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PREDHOVOR

Tato kniha je ivodnym textom o istej casti matematiky, o modernej di-
ferencidlnej geometrii a o Lieovych grupéch ako jej integralnej sucasti. Pritom
je pisané hlavne z pohfadu a pre potreby fyzikov. Orientédcia na fyziku sa
prejavuje vo vybere materidlu, v sposobe jeho podania (miere ”rigoréznosti”,
nepouzivani formy ”definicia-veta-dékaz” ), aj v naplni dloh (st ¢asto spojené
s fyzikou).

Fyzikmi sa v8ak potencidlna citatelska obec knihy nevycerpava. Kedze
je o matematike a kedze fyzika odjakziva bola a stile je pre matematiku
vydatnym zdrojom inSpiracie, bude uzito¢nad aj pre matematikov. A vse-
obecnejsie pre kohokolvek, kto md potrebné (nevelké) predbezné vedomosti
(skonkretizované nizsie) a chcel by sa pristupnym sposobom zozndmit
s touto zaujimavou, dolezitou a zivou disciplinou, ktora ¢oraz viac prenika
do roznorodych oblasti modernej teoretickej fyziky, matematiky a aj ich apli-
kécii.

S akymi minimdalnymi vedomostami moze prikrocit potencidlny citatel
k stidiu tejto knihy? Nevyzaduje sa toho vela. Stacia bezné vedomosti z kur-
zov matematickej analyzy (funkcii viacerych redlnych premennych) a linedr-
nej algebry, ktoré v prvom alebo druhom ro¢niku vysokoskolského studia
absolvuju napriklad vsSetci fyzici a matematici, ale aj va¢Sina buducich in-
zinierov. Citatel by teda mal rozumiet pojmom parcidlna derivécia, Tay-
lorov rozvoj a viacnédsobny Riemannov integral, vediet nasobit matice, mal by
chapat pojem podpriestor n-rozmerného linearneho priestoru a podobne. Mal
by tiez mat isti prax v zostavovani a rieSeni jednoduchych ststav obycajnych
diferencidlnych rovnic a rozumiet, akd myslienka sa nimi realizuje.(Doladenie
formy sa dé robit aj ”za pochodu”, okrem iného pozornym ¢itanim Dodatkov
na konci knihy.)

Typicky teda pdjde o vysokoskoldka/cku spominanych odborov, spravidla
od druhého ro¢nika vyssie, ale nezriedka maji potrebné vedomosti uz aj
mladsi. Kniha je vSak umyselne pisand tak, aby ju mohol bez tazkosti stu-
dovat aj samouk - ktokolvek, koho ldkaji tenzorové a spinorové polia,
¢i fibrované variety, chce sa naucit derivovat a integrovat diferen-
cidlne formy, vidiet, ako sivisia so symetriami Lieove grupy a alge-
bry a ich reprezentacie, ¢o je krivost a torzia, ako sa vyuziva symplek-
ticka geometria v lagranzovskej a hamiltonovskej mechanike, v akom
zmysle hovoria konexie a kalibraéné polia o tom istom, ako vznikaji
noétherovské pridy a ako suvisia so zakonmi zachovania atd.

Zo zamerania knihy vyplyva, ze je vyhodou, ak aspon zhruba pozname aj
fyzikalny kontext, ktorého sa tykaju aplikdcie. Av8ak aj bez fyzikalnych vedo-
most{ mozno mat (z hladiska samotnej geometrie) z knihy prospech. Ak sme



12

napriklad nikdy nevideli Maxwellove rovnice a netusime, aka je ich tloha
vo fyzike, nebudeme sice chapat, preco sa prave im venuje taka pozornost,
ale napriek tomu budeme rozumiet, ¢o sa tu s nimi z technického hladiska
robi. Uvidime na nich, ako sa daju tieto parcialne diferencialne rovnice
vyjadrit v jazyku diferencidlnych foriem, ako pre ne vyzerd tucinok, ako sa
z neho pomocou tenzora energie-hybnosti ziskavaji zdkony zachovania
a podobne. A ak sa ndm to bude zdat zaujimavé, mozeme si o nich precitat
nieco "tradi¢né” aspon dodatocne.

Podobne, ak nevieme ni¢ o vSeobecnej tedrii relativity, nebudeme sice
chépat odkial sa nabrala predstava o ” zakrivenom” priestorocase a o me-
trickom tenzore v nom, dozvieme sa vSak, ¢o to je priestorocas z geome-
trického hladiska a ¢o sa v niom d4 Standardne robif. Neprenikneme sice
do fyzikalnej podstaty Einsteinovych rovnic pre gravitaéné pole, avsak
spozname ich forméalnu Strukturu a jednoduché a U¢inné technické nastroje
na pracu s nimi. Zvladnutie tejto a mnozstva inej geometrickej techniky nam
potom vyrazne ulahé&i pochopenie fyzikélnej stranky veci, ak si o tejto tedrii
precitame, alebo vypocujeme neskor nieco orientované fyzikalne.

KMicovou poziadavkou na budiceho citatela je velky zdujem porozu-
miet veciam, o ktorych sa tu piSe a chut zvladnut material nielen platonicky
(pre potreby nonsalantnej konverzdcie na spolocenskych vecierkoch), ale aj
na pracovnej drovni. No a samozrejme aj prijatie prirodzeného doésledku,
ze tento ciel sa nedd dosiahnuf samotnym pasivnym ¢éitanim, ale ze je nevy-
hnutnd znaénd samostatnd préca (z ¢oho by mal mat idedlny buduici ¢itatel
radost) a jej zodpovedajica casovd investicia.

Latka sa vyjasnuje pomocou mnozstva jednoduchych tloh (je ich
spolu vyse tisic), v ktorych si ¢itatel ”vlastnymi rukami” rozobera detaily
7tedrie”, ale aj spustu konkrétnych prikladov. Zaciatok tdlohy spozndame
podla réméeka, v ktorom je jej ¢islo (napriklad oznacuje tretiu tilohu
vo Stvrtom paragrafe Strndstej kapitoly), koniec podla symbolu 0. V&csina
uloh (asi devifsto) mé pripojeny dostato¢ne podrobny ndvod a niektoré,
zhruba péatdesiat, aj iplné rieSenie. Symbol e znamena zaciatok ”textu”,
ktory nie je tdlohou ("tedria” alebo komentdr k ulohdm). Ak je pri éisle
paragrafu hviezdicka (napriklad 12.6.*), znamend to, ze pri prvom ¢itani ho
mozeme vynechat (ide do vacsich detailov, alebo sa zaoberd prilis Specidlnymi
otazkami). Hviezdickou st oznacené aj niektoré ndrocnejsie ilohy.

Této kniha obsahuje dost vela materidlu a bude asi uzitoéné spomentt,
ako s nou optimélne pracovat. D4 sa ¢itat roznymi sposobmi, ktoré zavisia
od toho, ¢o od nej ocakdavame a kolko tsilia sme ochotni na jej zvlddnutie
venovat.

Zakladnym a najviac odporucanym sposobom je postupovat pekne od
zaciatku do konca a riesit pritom (skoro) vsetky ulohy. Toto je postup,
ktorym sa z textu vytazi maximum. Tému vidime v dostatocnej Sirke, fakty
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vnimame v suvislostiach a mnohorakych aplikaciach. Vyzaduje si to vSak ¢as
a trpezlivost.

Kto jedno alebo druhé nema, moze postupovat aj inac. Pojde sice opat od
zaciatku do konca, ale podrobne riesit bude len tlohy, ktoré ho nie¢im zaujmu
alebo potrebuje ich vysledok. Pri tomto postupe sa moze stat, ze niektord
tlohu nebude vediet zvlddnut; chyba mu na to nejaké podstatné ohnivko (fakt
alebo zru¢nost) z preskoceného materidlu. Ak sa d4 zistit ktoré ohnivko to je
(v ndvode sa velmi ¢asto odvoldvame na ¢isla potrebnych predchddzajicich
dloh), ni¢ hrozné sa nestalo, jednoducho sa treba vratit a chybajici kisok
(dlohu) si dodato¢ne doplnit.

Este rychlejsi bude postup citatela, ktory sa chce od zaciatku obmedzit
na nejaki konkrétnu oblast a o ostatné sa zaujima iba do tej miery, aka
je nevyhnutnd pre ”jeho” tému. Na pomoc takémuto citatelovi uvadzame
(priblizni) schému zavislosti kapitol:

1 2 3 4 15 19— 20 —= 21 — 22
12
10&11>13/

8§—16
9

S—>6—>7 14— 17— 18

(T4to schéma nezodpoveda skutocnosti tplne, viacero paragrafov, kratkych
casti ¢i dokonca jednotlivych tloh by si v skuto¢nosti vyzadovalo dokreslit
do nej dalsie sipky, ¢im by sa ale stala prakticky bezcennou.)

7Z takychto konkrétnych oblasti by sa dali spomenit povedzme tieto:

1. geometria potrebna pre zéklady vSeobecnej tedrie relativity (kova-
riantné derivicie, tenzor krivosti, geodetiky, apod.)

Ide o liniu 1 - 2 - 3 - 4 - 15 (podobny aparét sa zide aj do pokrocilej
mechaniky kontinua). Ak chceme zvlddnut aj précu s formami (napriklad
pochopit paragraf 15.6. o vypocte Riemannovho tenzora pomocou Carta-
novych struktirnych rovnic alebo paragraf 16.5. o Einsteinovych rovniciach
a ich odvodeni z uc¢inkového integralu), potrebujeme pridat este kapitoly 5 -
6-7.

2. elementdrna tedria Lieovych grip a ich reprezentacii (bez apardtu
diferencidlnej geometrie)

Linia by mohla obsahovat kapitoly (z niektorych len uvedené paragrafy)
1-24-10-11.7-12-13.1,2,3

3. hamiltonovska mechanika a symplektické variety
Minimaéalna trasa obsahuje kapitoly 1 - 2 - 3 - zac¢iatok 4 - 5- 6 - 7 - 14. Jej
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pokracovanie (formuldcie lagranzovskej a hamiltonovskej mechaniky na fib-
rovanych varietdch TM a T*M) je v kapitoldch 17 - 18. Ak chceme rozumiet
aj pokrocilejsim paragrafom o symetriach (14.5.-14.7. a 18.4.), potrebujeme
chapat geometriu na Lieovych grupach a posobenia Lieovych grip na va-
rietdach (11.-13. kapitola).

4. zéklady préce s diferencidlnymi formami
Trasa by mohla vyzerat 1 - 2 - 3 - zaciatok 4-5-6 -7 - 8 - 9, pripadne
eSte pridat zaciatok 16. kapitoly.

Tato kniha vznikla usporiadanim a rozsirenim materidlu, ktory uz mnoho
rokov predndsam Studentom teoretickej fyziky FMFI UK (predtym MFF
UK) v Bratislave. Formélne zodpovedd Styrom oficidlnym prednaskam (¢o
uvadzam len ako inspiraciu pre pripadné zavedenie podobnych prednasok
inde), jednej vécsej a povinnej (je k nej aj cvicenie) a trom mensim a vybe-
rovym (su bez cvi¢enia, aktivita sa udrziava len domdacimi dlohami). Vacsia,
ktord bezi pod ndzvom ”Matematickd fyzika” (1 alebo 2), zodpovedd zhruba
kapitolam 1-9 a 14-16. Jej napliou su teda zaklady diferencidlnej geome-
trie a nacrt jej hlavnych aplikacii. Mensie sa tykaju Lieovych grip a ich
reprezentacii (kapitoly 10-13), geometrickych metéd v klasickej mechanike
(17-18 a zvySok 14) a konexif a kalibraénych poli (19-21).

Na zaver by som sa rad podakoval Spolo¢nosti autorov vedeckej a odbornej
literatiry (SAVOL) za poskytnutie Stedrej dotdcie potrebnej na vyjdenie
tohoto diela, Centru pre vyskum kvantovej informaécie Fyzikalneho ustavu
SAV v Bratislave za prispevok na ten isty tucel, Literarnemu fondu za ude-
lenie stipendia na dokoncenie diela, kolegom z Katedry teoretickej fyziky
FMF1I v Bratislave, hlavne Palovi Severovi a Vladovi Balekovi za mnohé obo-
hacujuce diskusie o geometrii vo fyzike, obom (anonymnym) recenzentom pre
SAVOL za mimoriadne starostlivé precitanie nie prave najkratsieho rukopisu
a cenné profesiondlne postrehy v posudkoch, Vladovi Buzekovi za povzbu-
denia v pravom ¢ase a za dobré rady, E.Bartosovi, J.Busovi, V.Cernému,
J.Hitzingerovi, J.Chlebikovej, E.Masarovi, E.Sallerovi, S.Sliszovi a A.Surdovi
za rady a nezi$tnd pomoc pri realizdcii elektronickej verzie textu (Specidlne
s jemnostami TEX-u, v ktorom som ho napisal) a svojim synom Stankovi
a Mirkovi za nakreslenie obrézkov (tiez v TgX-u). Osobitne dakujem mo-
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0. UVOD

Vo fyzike sa kazdd chvilu nieco derivuje alebo integruje. Preto treba
subezne s kurzom fyziky vnikat aj do tajov diferencidlneho a integralneho
poctu. Zacina sa funkciami jednej premennej, potom sa prejde aj na pripad
viacerych premennych. Do hry vstipia viacnasobné integraly a parcidlne de-
rivécie, ktorych sa budtci adept fyziky napocita netrekom.

Ked sa vSak pozornejsie pozrieme na Struktiru vyrazov, zapisanych po-
mocou parcidlnych derivacii v skutocénych fyzikalnych vzorcoch, zistime, ze
isté kombindcie sa vyskytuju velmi casto, iné prakticky nikdy. Napriklad ak
porovname frekvenciu vyskytu vyrazov tvaru

2 2 2 3 2
o*f 9 9 A

022 ' 9y2 | 922 a 823 ' Oyoz 0z

tak zistime, ze zatial ¢o prvy (Laplaceov operédtor aplikovany na funkciu f)
sa vyskytuje velmi ¢asto, druhy v knihdch prakticky nendjdeme (ak nerdtame
zbierku tloh z analyzy, kde treba ratat prave tito kombinaciu derivacii z di-
daktickych dovodov). Kombindcie, ktoré sa v knihdch vyskytuji, st spravidla
vysledkom vypoctu, ktory realizuje isté ndzorné lokdlne geometrické pred-
stavy o uvazovanej realite (napriklad fenomenologicky opis difiizie latky v ho-
mogénnom prostredi). Prave takéto predstavy systematicky studuje lokdina
diferencidlna geometria. V zhode s fyzikalnou skisenostou sa v nej pozoruje,
ze operacii, ktoré su naozaj zaujimavé a casto sa vyskytuju, je skuto¢ne po-
merne malo (dobrd sprava, zvlddnu sa v rozumnom case).

Zo v8eobecnej fyziky tiez pozname fakt, ze td istd situdcia sa dd opisovat
pomocou réznych siradnic (kartézskych, sférickych, cylindrickych,...) a z kon-
textu je zrejmé, ze vysledok urcite nebude zdvisief od vyberu tychto su-
radnic (¢o sa ale ¢asto nedd povedat o pracnosti vypoctov; to je dovod,
preco sa vyberaju na rdzne tlohy rézne siradnicové sistavy). Samotné ob-
jekty a operacie s nimi su teda nezavislé od vyberu siradnic na ich opis,
a preto neprekvapi, ze vo vhodne vybudovanom aparate sa bude dat velkd
cast vypoctov urobif tiplne bez sidradnic (aka velka cast to bude, zévisi od
problému aj majstrovstva pouzivatela apardtu). Takéto ”abstraktné” (bez-
suradnicové) vypoéty maju viacero prednosti. Byvaju spravidla podstatne
kratsie a prehladnejsie (dajd sa preto napriklad Tahko viackrat skontrolovat),
jednotlivym krokom sa da lepSie nazorne rozumiet a podobne. Porovnajme
na ilustraciu napriklad takéto rovnice

Leg=0 — gkgij7k + §kﬂ-gkj + fk,jgik =0

Vi =0 © B 4T a7 =0
Vg =0 o ijk — Liji — Ljie = 0
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V tomto texte sa postupne dozvieme, Ze dvojice rovnic vlavo-vpravo hovo-
ria vzdy presne to isté: vyraz vpravo vznikd rozpfsanim do (TubovoInych)
stradnic vyrazu vlavo.

(Prvy pripad si Killingove rovnice a ich obsahom je fakt, ze Lieova de-
riviacia g v smere £ je nulova, t.j. ze metricky tenzor g méa symetriu dand
vektorovym polom &; druhy je rovnica geodetiky a vyjadruje podmienku, ze
ideme rovnomerne priamociaro (= s nulovym zrychlenim); tret{ je podmienka
metri¢nosti konexie a hovori, ze pri paralelnom prenose sa bude zachovavat
skalarny sucin vektorov. Komu je uz teraz vsetko toto jasné, moze ttito knihu
hned predat a za ziskané peniaze si kupit a zacatf Citat nejakd rozumnejsiu
a pokrocilejsiu literaturu; tym, ¢o zostali ¢itat dalej, to bude uplne jasné po
precitan{ stvrtej a patndstej kapitoly.)

Napriek maximalnemu zjednodusSeniu zapisu siradnicovych verzii rovnic
(sumacnd konvencia, zdpis parcidlnych derivécii pomocou éiarok) je zrejmé,
Ze strucnost Tavych stran je bezkonkurencéna. Ak sa preto naucime spolahlivo
manipulovat s objektmi typu lavych stran, ziskame tym schopnost efektivne
(nepriamo) nardbat s pomerne komplikovanymi vyrazmi, ktoré obsahuju par-
cidlne derivacie a pritom navySe v kazdom kroku rozumiet, ¢o objektivne
robime.

Analyza sa zvycajne rozvija v kartézskom priestore R™ resp. v otvorenych
oblastiach v R™. V skutoé¢nosti vS§ak mnohé priestory, na ktorych bez mihnutia
oka analyzu pouzivame, prisne vzaté otvorenymi oblastami v R™ nie s, hoci
k nim majd velmi blizko.

V teoretickej mechanike napriklad vysSetrujeme pohyb kyvadiel tak, ze
rieSime (diferencidlne) Lagrangeove rovnice pre ¢asovi zdavislost stiradnic
v ich konfiguraénych priestoroch. Pritom tieto konfigura¢né priestory nie
st vzdy otvorenymi oblastami v R™. Pre rovinné kyvadlo je to napriklad
kruznica S'. Je to sice jednorozmerny priestor, aviak je intuitivne zrejmé
(a d4 sa dokézat), Ze je to Cosi iné, ako (otvorena oblast v) R!. Podobne
konfiguraény priestor sférického kyvadla je dvojrozmernd sféra S2, ktora sa
1 od (otvorenej oblasti v) R2.

Vsimnime si vak, Ze dostatoéne malé okolia Tubovolného bodu na S! aj
S2 st na nerozoznanie od dostatoéne malych okoli TubovoInych bodov v R1,
resp. R?; st v nejakom zmysle ”lokdlne rovnaké”, rozdiel je ”az globélny”.
Aplikdcie matematickej analyzy (aj vo fyzike) takto prirodzene tla¢ia smerom
k jej rozsireniu na vseobecnejsie priestory, akymi si otvorené oblasti v R™.

Takymito vieobecnejsimi priestormi st hladké variety. Velmi volne pove-
dané ide o priestory, ktoré sa krdtkozrakému pozorovatelovi javia ako R™ (pre
vhodné n), ale celkovo (”topologicky”, ked si zaloz{ okuliare a vid{ uz dobre
aj do dialky) mozu vyzerat tiplne ind¢ ako R™.

Prijemnou pozornostou podniku je fakt, ze aparat, ktory sa vybuduje na
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vysSie spominany opis geometrickych predstav nezavisle od vyberu suradnic,
je zaroven automaticky vhodny aj na opis globdlnych geometrickych objektov,
t.j. objektov korektne definovanych na celej variete. Budeme teda hovorit
aj o globdlnej analyze, analyze na varietach. Napriklad spomenuté rovnice
Leg =0, Viyy=0a Vg =0 sa vSetko rovnice na varietdch a ich riesenia su
tiez globdalne dobre definované objekty na varietach.

Samotny kltic¢ovy pojem hladkej variety si zavedieme v 1. kapitole. Vyklad
bude hlavne intuitivny. Vela veci, ktoré sa podrobne rozvadzaji v matematic-
kej literatire o diferencidlnej topoldgii, sa spomenie len velmi orientacne alebo
dokonca sa nespoment vobec. Cielom tejto ivodnej kapitoly bude povedat
len to, ¢o treba nevyhnutne vediet na pochopenie (uz na pracovnej tirovni)
hlavnej naplne tohoto textu, ktorou je diferencidlna geometria na varietach.
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Zhrnutie 1. kapitoly

Hladkd varieta je zdkladnou hracou plochou v diferencidlnej geometrii. Je
to zovseobecnenie kartézskeho priestoru R™ (resp. otvorenej oblasti v R™)
na objekt, ktory vyzerd (len) lokdlne ako R™, ale jeho globdlna struktira
moze byt ovela komplikovanejsia. Vzdy sa vsak da predstavit ako celok zle-
peny z niekolkych kiskov homeomorfnych R™; ¢islo n, ktoré je rovnaké pre
vSetky kusky, sa vola rozmer variety. Technicka realizacia tychto myslienok je
zalozend na pojmoch mapa (lokélne stiradnice) a atlas pozostavajiici z niekol-
kych méap. Kartézsky suc¢in M x N dvoch variet je nova varieta, vytvorena
z povodnych variet M a N. Lubovolnd varieta sa d4 realizovat ako velmi
slusne ulozena plocha v dostatoéne rozmernom kartézskom priestore.

Zhrnutie 2. kapitoly

V kazdom bode x n-rozmernej variety M existuje kanonicky isty n-roz-
merny linedrny priestor T, M, dotykovy (tangencidlny) priestor v bode x.
Jeho elementy sa volaju vektory v bode z. Existuje viacero navzajom ekviva-
lentnych definicii tohoto pojmu, ktoré st vyhodné v réznych kontextoch. Vek-
torové pole na variete M je hladké priradenie vektora kazdému bodu x € M.
Integralna krivka vektorového pola je taka krivka, ktord v kazdom bode ide
tak, ako jej diktuje vektor pola v tomto bode. Standardné konstrukcie multi-
linedrnej algebry (konstrukcia tenzorov typu (z ) pre dany vektorovy priestor

L) vedi k pojmu tenzorového pola typu (5) na variete. Specidlnymi pripadmi
s funkcie (typ (8)), vektorové a kovektorové polia (typ (é) a ((1))), polia bi-
linedrnych foriem (typ (J), v symetrickom nedegenerovanom pripade metricky
tenzor) a linedrnych operatorov (typ (}))

Zhrnutie 3. kapitoly

Kazdé (hladké) zobrazenie bodov variet f : M — N indukuje zobraze-
nie tenzorov na nich. Oznacuje sa f,, ak prendsa tenzory v smere f (z M
na N) a f* ak ich prendsa proti smeru f (z N na M). Pre difeomorfizmy
sa da zaviest f. aj f* pre Tubovolné tenzorové pole. Ak f nie je difeomor-
fizmus, mozu nastat problémy. Pre tenzorové polia typu (2) existuje zobra-

zenie f* vzdy. Specidlnym pripadom je indukovanie metrického tenzora na
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M z riemannovskej variety (N, h), ¢im sa ziska riemannovska varieta (M, g),
g = f*h. Najcastejsie ide o indukovanie metrického tenzora na podvariety
M euklidovského priestoru N = E™ (alebo vseobecnejsie E™¢), na ktorom
existuje kanonicky metricky tenzor h = 7.

Zhrnutie 4. kapitoly

TubovoIné vektorové pole V na M indukuje zobrazenie ®; : M — M,
pri ktorom sa bod x posunie o parameter ¢ po integralnej krivke startujicej
v x. Hovori sa mu tok generovany polom V', alebo vzhladom na skladaciu
vlastnost ®;,s = ®; o , aj jednoparametrickd grupa transformacii. Zo-
brazenie ®; variety M na seba indukuje v zmysle 3. kapitoly zobrazenie
tenzorovych poli ®F, ktoré generuje lieovsky prenos tenzorov (pozdiZ in-
tegralnych kriviek pola V'). Mierou citlivosti (nekonstantnosti) tenzorového
pola A voéi lieovskému prenosu je Lieova derivdcia L A = % ’0 ®FA. Dvom
vektorovym poliam V, W sa d4 priradif tretie, ich komutator [V, W] (ktory
je zaroven totozny s Ly W). Dve polia komutuji préve vtedy, ked komu-
tuju im zodpovedajice toky; nekomutovanie vektorovych poli takto vedie
na javy anholonémie (zdvislosti od cesty). Killingov vektor je vektorové pole,
v smere ktorého je lieovsky konstantny metricky tenzor. Tok Killingovho vek-
tora je izometriou riemannovskej variety (M, g), t.j. zobrazenim M na seba,
pri ktorom sa zachovavaju vsetky diZky a uhly. Ak sa zachovédvaju len uhly,
ide o konformné transformaécie a generuju ich konformné Killingove vektory.

Zhrnutie 5. kapitoly

V kontexte vypo¢tu objemov rovnobeznostenov (a tym aj v tedrii inte-
grovania, kde sa funkéné hodnoty nésobia objemami infinitezimdlnych rov-
nobeznostenov) sa ukdze mimoriadny vyznam tplne antisymetrickych ¢isto
kovariantnych tenzorov, ktorym sa hovori formy. Cela tato kapitola Studuje
formy na tdrovni linearnej algebry. Okrem vSeobecnych vlastnosti, ktoré pla-
tia pre vSetky tenzory, si v hre aj dolezité $pecifika. Formy maji prirodzené
Z-graduovanie, funguje na nich (graduovane komutativny) vonkajsi sicin A
(¢im vznikd graduovand vonkajsia = Grassmannova algebra) a vnutorny suéin
i, (ktory je derivdciou stupna -1 tejto algebry). Ak je k dispozicii aj metricky
tenzor a orientdcia (dand formou objemu), pristupuje Hodgeov operétor .
Prirodzent interpretéciu tu nadobida aj oby¢ajny determinant.
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Zhrnutie 6. kapitoly

Studuji sa formy uz ako polia na variete (diferencidlne formy). Okrem
algebraickych konstrukcii z 5. kapitoly pristupuje klicovy pojem wonkajsej
derivdcie. Ide o derivaciu stupna +1 Cartanovej algebry foriem na variete,
ktord je navySe nilpotentnd (dd = 0). Jednoduchym (ale uzitotnym) zovseo-
becnenim doterajsich foriem si formy s hodnotami v fTubovolnom vektorovom
priestore (doterajsie mali hodnoty v R).

Zhrnutie 7. kapitoly

Rozborom konkrétnych jednoduchych prikladov sa zistuje, Zze na podin-
tegralne vyrazy je uzitoéné nazerat ako na diferencidlne formy zo 6. kapitoly.
Definuje sa zdkladny pojem integralu formy po retazci, pricom sa predpoklada
elementarna znalost bezného Riemannovho viacnasobného integralu. Formu-
luje sa Stokesova veta pre diferencidlne formy (ddva do sdvisu integral formy
po hranici refazca s integralom vonkajsej derivdcie tejto formy po samotnom
refazci). Diskutuje sa reinterpretdcia integrdlu po oblasti na orientovatelnej
variete ako integralu po refazci (vratane tvaru Stokesovej vety) a Specifikum
integrovania po riemannovskej variete. Odhaluje sa jednoduché sprévanie sa
integralu voc¢i zobrazeniam variet.

Zhrnutie 8. kapitoly

Vseobecna Stokesova veta pre diferencidlne formy zo 7. kapitoly ma mno-
horaké klasické prejavy. Ukazuje, ze je v nej skrytd napriklad Gaussova-
Ostrogradského veta, Greenove identity, ”obycajna” Stokesova veta z vekto-
rovej analyzy, niektoré fakty z tedrie funkcii komplexnej premennej. Zavadza
sa kodiferencidl § (ako operdtor zdruzeny k diferencidlu d = vonkajsej de-
rivécii) a samozdruzend kombindcia A = —(dd + dd), Laplaceov-deRhamov
operator (zovSeobecnenie Laplaceovho operatora na funkcidch na I'ubovolné
formy). V casti o vektorovej analyze sa prichddza k zdveru, Ze operdcie gra-
dient, rotacia a divergencia su len zamaskovana vonkajsia derivacia.

Zhrnutie 9. kapitoly
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Forma sa vold uzavreta, ak ma nulovi vonkajsiu derivaciu a exaktnd,
ak je vonkajSou derivdciou inej formy (svojho potencidlu). Vzhladom na
nilpotentnost operédtora d (t.j. platnosti dd = 0) je exaktna forma automa-
ticky uzavretd (Poincarého lema). Ukazuje sa, Ze vo fyzike ¢asto vyuzivané
opacné tvrdenie (obratenie Poincarého lemy) vSeobecne neplati, ale konstruk-
tivne sa over{ jeho platnost na stiahnutelngch varietach (resp. lokdlne, t.j.
v dostatoéne malom okoli TubovoIného bodu na Tubovolnej variete). Jem-
nejsi pohlad na vec umoznuje aparat tedrie kohomolégii, v tomto pripade ide
konkrétne o kohomolégie deRhamovho komplexu.

Zhrnutie 10. kapitoly

Grupy vstupujui do hry vo fyzike aj v matematike ako grupy symetrie
¢ohosi, t.j. (v matematickej reci) ako grupy automorfizmov réznych struktir.
Explicitne sa vySetrujui truktiry, ktoré vedi na bezné klasické grupy (vse-
obecnu linedrnu, ortogondlnu, symplektickd, unitdrnu,...). Spojenim alge-
braického pojmu grupa a diferencidlno-topologického pojmu (analytickd) va-
rieta vznikd Lieova grupa. Vyssie spominané grupy (aj iné) st priklady Lieo-
vych grip.

Zhrnutie 11. kapitoly

Efektivnym néstrojom na $tudium pomerne zlozitych objektov, akymi
su Lieove grupy, je vyuzitie ich bohatej diferencidlnej geometrie. T4 je dos-
ledkom kompatibility struktiry grupy a variety. Pomocou lavoinvariantnijch
vektorovych poli sa da Lieovej grupe kanonicky priradit jej Lieova algebra, ¢o
je objekt nepomerne jednoduchsi, ako samotnd grupa (je to kone¢norozmer-
ny linedrny priestor), napriek tomu vsak kéduje podstatni ¢ast informécie
o grupe. Studuje sa délezité exponencidlne zobrazenie z algebry do grupy.

Zhrnutie 12. kapitoly

Lieova grupa dava o sebe ¢asto vediet cez svoju reprezentdciu, t.j. existuje
homomorfizmus tejto grupy do grupy obratitelnych linedrnych operdtorov
v nejakom vektorovom priestore a v danom kontexte vidime len jej homo-
morfny obraz. Reprezentécia grupy automaticky indukuje aj istu (odvodentt)
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reprezentaciu jej Lieovej algebry, ¢o je vSeobecne homomorfizmus Lieovej
algebry do Lieovej algebry (vSetkych) linedrnych operdtorov (vo fixnom li-
nedrnom priestore). Ak dand reprezentédcia pripista nejaky netrividlny inva-
riantny podpriestor, vold sa reducibilnd, lebo sa da redukovat na (mensiu)
reprezentaciu v tomto podpriestore. Ireducibilné sa takto zmensit nedaju.
Kritériam ireducibility sa venuje Schurova lema. Ak k danému podpriestoru
existuje aj invariantny doplnok, reprezentacia je ekvivalentna priamemu sic-
tu dvoch mensich. Takyto doplnok sa da dostat napriklad ako ortogondlny
doplnok voci invariantnému skaldrnemu siéinu (ak existuje; na kompaktnych
grupdch existuje vzdy a ukazuje sa, ako sa da ziskaf). S reprezentdciami
sa daju robitf isté konstrukcie, napriklad priamy sucet a sicin; kombinaciou
s ohrani¢enim na invariantné podpriestory vo vysledku sa déd casto ziskat
spusta reprezentdcif z malej zdsoby na zaciatku (niekedy aj vSetky z jednej).
Invariantné tenzory a s nimi spojené splietajice operatory umoznuju ”menit
typ” veli¢in, priradif vektorom, na ktoré pdsobi grupa cez reprezentaciu p;
vektory, na ktoré posobi cez ps. Kazda reprezentécia Lieovej algebry indukuje
isty komplex; trochu sa venujeme jeho kohomoldgidm.

Zhrnutie 13. kapitoly

Osobitne dolezitym pripadom pdsobeni grip su pre diferencialnu geo-
metriu ich pdsobenia na varietdch. Casto je na tychto varietdch dodatoéns
Struktura, ktord pritom zachovéavaji (napriklad akcie izometriami na rieman-
novskych varietach, alebo symplektické akcie na symplektickych varietach,
pozri paragraf 14.5). Posobenie Lieovej grupy ddva na infinitezimélnej tirovni
posobenie svojej Lieovej algebry, s ktorou su tuzko spojené fundamentdlne
(vektorové) polia. Pdsobenie na bodoch variety Standardne (postupmi z pa-
ragrafu (3.1)) indukuje posobenie na funkcidch na variete (a vSeobecnejsie na
tenzorovych poliach), ¢im sa ziskava dolezitd konstrukcia (oo-rozmernych)
reprezenticii grupy a jej algebry (tenzorové polia, Specidlne aj funkcie, tvoria
linedrny priestor). Ohrani¢enim na invariantné podpriestory sa z nich ¢asto
daju vytiahnut aj kone¢norozmerné reprezentiacie. Vydelenie G-invariantné-
ho podpriestoru funkeif (tenzorovych polf) byva ¢astym postupom pri riesen{
diferencidlnych rovnic (ansatz s istym typom symetrie).

Zhrnutie 14. kapitoly

7 vhodného prepisu Hamiltonovych kanonickych rovnic sa odhaluje, ze
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za tymito rovnicami je skrytd elegantnd geometrickd struktura. Jej jadrom
je uzavretd nedegenerovand 2-forma w na fazovom priestore, symplektickd
forma. T4 umoznuje dvihat a spustat indexy, podobne, ako sa to robi pomo-
cou metrického tenzora. Vektorové pole, ktoré je analégom gradientu v rie-
mannovskom pripade (vznikd teda dvihnutim indexu na gradiente funkcie f
ako kovektorovom poli), sa tu vold hamiltonovské pole generované funkciou
f. Zisti sa, ze Hamiltonove rovnice si vlastne rovnice pre integrélne krivky
hamiltonovského pola generovaného funkciou H, hamiltonidnom ststavy. Tak
sa prichddza k pojmu hamiltonovskd sustava (M,w,H). Vektorové polia,
ktoré generuju automorfizmy hamiltonovskej sustavy (zachovdvaju teda sym-
plekticki formu a hamiltonidn) sa volaji Cartanove symetrie a ich isté zjem-
nenie ezxaktné Cartanove symetrie. Ukazuje sa, ze existuje vzajomne jed-
nozna¢na koreSpondencia medzi exaktnymi Cartanovymi symetriami a za-
chovéavajicimi sa veli¢inami. Do véacsich detailov v tomto smere idu cCasti
o momentovom zobrazeni a symplektickej redukcii. Bohatou triedou sym-
plektickych variet st orbity koadjungovanej akcie (¢o je posobenie G na dudli
G* svojej vlastnej Lieovej algebry G), na ktorych existuje kanonickd symplek-
ticka struktura.

Zhrnutie 15. kapitoly

Vo viacerych aplikdcidch (napriklad pri vypocte zrychlenia hmotného bo-
du v mechanike) sa efektivne robia linedrne kombindcie (pri zrychleni kon-
krétne odcitanie) vektorov (alebo vSeobecnejsie tenzorov) v roznych bodoch.
To sa na ”prazdnej” variete nedd. Struktira, ktord to legalizuje, je (linedrna)
konexia V na M. Umoziuje prendsat vektory po danej ceste (od ktorej v prin-
cipe zévisi) a tym aj uskutoénit vyssie spominané porovnanie (porovndva sa
vektor v & s vektorom, ktory sa z y prenesie do x). Tento prenos sa podla
definicie vola paralelny (v zmysle konexie V). Najjednoduchsie sa technicky
zavadza postulovanim vlastnosti s nim suvisiacej kovarianinej derivdcie. Ko-
nexia umoziuje zaviest pojem rovnej ¢iary (geodetiky) na (M, V). Linedrnej
konexii su priradené dve tenzorové polia, tenzor torzie a krivosti. Ukazuje
sa, ze podmienka kompatibility s metrikou (zachovanie skaldrnych sicinov
pri paralelnom prenose) a nulovost torzie vedi na istd jednoznaéni konexiu
(RLC konexia). Tenzor krivosti kéduje, ¢i paralelny prenos (o infinitezimélne
vzdialenosti) naozaj zavisi od cesty; prejavuje sa aj v spravani sa blizkych
geodetik - sposobuje ich odklon (Jacobiho rovnica). Nenulovy tenzor torzie
signalizuje neuzavretie geodetického rovnobeznika. Efektivnym nastrojom na
pracu s konexiou je aparat diferencialnych foriem. Zakladné objekty teérie sa
zakéduji do foriem a vztahy medzi nimi st dané Cartanovymi struktirnymi
rovnicami.
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Zhrnutie 16. kapitoly

(Stvor)tenzorovy zépis Maxwellovych rovnic v Minkowského priestor(oca-
s)e odhaluje, ze tenzory, ktoré sa v nich objavujd, su velmi Specidlne - ide
o diferencidlne formy. Preto najprirodzenejsim jazykom na Stvorrozmernu
formuléciu elektrodynamiky je jazyk diferencidlnych foriem. Formy v Min-
kowského priestor(ocas)e maju (ako dosledok delenia priestoroc¢asu na ”¢as”
a "priestor”) §pecidlnu §truktiru: prirodzene vznikd ich vyjadrenie pomocou
dvoch priestorovijch foriem. Takéto vyjadrenie foriem (a operdcii na nich)
je efektivnym mostom medzi Stvorrozmernou a (historicky starsou) troj-
rozmernou formuléciou elektrodynamiky. Formy st uzito¢né nielen v elektro-
dynamike, ale v tedrii pola vieobecne. Jednoducho sa cez ne zapisuji dcinkové
integrdly (kedze podintegralne vyrazy su vzdy formy) a rovnako jednoducho
sa pocitaji aj ich extrémy, ktoré ddvaju pohybové rovnice (prirodzene sa
v nich objavuje kodiferencidl). S priestoro¢asovymi symetriami tzko stvis{
tenzor energie-hybnosti pola, ktory vznikd varidciou tc¢inku podla metrického
tenzora. Tento tenzor sa objavuje (ako zdroj) aj v Einsteinovych rovniciach
gravitaéného pola. Skiima sa ich varia¢nd formuldcia, porovndva sa Hilber-
tov uc¢inok, kde sa variruje vo¢i metrickému tenzoru, s Cartanovym, ktory
je funkciondlom korepérneho (”tetrddneho”) pola a foriem konexie. V ne-
linedrnom sigma-modeli hra tlohu polnej premennej zobrazenie dvoch rie-
mannovskych variet. Zobrazenia, ktoré extremalizuji prirodzene zavedeny
ucinok (vedd na ”"miniméalne plochy”) sa volaju harmonické. Takymito zo-
brazeniami sa opisuju mydlové bubliny, ale aj svetoplochy v tedrii strin.
Varidciou vo¢i jednému z metrickych tenzorov sa da prejst od ”kvadratického”
ucinku k ”odmocninovému” (¢o mé prakticky vyznam v opa¢nom smere).

Zhrnutie 17. kapitoly

S kazdou varietou M mozeme kanonicky spojit dalsie dve variety dvojna-
sobného rozmeru, TM a T*M. Hraju dolezitu tilohu ako ihriska klasickej me-
chaniky (lagranzovskej a hamiltonovskej). Z konstrukcie zadarmo dostavaju
do vienka zaujimavi geometrickd struktiru (aj ked samotnd varieta M je
”prazdna’). Su totdlnymi priestormi vektorovych fibracii, nesi (rézne) kano-
nické tenzorové polia (napriklad T*M symplektickt formu), viaceré objekty
sa daji z M dvihat do totalnych priestorov. V dalsej kapitole sa na nich
skima mechanika, tdto obsahuje potrebnu pripravu.
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Zhrnutie 18. kapitoly

Ukazuje sa, ako sa formuluje klasickd mechanika na TM a T*M. Oba
pripady st z geometrického hladiska (v nedegenerovanom pripade) tplne
rovnocenné: ide o Standardni symplekticki dynamiku, t.j. pohyb po in-
tegralnych krivkdch hamiltonovského (dynamického) pola. Na T*M méame
kanonickd symplekticki struktiru, takze fixovanie funkcie H uz ddva priamo
dynamiku. Na T'M je to trochu zamaskované; kanonickym polom je isté ten-
zorové pole typu (}) a symplekticka struktira vznika az jeho kombinaciou
s (nedegenerovanym) lagranzidnom (ako funkciou na T'M). Projekciou tejto
symplektickej dynamiky na bazu M vznikaju standardné Lagrangeove rovnice
(tdto projekcia pridd jeden rad, takze si 2.rddu), zatial ¢o Hamiltonove
rovnice operujd priamo v totdlnom priestore T*M a (ako kazdé rovnice pre
integrdlne krivky) s len 1.rddu. Pomocou lagranzidnu sa konstruuje Legen-
dreovo zobrazenie TM — T* M, ktoré dava tieto dve dynamiky do stuvisu.

Zhrnutie 19. kapitoly

Cielom tejto kapitoly je preformulovat uz zndme fakty z tedrie linedrnej
konexie (15. kapitola) do nového jazyka, v ktorom sa (v dalsej kapitole)
obzvlast jasne odhali moznost istého dalekosiahleho zovseobecnenia. Novy
opis sa odohrava na novom ihrisku, variete LM, ktorda sa d& kanonicky
priradit variete M. Jej bodmi st vSemozné repéry vo vSemoznych bodoch
na M. Zistuje sa, ze uz bez konexie na M je v hre bohatd struktiura: varieta
LM je totdlnym priestorom hlavnej GL(n,R)-fibracie s bdzou M. Konexia
na M priddva na LM dalsiu struktiru, GL(n,R)-invariantni horizontélnu
distribiciu. Pomocou nej sa da operacia paralelného prenosu repéru po krivke
v na M preformulovat cez konstrukciu horizontdlneho zdvihu v” krivky ~.
Varieta LM déva aj zaujimavi moznost technického opisu sirokej triedy geo-
metrickych objektov na M (Specidlne tenzorovych poli, vseobecnejsie poli
typu p) ako ekvivariantnych funkcii ® na LM a tiez opisu ich paralelného
prenosu a kovariantnej derivicie (t4 sa zmeni na oby¢ajnu smerovi derivéciu
funkcie ).

Zhrnutie 20. kapitoly

Preklad pojmov suvisiacich s linedrnou konexiou do reéi fibracie repérov,
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ktory sa udial v 19.kapitole, odhaluje moznost zovseobecnenia. Namiesto
m: LM — M sa uvazuje w : P — M, hlavné fibracia s grupou G. Kone-
xiou v tejto fibracii sa nazve horizontalna distribicia v totdlnom priestore
P, ktora je invariantnd voc¢i pdsobeniu grupy G. Technicky sa opisuje for-
mou konexie w, ¢o je istd 1-forma s hodnotami v Lieovej algebre G grupy
G. Analégmi repérov su body variety P a ich paralelny prenos sa stotozni
s horizontdlnym zdvihom krivky z bédzy, po ktorej sa robf prenos. (Lokdlna)
zavislost tohoto paralelného prenosu od cesty sa da jednoducho vyjadrit v ter-
minoch integrovatelnosti horizontdlnej distribicie a ako miera tejto integrova-
telnosti vstipi do hry (cez Frobeniovo kritérium) pojem 2-formy krivosti {2
(m4 tiez hodnoty v G). Ako formélny ndstroj na vypocet formy krivosti sa
zavadza vonkajsia kovariantna derivacia D; pomocou nej dostavame vyjadre-
nie Q = Dw. Ak je na M definovand nejaka struktira, dd4 sa pomocou nej
Casto zostrojit ista podfibracia hlavnej fibracie, na ktorej posobi len podgrupa
povodnej grupy; hovori sa o ohrani¢eni struktirnej podgrupy. Napriklad me-
trickému tenzoru na M zodpovedd fibrdcia ortonormovanych repérov (pod-
fibracia fibrécie repérov). Za istych podmienok sa na podfibraciu dedi aj
konexia; naopak konexia na podfibracii indukuje konexiu na celej fibrécii,
ktora je specidlna v tom, ze reSpektuje struktiru, ktora sivisi s podfibraciou.

Zhrnutie 21. kapitoly

Konexie v hlavnej G-fibrécii sa ddvaji do stivisu s kalibraénymi polami,
ktoré su zname z fyziky. Najprv sa opisuje Standardny ”fyzikdlny” pristup,
ktory spociva v zlokalneni symetrie uc¢inku, ktory uz je ”globélne” inva-
riantny. Toto zlokalnenie pridava k tedrii dalsie polia s konkrétnymi trans-
formacénymi pravidlami a konkrétnou interakciou s pévodnymi polami. Ukéze
sa, ze tieto polia sa daju interpretovat aj z pohladu teérie konexif. Konkrétne
sa nahliadne, ze fixovanie kalibracie je dané vyberom lokédlneho rezu o hlavnej
fibrdcie, kalibra¢né potencidly (v tejto kalibracii) sa ziskavaju stiahnutim
formy konexie na bdzu (pomocou rezu), kalibraéné transformdcie sivisia
S0 zmenou rezu, intenzita kalibratného pola sa ziskava stiahnutim formy
krivosti a latkové polia stiahnutim ekvivariantnej funkcie na P. Odvodia
sa rovnice paralelného prenosu Tubovolnej veli¢iny typu p v kalibracii o.
Zavedie sa pojem asociovanej vektorovej fibrdcie (ktord vznikne z hlavnej
fibrécie nahradenim pévodného vldkna reprezenta¢nym priestorom grupy G).
Ukazuje sa, aku Struktiru maji ucinkové integraly, ktoré su lokalne kali-
bra¢ne invariantné a ako sa z nich odvodia pohybové rovnice (st zovseobec-
nenim Maxwellovych rovnic z elektrodynamiky, ktora je kalibracnou tedériou
s grupou U(1)). Zoznamujeme sa s Notherovej vetou, ktord dédva do sivisu
symetrie i¢inkovych integrdlov so zdkonmi zachovania. Tato veta vrhé nové
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svetlo aj na starSie vysledky v tomto smere, spojenie zdkonov zachovania
s tenzorom energie-hybnosti v tedrii pola a s exaktnymi Cartanovymi syme-
triami v hamiltonovskej mechanike.

Zhrnutie 22. kapitoly

Specidlne ortogonalne grupy SO(p, ¢) maji univerzalne dvojlistové nakry-
vajuce grupy, ktoré sa volajd spinové grupy a oznacujud sa Spin (p, , q). Celd ich
teodria sa systematicky buduje pomocou Cliffordovych algebier. Konstruuje sa
izomorfizmus tychto algebier na vhodné maticové algebry (ich vernd reprezen-
técia) a pomocou neho sa zavddza pojem spinora ako vektora reprezenta¢ného
priestoru Cliffordovej algebry. Spinové grupy st podmnoziny v Cliffordove;j
algebre a preto ohranicenie spominanej vernej reprezentacie algebry je aj
reprezentaciou spinovej grupy. Tym na spinoroch posobi aj spinova grupa
(a dvojznacne aj ortogonélna grupa). Tato jej reprezentdcia sa vold spinorova.
Pre niektoré specidlne hodnoty (p, ¢) existujd $pecidlne typy spinorov (wey-
lovské, majoranovské, ...). Spinové Struktira na M je hlavnd fibracia nad
M (spinovd fibracia), ktord dvojlistovo nakryva fibrdciu ortonormovanych
repérov a vo vldknach ktorej posobi spinovd grupa. Spinovéd struktira sa
nedd zaviest na kazdej variete. Ekvivariantné funkcie typu p na totdlnom
priestore spinovej fibrécie (a tiez ich stiahnutia na bdzu pomocou rezu), kde
p je spinorova reprezentécia, sa volaju spinorové polia na M. Polu 1-foriem
typu p zodpovedd Raritovo-Schwingerovo pole. Na spinorové polia posobi
Specialny operator prvého radu, ktory sa vold Diracov operator. Vznikol vo
fyzike v kvantovej tedrii relativistického elektrénu - vyskytuje sa v Diracovej
rovnici.
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Christoffelove symboly 393

- 1. druhu 402

1

idedal 288, 347, 363, 382, 699, 700
indexova gymnastika 55
indukovany metricky tenzor 73
integralna krivka 44

-e invarianty Cartanove 358
integral prvého druhu 174

- druhého druhu 174

intenzita kalibr. pola 613, 614, 631
interakény clen 462, 466
invariantna forma 357
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-é pole 84

-y lagranzian 530

-y podpriestor 266

-y skaldrny sicin 263

-y tenzor 295

inverzia 477

ireducibilné reprezentécia 266
izometria 21, 55, 94, 493, 644
izotrépny 99

J

Jacobiho identita 349

- rovnica 440

jednoducho suvisla 315
jednoparametrickd podgrupa 238
-4 grupa transformacii 80

K

kalibra¢né grupa 608

-4 podmienka 207

-4 transformécia 461, 608, 616, 618
-e invariantny 463, 630

-é pole 608

-y potencial 612, 614, 622
kanonicka hybnost 531

-4 ploché konexia 597

-4 projekcia 27, 309, 500, 504

-4 1-forma na G 237, 255, 276

-4 1-forma na LM 649

-4 1-forma na T M 518

-é sparenie 62, 697

-é suradnice 353, 501

-4 symplekticka forma na T*M 518
-é transformacie 354

-é vlozenie 171

kartézsky priestor 19

-y sucin variet 24
Kahlerova-Atiyahova algebra 660
Kahlerove fermiony 688
Killingova-Cartanova forma 278
Killingove rovnice 95, 415

-ove vektory 96, 329, 470, 534, 536
kineticka energia 64, 533

-y clen 462, 464, 465
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kladnd definitnost 53
Kleinova-Gordonova rovnica 464
Kleinova flaga 33
koadjungované posobenie 367, 370
-4 reprezentécia 284

kocyklus 212, 368

kodiferencial 185, 434, 629
kodotykova fibracia 503, 506

-y priestor 58

koeficienty konexie 392

- anholonémie 209, 436, 687
koexaktnost 210

kohomologicka grupa 214

-4 trieda 213

-é kocykly 212

kohomolégia 212, 214

-ie Lieovej algebry 300
kohranica 212

komomentové zobrazenie 370
kompaktna Lieova grupa 246, 266
-4 Lieova algebra 283

-4 varieta 185

kompatibilné struktury 224
kompenzacné pole 613
komplexna Lieova grupa 226
komplexna varieta 25

- reprezentacia 269

komplex 212, 300

komponenty pola 41, 42

-ty tenzora 50

-ta suvislosti jednotky 254

-tné formy 153

-tné funkcie 332

-tné polia 335

kompozi¢ny zakon 225
komutativna grupa 270
komutator 87, 700

konexia na hlavnej G-fibracii 581
kone¢ne generovany 43
konfiguracny priestor 75, 529
konformne invariantnd 133, 479
-4 transformaécia 95, 478, 644

-4 trieda 495

-é preskalovanie metriky 132, 475

-é Killingove vektory 100, 475

-é Killingove rovnice 100
kongruencia 46

konjugacia 274, 305

konjugovand podgrupa 307
kontaktnd forma 542

-4 Struktura 542

kontragradientnd reprezentacia 262
kontrakcia 52, 292

kontur 170

korepérne pole 92

kotangencidlny priestor 58
kouzavreta forma 200, 201, 210
kovariantna derivacia 391, 612

-4 divergencia 434

-y gradient 396

-y funktor 508

-y kodiferencial 632

-y tenzor 69

-e konstantné pole 397, 444
kovektor 47, 58

krivka 36

krivociare suradnice 23

krivost skalarna 422

- Gaussova 430

k-rozmerna hladké distribicia 551
kvadraticky Casimirov operator 280
kvaterniény 698

kvézilinearna sistava 45

L

Lagrangeova veta 310

-e rovnice 410, 417, 522

Lamého koeficienty 196
Laplaceova rovnica 189
Laplaceov-Beltramiho operator 186, 434
Laplaceov-deRhamov operédtor 185
latkové pole 614, 633

Legendreovo zobrazenie 527

lema o vyrovnani 81

Levi-Civitova konexia 402
Levi-Civitov symbol 120

Lieova algebra 87, 236, 700

-a derivacia 78, 84



-a grupa 224, 226

-a podgrupa 226

-a zatvorka 87

-a superalgebra 141, 703
-sky konstantné 84

-sky prenos 83

lift (zdvih) 511

linedrna konexia 391

-e formy 47

-e pole 601

-y priestor 694

-y funkcional 39

-y operator 42, 83
Liouvillova forma 359

-a rovnica 376

-a veta 359

-0 pole 533

lokéalna trivializacia 504

-a kal. transformécia 610, 612, 616
-e izometrické variety 99

-e kalibra¢ne invariantny 630
-e Lorentzove transformédcie 488
-e suradnice 22

-e sucinova struktura 504

-e trividlne 505

-y homeomorfizmus 315

-y rez 506, 549

-y tok 78

Lorentzova grupa 218, 269, 319
-a (Stvor)sila 467

-skd varieta 476

loxodréma 75, 443

L

Tavoinvariantné tenzorové pole 228
-y metricky tenzor 281

Tavé akcia (posobenie) 304, 701

-4 reguldrna reprezenticia 326

-4 transldcia 227, 329

-4 zvyskova trieda 309

-y G-priestor 304

M
magneticky ndboj (monopdl) 458
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Majoranova reprezenticia 672
mald grupa 307

mapa 22

matica hustoty 376

maticova algebra 698

- grupa 226
Maurerova-Cartanova 1-forma 237
Maurerove-Cartanove vztahy 237
maximélny C*-atlas 22
Maxwellov posuvny prad 459
metrickd forma objemu 126

- konexia 400

-y tenzor 53, 599

minimalna interakcia (vézba) 614, 630
Minkowského priestor 64, 448
mnozina urovne 31

modul 43

modulo 2 117

momentové zobrazenie 370, 530
moment hybnosti pola 471
morfizmus hlavnych fibracii 603

- vektorovych fibracii 508

- Cartanovych algebier 140, 588
- tenzorovych algebier 72
multilinearne 49

mydlové bubliny 497

Mbobiov list (pasik) 148

-ova transformécia 312

N

nabité castice 614

naboj 271, 636

nadplocha 31

nakrytie 315

nakryvajuci homomorfizmus 315
neabelovskd kalibracné grupa 633
nebodkovany spinor 323
nedegenerovand 2-forma 345

-y (= reguldrny)lagranzidn 523
neholonémne repérne pole 92
nehomogénna forma 114
nelinedrne pole 489, 601

- realizacie 304

-y sigma model 489
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neorientovatelna varieta 149
neparne parametre 141
neparny voci chiralite 692
nesingularny lagranzian 523
nestradnicové repérne pole 92
Neumannova okr. podmienka 190
Newtonov-Leibnizov vzorec 177
Nijenhuisov tenzor 525
nilpotentny 161, 164, 212, 300
n-listové nakrytie 315
normalna podgrupa 313

-ne suradnice 242, 414

-ova derivacia 190

Notherovej veta 640

-ské naboje 640

-ské prudy 640

nulové body 79

-y rez 574

(0)

objem oblasti 172, 169, 496

- podvariety 174

- rovnobeznostena 105
obojstranne invariantny integral 246
- -y metricky tenzor 281

- -4 forma objemu 283
obojstranny ideal 116
obratenie Poincarého lemy 207
odvodena reprezentacia 262
ohranicenie fibracie 599, 604

- na podgrupu 259

- reprezentacie 266

- Struktdrnej grupy 599

- formy 171

ohrani¢ujica 1-forma 552
Q-divergencia 360

operator dualizicie 130

- krivosti 419

- kvadratu momentu hybnosti 281
- paralelného prenosu 395, 398
- spinu 333

orbita 306

orbitalny moment hybnosti 329
orientovany atlas 149

- objem 106

-eInd varieta 31, 149, 229, 564, 650
orientacia v L 119
ortogondlne matice 218
-e suradnice 63

-a grupa 219

-a transformécia 668

-y doplnok 267
ortonormovand béaza 54
otvorena mnozina 18
-é pokrytie 22

P

paralelizovatelna 217, 229, 564, 650
paralelny prenos 395, 398

-e prenaSana veli¢ina typu p 626
-e prenasany zovseob. repér 587
parametrické vyjadrenie 31
parametrizacia 36

Pauliho matice 251, 296, 676
p-delta 120

per partes 178

pevné body 79

pfaffidn 123

Pfaffove formy 558

ploché konexia 444, 492
podalgebra 699, 700

-fibrécia 599

-reprezenticia 266

-varieta 28

podmienka integrovatelnosti 556
- nestlacitelnosti 180
Poincarého lema 203

- transformacie 97

Poissonov tenzor 343

-a rovnica 189, 190

-e zatvorky 343

-ské posobenie 370, 373, 378, 530
-ska varieta 343

polarizacny vektor 376

polarny rozklad 321

pole posunuti 102

- rovnice 2. radu 522

- rychlosti 103, 180



- typu p 569

polopriamy sucin grup 287

- sucet Lieovych algebier 288
poloprosté Lieove algebry 280
polylinedrne zobrazenie 49
pOly funkcie 202

pOsobi sprava, zlava 304
posobenie grupy 304
potencial 203

-na energia 65, 533, 535

-ové silové pole 65
pozorovatelnd 348

préaca sily 208

prava translacia 227, 329

-4 akcia (pdsobenie) 126, 304
-4 reguldarna reprezentéicia 326
-y G-priestor 304

pravoinv. forma objemu 265
predfienie fibracie 604, 678
preurcené rovnice 95

priamy sicet 1. pr. 51, 222, 562, 694

- asociativnych algebier 699
- Lieovych algebier 285, 701
- reprezentacii 289

priamy stcin grup 284

- reprezentéacii 289
pridruzensd fibracia 627

- reprezentdcia = Ad 275
priestorova oblast 454

-4 forma 450

-4 Stokesova veta 454

-4 vonkajsia derivacia 451
-y Hodgeov operator 452

-y kodiferenciél 453

-y Laplaceov-deRhamov oper. 453

priestorocas 64, 448, 479
priestorupodobna nadplocha 75
princip ekvivalencie 476
prirodzeny lagranzian 533

-y parameter 411

-y zdvih krivky 511, 543

- voci difeomorf. 187, 468, 644
Procova rovnica 465

projektor 108, 272

projektovatelné pole 69, 244
projektivny priestor 24
prva veta termodynamicka 558
pseudometricky tenzor 53
-euklidovsky priestor 97
-ortogonalna grupa 218
-ortogonalna matica 218
-sféra 74

-riemannovskd varieta 62
pull-back 67, 68, 70, 71
push-forward 68, 71
p-forma 107

p-forma na variete 139
p-retazec 161

p-retazec na variete 163

R

rad (konecnej) grupy 228

rang bivektora 345

- formy 136

- linedrneho zobrazenia 57

- 2-formy 345

- tenzora 50
Raritovo-Schwingerovo pole 685
reducibilnd reprezentacia 266
redukcia fibracie 604

- (symplektickd) grupou G 381
-ovana hamil. sistava 382
-ovana symplekticka varieta 381
-ované pole 381

-ovany fazovy priestor 381
regularny lagranzian 523
relativna invariantnost 357

-a rychlost 439

-e zrychlenie 439
reparametrizacia krivky 45, 65
-zatne invariantny 65, 497
reprezentacia grupy 259

- Lieovej algebry 260

- Cliffordovej algebry 672, 674
repérne pole 92

rez 555

reziduum 202

Ricciho formy 479
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- identita 433, 594, 620

- koeficienty rotacie 435, 687

- tenzor 422

Riemannova konexia 402

-ov tenzor (krivosti) 421

-ovska geometria 62

-ovskd varieta 62

p-invariantny skalarny sucin 263
R-linearita 59

rotacné matice (Wignerove) 338
rotdcia (vektorového pola) 193
rovnica kontinuity 457

-e paral. prenosu 395, 398, 623 627
rovnomerny priamociary pohyb 387

rozklad jednotky 272

- grupy 309

rozlozitelnd forma 136
rozmer reprezentacie 259
rozsirenie fibracie 604
-ny fazovy priestor 540

S

samodualna forma 200
samointerakcia 633
samozdruzeny operator 186
sférické funkcie 338
Schrédingerov obraz 350
Schurova lema 269, 270
silociary 44

singuldrny retazec 213
skaldrna elektrodynamika 610
-a hustota 125, 151, 569

-a krivost 422

-e pole 464, 489, 492

-y sucin 53, 133, 184

-y potencial 461

smerova derivécia 39
soldering 572

spinorové indexy 684

-4 reprezentacia 319, 323, 672
-é pole 489

-é pole na baze 679

spinory 319, 672

spinové fibracia 604, 677

-4 konexia 435, 680, 687

-4 Struktura 678

splietajuci operator 268, 292
spojité zobrazenie 18
spustanie indexov 55
stabilizator 307

stabilny bod 306
stacionarna podgrupa 307
-e prudenie (tecenie) 46, 180
stavova velicina 203, 558
stereografickd projekcia 23
stiahnutelné varieta 205
Stokesova veta 171, 195, 210
stredna hodnota 175
stredovanie cez grupu 265
stupen 114

superalgebra 703
-komutator 141, 703
-matematika 117
sturadnicova baza 41, 42, 60, 91
-4 krivka 38

-é vyjadrenie 26, 36,

suvisly priestor 253
suc¢inova fibracia 504, 555

-4 hlavna fibracia 573
svetociara 466, 498

-plocha 498

Sylvestrova veta 53
symetrizacia 111

symetricka konexia 401
symplekticka forma 345

-4 grupa 219

-a redukcia 536

-4 varieta 345, 524

-é pole 346

-é zobrazenie 350

-y ortogondlny doplnok 378
-é pdsobenie (akcia) 365
symplektomorfizmus 349, 350
S

Standardnd orientécia 147
-4 topologia v R™ 20

-é horizontélne polia 564



-4 hladkd struktura v R™ 23

-y n-simplex v R™ 162

-y (plochy) metr. tenzor v R™ 62
strukt. konstanty 236, 690, 699, 701
Stvorpotencial 460

Stvorsila 467

Stvorzrychlenie 467

T

tabulka ndsobenia 228
tangencidlny priestor 38
teleparalelizmus 444

tenzor deformacie 102

- energie hybnosti 469, 479, 643
- kontrakcie 62

- krivosti 421

- napatia 103

- rychlosti deformacie 103

- torzie 401

tenzorova algebra 51

-4 fibracia 628

-4 hustota 569

-4 operacia 52

-é pole 58, 569

-é pole typu p 336

-y sucin tenzorov 50

-y sucin priestorov 157, 695
-y su¢in matic 696

-y sucin algebier 699

tedria kohomoldgii 212

- momentu hybnosti 280

- strin 498

termodynamika 557
tetradny formalizmus 92, 435
-e pole 92, 434, 484, 687
-ovy postulat 435

tok 46

topologicky priestor 18
topoldgia 18

torus 27, 33

torzia 401, 441, 650
totalny priestor 504

tranz. posob. (akcia) 306, 547, 573
triedy C* 20
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trividlna fibracia 505, 574
- topolégia 18

typické vldkno 504

typu Ad 584

U

unimoduldrne repéry 605
unitarna reprezentacia 264

- matica 221

univerzalne nakrytie 669

-a nakryvajica grupa 315, 669
uzavreta forma 203

-4 plocha 171

-y prvok 212

U(1)-néboj 271

U

uplne reducibilng 267

uplny zdvih 514, 516, 529, 530, 533
-y paralelizmus 444, 596
Gcinok 409

v
varidcia potencialu 461

- pociatoénych podmienok 438
-¢né derivacia 462

varieta repérov 545

- hladka 22

vézby 75

vektorova fibracia 506, 574, 628
-é pole 41, 465

-y sucin 195

-y potencial 461

vektor spinu 376

veli¢ina typu p 569, 587, 626
vertikalna akcia 379, 547

-y podpriestor 509, 548, 560, 581
-e pole 379

-a distribucia 560

-y endomorfizmus 518

-y zdvih kovektora 514

-y zdvih vektora 512

-y zdvih tenzora 513

-y vektor 510
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veta o homomorfizme 314

- 70 vnoreni” 29

viacznacnd reprezenticia 324
vielbeinové pole 92, 435, 497, 687
v involucii 363

vlastnd funkcia 339

-na hodnota 339

-né Lorentzova grupa 669

-né ortochrénna Lor. grupa 319, 576

-ny cas 466

vldkno v bode x 504

vlnovy operator 453
vlozZenie 28, 73

vnorenie 28, 73

vnutornd derivacia 700

-y sicin 118, 346

-y automorfizmus 274, 701
volné akcia (posob.) 333, 547, 573
vonkajsia algebra 114, 124
-a normala 170

-a kovariantna derivacia 588
- stéin 109, 154
vytvarajica funkcia 355
vykon elektrického pola 467
vyznamné repéry 605

w

Weylova baza 231

-e spinory 675

Wignerove rotacné funkcie 338

Z

zachovavajica sa veli¢ina 363, 470
zachovava orientaciu 168
zamena suradnic 22
zdruzeny 136

zdvih 511

- posobenia grupy 530

- zobrazenia 129, 507
Zo-graduovanost 676
zlomkovo-linedrna transf. 312
zlozky 41, 42, 50

zmieSany stav 348, 376
zobrazenie 21

- fibracii 505

zovseobecnena sila 410

-¢é suradnice 75

zrychlenie 386, 467

zuzenie 52



