
15

Parallel transport and linear connection on M

• In Chapter 4 we already encountered the possibility of transporting vectors, namely Lie
transport and the related Lie derivative. Here we introduce another type of transport, the
so-called parallel transport. The corresponding derivative is called the covariant derivative.
Although the two transports share some common features, in many respects their geometrical
meaning differs and one should understand which one is appropriate for use in a concrete
application.

15.1 Acceleration and parallel transport

• Recall (see Section 2.2) that it makes no direct sense to perform a linear combination
of a vector at point x with a vector at point y since the tangent spaces at different points
x, y ∈ M are vector spaces which are not at all related (except for the dimension).

15.1.1 Let B : W → V be an isomorphism of linear spaces V and W . Check that the rule

v + λw := v + λB(w) v ∈ V, w ∈ W

gives a sense to the linear combination of two vectors from different spaces.

Hint: B enables one to identify V with W . �

• So if a distinguished (canonical, independent of arbitrary choices) isomorphism B :
Ty M → Tx M existed, we might define the combination by the trick v + λw := v + λB(w),
v ∈ Tx M, w ∈ Ty M . However, already in Section 2.2 we warned that although on a “bare”
manifold the spaces Tx M and Ty M are isomorphic, the isomorphism is not canonical.

After these general considerations let us have a
look at how it is related to the definition of the con-
cept of acceleration of a point mass in elementary
mechanics. Given r(t), the trajectory of the point, its
(instantaneous) velocity is v(t) := ṙ(t) and the (in-
stantaneous) acceleration is a(t) := v̇(t). The con-
ception of the velocity of the point mass helped us to

introduce the key concept of a vector on a manifold as early as in Chapter 2. The acceleration
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370 Parallel transport and linear connection on M

turns out to be equally inspiring (although it had to wait patiently for its chance until Chap-
ter 15) – it brings us to the concept of the parallel transport of the vector as well as the
covariant derivative.

In order to compute a(t) at the point r(t) one has by definition to perform the difference
(i.e. a linear combination) of the vectors v(t + ε) and v(t), i.e. just the procedure which
makes no sense officially. It is clear, however, what is meant by this (and often even explicitly
stated) in mechanics: the “obvious” fact is used that in E3 the vectors may be shifted (not
altering either their length or direction) around and then used at the point where we need
them to sit.278 In the case of acceleration one is namely to shift the vector v(t + ε) from
the point r(t + ε) back to the point r(t) (thus obtaining v‖(t)) and only this vector may be
compared with the vector v(t). So it is nothing but the trick from (15.1.1), the role of the
isomorphism B being played by an appropriate shift. Everything is so clear here that one
might even be abashed at why an issue should be made of all this.279

Nevertheless, there is a tiny cloudlet in the blue sky, namely a slightly conspicuous
significance of the Cartesian coordinates in the technical realization of the shifts (on a
general manifold all the local coordinates should be equivalent; the fact that this is not the
case here indicates that E3 is exceptional from this point of view).

15.1.2 Verify that the operation of the shift of a vector in the Euclidean space E3 (or,
even simpler, in E2) happens to be technically trivial in Cartesian coordinates alone (if we
accept as Cartesian coordinates also those with a shifted origin and a modified direction
of axes, so that they are related through an affine transformation to some “true” Cartesian
coordinates).

Hint: in Cartesian coordinates the components of the shifted vector remain the same; trans-
form this explicitly to polar, spherical polar, cylindrical, etc. coordinates and check that it
becomes complicated. �

• The particular trajectories with vanishing acceleration are closely related to the concept
of acceleration. They correspond to uniform straight-line motion of the point mass. By

definition, vanishing of the acceleration means that
on this trajectory the velocity v(t + ε) is equal to the
velocity v(t). Or, more precisely (since they sit at
different points), the velocity vector v(t + ε) arises
by a shift alone (not changing either its length or
direction) of the vector v(t) from the point r(t) to the
point r(t + ε) (so that we set v(t + ε) = v‖(t + ε)).

By an iteration of such infinitesimal shifts of the velocity vector the resulting straight line
arises, being the trajectory of the point mass (the uniform straight-line motion).

278 One speaks about free and bounded vectors there.
279 Mathematical physics is sometimes blamed for “making an issue” of quite “simple” things. There is a perfect consensus in

that this blame is indeed legitimate in p percent of concrete cases, a bit less concord takes place in the numerical value of the
number p. Extensive research (based on elaborate questionnaires) revealed that the distribution of p over the world population
is actually uniform, bounded by the values p = 0 and p = 100.



15.1 Acceleration and parallel transport 371

Now, let us try to repeat the same procedure on a different manifold, for example on
the sphere S2. Imagine that an ambitious technocratic ideal was accomplished at last –
throughout the Earth, first all the irregularities were straightened out by bulldozers (they
were, one should admit, both impractical and unaesthetic) and then the whole surface of
the Earth was nicely covered by a neat asphalt. If we now roll a ball along such a smooth
surface,280 it has to roll, according to the laws of mechanics, uniformly along a straight line,
since the only force available is the gravitational force, directed everywhere downwards.
This force constrains the ball to remain on the two-dimensional surface of the Earth (it
keeps the ball from flying away along a “truly” straight-line trajectory and escaping into
space); the ball gets accustomed to this status quo and it does not regard it as a restriction.281

It considers pragmatically the sphere S2 to be its living space and it does not care whether
the sphere actually is or is not a subset of any larger ambient space. Since the projection of
the gravitational force on to the plane which is tangent to the sphere always vanishes, the
ball feels282 no force acting on it and it thus has no reason to change its velocity (neither
length nor direction); it therefore moves with vanishing acceleration along a straight line.
Note, however, that from the point of view of the ambient space E3 this is by no means
an ordinary straight line, but rather it is a circle (with maximum possible radius), which
encircles the whole Earth. The uniform motion along this circle which arises by the iteration
of the (infinitesimal) shifts of the velocity vector is the straightest possible motion on the
sphere. The shift of the velocity vector keeping its length as well as direction unaltered in
the sense of the sphere is, as we see from the resulting trajectory, something considerably
different from the same procedure performed in the sense of E3 – from the point of view
of E3, in the course of the shifts the vector also continually rotates a bit in order to remain
tangent to the sphere.

The lesson from this as well as numerous similar particular cases resulted in the following
picture: the definition of the concept of acceleration as well as uniform straight-line motion
(i.e. motion with zero acceleration) which is based on it requires the ability to transport the
velocity vector (at least by infinitesimal distances) along a given trajectory. In the space E3

there is a natural rule of transport and this rule is indeed used in elementary mechanics in
E3. However, in general the matter may not be so simple. It turns out that the most fruitful
point of view is to regard the rule of transporting vectors on a manifold as an independent
structure, which is a priori not available on a general manifold, although in particular cases
(like in E3) there may exist most natural realizations.

If such a rule (satisfying some requirements) is introduced on a manifold, we say that a
parallel transport (or an associated concept – linear connection) is defined on M , denoted
by (M, ∇). For example, the natural parallel transport of vectors in E3 is realized as an
ordinary shift, but if we introduced another connection into E3 (which is perfectly possible),
the parallel transport would be performed in a different way. The straight lines which result

280 We also ensure zero air resistance and a couple of similar technical details.
281 This is confidential information from one such ball; for reasons of protection of privacy it has no wish to make either its center

or radius public.
282 See the previous footnote.
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from the iteration of the infinitesimal parallel transport of the velocity vector (the trajectories
with zero acceleration) are called the (affinely parametrized) geodesics on (M, ∇).

The concept of a linear connection is very important in physics, although its presence is
fairly obscure in many applications (like in acceleration in elementary mechanics).

15.1.3 Estimate (or evaluate exactly) the fraction

f = lc/a

where a denotes the number of people on Earth who understand what the acceleration is
(including the formula which enables one to compute it) and lc denotes the number of
people on Earth who are aware that the linear connection is used in this formula.

Hint: ask all of them and then divide the two numbers; (1.1.1)–(22.5.12). �

• However, there are also disciplines like the general theory of relativity, in which the
linear connection lies at the very heart of the mathematical formulation, being explicitly
present in the fundamental equations of the theory.

15.1.4 Estimate (or evaluate exactly) the fraction

f = lc/gr

where gr denotes the number of people on Earth who understand elements of general
relativity (including the basic formulas) and lc denotes the number of people on Earth who
are aware that the linear connection is used in these formulas.

Hint: see the hint in (15.1.3). �

• The far-reaching generalization of the linear connection, to be explained in more detail
in Chapter 20 and beyond, is the basis of the formalism of modern gauge field theories.

15.2 Parallel transport and covariant derivative

• We convinced ourselves that the introduction of the concept of acceleration requires
the ability to transport velocity vectors along curves (the trajectories of a point mass). A
similar requirement also occurs in numerous other contexts. We say that a rule of parallel
transport is given on a manifold M , if, for an arbitrary curve γ on M and two points x, y
on the curve, there is a prescription which assigns uniquely to vectors in x vectors in y, i.e.
a map

τ γ
y,x : Tx M → Ty M v �→ τ γ

y,xv

Clearly, one can think out lots of such rules, but if they are to be useful in the contexts
from which the motivation for their introduction came, they should satisfy some restrictive
conditions. For the moment we mention the two most important of them.

First, it is natural to ask that the transport of a sum of vectors or a multiple of a vector by
a constant should yield the sum of the results of the transport of the individual vectors or
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the multiple of the transported vector, i.e. to ask for the linearity of the map τ
γ
y,x . Secondly,

if there are three points x, y, z on a curve γ , we expect the parallel transport from x to y
followed by the transport (of the vector just brought to y) from y to z to yield the same
result as the direct transport (without a moment’s rest in y) from x to z would yield. This
may be written as the composition property of the maps τ

γ
y,x

τ γ
z,y ◦ τ γ

y,x = τ γ
z,x x, y, z on the curve γ (otherwise arbitrary)

and, in particular,

τ γ
x,x = identity

(
τ γ

y,x

)−1 = τ γ
x,y

Note that the rule of parallel transport needs as an input not only the edge points x, y, but
also a path connecting them.283 So if we are given at the point x a vector v and a path
from x to y, we are able to transport v uniquely to the point y; given another path, the
transport is unique as well, but the resulting transported vector may be different in general.
We will see that the path dependence of the parallel transport is an important and typical
phenomenon in the situations where the connection is applied and it enables one to speak
about the curvature of the manifold (M, ∇).284

Suppose we have some particular fixed rule of a parallel transport of vectors. This rule
then enables one to introduce a derivative, which is based on it. Namely, let γ (t) be a curve
and let V (t) ≡ Vγ (t) be a vector field defined on the curve.285 If we intend to differentiate
the vector field V along the curve γ , in order to find out whether (and how much) it varies
in this direction), we are to compare the vectors V (t + ε) and V (t). However, these two
vectors sit at different points and it means that their difference has no direct meaning. Still,
the difference of the vectors may be legalized by making use of the rule of parallel transport.
Namely, we first transport the vector V (t + ε) along the curve γ from the point γ (t + ε)
backwards to the point γ (t) and then we compare (subtract) the vector transported back
with the initial vector V (t).

Denote the vector transported backwards by V ‖
ε (t). Then the corresponding derivative,

which is called the absolute derivative of the vector field V along the curve γ , is defined as

DV (t)

Dt
:= lim

ε→0

V ‖
ε (t) − V (t)

ε

Let us contemplate some immediate consequences of the definition. First, it is clear that the
derivative depends on the particular rule of parallel transport.

Next, note that it uses only the behavior of the objects on the curve γ – the field V may
(but need not) be defined also outside the curve, but nothing from outside the curve has any

283 We mentioned a curve a minute ago, here we speak about (only) a path, i.e. a non-parametrized curve. The transport to be
studied here actually depends only on the path alone (see (15.2.6) and (15.2.12)).

284 This does not mean that the parallel transport always indeed depends on a path, but rather that in general it may depend on it.
For example, the ordinary shifts of vectors in E3 are evidently path-independent, whereas the transport of the vectors on the
sphere, which we discussed in Section 15.1 really depends on a path (15.3.9).

285 The vector V (t) is an element of the tangent space Tγ (t) M and it may not be directed along the curve; i.e. we contemplate
n-dimensional vectors which need not exist at each point of an n-dimensional domain, as is the case when we treat vector
fields on a domain, but they are instead defined only on a one-dimensional domain, at the points of the curve γ .
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influence on the value of the derivative along the curve. This differs essentially from the Lie
derivative. If the curve γ were the integral curve of a vector field W and if both the fields,
W and V , were defined in some neighborhood of the curve γ , then the Lie derivative of the
field V along W (which corresponds to the derivative of V along the curve γ ) would also
depend on the values of the field W outside the curve γ (15.2.4), so that the transport of
the field V along the curve γ actually depends on the structure of additional curves aside
from the curve γ (the neighboring integral curves of the field W ; note that they are indeed
necessary since the Lie derivative may be performed only on the fields defined (at least) in
a domain).

Realize finally that the vanishing of the absolute derivative on some (part of a) curve
means that the field V (t) may then be regarded as that its values everywhere on γ arose by
(only) a parallel transport of its value at a single fixed point into all the points of the (above
mentioned part of the) curve. Such a field on a curve (one might say that it is constant on
the curve) is called an autoparallel field. Thus the absolute derivative informs us exactly
about the deviation from being autoparallel.

The relation between the absolute derivative of a vector field and the rule of the parallel
transport may be used to reverse the roles of what is a “primary” concept and what is a
“secondary” one: if we were technically able to perform the derivative, it would allow us in
turn to reconstruct the rule of parallel transport. Namely, the rule says: do the transport so
as to make the derivative vanish. This is exactly the way one usually introduces the concept
of the linear connection on a manifold. Instead of specifying in detail the requirements
which the parallel transport should satisfy, one postulates, on the contrary, the properties
of the derivative and the parallel transport is then in turn defined by the simple equation
“the derivative should vanish.” The corresponding defining properties of the derivative are
to be chosen so as to be clear and brief and so as not to contradict any particular case of
the transport, which served as the source of inspiration for the general theory (like E3, the
sphere, etc.; i.e. so as to guarantee that all the useful known cases might be regarded as
“particular cases of a general theory”).

Before we write down the resulting requirements regarding the derivative, we realize that
we also have to contemplate the issue of the parallel transport (as well as the derivative)
of general tensors (just like we did for the Lie derivative).286 For the Lie stuff, where the
“primary” concept was the (Lie) transport (being realized technically as the pull-back �∗

t

of the flow �t ↔ W ), this issue was simply computed and it turned out that the transport
preserves the degree and commutes with the tensor product and the contraction, so that the
(Lie) derivative turned out to be the derivation of the tensor algebra, which preserves the
degree and commutes with contraction.

Here it is necessary to postulate the properties either at the level of the (parallel) transport,
or at the level of the (covariant) derivative. The standard definition says that in this respect
we simply copy the properties in the Lie case: one postulates that the (parallel) transport

286 Note that there are the same problems with the linear combinations of tensors of type
(p

q
)

at different points x, y, as with vectors
(being the special case p = 1, q = 0), except for the case of scalars (p = q = 0): the numbers in x and in y are “canonically”
combined without any problems.
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preserves the degree and commutes with the tensor product and contraction.287 The (covari-
ant) derivative, which corresponds to the (parallel) transport, is then necessarily a derivation
of the tensor algebra, which preserves the degree and commutes with contractions.

So at last we now state the official definition of the concept of linear connection on a
manifold M . It says that with each vector field W on M one may associate an operator ∇W ,
the covariant derivative along the field W , enjoying the following properties:

1. it is a linear operator on the tensor algebra, which preserves the degree

∇W : T p
q (M) → T p

q (M)

∇W (A + λB) = ∇W A + λ∇W B A, B ∈ T p
q (M), λ ∈ R

2. on a tensor product it behaves according to the Leibniz rule

∇W (A ⊗ B) = (∇W A) ⊗ B + A ⊗ (∇W B) A ∈ T p
q (M), B ∈ T p′

q ′ (M)

3. in degree
(

0
0

)
(i.e. the functions) it gives

∇W ψ = Wψ ≡ LW ψ ψ ∈ F(M) ≡ T 0
0 (M)

4. it commutes with contractions

∇W ◦ C = C ◦ ∇W C = (any) contraction

5. it is F-linear with respect to W , i.e.288

∇V + f W = ∇V + f ∇W V, W ∈ X(M), f ∈ F(M)

Now, let us have a look at how such a connection may be technically determined.

15.2.1 Show that the covariant derivative is uniquely specified by the coefficients of linear
connection 	a

bc(x) with respect to a frame field ea , which are the functions defined by

∇aeb =: 	c
baec ∇a := ∇ea

Solution:289 we have (the numbers indicate the property used)

∇W
(

Aa...b
c...d ec ⊗ · · · ⊗ eb

) = making use of 1, 2, 3

= (
W Aa...b

c...d

)
ec ⊗ · · · ⊗ eb + Aa...b

c...d (∇W ec) ⊗ · · · ⊗ eb + · · · + Aa...b
c...d ec ⊗ · · · ⊗ (∇W eb)

Thus, one needs to be able to compute ∇W ea and ∇W eb. If W = W beb then

∇W ea ≡ ∇(W beb)ea
5= W b∇bea ≡ (

	c
abW b

)
ec

287 Preserving of a degree is clear, commuting with the contraction in plain English says that the transported tensor yields the
same number on the transported arguments as the original tensor did on the original arguments.

288 This is the only property in which the operator of the covariant derivative ∇W differs from the operator of the Lie derivative
LW (LW happens to be only R-linear with respect to W ); it turns out that it reflects the requirement mentioned above, so as
the parallel transport does not depend (in contrast with the Lie transport) on objects outside the curve.

289 It may be briefly summarized as follows: ∇W is a derivation of the tensor algebra ⇒ one comes to
(

0
0

)
and the bases of

(
1
0

)
and

(
0
1

)
. The case of

(
0
0

)
is handled by property 3, the commuting with contractions enables one to reduce

(
0
1

)
to

(
1
0

)
.
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and since

0
3= ∇W δa

b = ∇W 〈ea, eb〉 = ∇W (C(ea ⊗ eb))
4,2= C((∇W ea) ⊗ eb + ea ⊗ (∇W eb)) = 〈∇W ea, eb〉 + 〈ea, ∇W eb〉
= 〈∇W ea, eb〉 + 〈

ea, 	d
bcW ced

〉 = (∇W ea)b + 	a
bcW c

we obtain

∇W ea = −(
	a

bcW c
)
eb and in particular ∇bea = −	a

cbec

The knowledge of the coefficients of linear connection 	c
ab(x) with respect to a frame field

ea(x) thus indeed enables one to compute ∇W A for arbitrary W and A, i.e. there is complete
information about the connection in them. �

• The coefficients of the linear connection have one upper index and two lower indices.
One might anticipate from this that they form the components of a tensor field of type

(
1
2

)
.

A computation yields something different, however.

15.2.2 Let ea �→ e′
a = Ab

a(x)eb be a change of a frame field. Check that the primed coef-
ficients of linear connection (given by the prescription ∇e′

a
e′

b =: 	′c
bae′

c) are related to the
unprimed coefficients by

	′c
ab = 	d

e f (A−1)c
d Ae

a A f
b + (A−1)c

d A f
b

(
e f Ad

a

)

so that in addition to the first term, corresponding (if it were alone) to a tensor of type(
1
2

)
, there is also the “non-tensorial” second term (which does not contain the unprimed

coefficients 	 at all; one speaks about an inhomogeneous transformation rule).

Hint: ∇e′
a
e′

b = Ac
a∇ec (Ad

bed ) = . . . ; use the properties of the covariant derivative and the
definition of the initial coefficients themselves. �

15.2.3 The coefficients of linear connection 	k
i j (x) with respect to the coordinate frame

field ei = ∂i are called the Christoffel symbols of the second kind. Thus, they are defined
by

∇ j∂i =: 	k
i j∂k ∇i := ∇∂i

Check that under the change of coordinates xi �→ x ′i (x) the following transformation rule
holds:

	′i
jk = ∂x ′i

∂xr

∂xs

∂x ′ j

∂xm

∂x ′k 	r
sm + ∂x ′i

∂xr

∂2xr

∂x ′ j∂x ′k

Hint: (15.2.2), Ai
j = (J−1)i

j = ∂xi/∂x ′ j , A f
b (e f Ad

a ) = (e′
b Ad

a ). �

• Since the connection is a global structure on a manifold, this fairly complicated trans-
formation rule for the Christoffel symbols should necessarily have the correct composition
properties on a triple overlap of charts (see Section 2.5). This may be verified “by brute
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force” here, but one can do this more easily after learning how to encode the coefficients of
linear connection into so-called connection 1-forms (15.6.2).

Making use of the covariant derivative we are now in a position to realize the program
outlined at the beginning of the section: to express the absolute derivative and then to
describe the parallel transport.

15.2.4 Let (M, ∇) be a manifold endowed with a connection, ∇W the corresponding
covariant derivative operator, γ (t) a curve and V a vector field. The absolute derivative of
the field V along γ is defined as290

DV (t)

Dt
:= ∇γ̇ V

Assume that the curve γ happens to be the integral curve of the field W (i.e. γ̇ = W on γ )
and that both fields V , W as well as the curve γ are given in a coordinate patch. Check that

(i) in local coordinates we get on the curve γ

∇W V = (
V̇ i + 	i

jk ẋ k V j
)
∂i

LW V = (
V̇ i − V j W i

, j

)
∂i

where V i (t) := V i (γ (t)) are the components of the field V , regarded as the functions on the curve
alone

(ii) from the expression of the covariant derivative we can infer that no knowledge of the field W
outside the curve is necessary for its computation and thus the formula ∇γ̇ := ∇W is indeed correct
(recall that the connection officially defines only the notion of the covariant derivative along the
vector field W ) and, consequently, also the definition of the absolute derivative is all right; the
expression of the Lie derivative, on the contrary, shows that the behavior of W in a neighborhood
of the curve has an influence on this object.

Hint: (i) ∇W V = (∇W V i )∂i + V i W j∇ j∂i = (γ̇ V i )∂i + 	k
i j ẋ

j V i∂k ; here 	k
i j ẋ

j ≡ 	k
i j

(γ (t))ẋ j (t) is a known function of t on the curve; (ii) LW V = (W V i − V W i )∂i ≡
(V̇ i − V j W i

, j )∂i ; to compute V W i ≡ V j W i
, j we also need to know W in a neighborhood

of γ . �

15.2.5 A vector field V on γ will be called autoparallel if its absolute derivative along γ

vanishes, i.e. if

DV (t)

Dt
≡ ∇γ̇ V = 0

Check that

(i) the components V i (t) := V i (γ (t)) then satisfy the equations

V̇ i + 	i
jk ẋ k V j = 0

290 The absolute derivative was defined before in terms of the parallel transport (assumed to be known), here it is defined from
the opposite point of view, namely in terms of the (known) covariant derivative.
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(ii) these equations may be written in the form

V̇ i (t) = Si
j (t)V

j (t) Si
j (t) known functions of t

so that they form an autonomous system of n = dim M ordinary first-order linear differential
equations with non-constant coefficients.

Hint: (i) (15.2.4); (ii) Si
j (t) = −	i

jk(γ (t))ẋ k(t), which is a known function, provided that
the connection (represented by 	i

jk(x)) and the curve (in the form of xi (t)) are given. �

15.2.6 In terms of the covariant derivative we may
now introduce the operation of the parallel trans-
port of a vector along a curve as follows: if there is
a vector v at a point x on a curve γ and we want to
transport the vector to a point y, then we first con-
struct the autoparallel field generated by the vector

v and then take its value at the point y; this value w will be regarded as the result of the
parallel transport of the vector, w = τ

γ
y,xv. Show that

(i) if v has the components (with respect to a coordinate basis in x) vi ∈ R, then the components
wi ∈ R of the transported vector w (with respect to the coordinate basis in y) are obtained by
solving the equations of parallel transport

V̇ i + 	i
jk ẋ k V j = 0 i.e. V̇ i (t) = Si

j (t)V
j (t)

(for Si
j (t) = −	i

jk(γ (t))ẋ k(t)) with the initial condition V i (t1) = vi (if x = γ (t1)); then wi are
obtained as the value of the solution for t = t2 (if y = γ (t2)); so in brief

V̇ i (t) = Si
j (t)V

j (t) V i (t1) = vi wi := V i (t2)

(ii) if the assignment v �→ w is interpreted as a map τ γ
y,x : Tx M → Ty M , then the map (the operator

of the parallel transport) is linear and it satisfies the requirement

τ γ
z,y ◦ τ γ

y,x = τ γ
z,x x, y, z on the curve γ (otherwise arbitrary)

(iii) the parallel transport does not feel the parametrization of the curve, i.e. it depends on the path
rather than on the curve.

Hint: (i) according to (15.2.5) the equations V̇ i + 	i
jk ẋ j V k = 0 along with the initial con-

dition V i (t1) = vi yield the unique autoparallel field V (t) generated by the vector v; (ii) the
composition property of the operator τ

γ
y,x results immediately from the fact that the solution

of the equations is unique – its linearity stems from the linearity of the equations (a solution
linearly depends on the initial conditions); (iii) from the form of the equations of parallel
transport

dV i

dt
+ 	i

jk

dxk

dt
V j = 0
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we see the reparametrization invariance of the latter (there is the relation δV i = −	i
jk V kδx j

between the infinitesimal increments irrespective of a parametrization of xi (t), or alterna-
tively if V i (t) is a solution for xi (t), then the solution for xi (σ (t)) reads V i (σ (t))).

�

• Before we embark on developing a technique of transporting general tensor fields, we
need to derive the coordinate component formulas for the computation of the covariant
derivatives of an arbitrary tensor field, i.e. to finalize the computation from (15.2.1).

15.2.7 Check that

(i) for the covariant derivative of the coordinate frame and coframe fields there holds

∇ j∂i = +	k
i j∂k ∇W ∂i = +	k

i j W
j∂k

∇ j dxi = −	i
k j dxk ∇W dxi = −	i

k j W
j dxk

(ii) the component formula for the covariant derivative of a general tensor field reads

(∇W A)i ... j
k...l = W m Ai ... j

k...l,m − 	n
km W m Ai ... j

n...l − · · · + 	 j
nm W m Ai ...n

k...l

(iii) this result may be concisely summarized in the form of a table – a recipe for cooking the house
speciality (∇W A)i ... j

k...l (the recipe for the Lie derivative is also repeated for the convenience of
gourmets)

− − − − − − − − − − − − − − − − − − − −
| for preparation of ∇W A | for LW A |

− − − − − − − − − − −− | − − − − − − − − − − − | − − − − − − − − − |
| put on the bottom of a pan | W A...

... ≡ W m A...
...,m | W A...

... ≡ W m A...
...,m |

| plus for each A...i ... add | +W m	i
nm A...n... | −W i

,m A...m... |
| plus for each A...i ... add | −W m	n

im A...n... | +W m
,i A...m... |

− − − − − − − − − − −− − − − − − − − − − − − − − − − − − − − −
Hint: (15.2.1) and (15.2.3); compare with (4.3.4). �

15.2.8 Compute the components of the tensor ∇W g, the covariant derivative of the metric
tensor along the vector field W .

Hint: the table yields (there is the lump part plus two terms for two lower indices) (∇W g)i j =
W m gi j,m − W m	n

im gnj − W m	n
jm gin ≡ W m(gi j,m − 	n

im gnj − 	n
jm gin). �

15.2.9 The F-linearity of the operator ∇W with respect to W enables one to introduce the
operation of the covariant gradient by

∇ : T p
q (M) → T p

q+1(M) (∇ A)(V, . . . , W ; α, . . .) := (∇W A)(V, . . . ; α . . .)

Check that

(i) ∇ A is indeed a tensor field of the type stated above, so that ∇ is a tensor operation
(ii) in components (with respect to the coordinate basis) it gives

(∇ A)i ... j
k...lm = (∇m A)i ... j

k...l =: Ai ... j
k...l;m
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where

Ai ... j
k...l;m := Ai ... j

k...l,m − 	n
km Ai ... j

n...l − · · · + 	 j
nm Ai ...n

k...l

(iii) the computation of Ai ... j
k...l;m is performed according to the recipe

− − − − − − − − − − −
| for preparation of A...

...;m |
− − − − − − − − − − − − −− | − − − − − − − − − − − |

| first put on the bottom of a pan | ∂m A...
... ≡ A...

...,m |
| plus for each A...i ... add | +	i

nm A...n... |
| plus for each A...i ... add | −	n

im A...n... |
− − − − − − − − − − − − −− − − − − − − − − − − −

(iv) for a general (possibly non-coordinate) frame field we have

(∇ A)a...b
c...d f ≡ (∇ f A)a...b

c...d =: Aa...b
c...d; f

where

Aa...b
c...d; f := e f Aa...b

c...d − 	n
c f Aa...b

n...d − · · · + 	b
n f Aa...n

c...d

(v) for p = q = 0 (on functions) the covariant gradient coincides with the “ordinary” gradient
(regarded as a covector field)

∇ f = d f f ∈ F(M)

(vi) the covariant derivative along W may be written in terms of the covariant gradient as

(∇W A)i ... j
k...l = W m Ai ... j

k...l;m

Hint: (15.2.7). �

• So it holds that “semicolon” = comma plus a term containing the Christoffel sym-
bols added for each index; the expression Ai ... j

k...l;m is usually called in short the “covariant

derivative of Ai ... j
k...l by m” and it consists of the partial derivative by m plus the terms with

Christoffel symbols.
The covariant gradient may be regarded as a “derivative in an unspecified direction”;

if then one intends to compute the (covariant) derivative along a particular vector W , a
“scalar product” of the vector is to be performed with the “semi-finished product” ∇ A (this
immediately results from the F-linearity: ∇W A = W m∇m A). If the covariant gradient of a
tensor field happens to vanish in some domain, the field is said to be covariantly constant.
Then the covariant derivative of the field along any direction vanishes and so the field may
be regarded as being transported into all the points within the domain from its value at a
single point (just like the value of a constant function in an arbitrary point is known as long
as its value at a single point is known).

15.2.10 Evaluate the components of the tensor ∇g, the covariant gradient of the metric
tensor.

Hint: the table yields (there is the lump part plus two terms for two lower indices) (∇g)i jk ≡
gi j ;k = gi j,k − 	l

ik gl j − 	l
jk gil . �



15.2 Parallel transport and covariant derivative 381

• Now we may return to the parallel transport of tensors. The concepts of the absolute
derivative, the autoparallel field and parallel transport may be extended in a straightforward
way from vector fields to arbitrary tensor fields.

15.2.11 The absolute derivative of a tensor field A along γ is defined as

DA(t)

Dt
:= ∇γ̇ A

and the field A on γ is called autoparallel if its absolute derivative along γ vanishes. Check
that

(i) the concept of the absolute derivative is well defined (if on γ there holds γ̇ = W , then the
derivative does not depend on W outside γ )

(ii) in local coordinates the condition for Ai ... j
k...l (t) := Ai ... j

k...l (γ (t)) being autoparallel reads

Ȧi ... j
k...l + ẋm

(
	i

nm An... j
k...l + · · · − 	n

lm Ai ... j
k...n

)
= 0

(iii) this equation may also be written as

Ȧi ... j
k...l (t) = Si ... jc...d

k...la...b (t)Aa...b
c...d (t) Si ... jc...d

k...la...b (t) known functions of t

so that (if n = dim M) they form an autonomous system of n p+q ordinary first-order linear
differential equations with non-constant coefficients.

Hint: (15.2.4), (15.2.5) and (15.2.7). �

15.2.12 The operation of parallel transport of a tensor field A along γ is introduced as
follows: if there is a tensor â at a point x on a curve γ and we want to transport the tensor
to a point y, then we first construct the autoparallel field generated by the tensor â and
then take its value at the point y; this value b̂ will be regarded as the result of the parallel
transport of the tensor, b̂ = τ

γ
y,x â. Show that

(i) the components b̂i ... j
k...l ∈ R of the transported tensor b̂ (with respect to the coordinate basis in y)

are obtained by solving the equations of parallel transport

Ȧi ... j
k...l + ẋm

(
	i

nm An... j
k...l + · · · − 	n

lm Ai ... j
k...n

)
= 0

with the initial condition Ai ... j
k...l (t1) = âi ... j

k...l and b̂i ... j
k...l are obtained as the value of the solution for

t = t2; so in brief

Ȧi ... j
k...l (t) = Si ... jc...d

k...la...b (t)Aa...b
c...d (t) Ai ... j

k...l (t1) = âi ... j
k...l b̂i ... j

k...l := Ai ... j
k...l (t2)

(ii) if the assignment â �→ b̂ is interpreted as a map τ γ
y,x : T p

qx M → T p
qy M , then the map (the operator

of parallel transport) is linear and it satisfies the requirement

τ γ
z,y ◦ τ γ

y,x = τ γ
z,x x, y, z on the curve γ (otherwise arbitrary)

(iii) the parallel transport depends on the path rather than on the curve.

Hint: just like in (15.2.6). �
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• In Section 4.4 we learned that the operator of Lie transport �∗
t may be expressed in

the form of the exponent of the Lie derivative, �∗
t = etLW . There is a similar possibility

also for the parallel transport and the covariant derivative, since the formula stems from the
composition property of the transport, being valid in both cases under consideration.

15.2.13 Let γ (t) be the integral curve of a field W . Denote by τ
γ
t the operator of parallel

transport backwards along γ by the parametric distance t , i.e.

τ
γ
t := τ

γ

γ (s),γ (s+t)

for any s. Show that

(i) τ
γ
t has the composition property

τ
γ
t+s = τ

γ
t ◦ τ γ

s

(ii) the covariant derivative may be expressed as

∇W A = d

ds

∣
∣
∣
∣
0

τ γ
s A

(iii) for the derivative of τ
γ
t with respect to t there holds

d

dt
τ

γ
t = τ

γ
t ◦ ∇W

(iv) for Cω tensor fields we may write

τ
γ
t = et∇W ≡ 1 + t∇W + t2

2!
∇W ∇W + · · ·

(v) the ordinary Taylor expansion of a function

ψ(x + t) = ψ(x) + tψ ′(x) + t2

2!
ψ ′′(x) + · · ·

may be regarded as a special case for (M, ∇) = (R[x], arbitrary connection on R), W = ∂x .

Hint: (i) (15.2.6) and (15.2.12); (iii) d
dt τ

γ
t = d

ds

∣
∣
s=0

τ
γ
t+s ; (iv) ( d

dt )
n
τ

γ
t = · · · = τ

γ
t (∇W )n ,

(4.4.2); (v) (4.4.1). �

• This expression enables one, just like in the case of the Lie derivative, to perform
a systematic expansion of the operator of infinitesimal parallel transport τ

γ
ε in terms of

powers of ε; for example, to within second-order accuracy in ε we have τ
γ
ε = eε∇W ≡

1 + ε∇W + ε2

2! ∇W ∇W . This will be used for the study of the relation between the curvature
and the dependence of the parallel transport on a path in Section 15.5.

15.3 Compatibility with metric, RLC connection

• All the particular examples of parallel transport which we mentioned in Section 15.1,
namely in E2 and E3 as well as on the sphere S2, shared a common property: the vectors
preserve the length under the transport. This means, however, that we actually treat the
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manifolds (M, g, ∇) endowed with a pair of structures, the metric tensor g, which enables
us to measure the lengths of the vectors and the linear connection ∇, which enables us
to transport the vectors along paths. The invariance of the length of vectors under parallel
transport means that the connection is compatible with the metric, or in short that we treat
the metric connection. In the component language this may also be stated as that for some
particular Christoffel symbols 	i

jk(x), being dependent on given gi j (x), a computation of
the change of the length of an arbitrary vector under parallel transport yields zero. Let us
focus our attention on this fact in more detail, now.

15.3.1 Consider a vector v at a point x on a curve γ . Starting from v, generate an autopar-
allel field V (∇γ̇ V = 0). Check that

(i) the requirement of preservation of the length of v by parallel transport may be stated as

∇γ̇ (g(V, V )) = 0 if ∇γ̇ V = 0

(ii) if this is to be true for an arbitrary curve γ and an arbitrary initial vector v, then for any two
vector fields W, V one should demand

∇W (g(V, V )) = 0 if ∇W V = 0

(iii) if this is to be true for any two equal arguments V, V , it should also be true for any two (possibly
different) arguments,291 i.e. for any three vector fields W, V, U the covariant derivative should
obey

∇W (g(V, U )) = 0 if ∇W V = 0 = ∇W U

(iv) this condition is equivalent to the requirement

∇g = 0 or in local coordinates gi j ;k = 0

A connection ∇ which satisfies this equation is called the metric connection.

Hint: (i) the expression f (t) := g(V (t), V (t)) is a function on the curve and ḟ = γ̇ f =
∇γ̇ f ; (iii) g(U + V, U + V ) = g(U, U ) + g(V, V ) + 2g(U, V ); (iv) (∇g)(V, U, W ) =
(∇W g)(V, U ) and g(V, U ) = CC(g ⊗ V ⊗ U ) ⇒ ∇W (g(V, U )) = (∇W g)(V, U ) +
g(∇W V, U ) + g(V, ∇W U ). �

15.3.2 Check that the requirement

gi j ;k = 0

represents n2(n + 1)/2 constraints imposed on n3 functions (the Christoffel symbols
	i

jk(x)), so that it is very promising; it even seems that one could satisfy an additional
n2(n − 1)/2 constraints.

Hint: gi j = g ji . �

291 Preserving of all lengths under the parallel transport thus also automatically leads to the preserving of all angles between the
vectors.
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• It turns out that this naive counting of the “degrees of freedom” indeed leads to a true
conclusion. A metric indeed induces a lot of compatible linear connections. Moreover, if
one adds one more condition, the vanishing torsion of the connection, the solution is even
unique. So let us first explain what exactly the torsion is and then prove the main result
indicated above.

15.3.3 Let (M, ∇) be a manifold with a linear connection. Check that

(i) the map

T : X(M) × X(M) → X(M) T (U, V ) := ∇U V − ∇V U − [U, V ]

is F(M)-linear in both arguments, so that actually a tensor field of type
(

1
2

)
, which is associated

with the connection ∇, is defined by this rule; it is called the torsion tensor292 (or briefly the
torsion) connection ∇

(ii) the tensor is antisymmetric (in the lower indices)

T (U, V ) = −T (V, U ) i.e. T i
jk = −T i

k j

and so it has n2(n − 1)/2 independent components
(iii) for its (coordinate) components one obtains the expression

〈dxi , T (∂ j , ∂k)〉 ≡ T i
jk = 	i

k j − 	i
jk ≡ −2	i

[ jk] i.e. 	i
jk = 	i

( jk) − 1

2
T i

jk

(iv) if the torsion of the connection vanishes, i.e. if

∇U V − ∇V U = [U, V ]

then the Christoffel symbols are symmetric in the lower indices

	i
jk = 	i

k j

this is the motivation to call it the symmetric connection
(v) the coefficients of a symmetric connection 	a

bc with respect to a non-holonomic basis ea are not
symmetric in the lower indices.293

Hint: (v) (non-vanishing) coefficients of anholonomy (see (9.2.10)) enter the formula. �

• Each linear connection is thus characterized (also) by its torsion and, in particular, the
torsion of the symmetric connection (by definition) vanishes (the connection is then said to
be torsion-free). If the connection is required to be at the same time metric and symmetric,
it imposes altogether n3 constraints on n3 functions 	i

jk . This “rule of thumb” calculation
indicates that the connection with this property might be unique.

15.3.4 Show that there is a unique connection which is simultaneously metric and sym-
metric. In order to do this check step by step that

292 Geometrical meaning of the torsion is studied in (15.8.1).
293 Since the coefficients of a connection do not constitute the components of a tensor, it may happen that they are symmetric

with respect to one basis, but they are not symmetric in another one. It may even happen, just as is true for the anholonomy
coefficients, that they vanish in one basis, but they do not vanish in another one; see, for example, (15.3.5).
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(i) the Christoffel symbols of the first kind294

	i jk := gil	
l
jk

of the connection which is metric and symmetric satisfy

	i jk + 	 j ik = gi j,k since it is metric
	i jk − 	ik j = 0 since it is symmetric

(ii) the two relations result in

gi j,k + gik, j − g jk,i = 2	i jk

and eventually

	i
jk = 1

2
gil (gl j,k + glk, j − g jk,l )

so that the requirement of being metric and symmetric indeed leads to the unique result for the
Christoffel symbols of the connection.295 This distinguished linear connection on a Riemannian
manifold is usually called the Riemann connection or the Levi-Civita connection; we will therefore
use the abbreviation RLC connection296

(iii) the non-coordinate definition of the RLC connection reads

g(∇U V, W ) := 1

2
{Ug(V, W ) + V g(U, W ) − Wg(U, V )

+ g([U, V ], W ) − g([U, W ], V ) − g(U, [V, W ])}
which is to be regarded as a definition of the expression ∇U V in terms of the right-hand side,
where no covariant derivative occurs.

Hint: (i) (15.3.1), (15.2.10) and (15.3.3); (iii) check the F-linearity of the right-hand side
and set the coordinate basis as U, V, W . �

• Since we already created a stockpile of the manifolds endowed with the metric, the
formulas obtained in this problem enable us to examine everything concerning connections
on real examples.

15.3.5 Compute the Christoffel symbols of the RLC connection in En directly from the
formula in (15.3.4) and check that

(i) for arbitrary n we obtain in Cartesian coordinates 	i
jk = 0

(ii) for n = 2 in polar coordinates the only non-vanishing gammas read297

	r
ϕϕ = −r 	ϕ

rϕ = 1/r

(iii) the same result for polar coordinates may be also obtained by transforming the Cartesian Christof-
fel symbols (which are zero according to item (i)) to the polar coordinates by means of (15.2.3)

294 Since 	i
jk (x) do not constitute the components of a tensor, this is not the operation of the lowering of the index; it is indeed a

definition.
295 One may check that the transformational properties of gi j (x) under the change of coordinates yield the proper (15.2.3)

transformational properties of 	i
jk (x).

296 Its role in the analysis of RLC circuits in electronics still remains obscure.
297 Due to the symmetry we do not list 	i

k j explicitly, if 	i
jk is already there.
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(iv) for n = 3 in spherical polar coordinates the only non-vanishing gammas are

	r
ϑϑ = −r 	ϑ

rϑ = 1/r 	ϕ
rϕ = 1/r

	r
ϕϕ = −r sin2 ϑ 	ϑ

ϕϕ = − sin ϑ cos ϑ 	
ϕ

ϑϕ = cot ϑ

and in cylindrical coordinates one gets (just like in polar coordinates in the plane)

	r
ϕϕ = −r 	ϕ

rϕ = 1/r.

�

15.3.6 Check that these expressions for Christoffel symbols in En result in a common
concept of the parallel transport rule of vectors in the Euclidean space En (the vectors are
just shifted with no change either of length or direction).

Hint: according to (15.2.6) and (15.3.5) the equations of parallel transport along any curve
read in Cartesian coordinates V̇ i = 0, whence V i (t) = constant. �

15.3.7 Use the formula obtained in (15.3.4) to compute the Christoffel symbols of the
RLC connection on the sphere S2 with the standard metric; check that in coordinates ϑ, ϕ

the only non-vanishing symbols are

	ϑ
ϕϕ = − sin ϑ cos ϑ 	

ϕ
ϑϕ = cos ϑ

sin ϑ

Hint: see (3.2.4). �

15.3.8 Check that on the sphere S2 with the standard metric the equations of parallel
transport of a vector V read as follows:

(i) along a general curve ϑ(t), ϕ(t)

V̇ ϑ − ϕ̇ sin ϑ cos ϑ V ϕ = 0 V̇ ϕ + cos ϑ

sin ϑ
(ϑ̇V ϕ + ϕ̇V ϑ ) = 0

(ii) along a parallel (of latitude) parametrized as ϑ(t) = ϑ0, ϕ(t) = t

V̇ ϑ − sin ϑ0 cos ϑ0 V ϕ = 0 V̇ ϕ + cos ϑ0

sin ϑ0
V ϑ = 0

and, in particular, along the equator

V̇ ϑ = 0 V̇ ϕ = 0

(iii) along a meridian parametrized as ϑ(t) = t, ϕ(t) = ϕ0

V̇ ϑ = 0 V̇ ϕ + cos t

sin t
V ϕ = 0

Hint: (i) see (15.2.6). �

15.3.9 Let us test the equations from (15.3.8) and check the result, which is well known
from the pictures in popular books trying to illustrate the subtleties of parallel transport in
“curved spaces.” Namely, the parallel transport of a vector around a right spherical triangle.
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So let ABC be a right triangle on the sphere S2 with the
vertices being the north pole (= C) and two points at
the equator, the point B lying a quarter of the equator’s
perimeter eastwards from A. Check that if we transport
(in the sense of the RLC connection on the sphere)
along the route C → A → B → C a vector which is
directed to the point A at the beginning, the transported

vector is rotated by π/2 counterclockwise with respect to the initial one (so that it has the
same length and is directed to the point B) and if we traversed the same route in the opposite
direction (along C → B → A → C), then it is rotated by the same angle clockwise.

Hint: the result itself is clear immediately without any computation from the metric com-
patibility of the RLC connection: the transported vector must not change its length as well
as the angle it makes with the line along which it is transported. Concerning the equations,
the “singularity” in a neighborhood of the point C (the coordinates happen to be defective
there) may be “healed” by a substitution of the edge of the triangle by an infinitesimal
quarter-circle ϑ = ε. The three “long” parts are computed trivially, on this short one the
equations linearize (due to ε � 1) to V̇ ϑ = −εV ϕ , V̇ ϕ = (1/ε)V ϑ and they are easily
solved; altogether one obtains that k∂ϑ �→ k

ε
∂ϕ , which is just what is needed. �

15.3.10 Check that if a vector is transported around the parallel line ϑ(t) = ϑ0 on the
sphere298 S2, it ends up rotated by the angle β‖ = 2π cos ϑ0 with respect to its initial
direction. Around this parallel of the fictitious non-rotating globe an arbitrary object passes
in just one day, which is at rest on the real rotating globe. In particular, this also holds for
a Foucault pendulum that is observed somewhere on the Earth. Check that the angle βFouc

of the rotation of the plane in which it swings coincides with β‖

β‖ = βFouc = 2π cos ϑ0

(and also in detail the angle of the rotation of the Foucault pendulum due to the shift along
the parallel line by a small angle δϕ is δϕ cos ϑ0, coinciding with the angle of the rotation
of a vector due to the parallel transport along the same trajectory). What does this result say
about the Foucault pendulum?

Hint: see (15.3.8); (a vector in the direction of the swinging undergoes parallel299 transport).
�

15.3.11 Let (M, ω, ∇) be an n-dimensional manifold endowed with a volume form and
a linear connection. Given n vectors v, . . . , w at a point, the volume of the parallelepiped
spanned by them is ω(v, . . . , w). A parallel transport of the vectors results in n new vectors
v̂, . . . , ŵ (at a different point) and the corresponding new volume ω(v̂, . . . , ŵ). The two

298 The angle is measured from the z-axis, the standard latitude α is measured from the equator; therefore sin α = cos ϑ0.
299 “The vector of swinging” tries to remain parallel in the “ambient” space E3, but the situation continually forces it to “project”

into the tangent plane to the sphere ≡ the Earth; one can prove that this is exactly the way in which the RLC connection works
with respect to the induced metric.
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structures are said to be compatible if an arbitrary parallel transport preserves the volume
of each such parallelepiped. Show that

(i) the condition of compatibility of the structures may
be expressed in the form

∇ω = 0 and in local coordinates ωi ... j ;k = 0

(ii) if in local coordinates ω = f dx1 ∧ · · · ∧ dxn (i.e.
ωi ... j = f εi ... j ), then the condition from item (i) relates f and 	i

jk by

f,k = f 	i
ik i.e. (ln f ),k = 	i

ik

(iii) the RLC connection is compatible with the metric volume form ωg , i.e. the RLC Christoffel
symbols obey300

(ln
√

|g|),k = 	i
ik

Hint: (i) like in (15.3.1); (ii) write down explicitly ωi ... j ;k = 0 and use (5.6.4); (iii)
according to (5.6.7) we have ∂g/∂gi j = gg ji (g ≡ det g); it is convenient to use the
machinery of connection forms (see Section 15.6) and to write in an orthonormal
basis ∇V ωg = ∇V (e1 ∧ · · · ∧ en) = (∇V e1) ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ (∇V en) = · · · =
−ωa

a (V )(e1 ∧ · · · ∧ en) = 0 due to ωab = −ωba (15.6.6).

• Let us have a look at some practical manipulations with the coordinate expressions
containing covariant derivatives.301

15.3.12 Check that

(i) the “semicolon” operation (just like the “colon” operation, the ordinary partial derivative) is
linear and on a product it behaves according to the Leibniz rule; so, for example,

(
Ai

jk + λBi
jk

)
;l

= Ai
jk;l + λBi

jk;l

(
Ai

j Bk
lm

)
;n

= Ai
j ;n Bk

lm + Ai
j Bk

lm;n

(ii) also the inverse metric tensor gi j is covariantly constant with respect to the metric connection,
i.e.

gi j ;k = 0 ⇒ gi j
;k = 0

(iii) the semicolon operation in the sense of the metric connection (in particular, RLC) commutes
with the raising and lowering of indices; e.g.

(gi j A jl );k = gi j A jl;k

Hint: (i) this is the behavior of ∇i , see (15.2.9); (ii) ∇1̂ = 0 (commuting with contractions),
i.e. δi

j ;k = 0; (iii) both �g and �g are combinations of the tensor product with the (covariantly

300 It is clear intuitively that if parallel transport preserves the scalar products (consequently, also the unit cube) then it also
preserves the volume, since the volume form ωg is just “tuned” to the unit cube (see Section 5.7). The compatibility of the
pairs metric ↔ volume form and metric ↔ connection thus results automatically in the compatibility of the pair volume form
↔ connection.

301 This may be regarded as a continuation of the exercises of the index gymnastics from (2.4.14) and (5.2.6) (see footnote 50),
which is made possible by the addition of a further popular gymnastic apparatus, the semicolon.
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constant) tensors g or g−1 and contractions; e.g. ∇W (�gV ) = ∇W (C(g ⊗ V )) = C((∇W g) ⊗
V ) + C(g ⊗ ∇W V ) = �g(∇W V ). �

• For the computations of the covariant derivatives of forms it is sometimes fairly useful
to realize how the operator ∇V behaves with respect to the Hodge star ∗g . For the metric
connection the simplest possible behavior takes place.

15.3.13 Check that the operator of the covariant derivative ∇V with respect to the metric
connection ∇ commutes with the operator of dualization ∗g

[∇V , ∗g] = 0

Hint: realize that ∗g is composed from the operations of the raising of indices, contractions
and the tensor product with the (covariantly constant, ∇V ωg = 0) volume form: ∇V ∗g α ∼
∇V {C . . . C((�g . . . �gα) ⊗ ωg)} = C . . . C((�g . . . �g∇V α) ⊗ ωg) ∼ ∗g∇V α. �

15.3.14
∗

Consider a connection which is metric, yet not necessarily symmetric. Generalize
the results of problem (15.3.4) for this case. In particular, check that

(i) the Christoffel symbols of the first kind of the connection with a given torsion satisfy

	i jk + 	 j ik = gi j,k since it is metric
	i jk − 	ik j = −Ti jk from the definition of the torsion

(ii) the two relations yield

gi j,k + gik, j − g jk,i = 2	i( jk) + (Tjki + Tkji )

from where

	i( jk) = 1

2
(gi j,k + gik, j − g jk,i ) − 1

2
(Tjki + Tkji )

and eventually

	i
jk = 	i

( jk) − 1

2
T i

jk = 1

2
gil (gl j,k + glk, j − g jk,l ) − 1

2

(
T i

jk + T i
k j + T i

jk

)

The metricity plus the prescribed torsion thus result in a unique expression for the Christoffel
symbols of the sought connection.302 (The torsion being zero, we return to the RLC connection.)

Hint: (i) (15.3.1), (15.2.10) and (15.3.3); (iii) set the coordinate basis for U, V, W . �

15.4 Geodesics

• Now, having been equipped with the machinery of the linear connection, we may return
to the concept which opened the chapter, the concept of acceleration. If we realize what
is actually performed with the velocity field defined on a curve in order to compute the
acceleration, we can immediately conclude that the acceleration at a given point on the

302 Note that the symmetric part of the Christoffel symbols is not given by the expression for the RLC connection alone, but rather
it contains in addition a part composed of (the tensor) −T i

( jk).
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curve is nothing but the absolute derivative of the velocity field γ̇ along the curve, or in
terms of (15.2.4) the covariant derivative of the velocity along the velocity itself303

a = ∇γ̇ γ̇ = ∇vv v := γ̇ = the velocity vector

A case of particular interest arises when the acceleration vanishes. This is good old uniform
straight-line motion. The corresponding curve on (M, ∇) is thus characterized by the equa-
tion ∇γ̇ γ̇ = 0; it is called an (affinely parametrized) geodesic and it represents the most
reasonable realization of the concept of a “straight line” (together with a particular “speed”
of the motion along the line) on a general manifold with a linear connection.

15.4.1 Let γ be an affinely parametrized geodesic on (M, ∇). Show that

(i) in local coordinates we have

∇γ̇ γ̇ = 0 ↔ ẍ i + 	i
jk ẋ j ẋ k = 0 the geodesic equation

so that we get a system of n ordinary quasi-linear second-order differential equations for the
unknown functions xi (t)

(ii) the geodesic feels only the symmetric part of the Christoffel symbols304

(iii) the geodesics in En , when expressed in Cartesian coordinates, are just the curves

xi (t) = xi
0 + vi t vi ≡ ẋ i (0), xi

0 ≡ xi (0)

(iv) in the general case the first two terms of the expansion in t of the coordinate presentation of a
geodesic read

xi (t) = xi
0 + vi t − 1

2
	i

jkv
jvk t2 + · · ·

vi ≡ ẋ i (0), xi
0 ≡ xi (0), 	i

jk ≡ 	i
jk

(
xi

0

)

Hint: (i) see (15.2.5) for V = γ̇ ; (iii) see (15.3.5); (iv) xi (t) = xi (0) + ẋ i (0)t +
1
2 ẍ i (0)t2 + · · · . �

15.4.2 Let (M, ∇) = (S2, ∇RLC). Check that

(i) the acceleration corresponding to the uniform motion along a meridian is zero
(ii) the acceleration corresponding to the uniform motion along a parallel is not zero (even a ∦ v),

except for the longest parallel = the equator (and trivially also for the opposite extreme “parallel,”
staying still at any pole)

(iii) all the meridians are geodesics, the only parallel which happens to be a geodesic is the equator;
in general the only geodesics on the sphere are the great circles (the circles with the maximum
possible radius; trivially also the curve which represents standing still at any point).

Hint: according to the results from (15.3.7) we get: (i) a ∼ ∇ϑ∂ϑ = 0; (ii) a ∼ ∇ϕ∂ϕ =
− sin ϑ cos ϑ ∂ϑ . �

303 So the dot in the expression a = v̇, corresponding to the rate of change of the vector v, implicitly contains its parallel transport;
thus it is actually the covariant derivative.

304 If the torsion of the connection does not vanish, it contributes to the symmetric part (15.3.14). Then if there are two connections,
both of them being metric (with respect to the same g), differing, however, in the torsion, they will generate in general different
families of geodesics – see an example in (15.8.3).
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• Now let us concentrate on the issue of the parametrization. One may also traverse the
path which corresponds to the uniform straight-line motion non-uniformly. Although the
acceleration does not vanish in this case, it is rather specific, being at each point tangent
to the curve, i.e. proportional to the velocity ∇γ̇ γ̇ ∼ γ̇ . From the opposite point of view, a
curve which satisfies the equation ∇γ̇ γ̇ = f (t)γ̇ is also straight if regarded as a path, only
the motion along this path fails to be uniform. Therefore such curves are called geodesics
as well, being, however, not affinely parametrized.

15.4.3 Let γ be an affinely parametrized geodesic and let γ̂ := γ ◦ σ be a reparametrized
curve, γ̂ (t) := γ (σ (t)), σ ′(t) > 0. Check that

(i)

∇ ˙̂γ
˙̂γ = σ ′′ ˙̂γ

(ii) the affine reparametrization σ (t) = at + b (and no other one) does not spoil the affine
parametrization of a geodesic

(iii) by means of a unique affine reparametrization one can “tune” a given geodesic to two given
points P, Q on it (not too far from each other) so as to satisfy P = γ (0) and Q = γ (1); now the
points P, Q are at a parametric distance = 1 from each other and the point P is its “origin”

(iv) if a geodesic γ (t) turns out to be “badly” (non-affinely) parametrized, one can always make a
reparametrization such that the new geodesic γ̄ is already affinely parametrized.

Hint: (i) (2.3.5) ⇒ ∇ ˙̂γ
˙̂γ = σ ′(σ ′′γ̇ + σ ′∇γ̇ γ̇ ); (ii) we need σ ′′ = 0; (iii) we need to map

(t1, t2) �→ (0, 1) by means of t �→ at + b; (iv) if ∇γ̇ γ̇ = f (t)γ̇ , then for γ := γ̄ ◦ s (s =
s(t) ⇒ γ̇ = s ′ ˙̄γ ) we get ∇γ̇ γ̇ = s ′′ ˙̄γ + (s ′)2∇ ˙̄γ ˙̄γ = f s ′ ˙̄γ so that to reach ∇ ˙̄γ ˙̄γ = 0 it is
enough to solve s ′′ = s ′ f (to find s(t) for given f (t)), which is easy. �

• So we see that the parametrization which is optimal from the point of view of the
simplicity of the equations (the affine one) can always be achieved. Therefore we will
automatically understand an affinely parametrized geodesic when speaking about a geodesic
from now on and we will specially point out if this will not be the case.

The procedure of finding geodesics of the RLC connection as we learned up to now is
fairly lengthy and laborious. Fortunately, there is a convenient alternative way, which is
based on the Lagrange equations from analytical mechanics. The steps performed in both
approaches may be summarized as follows:

g �→ 	 �→ ẍ + 	 ẋ ẋ = 0 �→ x(t) straightforward approach

g �→ L �→ E �→ x(t) Lagrangian approach

(see the problem). For a given g, the Lagrangian approach actually turns out to be the easiest
and quickest way for

1. finding the explicit form of the equations for geodesics
2. finding the solutions of the equations
3. finding the explicit expressions for the Christoffel symbols themselves
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(the main source of the power of the new approach concerning item 2 lies in making
use of well-known tricks from the Lagrangian machinery – a relation between the cyclic
coordinates and the conservation laws, see (18.4.2)).

15.4.4 Let (M, g) be a Riemannian manifold, γ a curve on M and ∇ = ∇RLC the RLC
connection corresponding to g. Then the functional

S[γ ] := 1

2

∫

g(γ̇ , γ̇ ) dt ≡
∫

L dt L(x, ẋ) = 1

2
gi j (x)ẋ i ẋ j

may be regarded as an action integral for the free motion γ (t), since the Lagrangian L
contains the kinetic energy alone (L = T ). Check that

(i) the Euler–Lagrange expression Ei corresponding to this Lagrangian is305

Ei (x, ẋ) ≡ ∂L

∂xi
− d

dt

∂L

∂ ẋ i
= −gi j

(
ẍ j + 	

j
kl ẋ

k ẋ l
)

≡ −gi j (∇γ̇ γ̇ ) j

(ii) the Lagrange equations are equivalent to the geodesic equations

Ei (x, ẋ) = 0 ⇔ ∇γ̇ γ̇ = 0

(iii) the explicit form of the Lagrange equations for this Lagrangian enables one to immediately read
off the Christoffel symbols 	i

jk .

Hint: (i) see (15.3.4); (ii) gi j is non-singular; (iii) the antisymmetric part of 	i
jk vanishes

for the RLC connection and the symmetric part may be read off from 	
j
kl ẋ

k ẋ l . �

15.4.5 Let (T 2, g) be the torus in E3 with the induced metric. Check by plugging into
the equations that the following curves happen to be geodesics and draw the corresponding
pictures:

(i) ψ(t) = kt, ϕ(t) = ϕ0

(ii) ψ(t) = ψ0, ϕ(t) = kt for particular values of ψ0 (which ones?).

Hint: see (3.2.2), L = 1
2 [(a + b sin ψ)2ϕ̇2 + b2ψ̇2]. �

• Consider now a more general Lagrangian, also containing the potential energy, L =
T − U . The motion deviates from a “straight line” due to the force corresponding to U .

15.4.6 Let the action integral be

S[γ ] :=
∫

L dt L(x, ẋ) = 1

2
gi j (x)ẋ i ẋ j − U (x) ≡ T (x, ẋ) − U (x)

Check that

(i) the Euler–Lagrange expression, corresponding to this Lagrangian, comes out as

Ei (x, ẋ) ≡ ∂L

∂xi
− d

dt

∂L

∂ ẋ i
= −gi j (∇γ̇ γ̇ ) j − U,i

305 For a coordinate-free derivation see (15.4.16).
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(ii) the Lagrange equations are equivalent to

Ei (x, ẋ) = 0 ⇔ ∇γ̇ γ̇ = −�gdU

so that the motion is no longer along a geodesic in general, but rather it has an acceleration of
−grad U .

Hint: see (15.4.4). �

15.4.7 We know from analytical mechanics that the Lagrange equations (of the second
kind) in general (even if there does not exist any potential energy) read

d

dt

∂T

∂ ẋ i
− ∂T

∂xi
= Qi T = 1

2
gi j (x)ẋ i ẋ j

where Qi is the i th generalized force and T is the kinetic energy of a system.

(i) Check that their coordinate-free version is

a ≡ ∇γ̇ γ̇ = Q

with Q being a force (vector) field Q = Qi∂i , Qi = gi j Q j , so that actually they represent the
“Newton” equation306

“acceleration = force”

on a configuration manifold (M, g, ∇RLC)
(ii) according to textbooks of analytical mechanics the generalized force is computed by the formula

Qi :=
N∑

k=1

Fk · ∂rk

∂xi

where rk(x1, . . . xn) represent the parametrization of the positions of individual point masses in
terms of the generalized coordinates xi and Fk is the force acting on the kth point mass. Check
that if this parametrization is regarded as a map f : M → R

3N , then the expression for Qi is
nothing but a component expression of the pull-back of the force (as a covector field) from R

3N

to the configuration space M (see also (3.2.9)). �

• Our lifelong experience results in a clear feeling that the shortest path connecting two
points is the straight path. This experience stems from the particular spaces E3 or E2. Now
we are in a position, however, to investigate the relation between the straight and the shortest
lines on an arbitrary Riemannian manifold. Since Section 2.6 we can compute the lengths
of curves and now we have learned that the straight lines are the geodesics. So the question
is whether geodesics (regarded as straight lines) happen to also be at the same time the
shortest paths.

Right at the beginning we should realize that the length of a curve does not depend
on the parametrization (2.6.9), so that the shortest path is indeed only a path (without

306 With unit mass; recall that if a system of particles with various masses is under consideration, it is formally described as the
motion of a single particle in a many-dimensional Riemannian (configuration) space, the masses being hidden in the metric
tensor g; see (2.6.7) and (3.2.9).
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parametrization). This means that even if we find that the shortest path turns out to be a
geodesic, the result certainly may not come out as the affinely parametrized geodesic.

15.4.8 The functional of the length of a curve (see (2.6.9) and (4.6.1)) may be regarded
as an action integral with the Lagrangian307

L(x, ẋ) :=
√

gi j (x) ẋ i ẋ j

Check that

(i) the Lagrange equations for this Lagrangian are

ẍ i + 	i
jk ẋ j ẋ k = L̇

L
ẋ i i.e. in a coordinate-free form ∇γ̇ γ̇ = χγ̇

where L̇ is the “total” time derivative308 of the Lagrangian L , 	i
jk correspond to the RLC con-

nection and χ ≡ L̇/L
(ii) the shortest path is a geodesic

(iii) the affine parametrization of this geodesic is achieved in the natural parameter s, being a param-
eter such that its increment coincides with the increment of the actual length of the curve (i.e.
the length of the path between the points γ (s1) and γ (s2) is simply s2 − s1)

(iv) if ψ is a non-zero function, then

∇γ̇ γ̇ = ψ̇

ψ
γ̇ ⇔ ∇γ̇

( γ̇

ψ

)
= 0

so that the equation for the shortest path may also be written in the form

∇γ̇

(
γ̇

L

)

≡ ∇γ̇

(
γ̇

√
gi j (x) ẋ i ẋ j

)

≡ ∇γ̇

(
γ̇

||γ̇ ||
)

= 0

(in the natural parameter we have L ≡ √
gi j (x) ẋ i ẋ j ≡ ||γ̇ || = 1, so that ∇γ̇ γ̇ = 0 then).

Hint: (i) see (15.3.4); (ii) see (15.4.3); (iii) if ∇γ̇ γ̇ = (L̇/L)γ̇ , then the improving procedure
from (15.4.3) yields the equation s ′′ = s ′L ′/L with a solution L = s ′, or ds = L dt ; hence
s2 − s1 = ∫ t2

t1
L dt = the length of the curve. �

• By variation of the functional of the length of the curve we investigate in principle
only its stationary points (local extrema or saddle points). In numerous simple particular
cases it is intuitively clear what the situation looks like “globally.” For example, consider
two points A, B on a sphere, which do not happen to be opposite one another. If we join
them by the shorter part of a great circle, we get the path with minimal length, whereas
the complementary longer part of the great circle turns out to be only a saddle point of the
functional of length, since any warp evidently results in its prolongation and its “rotation”
along the sphere (with a view to deforming it step by step to the shorter part) makes it shorter

307 Note that this (reparametrization invariant) Lagrangian is (up to a factor of 2) a square root of the Lagrangian from problem
(15.4.4), which was not reparametrization invariant and therefore it could yield as extremals the curves with a particular
parametrization; see also (15.4.16).

308 The derivative of the function L(x(t), ẋ(t)) with respect to time, which takes into account the fact that the time enters through
both x(t) and ẋ(t); it may be written in detail as L̇ = ∂L

∂xi ẋ i + ∂L
∂ ẋ i ẍ i , but here it is more convenient to leave it as it is.
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(as our intuition signals and an elementary computation confirms). In general, however, the
issue of the global properties of the critical points of the length functional may be fairly
complicated and they are beyond the scope of this book.

Additional complication refers to certain particular pairs of points (they are called con-
jugate points). If we were to choose, for example, the north and south poles as A, B on
the sphere, there would be an infinite number of (globally) shortest paths (each meridian).
This occurs only for certain exceptional pairs of points, being always “very far” to each
other. It turns out that for each point x ∈ M there is a neighborhood O (called the geodesic
neighborhood), in which there is just one309 shortest path leading to each y ∈ O from x (it
is clearly a geodesic).

In this neighborhood one can introduce extremely useful coordinates, tailored to the linear
connection; they are known as the normal coordinates. For their construction recall that a
geodesic may be uniquely fixed either by a point where it is in some “time” and a tangent
vector at that point (the position and the velocity at a single time) or by the positions at two
instants of time.310

15.4.9 Denote by γv(t) the geodesic starting at time zero from the point P with velocity
v,

γv(0) = P ∈ M γ̇v(0) = v ∈ TP M

Check that a simple relation holds

γv(bt) = γbv(t) b ∈ R

or, put another way, a b-fold increase of the initial velocity results in a b-fold increase of
the velocity along the whole trajectory (the motion takes place along the same path).

Hint: the curve γ̂ (t) := γv(bt) is a geodesic ( ˙̂γ = bγ̇v ⇒ ∇ ˙̂γ
˙̂γ = · · · = 0) which satisfies

γ̂ (0) = P , ˙̂γ (0) = bv ⇒ due to the uniqueness it necessarily coincides with γbv(t); or
alternatively: the operator of the parallel transport (of the velocity vector along the geodesic)
is linear. �

15.4.10 On a manifold with connection (M, ∇)
define the exponential map (centered at P ∈ M)

exp : TP M → M v �→ exp v := γv(1)

where γv(t) is the geodesic from problem (15.4.9).
So one assigns to a vector v the point from M to

which we arrive at t = 1, if at time t = 0 we start from the point P with initial velocity v

and all the while the motion is uniform and straight-line (i.e. along a geodesic). Check that

309 This may be obtained as a result of an analysis of differential equations governing a geodesic. It is a second-order equation
and a contemplation of additional conditions leading to a unique solution yields the conclusion mentioned above.

310 Each of these input data evidently fixes the uniform straight-line motion; from a formal point of view a second-order system
ẍ + 	 ẋ ẋ = 0 needs either x(t0) and ẋ(t0), or x(t0) and x(t1), the second possibility being trouble-free only in the geodesic
neighborhood of the point γ (t0).
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(i)

exp (v = 0) = P

(ii) the coordinate presentation of the exponential map reads

exp : vi �→ xi (v1, . . . , vn) ≡ xi (P) + vi − 1

2
	i

jk(P)v jvk + · · ·

(iii) exp∗0 is a non-degenerate (i.e. its kernel vanishes) linear map, so that exp maps bijectively
(diffeomorphically) some neighborhood of zero in TP M to some neighborhood of the point P

(iv) the uniform straight-line motion in the tangent space is mapped to the uniform straight-line
motion on a manifold (i.e. along a geodesic)

exp (vt) = γv(t)

Hint: (ii) t = 1 in the expression of a geodesic (15.4.1); (iii) the Jacobian matrix at zero is
J i

j (0) = δi
j (for small vi it reduces to a translation vi �→ xi

0 + vi ); (iv) see (15.4.9). �

• The fact that a neighborhood of a point P may be diffeomorphically mapped on a
neighborhood of the zero in a linear space TP M means in practice that we obtain local
coordinates in the neighborhood of the point P . The most important property of the coor-
dinates constructed in this particular way is the vanishing of all Christoffel symbols in the
point P . This fact greatly simplifies numerous computations and proofs (actually all that is
needed in doing so is only to be aware of their existence, there is no need to construct them
explicitly).311

15.4.11 Let exp be the exponential map centered at P ∈ M . If in TP M an (arbitrary) basis
ei is fixed, we may introduce in a neighborhood of the point P Riemann normal coordinates
by the prescription

xi ↔ Q ⇔ Q = exp(v) ≡ exp(xi ei )

So a geodesic is constructed starting (t = 0) in P and passing at t = 1 through the point
Q, which is to be assigned coordinates. The geodesic has the unique initial velocity v and
this velocity in turn has components with respect to ei ; these components are declared (by
definition) as the coordinates xi . Check that in these coordinates

(i) the geodesic γv(t) reads

xi (t) = vi t if v = vi ei

(ii) for any symmetric connection (in particular, also RLC)

	i
jk(P) = 0

(iii) in these coordinates there holds

gi j,k(P) = 0 so that in a neighborhood of P gi j (x) =̇ gi j (P) + 1

2
gi j,kl (P)xk xl

311 Let us mention also that in general relativity these coordinates have a direct physical meaning as the coordinates with respect
to a frame of reference which freely falls in a gravitational field (locally inertial frame), so that the action of the force due to
the gravitational field (locally) vanishes.
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(i.e. a linear term is missing in the expansion) and, in particular, for an orthonormal basis ei the
coordinate expression of the metric tensor in a neighborhood of the point P is

gi j (x) = ηi j + Ki jkl x
k xl + · · · Ki jkl = K(i j)(kl) = constant

Hint: (i) according to (15.4.10) we have exp((vi t)ei ) = γv(t); (ii) the general equation for
a geodesic ẍ i + 	i

jk ẋ j ẋ k = 0 and the fact that here xi (t) = vi t yields 	i
jk(x(t))v jvk = 0

on the whole geodesic x(t); for t = 0 this gives 	i
jk(P)v jvk = 0 for all vi ⇒ 	i

( jk)(P) = 0
(for t �= 0 	i

jk(x(t)) depends on vi via x(t) so that on different vi actually different quadratic
forms vanish, which does not allow one to deduce the vanishing of the forms); (iii) for an
RLC connection it yields item (ii) and (15.3.4):

	i jk + 	 j ik = gi j,k metric connection (holds in arbitrary coordinates)

	i jk − 	ik j = 0 symmetric connection (holds in arbitrary coordinates)

	i jk(P) + 	ik j (P) = 0 holds in normal coordinates centered at P

so that all 	 j ik(P) = 0 and then also gi j,k(P) = 0. �

• As a simple illustration (see also (15.5.8)) of the use of these coordinates let us mention
the following useful technicality, which holds for the coordinate computation of Lie and
exterior derivatives.

15.4.12 Let α be a 1-form and V a vector field. Then in (arbitrary) coordinates we have

(LV α)i = αi, j V
j + V j

,iα j (dα)i j = −2α[i, j]

Check by a direct computation that

(i) if we substitute in these expressions each comma by a semicolon (the partial derivative by the co-
variant) in the sense of an arbitrary symmetric connection (in particular, also RLC), the expression
actually does not change (the new terms pairwise cancel)

(ii) the same rule holds in general when the Lie derivative of an arbitrary tensor field as well as the
exterior derivative of an arbitrary form are computed.

Hint: see (5.2.6), (6.2.5), (4.3.4), (15.2.9) and the symmetry 	i
jk = 	i

k j (15.3.3). �

15.4.13 Check the validity of the general statement from (15.4.12) making use of the
normal coordinates.

Hint: both expressions to be compared (with commas versus semicolons) are (a priori
different) tensor fields,312 the expression with semicolons containing additional terms with
Christoffel symbols; in normal coordinates centered at P ∈ M they coincide at the point P
for any symmetric connection (15.4.11), so that at this point (being arbitrary) and in these
particular coordinates the two tensors are indeed equal; the equality of two tensors does
not, however, depend on the choice of the coordinates. �

312 Consider, for example, αi, j V j + V j
,i α j . This is a tensor field, since it is (LV α)i (although neither of the two terms by itself is

a tensor). After replacing commas by semicolons both terms become tensor fields even by themselves (αi ; j V j = (∇V α)i and

V j
;i α j = (∇V (α))i ) so that also their sum is all right.
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15.4.14 Show that the Killing equations may also be written in terms of covariant deriva-
tives in the sense of RLC connection and then take a form

ξi ; j + ξ j ;i = 0 ξi := gi jξ
j

Hint: see (4.6.6), (15.3.1) and (15.4.13). �

• Recall that we have already encountered the exponential map when speaking about Lie
groups; namely in Section 11.4 we studied the map

exp : TeG ≡ G → G X �→ exp X := γ X (1)

We see that this definition coincides with the definition introduced here (15.4.10), provided
that M = G, P = e (so that it is centered at the unit element of the group), v = X and if the
one-parameter subgroup γ X (t) were a geodesic on the group G in the sense of some linear
connection on G. It turns out that such a connection may indeed be easily constructed so
that the “group” exponential map actually reduces to be a particular case of the “geodesic”
one.

15.4.15
∗

Define on a Lie group the parallel trans-
port of vectors by means of the left translation, i.e.
declare the operator

τh,g := Lhg−1∗ : TgG → ThG g, h ∈ G

to be the operator of parallel transport (it does not
depend on the path between the points). Check that

(i) it is linear and satisfies

τh,k ◦ τk,g = τh,g h, k, g ∈ G

(it may indeed serve as a parallel transport operator)
(ii) the covariant derivative corresponding to this parallel transport is defined by

∇V W = 0

for any left-invariant field W (and arbitrary V )
(iii) the coefficients of the connection 	a

bc with respect to the left-invariant frame field ea vanish
(iv) the tensor of the torsion reads (in the left-invariant basis)

T (ea, eb) = −[ea, eb] ≡ −cc
abec i.e. T a

bc = −ca
bc

so that this (simple) connection has (for non-Abelian groups) non-vanishing torsion
(v) the geodesics emanating from the unit element of the group happen to coincide with one-

parameter subgroups.

Hint: (ii) the covariant derivative measures a deviation from the parallel transport and the
field W , being left-invariant, satisfies τh,gW (g) = W (h), so that it is invariant with respect
to the parallel transport along any curve; (iv) ∇aeb = 0; (v) see (11.3.3). �



15.4 Geodesics 399

• Now, let us have a look at how the equation of the geodesics of the RLC connection
may be derived from the functional (15.4.4) in a coordinate-free way.

15.4.16
∗

Let (M, g) be a Riemannian manifold, γ a curve on M and ∇ the RLC connection
corresponding to g. Perform an infinitesimal variation of the curve γ by means of the flow
of a “deforming” vector field W , i.e. pass to the curve γε(t) ≡ �ε ◦ γ (t), where �s is the
flow generated by the field W (the field W should vanish at the points γ (t1) and γ (t2) since
the endpoints of the curve are to be kept fixed in the course of the variation). Check that

(i) the functional S[γ ] from (15.4.4) responds to the change of argument as follows:

S[γ ] := 1

2

∫

g(γ̇ , γ̇ ) dt �→ S[γε] = S[γ ] + ε

∫

〈E, W 〉 dt + · · ·

where the Euler–Lagrange 1-form E reads

E := −g(· , ∇γ̇ γ̇ ) ≡ −�g∇γ̇ γ̇

so that the critical points of the functional S[γ ] coincide with the (affinely parametrized) geodesics
(∇γ̇ γ̇ = 0)

(ii) if a potential energy is added to the action (15.4.6), i.e. we add the term − ∫
U (γ (t)) dt , the

Euler–Lagrange 1-form undergoes a change to

E = −�g∇γ̇ γ̇ − dU

so that the critical points of the functional S[γ ] turn out to be the solutions of the (actually
“Newton”) equation (see (15.4.7))

∇γ̇ γ̇ = −�gdU ≡ −grad U

⇒ we no longer move along the geodesics, but there is the non-vanishing acceleration −grad U
(iii) for the “square root” action Ŝ[γ ] := ∫ √

g(γ̇ , γ̇ ) dt (the reparametrization invariant functional
of the length) we similarly get313

Ê := −�g∇γ̇

(
γ̇√

g(γ̇ , γ̇ )

)

≡ −�g∇γ̇

(
γ̇

||γ̇ ||
)

so that the critical points of the functional Ŝ[γ ] again turn out to be the geodesics (this time
parametrized arbitrarily, ∇γ̇ (γ̇ /||γ̇ ||) = 0).

Hint: (i) γ �→ �ε ◦ γ ⇒ γ̇ �→ �ε∗γ̇ . Then,

S[�ε ◦ γ ] = 1

2

∫

g(�ε∗γ̇ , �ε∗γ̇ ) dt = 1

2

∫

(�∗
ε g)(γ̇ , γ̇ ) dt

= S[γ ] + ε
1

2

∫

(LW g)(γ̇ , γ̇ ) dt + · · ·

Disentangling LW {g(U, V )} = ∇W {g(U, V )} for the RLC connection gives

(LW g)(U, V ) = g(∇V W, U ) + g(∇U W, V )

313 This reduces to E after the choice of the “natural parameter,” in which g(γ̇ , γ̇ ) = 1.
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(in coordinates it is the identity (LW g)i j = Wi ; j + W j ;i from (15.4.14)), from where

(LW g)(γ̇ , γ̇ ) = 2g(∇γ̇ W, γ̇ ) = 2γ̇ g(W, γ̇ ) − 2g(W, ∇γ̇ γ̇ )

Since γ̇ in the first term is actually the derivative with respect to t of the function standing
on the right, under the integral sign it may be omitted (we get g(W, γ̇ ) evaluated at the
boundary of the interval 〈t1, t2〉, which is zero since there W = 0). One is left with

S[�ε ◦ γ ] = S[γ ] − ε

∫

g(W, ∇γ̇ γ̇ ) dt + · · · ≡ S[γ ] + ε

∫

〈E, W 〉 dt + · · ·

from where we immediately get (W is arbitrary, g is non-degenerate) the equation ∇γ̇ γ̇ =
0. (ii)

∫
(U ◦ γ ) dt �→ ∫

(U ◦ �ε ◦ γ ) dt = ∫
(�∗

εU ◦ γ ) dt = ∫
(U ◦ γ ) dt + ε

∫
(WU ◦

γ ) dt + · · · = ∫
(U ◦ γ ) dt + ε

∫
(〈dU, W 〉 ◦ γ ) dt + · · · ; (iii) δ

√
2u = (2u)−1/2δu and

(15.4.8). �

15.4.17 Consider two highways, both of them starting from Bratislava (or any other town
of your choice) going in a westward direction. The first highway proceeds all the time
straight forward (i.e. it is a geodesic) and the second one is always directed westward (i.e.
it keeps track along a parallel line). Find out the (approximate) distance between the two
highways after 1, 10 and 100 km from the starting point.

Hint: for the geodesic highway there holds a = ∇vv = 0 (where v ≡ γ̇ is the velocity of
the motion and a is its acceleration); for the “parallel line” highway choose v = −eϕ (eϑ , eϕ

being the standard orthonormal frame field on the sphere, i.e. the Earth), so that we run like
mad at constant unit speed ||v|| = 1 westwards; the acceleration is

a = ∇vv = ∇(−eϕ )(−eϕ) = · · · = − 1

R

cos ϑ

sin ϑ
eϑ ≡ −||a||eϑ

The motion with unit speed along the parallel line highway thus has an acceleration directed
to the north (perpendicular to the driving direction) with magnitude ||a||. The same acceler-
ation corresponds to the motion along a bend with radius r = 1/||a|| (recall that for motion
on a circle ||a|| = ||v||2/r holds, here we have ||v|| = 1). The geodesic highway is thus
regarded by the driver as being straight and the one running along parallel in turn as a right-
hand bend of radius r ≡ R tan ϑ .314 One can easily check that if we perform a motion by ε

along the tangent to a circle of radius r , we move off the circle by �l ≡ ε2/2r . In our case
the distance between the highways is thus �l ≡ ε2/2R tan ϑ . Since in Bratislava ϑ ∼ 42◦

(and the radius of the Earth R ∼ 6378 km), we get approximately �l = 10−4 km−1ε2,
so that for ε = 1, 10 and 100 km we get the distances around 10 cm, 10 m and 1 km
respectively. �

314 This fact (and thus the result of the whole problem as well) may be also seen by an elementary consideration: r̂ ≡ R sin ϑ

is the radius of the parallel (its center lying on the Earth’s axis); the motion along this circle has an acceleration v2/r̂ . From
the acceleration, however, the driver feels as the acceleration “due to the bend” only its projection onto the plane of the
road (the remaining part raises the car up), producing a factor of cos ϑ and this may be reformulated as an effective radius
r = r̂/ cos ϑ ≡ R tan ϑ .
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15.5 The curvature tensor

• The parallel transport of a vector (as well as an arbitrary tensor) in general depends on
the (oriented) path along which it is performed. An alternative formulation of the same fact
is that if the tensor is transported along a closed path (a loop), the resulting tensor may differ
from the initial one. We already convinced ourselves that this phenomenon is indeed real
in the case of the transport of a vector around a particular spherical triangle (15.3.9), where
the change consisted in a rotation by π/2. The fact that the resulting vector had the same
length as the initial one (so that the net change consisted only in the rotation) is a particular
feature of the RLC connection (actually its metricity). In general, only the linearity of the
operator of the parallel transport along the closed path is guaranteed.

It turns out that an immensely important piece of information about the local dependence
of the parallel transport on the path is stored in the further tensor field characterizing
the connection, the curvature tensor. In order to motivate its formal definition, let us first
compute what the operator of the parallel transport along a particular infinitesimal loop looks
like, namely the loop we already encountered in Chapter 4, when studying the geometrical
meaning of the commutator of vector fields.

15.5.1 Consider two vector fields U, V . We saw
in problem (4.5.3) how an infinitesimal loop

A
�U

ε→ B
�V

ε→ C
�U

−ε→ D
�V

−ε→ E
�

[U,V ]
−ε2→ A

is generated by the fields composed of four pieces
of parametric length ε and the fifth “closing” piece
of parametric length ε2 (E �→ A). Check that the
operator τA,A ≡ τA �→B �→C �→D �→E �→A of the parallel
transport of an arbitrary tensor along this loop may

be expressed within second-order accuracy in ε as

τA,A = 1̂ − ε2 R(U, V ) + · · ·

where the curvature operator R(U, V ) is the expression

R(U, V ) := ∇U ∇V − ∇V ∇U − ∇[U,V ] ≡ [∇U , ∇V ] − ∇[U,V ]

Hint: according to (15.2.13) the transport from A to B is performed by the operator τB,A =
e−ε∇U = 1̂ − ε∇U + 1

2ε2∇2
U + · · ·; so one should multiply out the product

τA,A = eε2∇[U,V ] eε∇V eε∇U e−ε∇V e−ε∇U = · · ·

up to order ε2 �

• The curvature operator R(U, V ), which we obtained in this way, has some fairly re-
markable properties.
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15.5.2 Show that for the curvature operator R(U, V ) there holds

(i) it is a derivation of the tensor algebra T (M), which commutes with contractions
(ii) it vanishes on degree

(
0
0

)
, i.e. on F(M)

R(U, V ) f = 0 f ∈ F(M)

(iii) it depends F(M)-linearly on both U and V .

Hint: (i) it has the structure [D1, D2] + D3, where D1, D2, D3 are such according to
the definition of ∇W and (4.3.7); or alternatively: (each) operator of parallel trans-
port should have certain properties and the operator treated here has the form τA,A =
1̂ − ε2 R(U, V ), resulting in some properties of R(U, V ); (iii) the properties of the covariant
derivative. �

• The derivations of the tensor algebra which commute with contractions and vanish on
F(M) turn out to have a fairly simple structure – they are completely given by a certain
tensor (field) of type

(
1
1

)
. Let us investigate this useful fact from a slightly more general

perspective.

15.5.3 Show that each derivation D of the tensor algebra T (M) which preserves degree
and commutes with contractions has the form

D = LV + A V ∈ X(M), A ∈ T 1
1 (M)

i.e. it is parametrized by a vector field V and a tensor field A of type
(

1
1

)
.

Solution: on F(M), each derivation is given by a vector field (see Section 2.2) so that

D f = V f ≡ LV f for some V ∈ X(M)

Set D̂ := D − LV . According to (4.3.7) it is a derivation of T (M) commuting with con-
tractions, moreover it is by construction zero on F(M). Then it is enough (see (4.3.1) and
the text after the problem) to specify it on vector fields. There we have W �→ D̂(W ) = a
vector field again (due to preserving of degree) and

D̂( f W ) ≡ D̂( f ⊗ W ) = (D̂ f )W + f D̂(W ) = f D̂(W ) f ∈ F(M)

so that W �→ D̂(W ) is F(M)-linear ⇒ it is a tensor field D̂ = A of type
(

1
1

)
, namely

A(W, α) := 〈α, D̂(W )〉. �

15.5.4 Let us see in more detail how the operator A (regarded as a part of a general
derivation D from (15.5.3) corresponding to a tensor of type

(
1
1

)
) acts on tensors. Check

that



15.5 The curvature tensor 403

(i) the action of the operator A on a type-
(

1
1

)
tensor B, on a volume form ω and on a general315 tensor

T of type
(

p
q

)
looks in components as follows:

Ba
b �→ Bc

b Aa
c − Ba

c Ac
b ≡ [A, B]a

b

ω �→ (−Tr A) ω

T a...b
c...d �→ T e...b

c...d Aa
e + · · · − T a...b

c...e Ae
d

(ii) in particular, for the covariant derivative D = ∇V we have A = ∇V so that

∇V = LV + (∇V )

Hint: (i) if Aea = Ab
aeb, then Aea = −Aa

beb (since 0 = A〈ea, eb〉 = A(C(ea ⊗ eb)〉 = · · ·);
then

A
(
Bb

a ea ⊗ eb
) = (

ABb
a

)
ea ⊗ eb + Bb

a (Aea) ⊗ eb + Bb
a ea ⊗ (Aeb) = · · ·

A( f e1 ∧ · · · ∧ en) = (A f )e1 ∧ · · · ∧ en + f (Ae1) ∧ · · · ∧ en + · · · + f e1 ∧ · · · ∧ (Aen)

= f
( − A1

1e1) ∧ · · · ∧ en + · · · + f e1 ∧ · · · ∧ ( − An
nen

)

= ( − Aa
a

)
f e1 ∧ · · · ∧ en ≡ (−Tr A) ω

�

• The operator R(U, V ) thus has the form (15.5.3) with the missing partLW , so that all the
information about the operator is stored in its action (as a tensor field of type

(
1
1

)
) on vector

fields, i.e. in the expression R(U, V )W (a vector field) or, alternatively, in the expression
〈α, R(U, V )W 〉 (a function).

15.5.5 Check that

(i) the expression

R(W, U, V ; α) := 〈α, R(U, V )W 〉 ≡ 〈α, ([∇U , ∇V ] − ∇[U,V ])W 〉
is F(M)-linear in all four arguments U, V, W ∈ X(M), α ∈ �1(M) so that a tensor field of type
(

1
3

)
is defined by this formula; this important tensor field is called the curvature tensor, or also

the Riemann tensor; in components

Ra
bcd = 〈ea, R(ec, ed )eb〉 = 〈ea, (∇c∇d − ∇d∇c − ∇[ec ,ed ])eb〉

(ii) from the definition we have

R(U, V )W = (
Ra

bcdU cV d W b
)

ea

so that the value of the expression at the point P ∈ M depends only on the values of the quantities
at the point P (in spite of the fact that there are derivatives in the detailed expression of R(U, V )W
and therefore one could expect that the values of the objects in some infinitesimal neighborhood
of the point might be necessary)

315 The first two objects are clearly particular cases of the general one, but on B one sees most easily how it works and ω illustrates
specificity of forms (it comes in handy in (15.6.18)).
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(iii) the curvature tensor is antisymmetric in the last pair of indices

Ra
bcd = −Ra

bdc

(iv) in the coordinate basis it may be expressed in terms of the Christoffel symbols by the formula

Ri
jkl = 	i

jl,k − 	i
jk,l + 	m

jl	
i
mk − 	m

jk	
i
ml

Hint: (i) see (15.5.2); (iv) Ri
jkl = 〈ei , R(ek, el)e j 〉 = 〈dxi , (∇k∇l − ∇l∇k)∂ j 〉 = · · · . �

• If we take the coordinate basis vectors ∂i , ∂ j as the fields U, V in (15.5.1), the loop con-
tains only four steps of parametric length ε along the coordinate curves (the commutator term
is not needed for its closure) and it lies completely on the i j th coordinate two-dimensional
surface (the remaining coordinates being constant there).

15.5.6 Check that

(i) for U = ∂i , V = ∂ j the curvature operator reduces to the commutator of the covariant derivatives
in the i th and j th coordinate directions

R(∂i , ∂ j ) = ∇i∇ j − ∇ j∇i ≡ [∇i , ∇ j ]

so that the components of the Riemann tensor enter the result of the computation of the commutator
of the “coordinate” covariant derivatives on the coordinate basis as follows:

[∇i , ∇ j ]∂k = Rl
ki j∂l [∇i , ∇ j ] dxk = −Rk

li j dxl

(ii) for an arbitrary tensor field there holds

Ak...l
r ...s;i ; j − Ak...l

r ...s; j ;i = Am...l
r ...s Rk

mji + · · · + Ak...m
r ...s Rl

mji − Ak...l
m...s Rm

r ji − · · · − Ak...l
r ...m Rm

sji

Hint: (i) see (15.5.5) and 0 = R(U, V )〈α, W 〉 = 〈R(U, V )α, W 〉 + 〈α, R(U, V )W 〉; (ii)

Ak...l
r ...s;i ; j − Ak...l

r ...s; j ;i = {[∇ j , ∇i ]A}k...l
r ...s = {R(∂ j , ∂i )A}k...l

r ...s

R(∂ j , ∂i )A = R(∂ j , ∂i )
{

Ak...l
r ...sdxr ⊗ · · · ⊗ ∂l

} = · · ·
�

• The curvature tensor admits (as a
(

1
3

)
-type tensor) three contractions

Rc
cab Rc

acb Rc
abc

all the resulting tensors being of type
(

0
2

)
. It follows from the antisymmetry in the last pair

of indices that the second contraction differs from the third one only in a sign and it turns
out that the first one vanishes for the RLC connection, so that it is usually ignored. In the
case of a Riemannian manifold a further contraction is possible (a tool for raising the index
on the tensor of type

(
0
2

)
is available) and one can define a further tensor field (being already

of type
(

0
0

)
, a function). The definitions read

Rab := Rc
acb Ricci tensor

R := Ra
a ≡ gab Rba ≡ Rab

ab scalar curvature
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Clearly these tensors carry less information in general then the whole Riemann tensor; this
may not be true, however, for manifolds with very low dimensions (for example, we will
see in (15.6.11) and (15.6.12) that on two-dimensional manifolds the whole Riemann tensor
of the RLC connection may be reconstructed from the scalar curvature). A highly effective
way of computing the curvature tensor consists in using the machinery of differential forms
to be discussed in the next section. We will also mention some of its further properties there.

15.5.7 Consider two Riemannian manifolds. Show that if the scalar curvature of the first
manifold vanishes and this is not the case for the second one then the two manifolds cannot
be isometric to each other. Infer from this that the sphere S2 is not (locally) isometric to
the Euclidean plane (we have already proved the same result before, referring to different
Killing algebras, see (4.6.13)).

Hint: let f : (M, g) → (N , h) be an isometry; if ya are the coordinates on N and h =
hab dya ⊗ dyb, then in coordinates xa := f ∗ya on M we get g ≡ f ∗h = hab(x) dxa ⊗ dxb

(with the same functions hab); then according to (15.3.4) also 	a
bc, . . . , R, will be the same,

i.e. the scalar curvature on M arises by the substitution y �→ x ≡ f ∗y in the expression of
the scalar curvature on N (being a pull-back, RM = f ∗ RN ). �

15.5.8 In a neighborhood of a point P consider Riemann normal coordinates centered at
P , corresponding to an orthonormal basis ei in P (15.4.11). Check that

(i) the components of the Riemann tensor of the RLC connection in the point P in these coordinates
read

Rns
i jkl = −(gi[k,l] j − g j[k,l]i ) at the point P

(ii) the tensor has the symmetries (being already valid in arbitrary coordinates)

Ri jkl = −R jikl = −Ri jlk

Hint: (i) according to (15.5.5) and (15.4.11) we have Ri
jkl(P) = 	i

jl,k(P) − 	i
jk,l(P); using

(15.3.4) 2	i
jl,k(P) = · · · = ηir (gr j,lk + grl, jk − g jl,rk)(P), so that

Ri
jkl(P) = 	i

jl,k(P) − 	i
jk,l(P) ≡ 2	i

j[l,k](P) = −ηir (gr [k,l] j − g j[k,l]r )(P)

(ii) they are explicit in these particular coordinates; the symmetries, however, do not depend
on the choice of coordinates. �

• We close the section with a few words about an important concept, which is based on
the path dependence of the parallel transport.

On a manifold (M, ∇) with a connection consider a point x and a loop c, which starts and
ends at the point x . If we take a vector in x and perform the parallel transport along the loop,
in general we arrive (according to the result of (15.5.1)) at a different vector. However, since
the operator of parallel transport is always a linear isomorphism, the transported vector
may be obtained from the initial one by the action of a certain linear invertible operator
Tx M → Tx M , i.e. an element of the group G ≡ GL(Tx M) ∼= GL(n, R).
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Contemplate now all the possible loops emanating from the same point x . To each of
them a group element may be assigned, so eventually we get a map “loop �→ element of the
group.” This group element is said to be the holonomy (corresponding to the pair (x, c)) and
the group itself in which the group elements lie the holonomy group. For a linear connection
this is not necessarily the whole group GL(n, R), but rather it may be only a subgroup. This
happens when the parallel transport “preserves something”; the preserving of something is
thus reflected in a restriction of the resulting group (the automorphism group of a stronger
structure is smaller, see the concrete results in Section 10.1). For example, the connection,
which is metric, assigns to each loop some rotation,316 so that here the holonomy group is
at best the rotation group; in reality it may be even smaller sometimes, as the example of
the “ordinary” connection in E3 shows, where the parallel transport does not depend on the
path and each loop gives the identity map (the holonomy group being trivial, containing a
single element).317

15.6 Connection forms and Cartan structure equations

• The formalism of differential forms is also very efficient in the theory of linear connec-
tions. Let us have a look, first, at how information about the connection may be encoded
into appropriate 1-forms.

15.6.1 Let ea be a frame field on O ⊂ (M, ∇). Check that

(i) the relations

∇V ea = ωb
a(V )eb ωb

a ∈ �1(O)

define a set of 1-forms ωb
a on O; they are known as connection forms with respect to ea

(ii) these forms are related to the coefficients of the connection via

ωa
b = 	a

bcec

and, in particular, for the coordinate frame ei = ∂i they can be written in terms of Christoffel
symbols of the second kind as

ωi
j = 	i

jk dxk

(iii) a different choice of frame field ea �→ Ab
a(x)eb, where Ab

a(x) ∈ GL(n, R), results in a transfor-
mation of connection forms according to the rule

ω′a
b = (A−1)

a
cω

c
d Ad

b + (A−1)
a
c d Ac

b

(iv) this general rule contains (as a special case) the correct transformation law for Christoffel symbols
(v) for a coframe field one has

∇V ea = −ωa
b (V )eb

316 We learned in problems (15.3.9) and (15.3.10) that to the loop = the spherical right triangle, the group element = the rotation
by π/2 is assigned and similarly to the loop = the parallel line, the group element = the rotation by the Foucault angle βFouc
is assigned.

317 The structure behind this is complete parallelism (see Section 15.8).
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Hint: (i) according to the axioms of the covariant derivative, ∇V ea is a vector (field)
which depends in an F(M)-linear way on V ; (ii) see (15.2.1); (iv) see (15.2.3); (v)
0 = ∇V 〈ea, eb〉 = · · · . �

15.6.2 It is convenient to interpret the 1-forms ωa
b as well as the functions (0-forms) Aa

b

as component forms of matrix algebra-valued forms ω and A (in the sense of Section 6.4);
if Eb

a is the usual Weyl basis in the matrix algebra Mn(R), then

ω = ωa
b Eb

a ∈ �1(O, Mn(R)) A = Aa
b Eb

a ∈ �0(O, Mn(R))

Show that

(i) the results of (15.6.1) may be written as

e′ = eA ⇒ ω′ = A−1ωA + A−1 d A

where the operations of multiplication and exterior derivative of forms are to be understood in
the sense of (6.4.2) and (6.4.4)

(ii) this result is consistent on a triple overlap,

e �→ e′ = eA �→ e′′ = e′ B

≡ e(AB)

⇒
ω �→ ω′ = A−1ωA + A−1 d A �→ ω′′ = B−1ω′ B + B−1 d B

= (AB)−1ω(AB) + (AB)−1d(AB)

which says (cf. the end of Section 2.5) that a global structure on a manifold (linear connection
∇) is actually defined by means of local quantities (the forms ω on domains O, where the frame
fields ea dwell). �

• If one also encodes tensors related to the connection, namely the curvature and torsion
tensor, into suitable forms, their definitions result, after translation into the language of
forms, in Cartan structure equations.

15.6.3 On a domain O with a frame field ea , let us define torsion forms T a and curvature
forms �a

b (both of them being 2-forms) with respect to this frame by

T a(U, V ) := 〈ea, T (U, V )〉 ≡ 〈ea, ∇U V − ∇V U − [U, V ]〉 or T a = 1

2
T a

bceb ∧ ec

�a
b(U, V ) := 〈ea, R(U, V )eb〉 ≡ 〈ea, ([∇U , ∇V ] − ∇[U,V ])eb〉 or �a

b = 1

2
Ra

bcdec ∧ ed

where T a
bc and Ra

bcd are the components of the tensors of torsion and curvature with respect
to ea . Check that

(i) they are indeed 2-forms
(ii) under the transformation ea �→ e′

a = Ab
a(x)eb of the frame field the forms transform as follows:

�a
b �→ �′a

b = (A−1)
a
c�

c
d Ad

b T a �→ T ′a = (A−1)
a
b T b
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(iii) the encoding described above is bijective.

Hint: (ii) ea �→ Ab
aeb, ea �→ (A−1)a

beb; R(U, V ) acts as a derivation which vanishes on
functions so that we have R(U, V )(Ac

bec) = Ac
b R(U, V )ec. �

15.6.4 One may also interpret the 2-forms �a
b as component forms of a single Mn(R)-

valued 2-form � and similarly T a as component forms of a single R
n-valued 2-form T .318

Check that the transformation rules for � and T under the change e �→ eA(x) of a frame
field then read

� �→ �′ = A−1�A T �→ T ′ = A−1T

Hint: see (15.6.3). �

• Let us now have a look at the geometrical meaning of the connection and curvature
forms introduced above. It should not be too surprising to hear that ωa

b carries information
about parallel transport of a frame field ea in an arbitrary direction and �a

b informs us about
the result of such transport along an infinitesimal loop. A more detailed discussion of these
topics is in order, however, since it may help the reader to develop some intuition for the
work with both forms and, moreover, it paves the way for the theory of general connections
and gauge fields, to be developed in Chapter 21.

15.6.5 Let ωa
b be connection 1-forms on (O, ea) and �a

b the corresponding curvature
2-forms. Verify that a parallel transport of the frame ea by ε along V and around the
pentagon-shaped ε-loop spanned by the vectors V, W (see (15.5.1)), respectively, results in

translation along V ea �→ ea − εωb
a(V )eb

translation around a loop based on V, W ea �→ ea − ε2�b
a(V, W )eb

or in an index-free version

e �→ (1̂ − εω(V ))e e �→ (1̂ − ε2�(V, W ))e

Hint: according to the definition of the covariant derivative

∇V ea = e‖
a − ea

ε
so that e‖

a = ea + ε∇V ea ≡ (
δb

a + εωb
a(V )

)
eb

where e‖
a is the vector ea parallel transported against the direction of V by a parameter

ε; then the translation along V (against the vector −V ) gives an additional minus sign.
Curvature: the role of the curvature operator R(U, V ) within the context of translation
along a loop (15.5.1). �

• The situation can be described as follows: if on a domain O one has a frame field e,
one has also, in particular, the frames e(x) and e(x + εV ) at the points x and “x + εV ”319

318
R

n serves as an Mn (R)-module here: columns = elements of R
n can be multiplied by matrices = elements of Mn (R) (the

result being again a column, cf. Appendix A.4). According to Section 6.4 we can then introduce the exterior product of two
Mn (R)-valued forms as well as the product of an Mn (R)-valued form with an R

n -valued one.
319 “x + εV ” denotes in a compact way the point at which we arrive when moving by a parameter ε from the point x along any

curve of the equivalence class defining V .
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(the values of the field e at the two points). The result of a parallel transport of a frame e(x)
by ε along the vector V is some particular frame at the point x + εV ; each frame there can
be, however, obtained by an appropriate “mixing” of the elements of the frame e(x + εV ).
We see from the result of (15.6.5) that, as a matter of fact, mixing by the matrix 1̂ − εω(V )
takes place. This matrix is non-singular and infinitesimally close to the identity matrix.
Thus, we see that it is natural to treat the matrix X := ω(V ) as an element of the Lie algebra
gl(n, R) and the frame is then mixed by the element of the Lie group GL(n, R) of the form
1̂ + εX ≡ eεX . This point of view reveals with no computation at all, as an example, that for
the metric connection the matrix of the connection 1-forms with respect to an orthonormal
frame field has to be (pseudo-)antisymmetric. In order for the parallel transport not to
spoil orthonormality of a frame, the group element has to belong to a (pseudo-)orthogonal
subgroup and, consequently, the element of the Lie algebra X ≡ ω(V ) has to belong to
a (pseudo-)orthogonal subalgebra which is, according to (11.7.6), just the algebra of all
(pseudo-)antisymmetric matrices. This should be valid for all V , hence the matrix ω itself
must be (pseudo-)antisymmetric. The same reasoning is valid for the curvature forms as
well; since the matrix Y ≡ �(V, W ) has to be (pseudo-)antisymmetric for all V, W , the
matrix 2-form � must be (pseudo-)antisymmetric, too.

15.6.6 Verify these statements by formal computation; namely check that

(i) for the matrices of connection 1-forms and curvature 2-forms of a metric connection with respect
to a general (that means, including coordinate) frame field there holds

dgi j = ωi j + ω j i ωi j := gikω
k
j

0 = �i j + � j i �i j := gik�
k
j

(ii) this results in (anti)symmetry of the Riemann tensor

Ri jkl = −R jikl Ri jkl := gim Rm
jkl

(iii) for an orthonormal frame field the matrices of these forms are (pseudo-)antisymmetric:

ωab + ωba = 0 ωab := ηacω
c
b

�ab + �ba = 0 �ab := ηac�
c
b

In matrix notation thus (ηω)T = −ηω, which means, according to (11.7.6), that ω ∈ so(r, s).

Hint: (i) for a general frame field and arbitrary connection there holds

V gi j = ∇V (g(ei , e j )) = (∇V g)(ei , e j ) + g(∇V ei , e j ) + g(ei , ∇V e j )

so that for the metric connection V gi j = g(∇V ei , e j ) + g(ei , ∇V e j ), which gives just dgi j =
ωi j + ω j i ; for the curvature forms, replace ∇V �→ R(V, W ) and use the fact that for the
metric connection R(V, W )g = 0; (ii) use the relation between �i

j and Ri
jkl (15.6.3). �

• The forms ω, � and T are not independent. Full information about a connection for a
given (co)frame field e is encoded in ω. Since the connection determines the torsion and
curvature tensors, it determines the forms � and T as well. Consequently, there should exist
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equations relating these forms. This is the way in which the Cartan structure equations are
obtained.

15.6.7 Let ωa
b be connection 1-forms on (O, ea), �a

b and T a the corresponding curvature
and torsion 2-forms. Check the validity of the Cartan structure equations

dea + ωa
b ∧ eb = T a

dωa
b + ωa

c ∧ ωc
b = �a

b

or in index-free version (i.e. if one regards e, ω, �, T as the forms with values in the algebra
Mn(R) or the Mn(R)-module R

n respectively)

de + ω ∧ e = T

dω + ω ∧ ω = �

Hint: a straightforward computation using general arguments, definitions of objects and
Cartan formulas (6.2.13) for the exterior derivative, e.g.

dea(U, V ) = U 〈ea, V 〉 − V 〈ea, U 〉 − 〈ea, [U, V ]〉
= 〈∇U ea, V 〉 + 〈ea, ∇U V 〉 − 〈∇V ea, U 〉 − 〈ea, ∇V U 〉 − 〈ea, [U, V ]〉
= . . . (15.6.1)

= 〈ea, T (U, V )〉 − (
ωa

b ∧ eb
)
(U, V )

= (
T a − ωa

b ∧ eb
)
(U, V )

The second relation in full analogy: start with dωa
b (U, V ) = · · · . �

• As we know, an important role among linear connections is played by the RLC con-
nection (see Section 15.3). Let us have a look at the modifications of the Cartan structure
equations in this particular case.

15.6.8 Let ωa
b be RLC connection 1-forms with respect to an orthonormal frame field

ea , �a
b and T a the corresponding curvature and torsion 2-forms. Check that the structure

equations in this case read

ωab + ωba = 0 ωab := ηacω
c
b

dea + ωa
b ∧ eb = 0

dωa
b + ωa

c ∧ ωc
b = �a

b

or in index-free notation

(ηω)T + ηω = 0

de + ω ∧ e = 0

dω + ω ∧ ω = �

Hint: see (15.6.7). Also consider vanishing of the torsion and ω being a (pseudo-)
antisymmetric matrix due to the metricity of the connection (15.6.6). �
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• For a given metric tensor g, the application of these equations consists of the following
three-step procedure:

1. one finds an orthonormal coframe field ea (so that g = ηabea ⊗ eb)
2. the first two equations from (15.6.8) are written down and solved, i.e. one looks for a set of 1-forms

ωa
b such that they satisfy the second equation and at the same time the matrix ωab ≡ ηacω

c
b is

antisymmetric (due to this condition there exist only n(n − 1)/2 unknown 1-forms instead of n2)
3. if we already do have connection 1-forms ωa

b , we plug them into the third equation and find
curvature 2-forms �a

b and maybe, depending on what we actually need, also the components of
the curvature tensor, Ricci tensor and scalar curvature from the relations

�a
b = 1

2
Ra

bcd ec ∧ ed Rab = Rc
acb R = Ra

a ≡ ηab Rab

Recall (15.3.4) that the computation of Christoffel symbols (and components of all re-
maining objects then) for the RLC connection is not a creative procedure, one has simply
to plug gi j into the corresponding formulas (and to make no mistake in the course of the
computation of all the necessary partial derivatives, the number of which increases rapidly
with the dimension of this manifold). That is why the solution of Cartan structure equations
should not be a creative procedure either. Step 1 amounts to the diagonalization of the matrix
of the metric tensor; in real life situations, however, one often obtains the required frame
field without the formal procedure of diagonalization. For step 2, there should exist some
formulas expressing ωa

b in terms of the (already known) 1-forms ea .

15.6.9 Let ea be an orthonormal frame field, ca
bc its coefficients of anholonomy and let ωa

b

be the RLC connection 1-forms. Check that

(i) the following relations are valid (it is useful to compare them with their coordinate counterparts
displayed in (15.3.4)):

ωab(ec) + ωba(ec) ≡ 	abc + 	bac = 0 metric connection

ωab(ec) − ωac(eb) ≡ 	abc − 	acb = −cabc symmetric connection

(ii) the RLC connection 1-forms may be expressed explicitly as

ωa
b = ηacωcb = ηac	cbd ed ≡ 1

2
ηac(cdcb + cbcd − ccbd )ed

Hint: (i) see (9.2.10), 0 = T (ea, eb) = ∇aeb − ∇bea − [ea, eb]. �

• One often obtains, however, the solution by plugging an appropriate ansatz into the
structure equations and solving the rest by “trial and error.” This is illustrated most easily
on two-dimensional manifolds.

15.6.10 From (15.6.6) it follows that if we are given an orthonormal frame field on a
two-dimensional manifold (a surface) (M, g), there is only a single independent connection
1-form; we will denote it by α ≡ ω12 = −ω21. By the same reasoning, there is only a single
independent curvature form; let us denote it by β ≡ �12 = −�21. This form (as is the case
for any 2-form) is necessarily a scalar multiple of the metric volume form e1 ∧ e2; then we
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can write

ωab = εabα �ab = εabβ ≡ εab K e1 ∧ e2

The function K (x) is called the Gaussian curvature of the surface. Show that

(i) the symmetries of the Riemann tensor lead to the conclusion that the complete Riemann (curvature)
tensor may be reconstructed from the scalar curvature R alone (and the same then clearly holds
for the Ricci tensor), the latter being simply twice the Gaussian curvature; in the case of signature
(+, +) (the other ones need minor modifications here and there) we may namely write

Rabcd = K (x)εabεcd Rab = K (x)δab K = R/2

(ii) the structure equations for the RLC connection (15.6.8) reduce to the simple system

de1 + α ∧ e2 = 0

de2 − α ∧ e1 = 0

dα = β ≡ K e1 ∧ e2

The computation of all relevant quantities thus consists in the solution of the first two (very
simple) equations for the unknown 1-form α. Differentiation of α then results in β, the latter
being necessarily of the form K e1 ∧ e2; eventually K doubled gives R.

Hint: (i) Rabcd = −Rbacd = −Rabdc; (ii) ω1
a ∧ ωa

2 = 0 ∧ 0 + α ∧ (−α) = 0. �

15.6.11 Solve the system (15.6.10) for (S2
ρ, g) = the two-dimensional sphere of radius ρ

endowed with the standard “round” metric (3.2.4). Compute the Gaussian curvature (show
that it is constant ·K (x) = 1/ρ2), Ricci tensor and the scalar curvature and check that

Rabcd = 1

ρ2
εabεcd Rab = 1

ρ2
δab R(x) = 2

ρ2
≡ 2K (x)

so that the scalar curvature is constant, inversely proportional to the square of the radius of
the sphere (which matches the intuitive notion of the curvature of the sphere: it is everywhere
the same and the bigger the sphere the less it is “curved”).

Solution: for e1 = ρ dϑ, e2 = ρ sin ϑ dϕ we have the equations α ∧ e2 = 0, ρ cos ϑ dϑ ∧
dϕ − α ∧ e1 = 0 from which one easily gets α = − cos ϑ dϕ, so that β = sin ϑdϑ ∧ dϕ ≡
ρ−2e1 ∧ e2. �

15.6.12 Solve the system (15.6.10) for (T 2, g) = the two-dimensional torus with the
metric induced from the embedding into E3 (3.2.2). Compute its Gaussian curvature, Ricci
tensor and the scalar curvature and check that

Rabcd = sin ψ

b(a + b sin ψ)
εabεcd Rab = sin ψ

b(a + b sin ψ)
δab

R(x) = 2 sin ψ

b(a + b sin ψ)
≡ 2K (x)
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so that the scalar curvature is no longer constant, rather it depends on the coordinate ψ (in
particular, it vanishes on the two circles, where the torus touches the slices of bread when
eaten for lunch, it is positive on the part seen by the consumer from outside and negative
on the part which is not visible).

Hint: following the lines of (15.6.11) for e1 = (a + b sin ψ) dϕ, e2 = b dψ one quickly
gets α = cos ψ dϕ and β = − sin ψ dψ ∧ dϕ ≡ (R/2)e1 ∧ e2. �

15.6.13 We mention without proof a quick method of obtaining the scalar curvature of
two-dimensional surfaces (like a sphere or a torus). At any given point, imagine two mutually
perpendicular circles of appropriate radii such that they match optimally the surface in the
neighborhood of the point. Let their radii be r1, r2. Then let the Gaussian curvature be the
product of the inverse values of the radii, K = (r1r2)−1. If the circles lie on the opposite
sides of the tangent plane at the given point (so that there is a “saddle” in the neighborhood
of this point), the curvature is negative. Verify that this algorithm is consistent with the
results we obtained for the sphere and the torus.

Hint: the sphere: the radii of the circles coincide, being r1 = r2 = ρ; the torus: on the outer
perimeter (say) there holds r1 = a + b, r2 = b, on the inner perimeter r1 = a − b, r2 = b
(and with a saddle point there) and on the upper as well as the bottom circle one has
r1 = ∞, r2 = b. �

• Important examples320 of working with the Cartan structure equations on higher than
two-dimensional manifolds are provided by ordinary three-dimensional Euclidean space
E3 and four-dimensional Minkowski space E1,3, when non-Cartesian frame fields are used;
in particular, for orthonormal frame fields generated by the cylindrical and spherical polar
coordinates.

15.6.14 Consider the three-dimensional Euclidean space E3 endowed with the cylindrical
and spherical polar orthonormal (co)frame fields (2.6.4),

e1 = dr e2 = r dϕ e3 = dz cylindrical
e1 = dr e2 = r dϑ e3 = r sin ϑ dϕ spherical polar

Check that the Cartan structure equations for the RLC connection lead in these two cases

(i) to the following connection forms:321

rω12 = −e2 ω13 = 0 ω23 = 0 cylindrical
rω12 = −e2 rω13 = −e3 rω23 = −(cot ϑ) e3 spherical polar

and that these forms are consistent with the Christoffel symbols obtained in (15.3.5)
(ii) to vanishing curvature forms (as should be the case in Euclidean space).

320 Moreover, their results will turn out to be useful later.
321 The forms, obtained trivially from the antisymmetry ωab = −ωba are omitted. Recall that gab = δab so that ωab = ωa

b .
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Hint: (i) for example, for the spherical polar case one obtains in notation σ a
b ≡ rωa

b the
equations

σ 1
2 ∧ e2 + σ 1

3 ∧ e3 = 0

σ 1
2 ∧ e1 − σ 2

3 ∧ e3 = e1 ∧ e2

σ 1
3 ∧ e1 + σ 2

3 ∧ e2 = e1 ∧ e3 + (cot ϑ) e2 ∧ e3

Since we know that the solution is unique, we try to find the simplest possible forms
satisfying all the equations: e.g. the second equation suggests that (maybe) σ 2

3 ∼ e3 (e3 is
missing on the right-hand side) and σ 1

2 = −e2 (there might be a term ∼ e1 there, but we try
the simplest ansatz first322); the result ω1

2 = −dϑ gives ∇e2 e2 = ω1
2(e2)e1 = −(1/r )∂r , at

the same time it should be (1/r2)	i
ϑϑ∂i , from where we get 	r

ϑϑ = −r and (the remaining)
	i

ϑϑ = 0, which is in agreement with (15.3.5). �

15.6.15 Consider the four-dimensional Minkowski space E1,3 endowed with the orthonor-
mal (co)frame fields of the form ea ≡ (e0, e j ), where e0 = dt and e j , j = 1, 2, 3, are the
cylindrical and spherical polar frames treated in (15.6.14). Check that the Cartan structure
equations for the RLC connection lead in these two cases to

(i) the common result

ω0
j = 0 ωi

j = as in E3

i.e.

ω0 j = 0 ωi j = − as in E3

(ii) vanishing curvature forms (as should be the case in Minkowski space).

Hint: (i) in detail the equations take the form

de0 + ω0
j ∧ e j = 0

de j + ω
j
0 ∧ e0 + ω

j
k ∧ ek = 0

with the evident solution (recall that it is unique)

ω0
j = 0 ω

j
k = the solutions of the system de j + ω

j
k ∧ ek = 0

This system coincides, however, with the system met in the case of E3. Since now gab = ηab,
we have ω0 j = η00ω

0
j = ω0

j and (no summation) ωi j = ηi iω
i
j = −ωi

j . �

• Let us now return to general manifolds with the connection (M, ∇). The curvature and
torsion tensors enter important identities (Bianchi and Ricci), which are most easily derived,
and even formulated, in the language of forms.

322 Recall the “Ockham’s razor” (law of parsimony) principle, which advises us: “Pluralitas non est ponenda sine necessitate,”
i.e. plurality should not be posited without necessity. Fortunately, there is no “necessity” for “positing plurality,” here.
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15.6.16 Let ωa
b be connection 1-forms on (O, ea), �a

b and T a the corresponding curvature
and torsion 2-forms. Check that

(i) the following identities hold323

d� + ω ∧ � − � ∧ ω = 0 Bianchi identity
dT + ω ∧ T = � ∧ e Ricci identity

(ii) they are equivalent to

{(∇U R)(V, W ) − R(U, T (V, W )} + cycl. = 0 Bianchi
(∇U T )(V, W ) + T (T (U, V ), W ) + cycl. = R(U, V )W + cycl. Ricci

(iii) and in components also to

Ri
j[kl;m] + Ri

jr [m T r
kl] = 0 Bianchi

T i
[ jk;l] + T i

m[ j T
m

kl] = Ri
[ jkl] Ricci

(iv) in particular, for the RLC connection the identities simplify (in the three different versions
mentioned above) to

d� + ω ∧ � − � ∧ ω = 0 (∇U R)(V, W ) + cycl. = 0 Ri
j[kl;m] = 0 Bianchi identity

� ∧ e = 0 R(U, V )W + cycl. = 0 Ri
[ jkl] = 0 Ricci identity

Hint: (i) apply d on the Cartan structure equations (15.6.7); (ii) insert arguments U, V, W
and use Cartan formulas (6.2.13) (for p = 2 in the form with “+ cycl.”); (iii) replace the
(general) fields U, V, W by the coordinate basis fields. �

• Let us have a look, next, at how the basic differential operators on forms, the exterior
derivative (“differential”) d and the codifferential δ, may be expressed in terms of the
covariant derivatives.

15.6.17
∗

Let ia, j a ≡ gab jb be the operators on forms introduced in (5.8.6), (5.8.10) (the
fields ea, ea are supposed to be dual to each other, but they need not be orthonormal) and
T a the torsion forms. Check that

(i) the exterior derivative of forms may be expressed in terms of covariant derivatives ∇a ≡ ∇ea as

d = j a∇a + T aia i.e. dα = ea ∧ ∇aα + T a ∧ iaα

(ii) in particular, for the RLC connection this simplifies to

d = j a∇a i.e. dα = ea ∧ ∇aα

and for the components of the exterior derivative of p-forms in a coordinate basis one obtains

(dα)i ... jk = (−1)p(p + 1)α[i ... j ;k]

(iii) relate the result of (ii) to (6.2.5)

323 We will also encounter these identities later in a more general context of connections on principal bundles, see (20.4.4)–(20.4.8).
With the help of the exterior covariant derivative D which will be introduced there, they even simplify to D� ≡ DDω = 0
and DT ≡ DDe = � ∧ e (the Cartan structure equations themselves read De = T and Dω = �, see (21.7.4)).
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(iv) for the RLC connection, the codifferential may be expressed in terms of covariant derivatives as

δgα = −i a∇aα

(v) coordinate expression of the codifferential then reads (compare with (8.3.5))

(δα)i ... j = −α k
ki ... j ; i.e. (δα)i ... j = −α

ki ... j
;k

(vi) and, in particular, the Laplace–Beltrami operator reads

� f ≡ −δd f = f ;k
;k

Hint: (i) according to (6.1.7) and (6.1.8), the right-hand side is a degree +1 derivation
of �(M), so that it is enough to check this on �0(M) (trivial) and on ea ∈ �1(M) (the
first Cartan equation); (ii) (dα)i ... jk = (dxr ∧ ∇rα)i ... jk = · · · (iii) see (15.4.12); (iv) using
(5.8.9) and (15.3.13) we get ∗−1d ∗ η̂ = ∗−1 j a∇a ∗ η̂ = ∗−1 j a ∗ η̂∇a = − ∗−1 ∗i a η̂η̂∇a ≡
−i a∇a ; (v) (δgα)i ... j = −(i k∇kα)i ... j = −gkr (∇kα)ri ... j = −gkrαri ... j ;k = −α k

ki ... j ; . �

15.6.18
∗

Check that for the RLC connection the two apparently different definitions of
the divergence (the first one, based on the metric volume form (8.2.1), and the covariant
divergence, which is defined to be the trace of the covariant gradient of the field V )

LV ωg = (div(1)V )ωg div(2)V = Tr (∇V ) ≡ V i
; i

actually lead to the same result.

Hint: according to (15.5.4) there holds

LV ωg = ∇V ωg − (∇V ) · ωg

where the action of the tensor ∇V ≡ A of type
(

1
1

)
on the volume form ωg is

(∇V ) · ωg ≡ A · ωg = (−Tr A) ωg ≡ (−div(2)V )ωg

Since according to (15.3.11) for the RLC connection ∇V ωg = 0, we can finally conclude
that div(1)V = div(2)V . �

• In the following exercises we will be concerned with several simple facts one usually en-
counters when studying spinor fields on Riemannian manifolds (M, g) (in “curved spaces”;
the spinor fields are treated in more detail in Chapter 22).

15.6.19
∗

Let ωa
b ≡ ωa

bμ dxμ be connection 1-forms with respect to a (co)frame field ea ≡
ea
μ dxμ and let 	μ

νρ be the Christoffel symbols of the same (!) connection ∇ with respect to
local coordinates xμ. Verify that

(i) ωa
bμ and 	μ

νρ are related as follows:

∂μea
ν − 	ρ

μνea
ρ + ωa

bμeb
ν = 0

(ii) if this is regarded as the prescription for finding ωa
bμ in terms of given 	ρ

μν and ea
μ, we may rewrite

it as

ωa
bμ = ea

ρeν
b	

ρ
μν + ea

ρ∂μeρ

b
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If the (co)frame field happens to be orthonormal and the connection ∇ is metric (possibly not
symmetric, however), then the fields324 ωa

bμ(x) are known as the spin connection. (They enter
the formulas for the covariant derivative of spinor fields, cf. (22.4.8) and (22.5.1), as well as the
explicit expression of the Dirac operator (22.5.4). The formula obtained above may sometimes be
found in the literature on spinors in general relativity under the noble name of the tetrad postulate.
The fields ea

μ and eμ
a are usually called vielbein fields (in the four-dimensional case tetrad fields,

see Section 4.5).)

Hint: the particular case of (15.6.1) for the change of a frame field ea �→ ∂μ ≡ ea
μea (so that

A ↔ ea
μ, A−1 ↔ eμ

a , see (4.5.3)). �

15.6.20
∗

Let ea be an orthonormal frame field. In the general theory of relativity the
following objects are often introduced when working within the tetrad formalism:

γabc := eμ
a ebμ;νeν

c Ricci coefficients of rotation

(in particular, for computations with spinors, cf. (22.5.4)). Verify that

(i) they may be expressed as follows:

γabc = (∇cg)ab + g(ea, ∇ceb)

≡ gab;c + 	abc 	abc := ηad	
d
bc

(where 	a
bc are the coefficients of the connection (15.6.1) with respect to ea), so that for the metric

connection (the case notably interesting for the general theory of relativity and spinors) we get
that the Ricci coefficients of rotation simply coincide with the coefficients of connection (with
respect to an orthonormal frame) with a “lowered index”

γabc = 	abc = 〈ωab, ec〉 i.e. ωab = 	abcec = γabcec

(ii) they are antisymmetric with respect to the first pair of indices

γabc = −γbac

(iii) one can also express these coefficients in terms of coefficients of anholonomy (9.2.10) of the
frame field ea and this gives (for the metric connection)

γabc = 1

2
(ccab + cbac − cabc)

Hint: (i)

eμ
a ebμ;νeν

c = eμ
a eν

c

(
gμσ eσ

b

)
;ν = eμ

a eν
c

(
gμσ ;νeσ

b + gμσ eσ
b;ν

)

= eμ
a eν

c

{
(∇νg)μσ eσ

b + gμσ (∇νeb)σ
} = (∇cg)ab + g(ea, ∇ceb)

(ii) ωab = −ωba because of metricity; (iii) see (15.6.9). �

• Let us have a look at how one can write down the parallel transport equations in terms
of connection forms.

324 That is, the coordinate components of the metric connection 1-forms with respect to an orthonormal frame field.
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15.6.21 Let ωa
b be the connection forms with respect to a frame field ea , V = V a(t)ea a

vector field defined on a curve γ (t) and A = Aa...b
c...d (t)ec ⊗ · · · ⊗ eb a tensor field of type

(r, s) at the same curve. Check that

(i) the parallel transport equations of the vector V and the tensor A take the form

V̇ a = Sa
b (t)V b Sa

b (t) := −ωa
b (γ̇ (t))

Ȧa...b
c...d = Sa

f (t)A f ...b
c...d + · · · − · · · − S f

d (t)Aa...b
c... f

(ii) the equations from (15.2.6) and (15.2.12) are the special cases for the coordinate frame field
(iii) for an orthonormal frame field the matrix Sa

b is (pseudo-)antisymmetric
(iv) if Sa

b does not depend on time, the explicit solution (for the vector) may be written in the form

V a(t) = (et S)a
b V b(0) ≡ V a(0) + t Sa

b V b(0) + t2

2
Sa

c Sc
b V b(0) + · · ·

and the matrix (et S)a
b is (pseudo-)orthogonal.

Hint: (i) 0 = ∇γ̇ (V aea) = · · ·; (ii) ωi
j = 	i

jk dxk (15.6.1). �

15.6.22 Check that for the case of the two-dimensional sphere from problem (15.6.11)
the result of (15.6.21) gives

Sa
b (t) = εabϕ̇ cos ϑ

and, in particular, for the motion along a parallel ϑ = ϑ0, ϕ = t we get

Sa
b (t) = Sa

b = εab cos ϑ0 i.e. et S ≡ eϕS =
(

cos(ϕ cos ϑ0) sin(ϕ cos ϑ0)
− sin(ϕ cos ϑ0) cos(ϕ cos ϑ0)

)

This means that the motion along the parallel with ϑ = ϑ0 results in a (clockwise) uniform
rotation of the vector which is parallel transported. The net effect of the transport by
the angle ϕ (directed toward the east) consists in the rotation of the vector by the angle
ϕ cos ϑ0; in particular the transport around the entire parallel gives just the Foucault angle
2π cos ϑ0 ≡ 2π sin α from (15.3.10).

Hint: ωa
b = εabα = −εab cos ϑ dϕ. �

15.7 Geodesic deviation equation (Jacobi’s equation)

• Imagine two boats sailing across a lake, their motion being uniform and along a straight
line. We may write down their trajectories as

r1(t) = r1(0) + v1t

r2(t) = r2(0) + v2t

and they represent (affinely parametrized) geodesics in E2. For their relative position vector,
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relative velocity and relative acceleration we get

r(t) ≡ r2(t) − r1(t) = (r2(0) − r1(0)) + (v2 − v1)t ≡ r(0) + vt

ṙ(t) = v

r̈(t) = 0

These equations say that also from the point of view of a man sitting in the first boat the
motion of the second boat is uniform and along a straight line. This fact is so evident
(we knew it in advance and no computation was needed for it) that the reader might be
astonished as to why this trivial stuff should enter Section 15.7 of the chapter devoted to
linear connection.

Let’s try to have a look at what happens when our freshwater beginners are substituted
by fearless sea wolves, moving at the scale of the whole globe. Imagine they start their sails
simultaneously, being (say) 100 m from one another (the second one eastwards from the
first one). Both of them move uniformly along a straight line again (with the same speed)
to the south, each one along their meridian. Their trajectories thus also represent (affinely
parametrized) geodesics, but this time with geodesics on the sphere S2. The behavior of a
“relative vector,” however, essentially differs in this case: the trajectories of the boats first
diverge from one another and then (after passing the equator) they start to converge! From
this “oscillation” it is clear that their “relative motion” is no longer “uniform,” even though
the motion of either of the boats is uniform and along a straight line.

Now we will try to discuss all of this in a more general setting, on a manifold with a
connection (M, ∇). It turns out that the phenomenon already occurs at the local level and
it is a manifestation of the behavior of nearby geodesics.

Contemplate a geodesic γ (t). We may construct the whole one-parameter class of
geodesics from the single geodesic γ (t) as follows: at the point P = γ (0) we consider

a vector ξ (which is not directed along γ̇ ) and we
construct an arbitrary curve σ (s) such that it is tan-
gent to ξ at the point P , so that

P = σ (0) = γ (0) σ̇ (0) = ξ

Now consider any vector field U (s) on (a small piece
of) the curve σ (s) such that it is smooth and that for
s = 0, i.e. at P , it coincides with the velocity vector
γ̇ (0) of the initial geodesic. The points of the curve
σ (s) plus the vectors U (s) at these points induce

unique325 geodesics (see the text before (15.4.9)) γs(t): there holds

γs(t = 0) = σ (s) γ̇s(t = 0) = U (s)

325 What this construction (for s = ε � 1) actually does is a small variation of the initial conditions of the original geodesic: we
perform the “variation” of the initial point P ≡ σ (0) to σ (ε) and the variation of the initial velocity γ̇ (P) ≡ U (0) to U (ε) at
the point σ (ε). The aim is then to learn what effect the small variation of the initial conditions has on the future course of the
geodesic. Put another way, what is the variation of the rest of the geodesic for a given variation of its initial conditions?
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The curve σ (s) by construction binds the initial points (the points γs(0)) of the one-
parameter class of the geodesics γs . Now define a similar curve σt (s) for each t , i.e.
so that the curve σt (s) ≡ σ (t, s) with fixed t binds the points on the geodesics γs which
share the same value of the parameter t . Thus, there holds

σ (t, 0) = γ (t) ≡ γs=0(t) σ (0, s) = σ (s) ≡ σt=0(s) σ (t, s) = γs(t) = σt (s)

The parameter s thus “labels” the geodesics whereas the parameter t “runs in” them. It is
intuitively clear that this one-parameter class of geodesics forms a two-dimensional surface
S (which is parametrized by σ (t, s)). There are two natural vector fields on the surface (it
is enough to consider the fields in an infinitesimal neighborhood of the initial geodesic):
the velocity field U of the motion along the individual geodesics (it may be regarded as
an extension to the surface S of its values U (s) on the curve σ (s)) and the field ξ which
“links the individual neighboring geodesics” or, more exactly, whose integral curves are
(by definition) the curves which bind the points with the same value of “the time” t , i.e. the
curves σt (s) ≡ σ (t, s) with fixed t (for its flow �

ξ
s we may write �

ξ
s γ (t) = γs(t)).

15.7.1 Check that the vector fields U and ξ on S commute

[U, ξ ] = 0

Hint: they generate the flows (t, s) �→ (t + λ, s) and (t, s) �→ (t, s + λ), see (4.5.8). �

• Let us now have a look at how objects in this construction correspond to objects in the
situation with the boats. The relative velocity of the boats v ≡ v2 − v1 is the difference of
two vectors sitting at two distinct points. In order to make the comparison we need first to
(parallel) transport one of the vectors along the line joining the two points – the relative
velocity of nearby geodesics is thus the covariant derivative of the velocity vector along the
joining line, ∇ξU . This object is still not the most interesting one since we can control it by
means of the choice of its value at the time zero.326 The truly interesting object measures
the rate of the relative velocity (i.e. the change of the relative velocity along a trajectory),
i.e. we are to study the (covariant, parallel transport is again implicit) derivative of the
relative velocity along the (ordinary) velocity, ∇U (∇ξU ). It is natural to call this quantity
the relative acceleration of “neighboring” geodesics

relative velocity ↔ ∇ξU

relative acceleration ↔ ∇U (∇ξU )

This object, the relative acceleration, is already out of our control (by means of any choices
in time t = 0) and as Jacobi’s equation (to be introduced in a while) shows, the relative
acceleration feels the curvature of a manifold (M, ∇) where the geodesics are studied.

326 When we had chosen arbitrarily U (s) on σ (s) and also we have already fixed implicitly ∇σ̇ U ≡ ∇ξ U . In particular, if we
had chosen as U (s) on σ (s) the autoparallel field given by the vector γ̇ (0), it should mean that we perform the variation of
the position alone leaving the initial value of the velocity “the same” or, put another way, that we study a free motion of two
objects which start from neighboring points with the same speed, their initial velocities being directed parallel to each other.
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15.7.2 Let U and ξ be the fields introduced above and let the connection ∇ be torsion-free.
Show that

(i) the relative acceleration may also be expressed as ∇2
U ξ , since

∇U ξ = ∇ξU

(ii) there holds the identity

∇2
U ξ = R(U, ξ )U

(iii) for the field ξ on the initial geodesic γ this results in Jacobi’s equation for geodesic deviation

D2ξ

Dt2
≡ ∇2

γ̇ ξ = R(γ̇ , ξ )γ̇ or briefly ξ̈ = R(γ̇ , ξ )γ̇

Notice that in Jacobi’s equation the only quantities that occur are (i.e. it is enough if they are)
defined on the geodesic γ alone (for ∇ξU we need the field U also in a neighborhood of γ ,
whereas for ∇U ξ = ∇γ̇ ξ we make do with ξ on the curve γ itself).

Hint: (i) in general, ∇U ξ − ∇ξU − [U, ξ ] = T (U, ξ ); (ii) since U is a “geodesic field,” we
have ∇U U = 0; then ∇U ∇U ξ = ∇U ∇ξU = ∇U ∇ξU − ∇ξ∇U U − ∇[U,ξ ]U ≡ R(U, ξ )U .

�

15.7.3 Be sure to understand that on the right-hand side of Jacobi’s equation there is a
linear operator (depending quadratically on γ̇ ) applied on the vector ξ

ξ �→ B(ξ ) ≡ R(γ̇ , ξ )γ̇ ξ i �→ Bi
l ξ

l Bi
l := Ri

jkl ẋ
j ẋ k

so that in components the equation reads

∇γ̇ ∇γ̇ ξ = (
Ri

jkl ẋ
j ẋ kξ l

)
∂i i.e. (∇γ̇ ∇γ̇ ξ )i = Ri

jkl ẋ
j ẋ kξ l

Hint: R(U, V )W is F-linear in all arguments (15.5.5). �

15.7.4 Let us examine how this equation works on the ordinary sphere S2. Here we may
consider meridians as a one-parameter class of geodesics (15.4.2). Then we take as the
fields U and ξ simply the coordinate basis fields ∂ϑ and ∂ϕ respectively. Check that

(i) a direct computation of the left-hand side of Jacobi’s equation gives

∇2
∂ϑ

∂ϕ = · · · = −∂ϕ

(ii) by comparison with what the right-hand side of the equation should give we obtain

−∂ϕ
!= R(∂ϑ , ∂ϕ)∂ϑ ≡ Rϑ

ϑϑϕ∂ϑ + Rϕ

ϑϑϕ∂ϕ

(iii) from there we can read the values of the components of the Riemann curvature tensor

Rϑ
ϑϑϕ = 0 Rϕ

ϑϑϕ = −1
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(iv) these results coincide with those obtained by a direct computation from the formula for com-
ponents of the curvature tensor in terms of Christoffel symbols (15.5.5) or by expressing the
result from (15.6.11) (“orthonormal” components obtained from the Cartan structure equations)
in coordinate components.

Hint: see (15.3.7). �

15.8∗ Torsion, complete parallelism and flat connection

• We encountered the concept of (the tensor of) torsion in the section devoted to the
RLC connection (15.3.3), where we learned that the requirement of vanishing torsion leads
in combination with metricity to a unique (i.e. RLC) connection. So in this particular
connection the torsion is by definition completely “disabled.” On the other hand, exactly
this particular connection is by far the most frequent linear connection met by most people
(say, in general relativity). This results in the torsion mostly remaining hidden in the shadow
of its much more popular sibling, the curvature.327

The torsion must appreciate then (even be touched to the heart) knowing that we did
not forget about it. In this section we will learn in which geometrical situation the (non-
vanishing) torsion manifests its presence. Namely it turns out that it causes “disclosure of
a geodesic parallelogram.”

15.8.1 At a point P consider two vectors u, v. The
point P and the vector u define a unique (affinely
parametrized) geodesic γu(t). We parallel transport
v to the point Q1 ≡ γu(ε) along the geodesic; this
results in v‖ in Q1. The point Q1 and the vector v‖
define in turn a geodesic γv‖ (t). The point γv‖ (ε) will
be labeled R1. Now we perform the same steps with
the vectors u ↔ v being interchanged. In this way
we obtain the points Q2 and R2. It is clear that in
the ordinary plane we should draw a parallelogram

with vertices P, Q1, R1 ≡ R2, Q2. It turns out, however, that on a general manifold with
connection (M, ∇) there holds R1 �= R2, and the step by which we get from R1 to R2 up
to second-order accuracy in ε is realized by the vector T (u, v), where T is the torsion of
the connection ∇. One may then say that the vector T (u, v) encloses within order ε2 the
infinitesimal geodesic parallelogram given by the vectors u and v. Check this statement by
a computation.

Hint: for example, in coordinates: according to (15.4.1) the point Q1 has the coordinates
xi (Q1) = xi (P) + uiε − 1

2	i
jku j ukε2 + · · · . Components of the transported vector v are

327 As scientists recently discovered (under microscopes, I expect) this spectacular astronomical phenomenon was already pretty
well known to Mayan civilization. Mayan astronomers compiled precise tables of positions for the Moon, Venus, Curvature
and Torsion and were able to predict with astonishing accuracy torsion eclipses (caused by the curvature; their prediction
namely stated that it always happens).
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by (15.2.6) vi
‖ = vi − ε	i

jkukv j + · · · (since ẋ k = uk). Within order ε2 then the coordinates
of the point R1 are

xi (R1) = xi (Q1) + vi
‖ε − 1

2
	i

jkv
j
‖v

k
‖ε

2

≡ xi (P) + ε(ui + vi ) + 1

2
ε2	i

jk(−u j uk − v jvk − 2v j uk)

The corresponding result for xi (R2) is obtained by u ↔ v so that

xi (R2) − xi (R1) = 1

2
ε2	i

jk2(v j uk − vku j ) = ε2( − 2	i
[ jk]

)
u jvk ≡ ε2T i

jku jvk

≡ (ε2T (u, v))i

�

• These results probably reminded the reader of a similar computation in Chapter 4
where the geometrical meaning of the commutator [U, V ] of two vector fields U and V was
discussed (4.5.3). In what way do these constructions actually differ?

In Chapter 4 we managed without any connection, here we definitely need it. In particular,
there we moved along integral curves of the vector fields involved, whereas here we move
along geodesics. There we needed the fields U, V also in a neighborhood of the point P ,
whereas here we make do with the vectors u, v at the point P alone.

In both cases unclosed parallelograms arose; then due to non-vanishing [U, V ], now due
to non-vanishing T (U, V ). As an enclosing piece (up to order ε2) one had to add then
−ε2[U, V ], now it is +ε2T (U, V ).

There is also an equivalent way of expressing the effect of torsion. Contemplate vectors
u, v at the point P . Extend them to vector fields U, V in a small neighborhood of the point
P as follows: if Q is a point in the neighborhood, we construct a geodesic from P to Q and
parallel transport the vectors u, v to Q along the geodesic (recall that a parametrization of the
geodesic does not matter). All the transported vectors then constitute the vector fields U, V .
By construction their covariant derivative in any direction vanishes at the point P so that
we get for the tensor of torsion at that point TP (U, V ) = (∇U V )P − (∇V U )P − [U, V ]P =
−[U, V ]P . The effect of torsion thus happens to coincide with the effect of (minus) the
commutator of these vector fields. The latter manifests itself when traveling along their
integral curves, coinciding here in turn just with geodesics (a geodesic given by a vector
v arises by the parallel transport of v “along itself”; that is, however, exactly the way in
which the values of the field V arise), so that the above-mentioned “geodesic” construction
actually matches the construction in terms of the integral curves used here.

Recall also that Section 15.5, describing curvature, starred yet another important “non-
closure phenomenon” which is related to connections (this time, however, not at the level of
the points along which we travel, but rather at the level of tensors being transported; a tensor
suffers a change due to the parallel transport along a loop). Let us illustrate non-vanishing
torsion with the example of a simple connection where the effect of the torsion may be
easily grasped visually.
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Consider as a manifold the two-dimensional sphere S2 with both the north and south poles
removed, endowed with the common “round” metric tensor. If it is as big as the surface of
the Earth, it may easily happen we actually do not recognize it is a sphere (it took some
time for mankind, too) and we believe we walk on a Euclidean plane. Then it is natural to
perform the parallel transport of vectors as follows.

First, we measure the length of the vector to be transported and arrange the length to be
the same after the transport. Then the only issue which remains is its direction. In order to fix
the direction we use a compass and measure the azimuth of the initial vector (i.e. the angle
clockwise from due north; this does not work at the poles, but recall they were removed from
the manifold at the very beginning with wondrous foresight). We then prescribe the same
azimuth to the transported vector. If we believe we walk on a Euclidean plane (endowed
with a distinguished “north” direction) we have a clear conscience that we did our best to
realize parallel transport in the most common intuitive sense.328

15.8.2 Check that the connection on the sphere with removed poles which was introduced
above is metric, it has vanishing curvature and non-vanishing torsion.

Hint: by construction it is evident that the scalar product of vectors is preserved (so that it
is metric) and that parallel transport does not depend on the path (⇒ vanishing curvature).
We also see that the standard orthonormal frame field (eϑ , eϕ) on the sphere is parallel, i.e.
that for any V there holds ∇V eϑ = 0 = ∇V eϕ (it is enough to realize how parallel transport
of these vectors to another point turns out). Then (on the sphere with unit radius),

T (eϑ , eϕ) ≡ ∇eϑ
eϕ − ∇eϕ

eϑ − [eϑ , eϕ] = −[eϑ , eϕ] = −
[

∂ϑ,
1

sin ϑ
∂ϕ

]

= cos ϑ

sin2 ϑ
∂ϕ ≡ cos ϑ

sin ϑ
eϕ �= 0

�

15.8.3 Check that all meridians as well (in contrast to RLC) as parallel lines (and even in
general all loxodromes) turn out to be geodesics of this connection.

Hint: ∇U eϑ = 0 = ∇U eϕ (for arbitrary U ) results in ∇V V = 0 for V = k1eϑ + k2eϕ ; in
particular, ∇eϕ

eϕ = 0 says that integral curves of the field eϕ (parallel lines) are geodesics;
for general k1, k2 the integral curves happen to coincide with loxodromes (3.2.8). �

• The fact that in this particular case there holds T (eϑ , eϕ) = −[eϑ , eϕ] �= 0 means that
the vector which encloses a geodesic parallelogram coincides with the vector enclosing
the parallelogram made from integral curves. This is not an accident. Both procedures of
construction of the parallelograms eventually lead to the same result: if we take eϑ , eϕ as
U, V , a motion along integral curves is the same as the motion along geodesics (the first
halves of the construction thus coincide), the parallel transport of the second vector along

328 This technique can be safely used at the scale of a town, say; as a preparation the reader is invited to use it at a copy-book
scale.
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the geodesic given by the first one results in the value of the second field at a new place so
that also the second halves of the construction give the same result. The effect of torsion
thus coincides here with the effect of non-commutativity of the fields eϑ and eϕ . However,
here the latter is very clear visually.

15.8.4 Be sure you understand that the effect of
non-commutativity of the fields eϕ and eϑ (and con-
sequently also of the non-vanishing torsion of the
connection under consideration) consists of the ele-
mentary fact that if we move a small distance east-
wards and then the same distance southwards, we
do not reach (exactly) the same point as if we did

the same steps in the opposite order. Try to obtain (by an elementary computation) the
difference and check that you get the same result as you get by “scientific” consideration,
i.e. by the computation of the term ε2T (eϕ, eϑ ) ≡ −ε2[eϕ, eϑ ].

Hint: the distance between meridians gets shorter when we start to move in a direction
toward the poles. �

• In the example discussed above an important class of connections has been illustrated,
called a complete parallelism. This comes into being when in a domain on a manifold
there is a covariantly constant frame field ea (alternatively it is known as a parallel frame
field), i.e. a frame field for which the covariant derivative in an arbitrary direction vanishes,
∇V ea = 0 for each V , so that also

∇ea = 0 or ea;μ = 0

Such a field may in general be non-holonomic. If it happens to be holonomic (i.e. coordinate),
we speak about a flat connection.

Yet another name used for a complete parallelism is teleparallelism, i.e. parallelism “at
a distance.” The origin of this terminology will be clear from the next problem.

15.8.5 Let ea be a covariantly constant frame field
in a domain U . Be sure to understand that parallel
transport in this domain does not depend on the path,
so that there exists a natural identification of any two
tangent spaces in U . Consequently a comparison of
vectors sitting in different (possibly fairly remote)
points in U now makes “absolute” sense (see the
motivation of the concept of a connection at the very
beginning of the chapter).

Hint: covariant constancy of the frame field gives the
following equation of the parallel transport of (say) a vector field: 0 = ∇γ̇ (Aaea) = Ȧaea ,
i.e. Aa(t) = ka ≡ constant, regardless of the path along which the vector is transported ⇒
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the transport (within the domain where the frame field ea operates) from a point P to any
point Q looks like kaea(P) �→ kaea(Q) (the transport thus consists in decomposing the
vector at the point P with respect to the basis ea and thereafter in composing it back with
the same coefficients at the final point Q; so it works as if we made an “immediate leap”
to Q (i.e. transport “at a distance”)). Two vectors at different points are regarded as being
“equal” if they have equal coefficients with respect to ea at these two points. �

15.8.6 Check that

(i) for a complete parallelism the connection forms vanish at an appropriate basis, ωa
b = 0, for a flat

connection the Christoffel symbols vanish at appropriate coordinates, 	i
jk = 0

(ii) for a complete parallelism the curvature vanishes and for a flat connection both the curvature and
torsion vanish

∇ea eb = 0 (complete parallelism) ⇒ Ra
bcd = 0

∇∂a ∂b = 0 (flat connection) ⇒ Ra
bcd = 0 = T a

bc

Hint: (i) for a covariantly constant frame we have ∇V ea = ωb
a(V )eb = 0 or ∇∂a ∂b =

	c
ba∂c = 0; (ii) from the Cartan structure equations (15.6.7); or since ∇ea eb = 0,

we have R(ea, eb)ec ≡ (∇ea ∇eb − ∇eb∇ea − ∇[ea ,eb])ec = 0; T (ea, eb) ≡ ∇ea eb − ∇eb ea −
[ea, eb] = −[ea, eb], which vanishes exactly for ea = ∂a . �

• Note that both statements in problem (15.8.6) had the form of a one-way implication.
The opposite implication

Ra
bcd = 0

?⇒ ∃ea : ∇ea eb = 0 (complete parallelism)

Ra
bcd = 0 = T a

bc
?⇒ ∃xa : ∇∂a ∂b = 0 (flat connection)

is a priori not clear and the issue needs a special analysis. One line of thought might be based
on the way in which the curvature tensor occurred: its vanishing guarantees the triviality
of parallel transport around particular infinitesimal loops. This can also be extended to
bigger (finite) loops and one may infer from that the possibility of transport of a frame from
the point P to its neighborhood independent of path, which implies the existence of the
covariantly constant frame field being sought.

A different line of thought goes as follows: vanishing curvature means that for each
frame field we have 0 = � ≡ dω + ω ∧ ω. This does not necessarily also mean ω = 0
(covariantly constant ea). A general change of frame field by a matrix A results in ω �→
ω̂ = A−1(ωA + d A), so that the question of whether there exists a frame field êa such
that ω̂ = 0 leads to the formulation of the problem of whether there exists a non-singular
matrix field A(x) which obeys a system of (partial differential) equations ωA + d A = 0.
The problem may be solved and the answer is yes.

The third possibility (which will be adopted here) is to postpone the discussion until
Chapter 20, see (20.4.11), to the general context of connection theory. In this theory the
notion of a covariantly constant frame field takes an interesting geometrical interpretation in
terms of “integrable distributions”; by referring to the “Frobenius integrability condition”
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we learn that vanishing curvature is indeed also a sufficient condition for the existence
of a covariantly constant frame field329 (so the first implication holds), from which then
already the validity of the second implication follows immediately.330 Vanishing of both the
curvature and torsion tensors thus means that the connection is flat.

15.8.7 Check that

(i) the ordinary RLC connection in (pseudo-)Euclidean space Er,s is flat
(ii) the connection on a Lie group G which we mentioned in problem (15.4.15) (parallel transport

being given by left translation) is a complete parallelism, but in general it is not flat.

Hint: (i) ea = ∂a = Cartesian frame field; (ii) ea = left-invariant basis; the latter fails to be
holonomic for non-Abelian groups. �

15.8.8 * Define a connection on a Lie group G by the formula

∇L X LY := λ[L X , LY ] ≡ λL [X,Y ] L X , LY left-invariant fields

(λ being a real parameter to be specified later). Check that the explicit expressions for the
curvature and torsion of this connection read

R(L X , LY )L Z = λ(λ − 1)L [[X,Y ],Z ] i.e. Ra
bcd = λ(λ − 1)ca

f bc f
cd

T (L X , LY ) = (2λ − 1)L [X,Y ] i.e. T a
bc = (2λ − 1)ca

bc

(ea is a left-invariant frame field) and we may identify the following special cases:

λ = 1

2
Ra

bcd �= 0 T a
bc = 0 RLC connection for Killing metric K on G

λ = 0 Ra
bcd = 0 T a

bc �= 0 parallel transport is left translation (15.4.15)
λ = 1 Ra

bcd = 0 T a
bc �= 0 parallel transport is right translation

This connection is not flat, but for λ = 0 as well as λ = 1 we have complete parallelism.

Hint: computation of R and T right from the definitions; for any λ the connection turns out
to be metric with respect to the Killing metric:

∇L Z {K(L X , LY )} 1= L Z K (X, Y ) = 0
2= (∇L ZK)(L X , LY ) + K(∇L Z L X , LY ) + K(L X , ∇L Z LY )

= (∇L ZK)(L X , LY ) + λ{K ([Z , X ], Y ) + K (X, [Z , Y ])}
= (∇L ZK)(L X , LY ) due to (12.3.9)

Then (15.8.7) and (15.4.15). �

329 The notion of curvature itself leans heavily on the integrability condition mentioned above. Namely the curvature is introduced
so that integrability would (by definition) mean vanishing curvature. It turns out that a covariantly constant frame field
corresponds to a “horizontal section” and that the latter exists if and only if a horizontal distribution happens to be integrable.

330 If Ra
bcd = 0 gives ∇ea eb = 0, then with respect to this frame field we have 0 = T a

bc = · · · = −〈ea , [eb, ec]〉 ⇒ [eb, ec] = 0,
i.e. ea = ∂a .
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Summary of Chapter 15

In many applications (e.g. in the computation of acceleration of a point mass in elementary
mechanics) one performs linear combinations (in particular, the difference in the case of
acceleration) of vectors (or more generally tensors) sitting at different points of a man-
ifold. This is not possible on a “bare” manifold. The structure which makes it legal is
a (linear) connection ∇ on M . The connection enables one to transport vectors along a
given path (the transport being path-dependent in general) and consequently to perform the
above-mentioned comparison (vector in x is compared with the one being transported to
x from y). This transport is by definition called parallel (in the sense of the connection
∇). A connection is frequently defined by postulating the properties of a derived object,
the covariant derivative. One can introduce the concept of a straight line (geodesic) on
(M, ∇). Two tensor fields are associated with a linear connection, the curvature and torsion
tensors. It is shown that the requirements of compatibility of a connection with the metric
(conservation of any scalar product upon any parallel transport) together with vanishing of
its torsion result in a unique connection, the Riemannian or Levi-Civita (RLC) connection.
The curvature tensor encodes the local information of “how much” (if ever) the parallel
transport (along infinitesimal paths) is path-dependent; it also displays itself in the behavior
of nearby geodesics, causing their deviation (Jacobi’s equation). A non-zero torsion implies
non-closure of a geodesic parallelogram. An efficient tool for working with a connection is
provided by the machinery of differential forms. Basic objects are encoded into forms and
relations between them are given by the Cartan structure equations. A connection is called
a complete parallelism if there exists a covariantly constant frame field. Then the curvature
tensor turns out to vanish and moreover a comparison of vectors (as well as tensors) in
different (possibly remote) points makes sense. A connection is said to be flat if the covari-
antly constant frame field happens to be holonomic (coordinate). Then both the curvature
and torsion tensors turn out to vanish.

∇aeb =: 	c
baec Coefficients of connection with respect to ea (15.2.1)

∇ j∂i =: 	k
i j∂k Christoffel symbols of the second kind (15.2.3)

V̇ i + 	i
jk ẋ k V j = 0 Equations of parallel transport of vector (15.2.6)

∇g = 0 (gi j ;k = 0) Connection ∇ is metric (15.3.1)
T (U, V ) := ∇U V − ∇V U − [U, V ] Torsion tensor induced by ∇ (15.3.3)
	i

jk = 1
2 gil (gl j,k + glk, j − g jk,l ) Riemann/Levi-Civita connection (RLC) (15.3.4)

∇γ̇ γ̇ = 0
(
ẍ i + 	i

jk ẋ j ẋ k = 0
)

Geodesic equation (15.4.1)
exp v := γv(1), γ̇v(0) = v ∈ TP M Exponential map centered at P ∈ M (15.4.10)
〈α, ([∇U , ∇V ] − ∇[U,V ])W 〉 Riemann curvature tensor (15.5.5)
Rab := Rc

acb, R := Ra
a ≡ Rab

ab Ricci tensor and scalar curvature Sec. 15.5
∇V ea = ωb

a(V )eb

(
ωa

b = 	a
bcec

)
Connection forms ωb

a with respect to ea (15.6.1)
ω′ = A−1ωA + A−1d A Transformation law for ω under e′ = eA (15.6.2)
de + ω ∧ e = T, dω + ω ∧ ω = � Cartan structure equations (15.6.7)
d� + ω ∧ � − � ∧ ω = 0, � ∧ e = 0 Bianchi and Ricci identities (for RLC) (15.6.16)
∇2

γ̇ ξ = R(γ̇ , ξ )γ̇ Jacobi’s equation for geodesic deviation (15.7.2)
Ra

bcd = 0 = T a
bc Flat connection (15.8.6)
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