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S u m m a r y .  - -  The kinematics of the motion of a car is reformulated in terms of the 
theory of gauge potentials. E(2)-gauge structure originates in the no-slipping 
contact of the car with a road. 
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PACS 46.10 - Mechanics of discrete systems. 
PACS 03.20 - Classical mechanics of discrete systems: general mathematical 
aspects. 

1. - I n t r o d u c t i o n  

The physically most important  field where the mathematical theory of connections 
( ~  gauge potentials ~ Yang-Mills potentials) is used with grea t  success is 
undoubtedly the theory of e lementary particles. Since, however, the concepts 
involved are ra ther  abstract  and (especially for a newcomer in the field) mixed with a 
number of other (equally abstract)  ones, one should appreciate to find out that  gauge 
potentials can be used in ,much more mundane, but  in re turn  more readily visualized, 
context ,  [1], too, viz in the context of classical mechanics [1-4] or hydrodynamics [5]. 
A nice example of this sort  is given in [1] (cf. also [2]). I t  was shown there  that  the 
natural kinematical f ramework for computing the net  rotation of a (deformable) body 
due to a sequence of deformations is the non-Abelian gauge s t ructure  over the space 
of shapes of the body. 

In this paper  we show that  (and ra ther  in detail how) the kinematics of a motion of 
a car on a road can be reformulated in terms of non-Abelian gauge potentials, too. The 
gauge group is E(2),  the Euclidean group of the translations and rotations of the 
2-dimensional plane. 

(*) Present address: Department of Theoretical Physics, Comenius University, Mlynskfi dolina 
F2, 842 15 Bratislava, Slovakia. E-mail: fecko@fmph.uniba.sk. 
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It should be noted that the differential geometric treatment of the car's kinematics 
was given before in [6]. The new point here is the addition of the degree of freedom a 
(see sect. 2) which then makes it possible then to treat the problem in the language of 
connections. 

Finally, let us mention a technical simplification made in computations. As is well 
known, the front (as well as rear) wheels of a car do not rotate with the same angular 
velocity in general (the device called differeutial is needed). When we speak about 
the angle a as being the angle measuring the orientation of the front wheel, the 
average angle is understood in fact. Or, equivalently, we compute everything as if the 
car were a tricycle (then a is the angle of the front wheel). The full account of the 
situation with two wheels can be done, of course, but it does not bring anything 
conceptually new. 

2. - T h e  c o n f i g u r a t i o n  space  o f  a car  as  a p r i n c i p a l  E ( 2 ) - b u n d l e  

Let P be the configuration space of a car. The coordinates (a, fi, x, y, cp) are 
introduced according to fig. 1, 2, with the following meaning: (x, y) are the Cartesian 
coordinates of the centre of the front axle, q: is the angle between the Xl axis and the 
tie rod (,if that is the name of the thing connecting the front and rear axles,> [6]; it 
measm'es the direction in which the car is headed), a measures the orientation of the 
front wheel with respect to the axle and fi is the angle made by the front axle with the 
tie rod. Thus (x, y, el) carry the information about the position of the tie rod alone in 
the (Xl, x2)-plane irrespective of the -shape- of the car, whereas (a, fi) encode the 
car's shape regardless of the position of the tie rod in the (Xl, x2)-plane. 

There is a natural action of the Euclidean group E(2) on P, consisting in -rigid- 
motions (rotations and translations) of the car with no change of its shape, that is to 
say the motions of the tie rod keeping the shape fixed. This action R~: P---) P (see 
appendix A for more technical details) results in the additional structure of the space 
P, r.iz the structure of a prb~cipal fibre bu~dle ~4th the group E(2). It is constructed 
as follows: two configurations p, p '  e P are declared to be equivalent if they differ 
only by a rigid motion from E(2), i.e. if there exists such (B, b) e E(2) that the action 
of (B, b) on p results in p ', i.e. R~p  = p '. We then define M as the factor-space P/E(2),  

/ 
/ / 

/ / 

X2 ~ I 1 1 

i 

Fig. 1. - The coordinates x, y, cp, ft. 
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Fig. 2. - The front wheel--the coordinate a. 
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i.e. the points of M are by definition the equivalence classes in P. There is a projection 
map 

Jr: P--> M 

sending the configuration p to its own equivalence class [ p ] -  z ( p ) =  m, or in 
coordinates 

z: (a, fi, x, y, ~) ~ (a, fl). 

Thus z extracts from the complete configuration the information about the shape of 
the car and ,<forgets,, the position of the tie rod within the (xl, x2)-plane. 

According to the terminology of [1, 5], P is the space of ,,located shapes,, whereas 
M is the space of ,unlocated shapes,. 

If m e M, the set z-1  (m) r P (all those p �9 P which project to the fLxed m e M) is 
called the fibre over m and here it represents all configurations (--- ,,located shapes,,) 
sharing the same (,,unlocated,,) shape. Any two fibres z-1 (m), Jr-1 (m')  are mutually 
diffeomorphic (equally looking) and their abstract model, the typical fibre, is denoted 
by N (the space of the locations of the tie rod) in appendix A and happens to be 
diffeomorphic to the group E(2) itself. 

Notice that the knowledge of the configuration p �9 P is equivalent (globally) to the 
knowledge of the ordered pair (m, e) e M x & In other words, our total space P of 
the bundle is (diffeomorphic to) the product M x ~ of the base M and the typical 
fibre 

P = M x ~  

and the bundle projection Jr is realized as a projection z l  on the first factor 

z l :  M x ~--* M ,  (m, e ) ~ m .  

This means that our bundle is trivial (in general this is the case only locally). 
The section of the bundle Jr: P ~ M (the f ixation of the gauge) is a map 

o:M---->P 
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Jr 

X 1 

Fig. 3. - The gauge fLxation a. 

obeying 

n a - i d e n t i t y  on M 

(o(m) is to be in the fibre over m). It helps to visualize the abstract shapes (elements 
of M) localizing each of them somewhere in the (xl, x2 )-plane. The convenient (global) 
section is given in coordinates by 

(2.1) a :(a, [~) ~ ((z,/3, 0, 0, 0). 

It  realizes all shapes by means of the configurations with the tie rod situated at the 
x~-axis to the left with respect to the origin (fig. 3). Notice that  the coordinates 
(x, y, qc) are closely related (adapted) to this very section (in fact they are introduced 
just  with respect to this section): the section defines (for all m E M) the fidueial point 
a(m) in the fibre over m. This point is (by definition) labelled by the coordinates 
(a, fi, 0, 0, 0). Then a general point p in the same fibre (with the same shape) acquires 
the coordinates (a,  fi, x, y, ~c) if the element (B, b) e E(2) with 

B = (  cosqc sinq)/ ,  b = ( x , y ) ,  
- s i n q ~  eoscf] 

is needed to obtain p from a(m) via the group action. 
The useful possibility is to interpret the section (2.1) as the point of view of the 

driver (the driver's reference system): with respect to his axes x{, x~, the tie rod is 
clearly always at the origin and dh'eeted forward (x = y = c~ = 0). Each other choice 
of a section (other gauge) corresponds to some different observer, which can, 
however, depend on the (unloeated) shape. 

3. - T h e  n o - s l i p p i n g  c o n t a c t  w i t h  a r o a d  as  a c o n n e c t i o n  o n  Jr: P - - ~ M  

So far we have come to the conclusion that  the 5-dimensional configuration space P 
of a car can be treated naturally as a total space of a (trivial) principal E(2)-bundle 
:r : P ~ M, P - M x & The motion of the ear on a road (@1, x2)-plane) is given by a 
curve y(t) - (m(t), e(t)) on P - M x & The essential point is, however, that  it is only 
the projection m(t) - Jr~ y(t) which is under direct control of the driver (a(t): gas 
pedal, braces; fi(t): steering wheel). The driver governs directly the ~motion- in the 
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space of shapes M (the base of the bundle), whereas what is really his goal is the 
change of the position of the tie rod, or, in other words, to move along the desired 
curve e(t) in the typical fibre ~ of the bundle. The necessary ,b r idge ,  between M and 

is given by a system of (anholonomic) differential constraints representing 
physically the condition of the no-slipping contact of the wheels with the road. In 
such a way the driver's activity represented as the curve re(t) on M is transformed 
into the curve e(t) on ~ or, equivalently, 7(t) - (re(t), e(t)) on P. As we will see, the 
procedure of the reconstruction of the complete 7(t) on P from its projection re(t) on 
M is jus t  the horizontal lift m ~ m h - y, where the structure necessary for it, viz the 
connection in the principal bundle Jr: P---) M (gauge structure over M), enters the 
scene as a mathematical expression of the above-mentioned no-slipping contact of the 
car with the road, i.e. the constraints of contact can be interpreted in terms of the 
connection f o rm  on P. 

In general a connection on a principal fibre bundle z:  P--* M with a group G is 
given [7] by a $'-valued (~ being the Lie algebra of the group G) l-form on P, a 
connection form. In our case it means the 3 • 3 matr ix  of ]-forms on P decomposable 
with respect to the basis e0, el, e2 of the Lie algebra e(2) of the group E(2) (see 
appendix B) 

(3.1) (0 ~ (~)aea ---- (0oeo -~- (01e l  -~- a)2e2 = 

0 

_ ( 0 0  0 , 

(01 (92 

where ~o ~ (01, 0)2 are l-forms on P. Thus the condition of the horizontality 

(3.2) w = 0, i.e. (0o = (0~ = ~2 = 0, 

represents jus t  3 independent relations between the differentials da, dfi, dx, dy, d~ 
enabling one to express the infinitesimal changes 5x, 5y, 5(f of the coordinates of the 
rod in terms of the given changes ha, 5fl of the coordinates of the shape of the car. 

Note: the equations (0a= 0 are not to be interpreted as 1-form identities on P 
but rather  in the sense that  the forms are annihilated (give zero) by the velocity 
( - tangent) vectors to the real ( -= obeying the constraints ~ by definition horizontal) 
trajectories on P. 

The computation of the explicit expression for the connection form is performed in 
appendix C. The result reads 

(3.3) 

R 
(00 = d~ - - - s i n f l d a ,  

l 

co 1 = dx + y(0O_ Rcos ( f l  + q~)da, 

(02 = dy - x(0 ~ - Rs in  (fi + cp) d a .  

I f  one fixes the gauge by choosing the section u (sect. 2), the gauge potential (in gauge 
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o) is given as 

(3.4) ~ :=o*u~ = dt~" e~ = ~ ~ eo + ./C 1 el + ./C 2 

0 

e2 = - - , /C 0 

jr; 1 

0 = 
~ 2  
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o sin/~ i) 
_- ___R - s i n f l  0 d a .  

l cos fi l sin fi 

4. - R e c o n s t r u c t i o n  o f  y ( t )  o n  P f r o m  ~ ( y ( t ) )  o n  M as  a h o r i z o n t a l  l i f t  

The driver's activity is represented by a curve re(t)  - ;r(7(t)) on M (a sequence of 
shapes parametrized by time). The contact of the wheels with the road then results in 
a motion in the total configuration space P. According to the meaning of the 
connection as an object encoding all constraints of the contact, the resulting 
t rajectory y(t) on P is the hor i zon ta l  lift of the curve re(t) ,  i.e. the unique curve m" (t) 
on P enjoying the following two properties: 

i) n ( m h ( t ) ) =  re(t)  ,~, m h ( t )  is always exactly -over-  re( t ) ,  

ii) #t h =- its tangent  (velocity) vector, is always horizontal, i.e. it annihilates w a, 
a = 0, 1, 2. 

Let  us express these conditions in coordinates. If  

re(t)  o (a( t ) ,  f i( t))  

is given, then its horizontal lift is 

m h (t)  ~ (a( t ) ,  f i(t),  x ( t ) ,  y ( t ) ,  9 ( t ) )  

(the same a and fi are there because of the condition i); x, y, 9 are to be determined). 
Now 

#t h (t) -- &(t) 9~ +/9(t) 3t~ + 2(t) 9x + #(t) 9y + ~(t) ~ 

and 

gives 

(~o~, mh (t)) = O, a = 0, 1, 2,  

(4.1) f R 

= d - - s i n f i ,  
1 

2 = &Rcos(f i  + 9 ) ,  

&Rsin(fi  + 9 ) ,  
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so that 

(4.2) rh h = &(t)Ha +/3(t)Hl~, 

where 

(4.3) Ha --- a~ := 3, + Rcos( f i  + 9)3~ + Rsin (fi + 9)ay + Rs in f i3 , ,  

(4.4) H~ - 3~ := 3~ 

are the horizontal lifts of the coordinate basis vectors on M. 
The 1st-order linear autonomous system of equations (4.1), the parallel-transpose 

equations, solves the reconstruction problem: given a(t), fi(t) for t e (ti, tf} (sequence 
of shapes) and (x(t~), y(t~), cp(t~)) (the initial position in the fibre over m(ti), i.e. the 
initial position of the car on the road), it provides the remaining information about the 
motion of the car, viz the sequence of the positions of the tie rod corresponding to the 
given sequence of shapes (an example--the motion with the fixed steering whee l - i s  
computed in appendix D). The parallelly transported configuration is then, by 
definition, the configuration mh(t~). (Recall that according to the meaning of the 
connection here to follow the parallel-transport rule is the same thing as to be 
compatible with the constraints of the contact.) 

Note that eqs. (4.1) are invariant (as is the case in general for the parallel- 
transport equations) with respect to reparametrization--the speed of the shape 
sequence is irrelevant, what matters is only the path corresponding to re(t) rather 
than the curve m(t) itself. Surprisingly, this rather subtle technical fact seems to be 
pretty well known intuitively to our wives when they prevent us to drive too quickly 
(~,you win nothing by it,). 

5. - Parking cycles as a clever  use  o f  the  curvature ~ of  the  c o n n e c t i o n  

To get out of an extremely tight parking spot [6] a pure translation of the tie rod 
perpendicular to the latter, i.e. (infinitesimally) 

(5.1) (x, y, cp)~ (x - e sin cp, y + e cos cp, cp) 

(e << 1), is strongly desirable lest we come to contact with the neighbouring car (and 
even much worse with the owner of the neighbouring car, then). 

On the other hand, according to the results of sect. 4 only the motions generated 
by some horizontal lift ~h h are possible (allowed by the constraints), i.e. (cf. 
(4.2)-(4.4)) 

(5.2) (x, y, q~)~(x  + zcos(~ + fi), y + esin(q~ + fi), q~ + ls in f i )  

(e = &R St<< 1). In no special case (5.2) reduces to (5.1): (5.2) consists of both 
translation and rotation except for the case fi = 0, when, however, the translation is 
just along the tie rod. Thus it seems that we are simply unlucky and we have to wait 
until the car in front of us leaves. 

This conclusion is, however, too hasty, since we have not used yet the basic 
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(a, fl) 
I t ;  

Fig. 4. - A simple infinitesimal parking %,cle. 

parking algorithm known to every driver, viz a cycle in the space M. Let  us study for 
a moment the result of an infinitesimal cycle of the following structure: 

i) go forth (cx ~ a + ~), 

ii) turn the steering wheel to the left (fi ~ f i  + e), 

iii) go (the same step) back (a + c ~ a), 

iv) turn the steering wheel (the same angle) back to the right (fi + ~ ~ f i )  

(see fig. 4). Clearly we finish at (exactly) the same point in M; the complete 
configuration p -= (m, e), however, changes: p = (m,  e)~--,(m, e ' )  = p ' ,  viz up to the 
secor~d-order terms in e the result is (see below) 

R 
(5.3) ( a , / 3 , . r , y ,  c f ) ~ ( a ,  fi, x - e ~ R s i n ( q  - ~ f i ) , y + e ~ R c o s ( q ? + f i ) , q ) + e 2 - - c o s f i ) .  

l 

Although this does not meet our requirements yet (rotation is present unless fi = ~/2; 
if fi is n/2, the translation is once more alot~g the tie rod), there is still something 
interesting here which will turn out to be the essential clue for the real solution of the 
parking problem. Namely, if one interprets (5.3) as a direct step from p to p '  (and not 
as the effective one - the result of the cyclic motion described above), it is f o rb idden  
(it violates the constraints). This particular step is even forbidden in a ~,maximal 
way- - - i t  is purely vertical (projects to the same point in M; both p and p '  lie in the 
same fibre). Thus the fact of vital importance is that a cycle composed exclusively 
of allowed (= horizontal) steps can result in the (directly) forbidden motion 
(= non-vanishing vertical part). This means that, although we have come to the 
conclusion that (5.1) cannot be realized ,~directly- (as one step), there is still a real 
hope to produce it effectively--as a result of (maybe rather involved) cycle of allowed 
-simple steps,,. 

The most convenient tool for studying the effect of cycles is the language of vector 
fields (appendix E). The cycle i)-iv) above is just  the infinitesimal cycle generated by 
H , ,  H/~ (on P; its projection to M is generated by 3,~, 3j~ and the corresponding loop 
closes exactly since they commute); then the resulting motion (5.3) follows from the 
formula (see (E.1)) 

(5.4) ZH:~ :t,, H~ H ~H H:~I 
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and the explicit computation of the needed commutator: 

(5.5) { , } [H~, H/3] = R  sin(c; +fi) Sx - cos(c; +f i )8~ - 7cosfiS~ . 

Since (5.3) is not enough, we can t ry  the <<higher, (iterated) commutators. There are 
two of them to be computed and the results are 

(5.6) 
R 2 

[H, , [Ha,  He]] = -~-(cos c;$y - sin C;8~), 

(5.7) [Ha, [H,~, H e 1] = H .  - $,~ = $h _ 8, .  

Both of these results deserve some attention. First,  note that  the r.h.s of (5.6) just  
generates the wanted motion (5.1)! In more detail, the identity (see (E.3)) 

o H , H a Ha  o Z  H~ o Ha  . [ H ( ~ , [ H . ,  H/~]] 

tells us that  the iterated cycle standing on the 1.h.s. of (5.8) (try to draw a picture by 
appropriately modifying fig. 4!) results in 

R2 R 2 ) 
(5.9) (x, y, C; )~  x + 8 4 - - s i n c ; ,  y - 8 4 --COSC;, C; , 

1 1 

which is just  the pure translation perpendicular to the tie rod. Note that  this type of 
motion is very slow and laborious: it is necessary to perform ten ,,simple,, steps (of the 
order e or e 2) to produce effectively a single step (which is of the order e 4) in the 
,right>> direction. 

The same t reatment  applied to (5.7) leads to the identity 

H# Ha Ha 'vH/~ Z-<~ "~ *: "~'e ~',: o , (5.10) )/_~ ~ ~ o)<H~ ~ ~ ~ ~ ~ ~ 

which shows that  performing the (iterated) cycle standing on the 1.h.s. of (5.10) the car 
moves just  as if the driver simply moved forth, but the front wheel did not rotate (no 
change of a at all: ideally slipping contact--ice on the road). 

As we will see in appendix E, the possibility of producing , forbidden,  motions by 
means of the cycles composed of <,allowed>> steps leans heavily on the fact that  the 
curvature of the connection in question does not vanish (,-* the horizontal lifts of 
coordinate basis vectors do not commute). The (Lie-algebra-valued) curvature 
2-form, which happens [7] to be the measure of this non-commutation, can be easily 
computed explicitly (using the formula (E.8)) here and the result reads 

(5.11) D - hordo~ = t2aea = D~ + t~21el + .C22e2 = 

0.0 ) 
- t '2 ~ 0 
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where 

(5.12) 

f ~ 0 =  / c ~  R 

/ 7  

s { - R s i n ( f i + c p ) + T y c o s f l } d a A d f l ,  

2 2 { R c o s ( f i + q J ) -  R x e o s f l } d a A d f l .  
l 

I f  one fixes the gauge by choosing the section o (sect. 2), the field strength (in gauge 
a) is given as 

(5.13) 5 r : =  0 * 2  = ~ " e ~  = 9~~ o + 5~-1el + 5~-2ez = 

R 
= r 

1 

0 

0 

--  COS f i  

sinfi 

.o!) 
0 = 

cos~ i) 
0 da 

lcosfl 
A dfi. 

6. - Par t i c le  fields 

The gauge potentials Jt~ = a*oJ (and the field strengths 5~" = a* s do not exhaust 
all the building blocks of the gauge theory of elementary par t ic les-- there are also 
particle fields there: particles interact via gauge fields (bosons). 

In our model of the kinematics of a car we used only the -connection part  of the 
theory-  yet. The question arises whether  there is an object here which is described 
mathematically by a particle field and whether  some standard computation with it 
does make sense in this context. 

If  V is a vector space in which a representation • acts, then [7] a particle field of 
type Q is a V-valued function on P which transforms according to the representation ~) 
with respect  to the action of G on P; in our model it means 

(6.1) ~ : P ---) V 

such that 

(6.2) ~(R~p) = e( ~ - t ) ~(p). 

Here  we give a simple example of such ~. Let  V = R 2 and define the function 
o n  P 

(6.3) ~ :(a,  fi, x, y, q~) ~ \sinq~]" 

Then ~(p) jus t  gives the components of the unit vector e fLxed on the car and directed 
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along the tie rod (fig. 1). According to appendix A, the action of E(2)  has the explicit 
form 

(6.4) (a,  fl, x, y, ~ ) ~  R~(a ,  fi, x, y, qo) - 

--- (a,  fl, x cos O - y sin O + bl, x sin O + y cos O + b2, c# + 0 )  

and thus, if 

(6.5) 
cos q)/ 

~(P) ~ \ sin ~ ] '  

then 

 cos  +o,)= coso sinO  cos   1,rcos  / 
(6.6) F(Rep)~- ,  sin(c P + O) \ s i n O  c o s O ] \ s i n ~ ]  Q(~  \ s i n g ] '  

where the representation O of E(2)  in V--  R 2 is given by 

(6.7) 
cosO s i n O /  

Q(N) = Q((B(O), b)) = \ - s i n O  cosO]"  

Thus our ~ is the particle field of type Q given by (6.7). 
Let  the motion in M be given by m(t)  ,,-, (a(t), fi(t)). Then the change 5e of the 

vector e between t and t + 6t can be computed as 

Since - sin q~t 
cos q~/ 

is just  the unit vector orthogonal to e, the net angle of rotation of e is 

5t&R 6aR 
(6.9) - - s i n f i  - sinfl ,  

1 l 

which can be checked by  inspection of fig. 1. The same angle can be computed 
within the gauge fLxation a, too, making use of the covariant derivative of 

o 
v/z 

6q~ = 5tVm(a* ya) = 5t<a*D,p, rh} = 6aR sin fi ,-~ 
1 1 

sinfie2 
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o r  

in agreement Mth  (6.9). 

(~aR . 
6el - sin {~ez 

l 

M. FECKO 

7. - C o n c l u s i o n s  and  c o m m e n t s  

In this paper we have presented in some detail a gauge-theoretic approach to the 
kinematics of the motion of a car. It can serve as one more example of application of 
the ideas and techniques of the mathematics of gauge fields and related structures 
within the rather mundane context of the elementary (classical) mechanics (as 
opposed to their standard occurrence in ~moble . . . . .  fundamental-  physics). 

The formal scheme is the same here as in [1] or [2]: there is a ,total,, configuration 
space (P here ~ the space of located shapes in [1] ~ X in [2]) which happens to carry 
the structure of the total space of the principal fibre bundle. The group G acts there 
(E(2) here ~ SO(3) in [1] ~ SO(d) in [2]) and the space of orbits of this action (M here 

the space of unlocated shapes in [1] ~ 3? in [2]), the base of the bundle, represents 
the -directly controllable part,, of the total configuration space. The connection in 
:r: P---, M provides the bridge linking the motions in these two spaces. 

The main difference lies in the physical origin of the connection in question: here 
(and also in [4]) it encodes the constraints expressing the no-slipping (direct) contact 
of the car with the road, whereas in [1,2] and [3] it results from the conservation laws 
(of the linear as well as the angular momentum) in a ,nothing to push against,, 
situation, i.e. the constraints enter the problem dynamically. 

A P P E N D I X  A 

T h e  a c t i o n  o f  E ( 2 )  on  • a nd  on  P 

Let B c S0(2), b - (bi, b2) e R e. Then one can define the transformation of the 
points Z - (Xl, x2) e R e by the couple (B, b) by 

(A.1) 

Geometrically it represents the rotation by O around the origin 

( [ c0sO sin 0 / ]  
if B = ~ - s i n  O cos 0]]  followed by the translation by (bl, b2), i.e. the Euclidean 

transformation of 7~ by (B, b) E E(2). The rule (A.1) can be written in purely matrix 
form (which is advantageous for manipulations with the gauge potentials) using the 
following standard trick: let us associate the 3 • 3 m a t r i x ~  and the row vector ~1 with 
the couple (B, b) and the row vector X, respectively, according to 

(A.2) 
0) 

r / :=  (X, 1) - ( X l ,  X2, 1). 
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Then the matrix multiplication of r] by ~8 gives 

(A.3) r]~8 = r]' = (zB + b, 1) = ( ~(B, b)Z, 1), 

i.e. the rule (A.1) is reproduced from the matrix multiplication of the auxiliary 
quantities ~/ and ~8. The action given by (A.1) or (A.3) transforms the (Xl, x~)-plane 
,rigidly,,  i.e. all distances are preserved ( ~  = ~(8, b) is an isometry). It then enables 
to define the a c t i o n / ~  of E(2) on the space ~ of the locations of the tie rod, by simply 
transforming both endpoints by ~ .  If the coordinates (x, y, cp) are introduced to 
according to fig. 1, one obtains 

(A.4) (x, y, go) ~ / ~ ( x ,  y, go) = 

= (xcos O - y s inO  + bl, x s inO + ycosO  + b2, cp + O). 

Notice that the general position (x, y, cp) of the rod can be reached from the reference 
one (0, 0, 0) (the rod being situated on the xl-axis left to the origin) by means of the 
unique R~: 

(A.5) / ~ ( 0 ,  0, 0) = (x, y, fp) for B = (  c~ sin fp cos sin c;/(p] ' b = ( x , y ) .  

This means that the action / ~  is transitive and free and thus ~ is the ,principal 
E(2)-space,. (A.5) gives the diffeomorphism of 8 and the group E(2) itself, too. 

Finally the action R~ on P = M x 8 is given by 

(m, e ) ~  ( m , / ~ e )  =: R~(m, e) 

or, in coordinates, 

(A.6) (a, fi, x, y, go)~ R~(a, fl, x, y, ~c) =- 

= (a, fi, xcosO - y s inO  + bl, x s inO + ycosO  + be, go + 0 ) .  

A P P E N D I X  B 

The Lie algebra e(2) of the group E(2) 

According to appendix A, the group E(2) can be realized by the matrices 

g ~ = ( B  O1),whereBeSO(2).Bydefinition, theLiealgebrae(2)  thenconsistsofal  1 

3 • 3 matrices ~ such that 1 + e G -  ~ ' ( e )e  E(2) when the 2rid-order terms in 

are neglected. This leads to G = ( C 00) with the additional restriction (coming from 

BTB = 1) C T= - C ,  or, explicitly, 

- 20  0 

21 22 

2o, 21,22E R.  
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The mat r ices  

e 0 = - 1  0 , e l  = 0 , e2 = 0 

0 0 0 1 

can then  serve as the  basis of e(2); their  commuta t ion  relat ions read  

(B.1) 

[eo, el] = - e2, 

[co, e2] = + el,  

[el ,  e2] = 0 

and so the  only non-zero  s t ruc tu re  cons tan ts  are  

(B.2) c~o= - c ~ l = c J 2 =  - C ~ o = 1 .  

A P P E N D I X  C 

A c o m p u t a t i o n  o f  t h e  c o n n e c t i o n  f o r m  w 

In  general ,  a connect ion form can be wr i t ten  as follows: 

(C.1) t g = ~  l ~ + ~  l d ~  ' 

where  w = U"e~ is some (yet  unknown)  e(2)-valued 1-form on M and 

(C.2) ~ = 

cos  sin  

- sin ~v cos ~v E E ( 2 ) .  

x y 

The  form ~o defines the  horizontal  directions (the relat ions be tween  da ,  dfi, dx, dy  
and dcf as a resu l t  of the no-sl ipping contac t  of the  wheels  with the road) by  the  
equat ions w~ = 0, a = 0, 1, 2. I n  part icular ,  at  the points  of the  section a ( M )  c P ,  
co r respond ing  to the  - s tandard , ,  position of  a car  (i.e. for  x = y = ~f = 0; cf. sect. 2) 
one has .~ = 1 = ~ -1 and 

(C.3) o ~  _ 1 = ~ + ( d ~ ) ~  _ 1. 

Thus  

(C.4) w ~ = 1 

(o 
= _ ~0 0 + 

U1 We 

-dcp  0 = 

dx dy 

= (d~v + ~o)eo  + (dx + ~ ' ) e l  + (dy + ~2)e2 .  

The  equat ion (o~_1  = 0 by  definition singles out the  hor izontal  directions for  
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x = y = q J = 0 ;  one has 

(C.5) dcf = - ~o ,  dx = - ~1,  dy = - ~e .  

On the  o the r  hand,  the  no-slipping contac t  cons t ra in ts  for  the  s t anda rd  posit ion 
x = y  = ~  = 0 can be easily r ead  out  f rom fig. 3: if a ~ a  + 5a (5a<<1) ,  then  
(x,  y )  - (0, O ) ~ ( S a R c o s f l ,  6 a R s i n f i )  - (Sx, by), ( - 1 ,  O ) ~ ( - 1  + 6 a R c o s f l ,  0 ) ~  
~ c f ~ c f  + 6 a ( R / l ) s i n f l ;  if  f l ~ f i  + 5fi (6fl<< 1), then  (x, y,  cp) ~ ( x ,  y,  q~). Thus  

R 
(C.6) dcf = - -  sin f l da ,  dx  = R cos fi d a ,  dy = R sin fi d a .  

l 

A compar ison  with (C.5) gives 

R 
(C.7) ~o = _ _ _  s i n f l d a ,  ~1 = - R c o s f l d a ,  ~2 = - R s i n f l d a ,  

l 

R 
(C.8) -~ =- -~a e a -- - - -  

1 

o sinZ i) 
- sinfl  0 d a .  

l cos f l  l s inf i  

Inse r t ing  this into (C.1) leads finally to 

w = eo~ + o l e  1 + (1)2e2, 

where  

(C.9) 

R 
~o ~ = dq~ - - - s i n f i d a ,  

1 

~o 1 = dx + y w O _ R c o s ( f l  + q~)da,  

o~ 2 = dy - x(o ~ - R  sin(fl  + q~) d a .  

Thus  the  differential  c o n s t r a i n t s  in genera l  configurat ion are  (w a =  0) 

(C.10) 

R 
dq~ = - -  sin fl d a ,  

l 

dx = R cos (fi + ~)  d a ,  

dy = R sin (fi + of) d a .  

Notice  the  absence  of  the  differential  dfl on the  r .h . s . - - i t  ref lects  the evident  fact  tha t  
tu rn ing  the  s tee r ing  wheel  alone resul ts  in no mot ion  of the tie rod. 

APPENDIX D 

Mot ion  o f  the  car with fixed s teer ing wheel  

In the  case of a fLxed s teer ing  wheel  ( f l ( t )=  fl0 = const)  the para l l e l - t ranspor t  
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equat ions  (4.1) r ead  

(D.1) 

R 
q~'(a)  = - - s i n / ~ o ,  

1 

x ' ( a )  = Rcos ( f i o  + of(a)), 

y ' (cz)  = Rs in ( f i o  + V(a) )  

(cf'(c~) = drf/dcx, ...). T h e y  a re  easi ly solved. I f  rio ~ 0, then  

R 
cf(cz) = q;o + a - - s i n f i o ,  

1 

1 
x ( a )  = Xo + - -  

sinfio 
(sin (of(a) + rio)) - sin (Cfo + r io) ) ,  

y ( a )  - Yo - - -  

and, consequent ly ,  

whe re  

sinfio 
(cos ( ( f (a)  + ~()) - cos (cfo + ~o))  

(x(c~) - xe)  2 + (~j(a) - y~)2 = r~, 

1 

sin fi o ' 

x~. - xo - r~ s in (of o + fi o ), 

y~. = Xo + r~.cos(cfo + r i o ) .  

Thus,  as expected,  the  f ron t  wheel  d raws  a circle with rad ius  r~ and cen t re  (x~, y~). I f  
rio = O, eqs. (D.1) give 

~ ( a )  = cfo, 

x ( a )  = Xo + a R c o s c f o ,  

y ( a )  = Yo + a R  sin Cfo, 

which is a s t r a i g h t  l ine  in the  direct ion of the  tie rod. 

A P P E N D I X  E 

C o m m u t a t o r s ,  i n f i n i t e s i m a l  c y c l e s  a n d  t h e  c u r v a t u r e  

L e t  U, V be two vec to r  fields on a manifold  J / f ,  [U,  V] the i r  c o m m u t a t o r  (Lie 
b racke t )  and X[ ~, )/~" and XI U' vI the  co r respond ing  flows ()/[z is the  m a p  ~2 ~ --~ J / f  
sending  each point  x e ~ a ( p a r a m e t e r )  d is tance t a long the  in tegra l  curve  of U; 
)~'+.~) = Z~T~ =Z.~' X~) holds. Then  a computa t ion  shows tha t  up to the second-  
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order te~ts in ~ << 1 the following important identity is valid: 

x V  U . v  o ~ U [U, v] (E.1) 

or, equivalently, 

(E.2) [U,V] o x V  U V U X~ ~ o,~ -~ o,~ oX~ = identity on J f f .  

From these formulae one deduces the standard interpretation of the commutator of 
two vector fields: the infinitesimal cycle generated by U and V (1.h.s. of (E.1)) does not 
end at the original point within the accuracy e2 (although it does within the accuracy 
e), but rather one has to add a one-order-smaller step along [U, V] to close the loop 
(1.h.s. of (E.2)). Now if V is itself a commutator, V = [W, Z], the twofold use of (E.1) 
yields 

z W Z W Z o y , ~  = ,,,[U,[W, ZJ] 

Thus the computation of ,,simple,) ([U, V]) and iterated ([U,[W, Z]]) commutators 
tells us wha~ is the result of a simple (4 steps) and iterated (4 s~eps, but two of them 
being themselves results of 4 steps, i.e. together 10 simple steps) cycles, respectively 
(the higher iterated commutators can be treated in the same way). 

All that was said until now is valid for any vector fields on any manifold. In the 
case when the vector fields in question are horizontal lifts, the resulting commutator 
can be expressed in terms of the curvature of the connection. For doing this we need 
first the concept of the fundamental fields of the action R~. By definition the field ~e, 
d ~ -= doaea~e(2), generates the motion of any point p under the action of the 
one-parameter subgroup ~ ( )b  = exp [~do ], i.e., for p()[) := R~(~)p, 

(E.4) ~e(P) :=/i(0). 

For the basis elements e0, el, ee e e(2) we obtain explicitly 

(E .5 )  41 ~ ~el ---- 3x,  

and, in general, 

( E . 6 )  ~ - ~e%~ = 6~ ~ ~e~ - 6~ a ~a-  

These fields are purely vertical (directed along the fibre), since (by definition) the 
action is vertical (p and R~p lie in the same fibre for all p, ~) .  Now the relevant 
formula for the commutator of Ha and H e is 

(E.7) [Ha, He]  = ~ - . ( . o , . ~ )  = - 9 a ( H a ,  H ~ ) G ,  

where the (e(2)-valued) curvature 2-form t~ = tOaea  is given by 

1 
(E.8) tg" = d~o a + -C~c(O b A ~o c 

2 

(c~ being the structure constants; they are computed in appendix B). The formula 
(E.7) shows that 
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i) [H, ,  H~ ] is non-zero if and only if ~ is non-zero, 
ii) [H(~, H/~ ] is purely vertical ~ the corresponding cycle generates -forbidden- 

motion. 

The explicit form of ~2 in our case is displayed in sect. 5 (see (5.11), (5.12)). 
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