some index reshuffling. This is a darker side of life, since the resulting formula is then
harder to remember. A

Inserting concrete expressions for Agp. and By we get the following expression for Christoffel symbols of
general linear connection on Riemannian manifold (M, g):

2l gpe = 9{ab,c} — Y{ab;c} + T{acb} + C{acb} (a6)

The third term is often expressed in terms of specifically introduced contortion tensor

1 1 1
Kabc = §T{acb} = §<Tacb + Tbac - cha) = _§(Tabc + Tbca - Tcab) (a’7)
(for the last equality sign we used skew-symmetry Typ. = —Tuep). Then, the decomposition formula (a6) reads
1 1 1
Fabc = §(gab,c + Gac,b — gbc,a) - i(gab;c + Gacb — gbc;a) + Kabc - i(cabc + Chea — Ccab) (348)

So, in general, coefficients of arbitrary linear connection may be uniquely written as a sum of four terms:
The first plus the fourth term correspond to good old RLC-connection.

The second term is given by (minus) Schouten braces of non-metricity tensor. (It vanishes for metric
connection).

The third term is given by the contortion tensor, i.e. by a combination of Schouten braces and index
reshuffling of the torsion tensor (it vanishes for symmetric connection).

Symbolically (in words)

’ general = RLC + non-metricity part + contortion part (a9a)
so that
’ metric = RLC + contortion part ‘ (a9b)
and
’ metric and symmetric = RLC ‘ (a9c)

Particular cases of (a8):

1. In coordinate (= holonomic) frame, the last term (containing anholonomy coefficients cqp.) vanishes and
what remains is
1 1
Lijp = §(gij,k + Gik,j — Gjk,i) — §(gij;k + Giksj — Gjksi) + Kijk (al0)

2. In orthonormal frame e.gq., = 0 (since gup = 7Map = const.). If the connection is, in addition, metric, i.e.
Jab;e = 0, we are left with

1
I1abc - _g(cabc + Chea — Ccab) + Kabc (all)

(This is the correct result of 15.6.20iii) - the contortion term is forgotten, there. In 15.6.9 it is ok, since only
RLC case is discussed.)
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Btw, from (al0) we see, that Christoffel symbols of any linear connection are given as a sum of a unique
connection (namely the RLC one) plus a tensor. Therefore, ”the difference of any two connections is a tensor”.

Let us remark, finally, that Schouten braces are ”invertible” - one can express original quantity ;1 in terms
of appropriate combinations of its Schouten braces. Namely, the explicit formula reads

1
Qi = 5(Qqisry + Qikiy) (al2)
In particular, it means that one can reconstruct the ”original” torsion tensor from ”its” contortion tensor:
Tijr = —(Kijr + Krij) (al3)

v Indeed, we can write a matrix relation

Qijry r 1 -1 Qijk
Quijy | =1 -1 1 1 Qij
Qjkiy 1 -1 1 Qjki

(The first line is definition (a4), remaining lines arise by just renaming indices.) The inverse relation is

Qijk 1 (1 01 Qijry
Qrij | =51 10 Q ki)
Qjki 01 1 Qjkiy
The first line gives (al2).
Similarly, from (a7) we have
Kiji 1 1 -1 1 Tijk Tijk -1 -1 0 Ky,
Kkz'j = 75 1 1 -1 Tkij = Tkij = 0 -1 -1 Kkij
The first line gives (al3). A

15.3.9 | p.386 Remarkable insight is gained through the approach discussed in the additional material to the
problem (15.6.10). It is shown there that the resulting angle of rotation of the vector may be expressed in terms
of the solid angle subtended by the path. (Here the angle is clearly 1/8 of the total solid angle 47.)

15.3.14 | p.389: see the comment to 15.3.4, p.385 (here, in the Additional material).

15.4.3 | p.391 There is an error in part (i), both in the assignment and in the hint. A more detailed general
treatment of how (velocities and) accelerations are related for two curves, differing just in parametrization,
might be useful to understand the situation.

Ok, let 4(t) = v(o(t)). So, we are given two curves, 4 and ~, passing a common set of points on M, but
differing in "times” visiting particular point. (As an example, if o(t) = t3, then 4(1) = (1), 4(2) = ~(8)),
4(3) = v(27), etc.). In a point P = 4(t) = v(o(t)), two relevant vectors may be associated with each curve,
their velocity and acceleration. So, altogether, as many as four vectors are to be considered in (each) P:

b = A(t) a = (V43)(t) vi=4(a(1)) a:= (Vs9)(o(t))

The task is to express hatted quantities in terms of original (unhatted) ones. From (2.3.5) we know how hatted
velocity is expressed in terms of the original one:

b =o0'v o =d(t)

so that v is just an appropriate multiple of v.

Y of dx*d dx’

x' do T .

- — (7 0%0) 1 = BN = (O

A~ d Z
of = %f(sc (o(t)) = ozt do dt
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Let us proceed to the acceleration, now. We get
i =V =Vy(o'v) = (00" )v 4+ 0'Vev = (00" )0 + 0"V 4o = (00" )0 + (/)2 Vv = 0”"v + (¢')%a
or, in the notation used in the book, '
Vg ="y + (0')° Vi

v We can regard o(t) (and, consequently, also o'(t) and ¢”(¢)) as a function on the curve 4(¢). Then,
applying 4 on ¢’, giving by definition derivative of ¢’ along the curve 4(t), results in nothing but the derivative

of ¢’ with respect to ¢ .
(00")(t) = (Yo')(t) = (d/dt)o’ (t) = 0" (t)

So, the answer to the question, how the hatted quantities are related to the original ones, reads:

Then, the answer to (15.4.3) part (i) follows readily: if v is an affinely parameterized geodesics (i.e. a = 0),
then @ = ¢”v. Therefore, requiring 4 be an affinely parameterized geodesics as well, needs o” = 0 (i.e.
O'(t) = kit + k‘g)

Example 1: Dimensional check. Let dimension of v, 4 (or corresponding coordinates x') be A, dimension of ¢
be B and dimension of ¢ be C. Then the dimensions of relevant quantities read:

v A/B  a+ A/B*> v AJC ae AJCP o' < C/B o < C/B?

and we see that both equations are dimensionally correct.

Example 2: A simple random (and dull) check of the validity of the two formulas above: Consider a one-
dimensional motion of a point on a straight line given by z(t) = t* and a reparametrization of the form
o(t) =t3. Then

o(t) =1t o' (t) = 3t? o’ (t) = 6t
x(t) = t* v=i(o(t) = 4t° a=i(o(t)) = 12t°
i(t) = t'? b= a(t) = 12t a = a(t) = 122t

The question is whether

12611 L 342440

122610 £ 6419 + (3t2)212¢5

is true. Yes, it is :-)

Example 3: Consider (as (t)) a uniform motion of a point along a circle. Then, as we know, the acceleration a
is oriented to the center (and the velocity is tangent to the circle, the vectors are perpendicular). The magnitude
of both velocity and acceleration is constant. Now let, say, o(t) = t2. Then 4(t) describes a motion which is
(still along the same circle but) non-uniform - we get © = 2tv, so the magnitude of the new velocity grows. This
is compatible with @ = 2v + 4t%a - we see that the new acceleration exhibits tangent (constant) component 2v,
so the magnitude of the velocity grows linearly.

15.4.4 | 118.4.6 | pp.392,511: In 15.4.4 we learned how to use Lagrange equations for finding geodesics (of the
RLC-connection) - simply take

L(z,v) = (1/2)gap(z)v"0"

(the kinetic energy alone) and write down Lagrange equations. From 18.4.6 we know how to compute the
Hamiltonian ”corresponding” to a given Lagrangian. For our L we get

H(z,p) = (1/2)g""(z)paps
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(the same kinetic energy alone). So, we can also write geodesic equations in the form of appropriate Hamiltonian
equations - simply take H(x,p) = (1/2)g%*(x)papy and write down Hamiltonian equations. We get explicitly
(check)

& = 9" (x)ps

Pa = —(1/2)g" . (2)pope
Once we solve these 2n first order equations, we get curves on T* M, in coordinates 2:%(t), p,(t). Their projections
to M, i.e. x%(t), are then geodesics on (M, g).

One can also easily check explicitly, that these (first order) equations are indeed equivalent to the (second order)
geodesic equations. Indeed, from the first equation we have p, = gq(2)2. Plugging this into the second one

leads to
1

) 2b,c be ]
Jdabl +gab,cz T = 7§gbrg 7agcsz x

Differentiating the identity ¢*¢g.q = 8% with respect to 2% we get

b
—9brg C,agcs = YGrs,a

and, therefore

. b 1
gabxb + ]-—‘abcxbxc =0 Fabc = i(gab,c + Jac,h — gbc,a)

15.5.4i | p.403: There is a tricky point (potential sign error) in the action of the (})—tensor A of a general
derivation D = Ly + A.

Recall that a general G)—tensor A was, up to now (see 2.4.5ii), considered in three roles:
- as a mapping v — A(v; . ) = A(v) (vector to vector)

- as a mapping a — A( . ;a) = A(a) (covector to covector)

- as a mapping (v, a) — A(v;a) (vector and covector to a number)

Here it is considered in a fourth role:

- as a mapping t — A -t ((Z)—tensor to (f;)—tensor)

In particular, the tensor ¢ may be a vector or a covector. In these two particular cases we get

A-v=A@v) (1)
A-a=—-A(a) (2)

This means, on a basis vectors an (dual) covectors
A-e, = Ale, (1a)
A-e® = —Agel (2a)

So, there is an important difference between A(«) and A - «, a potential danger to forget about the minus sign
in A - ( )-operation on covectors.

Vv By definition, the mapping
t—A-t

is to be a derivation of tensor algebra which, in addition, vanishes on (8)—tensors (scalars) and commutes with
contractions. Then we get

A-{a,v) Lo
z (A-a,v) + {a, A-v)

The first line comes from vanishing on scalars, the second line holds because of

A-{(a,v)=A-(Cla®v)=CA-(a®v)=C(4-0)@v+a® (A -v))=(A a,v) + {a, A v)
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So, we get
<A CY,’U> = _<a7A'U>

or, choosing v = e, and a = e,

(A-et)y=—(A-e,)’
This means that if we choose
A-vi=Av)
we inevitably have to accept
A-a=—-A(a)

since definitions of A(v) and A(«), see (1) and (2), result in

(A@), v) = (o, A(v))

(Btw. we could equally well choose plus sign on covectors and then accept minus sign on vectors. So an
invariant statement is that there is a sign difference on either vectors or covectors in action of A as a derivation
of tensor algebra in comparison with its natural action on the latter stemming from mere definition of A as a
(1)-tensor.) A

15.5.44i | p.403: The formula Vy = Ly + (VV) to be proved in part (ii) is not completely general. Rather, if
torsion does not vanish, it should read

(Vv =Ly +(VV)+T(V, )]

Indeed, let A := Vy — Ly. Then, from the definition of the torsion tensor
T(V,W):=VyW -V V —[V,IW]
we infer
AW) = (Vy = Ly)(W) =VyW = [V,W] =V V +T(V.W) = (VV +T(V, . ))(W)

So, in components,
Ay =VE, +TH VP

15.5.6i | p.404: From the result derived in )
R(9;,0;)0k = Rj;;0,

combined with R
Taa=(1-ERU,V))

from 15.5.1 one can envisage a situation in which the Rém-j-component of the Riemann tensor is ”in action”.
Namely, perform parallel transport of J; around the € x € coordinate loop in the ij-plane (spanned on 9; and
0;). Then the resulting vector differs from the original 9 by a vector, whose {-th component is just fezRfcij:

8k> —> 8k — EZRLijal

15.5.647 | p.404: Here, explicit formula for A’ﬁ_jjé;i;j — Aﬁ:::é;j;i is presented. As an example it says that for vector
field W we get
k k k
Wiy = Wi = =Ry W™

Well, there is a problem with this formula. Namely, one can interpret the expression present at the Lh.s. in (at
least) two ways:

[

wk. .

3830

= (V;(V, W)k my book (1)

1%

Wk

3957

Wk virtually all other sources :-( (2)

32
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And, unfortunately, it makes a difference provided that there is a non-vanishing torsion. Let’s compute:

In my interpretation, V,W = W’fiak is still a vector and the same is true for
Vi(ViW) = V;(Wh @ 0) = (0; W) 0k + W V0, = (W) ;i + Dh W0k (A)

So a single I'-term occurs (coming from V ;0 = F;;;.am).
In the "rest of the world” interpretation, Wkl already corresponds to a G)—tensor B=VW
B = Bjda’) © 0; B =W, (B)
so that
(sz) =B G = Bf gt Fﬁ@szm - F;?Bfn (C)
and as many as two I-terms do occur (also the new lower index i adds its I'-term).

Now, from (A), (B) and (C) we see that

(ViH(VW)* =BF ;+ T, B"

mj
k _ k k m m nk
(W z) /A Bi i + ijBi - Fiij
i.e. the two interpretations ((1) versus (2)) are related as follows:
(W) 4 = (V;(ViW)E = THw?,

Since we know from 15.5.6¢) that antisymmetrization leads in my interpretation to

(Vi (VW) = (Vi(V;W)* = =Ry ;W™

mij
we can write
k k k m m k m k
(W) i = (W) i = =Ry W™ = (TG W — THW )
And because of
Th = (T - 1)

(see 15.3.3), we get finally

(Wh) 5 = (W) = =Ry ;W + TFWE,

mij

We see that, sadly enough, that there is a torsion term present in the expression, in general. (In ”virtually all
other sources” interpretation of the expression sz j)

15.6.9 | p.411: see the comment to 15.3.4, p.385 (here, in the Additional material).

15.6.10 | p.411: We learned how, within the Cartan formalism, the Gaussian curvarure K arises through the
only independent curvature 2-form
B=da=Ke' Ne? = KdS

dS being the (canonical metric) area element on the surface under consideration. Here we add another useful
interpretation of this 2-form in terms of holonomy.

Consider a loop 7 which is the boundary of a domain S, v = 95. Fix an orthonormal frame field e, on S.
Then, with respect to the frame field, w., = €. Take a unit vector v and perform the parallel transport of
the vector around the loop. The parallel transport equations for v read

b

0+ (Wi, )" = 0% + eqp(a, F)v° = 0

or in detail
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Let o(t) denote the angle between e (¢) and v(t). Since v is unit vector, we may parameterize the components
of v as follows

vt =cos v =singp
Then we get a single equation for ¢(¢)
¢ = (a,9)
So, in time dt the increment of dy is
dp = (a,7)dt

an the total net angle summed in the course of the loop 7 is

Mo:/01<aa"7>dt5j£a=/sda=/stS

The net angle is, however, nothing but the holonomy for the loop. (The group element of the rotation group
SO(2) is given in terms of the angle [p]s modulo 27.) So, the holonomy is given simply as the total Gaussian
curvature

holonomy for 95 = / KdS = total Gaussian curvature (over S)
S

A remarkable observation indeed! Take, in particular, constant Gaussian curvature K,. Then
holonomy for 95 = KO/ dS = KyS
s

So the holonomy is now proportional to the total area of the domain S. This is the case if we take the sphere
S?2, where (see 15.6.11) K(x) = Ko = 1/p*. We get

holonomy for 88 = K¢S = (1/p*)S = (1/p*)p*51 = S,

where S! denotes the area of the corresponding unit sphere, i.e. the solid angle subtended by the loop.

’ holonomy for loop v = solid angle subtended by ~y ‘

The reader is invited to check this elegant result for the particular case of the Foucault angle [(15.3.10, 15.6.22)
- here the solid angle subtended by the parallel ¥y = const. is 27(1 — cos¥y)] as well as for the geodesic triangle
in (15.3.9) [here we get 1/8 of the unit sphere’s area, i.e. 47/8 = m/2].

15.6.16 | p.415: Here, various versions of Bianchi identity and Ricci identity are discussed.

In part 7) we are asked to prove their “form version”, i.e.

AQ+wAQ—QAw=0 Bianchi identity
dIl'+w AT =QANe Ricci identity

Vv This is remarkably easy: Let’s apply d on Cartan structure equations (15.6.7):

de+wNhe=T = dwNe—wAde=dTl
dw+wAw=10 = dw Aw —w A dw = dS)

Using, on the right, Cartan structure equations themselves, we get

Q—wAw)he—wA (T —wAe)=dT
Q—wAW)Aw—wAQ—-—wAw)=dQ

or, after some canceling,

QNe—wAT =dT
QAw—wAQ=d2
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which is exactly what we need. A

In part v) interesting point is coordinate (index) version of both identities for RLC-connection (used stan-
dardly in general relativity), i.e.

A+ wAQ-QAw=0 & Rij[kl;m] =0 Bianchi identity
QNne=0 & Ri[jkl] =0 Ricci identity
v We want to derive coordinate (index) versions of the identities from the corresponding form versions. Let’s

express the forms w.r.t. coordinate coframes (15.6.1), (15.6.3):

i i i i g.m i _ L
e =dx w; =1I%,dv Q; = iR jkldmk A da!

Then

7 1 i m
dS; = SR ikmda® A dat A da

i a 1 7 a k l m
we A QS = §Fam dz® Adxt A dx

. 1 )
Qi AWl = —iFng’aklda@k Adzt A dz™

and therefore, summing all three pieces, we get
1. , ,
(A2 +wAQ = QAW = S (R jum + Tom B — I R )da® Adat A da™
Now comparing the terms in the bracket with
szkl;m = szkl,m + Fznn]%ajkl - F?leakl - Zlejal - ?lejka

we see that two terms are missing in the bracket to become the complete covariant derivative R However,

Jklym:
combining of the two missing terms with dz* A da! A dz™ actually gives zero

(— ZmRijal T3, ijka)dxk ANdxt Adx™ =0

because of the symmetry of Christoffel symbols w.r.t. lower indices! So we can freely add them to the bracket
with no consequence and get

. 1 .
(dQ+wAQ—QAw); = 5lekl;mdx’“ Adzt A dz™

Then, vanishing of the Lh.s. (i.e. the form version of Bianchi idendity) may be also expressed as

R dz® A ddt Adx™ =0

7
Jjkl;m

or, finally, as ‘
B jittsm) = 0

which is exactly what we need.

Ricci identity is even simpler: we have
(QAe) =Q Ada™ = %Rijkldmk Adzt A dz™
Then vanishing of the expression (i.e. Ricci idendity) may be also expressed as
R jda® A dat A da™ =0

or, finally, as '
By =0
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which is, again, exactly what we need. A
In part iii) coordinate (index) version of both identities for a general linear connection (so non-vanishing
torsion may be present) is found to be
AU+ wAQ—-QAw=0 & R o) + B
QNe—(dT+wAT)=0 & Ry = Ty + ThyTin Ricci identity

o Lim) =0 Bianchi identity

v Let’s show the difference (w.r.t. part iv) discussed above) on Bianchi identity (Ricci identity is then
proved in a similar way). So, we proceed as it is discussed in part iv) above. There we come to the point where
two terms are missing in the bracket to become the complete covariant derivative R';;, ... Combining them

with dz* A dz' A dz™ actually gave zero
(— ZmRijal - ?mRijka)dxk Adz! Adz™ =0

because of the symmetry of Christoffel symbols w.r.t. lower indices. Now the difference starts, since the
symmetry is no longer true. Rather, we have

i i i i Lo
Therefore, what we get now is
(DB jor + Uiy R o )da® A da A da™ = (T, R jor + Tty B jra)da®™ A dat A da™

1 . .
= _i(Tngzjal + Tﬁanjka)d:rk Adxt A dz™

1 . .
- _i(lea[lTlgm] N sza[kTﬂn])dxk Ada' A dz™
1
5
= R T )dz® A da' A da™

Rija[k/rl?n] + Rija[kzjl%])dl'k A\ dl’l A dx™

Therefore we can write, now,
) 1 . ) )
(A2 +wAQ = QAW = S (R jrgn + T Byt + I R )da® A dat A da™
1 . )
- 5(lekl;m + Ry Ty da® A dat A da™

and, consequently, ) )
B jtsm) + 1 e Tim) =0

For Ricci identity, the new part (namely dT' + w A T') reads
. ) . . 1.
dT + w AT =dT" + Wi NT? T! = T} dx" A dat
J okl
1 . ) .
= 5 (Tim + i Th)da® A dat A da™
1 . ) )
5 Titzm + Do Tar + 0 Tidx® A da! A da™
1 . ) )
= 5 (Tt + Tl Tar + Ul Tha)da® A dat A da™
1 D a B k l m
1 i i a k l m
1 . .
= 5 (Ttym) + T T )da® A da' A da™

Then, because of still valid fact

) ) 1 .
(QAe) =Q Ade™ = iRl[klm]dxk Adz' A dz™
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we come to _ _ _
R i) = Thetim) + Tape Lo

which is, as usually, exactly what we need. A

15.6.20 | p.417: see the comment to 15.3.4, p.385 (here, in the Additional material).

] 15.8.6 ‘, ] 20.4.11 ‘ pp-426, 575: At the end of Section 15.8. we learned that vanishing curvature (of a linear con-
nection) results in existence of complete parallelism (covariantly constant frame field) and vanishing curvature
and torsion results in existence of coordinate (holonomic) covariantly constant frame field:

R%eq=0 = e, : Ve, ep =0 (complete parallelism)
R%.q=0=T9, = Jz% : Vo, 0, =0 (flat connection)
Actually a proof of the first statement is postponed to 20.4.11 (where much more general fact - existence of a

horizontal section - is quite easily proved, referring to Frobenius integrability theorem and geometrical meaning
of the curvature of a general connection) and then the second statement is already easy (footnote).

Notice that metric tensor has no role in this, yet. Linear connection alone matters.

But we often meet V and g at the same time on M and even more often the two know about each other
- the connection is metric. An interesting - and important in general relativity - question arises what impact
does the vanishing of the curvature and torsion have on the coordinate expression of the metric tensor g.

Well, we know from 15.6.6 (see the Hint) that for a general frame and general linear connection
dgab = (Vg)(€a>ep, * ) + Wab + Wha
Here
Gab ‘= g(em 61)) Wab ‘= gacwg
and Vg is non-metricity tensor. Now
- our connection is metric, so Vg =0,
- our frame is covariantly constant, so wj = 0 and, consequently, wqp = 0,
- our frame is coordinate, e, = 9, and e® = dz®, and 80 gap = (04, Op)(T).

So, in our situation,
dgay =0 so that gap(x) = const.

Now observe that we have a freedom in choosing new coordinates

2% 2/ = (K 1)gab K{ € GL(n,R), constant
v Then
ears €q=Kle, et e = (K 1)gel

and therefore
0=wi =y = (K WK+ (K%K =0+0=0

so coordinates z'* = (K~1)2z" are, for any constant non-singular matrix K, as good as 2 for describing the
situation with flat connection. A

In the new coordinates, the new matrix of the metric tensor is
9 = 9(0'a, ') = Kggeakky)
All guys happen to be constant, here, so it is actually an equation of the form
i = K'GK
from linear algebra. And it well known from the introductory course in linear algebra that one can produce in
this way the “canonical form” of ¢, which is n = diag (1,...,1,—1,...,—1). So we see, that in properly chosen

coordinates the metric tensor takes the form

g = Napdz® @ dz®
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(we already omit primes in this expression; we were simply lucky and hit the proper coordinates right from the
start).

So in flat space with metric connection (R = 0,7 = 0, Vg = 0) the metric tensor has an extremely simple
(flat, Minkowski) form. For the Levi-Civita (RLC :-) connection (T' = 0,Vg = 0) we have the statement

R%.q =0 = J2%: g = napdr® ® dz’® (flat metric)

16.2.7 | p440: Here we learned that 1. complete Maxwell equations, 2. equations of electrostatics and 3.
equations of magnetostatics have, when rewritten into the language of differential forms, the same structure:
codifferential of the (unknown) form is given and differential of the form vanishes:

electrostatics magnetostatics electromagnetism
dE =0 dB =0 dF =0

(Here E is a 1-form and B, F are 2-forms.) Then, in principle, we can solve it in the same way.

Let’s illustrate it on magnetostatics. From the second equation we have (locally, Poincaré lemma)
B=d (1)

where the potential A is a 1-form (fl = A - dr with “vector potential” A). Inserting this to the first equation
we get

This can be rewriten as

or ) .
Ad=_j SA=0 (2)

Here A is the (spatial) Laplace(-de Rham) operator and 6A = V - A = 0 is a standard gauge condition for the
vector potential A.

So the solution is “clear”: From (1) and (2) we get

A=—-A"1; and therefore, finally B=—dA™';
In a completely similar way we can write solutions for all three cases as

RN o

(In the first formula Laplace-deRham reduces to simple Laplace operator, since it is applied on a O-form. Also
no “gauge-condition” equation is needed.)

It looks simple, but notice the presence of the strange looking operators A~' and A1, the inverse of the
Laplace-deRham operator! And this is rather bad news, since it is, contrary to d and A, not a simple differential
operator. Rather, it is an integral operator. On scalar fields (like p) it reads

(Ap)(r) = / G(r, ' )p(e)dr’

where the kernel G(r,r’) is known as Green function for the Laplace operator. It obeys

AG(r,r'") = §(r, 1)
and in E3 it is computed to be

G(r,r’) = const. ]
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Then the combination dA~! is also an integral operator (with a different kernel).

In fact we actually know how these operators look like (in E®) from the course of electromagnetism! Indeed,
we know (according to Coulomb law plus superposition principle) that

) = const. /| ,|3p Nd3r' (4)

So we see that

dA™':p— E=E-dr
where E is given by (4).

Similarly we know from the course of electromagnetism that, according to Biot-Savart law,

B(r) = const./Wp(r’)d?’r’ (5)
So we see that .
dA™':j=j.dr—~B=B-dS
where B is given by (5).
p-453: Here we learned that a term of the form
(@, )

in an action leads to energy-momentum tensor
Top = 2(iq, 1pt) — gap (@, @)

Now, let us concentrate on a rather specific property of the latter, namely the sign of energy density correspond-
ing to a general (a, ) term, i.e. the sign of Tyo component of the energy-momentum tensor. From the general
formula we get, in particular

T()o = 2(2'00(, ioOé) — (a, Oé)

In order to decide whether this is positive or negative definite (or perhaps indefinite), the results of (16.3.6)
come in handy. The problem teaches us that for

a=dtANs+T

we get
(a,)prs = (08, 8) ps + (N7, 7) s

Recall that both expressions (scalar products) on the right-hand side of the expression for Tyg are of EY3-type.
We need, using the formula above, to express them in terms of E3-type scalar products. (The reason is, that
E'3-type scalar product is indefinite, whereas E3-type scalar product is positive definite: (3,8)gs > 0 for any
3.) So, we need to express (iga, ipa) in terms of E3-type scalar products. Now,

a=dtNs§+T = foax = §
and so
(ioOé, ’ioOé)El,S = (ﬁé g)
Therefore,
Too = 2(ig, ip) prs — (@, @) prs

=2(78,8)ps — ((78,8)ps + (N7, 7) =)

= (78,8)ps — (N7, 7) g2
The last formula clearly displays all we need.” Let the degree of a be even. Then A7 = #, 75 = —3§ and so

Too = —(3,8)ps — (7, 7)gs < 0

"Except for love, of course. Sorry, John/Paul.
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So, altogether, we see the following simple picture:

degree of « is even Too <0
degree of « is odd Too >0

Since physics only likes the case Ty > 0, the result above is to be understood as follows: the term (o, ) should
enter the action with plus sign iff @ has odd degree and with minus sign iff o has even degree:

’degree of v is even‘ ’ — (o, @) in action integral‘

’degree of o is odd‘ ’ +{a,a) in action integral‘

This concise rule is indeed satisfied by all field theory action integrals mentioned in the book. Check, in
particular, (each individual term in) the following cases:

1 1
free (massive) scalar field S = §<d¢, do) — §m2<¢, o) (16.3.7)
1 1
free (massive) vector field S = _§<dVV’ dWw) + §m2<VV, W) (16.3.8)
1
free electromagnetic field S = —§(dA, dA) (16.3.2)

18.4.6 | p.511: see comment to 15.4.4, p.392 (in this text)

18.4.10 | p.514 The result

LyA=dy

might look unnatural (one should expect Ly A = 0 as the ”invariance condition” for A). Note, however, that
according to 18.4.9(iv) there is a ("gauge”) freedom

A A = A+df

)

in choosing A. So, if some particular A obeys Ly A = dx, then the "new” one, A’ obeys

Ly A" =d(x-Vf)

So when we choose f such that
Vi=x

(in coordinates, where V straightens out, we are to solve the equation df/dz! = x) we get
LyA =0

The moral is that we cannot ask ”nice” symmetry condition Ly A = 0 being valid for all A’s from the equivalence
class A ~ A+df, since the transformation A — A+df spoils it. In general, just the weaker condition Ly A = dx
holds and only for a carefully chosen representative A this simplifies to Ly A = 0. (Since there is no comparable
freedom in g and ¢, we have always "nice” invariance conditions Ly g = 0 and Ly ¢ = 0 respectively for those
fields.)

19.3.10 | p.534. Just prior to this problem the following formulation of Frobenius integrability criterion is
presented without proof: In terms of constraint 1-forms #%, D is integrable if and only if there are (n — k)2

1-forms o such that d6’ = o A 67, i.c.

D is integrable = {Ela;» L dft = 0; N
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Let us have a look how this particular formulation follows from the one mentioned after 19.3.7:

D is integrable & {0°|, =0 = d#'|, =0} ie. {U,VeD = d#"(UV)=0}

o
Well, consider a co-frame (ef,e?) adapted to D, i.e. e := 6" and e? realize a completion to a co-frame. Also
consider the dual frame (e;,e,). So, D = Span {e,}.

Then, since df’ is a 2-form, we can decompose it w.r.t. (e,e?) as follows:

' = Ay ;e Nel + Bl Nl + Clye® Neb ij» Bhis Co

aj» Cap functions
Now, the previous formulation says (for U = e,, V = ¢3)
D is integrable < df(eq, ) =0

But 4 '
do'(eq,ep) = 2C7,

So integrabilty kills C!, (and vice versa) and we have
D is integrable <  df' = };jek Ael + Bflje“ Nel = ( };jek + Béje”) A el

So, defining

ik i a . i
k€ —|—Baje =:10;

(and recalling that e/ := 67) we finally get

D is integrable &  df' = a;» N

19.3.12 | p.535. In part (iii) we study, as an example to integrability conditions

Fiosr = fiotins (a)
for system of partial differential equations
yi’a = fi(z,y) z% independent, y® dependent
the following simple system
% = fsiny (b1)
% = Afxcosy (b2)

(So that y' = [, (z1,2?) = (2,y), fi = [siny, f} = \fwcosy.)
Let’s have a look on the system in elementary way, without using (a).

First, notice that we have a solution f = 0 for any A. (So, the statement in the book that the system has a
solution only for A = 1 is indeed wrong, see Errata.)

Now, imagine f # 0. Then, for F' = In f, we get slightly simpler equations

g—i =siny (c1)
88—1; = Az cosy (c2)

So, if F(x,y) exists, its dF reads
dF =siny dx + Ax cosy dy

Then, necessarily,
0=ddF =d(siny de + Axcosy dy) = (A — 1) cosy dx A dy
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Therefore we inevitably need A = 1. If A = 1 holds, we easily get from (c1) and (¢2)
F(z,y) =z siny + A(y) =z siny + B(x)
so that A = B = k = const. and finally (only for A=11)
F(z,y) =x siny+ k ie. flz,y) =ef = K e*sinY
If we want to use criterion (a), it reads, here (check!)
(I1=XNfcosy=0 (d)

for each (z,y, f). This is equivalent to A\ = 1.
19.4.4 | p.540 Correct version of the expression of H; reads

H; =0} = 8; — (&, 0)yo05 = 0 — (wf), 0y
Notice the hat symbol on the first wj - it is very important. Indeed, according to 19.1.4
Epp = yéaﬁ

so that the above equality cannot be true with two unhatted wy (the summation within the y0 part is different).
However, the relation between wy and &f is (see 19.2.1)

wh = (y™ e (m*wg)yh + (v~ edyy

so that
(Wi, 0:) = (y=1)&(@g, i)y,
Then,
H; = 0; — (wy, 0i)§pp
= 0; — (wi, 0i)ys 00
= 8; — (y~")(@h, B ysys°
== 81 - <(‘Dga 8l>yga(i

or, consequently
(Wi, 01)yadk = (@5, 0:)yeo;

We see that the replacement wj — @ indeed produces the change in summation in the y0 expression.

’ 19.6.1 ‘ - ’ 19.6.3 ‘ p.545-547: Here we present coordinate versions (in coordinates (z,y) introduced in 19.1.1) of
the “abstract” functions ®% : LM — (V, p).

Let’s start with a vector field. We have, then, equivariant ®* : LM — (R", p(l)), i.e. in coordinates some

o (z,y) obeying 0 (z,yA) = (A" (x,y)

In particular, for y = I (the unit matrix), we get 9%(z, A) = (A71)20%(z,1), i.e.

0(z,y) = (y~ 5Vi(2) VO(x) = 0" (x,1)
So we see that the family of functions 9%(x,y) obeying %(z,yA) = (A~1)%0%(x,y) is parametrized by functions

Ve (x) of variables x alone. (There is already no freedom in the dependance on variables y.)

What is the meaning of those functions V¢(x)? Well, recall that the space (R™,p}) is just the space of
components of vectors, so (think it over) V%(x) are just components

- of the vector field V = V% (x)e, + OV + 0%(x,y)

- w.r.t. the frame e, <>y =1, i.e.
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- w.r.t. the frame e, <+ the coordinates yy (see 19.1.1)

In a similar way we get, as an example, the following functions on LM:

o, y) = yhou(x) satisfying bo(z,yA) = Adén(2,y)

corresponding to a covector field o = a,(x)e?,

Gab(T,Y) = Y5yt gea(®) satisfying Gav(,yA) = AG AL jea(x, y)

corresponding to metric tensor field g = gap(z)e® @ €,

toy(,y) = (W " )Svlys T (2) satisfying toy (v, yA) = (AN AT AFE (2, y)

corresponding to torsion tensor field T = T, (z)e® ® ¢’ ® e, or

Pe(z,y) = (Y )yl ysy Riy () satisfying Py, yA) = (ANIAT A ALF L (2, y)

corresponding to Riemann curvature tensor field R = RY, (2)e? ® e® @ e ® ey.

p.549: Here we speak of an equivariant function ® which is defined on the fibers over the curve ()
and which corresponds to field of quantities of type p (e.g. a tensor field B) on . We are to check that its
derivative along the horizontal lift 4" of the curve  corresponds (just in the sense in that ® corresponds to B)
to the covariant derivative V5B of the field B

® < B = (9)"® « V4B
Let us check, first, that if ® is of type p, the same holds for the derivative (%)"®.
Recall (see 19.5.2 7)) that the horizontal lift 4 (i.e. the lift from x to e over ) is uniquely given by
oyl =1 7w(0) = (w, (38)) =0
Now it is useful to notice that it is GL(n,R)-invariant in the sense
Raonl =74

(so that R4-image of the lift starting at e is a lift again, starting at eA).

v Indeed, let us denote I' := R4 o 4. It is clearly a curve on LM enjoying the following properties:
mol=+v I'(0) =eA (W, I)=0

(We used m o Ry = 7 for the first property and I' = RA*(fy-g) as well as Rfw = A7'wA for the last one.) The
three properties define, however, exactly the curve 'yéLA. A

Now, define (again on the fibers over the curve 4(¢)) the function

X = ()@ x(e) = (1)@

(So, at each point e of the fiber over x, the corresponding lift of 4 is applied on ®.)
Then

x(ed) = () ® = Ras(42)® = (d®, Rau (V1)) = (d(R3®), (v8)) = p(A71){d®, (v2)) = p(A™")x(e)
So x = (¥)"® is an equivariant function (of type p) as well, i.e. it indeed corresponds to a quantity “of the
same type” as B does.
Which one? The derivative of ® along " corresponds to

- derivative of components (since the space (V, p) of values of ® is the space of components of B)

- of the quantity B (since ® < B)
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- w.r.t. autoparallel frame (since 4" corresponds to autoparallel frames).
And this corresponds (see 19.6.4) to covariant derivative V4B of B.
p-562: Here we learn that two crucial properties of connection form read
Rjw = Ad 1w (w,éx) =X

In 20.2.6 we add that any w possessing the two properties is a connection form. And then, in 20.2.7, we also
came to infinitesimal version of the former property, namely

Leow=—[X,w]

Here, in the Additional material, we just mention that the two properties may also be equivalently rewritten
into the following convenient form:

Lew’ = —cw* (w', &) = 6! (a)

where §; = {g, are generators of the action R, and czk are the structure constants of the Lie algebra w.r.t. F;
v Indeed, set X = E;; then

!

L"fEiw = (ﬁﬁiwj>Ej = _[Ei’w] = _[EiawkEk] = _[Eika]wk = _CgkwkEj

(w,&) = (W, &) E; = E;
A

Ezample: consider a GA(1, R)-principal bundle 77 : P — M and let w be a connection form. Since a possible
basis E1, Fs in the Lie algebra ga(1,R) is

10 0 1
a=(n) m=(00)
(see 11.7.10 - notice however an error mentioned in Errata), any connection form may be written as

. 12
w=wE; =w' B +wlE, = (LB u()) >

The right translation on GA(1,R) is
Rqp)(u,v) = (u,v) o (a,b) = (ua,ab + a)
(see 10.2.6). One easily finds the corresponding generators:
51 = uau 52 = ’U,av (b)

So, if we use a local trivialization of the bundle, we have P ~ O x GA(1,R) with coordinates (x*,u,v), where
a# are local coordinates on @ C M, and the generators of the action of GA(1,R) on (the corresponding part
of) P look exactly like those in (b).

Therefore if we want to find the most general connection form on this particular principal bundle, we can
start with the most general expressions

w' = A, (z,u,v)dz" + B(z,u,v)du + C(x,u,v)dv
w? = A, (x,u,v)dz" + B(x,u,v)du + C(z,u,v)dv

and then restrict to those of them, which satisfy (a), i.e., in our particular case,

Lew! =0 (Wwhé) =1
££1w2 = 7&)2 <W17§2> = 0
Lew =0 <w2751> =0
£§2w2 =w! (W, 62) =1
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The right (algebraic”) column alone quickly restricts w! and w? to

w = —+ Au(x,u,v)dx?
w®=—+ flu(x,u,v)dx“

The left (”differential”) column then restricts A, (z,u,v) and A, (x,u,v) further to

Al ) = Fule) A ) = (0 (@) + u(2)

(check :-). So, the most general w! and w? are

1 du

o u
d 1

W = T = (0f, (@) + g () da

w + fu(z)dzt

i.e. the most general connection form looks (locally) as follows:

o <u(1)1 062> _ % (du+u%(x)dx“ dv + (vfu(x)0+ gu(x))da:“) ©

It is parameterized by arbitrary functions f,(z) and g, (). For example, for all of them vanishing we get

w — wh w?\ 1 (du dv
N0 0) w\O0 O
Locally we can use ”canonical” section
oot (2, u(), o(z)) = (a#,1,0)

(abstractly m — (m, g(m)) = (m,e), where e is the unit element of the group; see the proof of 20.1.3). In this
particular gauge, the gauge potential reads

o (A1 A2> _ <fﬂ(x)dx" gu(agdx“> _ (A;(x)dx# Ai(a(;))dx#)

A 0 O 0 0

So, the functions f,(z) and g,(x) parameterizing the general expression (c) may be identified with gauge
potentials in the canonical gauge. In particular, the example with vanishing f,(x) and g, (z) corresponds to
A =0 (in the particular gauge) and, therefore, to F' = dA+ AA A = 0. This means (due to the fact, that F' =0
is already gauge-independent statement), that the example corresponds to flat connection (2 = 0).

20.3.4| p.566 (see also comment here to |21.7.1(): Here the (projection) operator hor on forms is introduced

as
hora (U,...,V):=a(horU,..., horV) (1)

and then the crucial concept of horizontal form on P:
hora =« (2)

From (1) we see, that the projected form hor @ depends on connection (since the projection U +— hor U does).
What might be then a bit surprising (counter-intuitive, nevertheless true and useful to realize®) is that the
subspace of horizontal forms (the image space of the projector hor on forms) is actually independent of the
choice of connection! Put it differently, we do not need at all connection on P in order to introduce the very
concept of horizontal forms!

This should be clear, e.g., from the property #ii) of 20.3.4

hora =« & iwa=0 for vertical W (3)

8 And it is not mentioned in the book ...
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since vertical subspace has nothing to do with connection! So if we define horizontal forms via
iwa=0 for vertical W (4)

it is clear, that connection plays no role there.
So, let’s check the property 4ii) of 20.3.4 in more detail (there is no hint in the book ...). The implication
= is easy: iwhora = 0 directly from (1), since

(twhor a)(U,...,V) = (hora)(W,U,..., V) = a(hor W,hor U, ..., hor V) =0

(hor W = 0 for any vertical W).

The implication <« is a bit more tricky. Let (e;,e,) be an adapted basis in T,P (e; span the horizontal
subspace - it depends on connection, e, span the vertical subspace - it does not depend on connection) and let
(e’,e*) be the dual basis in 7y P. Then (4) is equivalent to

ie,a =0 (5)

and this leads to

1 . .
o= Eai,,,jez/\n-/\ej (6)

(there is no e® in the decomposition). Why? A general form (3 clearly decomposes into a (finite) series
B=PB+e"ABa+e* N ABap+... (7)

where hatted forms are of the type (6) (so they have no e® in the decomposition). Then, because of standard
elementary properties of the inner product ¢.,, vanishing of i., 3 leaves only its first term from the series alive,

B = /. So (6) holds for any a obeying (5).
Now (because of the duality €’(e;) = 0%, e'(eq) = 0)
e'(U) = e'(horU +verU) = e"(Ue; + Ue,) = €' (Ue;) = €' (hor U)
and therefore, for a of the structure (6), it does not matter whether complete vectors (U,...,V) or just their

horizontal parts (hor U, ..., hor V') are inserted. So, from (4) we can deduce (2).

Another way to understand the above mentioned independence of connection of the subspace Q(P) of
horizontal forms might be the following. First, realize that if we have two connections on P, unprimed and
primed, then the corresponding horizontal projections of the same vector U differ only by a wvertical vector

hor'U = horU + W W vertical

Then from (1) )
hor'a (U,...,V) :=a(horU +W,... ,horV + W)

If o satisfies (4), W and W may be omitted and we get
{iwa=0 for vertical W} = hor’a = hor « (8)

So if we define horizontal forms via hora = « according to (2) w.r.t. the unprimed connection, the same
result comes from hor’a = a (w.r.t. the primed connection). So (4) (where connection is not present at all) is
equivalent to the “connection” definition (2) (which looks like connection dependent) but (8) reveals, that it is
not.

Finally, let us illustrate the counter-intuitive phenomenon on a toy example. Let L <+ (z) be a 2-dimensional
space and L* <> (u,v) its dual. Define the 1-parameter family of projectors in L

1 0
hor := (a 0)
So the projector acts (in L and dually in L*)

hor v = hor (i) _ (Cll 8) (;”) _ (;;) hor a = hor (, v) = (u,v) (Cll 8) = (u+ av,0)
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We see that both hor v and hor @ do depend on a (so on particular projector).

Now find horizontal vectors and covectors, i.e. solutions of horv = v and hor a = a. You get

v= (a:;) a = (u,0)

We see that although the structure of horizontal vectors does depend on a (i.e. on the particular projector), the
structure of horizontal co-vectors (1-forms) does not!

p.575: See comment to , p.426

21.3.3 | p.602: A useful information about holonomy may be gained here.

We learned here, that the quantity of type p,, (with respect to the group U(1)) gets multiplied, when parallel

transported along ~, by the factor e~*" A

2(0) = 2(1) = e~ ™+ 42(0)

Let v be a loop, now. Then v(0) = (1) and the holonomy associated with the loop is the group element
g € U(1) such that

7" (1) = Ry"(0) =" (0)g
We assumed z to be a quantity of type p,. Therefore it behaves in general as follows
2(pg) = pn(9™")z(p)
(R:® = p(g~")®). In our particular case

ino

p=7"(0) g =" (= unknown, wanted, the holonomy) pn(e®) =e

and also
2(0) = 2(y"(0))
Therefore
2(1) = 2("(1)) = 2(y"(0)e™) = e7"2(4"(0)) = e ™"2(0)
Zeind, 42(0)
whence

the holonomy for v = ¢ = €' =

If v is the boundary of a 2-dimensional surface .S, then fv A= f o ' and so, alternatively, we can write down
the holonomy in terms of the curvature 2-form

the holonomy for v = g = €' = e JsF

Particularly interesting is the case of a bundle over two-dimensional Riemannian base manifold (M, g) (a surface)
such that the curvature form coincides (possibly up to a constant multiple) with the metric area (= volume)
form dS

F=dS

Then, clearly
/ F = the area of S
s

so that

the holonomy for 88 = ¢ (reaof 9)

[This is to be compared with the additional text to 15.6.10.]
To give a concrete (and important)? example, consider the Hopf bundle 7 : S* — S? studied in 20.1.7-10.
We can introduce a U(1)-connection by defining the subspace spanned by left-invariant fields (eq, e2) on SU(2)

9This stuff is used in the context of the Berry phase for the spin 1/2. The phase is intimately connected with the holonomy of
this particular bundle.
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(see 11.7.23) to be the horizontal subspace Hor ,P (whereas the span of es is the vertical one Ver,P, see the
figure in 20.1.10; this means that the horizontal subspace is defined as the orthogonal complement, w.r.t. the
Killing metric, to the vertical one). Alternatively (check), we can fix the connection via the connection form

w = ie’
(it is to be u(1) = iR-valued, that’s why the ¢). Then
Q = dw = ide® = i(—sin¥dY A dyp)

and so
iF =0"Q =i(—sinddd A dp)

(for any o, check) so that
F = —sinddd A dp = —dS

where dS is the standard round area form on S2. Therefore

the holonomy for S = e ! (area of S) _ et (solid angle subtended by ~)

21.7.1| p.626 (see also comment here to | 20.3.4 |): Here, in part ii), the claim is that 6 is horizontal. It might
look strange, since no connection is mentioned (w.r.t. which the concept of horizontality is specified). In fact,

it is horizontal (hor§ = ) w.r.t. any connection on LM!
Indeed, recall that, by definition,
(02, w) = (e, mew)

Now if, w.r.t. some connection,
w = horw + ver w

then
Tew = mhorw + m.ver w = mw, horw

since m, of any vertical vector vanishes and ver w (w.r.t. any connection) is vertical. (The concept of verticality
is given by 7, independently of connection; so although the vertical part of a given vector does depend on
connection, the fact, that a vector is vertical does not.) So the vector

mTyhorw = maw

does not depend on connection and so what 6 does with input vectors does not depend on connection. And, for
any connection on LM,

((hor 0)¢,w) := (0, hor w) = (e*, m.hor w) = (e, mw) = (0, w)
so that, by definition,
horf =6

w.r.t. any connection on LM.

21.7.4 | p.629 (see also |21.7.6],|21.7.7]): As a simple application of using of D (covariant exterior derivative

on M) we can derive an identity often cited in papers on various modified gravity theories (like teleparallel
gravity). This, the so called Nieh-Yan identity, reads

d(e* NT,) =T*NT, — Qap Ne® A et — Gabice® N €SN b (1)

Here we live on (M, g, V), a (pseudo)Riemannian manifold with a (general) linear connection V,
- €% is an arbitrary (not necessarily orthonormal) coframe field
- gab = 9(€a, €b)
- T% and 2 are torsion and curvature 2-forms corresponding to V

- dg = gabTb and Qg := gacgi
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- Gabic 1s the non-metricity tensor corresponding to V (we do not assume V to be metric)

First notice that
d(e* NT,) = D(e* NTy)

since the expression in the bracket is a “scalar” form (p = pY), it does not depend on the choice of frame; see
21.7.5). Then, using standard (graded) Leibniz rule for computing D(...) we get

D(e* AT,) = (De?) A gapT® — € A (Dgap) AT — € A gap(DT?)

Now
De* =T DYab = Gab;c€® DT = Ql; A e
(see 21.7.4 and 21.7.7) and so
d(e* ANT,) =T A gapT? — € A Gab;ceS A T — e A gabQZ A ef

and this is practically already the wanted identity (1).
Important special cases:

1. Metric connection: gqp,c = 0, so
(e ANT,) =T ATy — Qap Ae® A e (2)
2. Metric and symmetric connection (= Levi-Civita): ggp.c = 0, T* = 0, so
0=QupAe? Ae (3)

(a simple consequence of the Ricci identity Q¢ A e® = 0; sometimes called “algebraic Bianchi” identity).

3. Metric and teleparallel connection: gup,. =0, 2§ =0, so

d(e* NT,) =T AT, (4)

22.5.4| p.665: In the 4-th expression of the Dirac operator, I'yp. in the 2-nd expression was replaced by the
expression

1
Fabc - _§(cabc + Cbea — ccab)

from 15.6.20iii. From Additional material to 15.6.20iii we know, however, that the full expression reads

1
1—‘abc = _i(cabc + Cpea — Ccab) + Kabc

where )
Kabc = _§<Tabc + Tbca - Tcab)
is the contortion tensor. So, the contortion term is to be included also in the Dirac operator, in general.

Recall that spin connection corresponds to a metric, but not necessarily symmetric connection on (M, g),
see the book, p.658 in Sec.22.4. Therefore, whenever we need covariantly differentiate spinor fields (and we
do need it within the construction called the Dirac operator), torsion of our connection is to be specified. If
the connection under consideration has non-vanishing torsion, the contortion term has to be present in the
corresponding Dirac operator:

2 1 c
W =7 (eaw + ZFbca'Yb’Y ¢)

cAQ 1 c
4: v (€a¢ + é ((Cabc + Ceba — Cbca) + 2Kbca) ’Yb’y 1/1>

p-673: The concept of the direct sum V & W of vector spaces V and W was introduced in the
beginning of Appendix A. An interesting particular case!'® is the space V @& V* (i.e. when W is the dual of V).

10This is used in so called “generalized geometry”, where the bundle (T @ T*)M plays the central role. Here, by definition, the
fiber over m € M is the direct sum of the tangent and the cotengent space in m, i.e. T, M & T};, M.
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Why? Because there are two important canonical structures available on this space: a metric tensor (with n
pluses and n minuses in canonical form) g and a symplectic form w. Both are constructed in terms of canonical
pairing { ., . ) between V and V* alone. They are given as follows:

g((v,a), (w’ﬂ)) = <a7w> + (B, v)
w((v, a), (w, B)) := (o, w) = (B, v)

In particular, if we choose the basis F,, E® in V & V*, where

Voe, ¢ (€q,00)=E, eVaV*
Vise* < (0,e*)=E*eVapV”

where, of course,
a a
<6 7eb> = 5b

we get the component expressions

oo (e dm i) - (5 %)

oo (SR BB -(r )

So, the symplectic form is already in canonical form in the basis. Metric tensor turns out to be indefinite, with
n pluses and n minuses.

v Determinant of the matrix of g is

det (g g) — det G g) — det (% OH> — det T det(=T) = (—1)" # 0

so that there are no zeroes on diagonal in canonical form. What is on the diagonal is a (non-zero :-) solution of
the characteristic equation

Al 1 =l 0 n n
O—det( I —A]I) —det< 1 (1/)\—)\)H> =det(=Al) det(1/A—=NI=AX-1"(A+1)
Therefore, the canonical form is diag (+1,...,+1,—1,...,—1). A

If V carries a representation p of a group G, then (see 12.1.8) V* carries the corresponding dual representation
p and, consequently, V' @ V* carries their direct sum p & p (see 12.4.10). Now, remarkably (albeit technically
trivially), both g and w are invariant with respect to p & p.

v Indeed, for the metric tensor g, say, we have (for any group element k € G)

9((p & p) (k) (v, @), (p & p)(k)(w, B)) := g(p(k)v, p(k)a), (p(k)w, (k) B)) (see 12.4.10)
= (p(k)a, p(k)w) + (p(k)B, p(k)v
= (o, w) + (B,v) (see 12.1.8)
= g( v, ), (w, B))
and similarly for the symplectic form w. A

So, starting with just a representation (V, p) of G, we get, in an appropriately enlarged space, much stronger
structure, the G-invariant metric g as well as symplectic form w.



