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Vector and tensor fields

e From elementary physics we know vectors as being arrows, exhibiting direction and
length. This means that they have both a head as well as a tail, the latter being drawn as
a point of the same space in which the physics is enacted. A vector, then, is equivalent to
an ordered pair of points in the space. Such a conception works perfectly on the common
plane as well as in three-dimensional (Euclidean) space.

However, in general this idea presents difficulties. One can already perceive them clearly
on “curved” two-dimensional surfaces (consider, as an example, such a “vector” on a sphere
S? in the case when its length equals the length of the equator). Recall, however, the various
contexts in which vectors enter the physics. One comes to the conclusion that the “tail” point
of the vector has no “invariant” meaning; only the head point of the vector makes sense as
a point of the space. Take as a model case the concept of the (instantaneous) velocity vector
v of a point mass at some definite instant of time #. Its meaning is as follows: if the point
is at position r at time ¢, then it will be at position r + €v at time ¢ + €. However long the
vector v is, the point mass will be only infinitesimally remote from its original position. The
(instantaneous) velocity vector v thus evidently carries only “local” information and it is
related in no reasonable way to any “tail” point at finite distance from its head.

And the transition from (say) a plane to a sphere (or any other curved surface) changes
practically nothing in this reasoning: although we may visualize the velocity as an arrow
touching the surface at a given place, it makes no sense to take seriously its tail as a second
point on the surface (within a finite distance from the first one), since all the velocity
vector informs us about is the behavior of the trajectory within the nearest (infinitesimal)
time interval and over such a short time interval all that we manage to do is to move to a
point infinitesimally near to the first one. Consequently, the second point (the tail of the
vector) plays no invariant role in this business. The velocity vector is thus to be treated as a
concept which is strictly confined to a point. A similar analysis of other vectors in physics
(acceleration, force, etc.) leads to the same result. Vectors are objects which are to be treated
as being “point-like” entities, i.e. as existing at a single point.

That means, however, that our approach to vectors on a manifold has to take into account
this essential piece of information. Fortunately, such an approach does exist; in fact, there
are even several equivalent ways of reaching this goal, as described in Section 2.2.
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Before doing this, we undertake a short digression on the concepts of a curve and a
function on a manifold, since they play (in addition to being important enough in themselves)
essential roles in the construction of a vector. The simple machinery of multilinear algebra
(see Section 2.4) then makes it possible to take a (long) step forward, introducing objects
of great importance in physics as well as in mathematics — tensor fields on a manifold.

2.1 Curves and functions on M

e A curve on a manifold M is a (smooth) map
y R[] > M t—>yt)yeM
or, more generally,
y:l—->M

I = (a, b) being an open interval on R[¢]. Note that a definite parametrization of points
from Im y C M is inherent in the definition of a curve, and two curves which differ by
the parametrization alone are to be treated as being different (in spite of the fact that their
image sets Im y on the manifold M coincide). If

0:0 - Rx, ... x"]

is a chart (i.e. x are local coordinates on ) C M), one obtains a coordinate presentation
of acurve y,

P=¢oy R[] - R'x', ..., x"]
i.e. a curve on R”
t> (), X)) = @), . X (@)

In general, a curve may convey several coordinate patches, so that several coordinate
presentations are sometimes needed for a single curve.
A function on a manifold M is a (smooth) map

f:M—>R x> f(x)eR
If
0:0 - Rx! . x"]
is a chart, one obtains a coordinate presentation of a function f
f=fop ' :R" >R
i.e. a function on (a part of) R”

(xl,...,x”)f—> f(xl,...,x”)eR
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so that f is a common “function of n variables.” We will frequently identify the function
with its coordinate presentation in what follows. What will be “really” meant should be
clear from the context (the same holds for curves).

Show that the prescription

A det A= f(A)
defines a smooth function on the manifold of all real n x n matrices (~ R'12).

Hint: The determinant is a polynomial in the matrix elements. O

2.2 Tangent space, vectors and vector fields

e The concept of a vector in a point x € M is undoubtedly one of the most fundamental
notions in differential geometry, serving as the basis from which the whole machinery of
tensor fields (in particular, differential forms) on a manifold is developed with the aid of
the standard methods of multilinear algebra (to be explained in Section 2.4).

A word of caution is in order. Although the actual computations with vectors (as well
as vector and tensor fields) are very simple and indeed “user friendly,” the definition of a
vector is, in contrast, a fairly subtle and tricky matter for the beginner and it might need
some time to grasp the ideas involved in full detail. Our recommendation is not to be in a
hurry and reserve due time to digest all the details of the exposition. A clear understanding
of what a vector is in differential geometry saves time later, when vectors are used in more
advanced applications.

There are several (equivalent) ways in which the concept of a vector at a point x € M
may be introduced. In what follows we mention four of them. In different contexts different
definitions turn out to be the most natural. That is why it is worth being familiar with all of
them.

Each approach reveals the key fact that one can naturally associate an n-dimensional
vector space with each point P on an n-dimensional manifold M. The elements of this
vector space (the tangent space at P) are then treated as vectors at the point P € M.

The first approach generalizes naturally the concept of the instantaneous velocity v(¢) =
I(t) of a point mass moving along a trajectory r(¢), mentioned at the beginning of the
chapter. The essential idea is that of tangent curves.

Definition Given two curves yy, y» on M, we say Y1(t)
that y; is tangent to y; at the point P € M if P

1. 1(0) = ya(0) = P .
2. L] X (n@) = L] x(n(0) / o (t)

7
e

(x' being arbitrary local coordinates in the neighborhood of P). When expressed in the
terminology of analytical mechanics, the definition says that at the moment t = 0 the
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positions of two fictitious points in a configuration space M, moving along trajectories
y1(¢) and y»(¢) respectively, happen to coincide (they are both in P) and, in addition, the
values of their generalized velocities are the same. The curves (trajectories), which are
tangent at t = 0, thus have (at # = 0) the same values of both generalized coordinates and
velocities. It is clear, then, that the motions along these trajectories are up to the first order in
time (within the interval from 0 to €) equal. (Note that the particular choice t = 0 actually
plays no distinguished role in this concept; the curves may be tangent at any other “time”
as well.)

Show that

(1) the definition does not depend on the choice of local coordinates in a neighborhood of P
(ii) the relation “to be tangent in P” is an equivalence on the set of curves on M obeying y(0) = P
(iii) the Taylor expansion (the class of smoothness C is assumed here) of equivalent curves in a
neighborhood of t = 0 is as follows:

X' (y(t) = x'(P) + ta' + o(t)

where x'(P), a’ € R are common for the whole equivalence class.

Hint: (i) 4| x"(y(1)) = &5 (p) 24O jied’ = Ji(PYa’. 0

e Itturns out that the equivalence classes y := [y] of curves y are endowed with a natural
linear structure, which may be introduced by means of representatives.

2.2.2| Given TpM the set of equivalence classes in the sense of (2.2.1), let v, w € Tp M
and y, o be two representatives of these classes (v = y = [y], w = ¢ = [o]), such that

x'(y (1) = x'(P) + ta' + o(t)
x'(o(t)) = x'(P) + tb" + o(t)
Show that the prescription
v+ Aw = [y] + Alo] = [y + Ao]
where
X ((y +20)(@)) := x'(P) + t(a’ + Ab") + o(1)

introduces by means of representatives into 7pM the well-defined structure of an n-
dimensional linear space, i.e. that the definition does not depend on

(i) the choice of local coordinates
(ii) the choice of representatives y, o of the classes v, w. (]

e Because of this result we may for good reasons (and justly indeed) call the elements
v € TpM (tangent) vectors at the point P € M; the space Tp M itself is called the tangent
space at the point P. From the definition of linear combination in (2.2.2) one can see that all
vectors at the point P share the same values of x/(P) and the property by which they can be
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distinguished from one another is by the values
of the coefficients a’ = x/(0). Note that a vector
“uses” only the first two terms of the Taylor ex-

pansion of its coordinate presentation (the zeroth

and the first derivatives), the higher terms being
completely arbitrary. This means that a single

vector corresponds to an infinite number of curves which represent this particular vector

(which should be clear in advance from the intuitive vision of all the curves being tangent
to one another), so that there are an infinite number of representatives of each equivalence
class. If we would like to visualize the concept of a vector in the sense of an equivalence
class of tangent curves, we should assign something like a “bunch” or a “sheaf” of curves,
all of them firmly bound together at the point P. And a good old arrow, which cannot be
thought of apart from the vector, could be put at P in the direction of this bunch, too (so that
it does not feel sick at heart that it had been forgotten because of some dubious novelties).

Verify that

(1) if dim M = n, then Tp M is an n-dimensional space

(i) equivalence classes of coordinate curves y;(t), i.e. the curves obeying x'(y;(1)) = x'(P) + (Sj.z
(the value of the jth coordinate is the only one that varies (namely linearly) with ) constitute a
basis of Tp M.

Hint: (i) v <> a' is an isomorphism 7p M < R"; (ii) check that v = [y] = a'lyil. |

e The definition of a vector in terms of curves is intuitively easy to grasp. From the point
of view of practical manipulations with vectors (and tensors) another one proves to be
convenient, too. It is based on the idea of the directional derivative of a function and leans
heavily on algebraic properties of functions and their directional derivatives.

Let F(M) := {f : M — R} denote the set of (smooth) functions on M, f € F(M),
v € Tp M. Define the map (derivative of f in the direction of v)
d
vV FM)—> R fe0(f) = o fy@®) v=lyl
0
Prove that ¥ does not depend on the representative y in the class [y] = v (i.e. correctness
of the definition). O

e It turns out that this map has interesting algebraic properties, enabling one to give an
alternative definition of the concept of a vector at the point P € M.

Check that

(1) the prescriptions

(f +28)(x) := f(x)+ Ag(x)
(fe)x) == f(x)g(x)
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(f, g € F(M), » € R) endow F(M) naturally with the structure of an (co-dimensional) asso-
ciative algebra (Appendix A.2) and that this algebra turns out to be commutative (fg = gf) for
each manifold; it is called the algebra of functions on a manifold M

(ii) the map

0:FM)— R

from exercise (2.2.4) is a linear functional on F(M), i.e. it behaves on linear combination
according to the rule

O(f +Ag) = 0(f) + 1d(g)
(iii) in addition this functional has the property (behavior on a product)
8(fg) = 8(/)g(P) + f(P)d(g)  (Leibniz’s rule)

(iv) such linear functionals (obeying Leibniz’s rule associated with the point P) constitute a linear
space (we denote it as TP M, here), if one defines

@ +20)(f) := 0(f) + 2d(f)
(v) the map
ViTpM —> TpM v 9
is linear and bijective (i.e. it is an isomorphism).
Hint: (v) surjectivity: if dx’ =: a’, the inverse image is v = a’[y;]. O

e Because of the existence of the (canonical) isomorphism TpM <> Tp M, these spaces
are completely equivalent, so that one may alternatively define a vector at the point P € M
as a linear functional on (M), behaving according to Leibniz’s rule on the product, too.

Define the elements ¢; € TPM, i=1,...,n as follows:

f
axt|p

ei(f) = = dlp f

or symbolically
e := dilp
Check that

(i) the e; belong to fp M, indeed
(ii) the e; happen to be just the images of vectors [y;] € Tp M (which constitute a basis of Tp M)
with respect to the map  from exercise (2.2.5)
(i) any vector d € T» M may be uniquely written in the form
b=ad'e where a' = 0x'

(iv) under the change of coordinates x’ — x"(x), the quantities a’ and e; transform as follows:

i fneo__oqij . /o _lj,
a'w—a' =Ja e~ e, =(J")e;
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where

. ox’t .
Ji = i(P) = J;(P) = Jacobian matrix of the change of coordinates

I xi
(v) the “whole” © = a'e; is not altered under the change of coordinates (it is invariant)

i o
ae =ae;

=17
(vi) the transformation rules for a’ as well as e¢; meet the consistency condition on the intersection
of three charts (coordinate patches): the composition x — x’ > x” is to give the same result as

the direct way x > x”. O

e These results enable one to introduce immediately another two definitions of a vector
at the point P (and the tangent space as well). The first possibility is to declare as a vector
a first-order differential operator with constant coefficients, i.e. an expression a’ 9;|p, with
linear combinations being given by

a' %lp +Ab' &lp = (@ + Ab") &lp

The second possibility is the definition adopted by classical differential geometry: a
vector at a point P € M is an n-tuple of real numbers al,i=1,...,n, associated with
the coordinates x' in a neighborhood of P; under change of coordinates the n-tuple should
transform (by definition) according to the rule

XX = de J}(P)aj

Altogether we gave four equivalent definitions (one can even add more) of a vector: a vector
as being

1. an equivalence class of curves (with respect to the equivalence relation “being tangent at the
point P”’)

2. alinear functional on F (M), which behaves on a product according to Leibniz’s rule

3. afirst-order differential operator (together with the evaluation of the result at the point P)

4. an n-tuple of real numbers a’, which transform in a specific way under the change of coordinates.

Check in detail their equivalence: given a vector in any of these four ways, associate
with it corresponding vectors in the other three senses. In particular, make explicit the
correspondence between the basis vectors in all four languages. O

e Taking into account the equivalence of the four definitions mentioned above, we may
regard a vector as being given in any of the possible realizations, from now on. The cor-
responding tangent space will be denoted by a common symbol Tp M, as well. The basis
e; = 0;i|p <> [y:] <> ... is said to be the coordinate basis in Tp M and the numbers al
constitute the components of a vector v with respect to the basis e;.

(Note that the linear combination has only been defined for vectors sitting at the same
point of a manifold (i.e. in a single tangent space Tp M). The spaces Tp M and Tp M for
P # P'areto be regarded as different vector spaces. It is true that they are isomorphic (both
being n-dimensional), but there is no canonical isomorphism (there exist infinitely many
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isomorphisms, but none is distinguished, in general) so that there is no natural (preferred)
correspondence between vectors sitting at different points. The fact that vectors are routinely
linearly combined, in spite of sitting at different points, in physics (the momenta of a
collection of particles are added in order to obtain the total momentum vector of the system,
to give an example) is justified by particular additional structure inherent in the Euclidean
space — so-called complete parallelism (to be discussed in Chapter 15).)

We say that a vector field on M has been defined if a rule is given which enables one to
choose exactly one vector residing at each point of a manifold M. Only the fields which
“do not differ too much” at two “neighboring” points will be of interest for us in what
follows (what we need is smoothness of the field). It turns out that this property is most
easily formulated after one learns how vector fields act on (the algebra of) functions, i.e. by
looking at the matter from an algebraic perspective.

One can apply a vector field V to a function f so that at each point P € M the vector
Vp € TpM (regarded as a linear functional on F(M), here) is applied to f. In this way we
get a number Vp(f) residing at each point P of a manifold M, i.e. a new function altogether.
A vector field thus may be regarded as a map (operator)

ViFM)— FM)  f= Ve (VAP :=Ve(f)

V is said to be a smooth vector field (= C*°-field) if the image of the map V above is indeed
in F(M), that is to say, if a smooth function results whenever acted on a smooth function by
V. The set of (smooth) vector fields on M will be denoted by X(M) = 761 (M) (the reason
for the second notation will be elucidated in Section 2.5).

Show that the map
ViFM)—FM) [ Vf
obeys
Vif+Arg)=V[f+AVg
V(fg)=WVg+ f(Vg)

(f, g € F(M), » € R). The first property alone says that V is a linear operator on F(M);
when taken both together they say that V is a derivation of the algebra of functions F (M)
(in the sense of Appendix A.2).13 O

e As is the case for vectors, components may be assigned to vector fields, too. In a given
coordinate patch O with coordinates x’, a vector field V may be written, according to
(2.2.6), in the form

. . 0
V=Vx0o=Vkx—
ax!

13 The converse is true, t0o: given any derivation D of the algebra of functions F(M), there exists a vector field V such that
D = V. This makes it possible to identify vector fields on M with derivations of the algebra of functions F(M).
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since the coefficients of a decomposition of a vector with respect to the coordinate basis
may be, in general, different at different points (a’, denoted here as V/, depend on x). The
functions V'(x) are called the components of the field V. The vector fields (!) 9; are called
the coordinate basis of vector fields.

We came to the conclusion, then, that a first-order differential operator with non-constant
coefficients corresponds to a vector field and the action of V on f in coordinates may be
expressed simply as

af (x)

) = (VAX) = V)@ f)x) = Vi(x)W

Prove that V is smooth if and only if its components V/(x) are smooth functions
and that this criterion does not depend on the choice of local coordinates.

Hint: smooth functions are closed with respect to linear combinations and product (=
operations in F(Q)) elements of J ; (x) are smooth. O

2.2.10] Show that under the change of coordinates x — x’(x) the components of a vector
field transform as follows:

Vi) =TIV (x)
Hint: see (2.2.6); V/i(x)d’; = Vi(x);. O

2.2.11| Write down the vector field V = 9, (in polar coordinates in the plane R?) in
Cartesian coordinates and try to visualize at various points the direction of the vectors given
by this field.

Hint: see (2.2.10); (V = 0, = xdy — yd,). O

e One should understand clearly the difference between the algebraic properties of a vector
and a vector field: a vector is a linear functional on F(M) (a map into R), a vector field is
a linear operator on F (M) (a map into F(M)). We have learned in exercise (2.2.5) that the
linear functionals on F (M) comprise a vector space over R, i.e. linear combinations with
coefficients from R are permitted. This kind of combination is permitted for vector fields
as well (so that they comprise a real (albeit co-dimensional) vector space, too). It turns out,
however, that the life of vector fields is considerably richer; in particular, one can form
linear combinations with coefficients from the algebra F(M). This means (Appendix A.4)
that vector fields actually comprise a module over the algebra of functions F(M).

2.2.12| Given V, W € X(M) and f € F(M), check that a linear combination V + fW is
a vector field, too, if one defines it in terms of a pointwise combination of the constituent
vectors

V+ fW)p:=Vp+ f(PYWp
or equivalently (in terms of the action on functions) as

V+fWygeg:=Vg+ f(Wg) g
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e If we say, then, that the fields d; constitute a basis for vector fields, what we have in
mind is that this is a basis in the sense of a module (as opposed to a linear space over R).
This means that any vector field in a coordinate patch O <> x' (this may not hold for the
manifold as a whole) may be uniquely decomposed with respect to 9; as V = V'9;, the
coefficients of the decomposition (components) V' being, however, from the algebra F(O)
(R is not enough, in general). Thus X(O) is an co-dimensional linear space over R, but it is,
at the same time, finitely generated as a module over F(QO). Namely, it has n generators (9;,
for example), from which it may be generated completely by means of the algebra 7 (O) in
full analogy with an n-dimensional linear space, which may be generated from an arbitrary
basis ey, . . ., e, with the help of the field" of real numbers R.

2.2.13]" Let L be an n-dimensional linear space over R. Show that

(i) there exists the canonical (independent of the choice of basis in L) isomorphism of L itself and a
tangent space 7, L (x being an arbitrary point in L), so that a linear space L may be canonically
identified with the tangent space at an arbitrary point

(i) if a fixed vector v € L is successively mapped into all tangent spaces in this way, the vector
field V is obtained on L; explicitly (in coordinates introduced in (1.4.11), v = v“e¢,) it reads
V =v9,.

Hint: (i) L 5 v~ (d/dt), (x + tv); a picture might be helpful in order to visualize what
is going on. O

2.2.14| Let M x N be a manifold, which is the Cartesian product of two other manifolds
M and N. Show that

(i) there is a canonical decomposition of tangent spaces at any point (m, n) into the sum of two
subspaces, each of them being isomorphic to the tangent spaces at points m and n respectively of
the initial manifolds

T(m,n)(M X N) = T;nM @ T;zN

(ii) any vector field V on M x N may be uniquely decomposed into the sum of two vector fields
V = Vy + Vy, where V), “is tangent to” M and Vy “is tangent to” N.

Hint: (i) consider the curves t — (m(t), n)andt +— (m, n(t));in coordinates from (1.3.3) the

subspaces span 9; and d,; (ii) pointwise realization of (i); V = A’(x, ¥)9; + B(x, y)d, =
Vu + Vu. O

2.3 Integral curves of a vector field

e Lines of force field provide an aid for visualizing the field; they are essentially a map of
the field. A momentary glance at the pattern of lines provides rich information concerning
the field itself, since if F(r) is the field in question, we know that (by definition) the vector F

14 The field R is hidden in the algebra F(O) in terms of constant functions, so that the algebra F(0O) is a much richer object than
R is — this is the reason why far fewer generators are needed to reach the same goal.
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at a point r is tangent to the line of force at r. The concept of an integral curve adds a definite
parametrization to this idea (it is a curve rather than a line), the latter being irrelevant in
the case of force lines: its orientation is all they need.

A vector field V on M determines a vector Vp € Tp M at each point P € M. On the other
hand, we know from Section 2.1 that a vector Vp may be regarded as an equivalence class
of curves, each representative of the class “being the
same” in the immediate vicinity of the point P (up ~(t)
to order €). An integral curve of a vector field V is
then the curve y on M, such that at each point of its vV
image, the equivalence class [y ] given by the curve, 1% —
coincides with the class Vp, given by the value of
the field V in P. Put another way, from each point it
reaches, it moves away exactly in the direction (as
well as with the speed) dictated by'3 the vector Vp. All this may be written as a succinct
geometrical equation

y=V ie yp@P)=V»

(this is the equation for finding an integral curve y of a vector field V in a “coordinate-free”
form), where the symbol y (P) denotes the tangent vector to the curve y at the point P (i.e.
the equivalence class [y ], given by the curve y at the point P). If the vectors on both sides
of this equation are decomposed with respect to a coordinate basis, a system of differential
equations for the functions x’(¢) = x/(y(¢)) (for the coordinate presentation of the curve to
be found) is obtained.

Show that the differential equations for finding an integral curve y of a vector field
V have the form

3= Vi) i=1,...,n
i.e. in more detail

Ho=viat, .o XM
() = Vit XM
Hint: y (y (1)) = %'(t) 8il,4)» Vyy = V' (x (@) 8l 0)- 0

Write down and solve the equations for integral curves of the field V from exercise
(2.2.11), both in polar and in Cartesian coordinates. Draw the solutions (¥ = 0, ¢ = 1; X =
-y, y =X). O

15 Like a well-disciplined hiker, always walking in the direction of arrows on destination signs and obediently following the
instructions concerning time indications given there (how many minutes he or she would need to reach the next arrow).
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Find integral curves of the field V = 0, + 29, on R[x] x S 1[cp] (the surface of a
cylinder). Draw the results. O

e We may see that, in general, one has to do with a system of n first-order ordinary
differential equations for n unknown functions x’(t). Moreover, the system is quasi-linear
(linear in the highest (= the first, here) derivatives), autonomous (functions on the right-
hand side do not depend explicitly on the variables with respect to which the unknown
functions are differentiated (¢ here)) and, in general, coupled. Since the functions on the
right-hand side are smooth (2.2.9), the theory of equations of this type guarantees that there
exists a unique solution in some neighborhood of the point, which corresponds to the initial
conditions. There then exists a unique integral curve of a field V, which starts at (any given)
P € M int = 0. However, it is not, in general, possible to extend this curve for all values
of the parameter ¢ € (—00, 00).

A vector field V on M is said to be complete if for any point P € M the integral
curve y(t), which starts from P, may be extended to all values of the parameter ¢. Show
that the vector fields V = 3, on M = (—1, 1) and W = x23, on N = R are not complete
(and learn a lesson from these two examples, what some problems with such an extension
might look like). O

Given y(¢), an integral curve of a vector field V on M, let p(¢) := y(o(t)) be a
reparametrized curve. Find the most general dependence o (¢), so that y will be an integral
curve of the vector field V, too.

Hint: (d/dt) f(y(o (1)) = o' (t)(d/dt) f(y(t)),sothat § = o'y;[o(t) = t + constant]. O

e This result is easy to understand. Consider y(¢) as being a trajectory. Then y is another
trajectory, such that we traverse the same set of points on M at different moments of time.
Put another way, the path remains unchanged, but the (instantaneous) speed of traversing
the path may be different.'¢ Just how much different depends on the point and the result of
the exercise shows that the new speed is o'(¢) times the old one at any point y(¢). (As an
example, for o () = 2¢, the new speed is twice the old one at each point.) Since the velocity
vector of an integral curve may not be changed (it is given by V uniquely), o/(z) = 1 results.
This means that the only possibility to change the trajectory is to traverse the same path
either sooner or later. This freedom (f — ¢ + constant) enables one to set an arbitrary
value of the parameter 7 (time) at the starting point P.

Let y be anintegral curve of a vector field V on M, which starts from P = y(0) € M.
Show that the integral curve (of the same field V) p, which starts from Q = y(a), is
@) =y +a).

Hint: see (2.3.5). 0

16 In fact, we have not enough structure, yet, to speak of the “speed” (a metric tensor, to be introduced later, is needed for it). In
spite of this, we can speak of the ratio of two speeds, since our velocity vectors are proportional.
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e The result of (2.3.1) admits a different interpretation, too. It shows that each system
of equations of the type (2.3.1) may be regarded as a system for finding integral curves
of the particular vector field (we read out its components from the right-hand side of the
equations). This is the important observation, since it provides a key to the investigation of
properties of solutions of such equations by powerful geometrical and topological methods —
corresponding vector fields (or other objects associated with them) are studied instead of
the equations themselves. We will see this, for example, in Chapter 14, where Hamiltonian
systems will be discussed.

Find a vector field V on R*"[¢',...,q", p1,..., pa], which corresponds to the
Hamilton equations

) oH ) oH

q“:apu pa:_8q” a=1,...,n
(V = (0H/8pa)d/dq" — (9H/3q*)d/dpa). g

e A vector field V on a manifold M gives rise to a new and interesting structure, a
congruence of integral curves on M: the manifold M is “densely” filled by a system of
(infinitely many) curves, which never intersect and

the “speed” of motion along them is completely de- g/
termined by the field V. This situation may be con- v
veniently visualized as the flow of a river. This flow ¥(t)

is stationary (the velocity vector in a given point v — ®,(P)

being always the same; in particular, the river does ~(0)

not flow at the points where the field vanishes) and P

for particular types of fields (e.g. for Hamiltonian

fields) the fluid is in addition incompressible (14.3.6). Integral curves correspond to the
streamlines of the flow. If one fine (and hot) afternoon we do not resist the temptation and
let ourselves waft downstream, we get from P = y(0) € M to the point Q = y(¢) € M,
naturally a one-parameter class of mappings

O, M—->M P=y0)— y()

arises, called a (local) flow generated by the vector field V. We will return to this important
concept in more detail later, in Chapter 4 and beyond.

Justify the statement mentioned above, that integral curves never intersect (nor are
tangent to one another).

Hint: from a point P one has to make a move in the direction of Vp (uniquely). O

Express the results of exercises (2.3.2) and (2.3.3) in the form of a flow &, :
x> xi(t) = &) (r,@) > (r, @ +1) or (x, y) — (xcost — ysint, xsint 4+ ycost);
(x,0) > (x +1,0+21)). O
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2.4 Linear algebra of tensors (multilinear algebra)

e It turns out that each linear space L automatically gives rise to a fairly rich algebraic
structure “above” L —a whole infinite cascade of further and further linear spaces, the spaces
of tensors in L and an co-dimensional associative graded algebra, the tensor algebra T (L),
associated with them. In this section we will become familiar with tensors at the level of
linear algebra, and in the next section we shift to manifolds and introduce the concept of a
tensor field.

Within this section we consider arbitrary n-dimensional linear space L over the field of
real numbers R.

First, we observe that linear forms on L, i.e. linear maps such that

a:L—->R a(v+Aw) =a@)+ ra(w) v,welL,AeR

form a linear space in its own right, the dual space L*. Its elements are called covectors
in L.

Check that the prescription
(@ +2B)(v) == a(v) + AB(v)

introduces a linear structure in L* (i.e. check that the linear combination is indeed a linear
map L — R). a

e The resulting value of «(v) € R will be denoted, as a rule, in the form
(o, v) == a(v)

Given a basis e, in L, there already exists the distinguished basis in L* (tailored to the basis
e, in L).

Lete, be abasisin L and letv =) ;_, vPe, = vPe,. Verify that
(i) the maps
e’ L - R A (We):=v* a=1,...,n

are covectors and, in addition, they constitute a basis in L* (called the dual basis with respect
to e,):

(i1) an equivalent definition of the dual basis is
(e, ep) = 5Z

(iii) a change of the basis in L given by a matrix A results in the change of the dual basis given by
the inverse matrix A~

— a
e e, =Aje, = &> =(AT")e
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(iv) the dimension of a dual space equals the dimension of the original space: dim L* =dim L (= n).

Hint: (i) check that o and (¢, e,)e” are equal linear maps; (iv) consider the number of
elements of the dual basis. g

e Since L* is an n-dimensional vector space in its own right, the whole story may be
repeated again and one can construct the dual space (L*)*. It turns out, however, that this
space is (for finite-dimensional L) in a sense redundant. The reason is that it is canonically
isomorphic to the original space L. What do we mean by this and how can one profit
from it?

In general, any two n-dimensional linear spaces are isomorphic, but there are an infinite
number of equally good isomorphisms available (e, — E,, for arbitrary choice of basis
E,), so that there is no reasonable (independent of arbitrary choices) way to choose a
preferred one. This is true, in particular, for the relation L <> L*. (Try, for example, to
describe your favorite isomorphism to a remote extraterrestrial, who is well educated in
linear algebra and understands all the steps you dictate.) Exercise (2.4.3) shows, however,
that for L — (L*)* the situation is essentially different. In this case, there is a distinguished
isomorphism f, which can be described to our remote extraterrestrial friend and he or
she or it will know what maps into what. This isomorphism suggests using a standard
mathematical trick — identification of the spaces L and (L*)*, and, by analogy then, the nth
with the (n — 2)th dual spaces. Only the first two members, L and L*, thus survive from the
threatening looking, potentially infinite chain of still higher and higher dual spaces. (This,
in a moment, will result in the fact that we will make do with only two kinds of indices,
“lower” and “upper,” on general tensors.)!” If a non-degenerate bilinear form were added
to L, the situation would change significantly, since it would be possible already to identify
L with L* in a canonical way (via the “raising and lowering of indices” procedure, see
(2.4.13).)

Prove that the space (L*)* is canonically isomorphic to the space L.
Hint: the canonical isomorphism f : L — (L*)" is (f(v), @) := («, v). [l

Imagine we have defined a “canonical” isomorphism L <> L* with the help of dual
bases by

fleq) :=e"

(i.e. v < «a, if they have equal coefficients of decomposition with respect to e, and e?
respectively). Check that if we change the basis as e, > A’ey, the isomorphism above will
be changed (and since in general L all bases are equally good, no distinguished f is given
in this way). O

17 This step saves the huge number of higher dual spaces as well as various kinds of indices for future generations, so it can
be regarded as highly satisfactory far-sighted behavior from an ecological point of view; one should not lavishly waste any
non-renewable resources, including mathematical structures.
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e Let us have a look at one aspect, common for linear spaces L, L* and R. One may, in
all three cases, regard their elements as linear maps into R, namely

1. ael* maps vi> (@,v)eR (vel)
2. velL maps ar (a,v)eR (xel”
3. aeR maps fPr—>aekR (no input and a real number as output).

Although item 3 might look fairly far-fetched, it proves convenient to incorporate it as a
gear-wheel into a device, which in general operates as follows: several vectors as well as
covectors are inserted and (after a crank is turned, of course) a real number drops out.
Moreover, if this number depends linearly on each argument (which holds for all three
cases, albeit trivially for the third case), we get a tensor.

Definition Let L be an n-dimensional linear space and L* its dual space. A fensor of type
(fl’ ) in L is a multilinear (= polylinear := linear in each argument) map

t:Lx - xLxL"x---xL*=>R

q p
w,...,wia,..., )~ tlv,...,w;a,..., ) €R
N —— —— .’

q P

tG...,v+r2w,...)=t(..,v,...)+Art(...,w,...)

(and similarly for an arbitrary covector argument). A collection of tensors of type (Z ) inL
will be denoted by qu(L), and for p = g = 0 we set Té)(L) =R.

Check that
(i) fort, 7t € qu(L), A € R, the rule
t+r0)v,...;a,...):=tv,...;a,...)+At(v,...;0,...)

introduces a linear structure into Tr(L) (i.e. the linear combination displayed above indeed
happens to be a multilinear map)
(i1) some special instances are given by

TX(L) =R (L) = L* T (L)~ L
T!(L) ~ Hom (L, L) ~ Hom (L*, L*) T)(L) = By(L)

where Hom (L, L,) denotes all linear maps from L, into L,, B,(L) are bilinear forms on L and
~ denotes canonical isomorphism.

Hint: (8), ((1)) and ((2)) definitions, ((')) (2.4.3); (}) the isomorphisms Hom(L, L) — T,/(L)
and Hom (L*, L*) — T,/(L) read

t(v; ) = (o, A(v)) and t(v;a) ;= (B(a), v)
or, equivalently (in the opposite direction),

AW) :=t(v; +) B(a) :=t(-;a) O
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e Taking into account (multi)linearity, atensort € qu (L) is known completely if we know
its values on all possible combinations of basis vectors e, and covectors e“. This collection
of numbers

d
=1t(e,, ..., ep e, ..., e%)

is said to form the components of the tensor ¢ with respect to e,. The mnemonic rule of the
notation (g ) should finally be clear: a tensor 7 is in the space T, (L) if its components have
p upper indices and g lower indices.

Check that

(i) in components, the rule for performing linear combinations from (2.4.5) reduces to
(t +A0)Gg = 1075 + ATy

(i) dim TP(L) = nP*4 = (dim L)?*? (the number (p + ¢) is known as the rank of a tensor)
(iii) under the change of basis in L, components of a tensor transform as follows:

eat> Aley=e = =AY (ATYALLL AN
(iv) if v = v, ¢ = a, e’ . .. represent the decompositions of arguments, then
t,...,wia,..., B =1t" ,‘fv" whae ... By
(v) three different applications of a (})-type tensor ¢ from (2.4.5) in components look like
W, o) > tivba, v > P o, > oy,

Hint: (ii) £ > ¢ is the isomorphism 7,/ (L) — R""™ (each of (p + ¢) indices takes n

values); (iii) 'S ‘f, =t(e), ..., e?) + linearity in each argument. O

e Thus we have learned that L induces an infinite number of further linear spaces —
for each pair (p, ¢) of non-negative integers there is the n”™-dimensional space 7, (L).
(This means that if we envisage tensor spaces as a
“tower,” the tower dilates in the upward direction,
like a pyramid does on a photograph snapped in Giza
by a distrait yogi, forgetting he has just performed
a headstand.)

If we combine components with a suitable basis,
we get “complete” tensors. It turns out that a suitable
basis may be constructed out of the basis for vectors
and covectors, if an additional operation on tensors is introduced, the tensor product. It may
be regarded as a map

. P ptp’
R : TqP(L) X Tq, (L) —> Tq+q (L)

i.e. two tensors of arbitrary types ( ) and ( ) are multiplied — contrary to linear combi-

nation, where both types have to be equal — and the resulting tensor is of type (p 4 ) The
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definition is as follows:

E®o)vi, ..., Vg, W, ..o, Wyrs &Y, ., 0, Br, ey Bp)
=1, . ovgsar, ., ap)o (Wi, ., wes B, L., By)
(here the indices label complete vectors and covectors, rather than their components!).
Stated in words, we first insert the arguments of both types into the first (left) tensor, until it

is filled completely; the rest we put into the second (right) one. The resulting two numbers
are then simply multiplied.

Verify that

(1) the result of the multiplication ¢ ® o is a tensor, indeed (i.e. check multilinearity)
(ii) at the level of components the multiplication ® gives

(t @) 5 = 15000
iii) the multiplication ® is associative (we need not bother about brackets in multiple products),
p ple p

bilinear and non-commutative
(iv) tensors of type (p, q)

QR Qe ® - ®eseT](L)

constitute the basis of TP (L) with respect to which components have been defined above, i.e. an
arbitrary tensor t € 17 (L) may be decomposed as

t=t19"® . @’ ®e.®---Qey 1 = t(egy ..., eps e, ..., %)

Hint: (iv) one has to check that the “original” tensor and its decomposition represent
the same map; since they are (multi)linear, it is enough to check it for the basis; as an
example

d b o d b b b

(tge ® ec) (eq;€”) =t5(e, ea) (e’ ec) =t] =t(eqz;€”)
thus the equality tg‘,'ed ® e, =t of maps (= tensors) has been proved. O
o Theresult (2.4.7) shows that all tensors constitute an (co-dimensional non-commutative)

associative algebra (Appendix A.2), called the tensor algebra T(L). As a linear space, it
is a direct sum of all spaces T, (L)

T(L) = P 17(L)

r,s=0

=TT/ (LOTNL)STHLYS T (L) TIL)S - -

(up to infinity), i.e. an element from 7'(L) may be regarded as a linear combination of
tensors of all types (Z ) Multiplication ® is defined as a linear extension of the definition

of ® on homogeneous terms (terms with fixed (Z )), i.e. according to the rule “everybody



2.4 Linear algebra of tensors (multilinear algebra) 39

with everybody”:'®

k+v+ta+--)Q@+w+pB+--)=kQ@q+kQuW+kQB+---
TvR®g+tv@wt---

Furthermore, this algebra is (Z x Z)-graded (Appendix A.S): its “homogeneous” subspaces
T, (L) are labelled by a pair of integers (p, q), i.e. (we define T, (L) := 0 for negative p, q)
by an element of group Z x Z, and multiplication in algebra 7' (L) is compatible with the
grading: the product of any two elements from the subspaces <> (p, ¢)and (p’, ¢') € Z x Z
is homogeneous, too, belonging to the subspace which corresponds to a product in the sense
of ZxZ,ie.(p+p,q+q).

Operations producing tensors from tensors, are said to be tensor operations. So far we
have met linear combination and tensor product. One further important tensor operation is
provided by contraction. It is defined (for p, g > 1) as follows:

C:T/(L)—T/N(L) 1> Cti=t(..  eq...;....¢" ..)

where the exact position of arguments e, and e is to be specified — it forms a part of the
definition (there are several (pq) various possible contractions, in general, and one has to
state which one is to be performed).

Check that

(1) the result is indeed a tensor (multilinearity)
(i1) C does not depend on the choice of the basis e, (when e, has been fixed, however, e“ is to be the
dual)
(iii) in components the rule for C looks like'”

L i.e.  asasummation with respect to a pair
of upper and lower indices

(iv) independence of a choice of basis results from the component formula, too.

Hint: (ii) see (2.4.2); (iv) see (2.4.6). ]

Show that

(i) the prescription
(Vi) := (a, V)

defines a (})-type tensor, the unit tensor
(ii) its components with respect to any basis e, (e¢“ being dual, as usual) are given by

¢ =5¢ sothat T=e"®e,

'3 The maximum promiscuity rule.

19 Bach contraction thus unloads a tensor by two indices. It breathes with fewer difficulties immediately (fewer indices = fewer
worries), it feels like after a rejuvenation cure. This human aspect of the matter is reflected sensitively in German terminology,
where the word Verjiingung (rejuvenescence) is used.



40 Vector and tensor fields
(iii) it realizes the unit operator (v — v, @ > «) if it is interpreted as a map
i:L>1L and i:L*> L*

respectively
(iv) its contraction (2.4.8) gives

Hint: (iii) see (2.4.5). O
Show that the evaluation of a tensor on arguments may be regarded as a composition
of tensor product and contractions; as an example, for a ({)—type tensor it is
t,a)=CCtRuRa) =V R oz)ZZ = Qv®a)ep, e e, )
In particular, (see exercise 2.4.8),
{(v,0) = (@, v) = Cla @ v) O

e A metric tensor in L is a symmetric non-degenerate tensor of type ((2)), ie. g e TXL)
such that

g(v, w) = g(w, v) symmetric
gw,w)=0forallw = v=0 non-degenerate
Check that
®
8ab = &ba detgu, #0
(ii) conditions in (i) do not depend on the choice of basis ¢,. O

e Sometimes one demands that g meets stronger requirements, namely to be positive
aleﬁm'te,20 so that

g(v,v) >0 (and equality holds only for v = 0)

and (metric) tensors, which are not positive definite, are said to be pseudo-metric tensors.
We will use, in what follows, the nomenclature metric tensor also for g, which is not positive
definite,”! and if some statement relies heavily on the positive definiteness of the latter (i.e.
“true” metric tensor), it will be specially emphasized.

As is well known from linear algebra, one can bring a matrix of a general symmetric
bilinear form by a suitable (non-unique) choice of basis ¢, to the canonical form

by = diag(l,...,1,—1,...,—1,0,...,0)
—_—— ——— — — —
r s 1
20 Then (v, w) := g(v, w) has the properties of a scalar product in L, see (2.4.13).

21 This is the case both in special and in general relativity, where one speaks of a “metric” in situations where in finer terminology
pseudo-metric tensor (or even tensor field) should be used.
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where the numbers (r, s, [) are inherent properties of the form (Sylvester’s theorem). Non-
degeneracy adds / = 0 (why?), so that the canonical form of a metric tensor reads as

8ap = Nap =diag (1, ..., 1,—1,...,—-1)
——— S ——
r )
or, in other words,
g:gabea®eb
:el®el+”.+er®er_er+l®er+l_”._er+s®er+x

In this case we will speak about a metric tensor with signature (r, s).*> Thus, the positive

definite case corresponds to s = 0 (terms with a minus sign are not present in the canon-
ical form). Any basis e, <> e“ in which this canonical form of g is obtained is called an
orthonormal basis.

2.4.12| Givene, anarbitrary basis and g,, = g(e,, ep), define g°? as elements of the inverse
matrix to gup, i.e.

8" e =8}
Prove that

(i) g constitute the components of a (symmetric) (5)—type tensor (so that they indeed deserve two
upper indices)

g=gwe’ ®e e TZO(L) = g li=g%,®e¢, ¢ TOZ(L)
(ii) matrix g* is non-singular.

Hint: (i) check the transformation law of g’ under a change of basis. O

2.4.13| Consider the maps b, and , given by
be: L — L* V> bov = g(v,-)
o1 L* — L a> o= g e, )

Check that

(i) they are linear (and canonical) isomorphisms
(i1) when expressed in bases and in components, they look like

b

be : e, > ga;,eh v v, = gapv vie, > vet

f e’ > g%e, a, > a = g%, age’ > ale,
(iii) they are inverse to each other:

bg [0} ng = ldL* ﬁg O bg = ldL

22 Sometimes, the number r — s is called the signature, too.
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(iv) if scalar products in L and L* are introduced® by
(v, w) =g, w) = guv'w’ (o, )= g (@ B) = g"aups
then both b, and ff, are isometries, i.e. (byv, bow) = (v, w), (0, #,8) = (@, B). O

o The maps b, and . are known as lowering and raising of indices (with the help of g),
respectively. The quantities v,, v* are often called covariant and contravariant components
of (the same) vector v. We will not adopt this nomenclature, however. We will always strictly
discriminate between a vector v = v?e, and a covector v,e (as being elements of L and
L*) and interpret the operations of raising and lowering of indices as maps between two
different spaces L <> L*. Note that the graphical expressions used for these maps originate
from well-known musical symbols.?*

The metric tensor makes it possible to change the position of indices on higher rank
tensors, too, for example

. d b . e
t}?(‘ = labe *= 8ad Uy, Rfd > Rabed = Gae &bf ch
This belongs to basic exercises of index gymnastics.”

2.4.14| Prove the validity of the exercise

Hint: do you intend to base your proof upon the fact that the total potential energy remains
unchanged? (Red herring.) O

e There are several possibilities of how to raise or lower indices on second or higher rank
tensors, differing in the order of the indices on the resulting tensor. As an example, there
are four places below where one can lower the index on the fourth rank tensor R},

. J . J
Rapea == gﬂijcd Rapea = gbjRacd

The indices are sometimes written so as to have only one index on each vertical line, being
either upper or lower, e.g. Rabc 4 Within this particular convention, it is always clear where
exactly any upper index should be lowered.

It is useful to realize that symmetry of the metric tensor g is of no importance for raising
and lowering of indices, the only property that matters being its non-degeneracy. These
operations might as well be defined by virtue of an antisymmetric tensor w,, = —wpq,
provided that it happens to be non-degenerate (det w,, # 0). We will see in what follows
that this possibility is indeed exploited, the most prominent applications being in symplectic
geometry (to be discussed in Chapter 14 and beyond) and in the theory of two-component
spinors (12.5.3).

23 They are positive definite for Euclidean g only!

24 Namely “flat” and “sharp.” Thoughtful graduates of schools of music might recall that no g was present on sharps and flats
they had read in sheets of music — this is simply because the validity of Euclidean geometry is normally assumed in concert
halls, so that musical flats and sharps are conventionally associated with this Euclidean g (and are not indicated explicitly).

25 It should be performed, as is the case for arbitrary gymnastics, at an open window, never directly after a substantial meal.
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Finally, let us contemplate whether the lowering and raising of indices does change the
numerical values of components. The formula v¢ — v, = gup v? shows that the numbers v*
and v, are the same only in the case where g is given, in a given basis, by the identity matrix,
8ab = 84p. This (only) happens to be true in the positive definite case in the orthonormal
basis; in the indefinite case, this happens in no basis. Therefore, when working with vectors
in Euclidean spaces E? or E*, one may safely ignore the detailed position (upper/lower)
of indices with respect to an orthonormal basis.*® On the other hand, one should pay due
attention to this issue in all cases when non-orthonormal bases or indefinite metrics are
used. In Minkowski space, for example, the lowering and raising of indices always changes
numerical values of (some) components; in an orthonormal basis this change reduces to the
change of a sign (of some of them), but it may be more complicated in general.

2.4.15| Check that raising and lowering of indices

(i) are tensor operations
(i1) may be regarded as compositions of a tensor product (with the tensor g) and contractions.

Hint: e.g. bov = g(v, ) = C(g ® v). O

e Thelast tensor operations to be mentioned are symmetrizations and antisymmetrizations
in various subgroups of indices. Let us illustrate this on just two indices.

2.4.16] Given t € TY(L), define

1
S = E(tab + tha)e® ® e’ = t(ab)e“ ® eb

1
= E(t“b — ) ® e’ = tapie” ® e’

(symmetric and antisymmetric part of the tensor ¢ respectively). Check that
)

S

t> 15 =75 T

are tensor operations, independent of the choice of ¢,
(ii) tensors, for which ¢t = 15 or = t* is true, constitute subspaces in (L)
(iii) 75 and 7# satisfy
aSonS=n8 mSonA=alonS=0
ahomh =nxh sS4+ art=1
so that they serve as projection operators on the subspaces of the symmetric and antisymmetric

tensors mentioned above, the whole space T,)(L) being the direct sum of these two subspaces
(only). O

e Finally, two more useful concepts will be introduced at the end of this section on
multilinear algebra, namely those of a dual map and an induced metric tensor.

26 That is, at the level of components one is allowed to make no difference between a vector and the associated covector, like the
gradient as a covector and a gradient as a vector, see the end of Section 2.6.
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2.4.17) Let A: L; — L, be a linear map, ¢; a basis of L; and e, a basis of L,. The
rank of the map A is defined as a dimension of the image of the space L; in L, i.e. rank
A :=dimIm A. Show that

(i) by the prescription
(A*(ap), v1) := {2, A(V1)) a, e Ll v el
a linear map
A*: Ly — L}

is defined (dual map)
(ii) on the basis it gives

A A ;
e~ Ale, = ' Ale
i.e. matrices of the maps A, A* are transposes of each other
(iii)
rank A = rank of the matrix of a map A
rank A* = rank of the matrix of a map A*

(iv) rank A = rank A* (= that the row and column ranks of a matrix happen to coincide).

Hint: (iv) use adapted bases: a part of e; is a basis of the kernel Ker A of the map (those
v for which v — 0 € L,), the rest are chosen arbitrarily to complete a basis; in L, take
images of the remaining part (they span Im A) + complete a basis. O

2.4.18] Given A : Ly — (Ly, h), dim L < dim L, a maximum rank linear map (2.4.17)
(h being a metric tensor in L), show that
(i) by the rule
g:=A%h (A*h)(v, w) := h(Av, Aw)

a metric tensor g in L, is defined (induced metric tensor)
(i) if e; € L, and ¢, € L, are bases, then

8ij = A?habAi’. Ae; =: Ale, (in matrix notation g = ATh A)
Hint: (i) (among others) one has to check the maximum rank (2.4.13) of the map
bg:L; — Lj Vi g(v, ) =T =byv

(= non-degeneracy of g). This map is a composition of

by,

by =A*obyoA L5 L% LIS LY (A*in the sense of (2.4.17))

(since e; > gjje/ = AfhabA';ej ), all factors in the composition do have maximum rank
and dim L; < dim L, = b, is a maximum rank (= dim L) map, too. O
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2.4.19| Let V be a linear space with a distinguished subspace W C V. Show that in the
dual space V* the associated distinguished subspace W C V* of dimension dim V minus
dim W is given canonically; it is said to be an annihilator of the subspace W.

Hint: consider covectors o € V* annihilated by vectors from W, i.e. such that (o, w) =0
for all w € W (see also (10.1.13)). O

2.5 Tensor fields on M

e In Section 2.2 we showed that there is a vector space associated with each point P of
a manifold M, the tangent space Tp M. In Section 2.4 we learned how to construct tensors
of type (f; ), starting from an arbitrary finite-dimensional vector space L. If we now take
L to be the space Tp M, we immediately get (with practically no labor — it simply suffices
to harvest the crop sown earlier in Section 2.4) tensors at the point P € M. In particular,
the dual space to Tp M, the space of covectors in P € M, is called the cotangent space in
P and it is denoted by Ty M.

Equally naturally the concept of a fensor field of type ( ;’ ) on M appears. In full analogy
with the special case of a vector field, one has to choose exactly one tensor of type (f]’ )
residing at each point of a manifold M. Once again, we restrict to fields which vary smoothly
from point to point. In order to formulate this succinctly, an algebraic perspective is useful.
In particular, one should realize what kind of maps tensor fields actually are.

An individual tensor of type (Z ) in P € M takes as its arguments vectors and covectors in
P, and the result is a number which depends linearly on each of the arguments. At the level
of fields, this happens in each point P € M. It is convenient to regard it as if we inserted
vector and covector fields as arguments of a tensor field, obtaining a number at each point,
i.e. a function. Since at each point linearity over R is required, one has to demand linearity
over F(M) for fields. Let us clarify this subtle point in more detail. Consider a covector
field o. At each point P we have «p, and the value Vp of a vector field V is inserted in it
as an argument. In this way we obtain a function

(a, V) € F(M) (a, V)(P) :== (ap, Vp) € R
Since «p is a covector, for any A € R it holds that
(ap, Vp +AWp) = (ap, Vp) + Aap, Wp)
At a different point Q # P we have
(g, Vo +AWg) = (ag, Vo) + Aag, Wp)

Both results should be valid, however, for arbitrary X, so that A present in the formula cor-
responding to the point P may be completely different from X in the formula corresponding
to the point Q — a “constant” A may depend on a point, and therefore for any function
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f € F(M) we must have
(o, V+ fW)=(a, V) + fla, W)

This is said to be the F(M)-linearity of the map o, which should be contrasted with
the weaker requirement of R-linearity. At the same time, we see the important fact that
the property of being F(M)-linear ultimately springs from the pointwise character of the
construction (the expression (e, V') is in fact («p, Vp) performed in each point P). The
F(M)-linearity means that the arguments (vector fields in the case of a covector field)
constitute a module over the algebra (M) and the map

o TH(M) — F(M)

is linear in the sense of modules.

In terms of these maps the smoothness of a covector field is easily stated: « is said to
be smooth (of class C*) if the function (c, V) is smooth for any smooth vector field V.
Smooth covector fields on M will be denoted by TIO(M ).

Given a, B € (M), f € F(M), check that also o + fB € T’(M), if the linear
combination is defined as

(@+ /B, V) :=(a, V) + f(B. V).
|

e This means that not only vector fields, but also covector fields constitute an F(M)-
module. Now, it is clear from this perspective that a tensor field of type (2’ ) may be regarded
as a map

T M) x - x T M) x TAM) % - - x TAM) — F(M)

q p

which is F(M)-linear in each argument. If the resulting function happens to be smooth for
arbitrary smooth arguments, the field ¢ is said to be smooth. Smooth tensor fields of type
(;’ ) on M will be denoted by 7,” (M), the case of 7 (M) being identified with F(M). (This

makes the notation %I(M ) comprehensible for vector fields, too.)

Check that each qu (M) is naturally endowed with the structure of an F(M)-
module. O

e If we make a comparison between tensors in L and tensor fields on M, we can say that
virtually everything goes the same way, if we substitute 7,” (L) by 7,/ (M), linear spaces by
F(M)-modules and R-linearity by F(M)-linearity.

In particular, let us look more closely at the properties of tensor algebra. This concept may
be readily transferred to a manifold, after performing the substitutions mentioned above:
one takes the direct sum of all modules qu (M)

[ee]

T(M) = @ 1) (M)

P.q=0
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(itis an F(M)-module, too) and defines there a pointwise product ®, just like in Section 2.4.
This algebra, the algebra of tensor fields on M, is oo-dimensional (which looks much the
same as for 7'(L)), but here already each homogeneous part qu (M) is co-dimensional (over
R; the most salient difference occurs for the lowest degree (g): R < F(M)). On higher
degrees, the situation is repeated in the form we met already in Section 2.2: although the
spaces 7,/ (Q) are oco-dimensional even on “sufficiently small” domains O C M (e.g. in
coordinate patches O < x'), when regarded as linear spaces, they are finitely generated,
when regarded as modules. And what do the basis tensor fields actually look like, with
respect to which decomposition is to be performed?

We have seen in Section 2.4 that the most natural basis in L*, with respect to a given
basis e, in L, is the dual basis e?. At the same time, for vector fields we know a coordinate
basis 9;. What does a basis for covector fields look like which is dual (in each point) to this
particular basis?

Let f € F(M), and letx' be local coordinates in O C M. Check that
(i) by the prescription
(df,vy=Vf

a covector field df on M is defined. This field is called the gradient of the function f
(ii) gradients of coordinates (= functions!) dx’ € ’TIO(O) constitute a basis for covector fields on O,
i.e. any o € 7,°(O) may be decomposed in the form

o = o;(x)dx’ a;(x) := (a, &) (= components with respect to the basis dx’)

and, in particular, for a gradient we have

. 0 .
df = f;dx' = f_ dx'

ax!

(iii) covectors dx'|p constitute a basis for covectors in P, which is dual to the coordinate basis 9;|p
i) for vectors in P (the basis dx’ is said to be a coordinate basis, too)
iv
(@, V) = a;(x)V'(x)
(v) under the change of coordinates one has (J being, as usual, the Jacobian matrix)
X x(x) = dx' > dx" = Jj(x)dx’ and  (x) > aj(x) = (J_l){(x)a_,-(x)

Hint: (i) see (2.2.12); (v) set f = x"* in (ii). O

e Since we already have the dual basis dx' to 9;, we may write down component decom-
positions of arbitrary tensor fields.

Check that if t € 7./ (M), then
(i) locally (in O <> x) it holds that

t=610dr @ ®d' @4 ®- -0
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(i1) under the change of coordinates x — x’ components transform according to the formula
e RO O LA )]

= JI(x) .. IO ) . (T o (x)

g
Prove that the module ’];p (O) has n?*4 generators.
Hint: see (2.5.4) and (2.4.6); 1,/ € F(O). u

e Theresult given in (2.5.4) might serve as a basis for an independent definition of a tensor
field on M (definition of classical differential geometry; refer to definition no. 4 of a vector in
Section 2.2): the tensor field of type (g ) on M is a collection of functions t,i:::lj (x) associated
with coordinates x' defined in patches O <> x', transforming under the changes of coordi-
nates according to the rule given in (2.5.4). Note that a global object on M is defined here
in terms of its pieces (components t,i:::lj (x)on O C M) as well as a rule of how to globalize
them, i.e. how to glue these pieces together consistently so as to obtain a desired whole. In
order to make this method work, one has to ensure that the rule for transition from one piece
to another satisfies a consistency condition on triple overlap of charts (see (2.2.6)): two steps
x > x’' > x” are to lead to the same result as a single one x — x”. This may be regarded
actually as a requirement, namely that the rule should have particular group properties —
coordinate changes on triple overlaps are naturally endowed with the structure of a group
(multiplication being realized as a composition of the two transformations involved) and the
transformation rules are to have the properties of “action” of the group (in particular, its rep-
resentation in linear spaces, as is the case here; see Section 12.1). Some of these rules may be
fairly complicated (e.g. the rule for Christoffel symbols of a linear connection, see (15.2.3)),
but the property of group action is necessary for a globally defined object (and sufficient as
well).

Check that the rule given in (2.5.4) for transformation of components of a tensor
field meets the requirement of consistency on triple overlaps of charts.

Hint: consider the behavior of Jacobian matrices for the transitions x — x’ — x”. O

Prove that a tensor field is smooth if and only if its components happen to be smooth
(and this does not depend on the choice of coordinates). O

2.6 Metric tensor on a manifold

e On a manifold M, tensor fields of arbitrary type (Z ) may be introduced. The only
canonical (existing automatically) tensor field on a general manifold is the unit tensor field
1 of type (}) (its other names being the contraction tensor or canonical pairing; note that
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the tensor product of several copies of this tensor as well as all possible symmetrizations
and antisymmetrizations of such products are canonical, too)

WV,0):=(a, V) ie. 1(V,H)=V, 1(-,0)=«
Check that

(i) in coordinates
l=dx'®ds e 1
(i) the expression in (i) does not depend on the choice of coordinates (see (2.4.9)). O

e All other tensor fields on a manifold have to be specially defined and they provide
additional structure on M. What particular manifold we choose and what tensor fields it is
endowed with depend ultimately on the physical context in which the tools of differential
geometry are intended to be used (they represent input data, which characterize the problem
in geometric language). In the majority of physically interesting applications of geometry
(although not in all of them) a metric tensor on a manifold enters the scene, i.e. a field
g€ 7'20(M ) such that for each point P it is a metric tensor in 7p M in the sense of (2.4.11).
It is a fairly “strong” structure, indeed, which enables one to perform various operations
directly (such as lowering and raising of indices, association of lengths and angles with
vectors, etc.), but it also induces various additional structures (linear connection, volume
form, etc.) as well. A manifold endowed with a metric tensor, i.e. a pair (M, g), is said
to be the Riemannian manifold and the branch of geometry which treats such manifolds
is Riemannian geometry. If g is not positive definite (see the text just after (2.4.11)), one
sometimes speaks about the pseudo-Riemannian manifold and geometry and, in particular,
about the Lorentzian manifold and geometry for signature (4, —, - -+ —) or (—, +, - - - +).

Check that in the coordinate basis it holds that
be(Vd;) = V;dx' fe(o; dx') = a'd;
where
Vi = g,-jVj o = gijozj
Hint: see (2.4.13). U

The simplest n-dimensional manifold is given by Cartesian space R". Here the standard
(flat) metric tensor of signature (r, s) (r + s = n) is introduced; by definition, in Cartesian
coordinates we put

g,j:nljzdlag(l,,l,—l,,—l)
—_— —o

ie.

g=njdx' @dx/ =dx' ®dx'+--- +dx"@dx" —dx""' @dx" — ... — dx" @ dx"
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This manifold will be denoted by (R”", n;;) = E"™* from now on (and called the pseudo-
Euclidean space), and, in particular, in the positive definite case (R”", §;;) = E" (the Eu-
clidean space).

Let us have a closer look at the motivation for this definition in the most mundane
spaces EZ and E3. In a common plane E? it says, for example, that the length of the two
vectors d, and 9, is (at each point) 1 and that these vectors are orthogonal to each other.
For |9,]> = g(d, 8,) = (dx ® dx + dy ® dy)(dy, d,) = 1, the rest similarly. This shows
that the definition nicely matches our intuitive conception of metric conditions in the usual
plane.

Write down the metric tensor in the common plane E? in polar coordinates. (g =
dx @dx +dy @dy =dr @ dr +r*de @ dg.) O

Cartesian polar

Write down the metric tensor g in the common three-dimensional space E3 in
Cartesian, cylindrical and spherical polar coordinates.
Result:

g=dx®dx+dy®dy+dz®dz Cartesian coordinates
=dr@dr +r’de ®do +dz ®dz cylindrical coordinates
=dr @dr+r*dd @dv +r’sin’ ¥ dy @ dp spherical polar coordinates

O

e This kind of computation can be done either making use of transformational properties
of tensor components (i.e. reading components from its expression in Cartesian coordinates,
using (2.5.4) or (2.4.18) and “gluing together” a new coordinate basis with new compo-
nents), or computing new “differentials” (= gradients of coordinates), first, according to
(25.3),eg.in (2.6.3) dx =x,dr +x ,dp =cospdr —rsingdg, and then exploiting
bilinearity of the tensor product. As a rule, this alternative method is quicker for simple
metric tensors. In elementary situations (like that mentioned above) one can see, after a bit
of practice, the result directly from the visual conception of what the geometry is about on
a particular manifold, see (3.2.11) and (3.2.12).

Check that the non-Cartesian coordinate bases in (2.6.3) and (2.6.4) are orthogonal,
but they are not orthonormal.

Hint: see the text prior to (2.4.12). O

e If some local coordinates on (M, g) induce at each point the orthogonal coordinate basis
of the tangent space, they are said to be orthogonal coordinates. We have learned above
that, besides Cartesian coordinates, also polar coordinates in £ and spherical polar as well
as cylindrical coordinates in E3 (and various others, too; e.g. see (3.2.2)~(3.2.7)) deserve
to be titled by this prestigious nomenclature.

A manifold (R*, »; )=E 13 with signature (1, 3) is called Minkowski space and it plays
a featured role in the special theory of relativity (being the space-time there; see more in
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Chapter 16). Cartesian coordinates are usually labelled in this particular case as (x°, x7),
i =1,2,3, x" =t being time and x’ corresponding to Cartesian coordinates in our good
old R? (the choice of units with ¢ = 1 is adopted).

Write down the Minkowski metric 5 in spherical polar and cylindrical coordinates
(i.e.(t,r, 9, @) and (¢, r, ¢, z) respectively instead of (¢, x, v, z)). (n = dt @ dt — h, h from
(2.6.4).) O

e An important metric tensor is unobtrusively hidden in the expression for the kinetic
energy of a system of particles.

Given (r((z), ..., ry(?)) a trajectory of a system of N point masses in mechanics,
we may regard it as a curve I'(¢) on a manifold M = R3 x --. x R? = R3", Check that
the kinetic energy of this system induces the particular metric tensor i € ’]’20(M ) on R3V
(being different from the standard one, in general) by

1 . .
kinetic energy =T = Eh(l", I
Hint: if (x, yk, zx) are Cartesian coordinates of the kth point, then h = mh; +--- +
myhy, where hy ;= dx; @ dxy +dy, @ dyy + dzi @ dzk. O

Write down the kinetic energy of a single point mass in Cartesian, cylindrical and
spherical polar coordinates.

Hint: see (2.6.7) and (2.6.4); for a single point mass, & is only a multiple of the standard
metric tensor; one obtains

1
T = Em()'c2 + 32+ 2% Cartesian coordinates
_ 1o 20 0 o ,
= 2m(r +regp” 4+ 2% cylindrical coordinates
1 .
= Em(f2 + r29% + r%sin?0¢?) spherical polar coordinates

O

e The metric tensor turns out to be the essential element for introducing the concept of the
length of a curve on (M, g), too. Let us begin in E3. If a point moves along a trajectory r(z) in
our usual space E?, it traverses (to first order in €) the distance ds = |v|e = €/x2 + y2 + 22
within the time interval between ¢ and ¢ + € (according to the theorem of Pythagoras; this is
the place, of course, where the metric tensor in E 3 is hidden). Note, however, that one can
write this as €/g(y, y) for y < (x(¢), y(t), z(¢)). The length of a finite segment between
P = y(1)) and Q = y(t) is given by [ dr /g(y, 7). The most interesting feature of this
expression consists in the fact that one cannot see from it that (M, g) = E> and Cartesian
coordinates are used. It is then natural to use this very expression for the definition of
the length of a curve in general. One should understand that even in this general case its
meaning remains just the same — for small pieces, the relation “distance = speed x time
interval” is used, and the result is summed over all small pieces (i.e. integrated).
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It is a suitable time now to contemplate the visual meaning of the concept of the length of
a vector V itself. The following is meant by this notion: if we proceed a parametric distance
€ along the vector V, we travel (in the positive definite case) a distance (in the sense of
the length of the curve)?’ €|V| = €./g(V, V). Keeping this in mind one is often able to
derive explicit forms of metric tensors on two-dimensional surfaces in E* simply by a “rule
of thumb” (see (3.2.11); the same is true for curves in E> as well, being fairly useful, for
example, in computing line integrals of the first kind, see (7.7.4)).

There is an alternative way of displaying the metric tensor, which is frequently used
in general relativity, and may be ultimately traced back to the connection between the
length of a curve and a metric tensor. In this convention one writes directly the “square of
the distance” dI? between two points which are infinitesimally close to one another (i.e.
points with values of coordinates being x’ and x’ + dx' respectively), where dx’ denote
infinitesimal increments of the values of coordinates (so that they are not our base covector
fields (!)). For metric tensors from exercise (2.6.4), as an example, we have

di* = dx* + dy* + dz?
=dr? +r? dgo2 +dz?
=dr’ +r*do* +r’sin® ¥ dg?
Although we will not, as a rule, use this convention in the course of the book, it is fairly

common in texts on relativity and one should understand clearly its precise meaning.

Let r — t(o) be a reparametrization of a curve y, i.e. y(o) := y(t(c)). Check that
the functional of the length of a curve (refer to (4.6.1), (7.7.5) and (15.4.8))

5]
length of acurve y =I[[y] := / dt\/g(y,7)

n
is reparametrization invariant, l[y] = [[y], i.e. this expression depends on the image set
of a curve (i.e. on the path; recall that the curve is a map) rather than on a particular
parametrization of this set (on a curve).

Hint: according to (2.3.5) ' = (dt/do)y, therefore do /g(P’, 7)) = dt/g(y, y). O

e Finally, we mention the possibility of introducing the gradient as a vector field. The
gradient df as a covector field has been defined in (2.5.3). If a metric tensor is available, we
can find a vector field, simply by raising the index on the covector df. The resulting vector
field is called the gradient (of a function f), too, and will be denoted by grad f or V f

gradf = Vf :=tdf =g 'df,-) e (V) :=g"Wdf);=¢"f;

A well-known example is provided by the potential force field in mechanics. It is the gradient
of the (by definition negative) potential energy of a system. Here, indices are raised by means

27 Remember that the vector V officially resides as a whole at a single point x and its length is g,(V, V). This length (in the sense
of a scalar product in 7, M) now becomes related with a formally different length, namely the length of a small piece of a curve
y (¢) defined by the vector, the representative of a class specified by the vector V. Both computations need g and the definitions
are intentionally designed so as to make the results coincide.



Summary of Chapter 2 53

of the standard metric tensoron M = R? x --- x R} = RV thatis by & + --- + hy (as
opposed to (2.6.7), where masses are present, too).

2.6.10| Find the lines of electric field of a point charge and of an elementary dipole.

Hint: first, write down equations for integral curves of the electric field E = —V @, i.e.
o= _ gijqj
for
o pr cos ¥
O(r, 9, p) = - resp. D(r, v, @) = ar—3 = (ap) P

(¢ € R) and then disregard parametrization (eliminate d¢ in the separation of variables
procedure; see also (8.5.13)). O

Summary of Chapter 2

For each point x of an n-dimensional manifold M there is the canonically defined n-
dimensional linear space T, M, the tangent space at the point x. Its elements are called
vectors at x. There are several mutually equivalent definitions of this concept, useful in
different contexts. A vector field on a manifold M is a smooth assignment of a vector to
each point x € M. The integral curve of a vector field is the curve whose motion at each
point is just that dictated by the vector of the field at this point. Standard constructions of
multilinear algebra (construction of tensors of type (’q’ ) for a given vector space L) lead to
the notion of a tensor field of type (Z ) on a manifold. In particular, one has functions (type

(8)), vector and covector fields (type ((1)) and ((IJ)), fields of bilinear form (type (g), in the
symmetric non-degenerate case the metric tensor) and linear operators (type (i))

y:R—>M A curve y on a manifold M Sec.2.1
f:M—>R A function f on a manifold M Sec.2.1
e = 0i|p Coordinate basis of Tp M (2.2.6)
a'v a’ = Ji(P)al Transformation of components of a vector in P (2.2.6)
V(ife)=WVfg+ f(Vg) Leibniz rule for action of vector fields (2.2.8)
¥=Vix) (y=V) Equations for finding integral curves of V (2.3.1)
n
v = Z vPe, = vle, Summation convention 24.2)
b=1
(e, ep) =), The base e“ is dual with respect to e, 2.4.2)
£ = t(eq, ..., eps e, ..., eh) Components of tensor € T,P(L) (2.4.6)
v, 1= gapv”, af = g%ay, Lowering and raising of indices by means of g (2.4.13)
df,Vy=Vf Gradient of a function f as a covector field (2.5.3)
T =1inI,T) Kinetic energy of a system of N point masses (2.6.7)
n
Ily]:= / dt/g(y,y) Functional of the length of a curve y (2.6.9)

il
(VI =g"f; (Vf:=t.df) Gradient of a function f as a vector field Sec.2.6
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