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0. ÚVOD 15

1. POJEM VARIETY 18

1.1. Topológia a spojité zobrazenia 18
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2.5. Tenzorové polia na M 58
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9.2. Konštrukcia potenciálu na stiahnutel’ných varietách 205
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11.2. Lieova algebra G grupy G 235
11.3. Jednoparametrické podgrupy 238
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12.3. Pridružená reprezentácia, Killingova-Cartanova metrika 273
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a zákony zachovania za ne 468
16.5.∗ Einsteinove rovnice gravitačného pol’a,
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19.3. k-rozmerná distribúcia D na variete M 551
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PREDHOVOR

Táto kniha je úvodným textom o istej častimatematiky, o modernej di-
ferenciálnej geometrii a o Lieových grupách ako jej integrálnej súčasti. Pritom
je ṕısaná hlavne z pohl’adu a pre potreby fyzikov. Orientácia na fyziku sa
prejavuje vo výbere materiálu, v spôsobe jeho podania (miere ”rigoróznosti”,
nepouž́ıvańı formy ”defińıcia-veta-dôkaz”), aj v náplni úloh (sú často spojené
s fyzikou).

Fyzikmi sa však potenciálna čitatel’ská obec knihy nevyčerpáva. Ked’̌ze
je o matematike a ked’̌ze fyzika odjakživa bola a stále je pre matematiku
výdatným zdrojom inšpirácie, bude užitočná aj pre matematikov. A vše-
obecneǰsie pre kohokol’vek, kto má potrebné (nevel’ké) predbežné vedomosti
(skonkretizované nižšie) a chcel by sa pŕıstupným spôsobom zoznámit’
s touto zauj́ımavou, dôležitou a živou discipĺınou, ktorá čoraz viac preniká
do rôznorodých oblast́ı modernej teoretickej fyziky, matematiky a aj ich apli-
kácíı.

S akýmiminimálnymi vedomost’amimôže prikročit’ potenciálny čitatel’
k štúdiu tejto knihy? Nevyžaduje sa toho vel’a. Stačia bežné vedomosti z kur-
zov matematickej analýzy (funkcíı viacerých reálnych premenných) a lineár-
nej algebry, ktoré v prvom alebo druhom ročńıku vysokoškolského štúdia
absolvujú napŕıklad všetci fyzici a matematici, ale aj väčšina budúcich in-
žinierov. Čitatel’ by teda mal rozumiet’ pojmom parciálna derivácia, Tay-
lorov rozvoj a viacnásobný Riemannov integrál, vediet’ násobit’ matice, mal by
chápat’ pojem podpriestor n-rozmerného lineárneho priestoru a podobne. Mal
by tiež mat’ istú prax v zostavovańı a riešeńı jednoduchých sústav obyčajných
diferenciálnych rovńıc a rozumiet’, aká myšlienka sa nimi realizuje.(Doladenie
formy sa dá robit’ aj ”za pochodu”, okrem iného pozorným č́ıtańım Dodatkov
na konci knihy.)

Typicky teda pôjde o vysokoškoláka/čku spomı́naných odborov, spravidla
od druhého ročńıka vyššie, ale nezriedka majú potrebné vedomosti už aj
mladš́ı. Kniha je však úmyselne ṕısaná tak, aby ju mohol bez t’ažkost́ı štu-
dovat’ aj samouk - ktokol’vek, koho lákajú tenzorové a spinorové polia,
či fibrované variety, chce sa naučit’ derivovat’ a integrovat’ diferen-
ciálne formy, vidiet’, ako súvisia so symetriami Lieove grupy a alge-
bry a ich reprezentácie, čo je krivost’ a torzia, ako sa využ́ıva symplek-
tická geometria v lagranžovskej a hamiltonovskej mechanike, v akom
zmysle hovoria konexie a kalibračné polia o tom istom, ako vznikajú
nötherovské prúdy a ako súvisia so zákonmi zachovania atd’.

Zo zamerania knihy vyplýva, že je výhodou, ak aspoň zhruba poznáme aj
fyzikálny kontext, ktorého sa týkajú aplikácie. Avšak aj bez fyzikálnych vedo-
most́ı možno mat’ (z hl’adiska samotnej geometrie) z knihy prospech. Ak sme
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napŕıklad nikdy nevideli Maxwellove rovnice a netuš́ıme, aká je ich úloha
vo fyzike, nebudeme śıce chápat’, prečo sa práve im venuje taká pozornost’,
ale napriek tomu budeme rozumiet’, čo sa tu s nimi z technického hl’adiska
rob́ı. Uvid́ıme na nich, ako sa dajú tieto parciálne diferenciálne rovnice
vyjadrit’ v jazyku diferenciálnych foriem, ako pre ne vyzerá účinok, ako sa
z neho pomocou tenzora energie-hybnosti źıskavajú zákony zachovania
a podobne. A ak sa nám to bude zdat’ zauj́ımavé, môžeme si o nich preč́ıtat’
niečo ”tradičné” aspoň dodatočne.

Podobne, ak nevieme nič o všeobecnej teórii relativity, nebudeme śıce
chápat’ odkial’ sa nabrala predstava o ”zakrivenom” priestoročase a ome-
trickom tenzore v ňom, dozvieme sa však, čo to je priestoročas z geome-
trického hl’adiska a čo sa v ňom dá štandardne robit’. Neprenikneme śıce
do fyzikálnej podstaty Einsteinových rovńıc pre gravitačné pole, avšak
spoznáme ich formálnu štruktúru a jednoduché a účinné technické nástroje
na prácu s nimi. Zvládnutie tejto a množstva inej geometrickej techniky nám
potom výrazne ul’ahč́ı pochopenie fyzikálnej stránky veci, ak si o tejto teórii
preč́ıtame, alebo vypočujeme neskôr niečo orientované fyzikálne.

Kl’účovou požiadavkou na budúceho čitatel’a je vel’ký záujem porozu-
miet’ veciam, o ktorých sa tu ṕı̌se a chut’ zvládnut’ materiál nielen platonicky
(pre potreby nonšalantnej konverzácie na spoločenských večierkoch), ale aj
na pracovnej úrovni. No a samozrejme aj prijatie prirodzeného dôsledku,
že tento ciel’ sa nedá dosiahnut’ samotným paśıvnym č́ıtańım, ale že je nevy-
hnutná značná samostatná práca (z čoho by mal mat’ ideálny budúci čitatel’
radost’) a jej zodpovedajúca časová invest́ıcia.

Látka sa vyjasňuje pomocou množstva jednoduchých úloh (je ich
spolu vyše tiśıc), v ktorých si čitatel’ ”vlastnými rukami” rozoberá detaily
”teórie”, ale aj spústu konkrétnych pŕıkladov. Začiatok úlohy spoznáme

podl’a rámčeka, v ktorom je jej č́ıslo (napŕıklad 14.4.3 označuje tretiu úlohu
vo štvrtom paragrafe štrnástej kapitoly), koniec podl’a symbolu ¤. Väčšina
úloh (asi devät’sto) má pripojený dostatočne podrobný návod a niektoré,
zhruba pät’desiat, aj úplné riešenie. Symbol • znamená začiatok ”textu”,
ktorý nie je úlohou (”teória” alebo komentár k úlohám). Ak je pri č́ısle
paragrafu hviezdička (napŕıklad 12.6.∗), znamená to, že pri prvom č́ıtańı ho
môžeme vynechat’ (ide do väčš́ıch detailov, alebo sa zaoberá pŕılǐs špeciálnymi
otázkami). Hviezdičkou sú označené aj niektoré náročneǰsie úlohy.

Táto kniha obsahuje dost’ vel’a materiálu a bude asi užitočné spomenút’,
ako s ňou optimálne pracovat’. Dá sa č́ıtat’ rôznymi spôsobmi, ktoré závisia
od toho, čo od nej očakávame a kol’ko úsilia sme ochotńı na jej zvládnutie
venovat’.

Základným a najviac odporúčaným spôsobom je postupovat’ pekne od
začiatku do konca a riešit’ pritom (skoro) všetky úlohy. Toto je postup,
ktorým sa z textu vyt’až́ı maximum. Tému vid́ıme v dostatočnej š́ırke, fakty



13

vńımame v súvislostiach a mnohorakých aplikáciách. Vyžaduje si to však čas
a trpezlivost’.

Kto jedno alebo druhé nemá, môže postupovat’ aj ináč. Pôjde śıce opät’ od
začiatku do konca, ale podrobne riešit’ bude len úlohy, ktoré ho nieč́ım zaujmú
alebo potrebuje ich výsledok. Pri tomto postupe sa môže stat’, že niektorú
úlohu nebude vediet’ zvládnut’; chýba mu na to nejaké podstatné ohnivko (fakt
alebo zručnost’) z preskočeného materiálu. Ak sa dá zistit’ ktoré ohnivko to je
(v návode sa vel’mi často odvolávame na č́ısla potrebných predchádzajúcich
úloh), nič hrozné sa nestalo, jednoducho sa treba vrátit’ a chýbajúci kúsok
(úlohu) si dodatočne doplnit’.

Ešte rýchleǰśı bude postup čitatel’a, ktorý sa chce od začiatku obmedzit’
na nejakú konkrétnu oblast’ a o ostatné sa zauj́ıma iba do tej miery, aká
je nevyhnutná pre ”jeho” tému. Na pomoc takémuto čitatel’ovi uvádzame
(približnú) schému závislosti kapitol:

1 2

5

3

6

4

7

10

15

12

11

8

9

14

13

16

19

17

20

18

21 22- - - - -

-

- - -

? ?
- -

-
q̂

-
1
µ
µ

1
:j

>

-

*

-

(Táto schéma nezodpovedá skutočnosti úplne, viacero paragrafov, krátkych
čast́ı či dokonca jednotlivých úloh by si v skutočnosti vyžadovalo dokreslit’
do nej d’aľsie š́ıpky, č́ım by sa ale stala prakticky bezcennou.)

Z takýchto konkrétnych oblast́ı by sa dali spomenút’ povedzme tieto:

1. geometria potrebná pre základy všeobecnej teórie relativity (kova-
riantné derivácie, tenzor krivosti, geodetiky, apod.)

Ide o ĺıniu 1 - 2 - 3 - 4 - 15 (podobný aparát sa źıde aj do pokročilej
mechaniky kontinua). Ak chceme zvládnut’ aj prácu s formami (napŕıklad
pochopit’ paragraf 15.6. o výpočte Riemannovho tenzora pomocou Carta-
nových štruktúrnych rovńıc alebo paragraf 16.5. o Einsteinových rovniciach
a ich odvodeńı z účinkového integrálu), potrebujeme pridat’ ešte kapitoly 5 -
6 - 7.

2. elementárna teória Lieových grúp a ich reprezentácíı (bez aparátu
diferenciálnej geometrie)

Ĺınia by mohla obsahovat’ kapitoly (z niektorých len uvedené paragrafy)
1 - 2.4 - 10 - 11.7 - 12 - 13.1,2,3

3. hamiltonovská mechanika a symplektické variety
Minimálna trasa obsahuje kapitoly 1 - 2 - 3 - začiatok 4 - 5 - 6 - 7 - 14. Jej
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pokračovanie (formulácie lagranžovskej a hamiltonovskej mechaniky na fib-
rovaných varietách TM a T ∗M) je v kapitolách 17 - 18. Ak chceme rozumiet’
aj pokročileǰśım paragrafom o symetriách (14.5.-14.7. a 18.4.), potrebujeme
chápat’ geometriu na Lieových grupách a pôsobenia Lieových grúp na va-
rietách (11.-13. kapitola).

4. základy práce s diferenciálnymi formami
Trasa by mohla vyzerat’ 1 - 2 - 3 - začiatok 4 - 5 - 6 - 7 - 8 - 9, pŕıpadne

ešte pridat’ začiatok 16. kapitoly.

Táto kniha vznikla usporiadańım a rozš́ıreńım materiálu, ktorý už mnoho
rokov prednášam študentom teoretickej fyziky FMFI UK (predtým MFF
UK) v Bratislave. Formálne zodpovedá štyrom oficiálnym prednáškam (čo
uvádzam len ako inšpiráciu pre pŕıpadné zavedenie podobných prednášok
inde), jednej väčšej a povinnej (je k nej aj cvičenie) a trom menš́ım a výbe-
rovým (sú bez cvičenia, aktivita sa udržiava len domácimi úlohami). Väčšia,
ktorá bež́ı pod názvom ”Matematická fyzika” (1 alebo 2), zodpovedá zhruba
kapitolám 1-9 a 14-16. Jej náplňou sú teda základy diferenciálnej geome-
trie a náčrt jej hlavných aplikácíı. Menšie sa týkajú Lieových grúp a ich
reprezentácíı (kapitoly 10-13), geometrických metód v klasickej mechanike
(17-18 a zvyšok 14) a konexíı a kalibračných poĺı (19-21).

Na záver by som sa rád pod’akoval Spoločnosti autorov vedeckej a odbornej
literatúry (SAVOL) za poskytnutie štedrej dotácie potrebnej na vyjdenie
tohoto diela, Centru pre výskum kvantovej informácie Fyzikálneho ústavu
SAV v Bratislave za pŕıspevok na ten istý účel, Literárnemu fondu za ude-
lenie štipendia na dokončenie diela, kolegom z Katedry teoretickej fyziky
FMFI v Bratislave, hlavne Pal’ovi Ševerovi a Vladovi Balekovi za mnohé obo-
hacujúce diskusie o geometrii vo fyzike, obom (anonymným) recenzentom pre
SAVOL za mimoriadne starostlivé preč́ıtanie nie práve najkratšieho rukopisu
a cenné profesionálne postrehy v posudkoch, Vladovi Bužekovi za povzbu-
denia v pravom čase a za dobré rady, E.Bartošovi, J.Bušovi, V.Černému,
J.Hitzingerovi, J.Chleb́ıkovej, E.Masárovi, E.Sallerovi, S.Sliszovi a A.Šurdovi
za rady a nezǐstnú pomoc pri realizácii elektronickej verzie textu (špeciálne
s jemnost’ami TEX-u, v ktorom som ho naṕısal) a svojim synom Stankovi
a Mirkovi za nakreslenie obrázkov (tiež v TEX-u). Osobitne d’akujem mo-
jej manželke L’ubke, ktorá spolu s našimi det’mi Stankom, Mirkom a Dankou
trpezlivo znášala moje nekonečné ṕısanie a s ńım spojenú fyzickú, alebo aspoň
duševnú nepŕıtomnost’.

Budem vd’ačný za akékol’vek pripomienky, komentáre, nájdené chyby či
návrhy na vylepšenie textu (fecko@ fmph.uniba.sk).

V Bratislave, marec 2004
Marián Fecko
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0. ÚVOD

Vo fyzike sa každú chv́ıl’u niečo derivuje alebo integruje. Preto treba
súbežne s kurzom fyziky vnikat’ aj do tajov diferenciálneho a integrálneho
počtu. Zač́ına sa funkciami jednej premennej, potom sa prejde aj na pŕıpad
viacerých premenných. Do hry vstúpia viacnásobné integrály a parciálne de-
rivácie, ktorých sa budúci adept fyziky napoč́ıta neúrekom.

Ked’ sa však pozorneǰsie pozrieme na štruktúru výrazov, zaṕısaných po-
mocou parciálnych derivácíı v skutočných fyzikálnych vzorcoch, zist́ıme, že
isté kombinácie sa vyskytujú vel’mi často, iné prakticky nikdy. Napŕıklad ak
porovnáme frekvenciu výskytu výrazov tvaru

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
a

∂3f

∂x3
+

∂2f

∂y∂z
+ 4

∂f

∂z

tak zist́ıme, že zatial’ čo prvý (Laplaceov operátor aplikovaný na funkciu f)
sa vyskytuje vel’mi často, druhý v knihách prakticky nenájdeme (ak nerátame
zbierku úloh z analýzy, kde treba rátat’ práve túto kombináciu derivácíı z di-
daktických dôvodov). Kombinácie, ktoré sa v knihách vyskytujú, sú spravidla
výsledkom výpočtu, ktorý realizuje isté názorné lokálne geometrické pred-
stavy o uvažovanej realite (napŕıklad fenomenologický opis difúzie látky v ho-
mogénnom prostred́ı). Práve takéto predstavy systematicky študuje lokálna

diferenciálna geometria. V zhode s fyzikálnou skúsenost’ou sa v nej pozoruje,
že operácíı, ktoré sú naozaj zauj́ımavé a často sa vyskytujú, je skutočne po-
merne málo (dobrá správa, zvládnu sa v rozumnom čase).

Zo všeobecnej fyziky tiež poznáme fakt, že tá istá situácia sa dá opisovat’
pomocou rôznych súradńıc (kartézskych, sférických, cylindrických,...) a z kon-
textu je zrejmé, že výsledok určite nebude závisiet’ od výberu týchto sú-
radńıc (čo sa ale často nedá povedat’ o pracnosti výpočtov; to je dôvod,
prečo sa vyberajú na rôzne úlohy rôzne súradnicové sústavy). Samotné ob-
jekty a operácie s nimi sú teda nezávislé od výberu súradńıc na ich opis,
a preto neprekvaṕı, že vo vhodne vybudovanom aparáte sa bude dat’ vel’ká
čast’ výpočtov urobit’ úplne bez súradńıc (aká vel’ká čast’ to bude, záviśı od
problému aj majstrovstva použ́ıvatel’a aparátu). Takéto ”abstraktné” (bez-
súradnicové) výpočty majú viacero prednost́ı. Bývajú spravidla podstatne
kratšie a prehl’adneǰsie (dajú sa preto napŕıklad l’ahko viackrát skontrolovat’),
jednotlivým krokom sa dá lepšie názorne rozumiet’ a podobne. Porovnajme
na ilustráciu napŕıklad takéto rovnice

Lξg = 0 ↔ ξkgij,k + ξk,igkj + ξk,jgik = 0

∇γ̇ γ̇ = 0 ↔ ẍi + Γijkẋ
j ẋk = 0

∇g = 0 ↔ gij,k − Γijk − Γjik = 0
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V tomto texte sa postupne dozvieme, že dvojice rovńıc vl’avo-vpravo hovo-
ria vždy presne to isté: výraz vpravo vzniká rozṕısańım do (l’ubovol’ných)
súradńıc výrazu vl’avo.

(Prvý pŕıpad sú Killingove rovnice a ich obsahom je fakt, že Lieova de-
rivácia g v smere ξ je nulová, t.j. že metrický tenzor g má symetriu danú
vektorovým pol’om ξ; druhý je rovnica geodetiky a vyjadruje podmienku, že
ideme rovnomerne priamočiaro (= s nulovým zrýchleńım); tret́ı je podmienka
metričnosti konexie a hovoŕı, že pri paralelnom prenose sa bude zachovávat’
skalárny súčin vektorov. Komu je už teraz všetko toto jasné, môže túto knihu
hned’ predat’ a za źıskané peniaze si kúpit’ a začat’ č́ıtat’ nejakú rozumneǰsiu
a pokročileǰsiu literatúru; tým, čo zostali č́ıtat’ d’alej, to bude úplne jasné po
preč́ıtańı štvrtej a pätnástej kapitoly.)

Napriek maximálnemu zjednodušeniu zápisu súradnicových verzíı rovńıc
(sumačná konvencia, zápis parciálnych derivácíı pomocou čiarok) je zrejmé,
že stručnost’ l’avých strán je bezkonkurenčná. Ak sa preto nauč́ıme spol’ahlivo
manipulovat’ s objektmi typu l’avých strán, źıskame tým schopnost’ efekt́ıvne
(nepriamo) narábat’ s pomerne komplikovanými výrazmi, ktoré obsahujú par-
ciálne derivácie a pritom navyše v každom kroku rozumiet’, čo objekt́ıvne

rob́ıme.

Analýza sa zvyčajne rozv́ıja v kartézskom priestore R
n resp. v otvorených

oblastiach v R
n. V skutočnosti však mnohé priestory, na ktorých bez mihnutia

oka analýzu použ́ıvame, pŕısne vzaté otvorenými oblast’ami v R
n nie sú, hoci

k nim majú vel’mi bĺızko.

V teoretickej mechanike napŕıklad vyšetrujeme pohyb kyvadiel tak, že
riešime (diferenciálne) Lagrangeove rovnice pre časovú závislost’ súradńıc
v ich konfiguračných priestoroch. Pritom tieto konfiguračné priestory nie
sú vždy otvorenými oblast’ami v R

n. Pre rovinné kyvadlo je to napŕıklad
kružnica S1. Je to śıce jednorozmerný priestor, avšak je intuit́ıvne zrejmé
(a dá sa dokázat’), že je to čosi iné, ako (otvorená oblast’ v) R

1. Podobne
konfiguračný priestor sférického kyvadla je dvojrozmerná sféra S2, ktorá sa
ĺı̌si od (otvorenej oblasti v) R

2.

Všimnime si však, že dostatočne malé okolia l’ubovol’ného bodu na S1 aj
S2 sú na nerozoznanie od dostatočne malých okoĺı l’ubovol’ných bodov v R

1,
resp. R

2; sú v nejakom zmysle ”lokálne rovnaké”, rozdiel je ”až globálny”.
Aplikácie matematickej analýzy (aj vo fyzike) takto prirodzene tlačia smerom
k jej rozš́ıreniu na všeobecneǰsie priestory, akými sú otvorené oblasti v R

n.

Takýmito všeobecneǰśımi priestormi sú hladké variety. Vel’mi vol’ne pove-
dané ide o priestory, ktoré sa krátkozrakému pozorovatel’ovi javia ako R

n (pre
vhodné n), ale celkovo (”topologicky”, ked’ si založ́ı okuliare a vid́ı už dobre
aj do dial’ky) môžu vyzerat’ úplne ináč ako R

n.

Pŕıjemnou pozornost’ou podniku je fakt, že aparát, ktorý sa vybuduje na
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vyššie spomı́naný opis geometrických predstáv nezávisle od výberu súradńıc,
je zároveň automaticky vhodný aj na opis globálnych geometrických objektov,
t.j. objektov korektne definovaných na celej variete. Budeme teda hovorit’
aj o globálnej analýze, analýze na varietách. Napŕıklad spomenuté rovnice
Lξg = 0, ∇γ̇ γ̇ = 0 a ∇g = 0 sú všetko rovnice na varietách a ich riešenia sú
tiež globálne dobre definované objekty na varietách.

Samotný kl’účový pojem hladkej variety si zavedieme v 1. kapitole. Výklad
bude hlavne intuit́ıvny. Vel’a većı, ktoré sa podrobne rozvádzajú v matematic-
kej literatúre o diferenciálnej topológii, sa spomenie len vel’mi orientačne alebo
dokonca sa nespomenú vôbec. Ciel’om tejto úvodnej kapitoly bude povedat’
len to, čo treba nevyhnutne vediet’ na pochopenie (už na pracovnej úrovni)
hlavnej náplne tohoto textu, ktorou je diferenciálna geometria na varietách.
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Zhrnutie 1. kapitoly

Hladká varieta je základnou hracou plochou v diferenciálnej geometrii. Je
to zovšeobecnenie kartézskeho priestoru R

n (resp. otvorenej oblasti v R
n)

na objekt, ktorý vyzerá (len) lokálne ako R
n, ale jeho globálna štruktúra

môže byt’ ovel’a komplikovaneǰsia. Vždy sa však dá predstavit’ ako celok zle-
pený z niekol’kých kúskov homeomorfných R

n; č́ıslo n, ktoré je rovnaké pre
všetky kúsky, sa volá rozmer variety. Technická realizácia týchto myšlienok je
založená na pojmoch mapa (lokálne súradnice) a atlas pozostávajúci z niekol’-
kých máp. Kartézsky súčin M × N dvoch variet je nová varieta, vytvorená
z pôvodných variet M a N . L’ubovol’ná varieta sa dá realizovat’ ako vel’mi
slušne uložená plocha v dostatočne rozmernom kartézskom priestore.

Zhrnutie 2. kapitoly

V každom bode x n-rozmernej variety M existuje kanonicky istý n-roz-
merný lineárny priestor TxM , dotykový (tangenciálny) priestor v bode x.
Jeho elementy sa volajú vektory v bode x. Existuje viacero navzájom ekviva-
lentných defińıcíı tohoto pojmu, ktoré sú výhodné v rôznych kontextoch. Vek-
torové pole na variete M je hladké priradenie vektora každému bodu x ∈ M .
Integrálna krivka vektorového pol’a je taká krivka, ktorá v každom bode ide
tak, ako jej diktuje vektor pol’a v tomto bode. Štandardné konštrukcie multi-
lineárnej algebry (konštrukcia tenzorov typu

(

p
q

)

pre daný vektorový priestor

L) vedú k pojmu tenzorového pol’a typu
(

p
q

)

na variete. Špeciálnymi pŕıpadmi

sú funkcie (typ
(

0

0

)

), vektorové a kovektorové polia (typ
(

1

0

)

a
(

0

1

)

), polia bi-

lineárnych foriem (typ
(

0

2

)

, v symetrickom nedegenerovanom pŕıpade metrický

tenzor) a lineárnych operátorov (typ
(

1

1

)

).

Zhrnutie 3. kapitoly

Každé (hladké) zobrazenie bodov variet f : M → N indukuje zobraze-
nie tenzorov na nich. Označuje sa f∗, ak prenáša tenzory v smere f (z M
na N) a f∗, ak ich prenáša proti smeru f (z N na M). Pre difeomorfizmy
sa dá zaviest’ f∗ aj f∗ pre l’ubovol’né tenzorové pole. Ak f nie je difeomor-
fizmus, môžu nastat’ problémy. Pre tenzorové polia typu

(

0

p

)

existuje zobra-

zenie f∗ vždy. Špeciálnym pŕıpadom je indukovanie metrického tenzora na
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M z riemannovskej variety (N,h), č́ım sa źıska riemannovská varieta (M, g),
g = f∗h. Najčasteǰsie ide o indukovanie metrického tenzora na podvariety
M euklidovského priestoru N = En (alebo všeobecneǰsie Er,s), na ktorom
existuje kanonický metrický tenzor h = η.

Zhrnutie 4. kapitoly

L’ubovol’né vektorové pole V na M indukuje zobrazenie Φt : M → M ,
pri ktorom sa bod x posunie o parameter t po integrálnej krivke štartujúcej
v x. Hovoŕı sa mu tok generovaný pol’om V , alebo vzhl’adom na skladaciu
vlastnost’ Φt+s = Φt ◦ Φs aj jednoparametrická grupa transformácíı. Zo-
brazenie Φt variety M na seba indukuje v zmysle 3. kapitoly zobrazenie

tenzorových poĺı Φ∗
t , ktoré generuje lieovský prenos tenzorov (pozd́lž in-

tegrálnych kriviek pol’a V ). Mierou citlivosti (nekonštantnosti) tenzorového
pol’a A voči lieovskému prenosu je Lieova derivácia LVA := d

dt

∣

∣

0
Φ∗
tA. Dvom

vektorovým poliam V,W sa dá priradit’ tretie, ich komutátor [V,W ] (ktorý
je zároveň totožný s LVW ). Dve polia komutujú práve vtedy, ked’ komu-
tujú im zodpovedajúce toky; nekomutovanie vektorových poĺı takto vedie
na javy anholonómie (závislosti od cesty). Killingov vektor je vektorové pole,
v smere ktorého je lieovsky konštantný metrický tenzor. Tok Killingovho vek-
tora je izometriou riemannovskej variety (M, g), t.j. zobrazeńım M na seba,

pri ktorom sa zachovávajú všetky d́lžky a uhly. Ak sa zachovávajú len uhly,
ide o konformné transformácie a generujú ich konformné Killingove vektory.

Zhrnutie 5. kapitoly

V kontexte výpočtu objemov rovnobežnostenov (a tým aj v teórii inte-
grovania, kde sa funkčné hodnoty násobia objemami infinitezimálnych rov-
nobežnostenov) sa ukáže mimoriadny význam úplne antisymetrických čisto
kovariantných tenzorov, ktorým sa hovoŕı formy. Celá táto kapitola študuje
formy na úrovni lineárnej algebry. Okrem všeobecných vlastnost́ı, ktoré pla-
tia pre všetky tenzory, sú v hre aj dôležité špecifiká. Formy majú prirodzené
Z-graduovanie, funguje na nich (graduovane komutat́ıvny) vonkaǰśı súčin ∧

(č́ım vzniká graduovaná vonkaǰsia=Grassmannova algebra) a vnútorný súčin
iv (ktorý je deriváciou stupňa -1 tejto algebry). Ak je k dispoźıcii aj metrický
tenzor a orientácia (daná formou objemu), pristupuje Hodgeov operátor ∗.
Prirodzenú interpretáciu tu nadobúda aj obyčajný determinant.
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Zhrnutie 6. kapitoly

Študujú sa formy už ako polia na variete (diferenciálne formy). Okrem
algebraických konštrukcíı z 5. kapitoly pristupuje kl’účový pojem vonkaǰsej

derivácie. Ide o deriváciu stupňa +1 Cartanovej algebry foriem na variete,
ktorá je navyše nilpotentná (dd = 0). Jednoduchým (ale užitočným) zovšeo-
becneńım doteraǰśıch foriem sú formy s hodnotami v l’ubovol’nom vektorovom
priestore (doteraǰsie mali hodnoty v R).

Zhrnutie 7. kapitoly

Rozborom konkrétnych jednoduchých pŕıkladov sa zist’uje, že na podin-
tegrálne výrazy je užitočné nazerat’ ako na diferenciálne formy zo 6. kapitoly.
Definuje sa základný pojem integrálu formy po ret’azci, pričom sa predpokladá
elementárna znalost’ bežného Riemannovho viacnásobného integrálu. Formu-
luje sa Stokesova veta pre diferenciálne formy (dáva do súvisu integrál formy
po hranici ret’azca s integrálom vonkaǰsej derivácie tejto formy po samotnom
ret’azci). Diskutuje sa reinterpretácia integrálu po oblasti na orientovatel’nej
variete ako integrálu po ret’azci (vrátane tvaru Stokesovej vety) a špecifikum
integrovania po riemannovskej variete. Odhal’uje sa jednoduché správanie sa
integrálu voči zobrazeniam variet.

Zhrnutie 8. kapitoly

Všeobecná Stokesova veta pre diferenciálne formy zo 7. kapitoly má mno-
horaké klasické prejavy. Ukazuje, že je v nej skrytá napŕıklad Gaussova-
Ostrogradského veta, Greenove identity, ”obyčajná” Stokesova veta z vekto-
rovej analýzy, niektoré fakty z teórie funkcíı komplexnej premennej. Zavádza
sa kodiferenciál δ (ako operátor združený k diferenciálu d = vonkaǰsej de-
rivácii) a samozdružená kombinácia ∆ = −(dδ + δd), Laplaceov-deRhamov
operátor (zovšeobecnenie Laplaceovho operátora na funkciách na l’ubovol’né
formy). V časti o vektorovej analýze sa prichádza k záveru, že operácie gra-
dient, rotácia a divergencia sú len zamaskovaná vonkaǰsia derivácia.

Zhrnutie 9. kapitoly
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Forma sa volá uzavretá, ak má nulovú vonkaǰsiu deriváciu a exaktná,
ak je vonkaǰsou deriváciou inej formy (svojho potenciálu). Vzhl’adom na
nilpotentnost’ operátora d (t.j. platnosti dd = 0) je exaktná forma automa-
ticky uzavretá (Poincarého lema). Ukazuje sa, že vo fyzike často využ́ıvané
opačné tvrdenie (obrátenie Poincarého lemy) všeobecne neplat́ı, ale konštruk-
t́ıvne sa oveŕı jeho platnost’ na stiahnutel’ných varietách (resp. lokálne, t.j.
v dostatočne malom okoĺı l’ubovol’ného bodu na l’ubovol’nej variete). Jem-
neǰśı pohl’ad na vec umožňuje aparát teórie kohomológíı, v tomto pŕıpade ide
konkrétne o kohomológie deRhamovho komplexu.

Zhrnutie 10. kapitoly

Grupy vstupujú do hry vo fyzike aj v matematike ako grupy symetrie

čohosi, t.j. (v matematickej reči) ako grupy automorfizmov rôznych štruktúr.
Explicitne sa vyšetrujú štruktúry, ktoré vedú na bežné klasické grupy (vše-
obecnú lineárnu, ortogonálnu, symplektickú, unitárnu,...). Spojeńım alge-
braického pojmu grupa a diferenciálno-topologického pojmu (analytická) va-
rieta vzniká Lieova grupa. Vyššie spomı́nané grupy (aj iné) sú pŕıklady Lieo-
vých grúp.

Zhrnutie 11. kapitoly

Efekt́ıvnym nástrojom na štúdium pomerne zložitých objektov, akými
sú Lieove grupy, je využitie ich bohatej diferenciálnej geometrie. Tá je dôs-
ledkom kompatibility štruktúry grupy a variety. Pomocou l’avoinvariantných

vektorových poĺı sa dá Lieovej grupe kanonicky priradit’ jej Lieova algebra, čo
je objekt nepomerne jednoduchš́ı, ako samotná grupa (je to konečnorozmer-
ný lineárny priestor), napriek tomu však kóduje podstatnú čast’ informácie
o grupe. Študuje sa dôležité exponenciálne zobrazenie z algebry do grupy.

Zhrnutie 12. kapitoly

Lieova grupa dáva o sebe často vediet’ cez svoju reprezentáciu, t.j. existuje
homomorfizmus tejto grupy do grupy obrátitel’ných lineárnych operátorov
v nejakom vektorovom priestore a v danom kontexte vid́ıme len jej homo-
morfný obraz. Reprezentácia grupy automaticky indukuje aj istú (odvodenú)
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reprezentáciu jej Lieovej algebry, čo je všeobecne homomorfizmus Lieovej
algebry do Lieovej algebry (všetkých) lineárnych operátorov (vo fixnom li-
neárnom priestore). Ak daná reprezentácia pripúšt’a nejaký netriviálny inva-
riantný podpriestor, volá sa reducibilná, lebo sa dá redukovat’ na (menšiu)
reprezentáciu v tomto podpriestore. Ireducibilné sa takto zmenšit’ nedajú.
Kritériám ireducibility sa venuje Schurova lema. Ak k danému podpriestoru
existuje aj invariantný doplnok, reprezentácia je ekvivalentná priamemu súč-
tu dvoch menš́ıch. Takýto doplnok sa dá dostat’ napŕıklad ako ortogonálny

doplnok voči invariantnému skalárnemu súčinu (ak existuje; na kompaktných
grupách existuje vždy a ukazuje sa, ako sa dá źıskat’). S reprezentáciami
sa dajú robit’ isté konštrukcie, napŕıklad priamy súčet a súčin; kombináciou
s ohraničeńım na invariantné podpriestory vo výsledku sa dá často źıskat’
spústa reprezentácíı z malej zásoby na začiatku (niekedy aj všetky z jednej).
Invariantné tenzory a s nimi spojené splietajúce operátory umožňujú ”menit’
typ” velič́ın, priradit’ vektorom, na ktoré pôsob́ı grupa cez reprezentáciu ρ1

vektory, na ktoré pôsob́ı cez ρ2. Každá reprezentácia Lieovej algebry indukuje
istý komplex; trochu sa venujeme jeho kohomológiám.

Zhrnutie 13. kapitoly

Osobitne dôležitým pŕıpadom pôsobeńı grúp sú pre diferenciálnu geo-
metriu ich pôsobenia na varietách. Často je na týchto varietách dodatočná
štruktúra, ktorú pritom zachovávajú (napŕıklad akcie izometriami na rieman-
novských varietách, alebo symplektické akcie na symplektických varietách,
pozri paragraf 14.5). Pôsobenie Lieovej grupy dáva na infinitezimálnej úrovni
pôsobenie svojej Lieovej algebry, s ktorou sú úzko spojené fundamentálne

(vektorové) polia. Pôsobenie na bodoch variety štandardne (postupmi z pa-
ragrafu (3.1)) indukuje pôsobenie na funkciách na variete (a všeobecneǰsie na
tenzorových poliach), č́ım sa źıskava dôležitá konštrukcia (∞-rozmerných)
reprezentácíı grupy a jej algebry (tenzorové polia, špeciálne aj funkcie, tvoria
lineárny priestor). Ohraničeńım na invariantné podpriestory sa z nich často
dajú vytiahnut’ aj konečnorozmerné reprezentácie. Vydelenie G-invariantné-
ho podpriestoru funkcíı (tenzorových poĺı) býva častým postupom pri riešeńı
diferenciálnych rovńıc (ansatz s istým typom symetrie).

Zhrnutie 14. kapitoly

Z vhodného prepisu Hamiltonových kanonických rovńıc sa odhal’uje, že
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za týmito rovnicami je skrytá elegantná geometrická štruktúra. Jej jadrom
je uzavretá nedegenerovaná 2-forma ω na fázovom priestore, symplektická

forma. Tá umožňuje dv́ıhat’ a spúšt’at’ indexy, podobne, ako sa to rob́ı pomo-
cou metrického tenzora. Vektorové pole, ktoré je analógom gradientu v rie-
mannovskom pŕıpade (vzniká teda dvihnut́ım indexu na gradiente funkcie f
ako kovektorovom poli), sa tu volá hamiltonovské pole generované funkciou
f . Zist́ı sa, že Hamiltonove rovnice sú vlastne rovnice pre integrálne krivky
hamiltonovského pol’a generovaného funkciouH, hamiltoniánom sústavy. Tak
sa prichádza k pojmu hamiltonovská sústava (M,ω,H). Vektorové polia,
ktoré generujú automorfizmy hamiltonovskej sústavy (zachovávajú teda sym-
plektickú formu a hamiltonián) sa volajú Cartanove symetrie a ich isté zjem-
nenie exaktné Cartanove symetrie. Ukazuje sa, že existuje vzájomne jed-
noznačná korešpondencia medzi exaktnými Cartanovými symetriami a za-
chovávajúcimi sa veličinami. Do väčš́ıch detailov v tomto smere idú časti
o momentovom zobrazeńı a symplektickej redukcii. Bohatou triedou sym-
plektických variet sú orbity koadjungovanej akcie (čo je pôsobenie G na duáli
G∗ svojej vlastnej Lieovej algebry G), na ktorých existuje kanonická symplek-
tická štruktúra.

Zhrnutie 15. kapitoly

Vo viacerých aplikáciách (napŕıklad pri výpočte zrýchlenia hmotného bo-
du v mechanike) sa efekt́ıvne robia lineárne kombinácie (pri zrýchleńı kon-
krétne odč́ıtanie) vektorov (alebo všeobecneǰsie tenzorov) v rôznych bodoch.
To sa na ”prázdnej” variete nedá. Štruktúra, ktorá to legalizuje, je (lineárna)
konexia∇ naM . Umožňuje prenášat’ vektory po danej ceste (od ktorej v prin-
ćıpe záviśı) a tým aj uskutočnit’ vyššie spomı́nané porovnanie (porovnáva sa
vektor v x s vektorom, ktorý sa z y prenesie do x). Tento prenos sa podl’a

defińıcie volá paralelný (v zmysle konexie ∇). Najjednoduchšie sa technicky
zavádza postulovańım vlastnost́ı s ńım súvisiacej kovariantnej derivácie. Ko-
nexia umožňuje zaviest’ pojem rovnej čiary (geodetiky) na (M,∇). Lineárnej
konexii sú priradené dve tenzorové polia, tenzor torzie a krivosti. Ukazuje
sa, že podmienka kompatibility s metrikou (zachovanie skalárnych súčinov
pri paralelnom prenose) a nulovost’ torzie vedú na istú jednoznačnú konexiu
(RLC konexia). Tenzor krivosti kóduje, či paralelný prenos (o infinitezimálne
vzdialenosti) naozaj záviśı od cesty; prejavuje sa aj v správańı sa bĺızkych
geodet́ık - spôsobuje ich odklon (Jacobiho rovnica). Nenulový tenzor torzie
signalizuje neuzavretie geodetického rovnobežńıka. Efekt́ıvnym nástrojom na
prácu s konexiou je aparát diferenciálnych foriem. Základné objekty teórie sa
zakódujú do foriem a vzt’ahy medzi nimi sú dané Cartanovými štruktúrnymi
rovnicami.
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Zhrnutie 16. kapitoly

(Štvor)tenzorový zápis Maxwellových rovńıc v Minkowského priestor(oča-
s)e odhal’uje, že tenzory, ktoré sa v nich objavujú, sú vel’mi špeciálne - ide
o diferenciálne formy. Preto najprirodzeneǰśım jazykom na štvorrozmernú
formuláciu elektrodynamiky je jazyk diferenciálnych foriem. Formy v Min-
kowského priestor(očas)e majú (ako dôsledok delenia priestoročasu na ”čas”
a ”priestor”) špeciálnu štruktúru: prirodzene vzniká ich vyjadrenie pomocou
dvoch priestorových foriem. Takéto vyjadrenie foriem (a operácíı na nich)
je efekt́ıvnym mostom medzi štvorrozmernou a (historicky staršou) troj-
rozmernou formuláciou elektrodynamiky. Formy sú užitočné nielen v elektro-
dynamike, ale v teórii pol’a všeobecne. Jednoducho sa cez ne zapisujú účinkové

integrály (ked’̌ze podintegrálne výrazy sú vždy formy) a rovnako jednoducho
sa poč́ıtajú aj ich extrémy, ktoré dávajú pohybové rovnice (prirodzene sa
v nich objavuje kodiferenciál). S priestoročasovými symetriami úzko súviśı
tenzor energie-hybnosti pol’a, ktorý vzniká variáciou účinku podl’a metrického
tenzora. Tento tenzor sa objavuje (ako zdroj) aj v Einsteinových rovniciach
gravitačného pol’a. Skúma sa ich variačná formulácia, porovnáva sa Hilber-
tov účinok, kde sa vaŕıruje voči metrickému tenzoru, s Cartanovým, ktorý
je funkcionálom korepérneho (”tetrádneho”) pol’a a foriem konexie. V ne-
lineárnom sigma-modeli hrá úlohu pol’nej premennej zobrazenie dvoch rie-
mannovských variet. Zobrazenia, ktoré extremalizujú prirodzene zavedený
účinok (vedú na ”minimálne plochy”) sa volajú harmonické. Takýmito zo-
brazeniami sa opisujú mydlové bubliny, ale aj svetoplochy v teórii strún.
Variáciou voči jednému z metrických tenzorov sa dá prejst’ od ”kvadratického”
účinku k ”odmocninovému” (čo má praktický význam v opačnom smere).

Zhrnutie 17. kapitoly

S každou varietou M môžeme kanonicky spojit’ d’aľsie dve variety dvojná-
sobného rozmeru, TM a T ∗M . Hrajú dôležitú úlohu ako ihriská klasickej me-
chaniky (lagranžovskej a hamiltonovskej). Z konštrukcie zadarmo dostávajú
do vienka zauj́ımavú geometrickú štruktúru (aj ked’ samotná varieta M je
”prázdna”). Sú totálnymi priestormi vektorových fibrácíı, nesú (rôzne) kano-
nické tenzorové polia (napŕıklad T ∗M symplektickú formu), viaceré objekty
sa dajú z M dv́ıhat’ do totálnych priestorov. V d’aľsej kapitole sa na nich
skúma mechanika, táto obsahuje potrebnú pŕıpravu.



25

Zhrnutie 18. kapitoly

Ukazuje sa, ako sa formuluje klasická mechanika na TM a T ∗M . Oba
pŕıpady sú z geometrického hl’adiska (v nedegenerovanom pŕıpade) úplne
rovnocenné: ide o štandardnú symplektickú dynamiku, t.j. pohyb po in-
tegrálnych krivkách hamiltonovského (dynamického) pol’a. Na T ∗M máme
kanonickú symplektickú štruktúru, takže fixovanie funkcie H už dáva priamo
dynamiku. Na TM je to trochu zamaskované; kanonickým pol’om je isté ten-
zorové pole typu

(

1

1

)

a symplektická štruktúra vzniká až jeho kombináciou
s (nedegenerovaným) lagranžiánom (ako funkciou na TM). Projekciou tejto
symplektickej dynamiky na bázuM vznikajú štandardné Lagrangeove rovnice
(táto projekcia pridá jeden rád, takže sú 2.rádu), zatial’ čo Hamiltonove
rovnice operujú priamo v totálnom priestore T ∗M a (ako každé rovnice pre
integrálne krivky) sú len 1.rádu. Pomocou lagranžiánu sa konštruuje Legen-
dreovo zobrazenie TM → T ∗M , ktoré dáva tieto dve dynamiky do súvisu.

Zhrnutie 19. kapitoly

Ciel’om tejto kapitoly je preformulovat’ už známe fakty z teórie lineárnej
konexie (15. kapitola) do nového jazyka, v ktorom sa (v d’aľsej kapitole)
obzvlášt’ jasne odhaĺı možnost’ istého d’alekosiahleho zovšeobecnenia. Nový
opis sa odohráva na novom ihrisku, variete LM , ktorá sa dá kanonicky
priradit’ variete M . Jej bodmi sú všemožné repéry vo všemožných bodoch
na M . Zist’uje sa, že už bez konexie na M je v hre bohatá štruktúra: varieta
LM je totálnym priestorom hlavnej GL(n,R)-fibrácie s bázou M . Konexia
na M pridáva na LM d’aľsiu štruktúru, GL(n,R)-invariantnú horizontálnu
distribúciu. Pomocou nej sa dá operácia paralelného prenosu repéru po krivke
γ na M preformulovat’ cez konštrukciu horizontálneho zdvihu γh krivky γ.
Varieta LM dáva aj zauj́ımavú možnost’ technického opisu širokej triedy geo-
metrických objektov na M (špeciálne tenzorových poĺı, všeobecneǰsie poĺı
typu ρ) ako ekvivariantných funkcíı Φ na LM a tiež opisu ich paralelného
prenosu a kovariantnej derivácie (tá sa zmeńı na obyčajnú smerovú deriváciu
funkcie Φ).

Zhrnutie 20. kapitoly

Preklad pojmov súvisiacich s lineárnou konexiou do reči fibrácie repérov,
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ktorý sa udial v 19.kapitole, odhal’uje možnost’ zovšeobecnenia. Namiesto
π : LM → M sa uvažuje π : P → M , hlavná fibrácia s grupou G. Kone-
xiou v tejto fibrácii sa nazve horizontálna distribúcia v totálnom priestore
P , ktorá je invariantná voči pôsobeniu grupy G. Technicky sa opisuje for-
mou konexie ω, čo je istá 1-forma s hodnotami v Lieovej algebre G grupy
G. Analógmi repérov sú body variety P a ich paralelný prenos sa stotožńı
s horizontálnym zdvihom krivky z bázy, po ktorej sa rob́ı prenos. (Lokálna)
závislost’ tohoto paralelného prenosu od cesty sa dá jednoducho vyjadrit’ v ter-
mı́noch integrovatel’nosti horizontálnej distribúcie a ako miera tejto integrova-
tel’nosti vstúpi do hry (cez Frobeniovo kritérium) pojem 2-formy krivosti Ω
(má tiež hodnoty v G). Ako formálny nástroj na výpočet formy krivosti sa
zavádza vonkaǰsia kovariantná derivácia D; pomocou nej dostávame vyjadre-
nie Ω = Dω. Ak je na M definovaná nejaká štruktúra, dá sa pomocou nej
často zostrojit’ istá podfibrácia hlavnej fibrácie, na ktorej pôsob́ı len podgrupa
pôvodnej grupy; hovoŕı sa o ohraničeńı štruktúrnej podgrupy. Napŕıklad me-
trickému tenzoru na M zodpovedá fibrácia ortonormovaných repérov (pod-
fibrácia fibrácie repérov). Za istých podmienok sa na podfibráciu ded́ı aj
konexia; naopak konexia na podfibrácii indukuje konexiu na celej fibrácii,
ktorá je špeciálna v tom, že rešpektuje štruktúru, ktorá súviśı s podfibráciou.

Zhrnutie 21. kapitoly

Konexie v hlavnej G-fibrácii sa dávajú do súvisu s kalibračnými pol’ami,
ktoré sú známe z fyziky. Najprv sa opisuje štandardný ”fyzikálny” pŕıstup,
ktorý spoč́ıva v zlokálneńı symetrie účinku, ktorý už je ”globálne” inva-
riantný. Toto zlokálnenie pridáva k teórii d’aľsie polia s konkrétnymi trans-
formačnými pravidlami a konkrétnou interakciou s pôvodnými pol’ami. Ukáže
sa, že tieto polia sa dajú interpretovat’ aj z pohl’adu teórie konexíı. Konkrétne
sa nahliadne, že fixovanie kalibrácie je dané výberom lokálneho rezu σ hlavnej
fibrácie, kalibračné potenciály (v tejto kalibrácii) sa źıskavajú stiahnut́ım
formy konexie na bázu (pomocou rezu), kalibračné transformácie súvisia
so zmenou rezu, intenzita kalibračného pol’a sa źıskava stiahnut́ım formy
krivosti a látkové polia stiahnut́ım ekvivariantnej funkcie na P . Odvodia
sa rovnice paralelného prenosu l’ubovol’nej veličiny typu ρ v kalibrácii σ.
Zavedie sa pojem asociovanej vektorovej fibrácie (ktorá vznikne z hlavnej
fibrácie nahradeńım pôvodného vlákna reprezentačným priestorom grupy G).
Ukazuje sa, akú štruktúru majú účinkové integrály, ktoré sú lokálne kali-
bračne invariantné a ako sa z nich odvodia pohybové rovnice (sú zovšeobec-
neńım Maxwellových rovńıc z elektrodynamiky, ktorá je kalibračnou teóriou
s grupou U(1)). Zoznamujeme sa s Nötherovej vetou, ktorá dáva do súvisu
symetrie účinkových integrálov so zákonmi zachovania. Táto veta vrhá nové
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svetlo aj na staršie výsledky v tomto smere, spojenie zákonov zachovania
s tenzorom energie-hybnosti v teórii pol’a a s exaktnými Cartanovými syme-
triami v hamiltonovskej mechanike.

Zhrnutie 22. kapitoly

Špeciálne ortogonálne grupy SO(p, q) majú univerzálne dvojlistové nakrý-
vajúce grupy, ktoré sa volajú spinové grupy a označujú sa Spin (p, , q). Celá ich
teória sa systematicky buduje pomocou Cliffordových algebier. Konštruuje sa
izomorfizmus týchto algebier na vhodné maticové algebry (ich verná reprezen-
tácia) a pomocou neho sa zavádza pojem spinora ako vektora reprezentačného
priestoru Cliffordovej algebry. Spinové grupy sú podmnožiny v Cliffordovej
algebre a preto ohraničenie spomı́nanej vernej reprezentácie algebry je aj
reprezentáciou spinovej grupy. Tým na spinoroch pôsob́ı aj spinová grupa
(a dvojznačne aj ortogonálna grupa). Táto jej reprezentácia sa volá spinorová.
Pre niektoré špeciálne hodnoty (p, q) existujú špeciálne typy spinorov (wey-
lovské, majoranovské, ...). Spinová štruktúra na M je hlavná fibrácia nad
M (spinová fibrácia), ktorá dvojlistovo nakrýva fibráciu ortonormovaných
repérov a vo vláknach ktorej pôsob́ı spinová grupa. Spinová štruktúra sa
nedá zaviest’ na každej variete. Ekvivariantné funkcie typu ρ na totálnom
priestore spinovej fibrácie (a tiež ich stiahnutia na bázu pomocou rezu), kde
ρ je spinorová reprezentácia, sa volajú spinorové polia na M . Pol’u 1-foriem
typu ρ zodpovedá Raritovo-Schwingerovo pole. Na spinorové polia pôsob́ı
špeciálny operátor prvého rádu, ktorý sa volá Diracov operátor. Vznikol vo
fyzike v kvantovej teórii relativistického elektrónu - vyskytuje sa v Diracovej
rovnici.
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- Lieova 87, 96, 235, 700 Casimirove operátory 280, 327
- pozorovatel’ných 348 Cauchyho veta 201
A-modul 701 Cauchyho-Riemannove vzt’ahy 101, 200
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ansatz 99 Cliffordova algebra 135, 658, 659
antikomutujúce premenné 124 -ov súčin 659
antisamoduálna forma 200 cyklické súradnice 531
antisymetrická čast’ 108 cyklus 212
atlas 22 Ck-atlas 22
automorfizmus 217, 349, 699, 700 Ck-pŕıbuzná mapa 22
- grupy 274 Ck-varieta 22
- Lieovej algebry 275 Ck -̌struktúra 22
autonómna sústava 45
autoparalelná veličina 623, 627 Č
-é pole 390, 394, 398, 565 časový vývoj stavov 350
azimut 75, 443 čistý stav 348, 376
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D Einsteinova-Cartanova teória 483
D’Alambertov operátor 453 Einsteinove rovnice 479
Darbouxova veta 352 -ove rovnice vo vákuu 482
deformačná retrakcia 215 -ove 1-formy 485
degenerovaný rovnobežnosten 106 -ov tenzor 479
deRhamov komplex 213 ekvivalentné fibrácie 505, 574
derivácia algebry funkcíı 42 -né funkcie 587
- Cartan. alg. stupňa +1 144, 588 -né reprezentácie 268
- tenzorovej algebry 85 ekvivariantný izomorfizmus 268
- asociat́ıvnej algebry 699 -ný difeomorfizmus 574
- Lieovej algebry 302, 700 -né zobr. 267, 308, 311, 367, 567, 577
- stupňa k 703 endomorfizmus 246
determinant matice 122 energia 524
determinant zobrazenia 129 energia pol’a 471
difeomorfizmus 27, 218 entropia 559
difeomorfné variety 27 euklidovská grupa 531
diferenciálne formy 105 -ské transformácie 97, 330
- typu ρ 336 -ský priestor 97
diferenciál (zobrazenia) 68 -ský p-simplex 161
diferenciál (v komplexe) 212 Eulerova-Lagrangeova 1-forma 417, 466
Diracov operátor 657, 686 Eulerovo-Lagrangeovo pole 524
-ova reprezentácia 674 Eulerov-Lagrangeov výraz 525
-ova rovnica 657 Eulerove uhly 256
-ovské spinory 674 exaktná forma 203
Dirichletova úloha 189, 190 -ná symplektická forma 345
diskrétna topológia 18 -né Cartanove symetrie 362, 529
divergencia vekt. pol’a 178, 193 -né prvky 212

d́lžka krivky 64, 65, 94 exponenciálna grupa 255
dotyková fibrácia 503, 506 -ne zobrazenie 241, 413
-ový funktor 508, 513
-ový priestor 38 F
-ový vektor 44 faktoralgebra 116, 699, 700
druhá veta termodynamická 558 faktorpriestor 214
dráha (cesta) 65 Faradayov indukčný zákon 458
duálna báza 47 fázový priestor 348, 354, 531
-ny priestor 47 - objem 359
dvojhladinová sústava 376 - tok 350
dvojlistové nakrytie 315, 669 fibrovaná varieta 504
dvojznačná reprezentácia 324 fibrované zobrazenie 505, 603
dv́ıhanie indexov 55 fibrácia 504

-cia hlavná 572
E -cia repérov 546
efekt́ıvna akcia 333 -cia afinných repérov 648
- potenciálna energia 539 -cia ortonormovaných repérov 600
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f́ıber 504 -na kalibračná transformácia 612, 616
F(M)-linearita 59 gradient 60, 65, 193
formy (diferenciálne) 105 graduovaná algebra 52, 114, 703
forma konexie 424, 549 -ná Lieova algebra 141, 703
- krivosti 425, 590 -ne komutat́ıvna 109, 140
- objemu 125, 149, 219, 359 -ný komutátor 141
- typu ρ 336 graf zobrazenia 28
- typu Ad 584 gravit́ıno 685
- s hodnotami vo V 153 Greenove identity 189
- torzie 425 -va veta 178
1-forma konexie 583
- práce 558 H
- tepla 558 hamiltonián 344, 376
- prúdu 456 Hamiltonove rovnice 46
2-formy torzie 650 hamiltonovská sústava 354, 524
2-forma elmag. pol’a 455 -ské pole 343, 346, 524
3-formy prúdu 456 -ský tok 350
Foucaultovo kyvadlo 405 harmonická funkcia 189, 200, 201, 492
-ov uhol 424, 437 -ké zobrazenie 493
Fourierov rozklad 337 Hausdorffov priestor 19
f -pŕıbuzné 69, 80 Heisenbergov obraz 350
Frobeniovo kritérium 554 hermitovský skalárny súčin 221
fundamentálna reprezentácia 323 Hilbertov účinok 480
-ne pole pôsobenia Rg 327 hladká distribúcia 551, 552
funkcia 36 -ká štruktúra 23
funkcionál d́lžky 417 -ká varieta 22

-ká väzba 30
G -ké pôsobenie 305
Gaussov integrál 124 -ké vektorové pole 42
γ-matice 672, 676 -ké tenzorové pole 59
-ova krivost’ 430 hlavný automorfizmus 115
-ova veta 180, 195 -ná G-fibrácia 547, 572
-ov zákon 459 -ný homogénny priestor 311, 547, 573
generátor algebry 115 hmotnostný člen 464, 465
- modulu 43 Hodgeov operátor 130
- reprezentácie 260 holomorfná funkcia 101, 200, 201
- pôsobenia (akcie) 327 holonomická grupa 424
geodetické okolie 412 holonómia 424
-á deviácia 440 homeomorfizmus 18
geodetika 388, 534 homogénna forma 114
G-invariantný lagranžián 530 -e súradnice 24
globalizovat’ 61 -y člen 51
globálna trivializácia 505, 574 -y priestor 306, 310, 373, 573
-ne hamiltonovská 366, 373, 530 -y tenzor 99
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homológia 212 -é pole 84
homotópia 206, 595 -ý lagranžián 530
homotopická nule 595 -ý podpriestor 266
-é cesty 595 -ý skalárny súčin 263
-é zobrazenia 206 -ý tenzor 295
-ý operátor 206, 211 inverzia 477
homotétia 95 ireducibilná reprezentácia 266
Hopfova fibrácia 576, 578, 581, 678 izometria 21, 55, 94, 493, 644
-vo zobrazenie 27 izotrópny 99
horizontálna distribúcia 561
-a forma 380, 588 J
-a forma typu ρ 685 Jacobiho identita 349
-a krivka 565 - rovnica 440
-y podpriestor 561, 581 jednoducho súvislá 315
-y rez 597 jednoparametrická podgrupa 238
-y vektor 561, 583 -á grupa transformácíı 80
-y zdvih krivky 565, 586
-y zdvih vektora 561, 585 K
hranica 212 kalibračná grupa 608
hraničný operátor 161, 164, 213 -á podmienka 207
hustota lagranžiánu 462 -á transformácia 461, 608, 616, 618
hustota 173 -e invariantný 463, 630
- skalárna 125, 151, 569 -é pole 608
- tenzorová 569 -ý potenciál 612, 614, 622
hybnost’ pol’a 471 kanonická hybnost’ 531
hyperplocha 31 -á plochá konexia 597

-á projekcia 27, 309, 500, 504
CH -á 1-forma na G 237, 255, 276
charakteristický podpriestor 137 -á 1-forma na LM 649
chirálne spinory 674, 675 -á 1-forma na T ∗M 518
Christoffelove symboly 393 -é spárenie 62, 697
- 1. druhu 402 -é súradnice 353, 501

-á symplektická forma na T ∗M 518
I -é transformácie 354
ideál 288, 347, 363, 382, 699, 700 -é vloženie 171
indexová gymnastika 55 kartézsky priestor 19
indukovaný metrický tenzor 73 -y súčin variet 24
integrálna krivka 44 Kählerova-Atiyahova algebra 660
-e invarianty Cartanove 358 Kählerove fermióny 688
integrál prvého druhu 174 Killingova-Cartanova forma 278
- druhého druhu 174 Killingove rovnice 95, 415
intenzita kalibr. pol’a 613, 614, 631 -ove vektory 96, 329, 470, 534, 536
interakčný člen 462, 466 kinetická energia 64, 533
invariantná forma 357 -ý člen 462, 464, 465
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kladná definitnost’ 53 -é Killingove vektory 100, 475
Kleinova-Gordonova rovnica 464 -é Killingove rovnice 100
Kleinova fl’aša 33 kongruencia 46
koadjungované pôsobenie 367, 370 konjugácia 274, 305
-á reprezentácia 284 konjugovaná podgrupa 307
kocyklus 212, 368 kontaktná forma 542
kodiferenciál 185, 434, 629 -á štruktúra 542
kodotyková fibrácia 503, 506 kontragradientná reprezentácia 262
-ý priestor 58 kontrakcia 52, 292
koeficienty konexie 392 kontúr 170
- anholonómie 209, 436, 687 korepérne pole 92
koexaktnost’ 210 kotangenciálny priestor 58
kohomologická grupa 214 kouzavretá forma 200, 201, 210
-á trieda 213 kovariantná derivácia 391, 612
-é kocykly 212 -á divergencia 434
kohomológia 212, 214 -ý gradient 396
-ie Lieovej algebry 300 -ý funktor 508
kohranica 212 -ý kodiferenciál 632
komomentové zobrazenie 370 -ý tenzor 69
kompaktná Lieova grupa 246, 266 -e konštantné pole 397, 444
-á Lieova algebra 283 kovektor 47, 58
-á varieta 185 krivka 36
kompatibilné štruktúry 224 krivočiare súradnice 23
kompenzačné pole 613 krivost’ skalárna 422
komplexná Lieova grupa 226 - Gaussova 430
komplexná varieta 25 k-rozmerná hladká distribúcia 551
- reprezentácia 269 kvadratický Casimirov operátor 280
komplex 212, 300 kvaternióny 698
komponenty pol’a 41, 42 kvázilineárna sústava 45
-ty tenzora 50
-ta súvislosti jednotky 254 L
-tné formy 153 Lagrangeova veta 310
-tné funkcie 332 -e rovnice 410, 417, 522
-tné polia 335 Lamého koeficienty 196
kompozičný zákon 225 Laplaceova rovnica 189
komutat́ıvna grupa 270 Laplaceov-Beltramiho operátor 186, 434
komutátor 87, 700 Laplaceov-deRhamov operátor 185
konexia na hlavnej G-fibrácii 581 látkové pole 614, 633
konečne generovaný 43 Legendreovo zobrazenie 527
konfiguračný priestor 75, 529 lema o vyrovnańı 81
konformne invariantná 133, 479 Levi-Civitova konexia 402
-á transformácia 95, 478, 644 Levi-Civitov symbol 120
-á trieda 495 Lieova algebra 87, 236, 700
-é preškálovanie metriky 132, 475 -a derivácia 78, 84
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-a grupa 224, 226 Majoranova reprezentácia 672
-a podgrupa 226 malá grupa 307
-a zátvorka 87 mapa 22
-a superalgebra 141, 703 matica hustoty 376
-sky konštantné 84 maticová algebra 698
-ský prenos 83 - grupa 226
lift (zdvih) 511 Maurerova-Cartanova 1-forma 237
lineárna konexia 391 Maurerove-Cartanove vzt’ahy 237
-e formy 47 maximálny Ck-atlas 22
-e pole 601 Maxwellov posuvný prúd 459
-y priestor 694 metrická forma objemu 126
-y funkcionál 39 - konexia 400
-y operátor 42, 83 -ý tenzor 53, 599
Liouvillova forma 359 minimálna interakcia (väzba) 614, 630
-a rovnica 376 Minkowského priestor 64, 448
-a veta 359 množina úrovne 31
-o pole 533 modul 43
lokálna trivializácia 504 modulo 2 117
-a kal. transformácia 610, 612, 616 momentové zobrazenie 370, 530
-e izometrické variety 99 moment hybnosti pol’a 471
-e kalibračne invariantný 630 morfizmus hlavných fibrácíı 603
-e Lorentzove transformácie 488 - vektorových fibrácíı 508
-e súradnice 22 - Cartanových algebier 140, 588
-e súčinová štruktúra 504 - tenzorových algebier 72
-e triviálne 505 multilineárne 49
-y homeomorfizmus 315 mydlové bubliny 497
-y rez 506, 549 Möbiov list (pásik) 148
-y tok 78 -ova transformácia 312
Lorentzova grupa 218, 269, 319
-a (štvor)sila 467 N
-ská varieta 476 nabité častice 614
loxodróma 75, 443 náboj 271, 636

nadplocha 31
L’ nakrytie 315
l’avoinvariantné tenzorové pole 228 nakrývajúci homomorfizmus 315
-ý metrický tenzor 281 neabelovská kalibračná grupa 633
l’avá akcia (pôsobenie) 304, 701 nebodkovaný spinor 323
-á regulárna reprezentácia 326 nedegenerovaná 2-forma 345
-á translácia 227, 329 -ý (= regulárny)lagranžián 523
-á zvyšková trieda 309 neholonómne repérne pole 92
-ý G-priestor 304 nehomogénna forma 114

nelineárne pole 489, 601
M - realizácie 304
magnetický náboj (monopól) 458 -y sigma model 489
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neorientovatel’ná varieta 149 - objem 106
nepárne parametre 141 -el’ná varieta 31, 149, 229, 564, 650
nepárny voči chiralite 692 orientácia v L 119
nesingulárny lagranžián 523 ortogonálne matice 218
nesúradnicové repérne pole 92 -e súradnice 63
Neumannova okr. podmienka 190 -a grupa 219
Newtonov-Leibnizov vzorec 177 -a transformácia 668
Nijenhuisov tenzor 525 -y doplnok 267
nilpotentný 161, 164, 212, 300 ortonormovaná báza 54
n-listové nakrytie 315 otvorená množina 18
normálna podgrupa 313 -é pokrytie 22
-ne súradnice 242, 414
-ová derivácia 190 P
Nötherovej veta 640 paralelizovatel’ná 217, 229, 564, 650
-ské náboje 640 paralelný prenos 395, 398
-ské prúdy 640 -e prenášaná veličina typu ρ 626
nulové body 79 -e prenášaný zovšeob. repér 587
-ý rez 574 parametrické vyjadrenie 31

parametrizácia 36
O Pauliho matice 251, 296, 676
objem oblasti 172, 169, 496 p-delta 120
- podvariety 174 per partes 178
- rovnobežnostena 105 pevné body 79
obojstranne invariantný integrál 246 pfaffián 123
- -ý metrický tenzor 281 Pfaffove formy 558
- -á forma objemu 283 plochá konexia 444, 492
obojstranný ideál 116 podalgebra 699, 700
obrátenie Poincarého lemy 207 -fibrácia 599
odvodená reprezentácia 262 -reprezentácia 266
ohraničenie fibrácie 599, 604 -varieta 28
- na podgrupu 259 podmienka integrovatel’nosti 556
- reprezentácie 266 - nestlačitel’nosti 180
- štruktúrnej grupy 599 Poincarého lema 203
- formy 171 - transformácie 97
ohraničujúca 1-forma 552 Poissonov tenzor 343
Ω-divergencia 360 -a rovnica 189, 190
operátor dualizácie 130 -e zátvorky 343
- krivosti 419 -ské pôsobenie 370, 373, 378, 530
- kvadrátu momentu hybnosti 281 -ská varieta 343
- paralelného prenosu 395, 398 polarizačný vektor 376
- spinu 333 polárny rozklad 321
orbita 306 pole posunut́ı 102
orbitálny moment hybnosti 329 - rovnice 2. rádu 522
orientovaný atlas 149 - rýchlost́ı 103, 180
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- typu ρ 569 projektovatel’né pole 69, 244
polopriamy súčin grúp 287 projekt́ıvny priestor 24
- súčet Lieových algebier 288 prvá veta termodynamická 558
poloprosté Lieove algebry 280 pseudometrický tenzor 53
polylineárne zobrazenie 49 -euklidovský priestor 97
póly funkcie 202 -ortogonálna grupa 218
pôsob́ı sprava, zl’ava 304 -ortogonálna matica 218
pôsobenie grupy 304 -sféra 74
potenciál 203 -riemannovská varieta 62
-na energia 65, 533, 535 pull-back 67, 68, 70, 71
-ové silové pole 65 push-forward 68, 71
pozorovatel’ná 348 p-forma 107
práca sily 208 p-forma na variete 139
pravá translácia 227, 329 p-ret’azec 161
-á akcia (pôsobenie) 126, 304 p-ret’azec na variete 163
-á regulárna reprezentácia 326
-ý G-priestor 304 R
pravoinv. forma objemu 265 rád (konečnej) grupy 228

pred́lženie fibrácie 604, 678 rang bivektora 345
preurčené rovnice 95 - formy 136
priamy súčet l. pr. 51, 222, 562, 694 - lineárneho zobrazenia 57
- asociat́ıvnych algebier 699 - 2-formy 345
- Lieových algebier 285, 701 - tenzora 50
- reprezentácíı 289 Raritovo-Schwingerovo pole 685
priamy súčin grúp 284 reducibilná reprezentácia 266
- reprezentácíı 289 redukcia fibrácie 604
pridružená fibrácia 627 - (symplektická) grupou G 381
- reprezentácia = Ad 275 -ovaná hamil. sústava 382
priestorová oblast’ 454 -ovaná symplektická varieta 381
-á forma 450 -ované pole 381
-á Stokesova veta 454 -ovaný fázový priestor 381
-á vonkaǰsia derivácia 451 regulárny lagranžián 523
-ý Hodgeov operátor 452 relat́ıvna invariantnost’ 357
-ý kodiferenciál 453 -a rýchlost’ 439
-ý Laplaceov-deRhamov oper. 453 -e zrýchlenie 439
priestoročas 64, 448, 479 reparametrizácia krivky 45, 65
priestorupodobná nadplocha 75 -začne invariantný 65, 497
prinćıp ekvivalencie 476 reprezentácia grupy 259
prirodzený lagranžián 533 - Lieovej algebry 260
-ý parameter 411 - Cliffordovej algebry 672, 674
-ý zdvih krivky 511, 543 repérne pole 92
- voči difeomorf. 187, 468, 644 rez 555
Procova rovnica 465 reźıduum 202
projektor 108, 272 Ricciho formy 479
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- identita 433, 594, 620 -á konexia 435, 680, 687
- koeficienty rotácie 435, 687 -á štruktúra 678
- tenzor 422 splietajúci operátor 268, 292
Riemannova konexia 402 spojité zobrazenie 18
-ov tenzor (krivosti) 421 spúšt’anie indexov 55
-ovská geometria 62 stabilizátor 307
-ovská varieta 62 stabilný bod 306
ρ-invariantný skalárny súčin 263 stacionárna podgrupa 307
R-linearita 59 -e prúdenie (tečenie) 46, 180
rotačné matice (Wignerove) 338 stavová veličina 203, 558
rotácia (vektorového pol’a) 193 stereografická projekcia 23
rovnica kontinuity 457 stiahnutel’ná varieta 205
-e paral. prenosu 395, 398, 623 627 Stokesova veta 171, 195, 210
rovnomerný priamočiary pohyb 387 stredná hodnota 175
rozklad jednotky 272 stredovanie cez grupu 265
- grupy 309 stupeň 114
rozložitel’ná forma 136 superalgebra 703
rozmer reprezentácie 259 -komutátor 141, 703
rozš́ırenie fibrácie 604 -matematika 117
-ný fázový priestor 540 súradnicová báza 41, 42, 60, 91

-á krivka 38
S -é vyjadrenie 26, 36,
samoduálna forma 200 súvislý priestor 253
samointerakcia 633 súčinová fibrácia 504, 555
samozdružený operátor 186 -á hlavná fibrácia 573
sférické funkcie 338 svetočiara 466, 498
Schrödingerov obraz 350 -plocha 498
Schurova lema 269, 270 Sylvestrova veta 53
siločiary 44 symetrizácia 111
singulárny ret’azec 213 symetrická konexia 401
skalárna elektrodynamika 610 symplektická forma 345
-a hustota 125, 151, 569 -á grupa 219
-a krivost’ 422 -á redukcia 536
-e pole 464, 489, 492 -á varieta 345, 524
-y súčin 53, 133, 184 -é pole 346
-y potenciál 461 -é zobrazenie 350
smerová derivácia 39 -ý ortogonálny doplnok 378
soldering 572 -é pôsobenie (akcia) 365
spinorové indexy 684 symplektomorfizmus 349, 350
-á reprezentácia 319, 323, 672
-é pole 489 Š
-é pole na báze 679 štandardná orientácia 147
spinory 319, 672 -á topológia v R

n 20
spinová fibrácia 604, 677 -é horizontálne polia 564
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-á hladká štruktúra v R
n 23 triviálna fibrácia 505, 574

-ý n-simplex v R
n 162 - topológia 18

-ý (plochý) metr. tenzor v R
n 62 typické vlákno 504

štrukt. konštanty 236, 690, 699, 701 typu Ad 584
štvorpotenciál 460
štvorsila 467 U
štvorzrýchlenie 467 unimodulárne repéry 605

unitárna reprezentácia 264
T - matica 221
tabul’ka násobenia 228 univerzálne nakrytie 669
tangenciálny priestor 38 -a nakrývajúca grupa 315, 669
teleparalelizmus 444 uzavretá forma 203
tenzor deformácie 102 -á plocha 171
- energie hybnosti 469, 479, 643 -ý prvok 212
- kontrakcie 62 U(1)-náboj 271
- krivosti 421
- napätia 103 Ú
- rýchlosti deformácie 103 úplne reducibilná 267
- torzie 401 úplný zdvih 514, 516, 529, 530, 533
tenzorová algebra 51 -ý paralelizmus 444, 596
-á fibrácia 628 účinok 409
-á hustota 569
-á operácia 52 V
-é pole 58, 569 variácia potenciálu 461
-é pole typu ρ 336 - počiatočných podmienok 438
-ý súčin tenzorov 50 -čná derivácia 462
-ý súčin priestorov 157, 695 varieta repérov 545
-ý súčin mat́ıc 696 - hladká 22
-ý súčin algebier 699 väzby 75
teória kohomológíı 212 vektorová fibrácia 506, 574, 628
- momentu hybnosti 280 -é pole 41, 465
- strún 498 -ý súčin 195
termodynamika 557 -ý potenciál 461
tetrádny formalizmus 92, 435 vektor spinu 376
-e pole 92, 434, 484, 687 veličina typu ρ 569, 587, 626
-ový postulát 435 vertikálna akcia 379, 547
tok 46 -y podpriestor 509, 548, 560, 581
topologický priestor 18 -e pole 379
topológia 18 -a distribúcia 560
torus 27, 33 -y endomorfizmus 518
torzia 401, 441, 650 -y zdvih kovektora 514
totálny priestor 504 -y zdvih vektora 512
tranz. pôsob. (akcia) 306, 547, 573 -y zdvih tenzora 513
triedy Ck 20 -y vektor 510
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veta o homomorfizme 314
- ”o vnoreńı” 29 W
viacznačná reprezentácia 324 Weylova báza 231
vielbeinové pole 92, 435, 497, 687 -e spinory 675
v involúcii 363 Wignerove rotačné funkcie 338
vlastná funkcia 339
-ná hodnota 339 Z
-ná Lorentzova grupa 669 zachovávajúca sa veličina 363, 470
-ná ortochrónna Lor. grupa 319, 576 zachováva orientáciu 168
-ný čas 466 zámena súradńıc 22
vlákno v bode x 504 združený 136
vlnový operátor 453 zdvih 511
vloženie 28, 73 - pôsobenia grupy 530
vnorenie 28, 73 - zobrazenia 129, 507
vnútorná derivácia 700 Z2-graduovanost’ 676
-ý súčin 118, 346 zlomkovo-lineárna transf. 312
-ý automorfizmus 274, 701 zložky 41, 42, 50
vol’ná akcia (pôsob.) 333, 547, 573 zmiešaný stav 348, 376
vonkaǰsia algebra 114, 124 zobrazenie 21
-a normála 170 - fibrácíı 505
-a kovariantná derivácia 588 zovšeobecnená sila 410
-́ı súčin 109, 154 -é súradnice 75
vytvárajúca funkcia 355 zrýchlenie 386, 467
výkon elektrického pol’a 467 zúženie 52
významné repéry 605


