
PREFACE

This is an introductory text dealing with a part of mathematics, modern differential geometry and the
theory of Lie groups. It is written from the perspective of and mainly for the needs of physicists. The
orientation on physics makes itself felt in the choice of material, in the way it is presented (e.g. with no use of
definition-theorem-proof scheme) as well as in the content of exercises (often they are closely related to physics).

Its potential readership does not, however, consist of physicists alone. Since the book is about math-
ematics and since physics has served for a fairly long time as a rich source of inspiration for mathematics, it
might be useful for the mathematical community as well. More generally, it is suitable for anybody who has
some (rather modest) preliminary background knowledge (to be specified in a while) and who desires to be-
come familiar in a comprehensible way with this interesting, important and living subject, which penetrates
increasingly into various branches of modern theoretical physics, “pure” mathematics itself as well as into its
numerous applications.

So, what is the minimal background knowledge necessary for a meaningful study of this book? As
mentioned above, the demands are fairly modest, indeed. The required mathematical background knowledge does
not go beyond what should be familiar from standard introductory undergraduate mathematics courses
taken by physics or even engineering majors. This in particular includes some calculus as well as linear algebra
(the reader should be familiar with stuff like partial derivatives, several variables Taylor expansion, multiple
Riemann integral, linear maps versus matrices, bases and subspaces of a linear space and so on). Some experience
in writing and solving simple systems of ordinary differential equations, as well as a clear understanding of what
is actually behind this activity, is highly desirable. Necessary basics in algebra in the form used in the main
text are concisely summarized in Appendix A at the end of the book, enabling the reader to fill particular gaps
“on the run”, too.

The book is intentionally written in a form which makes it possible to be fully grasped also by a self-taught
person - anybody who is attracted by tensor and spinor fields or by fiber bundles, who would like to learn
how differential forms are differentiated and integrated, who wants to see how symmetries are related
to Lie groups and algebras as well as to their representations, what is curvature and torsion, why
symplectic geometry is useful in Lagrangian and Hamiltonian mechanics, in what sense connections
and gauge fields realize the same idea, how Noetherian currents emerge and how they are related to
conservation laws etc.

Clearly, it is highly advantageous, as the scope of the book indicates, to be familiar (at least superficially) with
the relevant parts of physics, on which the applications of various techniques are illustrated. However, one may
derive profit from the book (in term of geometry alone) even with no background from physics. If we have never
seen, say, Maxwell’s equations and we are not aware at all of their role in physics, then although we will not be
able to understand why such attention is paid to them, nevertheless we will understand perfectly what we do with
these equations here from the technical point of view. We will see how these partial differential equations
may be reformulated in terms of differential forms, what the action integral looks like in this particular case,
how conservation laws may be derived from it by means of the energy-momentum tensor and so on. And
if we find it interesting, we may hopefully learn some “traditional” material on electrodynamics behindhand.

If we, in like manner, know nothing about general relativity, then although we will not understand from
where the concept of a “curved” space-time endowed with a metric tensor emerged, still we will learn the
basics of what space-time is from a geometrical point of view and what is standardly done there. We will not
penetrate into the physical heart of the Einstein equations for gravitational field, we will see, however,
their formal structure and we will learn some simple, though at the same time powerful techniques for routine
manipulations with these equations. Mastering this machinery then greatly facilitates to grasp the physical
side of the theory, if we will later read about general relativity something written from the physical perspective.

The key qualification asked of the future reader is a real interest in learning the subject treated in the
book not only in a Platonic way (say, for the sake of an intellectual conversation at a party) but rather at a
working level. Needless to say, one then has to accept a natural consequence: it is not possible to achieve
this objective by a passive reading of a “noble science” alone. On the contrary, a fairly large amount of “dirty”
self-activity is needed (an ideal potential reader should be pleased by reading this fact), inevitably combined
with due investment of time. Formal organization of the book strongly promotes this way of study.

Namely, a specific feature of the book is its strong emphasis on developing the general theory through a large
number of simple exercises (more than a thousand of them), in which the reader analyzes “in a hands-on
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fashion” various details of a “theory” as well as plenty of concrete examples (the proof of the pudding is in
the eating). This style is highly appreciated, according to my teaching experience, by many students.

The beginning of an exercise is indicated by a box containing its number (as an example, 14.4.3 denotes
the third exercise in Section 4, Chapter 14), the end of the exercise is marked by a square �. The majority of
exercises (around nine hundred) are endowed with a hint (often quite detailed) and some of them, around fifty,
with a worked solution. The symbol • marks the beginning of “text”, which is not an exercise (a “theory”
or a comment to exercises). Starred sections (like 12.6.∗) as well as starred exercises may be omitted at the
first reading (they may be regarded as a complement to the “hard core” of the book; actually they need not be
harder but more specific material is often treated there).

This book contains a fairly large amount of material, so that a few words might be useful on how to read it
efficiently. There are several ways in how to proceed, depending on what we actually need and how much time
and effort we are willing to devote to the study.

The basic way, which we recommend the most, consists in systematic reading from cover to cover, solving
step by step (nearly) all problems. This is the way in which we may make full use of the text. The subject may
be understood in sufficient broadness, with a lot of interrelations and applications. This needs, however, enough
motivation and patience.

If we lack either, we may proceed differently. Namely, we will solve in detail only those problems which we,
for some reason, regard as particularly interesting or from which we crucially need the result. Proceeding this
way, it may happen here and there that we will not be able to solve some problem; we are lacking some vital
link (knowledge or possibly a skill) treated in the material being omitted. If we are able to locate the missing
link (the numbers of useful previous exercises, mentioned in hints, might help in doing so), we simply fill this
gap behindhand.

Yet more quickly will proceed a reader, who decides to restrict the study to a particular direction of interest
and who is interested in the rest part of the book only to the extent that it is important for his or her preferred
direction. As an aid to a reader of this category we present here the scheme of logical dependence of the
chapters:
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(The scheme does not represent the dependence completely; several sections, short parts or even individual
exercises would require drawing additional arrows into it, making the scheme then, however, virtually worthless.)

To be more explicit, one could mention the following possible particular directions of interest.

1. The geometry needed for the fundamentals of general relativity (covariant derivatives, curvature
tensor, geodesics, etc.).

One should follow the line 1 - 2 - 3 - 4 - 15 (similar stuff goes well with advanced continuum mechanics). If
we want to master working with forms, too (to grasp, as an example, section 15.6., dealing with the computation
of the Riemann tensor in terms of Cartan’s structure equations, or section 16.5. on Einstein’s equations and
their derivation from an action integral), we have to add chapters 5 - 6 - 7.

2. Elementary theory of Lie groups and their representations (“(differential) geometry-free mini-course”).
The route might contain the chapters (or only the explicitly mentioned sections of some of them) 1 - 2.4 -

10 - 11.7 - 12 - 13.1,2,3

3. Hamiltonian mechanics and symplectic manifolds.
The minimal itinerary contains chapters 1 - 2 - 3 - beginning of 4 - 5 - 6 - 7 - 14. Its extension (the

formulation of Lagrangian and Hamiltonian mechanics on the fiber bundles TM and T ∗M respectively) takes
place in chapters 17 - 18. If we have the ambition to follow the more advanced sections on symmetries (14.5.-
14.7. and 18.4.), we need to understand the geometry on Lie groups and the actions of Lie groups on manifolds
(chapters 11 - 13).
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4. Basics of working with differential forms.
The route could be 1 - 2 - 3 - beginning of 4 - 5 - 6 - 7 - 8 - 9, or perhaps adding the beginning of chapter 16.

This book stems from (and in turn covers) several courses I started to give roughly fifteen years ago for
theoretical physics students at the Faculty of Mathematics and Physics in Bratislava. It has been, however,
extended (for the convenience of those smart students who are interested in a broader scope on the subject) as
well as polished a bit (although its presentation often still resembles more the style of informal lectures than
that of a dry “noble-science monograph”). In order to mention an example of how the book may be used
by a teacher, let me briefly note, what four particular formal courses are covered by the book. The first,
fairly broad one, is compulsory and it corresponds roughly to (parts of) Chapters 1-9 and 14-16. Thus it is
devoted to the essentials of general differential geometry and an outline of its principal applications. The other
three courses are optional and they treat more specific parts of the subject. Namely, (elementary) Lie groups
and algebras and their representations (it reproduces more or less the “particular direction of interest” number
2, mentioned above), geometrical methods in classical mechanics (the rest of Chapter 14 and Chapters 17-18)
and connections and gauge fields (Chapters 19-21).

I have benefited from numerous discussions about geometry in physics with colleagues from the Department
of Theoretical Physics, in particular with Pal’o Ševera and Vlado Balek.

I thank Pavel Bóna for his critical comments on the Slovak edition of the book, Vlado Bužek and Vlado
Černý for constant encouragement during the course of the work and the former also for the idea to publish it
abroad.

Thanks are due to E.Bartoš, J.Buša, V.Černý, J.Hitzinger, J.Chleb́ıková, E.Masár, E.Saller, S.Slisz and
A.Šurda for helping me navigate the troubled waters of computer typesetting (in particular through the subtleties
of TEX) and to my sons, Stanko and Mirko, for drawing the figures (in TEX).

I would like to thank the helpful and patient people of Cambridge University Press, particularly Tamsin
van Essen, Vincent Higgs, Emma Pearce and Simon Capelin. I would also like to thank all the (anonymous)
referees of Cambridge University Press for valuable comments and suggestions (e.g. for the idea to complement
the summaries of the individual chapters by a list of the most relevant formulas).

I am indebted to Arthur Greenspoon for careful reading of the manuscript. He helped to smooth out various
pieces of the text which had hardly been continuous before.

Finally, I wish to thank my wife, L’ubka, and my children, Stanko, Mirko and Danka, for the considerable
amount of patience displayed during the years it took me to write this book.

I tried hard to make Differential geometry and Lie groups for physicists error-free, but spotting mistakes in
one’s own writing can be difficult in a book-length work. If you notice any errors in the book or have suggestions
for improvements, please let me know (fecko@fmph.uniba.sk). Errors reported to me (or found by myself) will
be listed at my web page

http://sophia.dtp.fmph.uniba.sk/˜fecko

Bratislava
Marián Fecko
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0. INTRODUCTION

In physics every now and then one needs something to differentiate or integrate. This is the reason why a
novice in the field is simultaneously initiated into the secrets of differential and integral calculus.

One starts with functions of a single variable, then several variables occur. Multiple integrals and partial
derivatives arrive on the scene, and one calculates plenty of them on the drilling ground in order to survive in
the battlefield.

However, if we scan carefully the structure of expressions containing partial derivatives in real physics
formulas, we observe that some combinations are found fairly often, but other ones practically never occur. If,
for example, the frequency of the expressions
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is compared, we come to the result that the first one (Laplace operator applied to a function f) is met very often,
the second one may be found only in problem books on calculus (where it occurs because of didactic reasons
alone). Combinations which do enter real physics books, result, as a rule, from a computation which realizes some
visual local geometrical conception corresponding to the problem under consideration (like a phenomenological
description of diffusion of matter in a homogeneous medium). These very conceptions constitute the subject of a
systematic study of local differential geometry. In accordance with physical experience it is observed there that
there is a fairly small number of truly interesting (and, consequently, frequently met) operations to be studied
in detail (good news - they can be mastered in a reasonably short time).

We know from our experience in general physics that the same situation may be treated using various kinds

of coordinates (Cartesian, spherical polar, cylindrical,...) and it is clear from the context that the result certainly
does not depend on the choice of coordinates (which is, however, far from being true concerning the sweat involved

in the computation; just that is the reason a careful choice of coordinates is a part of wise strategy in solving
problems). Thus both objects and operations on them are independent of the choice of coordinates used to
describe them. It should be not surprising, then, that in a properly built formalism a great deal of the work may
be performed using no coordinates whatsoever (just what part of computation it is depends both on problem
and the mastership of particular user). There are several advantages which should be mentioned in favor of
these “abstract” (coordinate-free) computations. They tend to be considerably shorter and more transparent,
making repeated check, as an example, much easier, individual steps may be better understood visually and so
on. Consider, in order to illustrate this fact, the following equations

Lξg = 0 ↔ ξkgij,k + ξk
,igkj + ξk

,jgik = 0

∇γ̇ γ̇ = 0 ↔ ẍi + Γi
jkẋ

j ẋk = 0

∇g = 0 ↔ gij,k − Γijk − Γjik = 0

We will learn step by step in this book that the pairs of equations standing on the left and on the right side of
the same line always tell us just the same: the expression on the right may be regarded as being obtained from
that on the left by expressing it in (arbitrary) coordinates.

(The first line represents Killing equations; they tell us that the Lie derivative of g along ξ vanishes, i.e. that
the metric tensor g has a symmetry given by a vector field ξ. The second one defines particular curves called
geodesics, representing uniform motion in a straight line (= its acceleration vanishes). The third one encodes
the fact that a linear connection is metric; it says that a scalar product of vectors remains unchanged under
parallel translation.)

In spite of the highly efficient way of writing of the coordinate versions of the equations (summation conven-
tion, partial derivatives via commas), it is clear that they can hardly compete with the left side’s brevity. Thus
if we will be able to reliably manipulate the objects occurring on the left, we gain an ability of manipulating
(indirectly) fairly complicated expressions containing partial derivatives, always keeping under control what we
actually do.

At the introductory level calculus used to be developed in Cartesian space R
n or in open domains in R

n. In
numerous cases, however, we apply the calculus in spaces which are not open domains in R

n, although they are
“very close” to them.
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In analytical mechanics, as an example, we study the motion of pendulums by solving (differential) Lagrange
equations for coordinates introduced in the pendulum’s configuration spaces, regarded as functions of time. These
configuration spaces are not, however, open domains in R

n. Take a simple pendulum swinging in a plane. Its
configuration space is clearly a circle S1. Although this is a one-dimensional space, it is intuitively clear (and
one may prove) that it is essentially different from (an open set in) R

1. Similarly the configuration space of a
spherical pendulum happens to be the two-dimensional sphere S2, which differs from (an open set in) R

2.

Notice, however, that a sufficiently small neighborhood of an arbitrary point on S1 or S2 is practically
indistinguishable from a sufficiently small neighborhood of an arbitrary point in R

1 or R
2 respectively; they

are in a sense “locally equal”, the difference being “only global”. Various applications of mathematical analysis
(including those in physics) thus strongly motivate its extension to more general spaces than those which are
simple open domains in R

n.

Such more general spaces are provided by smooth manifolds. Loosely speaking they are spaces which a short-

sighted observer regards as R
n (for suitable n), but globally (“topologically”, when a pair of spectacles are found

at last) their structure may differ profoundly from R
n.

We can regard as an enjoyable bonus that the formalism, which will be developed in order to perform
coordinate-free computations, happens to be at the same time (free of charge) well suited to treat global geo-
metrical problems, too, i.e. we may study the objects and operations on them, being well defined on the manifold

as a whole. Therefore, we speak sometimes about global analysis, or the analysis on manifolds. All the above-
mentioned equations Lξg = 0, ∇γ̇ γ̇ = 0 and ∇g = 0 represent, to give an example, equations on manifolds and
their solutions may be defined as objects living on manifolds, too.

The key concept of a manifold itself will be introduced in Chapter 1. The exposition is mainly at the
intuitive level. A good deal of material treated in detail in mathematical texts on differential topology will only
be mentioned in a fairly informative way or will be even omitted completely. The aim of this introductory
chapter is to provide the reader a minimal amount of material which is necessary to grasp (fully, already at the
working level) the main topic of the book, which is differential geometry on manifolds.
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Summary of Chapter 1

The smooth manifold is the basic playing field in differential geometry. It is a generalization of the Cartesian
space R

n (or an open domain in the latter) to a more elaborate object, which (only) locally looks like R
n, but

its global structure can be much more complicated. It is, however, always possible to contemplate it as a whole
in which several pieces homeomorphic to R

n are glued together; the number n, which is the same for all pieces,
is called the dimension of the manifold. The technical realization of these ideas is achieved by the concepts of
a chart (local coordinates) and an atlas (consisting of several charts). The Cartesian product M × N of two
manifolds is a new manifold, constructed from two given ones M and N . Any manifold admits a realization as
a surface, which is nicely embedded in a Cartesian space of sufficiently large dimension.

(x1 − y1)
2 + · · · + (xn − yn)2 Euclidean distance between two points x, y ∈ R

n 1.1.5

ϕ : O → R
n[x1, . . . , xn] chart (local coordinates) in a patch O ⊂ (X, {τ}) 1.3

ϕβ ◦ ϕ−1
α change of coordinates in a patch Oα ∩ Oβ 1.3

(x, y) 7→ (ϕα(x), ψa(y)) ∈ R
n+m atlas for the Cartesian product X × Y 1.3.3

f̂ ≡ ψ ◦ f ◦ ϕ−1 : R
m → R

n coordinate presentation of f : M → N 1.4

ym+1 = . . . = yn = 0 immersion (some coordinates on N vanish) 1.4

f(M) ⊂ N f(M) is a submanifold of N (f = embedding) 1.4

φ1(x) = · · · = φm(x) = 0 smooth constraints (manifold as a surface in R
n) 1.5

xi(u1, . . . , um), i = 1, . . . n ≥ m parametric expression of a manifold 1.5
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Summary of Chapter 2

For each point x of an n-dimensional manifold M there is the canonically defined n-dimensional linear space
TxM , the tangent space at the point x. Its elements are called vectors at x. There are several mutually equivalent
definitions of this concept, useful in different contexts. A vector field on a manifold M is a smooth assignment of
a vector to each point x ∈M . The integral curve of a vector field is the curve whose motion at each point is just
that dictated by the vector of the field in this point. Standard constructions of multilinear algebra (construction
of tensors of type

(

p
q

)

for a given vector space L) lead to the notion of a tensor field of type
(

p
q

)

on a manifold.

In particular, one has functions (type
(

0
0

)

), vector and covector fields (type
(

1
0

)

and
(

0
1

)

), fields of bilinear form

(type
(

0
2

)

, in the symmetric non-degenerate case the metric tensor) and linear operators (type
(

1
1

)

).

γ : R →M a curve γ on a manifold M 2.1

f : M → R a function f on a manifold M 2.1

ei := ∂i|P coordinate basis of TPM 2.2.6

ai 7→ a′i = J i
j(P )aj transformation of components of a vector in P 2.2.6

V (fg) = (V f)g + f(V g) Leibniz rule for action of vector fields 2.2.8

ẋi = V i(x) (γ̇ = V ) equations for finding integral curves of V 2.3.1

v =
n

∑

b=1

vbeb ≡ vbeb summation convention 2.4.2

〈ea, eb〉 = δa
b the base ea is dual with respect to ea 2.4.2

tc...d
a...b := t(ea, . . . , eb; e

c, . . . , ed) components of tensor t ∈ T p
q (L) 2.4.6

va := gabv
b , αa := gabαb lowering and raising of indices by means of g 2.4.13

〈df, V 〉 := V f gradient of a function f as a covector field 2.5.3

T = (1/2)h(Γ̇ , Γ̇ ) kinetic energy of a system of N point masses 2.6.7

l[γ] :=

∫ t2

t1

dt
√

g(γ̇, γ̇) functional of the length of a curve γ 2.6.9

(∇f)i := gijf,j (∇f := ♯gdf) gradient of a function f as a vector field 2.6
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Summary of Chapter 3

Each (smooth) mapping of the points of manifolds f : M → N induces a mapping of tensors living on them.
It is denoted by f∗ if it pushes tensors forward (in the same direction as f , from M to N) and f∗ if it pulls
tensors back (in the opposite direction, from N to M). For diffeomorphisms it is possible to define both f∗ and
f∗ for tensor fields of arbitrary type; if f is not the diffeomorphism, several kinds of problems may occur. There
always exists a pull-back map f∗ for tensor fields of type

(

0
p

)

. In particular, one can induce (via pull-back) a

metric tensor on M from a Riemannian manifold (N,h), giving rise to a Riemannian manifold (M, g), g = f∗h.
The most common instance of this procedure is that one induces a metric tensor onto a submanifold M of the
Euclidean space N = En (or more generally Er,s), starting from the canonical metric tensor h = η on N .

f∗ψ := ψ ◦ f pull-back of a function ψ 3.1.1

f∗[γ] := [f ◦ γ] push-forward of a vector [γ] 3.1.2

(f∗V )ψ := V (f∗ψ) push-forward of a vector V 3.1.2

(f∗t)(U,α) := t(f∗U, (f
−1)∗α) pull-back of a tensor field 3.1.6

(g ◦ f)∗ = f∗ ◦ g∗ pull-back for the composition of maps 3.1.6

(g ◦ f)∗ = g∗ ◦ f∗ push-forward for the composition of maps 3.1.6

f∗ ◦ C = C ◦ f∗ pull-back commutes with contractions 3.1.7

df∗ = f∗d pull-back commutes with gradient 3.1.9

g := f∗h induced metric tensor (f :M → (N,h)) 3.2.1

gij = Ja
i habJ

b
j ≡ ya

,ihaby
b
,j induced metric tensor (components) 3.2.1

T = (1/2)g(γ̇, γ̇) kinetic energy on a configuration space 3.2.9
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Summary of Chapter 4

Each vector field V on M naturally induces a map Φt : M → M , which translates a point x along the
integral curve starting in x by the parametric distance t. It is called the flow generated by V , or taking into
account its composition property Φt+s = Φt ◦ Φs a one-parameter group of transformations. According to the
results of Chapter 3 the map Φt of a manifold M onto itself induces a mapping of tensor fields Φ∗

t , which is
called the Lie transport of tensors (along the integral curves of the field V ). The natural measure of sensitivity
of a tensor field A to Lie transport is the Lie derivative. One can assign to any two vector fields V,W a third
one, their commutator [V,W ] (which happens to coincide with LV W ). Two fields commute if and only if their
flows do; non-commuting of vector fields thus results in anholonomy phenomena (dependence on the path). A
Killing vector is a vector field with respect to which the metric tensor is Lie constant. The flow of a Killing
vector is the isometry of a Riemannian manifold (M, g), i.e. a map of M onto itself which preserves all lengths
and angles. If the angles alone are preserved, we speak of conformal transformations and the corresponding
generators are called conformal Killing vectors.

Φt+s = Φt ◦ Φs “composition” property of a flow 4.1.2

Φ∗
tA = A A is Lie invariant (dragged) 4.2

LV A := (d/dt)0Φ
∗
tA Lie derivative of A along V ↔ Φt 4.2

LV (A+ λB) = LV A+ λLV B Lie derivative of a linear combination 4.3.1

LV (A⊗B) = LV A⊗B +A⊗ LV B Lie derivative of a tensor product 4.3.1

LV ◦ C = C ◦ LV Lie derivative commutes with contractions 4.3.1

LV W = [V,W ] Lie derivative of W along V 4.3.6

LV +λW = LV + λLW Lie derivative along a linear combination 4.3.8

L[V,W ] = [LV ,LW ] Lie derivative along a commutator 4.3.8

Φ∗
t = etLV ≡ 1 + tLV + . . . exponent of the Lie derivative 4.4.2

ΦW
−ǫ ◦ ΦV

−ǫ ◦ Φ
[V,W ]
−ǫ2 ◦ ΦW

ǫ ◦ ΦV
ǫ = 1̂ + . . . interpretation of the commutator [V,W ] 4.5.2

l[f ◦ γ, g] = l[γ, f∗g] behavior of the length functional 4.6.1

f∗g = g f is an isometry of (M, g) 4.6.2

f∗g = σg f is a conformal transformation of (M, g) 4.6.3

Lξg = 0 Killing equations (ξ generates isometries) 4.6.5

f∗η = η f is the Poincaré transformation 4.6.10

Lξg = χg conformal Killing equations 4.6.16

ε = (1/2)Lug strain tensor (elastic continuum) 4.6.24

(1/2)Lvg strain-rate tensor (viscous fluids) 4.6.25
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Summary of Chapter 5

The computation of volumes of parallelepipeds (and consequently the integration procedure, where the values
of functions are multiplied by the volumes of infinitesimal parallelepipeds) singles out completely antisymmetric
fully covariant tensors, usually called forms. This chapter makes the reader acquainted with forms at the level
of linear algebra. Forms enjoy several important unique properties (not shared with general tensors). They are
naturally Z-graded, one can multiply them one with another via the (graded commutative) exterior (wedge)
product ∧ (giving rise to a graded exterior = Grassmann algebra) and with vectors via the interior product iv
(which turns out to be a derivation of degree -1 of the exterior algebra). If a vector space is endowed with a
metric tensor and orientation, there are also the canonical volume form and Hodge star operator ∗ on forms
available. The determinant is naturally related to these concepts.

∧ :=
(p+ q)!

p!q!
πA ◦ ⊗ exterior (wedge) product of forms 5.2.4

(β + λτ) ∧ α = β ∧ α+ λτ ∧ α

α ∧ (β + λτ) = α ∧ β + λα ∧ τ bilinearity of ∧ 5.2.4

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) associativity of ∧ 5.2.4

α ∧ β = (−1)
pq
β ∧ α Z-graded commutativity of ∧ 5.2.4

α = (1/p!) αa...b e
a ∧ · · · ∧ eb expression of a p-form in terms of ea 5.2.9

η̂α := (−1)deg αα main automorphism of ΛL∗ 5.3.3

(ivα)(u, . . . , w) := α(v, u, . . . , w) interior product (of v and α) 5.4.1

(ivα)a...b = vcαca...b component expression of iv 5.4.1

iv(α ∧ β) = (ivα) ∧ β + (η̂α) ∧ (ivβ) graded Leibniz rule for iv 5.4.2

δa...b
c...d = δa

[c . . . δ
b
d] ≡ δ[ac . . . δ

b]
d ≡ δ

[a
[c . . . δ

b]
d] p-delta (generalized Kronecker) symbol 5.6.2

n! detA = εa...bε
c...d Aa

c . . . A
b
d determinant and Levi-Civita symbol 5.6.2

ωg = o(f)
√

|g| f1 ∧ · · · ∧ fn metric volume form 5.7.3

vol(Au, . . . , Av) =: (detA) vol(u, . . . , v) determinant of a linear map A 5.7.6.

p!(∗α)a...b := αc...d ωc...da...b Hodge star (duality) operator 5.8.1

∗g ∗g = sgn g (−1)
p(n+1)

star squared is ± the unity 5.8.2

α ∧ ∗gβ =: (α, β)gωg scalar product (α, β)g of forms 5.8.4

p!(α, β)g = αa...b β
a...b component expression of (α, β)g 5.8.4
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Summary of Chapter 6

Forms are treated as fields on a manifold (differential forms). All the algebraic constructions known from
Chapter 5 still work, but a new differential operation of crucial importance enters the scene, the exterior

derivative. It turns to be a nilpotent (dd = 0) derivation of degree +1 of the Cartan algebra Ω(M) of forms on
a manifold. A simple (but useful) generalization of ordinary forms is provided by arbitrary vector space valued
forms (the ordinary ones being R-valued).

α = (1/p!) αi...j(x)dx
i ∧ · · · ∧ dxj coordinate expression of a form 6.1.1

Dk(aib) = (Dkai)b + (−1)
ik
ai(Dkb) Dk is a derivation of degree k 6.1.7

(dα)i...jk := (−1)p (p+ 1) α[i...j,k] exterior derivative in coordinates 6.2.5

dd = 0 exterior derivative is nilpotent 6.2.5

d(α ∧ β) = (dα) ∧ β + (η̂α) ∧ dβ graded Leibniz’s rule for d 6.2.5

LV = iV d+ d iV Cartan’s identity 6.2.8

[d,LV ] ≡ d LV − LV d = 0 exterior and Lie derivatives commute 6.2.10

[d, f∗] ≡ d f∗ − f∗ d = 0 exterior derivative commutes with pull-back 6.2.11

dα(U, V ) = . . . Cartan formula (for p = 1) 6.2.13

dβ(U, V,W ) = . . . Cartan formula (for p = 2) 6.2.13

α = αAEA V -valued form on M 6.4.1
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Summary of Chapter 7

Inspection of several simple examples and facts from elementary integral calculus leads to the conclusion that
the objects under the integral sign should be treated as differential forms from Chapter 6. The crucial concept
of the integral of a form over a chain is introduced, assuming the standard background knowledge on basics
of the Riemann multiple integral. Stokes’ theorem for differential forms is presented. It relates the integral of
a form over the boundary of a chain to the integral of the exterior derivative of the form over the chain itself.
Reinterpretation of the integral over a domain on an oriented manifold in terms of the integral over the chain
(including Stokes’ theorem) is given and particular features of integration over a Riemannian manifold are
mentioned. The remarkably simple behavior of the integral with respect to maps between manifolds is revealed.

c = cis
i
p Euclidean p-chain 7.2

∂(P0, . . . , Pp) = . . . action of the boundary operator on a simplex 7.2.2

∂∂ = 0 boundary has no boundary 7.2.2
∫

c

dα =

∫

∂c

α Stokes’ theorem 7.5

vol (D) :=

∫

D

ω volume of a domain D on (M,ω) 7.6

ǫ

∫

D

iV α =

∫

DǫV

α a “coin interpretation” of the form iV α 7.6.11

∫

D

f :=

∫

D

fωg integral of the first kind on (M, g, o) 7.7

∫

√

det(gµνx
µ
,axν

,b) du
1 ∧ du2 area of a two-dimensional surface 7.7.5

〈ρ〉D :=

∫

D
ρωg

∫

D
ωg

mean value of the (scalar) quantity ρ over D 7.7

∫

f(c)

α =

∫

c

f∗α integral and maps of manifolds 7.8.1
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Summary of Chapter 8

One often encounters the general Stokes’ theorem for differential forms from Chapter 7 as hidden behind one
of its numerous classical versions. Here we demonstrate this, in particular, for the divergence (Gauss’) theorem,
Green’s identities, the “common” Stokes’ theorem known from vector analysis or some well-known facts from
elementary complex analysis. The codifferential δ is introduced (as the operator adjoint to the differential d
= exterior derivative) and the self-adjoint combination ∆ = −(dδ + δd), the Laplace-deRham operator (a
generalization of the Laplace operator on functions to forms of arbitrary degree). In the section devoted to
standard vector analysis we learn that the essence of the well-known operations of gradient, curl and divergence
is simply the exterior derivative acting on forms of all non-trivial degrees in three-dimensional space.

LV ωg =: (divV ) ωg definition of the divergence of V 8.2.1

divV =
1

√

| g |
(
√

| g | V k),k coordinate expression of divV 8.2.1

〈divV 〉D =
d

dt

∣

∣

∣

∣

t=0

vol D(t)

vol D
interpretation of divV 8.2.2

〈divV 〉D =
the flux of V for ∂D

the volume of D
another interpretation of divV 8.2.9

∫

D

(divV ) ωg =

∫

∂D

V idΣi|∂D Gauss’ theorem 8.2.7

〈α, β〉 :=

∫

D

α ∧ ∗β scalar product of forms on (M, g) 8.3.1

δ := ∗−1d ∗ η̂ definition of the codifferential δ 8.3.2

〈dα, β〉 = 〈α, δβ〉 +

∫

∂D

α ∧ ∗β basic property of the codifferential δ 8.3.2

△ := −(δd+ dδ) ≡ −(d+d+ dd+) Laplace-deRham operator 8.3.3

∆f = −δdf ≡
1

√

| g |
(
√

| g |gkjf,j),k Laplace-Beltrami operator 8.3.5

〈du, dv〉 + 〈u,∆v〉 =

∫

∂D

u ∗ dv “ordinary” Green identity 8.4.1

〈u,∆v〉 − 〈v,∆u〉 =

∫

∂D

(u ∗ dv − v ∗ du) “symmetric” Green identity 8.4.1

f, A.dr, B.dS, hdV differential forms on E3 8.5.2

d(A.dr) = (curlA).dS a definition of curlA 8.5.4

(A.dr) ∧ (B.dr) = (A × B).dS how the vector (cross) product appears 8.5.8

g = h2
1dx

1 ⊗ dx1 + . . . Lamé coefficients 8.5.9

d(f(z)dz) = 0 why the Cauchy theorem holds 8.6.5
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Summary of Chapter 9

A form is closed if its exterior derivative vanishes, and exact if it is itself the exterior derivative of some other
form (its potential). Since the operator d is nilpotent (i.e. dd = 0), each exact form is necessarily closed. Simple
counterexamples show that the converse of this statement, freely used in elementary physics, does not hold in

general. It does hold, however, on contractible manifolds. In particular it holds locally, i.e. within a sufficiently
small neighborhood of any point on any manifold; this statement is known as the Poincaré lemma. An explicit
formula for the potential is then given. A more subtle treatment of the issue is provided by cohomology theory,
namely by cohomologies of the deRham complex.

ĥ = −

∫ ∞

0

dtΦ∗
t iξ homotopy operator 9.2.3

d ◦ ĥ+ ĥ ◦ d = 1̂ essential property of ĥ 9.2.3

α = d(ĥα) ≡ dβ β ≡ ĥα is a potential of α 9.2.4

xk

∫ 1

0

dλλp−1αki...j(λx) coordinate expression of (ĥα)i...j(x) 9.2.7

[ea, eb] = ccab(x)ec coefficients of anholonomy of ea 9.2.10

ea = ∂a ⇔ [ea, eb] = 0 when a frame field is holonomic (coordinate) 9.2.11

ea = dxa ⇔ dea = 0 when a coframe field is holonomic 9.2.11

Zp := Ker dp p-cocycles 9.3.1

Bp := Im dp−1 p-coboundaries 9.3.1

Hp := Zp/Bp p-th cohomology group 9.3

bp := dimHp p-th Betti number 9.3

Ω0(M)
d
→ Ω1(M)

d
→ . . .

d
→ Ωn(M) deRham complex of a manifold M 9.3.2
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Summary of Chapter 10

Groups enter into play both in physics and mathematics as symmetry groups, i.e. (in mathematical terms)
as groups of automorphisms of various structures. Several structures leading to the common “classical groups”
(general linear, orthogonal, symplectic, unitary, ... ) are discussed from this point of view. The Lie group combines
in a single object the algebraic concept of a group with the differential-topological notion of a manifold. All of
the above-mentioned groups (as well as some others) are examples of Lie groups.

G = Aut (X, s) group of automorphisms of a structured set 10.1

h(Av,Aw) = h(v, w) A preserves the bilinear form h 10.1.4

Aa
chabA

b
d = hcd component expression of the same fact 10.1.4

AThA = h matrix expression of the same fact 10.1.4

ω(Av, . . . , Aw) = ω(v, . . . , w) A preserves the volume form ω 10.1.7

Aa
c . . . A

b
dεa...b = εc...d component expression of the same fact 10.1.7

det A = 1 matrix expression of the same fact 10.1.7

m(g, h) := gh composition law in a group 10.2.5

”Classical” matrix groups introduced They are summarized in problem 11.7.6



16

Summary of Chapter 11

Differential geometry turns out to provide an effective tool for studying such sophisticated objects as Lie
groups represent. Their rich geometry stems from the compatibility of the two structures involved. A much
simpler object, the Lie algebra (it is a finite-dimensional vector space) may be associated canonically with each
Lie group with the help of the left-invariant vector fields. In spite of its simplicity the Lie algebra of a group
encodes a great deal (the essential part) of information concerning the group itself. The exponential map from
the Lie algebra to the group is introduced.

Lgh := gh, Rgh := hg left translation, right translation 11.1.1

L∗
gT = T T is left-invariant tensor field on G 11.1.4

ea(g) = Lg∗Ea, Ea = ea(e) left-invariant frame field generated by Ea 11.1.6

(x−1)i
kdx

k
j ≡ (x−1dx)

i

j left-invariant 1-forms on GL(n,R) 11.1.9

xi
k∂

k
j ≡ (x∂)i

j left-invariant vector fields on GL(n,R) 11.1.10

[Ea, Eb] = ccabEc structure constants with respect to Ea 11.2.2

dea + (1/2)cabce
b ∧ ec = 0 Maurer-Cartan formula in terms of ea 11.2.3

〈θ, LX〉 := X, θ = eaEa canonical (Maurer-Cartan) 1-form θ on G 11.2.6

dθ + (1/2)[θ ∧ θ] = 0 Maurer-Cartan formula in terms of θ 11.2.6

γ(t+ s) = γ(t)γ(s), γ(0) = e one-parameter subgroup on G 11.3

γX(t) = etX one-parameter subgroup in terms of exp 11.4.1

f(eX) = ef ′(X) derived homomorphism f ′ 11.5.3

x−1dx canonical 1-form on GL(n,R) 11.7.19

j∗(x−1dx) = x−1(z)dx(z) canonical 1-form on matrix groups 11.7.21
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Summary of Chapter 12

A Lie group often shows its presence via its representations, i.e. there exists a homomorphism of the former
to the group of invertible linear operators in a vector space and in a given situation we encounter only the
image of the group with respect to this homomorphism. Each representation of a Lie group induces automat-
ically a representation of its Lie algebra (called the derived representation), the latter meaning in general a
homomorphism of a Lie algebra into the Lie algebra of (all) linear operators (in a fixed vector space). If a repre-
sentation admits a non-trivial invariant subspace it is called reducible, since it may be reduced (by restriction)
to a (smaller) representation in this subspace. Irreducible representations cannot be reduced in this way. Schur’s
lemma provides a useful criterion of irreducibility. If the invariant subspace admits an invariant complement

as well, the representation is equivalent to a direct sum of two simpler ones. Such a complement sometimes
happens to be orthogonal with respect to an invariant scalar product (if it does exist; on compact groups its
existence is guaranteed and the procedure for its construction is given here). One can perform some standard
constructions with representations, such as the dual (contragredient) one and the direct sum and the direct
product; combining these two with the restriction to invariant subspaces in the resulting spaces, a lot of new
representations may be obtained from a small number of them at the beginning (like all “tensor” representa-
tions ρp

q from a single “vector” one ρ1
0; in some cases even all irreducible representations from just a single one,

see section 13.3). Invariant tensors and related intertwining operators enable one to “transmute the type” of
quantities, i.e. associate with vectors acted by a representation ρ1 vectors acted by a representation ρ2 (of the
same group). A representation of a Lie algebra induces a complex; we study its cohomologies for a while.

ρ(1 + ǫX) = 1 + ǫρ′(X) computation of the derived representation ρ′ 12.1.6

ρ′(Ei)Ea =: ρb
aiEb matrix elements of generators 12.1.6

〈ρ̌(g)α, v〉 := 〈α, ρ(g−1)v〉 contragredient (dual) representation ρ̌ 12.1.8

h(ρ(g)v, ρ(g)w) = h(v, w) scalar product h is ρ-invariant 12.1.10

hbcρ
c
ai + hacρ

c
bi = 0 component expression of the same fact 12.1.10

ρ2(g)A = Aρ1(g) A is intertwining operator for ρ1 and ρ2 12.2

geXg−1 = eAd gX adjoint representation Ad of G 12.3.1, 2

Ad AX = AXA−1 explicit expression of Ad for matrix groups 12.3.1

ad XY = [X,Y ] (ad ≡ Ad ′) adjoint representation ad of G 12.3.5

ad Ei
Ej = ckijEk component expression of ad 12.3.5

K(X,Y ) := Tr (ad Xad Y ) Killing-Cartan form on G 12.3.8

Ĉ2 := kijρ′(Ei)ρ
′(Ej) quadratic Casimir operator 12.3.13

(g1, h1) ◦ (g2, h2) := (g1g2, h1h2) direct product of groups 12.4.7

(ρ1 ⊗ ρ2)(g) := ρ1(g) ⊗ ρ2(g) direct product of representations of G 12.4.11

(ρ1 ⊗ ρ2)
′ = ρ′1 ⊗ 1̂ + 1̂ ⊗ ρ′2 derived representation for ρ1 ⊗ ρ2 12.4.11
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Summary of Chapter 13

From the point of view of differential geometry, the most interesting actions of groups are their smooth
actions on manifolds. As a rule, there is some additional structure on the manifold and the action preserves this
structure (e.g. actions via isometries on Riemannian manifolds or symplectic actions on symplectic manifolds).
An action of a Lie group induces at the infinitesimal level an action of its Lie algebra, generated by the
fundamental (vector) fields (the generators). An action on points of a manifold results (using the tools of (3.1))
in an action on functions on the manifold (and more generally on tensor fields on the latter). By this simple
method we obtain a construction of (∞-dimensional) representations of groups and their algebras (tensor fields,
in particular functions, are naturally endowed with a linear space structure). Upon restriction to invariant
subspaces finite-dimensional representations are also obtained by this method. Restriction to a G-invariant
subspace of functions (tensor fields) is a standard useful way to solve complicated differential equations (an
ansatz with some symmetry properties).

Lgh = Lg ◦ Lh, Rgh = Rh ◦Rg left action, right action of G on M 13.1

Lĝ[g] := [ĝg] left action of G on the homogeneous space G/H 13.2.5

[g][g̃] := [gg̃] multiplication in the factor group G/H 13.2.10

gHg−1 = H H is a normal (invariant) subgroup of G 13.2.10

G/Ker f = Im f homomorphism theorem 13.2.12

e−
i
2
αn.σ 7→ eαn.l universal two-sheet covering of SO(3) by SU(2) 13.3.6

ρ(g)ψ := ψ ◦Rg ≡ R∗
gψ representation of G in F(M) 13.4.1

ξX(m) := (d/dt)|0Rexp tXm fundamental field (generator) of the action Rg 13.4.3

ρ′(X) = ξX derived representation in F(M) 13.4.3

ξj = −ǫjkmxk∂m ≡ (−r × ∇)j generators of the rotations in R
3 13.4.6

ρ(g)ψ := ρ̂(g) ◦ ψ ◦Rg representation of G in F(M,V ) 13.4.11

ρ′(X) = ξX + ρ̂′(X) derived representation in F(M,V ) 13.4.12

R∗
gA = ρ̂(g−1)A A is a tensor field of type ρ̂ 13.5.2

ρ(g) := ρ̂(g) ◦R∗
g representation of G in T r

s (M,V ) 13.5.3
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Summary of Chapter 14

An appropriate relabelling of coordinates reveals that there is an elegant geometrical structure hidden behind
the Hamilton canonical equations. Its essential part is a closed non-degenerate 2-form ω on the phase space of
the system, the symplectic form. It enables us to raise and lower the indices in a similar manner as we did before
with the metric tensor. The vector field which is the counterpart of the gradient field in the Riemannian case
(i.e. which is obtained by raising an index on the gradient of a function f understood as a covector field) is called
the Hamiltonian field generated by the function f . The Hamilton equations turn out to be simply the equations
for the integral curves of the Hamiltonian field generated by a distinguished function H, the Hamiltonian of
the system. Thus we come to the notion of the Hamiltonian system (M,ω,H). The vector fields which generate
automorphisms of a Hamiltonian system (they preserve the symplectic form as well as the Hamiltonian) are
called Cartan symmetries and, those obeying a specific additional property, exact Cartan symmetries. There is
a one-to-one correspondence between the exact Cartan symmetries and the conserved quantities of the system.
More details can be found in sections devoted to the moment map and symplectic reduction. The orbits of the
coadjoint action (which is an action of the group G on the dual space G∗ of its own Lie algebra G) provide a rich
source of interesting (G-invariant) symplectic manifolds (there is a canonical symplectic structure on them).

ζf = P(df, . ) Hamiltonian field in terms of P 14.1.1

{f, g} = P(df, dg) Poisson bracket in terms of the Poisson tensor P 14.1.1

γ̇ = ζH Hamilton equations - coordinate-free version 14.1.1

iζf
ω = −df Hamiltonian field in terms of symplectic form ω 14.1.6

ω = dpa ∧ dqa symplectic form in canonical (Darboux) coordinates 14.2.2

Ωω := const. ω ∧ · · · ∧ ω Liouville volume form on (M,ω) 14.3.6
∫

Φt(D)

Ωω =

∫

D

Ωω Liouville’s theorem 14.3.6

iV ω = −dF, V H = 0 V is exact Cartan symmetry of (M,ω,H) 14.4.2

γs(t) := ΦV
s (γ(t)) a new solution generated by a symmetry flow 14.4.6

〈P (x),X〉 := PX(x) moment map corresponding to the Poisson action 14.5.3

ωZ∗(ξX , ξY ) := 〈Z∗, [X,Y ]〉 canonical symplectic form on coadjoint orbits 14.6.3
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Summary of Chapter 15

In many applications (e.g. in the computation of acceleration of a point mass in elementary mechanics)
one performs linear combinations (in particular the difference in the case of acceleration) of vectors (or more
generally tensors) sitting at different points of a manifold. This is not possible on a “bare” manifold. The
structure which makes it legal is a (linear) connection ∇ on M . The connection enables one to transport vectors
along a given path (the transport being path-dependent in general) and consequently to perform the above-
mentioned comparison (vector in x is compared with the one being transported to x from y). This transport is
by definition called parallel (in the sense of the connection ∇). A connection is frequently defined by postulating
the properties of a derived object, the covariant derivative. One can introduce the concept of a straight line
(geodesic) on (M,∇). Two tensor fields are associated with a linear connection, the curvature and torsion
tensors. It is shown that the requirements of compatibility of a connection with the metric (conservation of any
scalar product upon any parallel transport) together with vanishing of its torsion result in a unique connection,
the Riemannian or Levi-Civita (RLC) connection. The curvature tensor encodes the local information of “how
much” (if ever) the parallel transport (along infinitesimal paths) is path-dependent; it also displays itself in the
behavior of nearby geodesics, causing their deviation (Jacobi’s equation). A non-zero torsion implies non-closure
of a geodesic parallelogram. An efficient tool for working with a connection is provided by the machinery of
differential forms. Basic objects are encoded into forms and relations between them are given by the Cartan
structure equations. A connection is called a complete parallelism if there exists a covariantly constant frame
field. Then the curvature tensor turns out to vanish and moreover a comparison of vectors (as well as tensors) at
different (possibly remote) points makes sense. A connection is said to be flat if the covariantly constant frame
field happens to be holonomic (coordinate). Then both the curvature and torsion tensors turn out to vanish.

∇aeb =: Γc
baec coefficients of connection with respect to ea 15.2.1

∇j∂i =: Γk
ij∂k Christoffel symbols of the second kind 15.2.3

V̇ i + Γi
jkẋ

kV j = 0 equations of parallel transport of vector 15.2.6

∇g = 0 (gij;k = 0) connection ∇ is metric 15.3.1

T (U, V ) := ∇UV −∇V U − [U, V ] torsion tensor induced by ∇ 15.3.3

Γi
jk = (1/2)gil(glj,k + glk,j − gjk,l) Riemann/Levi-Civita connection (RLC) 15.3.4

∇γ̇ γ̇ = 0 (ẍi + Γi
jkẋ

j ẋk = 0) geodesic equation 15.4.1

exp v := γv(1), γ̇v(0) = v ∈ TPM exponential map centered at P ∈M 15.4.10

〈α, ([∇U ,∇V ] −∇[U,V ])W 〉 Riemann curvature tensor 15.5.5

Rab := Rc
acb, R := Ra

a ≡ Rab
ab Ricci tensor and scalar curvature 15.5

∇V ea = ωb
a(V )eb (ωa

b = Γa
bce

c) connection forms ωb
a with respect to ea 15.6.1

ω′ = A−1ωA+A−1dA transformation law for ω under e′ = eA 15.6.2

de+ ω ∧ e = T, dω + ω ∧ ω = Ω Cartan structure equations 15.6.7

dΩ + ω ∧ Ω − Ω ∧ ω = 0, Ω ∧ e = 0 Bianchi and Ricci identities (for RLC) 15.6.16

∇2
γ̇ξ = R(γ̇, ξ)γ̇ Jacobi’s equation for geodesic deviation 15.7.2

Ra
bcd = 0 = T a

bc flat connection 15.8.6
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Summary of Chapter 16

The (four)tensor version of the Maxwell equations in Minkowski space(-time) reveals that the tensors involved
are rather special - they may actually be regarded as differential forms. That is why the most natural way
of formulating four-dimensional electrodynamics is provided by the language of differential forms. Forms in
Minkowski space exhibit additional particular structure (as a consequence of the splitting of the space-time
into “time” and “space”) : one can express any form (in an observer-dependent way) in terms of a pair of
spatial forms. Such an expression of forms (as well as of operations on them) offers a convenient bridge between
a four-dimensional and the (original) three-dimensional formulation of electrodynamics. Forms are not only
useful in electrodynamics, but rather in field theory in general. The action integrals are simply expressed (since
the objects under the integral sign are always forms) and their extrema, providing the equations of motion,
are simply computed, too (the codifferential appears naturally). There is a deep link between the space-time
symmetries and the energy-momentum tensor of the field, which may be defined via variation of the action
functional with respect to the metric tensor. The energy-momentum tensor of matter occurs (as a source) in
the Einstein equations of the gravitational field, too. Both the Hilbert and Cartan approaches to the derivation
of the Einstein equations from a variational principle are discussed. In the former approach, the metric tensor
is the key independent field variable (with respect to which small variations are to be performed); the latter
approach makes use of (co)frame (tetrad) fields and connection forms. In non-linear sigma models mappings of
two Riemannian manifolds are regarded as field variables. There is a natural action integral for such mappings.
Harmonic maps are extremals of this action. They correspond to “minimal surfaces”, representing e.g. soap
bubbles, but also the world-sheets in string theory. There is a technical trick enabling one to get rid of a “square
root” action by means of a variation of the “quadratic” one with respect to one of two metric tensors (then
called “auxiliary”).

α = dt ∧ ŝ+ r̂ decomposition of forms in Minkowski space 16.1.1

dα = dt ∧ (∂tr̂ − d̂ŝ) + d̂r̂ action of d on a decomposed form 16.1.4

∗ α = dt ∧ (∗̂r̂) + ∗̂η̂ŝ action of the Hodge star ∗ on a decomposed form 16.1.5

δα = dt ∧ (δ̂ŝ) + (−∂tŝ− δ̂r̂) action of the codifferential δ on a decomposed form 16.1.6

F := dt ∧ E.dr − B.dS 2-form of the electromagnetic field 16.2.1

j = ρdt− j.dr ≡ jµdx
µ 1-form of current 16.2.2

δF = −j, dF = 0 Maxwell equations 16.2.1, 2

F = dA A is a potential for F 16.3.1

− (1/2)〈dA, dA〉 − 〈A, j〉 action integral S[A] for an electromagnetic field 16.3.2

(1/2)〈dφ, dφ〉 − (m2/2)〈φ, φ〉 action integral S[φ] for a free scalar field 16.3.7

Tµν
;ν = 0 energy-momentum tensor is divergence-free 16.4.1

Rab − (1/2)Rgab = 8πTab Einstein equations 16.5
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Summary of Chapter 17

In this chapter the concept of a fiber bundle is introduced. Rather than develop a general theory at the very
beginning, instead we begin with a fairly detailed treatment of two paradigmatic examples of fiber bundles, in
order to motivate the definition. Namely, we show that with each manifold M two other manifolds of double
the dimension, TM and T ∗M , may be canonically associated. Both of them are endowed with a remarkable
geometrical structure even if M happens to be just a “bare” smooth manifold. For example, they turn out to
represent the total spaces of vector bundles over M and carry various canonical tensor fields (in particular,
T ∗M always carries a symplectic structure), several objects may be lifted from M to the total spaces, etc.
In analytical mechanics they serve as the playing fields for Lagrangian and Hamiltonian formulation of the
dynamics respectively; this will be discussed in more detail in the following chapter, this one provides the
necessary preliminaries.

π : (xa, va) 7→ xa, τ : (xa, pa) 7→ xa canonical projections on TM and T ∗M 17.1.7

T (f ◦ g) = Tf ◦ Tg a property of the tangent map Tf 17.3.2

γ(t) 7→ γ̇(t) natural lift of a curve from M to TM 17.5.1

Φt 7→ TΦt lift of a flow from M to TM 17.5.5

△ = va∂/∂va (△ = pa∂/∂pa) Liouville dilation field on TM (T ∗M) 17.6.1

S := 1↑ = dxa ⊗ ∂/∂va vertical endomorphism on TM 17.6.4

〈θp,W 〉 := 〈p, τ∗W 〉 canonical 1-form θ = padx
a on T ∗M 17.6.5

ω = dθ = dpa ∧ dxa canonical symplectic form on T ∗M 17.6.7
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Summary of Chapter 18

It is shown how classical mechanics may be formulated on TM and T ∗M . In the non-degenerate case, both
dynamics turn out to be completely equivalent geometrically: they realize a standard “symplectic” dynamics
we studied in Chapter 14, i.e. a motion along integral curves of the Hamiltonian field. On T ∗M the canonical
symplectic structure is available from the outset so that the choice of a function H is the only step to be
made. On TM the situation is a bit more complicated; rather than a symplectic form there is a canonical
(

1
1

)

-type tensor field available and the required symplectic structure is given only after the latter is combined
with the (non-degenerate) Lagrangian, regarded as a function on TM . The standard Lagrange equations result
by the projection of the symplectic dynamics onto the base M . The projection adds one order, so that the
final equations are second-order differential equations on M . Hamilton’s equations live directly on the total
space T ∗M and that is why they are (as is always the case for equations for integral curves) only first-order
differential equations. Making use of the Lagrangian L one may construct the Legendre map TM → T ∗M , which
serves as a bridge between the two dynamics. If the Hamiltonian (or Lagrangian) depends explicitly on time,
a modification of the formalism is needed since the carrier manifold is now odd-dimensional. The distinguished
1-form pdq−Hdt enters the equations and it turns out that this form also plays a decisive role in a construction
of the action functional.

θL := S(dL), ωL := dθL Cartan 1-form, Cartan 2-form 18.2.3

EL := △L− L energy corresponding to the Lagrangian L 18.2

γ̇ = ζEL
, iζEL

ωL = −dEL Lagrange’s equations (on TM yet) 18.2.6

〈L̂(v), w〉 := (d/dt)|0 L(v + tw) Legendre map L̂ : TM → T ∗M 18.3.1

L̂ ◦ ΦL
t = ΦH

t Lagrangian and Hamiltonian flows related 18.3.4

TRg, T ∗Rg−1 lifts of action Rg on M to TM and T ∗M 18.4.1

ξ̃X generators of the lifted actions 18.4.1

PX = 〈θL, ξ̃X〉, PX = 〈θ, ξ̃X〉 “Hamiltonians” of the lifted actions 18.4.1

L = (1/2)
◦
g −

◦

φ natural Lagrangian on TM 18.4.6
∫

γ

(θ̂ −Hdt) ≡

∫

γ

(pdq −Hdt) action integral for the Hamiltonian dynamics 18.5.6

∫

γ̂

(θ̂L − ÊLdt) ≡

t2
∫

t1

L(γ̂(t))dt action integral for the Lagrangian dynamics 18.5.6
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Summary of Chapter 19

In order to pave the way for a possible generalization of the theory of linear connection well known from
Chapter 15 (to be done in the next chapter) we reformulate it in a new language. The new description takes
place on a new playing field, a manifold LM which may be canonically assigned to any manifold M . The points
of LM are all frames at all points of M . There is a fairly rich structure on LM even prior to introducing the
connection on M : the manifold LM namely turns out to be a total space of a principal GL(n,R)-bundle over
M . A connection on M adds more structure on LM , a GL(n,R)-invariant horizontal distribution. We may
reformulate the procedure of parallel transport of a frame along a curve γ on M in terms of the horizontal lift
γh of the curve γ. There is also an interesting possibility of treating a wide class of geometrical objects on M (in
particular tensor fields and more generally fields of type ρ) in terms of equivariant functions Φ on LM . Their
parallel transport is discussed and it is shown that an appropriate directional derivative of Φ corresponds to
the covariant derivative on M of the geometrical object described by Φ.

ω ≡ ωa
bE

b
a connection form on the frame bundle LM 19.2.1

R∗
Aω = A−1ωA, 〈ω, ξC〉 = C crucial properties of the connection form 19.2.4

U, V ∈ D ⇒ [U, V ] ∈ D D is integrable (Frobenius’ criterion) 19.3

θi
∣

∣

D
= 0 ⇒ dθi

∣

∣

D
= 0 alternative formulation of the criterion 19.3

V ∈ Dh ⇔ 〈ω, V 〉 = 0 horizontal distribution on LM 19.4.3

TeLM = Ver eLM ⊕ Hor eLM decomposition induced by a connection 19.4.5

〈ω, ˙̂γ〉 = 0 γ̂ corresponds to autoparallel frame field 19.5.1

Φ ◦RA = ρ(A−1) ◦ Φ Φ is a quantity of type ρ 19.6

Φ(γh(t)) = const. autoparallel field of quantities of type ρ 19.6.5
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Summary of Chapter 20

The translation of the concepts related to the linear connection into the language of the frame bundle, which
was performed in Chapter 19, clearly indicates a possible generalization. One should simply replace π : LM →M
by π : P →M , a general principal G-bundle. A connection in this bundle is then (by definition) any G-invariant
horizontal distribution on the total space P . The distribution may be conveniently encoded in a connection form
ω, a G-valued 1-form on P (G being the Lie algebra of G). The points of P are now the natural counterparts of
frames, and their parallel transport along a curve on M is defined as the horizontal lift of the curve to P . The
(local) dependence of parallel transport on path may be rephrased in terms of integrability of the horizontal
distribution and the G-valued curvature 2-form Ω enters the scene (via the Frobenius integrability condition) just
as a measure of this non-integrability. As a convenient formal tool for the explicit computation of the curvature
form one introduces the exterior covariant derivative D; we then prove the formula Ω = Dω = dω+(1/2)[ω∧ω].
Similarly we compute the action of D on another important class of objects, horizontal forms of type ρ, where
we get Dα = dα + ρ′(ω)∧̇α. Applying D twice, Bianchi and Ricci identities arise. The last, starred, section
is devoted to an interesting relation between subbundles, structures on M and connections compatible with
the structures. It explains, for example, how special connections in π : P → M (say, metric connection in
π : LM → M) may be regarded as being extended from appropriate subbundles π : Q → M , Q ⊂ P (from
π : OM →M in the case of the metric connection).

Rg∗Hor pP = Hor pgP horizontal distribution is G-invariant 20.2.1

ωp := Ψ−1
p ◦ ver : TpP → G connection 1-form in p ∈ P 20.2.4

R∗
gω = Ad g−1ω, 〈ω, ξX〉 = X crucial properties of the connection form 20.2.5

π ◦ γh = γ, γh(0) = p, 〈ω, ˙(γh)〉 = 0 horizontal lift of γ starting in p ∈ P 20.3.2

(horα)(U, . . . ) := α(horU, . . . ) horizontal part of a form 20.3.4

Dα := hor dα exterior covariant derivative of a form 20.3.5

Ω := Dω = ΩiEi curvature 2-form on P 20.4.1, 3

Ω = dω + (1/2)[ω ∧ ω] Cartan structure equation 20.4.3

Dα = dα+ ρ′(ω)∧̇α action of D on horizontal forms of type ρ 20.4.6

DDω ≡ DΩ = dΩ + [ω ∧ Ω] = 0 Bianchi identity 20.4.4, 7

DDα = ρ′(Ω)∧̇α Ricci identity 20.4.8

Ω = 0 ⇒ ∃σ : σ∗ω = 0 zero curvature ⇒ complete parallelism 20.4.11



26

Summary of Chapter 21

A link between connections on a principal G-bundle and gauge field theory (known from physics) is sys-
tematically built here. First a standard “physical” approach is briefly introduced for the convenience of the
reader who is not familiar with this stuff from physics. Namely, a “global” G-symmetry of an action is made
“local”. This is achieved by adding new fields with quite definite transformation properties and interaction with
the initial fields. It is shown that all the building blocks of the gauge scheme possess a natural interpretation
in terms of connection theory. In particular, fixing of the gauge is given by the choice of a local section σ of
the principal bundle, gauge potentials (in this gauge) are obtained by pull-back (with respect to the section)
of a connection form to the base, gauge transformations correspond to a change of a section, field strength is
obtained as the pull-back of the curvature form and a matter field as the pull-back of an equivariant function
on P . Parallel transport equations of an arbitrary quantity of type ρ in a gauge σ are derived. The concept
of an associated vector bundle is introduced (it arises from a principal bundle as a result of the replacement
of its fiber by a representation space of the group G). The structure of the (locally) gauge invariant action is
given and the equations of motion are derived (they generalize the Maxwell equations of electrodynamics, which
turns out to be a gauge theory with group U(1)). Noether’s theorem is introduced, providing a link between
the symmetries of the action integral and the conserved quantities. The theorem sheds new light on some older
results in this direction, the relation between conservation laws and the energy-momentum tensor in the field
theory as well as exact Cartan symmetries in Hamiltonian mechanics. In the last section we return to the frame
bundle LM and introduce the canonical 1-form θ with values in R

n which is related to the torsion on M and
learn how to use the exterior covariant derivative D on the base M .

φ 7→ e−iα(x)φ, A 7→ A+ dα(x) U(1)-local gauge transformation 21.1.2

σ̂(x) = σ(x)S(x) ≡ RS(x)σ(x) two sections related via S ∈ GU 21.2.1

φ̂ = B−1φ local gauge transformation of a matter field 21.2.5

Â = B−1AB +B−1dB the same for the gauge potential 21.2.5

F̂ = B−1FB the same for the field strength 21.2.5

v̇ + 〈A, γ̇〉v = 0 equation of parallel transport 21.3.2

S[φ,A] = −(1/2)〈DA,DA〉k+

+ (1/2)〈Dφ,Dφ〉h − (m2/2)〈φ, φ〉h action of coupled system (φ,A) 21.5.6

D+F = −J , DF = 0,

(D+D −m2)φ = 0 corresponding field equations 21.5.6

S[ρ(eǫs(x))ψ] = S[ψ] + ǫ〈ds, j〉k computation of Noether currents j 21.6.1

ji = T (ξEi
, . ) Noether currents due to Killing vectors 21.6.6

Θ := Dθ where torsion sits in LM formalism 21.7.2
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Summary of chapter 22

The special orthogonal group SO(p, q) admits the two-sheeted universal covering group, which is called the
spin group and is denoted by Spin (p, q). An elementary theory of spin groups is systematically developed with
the help of Clifford algebras. An isomorphism of these algebras with appropriate matrix algebras (a faithful
representation) is constructed. This leads naturally to the concept of a spinor as an element (vector) of the
representation space of the Clifford algebra. Since the spin groups are subsets of the Clifford algebras, restriction
of the representation of the algebra is automatically a representation of the spin group. Consequently, spinors
also carry a representation of spin groups (and also the two-valued representation of the orthogonal groups).
This is called the spinor representation. For some particular values of (p, q) special kinds of spinors may exist
(Weyl, Majorana, ...). The term spin structure on M is sometimes used as a synonym for a principal bundle
over M (the spin bundle), whose total space is a two-sheeted covering of the total space of the bundle of right-
handed orthonormal frames and in the fibers of which the spin group acts. There are also manifolds which do
not admit the spin structure. Equivariant functions of type ρ on the total space of the spin bundle (as well as
their pull-backs to the base with the help of a section), where ρ is the spinor representation, are called spinor
fields on M . The Rarita-Schwinger field then corresponds to a 1-form of type ρ. There is a specific first-order
operator which acts on spinor fields, the Dirac operator. Its historical origin is in physics, in the quantum theory
of the relativistic electron and it enters the Dirac equation.

eaeb + ebea = 2gab fundamental relations in Clifford product 22.1.1

u = α1 . . . αk, g(αj , αj) = ±1 elements of the group Pin (p, q) 22.2.1

ueau−1 =: (A−1)a
be

b two-sheeted covering Spin (p, q) → SO(p, q) 22.2.3

(1/2)eaeb 7→ Eab derived isomorphism spin (p, q) → so(p, q) 22.2.7

γa := ρ(ea) γ-matrices 22.3.1

Dψ = dψ + (1/4)ω̂abγ
aγbψ exterior covariant derivative of a spinor field 22.5.1

χα
µ(x)dxµEα ≡ χα

a (x)ea(x)Eα Rarita-Schwinger field 22.5

D/ := iE/ ◦D ≡ γaiEa
D Dirac operator on SM 22.5.3

D/ = ie/ ◦ D ≡ γaiea
D Dirac operator on M 22.5.3

D/ψ = γaeµ
a(∂µψ + (1/4)ωbcµγ

bγcψ) action of the Dirac operator on spinor fields 22.5.4

D/ψ = γaeµ
a(∂µψ + (1/2)αµγ5ψ) how it simplifies for two dimensional M 22.5.4

ρ(u)α
τ ρ(u

−1)σ
βA

a
bγ

bτ
σ = γaα

β γ-matrices are Spin (p, q)-invariant tensors 22.5.11
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INDEX OF (frequently used) SYMBOLS

absolute derivative along the curve γ ∇γ̇ 12.3.2

adjoint representation of a Lie group Ad ,Ad g 12.3.2

adjoint representation of a Lie algebra ad , ad X 12.3.5

action integral (functional) S[γ], S[A], . . . 15.4.4

algebra of (smooth) functions on M F(M) 2.2.5

algebra of observables A(M) 14.1.9

algebra (associative) of real n× n matrices R(n),Mn(R) 11.7.1

algebra (Lie) of real n× n matrices gl(n,R) 11.7.2

algebra of tensor fields on M T (M) 2.5

boundary operator ∂ 7.2.2

bundle of orthonormal frames π : OM →M 20.5.5

canonical (Darboux) coordinates on (M,ω) (qa, pa) 14.2.2

canonical one-form on G (Maurer-Cartan form) θ = θiEi 11.2.6

canonical one-form on T ∗M θ = padq
a 17.6.5

canonical one-form on LM θ = θaEa 21.7.1

canonical two-form on LM with connection Θ = Dθ = ΘaEa 21.7.2

canonical pairing of L and L∗ 〈α, v〉 2.4.2

Cartan algebra of differential forms on M Ω(M) 6.1

Cartan 1-form, Cartan 2-form (on TM) θL, ωL 18.2.3

Christoffel symbols Γk
ij 15.2.3

Clifford algebra C(L, g), C(p, q) 22.1

coadjoint action (representation) Ad ∗ 12.3.19

codifferential δ, δg 8.3.2

commutator in Lie algebra G of G [X,Y ] 11.2.2

conjugation by the element g Ig 12.3.1

connection form on the total space P ω 20.2.5

connection forms (linear connection on M) ωa
b 15.6.1

contragredient (dual) representation ρ̌ 12.1.8

cotangent space at the point x ∈M T ∗
xM 2.5

cotangent bundle τ : T ∗M →M 17.1.4

covariant derivative along vector field V ∇V 15.2.1
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curvature form on the total space P Ω 20.4.1

curvature forms (linear connection on M) Ωa
b 15.6.3

curvature operator R(U, V ) 15.5.1

Dirac operator D/ 22.5.3

Dirac operator on the base M D/ 22.5.3

dual space L∗ 2.4.1

electric and magnetic fields E,B 9.2.9

Einstein tensor Gab 16.5.

Euclidean space En 2.6

exterior algebra of L ΛL∗ 5.3

exterior derivative d 6.2.5

exterior covariant derivative D 20.3.5

exterior covariant derivative on the base D 21.2.4

exterior product of forms α ∧ β 5.4.1

exterior product of G and (W,ρ′) valued forms α∧̇β 20.4.5

exterior product of Lie algebra valued forms [α ∧ β] 11.2.6

frame bundle π : LM →M 19.1.1

flow generated by vector field V ΦV
t ,Φt 2.3

fundamental field (generator of action) ξX 13.4.3

gauge potential A 21.2.4

gauge potential (represented) A 21.2.4

gauge field strength F 21.2.4

gauge field strength (represented) F 21.2.4

general affine group GA(n,R) 10.1.15

general linear group GL(n,R) 10.1.3

Hamiltonian field generated by f ζf 14.1.6

Hodge star operator ∗, ∗g 5.8.1

horizontal distribution Dh 19.4.3

horizontal lift of a curve γ γh 20.3.2

horizontal lift of a vector v vh 20.3.1

horizontal p-forms of type ρ on P Ω̄p(P, ρ) 21.2

interior product iv, vy 5.4.1

Laplace-deRham operator ∆,∆g 8.3.3
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Lie algebra of the group G,H, . . . G,H, . . . 11.2.2

Lie derivative along vector field V LV 4.2

Lie group G,H, . . . 10.2

metric volume form ωg 5.7.3

orthogonal group O(n), O(n,R) 10.1.5

Poisson tensor P 14.1.1

Poisson bracket of f and g {f, g} 14.1.1

pseudo-Euclidean space Er,s 2.6

pseudo-orthogonal group O(r, s) 10.1.5

pull-back f∗ 3.1.4

push-forward f∗ 3.1.2

quaternions, complex and real numbers H,C,R 22.1.4

Ricci tensor Rab 15.5.

right and left action of a group Rg, Lg 13.1

representation of a group ρ(g) 13.1

scalar curvature R 15.5

scalar product of forms in (L, g) (α, β)g 5.8.4

scalar product of forms on (M, g) 〈α, β〉 8.3.1

scalar product of forms from Ω̄p(P, ρ) 〈α, β〉h 21.5.1

special orthogonal group SO(n), SO(n,R) 10.1.8

special unitary group SU(n) 10.1.12

spin bundle π : SM →M 22.4

structure constants with respect to Ei cijk 11.2.2

symplectic form ω 14.1.4

symplectic group Sp (m,R) 10.1.6

tangent bundle π : TM →M 17.1.1

tangent map at the point x ∈M Txf 3.1.2

tangent vector to the curve γ γ̇ 2.2.2

tangent space at the point x ∈M TxM 2.2.2

tensors of type (r, s) in L T r
s (L) 2.4.5

tensor fields of type (r, s) on M T r
s (M) 2.5.2

torsion forms T a 15.6.3

two-form of the electromagnetic field F 16.2.1

unitary group U(n) 10.1.12
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INDEX

A anti-self-dual 184
Abelian group 197 anticommuting variables 114
absolute derivative 360, 363, 367 antisymmetric part 99
acceleration 356, 431 associated bundle 581
action integral 378 associative algebra 33, 45, 648
- effective 307 atlas 17
- free 307, 505, 529 automorphism of a structure 200
- globally Hamiltonian 338, 344, 490 - of associative algebra 323, 648
- left 280 - of group 251
- right 115, 280 - of Lie algebra 252, 650
- transitive 282, 505, 529 autonomous system 39
- vertical 505 autoparallel field 360, 364, 367, 522, 577, 580
acts from the left 280, 650 averaging over a group 243
acts from the right 280 azimuth 67
adapted basis 51
- coordinates 17, 324
- to the subspace W 510 B
adiabatic curve 516 base of a bundle 464
- process 516 Betti number 197
adjoint operator 124 bi-invariant metric tensor 258
adjoint representation 252, 276 bi-invariant integral 226
affine connection 559, 600 bi-invariant volume form 259
- transformations 205 Bianchi identity 399, 547, 549, 573
algebra 647 biharmonic coordinates 67
- of functions on a manifold M 33 bilinear pairing 150, 646
- graded 45, 104, 651 bivector field 317
- graded Lie 129, 652 boost 89, 297
- of horizontal forms on P 543 boundary 196
- of observables 321, 354 - operator 147, 149, 196
- of quaternions 614 bundle 465, 529
- of tensor fields on M 53 - map 465, 558
- Z-graded 104 - of affine frames 600
- (Z × Z)-graded 45 - of orthonormal frames 554
algebraically closed field 247 by parts 163
A-module 650
Ampère’s law 423
analytic map 15 C
- manifold 17 canonical 1-form on G 219, 234, 253
angular momentum of the field 435 - (exact) symplectic form 478
annihilate 510 - 1-form on T ∗M 478
annihilator 51, 205, 353, 510 - 1-form on LM 601
ansatz 91
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- coordinates 326, 462, 463 coefficients of anholonomy 192, 402, 637
- embedding 156 - of linear connection 362
- flat connection 552 coexact form 193
- momentum 490, 496 coframe field 83
- pairing 55, 647 cohomology 196, 197
- projection 21, 285, 461, 465 - class 196
- transformations 327 - group 197
Cartan 1-form 483 - theory 195
- 2-form 483 cohomologous 196
- action 448 - to zero 196
- algebra 127 cochain complex 196
- formulas 133, 274 commutative group 248
- structure equations 395, 547, 573 commutator 79, 649
- symmetry 334 comoment map 341
Cartesian product 19 compact Lie group 226, 244
- space 14 - Lie algebra 260
Casimir operators 257, 301 - manifold 170
Cauchy-Riemann relations 92, 183 compatible structures 207
Cauchy theorem 185 compensating field 567
central field 498 complete vector field 39
chain complex 196 - lift 473, 475, 489, 492
change of coordinates 17 - parallelism 409, 551
characteristic subspace 125 completely reducible 245
charge (U(1)) 249 complex 195, 275
- density 421 - Lie group 208
charged particles 568 - manifold 19
charges (Noether) 589 - representation 247
chart 16 component fields 309
chiral spinors 625, 626 - forms 140
Christoffel symbols 363 - functions 306
Ck-atlas 17 components 35, 36, 43, 53
Ck-manifold 17 composition law 207
Ck-related 17 condition of incompressibility 165
Ck-structure 17 configuration space 68, 489
class Ck 15 conformal class 456
Clebsch-Gordan series 269 - Killing equations 91
Clifford algebra 124, 611, 612 - Killing vector 91, 438
- product 612 - rescaling of metric 120, 438
closed form 187, 195 - transformation 86, 442 597
- surface 155 - invariant 122, 442
coadjoint action 339, 342 congruence 40
- representation 260 conjugate subgroup 283
coboundary 195, 196 conjugation 251, 281, 283
coclosed form 184, 185, 193 connected component 198, 233
cocycle 195, 196 340 - component of the identity 233
codifferential 170, 400, 583 - space 233
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connection 1-form 392, 507, 538 decomposable form 125
- on a principal G-bundle 537 decomposition of unity 250
conserved quantity 335, 434 deformation retract 198
constraint 1-form 510 degenerate parallelepiped 97
constraints 68 degree of form 104
contact form 501 delta 110
- structure 501 density 158
continuity equation 165, 421 - matrix 347
continuous map 13, 15 - (scalar) 115, 138, 526, 607
contour 155, 163 deRham complex 196
contractible manifold 189 derivation 77, 648, 649
contraction 45, 268 - of degree +1 544
- tensor 55 - of degree k 651
contragredient representation 241 - of the algebra of functions 36
coordinate basis 35, 36, 53, 83 - of the Cartan algebra 131
- curves 32 - of the tensor algebra 77
- patch 16 - of Lie algebra 278
- presentation 20, 30 derivative absolute 360, 363, 367
cotangent bundle 464, 467 - covariant 361, 566
- space 51 - Lie 70, 76
coupling constant 591 - exterior 131
covariant codifferential 585 - exterior covariant 543
- derivative 361, 566 - - covariant on the base 573
- divergence 401, 433, 443 derived representation 240
- functor 468 determinant 111
- gradient 366 - of a map 118
- tensor 62 diffeomorphic manifolds 21
covariantly constant field 367 diffeomorphism 21, 200
- constant frame field 409 differentiable map 15
covector 41, 51 differential (in complex) 195
covering 290 - of the map 61
- homomorphism 290 - forms 96
curl 178 - forms of type ρ 310
current density 421 dilation field 476
curvature form 393, 545 dimension of the representation 237
- operator 387 Dirac-Kähler operator 638
- tensor 389 Dirac equation 610
curve 29 - operator 610, 637
curvilinear coordinates 17 - representation 625
cycle 196 - spinors 625
cyclic coordinate 490 direct product of groups 261

- - of representations 265
direct sum of algebras 648

D - - of Lie algebras 262, 650
d’Alembert operator 418 - - of representations 265
Darboux theorem 325 - - of vector spaces 45, 205, 644
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directional derivative 33 exact Cartan symmetry 334, 489, 599
Dirichlet problem 174 - form 187, 195
discrete topology 14 - symplectic form 319
displacement (field) 93 exponential group 234
distinguished frames 559 - map 222, 381
divergence 164, 178, 332 extended phase space 499
dotted indices 298 extension of the bundle 558
dual basis 41 exterior algebra 104, 113
- map 50 - covariant derivative 543
- representation 241 - derivative 131
- space 41 - product 99, 141
duality operator 119

F
E factor algebra 106, 648
effective action 307 - space 197
- potential energy 498 faithful representation 241
Einstein’s vacuum equations 445 Faraday’s law of induction 423
Einstein-Cartan theory 446 fiber bundle 465
Einstein 1-forms 448 fiber in a point 464
- equations 442 fibered map 465
- tensor 442 - manifold 465
electric charge conservation 422 field of type ρ 526
electrostatics 424 finitely generated 37
embedding 22, 65 first law of thermodynamics 516
- theorem 23 fixed point 71, 282
endomorphism 226 flat space-time 439
energy 484 - connection 410, 454
- of the field 435 - torus 66
energy-momentum tensor 433, 442, 596 flow 40
entropy 516 F(M)-linearity 52
eq-ns of par. transport 364, 368, 577, 580 form 96
equivalence principle 439 - of type ρ 539
equivalent bundle 465, 531 Foucault angle 391, 403
- representations 246 - pendulum 373
equivariant map 245, 284, 339, 524, 531 four-potential 425
- functions 542 four-acceleration 431
- isomorphism 246 Fourier expansion 311
Euclidean group 491 frame bundle 505
- p-simplex 146 frame field 83
- space 56 free action 307, 505, 529
- transformations 88, 304 f -related 62, 72
Euler-Lagrange 1-form 385, 431 Frobenius’ theorem 512
- expression 378, 485 function 30
- field 484 functional of the length 380, 385
Euler angles 235 fundamental field 302
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fundamental representation 298 - field 317, 319, 484
- flow 323
- system 327, 484

G harmonic form 184, 185
gamma-matrices 624, 627 - function 174, 454
gauge condition 191 - map 455
- field strength 567, 568, 584 Hausdorff space 14
- field theory 562 heat 1-form 515
- group 562 Heisenberg picture 323
- invariant 427, 583 Hermitian scalar product 204
- potential 566, 568, 576 Hilbert action 443
- transformation 425, 562, 570, 572 Hodge (star) operator 119
Gauss’s law 423 holomorphic function 92, 183, 185
- theorem 166, 179 holonomy 391
Gaussian curvature 397 - group 391
- integral 114 homeomorphism 13
generalized coordinates 68 homogeneous form 104
- force 379 - tensor 91
- potential energy 494 - coordinates 19
generating function 328 - of degree k 477
generator of the action 302 - space 282, 286, 530
generators of algebra 37, 105 - symplectic space 344
- of representation 239 - homogeneous term 45
geodesic 358, 494 homology 196
- deviation 406 homomorphism theorem 289
- equation 376 homothety 86
- neighborhood 381 homotopic maps 189
G-invariant Lagrangian 490 - paths 550
global gauge transformations 566, 570 - to zero 550
- trivialization 466, 531 homotopy 189, 550
globalize 54 - operator 190, 194
globally Hamiltonian action 338, 344, 490 Hopf bundle 532, 534, 536, 629
graded algebra 45, 104, 651 - mapping 21
- commutative 100, 128 horizontal curve 522
- commutator 128, 129 - distribution 518
- Lie algebra 129, 652 horizontal form 350, 543
gradient 53, 58, 178 - forms of type ρ 635
graph of a map 22 - lift of a curve 523, 541
gravitino 635 - lift of a vector 519, 522, 541
Green’s theorem 163 - section 552
Green identities 174 - subspace 518, 537

- vectors 518, 538
horizontality 522

H hypersurface 25
Hamilton’s equations 40, 500
Hamiltonian 318, 347
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I Klein-Gordon equation 429
ideal 265, 320, 334, 353, 648, 649 Klein bottle 27
immersion 22, 65
in involution 335
incompressible 165, 332 L
index gymnastics 49, 101, 374 Lagrange’s equations 379, 482
induced metric tensor 51, 66 Lagrange theorem 285
inhomogeneous form 104 Lagrangian density 426
inner automorphism 251, 650 Lamé coefficients 180
- derivation 649 Laplace-Beltrami operator 171, 401
integrability condition 514 Laplace-deRham operator 171
integral curve 38 Laplace equation 174
- invariants 330 left-invariant tensor field 210
- of the first kind 159 - metric tensor 258
- of the second kind 159 left action 280
interaction term 426, 430 - coset 284
interior product 319 - G-space 280
intertwining operator 246, 268 - regular representation 301
invariant complement 245 - (and right) spinors 626
- form 330 - translation 209, 303
- Lagrangian 490 Legendre map 487
- subgroup 288 length of a curve 57, 58, 85
- subspace 244 level surface 25
- tensor 270 Levi-Civita connection 371
- tensor field 75 - symbol 109
inversion 441 Lie algebra 79, 217, 649
irreducible representation 245 - algebra cohomologies 275
isometry 16, 48, 86, 455, 597 - bracket 79
isotropic tensor in En 91 - constant 75

- derivative 70, 76
- dragging 74

J - factor-algebra 649
Jacobi’s equation 406 - group 207
Jacobi identity 323 - subgroup 208
Jacobian matrix 22 - superalgebra 129, 652

- transport 74
lift of a geometrical object 470

K - of a map 118, 468
Kähler-Atiyah algebra 613 - of the action of a group 489
Kähler fermions 638 linear-fractional transformation 287
k-dimensional distribution 509 linear connection 361
Killing-Cartan form 255 - field 555
Killing equations 87, 383 - form 41
- vector 87, 304, 434, 493, 495 - functional 33
kinetic energy 57, 493 - operator 36, 74
- term 426, 429 - space 644
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lines of force field 38 - tensor 47, 554
Liouville’s theorem 331 - volume form 115, 117
Liouville equation 347 minimal coupling 568, 584
- field 476, 492 - interaction 584
- form 331 Minkowski space 56, 413
little group 282 mixed state 322, 347
local coordinates 16 module 37
- flow 70 modulo 2 107
- gauge transformations 564, 565, 566, 570 moment map 341, 489
- homeomorphism 290 momentum of the field 435
- Lorentz transformations 450 morphism 64, 543
- product structure 465 - of Cartan algebras 127
- section 466, 507 - of vector bundles 468
- trivialization 465 - of principal bundles 557
locally gauge invariant 583 multi-valued representations 298
- isometric 90 multilinear 43
- trivial 466 multiplication table 210
Lorentz (four)force 431
- gauge condition 430
- group 201, 247, 294 N
Lorentzian manifold 55, 439 Nambu and Goto action 460
lowering of index 48 natural Lagrangian 493
loxodrome 67, 409 - lift 502

- lift of the curve 471
- parameter 380, 430

M - with respect to diffeomorphisms 172, 432, 596
Möbius band 135 Neumann boundary condition 175
- transformation 287 Newton-Leibniz formula 162
magnetostatics 424 Nijenhuis tensor 485
main automorphism 105 nilpotent 147, 149, 195, 275
Majorana-Weyl spinors 627 Noether’s theorem 593
Majorana representation 624 Noether currents 593
manifold of frames 504 - charges 593
map 15 no magnetic poles (monopoles) 423
mass density 165 non-abelian 586
- term 429 non-coordinate 84
matrix algebra 648 non-degenerate 318, 483
- group 208 non-holonomic 84
matter field 568, 586 non-linear realizations 280
Maurer-Cartan 1-form 219 non-orientable manifolds 135
- formula 218 non-singular 483
maximal Ck-atlas 17 nonlinear field 451, 555
Maxwell’s displacement current 423 - sigma model 451
Maxwell equations 421 normal coordinates 222, 382
mean value 160 - derivative 174
metric connection 369 - subgroup 288
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n-sheeted covering 290 p-delta 110
Pfaffian 113
- forms 515

O phase flow 323
observables 321 - space 321, 327, 489, 491
odd parameters 129 - volume 331
- with respect to chirality 642 Poincaré lemma 188, 190
of type Ad 539 - transformations 88
one-form of current 421 point transformations 464
one-parameter group of transformations 72 pointwise 52
- subgroup 219 - combination 37
open covering 16 Poisson action 341, 344, 349, 490
- sets 13 - bracket 317
operator of parallel transport 365, 368 - equation 174, 175
- of the square of the ang. momentum 258 - manifold 317
- of spin 307 - tensor 317
orbit 281 polar decomposition 295
orbital angular momentum 304 polarization vector 347
order of a (finite) group 210 pole 185
orientable 25, 136, 211, 522, 602 Polyakov action 460
orientation in L 108 polylinear 43
oriented atlas 136 positive definite 47
- volume 97 potential 187
orthogonal complement 245 - energy 58, 493
- coordinates 56 - force field 58
- group 201 power of the electric field 431
- matrices 201 preserves orientation 153
- transformation 620 principal G-bundle 506, 529
orthonormal basis 47 - homogeneous space 286, 506, 529
outer normal 155 Proca equation 430
overdetermined system 87 product bundle 465, 513

- principal bundle 530
projectable field 62, 224

P projective space 18
p-form 97 projector 98, 250
- on M 127 prolongation of a bundle 558, 628
p-chain 147 proper Lorentz group 621
- on M 149 - orthochronous Lorentz group 294, 532
parallel transport 364, 367 - time 430
- transport equations 364, 368, 577, 580 pseudo-Euclidean space 56, 88
- transported 542, 580 pseudo-metric 47
parallelizable 200, 211, 522, 602 pseudo-orthogonal group 201
parametric expression 25 pseudo-orthogonal matrices 201
parametrisation 30 pseudo-Riemannian 55
path 39, 58 pseudo-unitary matrices 204
Pauli matrices 230, 272, 627 pseudosphere 67
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pull-back 60, 63, 64 - of a bundle 554, 558
pure state 322, 347 - of a structure group 554
push-forward 61, 64 - on a subgroup 238

Ricci-flat 445
Ricci coefficients of rotation 402, 637

Q - forms 442
quadratic Casimir operator 257 - identity 399, 549, 573
quantity of type ρ 525, 542, 580 - tensor 390
quasi-linear system 39 Riemann connection 371
quaternions 648 - tensor 389

Riemannian geometry 55
- manifold 55

R right-invariant volume form 243
raising of indices 48 - G-space 280
rank of a bivector 318 - action 115, 280
- of a form 125 - (and left) spinors 626
- of a map 50 - regular representation 301
- of a tensor 44 - translation 209, 303
- of a two-form 318 ρ-invariant scalar product 242
Rarita-Schwinger field 635 RLC connection 371
rate of deformation tensor 94 R-linearity 52
reduced field 352 rotational matrices 312
- Hamiltonian system 352
- phase space 352
- symplectic manifold 351 S
reducible representation 245 scalar curvature 390
reduction by a group G 352 - density 115, 138, 526, 607
- of a bundle 558 - density of weight λ 607
regular Laglangian 483 - electrodynamics 564
relative acceleration 405 - field 428, 451, 454
- invariance 330 - potential 425
- velocity 405 - product 47, 121, 170
reparametrization 39, 58 second law of thermodynamics 516
- invariant 58, 458 - order differential equation fields 482
representation of a group 237 section 513
- completely reducible 245 self-adjoint 171
- contragredient (dual) 241 self-dual 183, 184
- faithful 241 self-interaction 586
- fundamental 298 semi-direct product of groups 264
- irreducible 245 - sum of Lie algebras 264
- reducible 245 semi-simple Lie algebra 257
representation of a Lie algebra 238 Schrödinger picture 323
residue 185 Schur’s lemma 247, 248
restrict the form 156 simply connected 290
restriction of a representation 245 singular chain 196
- of an action 282 smooth action 281
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- covector field 52 stress tensor 94
- constraints 24 string theory 459
- distribution 509, 511 structure constants 217, 640, 648, 650
- manifold 17 - equations 395, 547, 573
- map 15 subalgebra 648, 649
- structure 17 subbundle 554
- vector field 35 submanifold 22
soap bubbles 459 subrepresentation 245
soldering 529 superalgebra 651
space-like hypersurface 67 supercommutator 129, 652
space-time 56, 413, 442 supermathematics 107
spatial codifferential 418 Sylvester’s theorem 47
- domain 419 symmetric connection 370
- exterior derivative 416 symmetrization 101
- forms 415 symplectic action 337
- Hodge operator 417 - fields 320
- Laplace-deRham operator 418 - form 318, 343
- Stokes’ theorem 419 - group 201
special unitary 204 - manifold 318, 484
spherical harmonics 312 - map 323
spin bundle 559, 628 - orthogonal complement 349
- connection 401, 631, 637 - reduction 496
- frame bundle 629 symplectomorphism 322, 324
- structure 629
spinor field 451
- field on the base 630 T
- group of Ep,q 619 tangent bundle 464, 467
- indices 635 - functor 468, 473
- representation 294, 298, 623 - map 61
spinors 294, 623 - space 32
square of the angular momentum 313 - vector 38
stabilizer 282 teleparallelism 410
standard (flat) metric tensor 55 tensor algebra 45
- horizontal fields 521 - bundle 582
- n-simplex in 148 - density of weight λ 526
- orientation 134 - field 51, 526
- smooth structure 17 - field of type ρ 310
- topology in R

n 15 - operation 45
state quantity 187, 515 - product of tensors 44
stationary flow 40, 165 - product of spaces 143, 645
- subgroup 282 - product of matrices 646
stereographic projection 18 - product of algebras 648
Stokes’ theorem 156, 179, 194 tetrad field 84, 402, 446, 637
straightening out lemma 73 - formalism 84, 402
strain-rate tensor 94 - postulate 402
strain tensor 93 theory of angular momentum 257
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thermodynamics 515 vector (tangent) 38
three-form of current 421 - bundle 467, 531, 581
time development 484 - field 35, 429
- - of observables 323 - of spin 347
- - of states 323 - potential 425
topological space 13 - product 179
topology 13 vector-valued forms in L 140
torsion 370, 602 velocity field 94, 165
- form 393, 602 vertical action 505
- tensor 370 - distribution 517
torsion-free connection 371 - endomorphism 477, 483
torus 21, 27 - lift of covector 474
total angular momentum 307 - lift of tensor 472
- space 465 - lift of vector 471
transitive action 282, 505, 529 - subspace 469, 506, 517, 537
trivial bundle 465, 531 - vector 350, 470
- representation 276 vielbein field 84, 402, 446, 458, 637
- topology 14 volume 96
twisted adjoint representation 620 - form 114, 136, 202, 331
two-form of the electromagnetic field 420 - of a domain 154, 157, 457
two-level system 347 - of a submanifold 159
two-sheeted covering 291, 621
two-sided ideal 106
two-valued representation 299 W
typical fiber 464 wave operator 418

Weyl basis 213
- spinors 626

U Wigner rotational functions 312
U(1)-charge 249 work 1-form 515
undotted index 298 - done by a force 192
uniform straight-line motion 357 world-line 430, 459
unimodular frame 560 world-sheet 459
unitary matrices 204
- representation 242
universal covering group 290, 621 Z

zero points 71
zero section 531

V Z2-grading 627
variation 426 Z-graded algebra 104
- of initial conditions 404 (Z × Z)-graded algebra 45
variational derivative 427


