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2.6. Metrický tenzor na variete 63
2.7. Zhrnutie 2. kapitoly 68

3. ZOBRAZENIA TENZOROV INDUKOVANÉ
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5. VONKAJŠIA ALGEBRA 108
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13.3. Nakrývajúci homomorfizmus, nakrytia SU(2) → SO(3)

a SL(2,C) → L↑
+ 324
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16.4. Tenzor energie-hybnosti, časopriestorové symetrie
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17. DIFERENCIÁLNA GEOMETRIA NA TM A T ∗M 500
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18.3. Súvis Lagrangeovej a Hamiltonovej mechaniky,

Legendreovo zobrazenie 538
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21.4. Pridružená (asociovaná) fibrácia P ×ρ V

k hlavnej fibrácii π : P →M 642
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PREDHOVOR K 2. VYDANIU

Prvé vydanie tejto knihy z roku 2004 vyvolalo medzi čitatel’mi väčš́ı
záujem, ako som očakával, a to nielen na Slovensku, ale aj v Čechách. To
ma ako autora vel’mi potešilo. Je však už dlhšie rozobraté, a tak po dohode
s vydavatel’om vychádza toto druhé, opravené a (trochu) rozš́ırené vydanie.

Medzitým vyšla v roku 2006 kniha v nakladatel’stve Cambridge University
Press aj v angličtine. Práca na jej preklade ma prinútila s odstupom času
opät’ prejst’ celým textom, pričom som v nej vylepšil mnoho detailov, ale aj
objavil dost’ vel’a drobných a zopár väčš́ıch chýb a nepresnost́ı. Mnohé d’aľsie
chyby v nej našli jej pozorńı čitatelia. Priebežne aktualizovaný zoznam chýb
v prvom vydańı sa dá nájst’ na mojej stránke. Rád by som tu vyjadril svoju
vel’kú vd’ačnost’ všetkým tým, ktoŕı si nájdené chyby nenechali pre seba a dali
mi o nich vediet’. Pomohli mi jednak vyvarovat’ sa ich v anglickom vydańı,
ale tiež, čo je dôležité pre knihu, ktorú drž́ıte v rukách, aj v tomto druhom
slovenskom vydańı.

Snažil som sa využit’ pŕıležitost’, ktorú mi poskytlo druhé vydanie a vy-
konat’ okrem opráv všetkých chýb, o ktorých som vedel, aj vel’a drobných
zmien. Nemá význam podrobne rozvádzat’, v čom presne spoč́ıvajú. Za zmien-
ku v tomto smere ale stoj́ı pridanie registra označeńı (tri strany na konci
knihy) a zoznamov najdôležiteǰśıch vzorcov na konci každej kapitoly (za ich
zhrnutiami). Odporúčam preč́ıtat’ si vždy pred štúdiom danej kapitoly jej
zhrnutie, vrátane spomenutých najdôležiteǰśıch vzorcov a zopakovat’ to ešte
raz po jej preč́ıtańı.

Viacero d’aľśıch informácíı, ktoré môžu byt’ v súvislosti s knihou užitočné,
možno nájst’ na mojej stránke

http://sophia.dtp.fmph.uniba.sk/˜fecko

V Bratislave, júl 2008
Marián Fecko
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PREDHOVOR K 1. VYDANIU

Táto kniha je úvodným textom o istej častimatematiky, o modernej di-
ferenciálnej geometrii a o Lieových grupách ako jej integrálnej súčasti. Pritom
je ṕısaná hlavne z pohl’adu a pre potreby fyzikov. Orientácia na fyziku sa
prejavuje vo výbere materiálu, v spôsobe jeho podania (miere ”rigoróznosti”,
nepouž́ıvańı formy ”defińıcia-veta-dôkaz”), aj v náplni úloh (sú často spojené
s fyzikou).

Fyzikmi sa však potenciálna čitatel’ská obec knihy nevyčerpáva. Ked’̌ze
je o matematike a ked’̌ze fyzika odjakživa bola a stále je pre matematiku
výdatným zdrojom inšpirácie, bude užitočná aj pre matematikov. A vše-
obecneǰsie pre kohokol’vek, kto má potrebné (nevel’ké) predbežné vedomosti
(skonkretizované nižšie) a chcel by sa pŕıstupným spôsobom zoznámit’
s touto zauj́ımavou, dôležitou a živou discipĺınou, ktorá čoraz viac preniká
do rôznorodých oblast́ı modernej teoretickej fyziky, matematiky a aj ich apli-
kácíı.

S akýmiminimálnymi vedomost’amimôže prikročit’ potenciálny čitatel’
k štúdiu tejto knihy? Nevyžaduje sa toho vel’a. Stačia bežné vedomosti z kur-
zov matematickej analýzy (funkcíı viacerých reálnych premenných) a lineár-
nej algebry, ktoré v prvom alebo druhom ročńıku vysokoškolského štúdia
absolvujú napŕıklad všetci fyzici a matematici, ale aj väčšina budúcich in-
žinierov. Čitatel’ by teda mal rozumiet’ pojmom parciálna derivácia, Tay-
lorov rozvoj a viacnásobný Riemannov integrál, vediet’ násobit’ matice, mal by
chápat’ pojem podpriestor n-rozmerného lineárneho priestoru a podobne. Mal
by tiež mat’ istú prax v zostavovańı a riešeńı jednoduchých sústav obyčajných
diferenciálnych rovńıc a rozumiet’, aká myšlienka sa nimi realizuje.(Doladenie
formy sa dá robit’ aj ”za pochodu”, okrem iného pozorným č́ıtańım Dodatkov
na konci knihy.)

Typicky teda pôjde o vysokoškoláka/čku spomı́naných odborov, spravidla
od druhého ročńıka vyššie, ale nezriedka majú potrebné vedomosti už aj
mladš́ı. Kniha je však úmyselne ṕısaná tak, aby ju mohol bez t’ažkost́ı štu-
dovat’ aj samouk - ktokol’vek, koho lákajú tenzorové a spinorové polia,
či fibrované variety, chce sa naučit’ derivovat’ a integrovat’ diferen-
ciálne formy, vidiet’, ako súvisia so symetriami Lieove grupy a alge-
bry a ich reprezentácie, čo je krivost’ a torzia, ako sa využ́ıva symplek-
tická geometria v lagranžovskej a hamiltonovskej mechanike, v akom
zmysle hovoria konexie a kalibračné polia o tom istom, ako vznikajú
nötherovské prúdy a ako súvisia so zákonmi zachovania atd’.

Zo zamerania knihy vyplýva, že je výhodou, ak aspoň zhruba poznáme aj
fyzikálny kontext, ktorého sa týkajú aplikácie. Avšak aj bez fyzikálnych vedo-
most́ı možno mat’ (z hl’adiska samotnej geometrie) z knihy prospech. Ak sme
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napŕıklad nikdy nevideli Maxwellove rovnice a netuš́ıme, aká je ich úloha
vo fyzike, nebudeme śıce chápat’, prečo sa práve im venuje taká pozornost’,
ale napriek tomu budeme rozumiet’, čo sa tu s nimi z technického hl’adiska
rob́ı. Uvid́ıme na nich, ako sa dajú tieto parciálne diferenciálne rovnice
vyjadrit’ v jazyku diferenciálnych foriem, ako pre ne vyzerá účinok, ako sa
z neho pomocou tenzora energie-hybnosti źıskavajú zákony zachovania
a podobne. A ak sa nám to bude zdat’ zauj́ımavé, môžeme si o nich preč́ıtat’
niečo ”tradičné” aspoň dodatočne.

Podobne, ak nevieme nič o všeobecnej teórii relativity, nebudeme śıce
chápat’ odkial’ sa nabrala predstava o ”zakrivenom” priestoročase a ome-
trickom tenzore v ňom, dozvieme sa však, čo to je priestoročas z geome-
trického hl’adiska a čo sa v ňom dá štandardne robit’. Neprenikneme śıce
do fyzikálnej podstaty Einsteinových rovńıc pre gravitačné pole, avšak
spoznáme ich formálnu štruktúru a jednoduché a účinné technické nástroje
na prácu s nimi. Zvládnutie tejto a množstva inej geometrickej techniky nám
potom výrazne ul’ahč́ı pochopenie fyzikálnej stránky veci, ak si o tejto teórii
preč́ıtame, alebo vypočujeme neskôr niečo orientované fyzikálne.

Kl’účovou požiadavkou na budúceho čitatel’a je vel’ký záujem porozu-
miet’ veciam, o ktorých sa tu ṕı̌se a chut’ zvládnut’ materiál nielen platonicky
(pre potreby nonšalantnej konverzácie na spoločenských večierkoch), ale aj
na pracovnej úrovni. No a samozrejme aj prijatie prirodzeného dôsledku,
že tento ciel’ sa nedá dosiahnut’ samotným paśıvnym č́ıtańım, ale že je nevy-
hnutná značná samostatná práca (z čoho by mal mat’ ideálny budúci čitatel’
radost’) a jej zodpovedajúca časová invest́ıcia.

Látka sa vyjasňuje pomocou množstva jednoduchých úloh (je ich
spolu vyše tiśıc), v ktorých si čitatel’ ”vlastnými rukami” rozoberá detaily
”teórie”, ale aj spústu konkrétnych pŕıkladov. Začiatok úlohy spoznáme

podl’a rámčeka, v ktorom je jej č́ıslo (napŕıklad 14.4.3 označuje tretiu úlohu
vo štvrtom paragrafe štrnástej kapitoly), koniec podl’a symbolu �. Väčšina
úloh (asi devät’sto) má pripojený dostatočne podrobný návod a niektoré,
zhruba pät’desiat, aj úplné riešenie. Symbol • znamená začiatok ”textu”,
ktorý nie je úlohou (”teória” alebo komentár k úlohám). Ak je pri č́ısle
paragrafu hviezdička (napŕıklad 12.6.∗), znamená to, že pri prvom č́ıtańı ho
môžeme vynechat’ (ide do väčš́ıch detailov, alebo sa zaoberá pŕılǐs špeciálnymi
otázkami). Hviezdičkou sú označené aj niektoré náročneǰsie úlohy.

Táto kniha obsahuje dost’ vel’a materiálu a bude asi užitočné spomenút’,
ako s ňou optimálne pracovat’. Dá sa č́ıtat’ rôznymi spôsobmi, ktoré závisia
od toho, čo od nej očakávame a kol’ko úsilia sme ochotńı na jej zvládnutie
venovat’.

Základným a najviac odporúčaným spôsobom je postupovat’ pekne od
začiatku do konca a riešit’ pritom (skoro) všetky úlohy. Toto je postup,
ktorým sa z textu vyt’až́ı maximum. Tému vid́ıme v dostatočnej š́ırke, fakty
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vńımame v súvislostiach a mnohorakých aplikáciách. Vyžaduje si to však čas
a trpezlivost’.

Kto jedno alebo druhé nemá, môže postupovat’ aj ináč. Pôjde śıce opät’ od
začiatku do konca, ale podrobne riešit’ bude len úlohy, ktoré ho nieč́ım zaujmú
alebo potrebuje ich výsledok. Pri tomto postupe sa môže stat’, že niektorú
úlohu nebude vediet’ zvládnut’; chýba mu na to nejaké podstatné ohnivko (fakt
alebo zručnost’) z preskočeného materiálu. Ak sa dá zistit’ ktoré ohnivko to je
(v návode sa vel’mi často odvolávame na č́ısla potrebných predchádzajúcich
úloh), nič hrozné sa nestalo, jednoducho sa treba vrátit’ a chýbajúci kúsok
(úlohu) si dodatočne doplnit’.

Ešte rýchleǰśı bude postup čitatel’a, ktorý sa chce od začiatku obmedzit’
na nejakú konkrétnu oblast’ a o ostatné sa zauj́ıma iba do tej miery, aká
je nevyhnutná pre ”jeho” tému. Na pomoc takémuto čitatel’ovi uvádzame
(približnú) schému závislosti kapitol:
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q̂

-
1
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1
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>

-

*
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(Táto schéma nezodpovedá skutočnosti úplne, viacero paragrafov, krátkych
čast́ı či dokonca jednotlivých úloh by si v skutočnosti vyžadovalo dokreslit’
do nej d’aľsie š́ıpky, č́ım by sa ale stala prakticky bezcennou.)

Z takýchto konkrétnych oblast́ı by sa dali spomenút’ povedzme tieto:

1. geometria potrebná pre základy všeobecnej teórie relativity (kova-
riantné derivácie, tenzor krivosti, geodetiky, apod.)

Ide o ĺıniu 1 - 2 - 3 - 4 - 15 (podobný aparát sa źıde aj do pokročilej
mechaniky kontinua). Ak chceme zvládnut’ aj prácu s formami (napŕıklad
pochopit’ paragraf 15.6. o výpočte Riemannovho tenzora pomocou Carta-
nových štruktúrnych rovńıc alebo paragraf 16.5. o Einsteinových rovniciach
a ich odvodeńı z účinkového integrálu), potrebujeme pridat’ ešte kapitoly 5 -
6 - 7.

2. elementárna teória Lieových grúp a ich reprezentácíı (bez aparátu
diferenciálnej geometrie)

Ĺınia by mohla obsahovat’ kapitoly (z niektorých len uvedené paragrafy)
1 - 2.4 - 10 - 11.7 - 12 - 13.1,2,3

3. hamiltonovská mechanika a symplektické variety
Minimálna trasa obsahuje kapitoly 1 - 2 - 3 - začiatok 4 - 5 - 6 - 7 - 14. Jej
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pokračovanie (formulácie lagranžovskej a hamiltonovskej mechaniky na fib-
rovaných varietách TM a T ∗M) je v kapitolách 17 - 18. Ak chceme rozumiet’
aj pokročileǰśım paragrafom o symetriách (14.5.-14.7. a 18.4.), potrebujeme
chápat’ geometriu na Lieových grupách a pôsobenia Lieových grúp na va-
rietách (11.-13. kapitola).

4. základy práce s diferenciálnymi formami
Trasa by mohla vyzerat’ 1 - 2 - 3 - začiatok 4 - 5 - 6 - 7 - 8 - 9, pŕıpadne

ešte pridat’ začiatok 16. kapitoly.

Táto kniha vznikla usporiadańım a rozš́ıreńım materiálu, ktorý už mnoho
rokov prednášam študentom teoretickej fyziky FMFI UK (predtým MFF
UK) v Bratislave. Formálne zodpovedá štyrom oficiálnym prednáškam (čo
uvádzam len ako inšpiráciu pre pŕıpadné zavedenie podobných prednášok
inde), jednej väčšej a povinnej (je k nej aj cvičenie) a trom menš́ım a výbe-
rovým (sú bez cvičenia, aktivita sa udržiava len domácimi úlohami). Väčšia,
ktorá bež́ı pod názvom ”Matematická fyzika” (1 alebo 2), zodpovedá zhruba
kapitolám 1-9 a 14-16. Jej náplňou sú teda základy diferenciálnej geome-
trie a náčrt jej hlavných aplikácíı. Menšie sa týkajú Lieových grúp a ich
reprezentácíı (kapitoly 10-13), geometrických metód v klasickej mechanike
(17-18 a zvyšok 14) a konexíı a kalibračných poĺı (19-21).

Na záver by som sa rád pod’akoval Spoločnosti autorov vedeckej a odbornej
literatúry (SAVOL) za poskytnutie štedrej dotácie potrebnej na vyjdenie
tohoto diela, Centru pre výskum kvantovej informácie Fyzikálneho ústavu
SAV v Bratislave za pŕıspevok na ten istý účel, Literárnemu fondu za ude-
lenie štipendia na dokončenie diela, kolegom z Katedry teoretickej fyziky
FMFI v Bratislave, hlavne Pal’ovi Ševerovi a Vladovi Balekovi za mnohé obo-
hacujúce diskusie o geometrii vo fyzike, obom (anonymným) recenzentom pre
SAVOL za mimoriadne starostlivé preč́ıtanie nie práve najkratšieho rukopisu
a cenné profesionálne postrehy v posudkoch, Vladovi Bužekovi za povzbu-
denia v pravom čase a za dobré rady, E.Bartošovi, J.Bušovi, V.Černému,
J.Hitzingerovi, J.Chleb́ıkovej, E.Masárovi, E.Sallerovi, S.Sliszovi a A.Šurdovi
za rady a nezǐstnú pomoc pri realizácii elektronickej verzie textu (špeciálne
s jemnost’ami TEX-u, v ktorom som ho naṕısal) a svojim synom Stankovi
a Mirkovi za nakreslenie obrázkov (tiež v TEX-u). Osobitne d’akujem mo-
jej manželke L’ubke, ktorá spolu s našimi det’mi Stankom, Mirkom a Dankou
trpezlivo znášala moje nekonečné ṕısanie a s ńım spojenú fyzickú, alebo aspoň
duševnú nepŕıtomnost’.

Budem vd’ačný za akékol’vek pripomienky, komentáre, nájdené chyby či
návrhy na vylepšenie textu (fecko@ fmph.uniba.sk).

V Bratislave, marec 2004
Marián Fecko
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0. ÚVOD

Vo fyzike sa každú chv́ıl’u niečo derivuje alebo integruje. Preto treba
súbežne s kurzom fyziky vnikat’ aj do tajov diferenciálneho a integrálneho
počtu. Zač́ına sa funkciami jednej premennej, potom sa prejde aj na pŕıpad
viacerých premenných. Do hry vstúpia viacnásobné integrály a parciálne de-
rivácie, ktorých sa budúci adept fyziky napoč́ıta neúrekom.

Ked’ sa však pozorneǰsie pozrieme na štruktúru výrazov, zaṕısaných po-
mocou parciálnych derivácíı v skutočných fyzikálnych vzorcoch, zist́ıme, že
isté kombinácie sa vyskytujú vel’mi často, iné prakticky nikdy. Napŕıklad ak
porovnáme frekvenciu výskytu výrazov tvaru

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
a

∂3f

∂x3
+

∂2f

∂y∂z
+ 4

∂f

∂z

tak zist́ıme, že zatial’ čo prvý (Laplaceov operátor aplikovaný na funkciu f)
sa vyskytuje vel’mi často, druhý v knihách prakticky nenájdeme (ak nerátame
zbierku úloh z analýzy, kde treba rátat’ práve túto kombináciu derivácíı z di-
daktických dôvodov). Kombinácie, ktoré sa v knihách vyskytujú, sú spravidla
výsledkom výpočtu, ktorý realizuje isté názorné lokálne geometrické pred-
stavy o uvažovanej realite (napŕıklad fenomenologický opis difúzie látky v ho-
mogénnom prostred́ı). Práve takéto predstavy systematicky študuje lokálna

diferenciálna geometria. V zhode s fyzikálnou skúsenost’ou sa v nej pozoruje,
že operácíı, ktoré sú naozaj zauj́ımavé a často sa vyskytujú, je skutočne po-
merne málo (dobrá správa, zvládnu sa v rozumnom čase).

Zo všeobecnej fyziky tiež poznáme fakt, že tá istá situácia sa dá opisovat’
pomocou rôznych súradńıc (kartézskych, sférických, cylindrických,...) a z kon-
textu je zrejmé, že výsledok určite nebude závisiet’ od výberu týchto sú-
radńıc (čo sa ale často nedá povedat’ o pracnosti výpočtov; to je dôvod,
prečo sa vyberajú na rôzne úlohy rôzne súradnicové sústavy). Samotné ob-
jekty a operácie s nimi sú teda nezávislé od výberu súradńıc na ich opis,
a preto neprekvaṕı, že vo vhodne vybudovanom aparáte sa bude dat’ vel’ká
čast’ výpočtov urobit’ úplne bez súradńıc (aká vel’ká čast’ to bude, záviśı od
problému aj majstrovstva použ́ıvatel’a aparátu). Takéto ”abstraktné” (bez-
súradnicové) výpočty majú viacero prednost́ı. Bývajú spravidla podstatne
kratšie a prehl’adneǰsie (dajú sa preto napŕıklad l’ahko viackrát skontrolovat’),
jednotlivým krokom sa dá lepšie názorne rozumiet’ a podobne. Porovnajme
na ilustráciu napŕıklad takéto rovnice

Lξg = 0 ↔ ξkgij,k + ξk,igkj + ξk,jgik = 0

∇γ̇ γ̇ = 0 ↔ ẍi + Γi
jkẋ

j ẋk = 0

∇g = 0 ↔ gij,k − Γijk − Γjik = 0
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V tomto texte sa postupne dozvieme, že dvojice rovńıc vl’avo-vpravo hovo-
ria vždy presne to isté: výraz vpravo vzniká rozṕısańım do (l’ubovol’ných)
súradńıc výrazu vl’avo.

(Prvý pŕıpad sú Killingove rovnice a ich obsahom je fakt, že Lieova de-
rivácia g v smere ξ je nulová, t.j. že metrický tenzor g má symetriu danú
vektorovým pol’om ξ; druhý je rovnica geodetiky a vyjadruje podmienku, že
ideme rovnomerne priamočiaro (= s nulovým zrýchleńım); tret́ı je podmienka
metričnosti konexie a hovoŕı, že pri paralelnom prenose sa bude zachovávat’
skalárny súčin vektorov. Komu je už teraz všetko toto jasné, môže túto knihu
hned’ predat’ a za źıskané peniaze si kúpit’ a začat’ č́ıtat’ nejakú rozumneǰsiu
a pokročileǰsiu literatúru; tým, čo zostali č́ıtat’ d’alej, to bude úplne jasné po
preč́ıtańı štvrtej a pätnástej kapitoly.)

Napriek maximálnemu zjednodušeniu zápisu súradnicových verzíı rovńıc
(sumačná konvencia, zápis parciálnych derivácíı pomocou čiarok) je zrejmé,
že stručnost’ l’avých strán je bezkonkurenčná. Ak sa preto nauč́ıme spol’ahlivo
manipulovat’ s objektmi typu l’avých strán, źıskame tým schopnost’ efekt́ıvne
(nepriamo) narábat’ s pomerne komplikovanými výrazmi, ktoré obsahujú par-
ciálne derivácie a pritom navyše v každom kroku rozumiet’, čo objekt́ıvne

rob́ıme.

Analýza sa zvyčajne rozv́ıja v kartézskom priestore Rn resp. v otvorených
oblastiach v R

n. V skutočnosti však mnohé priestory, na ktorých bez mihnutia
oka analýzu použ́ıvame, pŕısne vzaté otvorenými oblast’ami v R

n nie sú, hoci
k nim majú vel’mi bĺızko.

V teoretickej mechanike napŕıklad vyšetrujeme pohyb kyvadiel tak, že
riešime (diferenciálne) Lagrangeove rovnice pre časovú závislost’ súradńıc
v ich konfiguračných priestoroch. Pritom tieto konfiguračné priestory nie
sú vždy otvorenými oblast’ami v R

n. Pre rovinné kyvadlo je to napŕıklad
kružnica S1. Je to śıce jednorozmerný priestor, avšak je intuit́ıvne zrejmé
(a dá sa dokázat’), že je to čosi iné, ako (otvorená oblast’ v) R

1. Podobne
konfiguračný priestor sférického kyvadla je dvojrozmerná sféra S2, ktorá sa
ĺı̌si od (otvorenej oblasti v) R2.

Všimnime si však, že dostatočne malé okolia l’ubovol’ného bodu na S1 aj
S2 sú na nerozoznanie od dostatočne malých okoĺı l’ubovol’ných bodov v R

1,
resp. R2; sú v nejakom zmysle ”lokálne rovnaké”, rozdiel je ”až globálny”.
Aplikácie matematickej analýzy (aj vo fyzike) takto prirodzene tlačia smerom
k jej rozš́ıreniu na všeobecneǰsie priestory, akými sú otvorené oblasti v R

n.

Takýmito všeobecneǰśımi priestormi sú hladké variety. Vel’mi vol’ne pove-
dané ide o priestory, ktoré sa krátkozrakému pozorovatel’ovi javia ako R

n (pre
vhodné n), ale celkovo (”topologicky”, ked’ si založ́ı okuliare a vid́ı už dobre
aj do dial’ky) môžu vyzerat’ úplne ináč ako R

n.

Pŕıjemnou pozornost’ou podniku je fakt, že aparát, ktorý sa vybuduje na
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vyššie spomı́naný opis geometrických predstáv nezávisle od výberu súradńıc,
je zároveň automaticky vhodný aj na opis globálnych geometrických objektov,
t.j. objektov korektne definovaných na celej variete. Budeme teda hovorit’
aj o globálnej analýze, analýze na varietách. Napŕıklad spomenuté rovnice
Lξg = 0, ∇γ̇ γ̇ = 0 a ∇g = 0 sú všetko rovnice na varietách a ich riešenia sú
tiež globálne dobre definované objekty na varietách.

Samotný kl’účový pojem hladkej variety si zavedieme v 1. kapitole. Výklad
bude hlavne intuit́ıvny. Vel’a većı, ktoré sa podrobne rozvádzajú v matematic-
kej literatúre o diferenciálnej topológii, sa spomenie len vel’mi orientačne alebo
dokonca sa nespomenú vôbec. Ciel’om tejto úvodnej kapitoly bude povedat’
len to, čo treba nevyhnutne vediet’ na pochopenie (už na pracovnej úrovni)
hlavnej náplne tohoto textu, ktorou je diferenciálna geometria na varietách.
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Zhrnutie 1. kapitoly

Hladká varieta je základnou hracou plochou v diferenciálnej geometrii. Je
to zovšeobecnenie kartézskeho priestoru R

n (resp. otvorenej oblasti v R
n)

na objekt, ktorý vyzerá (len) lokálne ako R
n, ale jeho globálna štruktúra

môže byt’ ovel’a komplikovaneǰsia. Vždy sa však dá predstavit’ ako celok zle-
pený z niekol’kých kúskov homeomorfných R

n. Č́ıslo n, ktoré je rovnaké pre
všetky kúsky, sa volá rozmer variety. Technická realizácia týchto myšlienok je
založená na pojmoch mapa (lokálne súradnice) a atlas pozostávajúci z niekol’-
kých máp. Kartézsky súčin M × N dvoch variet je nová varieta, vytvorená
z pôvodných variet M a N . L’ubovol’ná varieta sa dá realizovat’ ako vel’mi
slušne uložená plocha v dostatočne rozmernom kartézskom priestore.

(x1 − y1)
2 + · · ·+ (xn − yn)

2 euklidovská vzdialenost’ bodov v R
n 1.1.5

ϕ : O → R
n[x1, . . . , xn] mapa (lokálne súradnice) v oblasti O 1.3

ϕβ ◦ ϕ−1
α zámena súradńıc v oblasti Oα ∩ Oβ 1.3

(ϕα(x), ψa(y)) ∈ R
n+m atlas pre kartézsky súčin X × Y 1.3.3

f̂ ≡ ψ ◦ f ◦ ϕ−1 : Rm → R
n súradnicové vyjadrenie f :M → N 1.4

ym+1 = . . . = yn = 0 vnorenie (čast’ súradńıc na N nulových 1.4

f(M) ⊂ N f(M) je podvarieta N (f = vloženie) 1.4

φ1(x) = · · · = φm(x) = 0 hladké väzby (varieta ako plocha v R
n) 1.5

xi(u1, . . . , um) parametrické vyjadrenie variety 1.5

Zhrnutie 2. kapitoly

V každom bode x n-rozmernej variety M existuje kanonicky istý n-roz-
merný lineárny priestor TxM , dotykový (tangenciálny) priestor v bode x.
Jeho elementy sa volajú vektory v bode x. Existuje viacero navzájom ekviva-
lentných defińıcíı tohoto pojmu, ktoré sú výhodné v rôznych kontextoch. Vek-
torové pole na variete M je hladké priradenie vektora každému bodu x ∈M .
Integrálna krivka vektorového pol’a je taká krivka, ktorá v každom bode ide
tak, ako jej diktuje vektor pol’a v tomto bode. Štandardné konštrukcie multi-
lineárnej algebry (konštrukcia tenzorov typu

(

p
q

)

pre daný vektorový priestor

L) vedú k pojmu tenzorového pol’a typu
(

p
q

)

na variete. Špeciálnymi pŕıpadmi

sú funkcie (typ
(

0
0

)

), vektorové a kovektorové polia (typ
(

1
0

)

a
(

0
1

)

), polia bi-

lineárnych foriem (typ
(

0
2

)

, v symetrickom nedegenerovanom pŕıpade metrický
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tenzor) a lineárnych operátorov (typ
(

1
1

)

).

γ : R →M krivka γ na variete M 2.1

f :M → R funkcia f na variete M 2.1

ei := ∂i|P súradnicová báza v TPM 2.2.6

ai 7→ a′i = J i
j(P )a

j transformácia komponent vektora 2.2.6

V (fg) = (V f)g + f(V g) Leibnizovo pravidlo pre pole V 2.2.8

ẋi = V i(x) (γ̇ = V ) rovnice pre integrálne krivky pol’a V 2.3.1

v =
n
∑

b=1

vbeb ≡ vbeb sumačná konvencia 2.4.2

〈ea, eb〉 = δab báza ea je duálna voči ea 2.4.2

tc...da...b := t(ea, . . . , eb; e
c, . . . , ed) komponenty tenzora t ∈ T p

q (L) 2.4.6

va := gabv
b , αa := gabαb dv́ıhanie a spúšt’anie indexov 2.4.13

〈df, V 〉 := V f gradient ako kovektorové pole 2.5.3

T = (1/2)h(Γ̇ , Γ̇ ) kinetická energia sústavy N bodov 2.6.7

l[γ] :=

∫ t2

t1

dt
√

g(γ̇, γ̇) funkcionál d́lžky krivky γ 2.6.9

(∇f)i := gijf,j (∇f := ♯gdf) gradient ako vektorové pole 2.6

Zhrnutie 3. kapitoly

Každé (hladké) zobrazenie bodov variet f : M → N indukuje zobraze-
nie tenzorov na nich. Označuje sa f∗, ak prenáša tenzory v smere f (z M
na N) a f∗, ak ich prenáša proti smeru f (z N na M). Pre difeomorfizmy
sa dá zaviest’ f∗ aj f∗ pre l’ubovol’né tenzorové pole. Ak f nie je difeomor-
fizmus, môžu nastat’ problémy. Pre tenzorové polia typu

(

0
p

)

existuje zobra-

zenie f∗ vždy. Špeciálnym pŕıpadom je indukovanie metrického tenzora na
M z riemannovskej variety (N,h), č́ım sa źıska riemannovská varieta (M, g),
g = f∗h. Najčasteǰsie ide o indukovanie metrického tenzora na podvariety
M euklidovského priestoru N = En (alebo všeobecneǰsie Er,s), na ktorom
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existuje kanonický metrický tenzor h = η.

f∗ψ := ψ ◦ f pull-back funkcie ψ 3.1.1

f∗[γ] := [f ◦ γ] push-forward vektora [γ] 3.1.2

(f∗V )ψ := V (f∗ψ) push-forward vektora V 3.1.2

(f∗t)(U,α) := t(f∗U, (f
−1)∗α) pull-back tenzorového pol’a 3.1.6

(g ◦ f)∗ = f∗ ◦ g∗ pull-back zloženého zobrazenia 3.1.6

(g ◦ f)∗ = g∗ ◦ f∗ push-forward zloženého zobrazenia 3.1.6

f∗ ◦ C = C ◦ f∗ pull-back komutuje s kontrakciami 3.1.7

df∗ = f∗d pull-back komutuje s gradientom 3.1.9

g := f∗h indukovaný metrický tenzor 3.2.1

gij = Ja
i habJ

b
j ≡ ya,ihaby

b
,j indukovaný metrický tenzor 3.2.1

T = (1/2)g(γ̇, γ̇) kinetická energia v konf. priestore 3.2.9

Zhrnutie 4. kapitoly

L’ubovol’né vektorové pole V na M indukuje zobrazenie Φt : M → M ,
pri ktorom sa bod x posunie o parameter t po integrálnej krivke štartujúcej
v x. Hovoŕı sa mu tok generovaný pol’om V , alebo vzhl’adom na skladaciu
vlastnost’ Φt+s = Φt ◦ Φs aj jednoparametrická grupa transformácíı. Zo-
brazenie Φt variety M na seba indukuje v zmysle 3. kapitoly zobrazenie

tenzorových poĺı Φ∗
t , ktoré generuje lieovský prenos tenzorov (pozd́lž in-

tegrálnych kriviek pol’a V ). Mierou citlivosti (nekonštantnosti) tenzorového
pol’a A voči lieovskému prenosu je Lieova derivácia LVA := d

dt

∣

∣

0
Φ∗

tA. Dvom

vektorovým poliam V,W sa dá priradit’ tretie, ich komutátor [V,W ] (ktorý
je zároveň totožný s LVW ). Dve polia komutujú práve vtedy, ked’ komu-
tujú im zodpovedajúce toky; nekomutovanie vektorových poĺı takto vedie
na javy anholonómie (závislosti od cesty). Killingov vektor je vektorové pole,
v smere ktorého je lieovsky konštantný metrický tenzor. Tok Killingovho vek-
tora je izometriou riemannovskej variety (M, g), t.j. zobrazeńım M na seba,

pri ktorom sa zachovávajú všetky d́lžky a uhly. Ak sa zachovávajú len uhly,
ide o konformné transformácie a generujú ich konformné Killingove vektory.
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Φt+s = Φt ◦ Φs “skladacia” vlastnost’ toku 4.1.2

Φ∗
tA = A pole A je lieovsky invariantné 4.2

LVA := (d/dt)0Φ
∗
tA Lieova derivácia A v smere V 4.2

LV (A+ λB) = LVA+ λLVB L. derivácia lin. kombinácie 4.3.1

LV (A⊗B) = LVA⊗B +A⊗ LVB L. derivácia tenzor. súčinu 4.3.1

LV ◦ C = C ◦ LV L. derivácia a kontrakcie 4.3.1

LVW = [V,W ] L. derivácia W v smere V 4.3.6

LV+λW = LV + λLW L. derivácia v smere lin.komb. 4.3.8

L[V,W ] = [LV ,LW ] L. derivácia v smere komutátora 4.3.8

Φ∗
t = etLV ≡ 1 + tLV + . . . exponenta L. derivácie 4.4.2

ΦW
−ǫ ◦ Φ

V
−ǫ ◦ Φ

[V,W ]
−ǫ2 ◦ ΦW

ǫ ◦ ΦV
ǫ = 1̂ interpretácia komutátora [V,W ] 4.5.2

l[f ◦ γ, g] = l[γ, f∗g] správanie sa funkcionálu d́lžky 4.6.1

f∗g = g f je izometria (M, g) 4.6.2

f∗g = σg f je konformná transformácia 4.6.3

Lξg = 0 Killingove rovnice 4.6.5

f∗η = η f je Poincarého transformácia 4.6.10

Lξg = χg konformné Killingove rovnice 4.6.16

ε = (1/2)Lug tenzor deformácie (pruž. kont.) 4.6.24

(1/2)Lvg tenzor rýchlosti def. (visk. tek.) 4.6.25

Zhrnutie 5. kapitoly

V kontexte výpočtu objemov rovnobežnostenov (a tým aj v teórii inte-
grovania, kde sa funkčné hodnoty násobia objemami infinitezimálnych rov-
nobežnostenov) sa ukáže mimoriadny význam úplne antisymetrických čisto
kovariantných tenzorov, ktorým sa hovoŕı formy. Celá táto kapitola študuje
formy na úrovni lineárnej algebry. Okrem všeobecných vlastnost́ı, ktoré pla-
tia pre všetky tenzory, sú v hre aj dôležité špecifiká. Formy majú prirodzené
Z-graduovanie, funguje na nich (graduovane komutat́ıvny) vonkaǰśı súčin ∧
(č́ım vzniká graduovaná vonkaǰsia=Grassmannova algebra) a vnútorný súčin
iv (ktorý je deriváciou stupňa -1 tejto algebry). Ak je k dispoźıcii aj metrický
tenzor a orientácia (daná formou objemu), pristupuje Hodgeov operátor ∗.
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Prirodzenú interpretáciu tu nadobúda aj obyčajný determinant.

∧ :=
(p+ q)!

p!q!
πA ◦ ⊗ vonkaǰśı súčin foriem 5.2.4

(β + λτ) ∧ α = β ∧ α+ λτ ∧ α

α ∧ (β + λτ) = α ∧ β + λα ∧ τ bilinearita súčinu ∧ 5.2.4

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) asociativita súčinu ∧ 5.2.4

α ∧ β = (−1)
pq
β ∧ α Z-graduovaná komutativita ∧ 5.2.4

α = (1/p!) αa...b e
a ∧ · · · ∧ eb vyjadrenie p-formy cez ea 5.2.9

η̂α := (−1)deg αα hlavný automorfizmus v ΛL∗ 5.3.3

(ivα)(u, . . . , w) := α(v, u, . . . , w) vnútorný súčin (v a α) 5.4.1

(ivα)a...b = vcαca...b komponentné vyjadrenie iv 5.4.1

iv(α ∧ β) = (ivα) ∧ β + (η̂α) ∧ (ivβ) grad. Leibn. pravidlo pre iv 5.4.2

δa...bc...d ≡ δ
[a
[c . . . δ

b]
d] p-delta (Kroneckerov) symbol 5.6.2

n! detA = εa...bε
c...d Aa

c . . . A
b
d vyjadrenie determinantu 5.6.2

ωg = o(f)
√

|g| f1 ∧ · · · ∧ fn metrická forma objemu 5.7.3

vol(Au, . . . ) =: (detA) vol(u, . . . ) determinant lin. zobr. A 5.7.6.

p!(∗α)a...b := αc...d ωc...da...b Hodgeov operátor duality 5.8.1

∗g ∗g = sgn g (−1)
p(n+1)

kvadrát ∗g je ± jednotka 5.8.2

α ∧ ∗gβ =: (α, β)gωg skalárny súčin (α, β)g foriem 5.8.4

p!(α, β)g = αa...b β
a...b kompon. vyjadrenie (α, β)g 5.8.4

Zhrnutie 6. kapitoly

Študujú sa formy už ako polia na variete (diferenciálne formy). Okrem
algebraických konštrukcíı z 5. kapitoly pristupuje kl’účový pojem vonkaǰsej

derivácie. Ide o deriváciu stupňa +1 Cartanovej algebry foriem na variete,
ktorá je navyše nilpotentná (dd = 0). Jednoduchým (ale užitočným) zovšeo-
becneńım doteraǰśıch foriem sú formy s hodnotami v l’ubovol’nom vektorovom
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priestore (doteraǰsie mali hodnoty v R).

α = (1/p!) αi...j(x)dx
i ∧ · · · ∧ dxj súradnicové vyjadrenie p-formy 6.1.1

Dk(aib) = (Dkai)b+ (−1)
ik
ai(Dkb) derivácia stupňa k 6.1.7

(dα)i...jk := (−1)p (p+ 1) α[i...j,k] vonkaǰsia derivácia súradnicovo 6.2.5

dd = 0 vonk. derivácia je nilpotentná 6.2.5

d(α ∧ β) = (dα) ∧ β + (η̂α) ∧ dβ grad. Leibnizovo pravidlo pre d 6.2.5

LV = iV d+ d iV Cartanova identita 6.2.8

[d,LV ] ≡ d LV − LV d = 0 v. der. komutuje s Lieovou 6.2.10

[d, f∗] ≡ d f∗ − f∗ d = 0 v. der. komutuje s pull-backom 6.2.11

dα(U, V ) = . . . Cartanov vzorec (pre p = 1) 6.2.13

dβ(U, V,W ) = . . . Cartanov vzorec (pre p = 2) 6.2.13

α = αAEA forma na M s hodnotami vo V 6.4.1

Zhrnutie 7. kapitoly

Rozborom konkrétnych jednoduchých pŕıkladov sa zist’uje, že na podin-
tegrálne výrazy je užitočné nazerat’ ako na diferenciálne formy zo 6. kapitoly.
Definuje sa základný pojem integrálu formy po ret’azci, pričom sa predpokladá
elementárna znalost’ bežného Riemannovho viacnásobného integrálu. Formu-
luje sa Stokesova veta pre diferenciálne formy (dáva do súvisu integrál formy
po hranici ret’azca s integrálom vonkaǰsej derivácie tejto formy po samotnom
ret’azci). Diskutuje sa reinterpretácia integrálu po oblasti na orientovatel’nej
variete ako integrálu po ret’azci (vrátane tvaru Stokesovej vety) a špecifikum
integrovania po riemannovskej variete. Odhal’uje sa jednoduché správanie sa
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integrálu voči zobrazeniam variet.

c = cis
i
p euklidovský p-ret’azec 7.2

∂(P0, . . . , Pp) = . . . hraničný operátor na simplexe 7.2.2

∂∂ = 0 hranica nemá hranicu 7.2.2
∫

c

dα =

∫

∂c

α Stokesova veta 7.5

vol (D) :=

∫

D

ω objem oblasti D na (M,ω) 7.6

ǫ

∫

D

iV α =

∫

DǫV

α “mincová interpretácia” formy iV α 7.6.11

∫

D

f :=

∫

D

fωg integrál prvého druhu na (M, g, o) 7.7

∫

√

det(gµνx
µ
,axν,b) du

1 ∧ du2 plocha dvojrozmernej oblasti 7.7.5

〈ρ〉D :=

∫

D
ρωg

∫

D
ωg

stredná hodnota ρ cez D 7.7

∫

f(c)

α =

∫

c

f∗α integrál a zobrazenie variet 7.8.1

Zhrnutie 8. kapitoly

Všeobecná Stokesova veta pre diferenciálne formy zo 7. kapitoly má mno-
horaké klasické prejavy. Ukazuje, že je v nej skrytá napŕıklad Gaussova-
Ostrogradského veta, Greenove identity, ”obyčajná” Stokesova veta z vekto-
rovej analýzy, niektoré fakty z teórie funkcíı komplexnej premennej. Zavádza
sa kodiferenciál δ (ako operátor združený k diferenciálu d = vonkaǰsej de-
rivácii) a samozdružená kombinácia ∆ = −(dδ + δd), Laplaceov-deRhamov
operátor (zovšeobecnenie Laplaceovho operátora na funkciách na l’ubovol’né
formy). V časti o vektorovej analýze sa prichádza k záveru, že operácie gra-
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dient, rotácia a divergencia sú len zamaskovaná vonkaǰsia derivácia.

LV ωg =: (divV ) ωg defińıcia divergencie V 8.2.1

divV =
1

√

| g |
(
√

| g | V k),k súradnicové vyjadrenie divV 8.2.1

〈divV 〉D =
d

dt

∣

∣

∣

∣

t=0

vol D(t)

vol D
interpretácia divV 8.2.2

〈divV 〉D =
tok V cez ∂D

objem D
iná interpretácia divV 8.2.9

∫

D

(divV ) ωg =

∫

∂D

V idΣi|∂D Gaussova veta 8.2.7

〈α, β〉 :=

∫

D

α ∧ ∗β skalárny súčin foriem na (M, g) 8.3.1

δ := ∗−1d ∗ η̂ defińıcia kodiferenciálu δ 8.3.2

〈dα, β〉 = 〈α, δβ〉+

∫

∂D

α ∧ ∗β základná vlastnost’ kodiferenciálu 8.3.2

△ := −(δd+ dδ) ≡ −(d+d+ dd+) Laplaceov-deRhamov operátor 8.3.3

∆f =
1

√

| g |
(
√

| g |gkjf,j),k Laplaceov-Beltramiho operátor 8.3.5

〈du, dv〉+ 〈u,∆v〉 =

∫

∂D

u ∗ dv “obyčajná” Greenova identita 8.4.1

〈u,∆v〉 − 〈v,∆u〉 = . . . “symetrická” Greenova identita 8.4.1

f, A.dr, B.dS, hdV diferenciálne formy na E3 8.5.2

d(A.dr) = (rotA).dS defińıcia rotA 8.5.4

(A.dr) ∧ (B.dr) = (A×B).dS ako sa objav́ı vektorový súčin 8.5.8

g = h21dx
1 ⊗ dx1 + . . . Lamého koeficienty 8.5.9

d(f(z)dz) = 0 prečo plat́ı Cauchyho veta 8.6.5

Zhrnutie 9. kapitoly

Forma sa volá uzavretá, ak má nulovú vonkaǰsiu deriváciu a exaktná,
ak je vonkaǰsou deriváciou inej formy (svojho potenciálu). Vzhl’adom na
nilpotentnost’ operátora d (t.j. platnost’ dd = 0) je exaktná forma automa-
ticky uzavretá. Ukazuje sa, že vo fyzike často využ́ıvané opačné tvrdenie
(obrátenie tvrdenia dd = 0) všeobecne neplat́ı, ale konštrukt́ıvne sa oveŕı jeho
platnost’ na stiahnutel’ných varietách (resp. lokálne, t.j. v dostatočne malom
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okoĺı l’ubovol’ného bodu na l’ubovol’nej variete). To je obsah Poincarého lemy.
Jemneǰśı pohl’ad na vec umožňuje aparát teórie kohomológíı, v tomto pŕıpade
ide konkrétne o kohomológie deRhamovho komplexu.

ĥ = −

∫ ∞

0

dtΦ∗
t iξ homotopický operátor 9.2.3

d ◦ ĥ+ ĥ ◦ d = 1̂ základná vlastnost’ ĥ 9.2.3

α = d(ĥα) ≡ dβ β ≡ ĥα je potenciál formy α 9.2.4

xk
∫ 1

0

dλλp−1αki...j(λx) súrad. vyjadrenie (ĥα)i...j(x) 9.2.7

[ea, eb] = ccab(x)ec koeficienty anholonómie pre ea 9.2.10

ea = ∂a ⇔ [ea, eb] = 0 holonómnost’ repérneho pol’a 9.2.11

ea = dxa ⇔ dea = 0 holonómnost’ korepérneho pol’a 9.2.11

Zp := Ker dp p-kocykly 9.3.1

Bp := Im dp−1 p-kohranice 9.3.1

Hp := Zp/Bp p-ta kohomologická grupa 9.3

bp := dimHp p-te Bettiho č́ıslo 9.3

Ω0(M)
d
→ Ω1(M)

d
→ . . .

d
→ Ωn(M) deRhamov komplex variety M 9.3.2

Zhrnutie 10. kapitoly

Grupy vstupujú do hry vo fyzike aj v matematike ako grupy symetrie

čohosi, t.j. (v matematickej reči) ako grupy automorfizmov rôznych štruktúr.
Explicitne sa vyšetrujú štruktúry, ktoré vedú na bežné klasické grupy (vše-
obecnú lineárnu, ortogonálnu, symplektickú, unitárnu,...). Spojeńım alge-
braického pojmu grupa a diferenciálno-topologického pojmu (analytická) va-
rieta vzniká Lieova grupa. Vyššie spomı́nané grupy (aj iné) sú pŕıklady Lieo-
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vých grúp.

G = Aut (X, š) grupa automorfizmov (X, š) 10.1

h(Av,Aw) = h(v, w) A zachováva bilineárnu formu h 10.1.4

Aa
chabA

b
d = hcd kompon. vyjadrenie toho istého faktu 10.1.4

AThA = h maticové vyjadrenie toho istého faktu 10.1.4

ω(Av, . . . , Aw) = ω(v, . . . , w) A zachováva formu objemu ω 10.1.7

Aa
c . . . A

b
dεa...b = εc...d kompon. vyjadrenie toho istého faktu 10.1.7

det A = 1 maticové vyjadrenie toho istého faktu 10.1.7

m(g, h) := gh kompozičný zákon v grupe 10.2.5

”klasické” maticové grupy sú zhrnuté v úlohe 11.7.6

Zhrnutie 11. kapitoly

Efekt́ıvnym nástrojom na štúdium pomerne zložitých objektov, akými
sú Lieove grupy, je využitie ich bohatej diferenciálnej geometrie. Tá je dôs-
ledkom kompatibility štruktúry grupy a variety. Pomocou l’avoinvariantných

vektorových poĺı sa dá Lieovej grupe kanonicky priradit’ jej Lieova algebra, čo
je objekt nepomerne jednoduchš́ı, ako samotná grupa (je to konečnorozmer-
ný lineárny priestor), napriek tomu však kóduje podstatnú čast’ informácie
o grupe. Študuje sa dôležité exponenciálne zobrazenie z algebry do grupy.
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Lgh := gh, Rgh := hg l’avá a pravá translácia na grupe 11.1.1

L∗
gT = T l’avoinvariantné tenzorové pole na G 11.1.4

ea(g) = Lg∗Ea l’avoinv. repérne pole generované Ea 11.1.6

(x−1)ikdx
k
j ≡ (x−1dx)

i

j l’avoinvariantné 1-formy na GL(n,R) 11.1.9

xik∂
k
j ≡ (x∂)ij l’avoinv. vektorové polia na GL(n,R) 11.1.10

[Ea, Eb] = ccabEc štruktúrne konštanty voči báze Ea 11.2.2

dea + (1/2)cabce
b ∧ ec = 0 Maurerov-Cartanov vzorec cez ea 11.2.3

〈θ, LX〉 := X, θ = eaEa kanon. 1-forma θ na G (Maurer-Cartan) 11.2.6

dθ + (1/2)[θ ∧ θ] = 0 Maurerov-Cartanov vzorec cez θ 11.2.6

γ(t+ s) = γ(t)γ(s) 1-parameterická podgrupa na G 11.3

γX(t) = etX 1-parameterická podgrupa cez exp 11.4.1

f(eX) = ef
′(X) odvodený homomorfizmus f ′ 11.5.3

x−1dx kanonická 1-forma na GL(n,R) 11.7.19

j∗(x−1dx) = x−1(z)dx(z) kanon. 1-forma na matic. grupách 11.7.21

Zhrnutie 12. kapitoly

Lieova grupa dáva o sebe často vediet’ cez svoju reprezentáciu, t.j. existuje
homomorfizmus tejto grupy do grupy obrátitel’ných lineárnych operátorov
v nejakom vektorovom priestore a v danom kontexte vid́ıme len jej homo-
morfný obraz. Reprezentácia grupy automaticky indukuje aj istú (odvodenú)
reprezentáciu jej Lieovej algebry, čo je všeobecne homomorfizmus Lieovej
algebry do Lieovej algebry (všetkých) lineárnych operátorov (vo fixnom li-
neárnom priestore). Ak daná reprezentácia pripúšt’a nejaký netriviálny inva-
riantný podpriestor, volá sa reducibilná, lebo sa dá redukovat’ na (menšiu)
reprezentáciu v tomto podpriestore. Ireducibilné sa takto zmenšit’ nedajú.
Kritériám ireducibility sa venuje Schurova lema. Ak k danému podpriestoru
existuje aj invariantný doplnok, reprezentácia je ekvivalentná priamemu súč-
tu dvoch menš́ıch. Takýto doplnok sa dá dostat’ napŕıklad ako ortogonálny

doplnok voči invariantnému skalárnemu súčinu (ak existuje; na kompaktných
grupách existuje vždy a ukazuje sa, ako sa dá źıskat’). S reprezentáciami
sa dajú robit’ isté konštrukcie, napŕıklad priamy súčet a súčin; kombináciou
s ohraničeńım na invariantné podpriestory vo výsledku sa dá často źıskat’
spústa reprezentácíı z malej zásoby na začiatku (niekedy aj všetky z jednej).
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Invariantné tenzory a s nimi spojené splietajúce operátory umožňujú ”menit’
typ” velič́ın, priradit’ vektorom, na ktoré pôsob́ı grupa cez reprezentáciu ρ1
vektory, na ktoré pôsob́ı cez ρ2. Každá reprezentácia Lieovej algebry indukuje
istý komplex; trochu sa venujeme jeho kohomológiám.

ρ(1 + ǫX) = 1 + ǫρ′(X) výpočet odvodenej reprezentácie ρ′ 12.1.6

ρ′(Ei)Ea =: ρbaiEb maticové prvky generátorov 12.1.6

〈ρ̌(g)α, v〉 := 〈α, ρ(g−1)v〉 ρ̌ je duálna reprezentácia k ρ 12.1.8

h(ρ(g)v, ρ(g)w) = h(v, w) skalárny súčin h je ρ-invariantný 12.1.10

hbcρ
c
ai + hacρ

c
bi = 0 kompon. vyjadrenie toho istého faktu 12.1.10

ρ2(g)A = Aρ1(g) A je splietajúci operátor pre ρ1 a ρ2 12.2

geXg−1 = eAd gX pridruž. reprezentácia Ad grupy G 12.3.1, 2

AdAX = AXA−1 expl. vyjadrenie Ad pre matic. grupy 12.3.1

adXY = [X,Y ] (ad ≡ Ad ′) pridruž. reprezentácia ad algebry G 12.3.5

adEi
Ej = ckijEk komponentné vyjadrenie ad 12.3.5

K(X,Y ) := Tr (adXad Y ) Killingova-Cartanova forma na G 12.3.8

Ĉ2 := kijρ′(Ei)ρ
′(Ej) kvadratický Casimirov operátor 12.3.13

(g, h) ◦ (ĝ, ĥ) = (gĝ, hĥ) priamy súčin grúp 12.4.7

(ρ1 ⊗ ρ2)(g) := ρ1(g)⊗ ρ2(g) priamy súčin reprezentácíı G 12.4.11

(ρ1 ⊗ ρ2)
′ = ρ′1 ⊗ 1̂ + 1̂⊗ ρ′2 odvodená reprezentácia pre ρ1 ⊗ ρ2 12.4.11

Zhrnutie 13. kapitoly

Osobitne dôležitým pŕıpadom pôsobeńı grúp sú pre diferenciálnu geo-
metriu ich pôsobenia na varietách. Často je na týchto varietách dodatočná
štruktúra, ktorú pritom zachovávajú (napŕıklad akcie izometriami na rieman-
novských varietách, alebo symplektické akcie na symplektických varietách,
pozri paragraf 14.5). Pôsobenie Lieovej grupy dáva na infinitezimálnej úrovni
pôsobenie svojej Lieovej algebry, s ktorou sú úzko spojené fundamentálne

(vektorové) polia. Pôsobenie na bodoch variety štandardne (postupmi z pa-
ragrafu (3.1)) indukuje pôsobenie na funkciách na variete (a všeobecneǰsie na
tenzorových poliach), č́ım sa źıskava dôležitá konštrukcia (∞-rozmerných)
reprezentácíı grupy a jej algebry (tenzorové polia, špeciálne aj funkcie, tvoria
lineárny priestor). Ohraničeńım na invariantné podpriestory sa z nich často
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dajú vytiahnut’ aj konečnorozmerné reprezentácie. Vydelenie G-invariantné-
ho podpriestoru funkcíı (tenzorových poĺı) býva častým postupom pri riešeńı
diferenciálnych rovńıc (ansatz s istým typom symetrie).

Lgh = Lg ◦ Lh l’avé pôsobenie G na M 13.1

Rgh = Rh ◦Rg pravé pôsobenie G na M 13.1

Lĝ[g] := [ĝg] pôsobenie G v homog. priestore G/H 13.2.5

[g][g̃] := [gg̃] násobenie vo faktorgrupe G/H 13.2.10

gHg−1 = H H je normálna podgrupa G 13.2.10

G/Ker f = Im f veta o homomorfizme 13.2.12

e−
i
2
αn.σ 7→ eαn.l nakrytie SO(3) pomocou SU(2) 13.3.6

ρ(g)ψ := ψ ◦Rg ≡ R∗
gψ reprezentácia G v F(M) 13.4.1

ξX(m) := (d/dt)|0Rexp tXm generátor pôsobenia Rg 13.4.3

ρ′(X) = ξX odvodená reprezentácia v F(M) 13.4.3

ξj = (−r×∇)j generátory rotácíı v R
3 13.4.6

ρ(g)ψ := ρ̂(g) ◦ ψ ◦Rg reprezentácia G v F(M,V ) 13.4.11

ρ′(X) = ξX + ρ̂′(X) odvodená reprezentácia v F(M,V ) 13.4.12

R∗
gA = ρ̂(g−1)A A je tenzorové pole typu ρ̂ 13.5.2

ρ(g) := ρ̂(g) ◦R∗
g reprezentácia G v T r

s (M,V ) 13.5.3

Zhrnutie 14. kapitoly

Z vhodného prepisu Hamiltonových kanonických rovńıc sa odhal’uje, že
za týmito rovnicami je skrytá elegantná geometrická štruktúra. Jej jadrom
je uzavretá nedegenerovaná 2-forma ω na fázovom priestore, symplektická

forma. Tá umožňuje dv́ıhat’ a spúšt’at’ indexy, podobne, ako sa to rob́ı pomo-
cou metrického tenzora. Vektorové pole, ktoré je analógom gradientu v rie-
mannovskom pŕıpade (vzniká teda dvihnut́ım indexu na gradiente funkcie f
ako kovektorovom poli), sa tu volá hamiltonovské pole generované funkciou
f . Zist́ı sa, že Hamiltonove rovnice sú vlastne rovnice pre integrálne krivky
hamiltonovského pol’a generovaného funkciouH, hamiltoniánom sústavy. Tak
sa prichádza k pojmu hamiltonovská sústava (M,ω,H). Vektorové polia,
ktoré generujú automorfizmy hamiltonovskej sústavy (zachovávajú teda sym-
plektickú formu a hamiltonián) sa volajú Cartanove symetrie a ich isté zjem-
nenie exaktné Cartanove symetrie. Ukazuje sa, že existuje vzájomne jed-
noznačná korešpondencia medzi exaktnými Cartanovými symetriami a za-
chovávajúcimi sa veličinami. Do väčš́ıch detailov v tomto smere idú časti
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o momentovom zobrazeńı a symplektickej redukcii. Bohatou triedou sym-
plektických variet sú orbity koadjungovanej akcie (čo je pôsobenie G na duáli
G∗ svojej vlastnej Lieovej algebry G), na ktorých existuje kanonická symplek-
tická štruktúra.

ζf = P(df, . ) hamiltonovské pole cez P 14.1.1

{f, g} = P(df, dg) Poissonova zátvorka cez P 14.1.1

γ̇ = ζH Hamiltonove rovnice bezsúradnicovo 14.1.1

iζfω = −df hamiltonovské pole cez ω 14.1.6

{f, g} = ω(ζf , ζg) Poissonova zátvorka cez ω 14.1.8

ω = dpa ∧ dq
a sympl. forma v kanon. súradniciach 14.2.2

Ωω := const. ω ∧ · · · ∧ ω Liouvilleova forma objemu na (M,ω) 14.3.6
∫

Φt(D)

Ωω =

∫

D

Ωω Liouvilleova veta 14.3.6

iV ω = −dF, V H = 0 V je exaktná Cartanova symetria 14.4.2

γs(t) := ΦV
s (γ(t)) nové riešenie generované symetriou 14.4.6

〈P (x), X〉 := PX(x) momentové zobrazenie 14.5.3

ωZ∗(ξX , ξY ) := 〈Z∗, [X,Y ]〉 symplektická forma na koadj. orbite 14.6.3

Zhrnutie 15. kapitoly

Vo viacerých aplikáciách (napŕıklad pri výpočte zrýchlenia hmotného bo-
du v mechanike) sa efekt́ıvne robia lineárne kombinácie (pri zrýchleńı kon-
krétne odč́ıtanie) vektorov (alebo všeobecneǰsie tenzorov) v rôznych bodoch.
To sa na ”prázdnej” variete nedá. Štruktúra, ktorá to legalizuje, je (lineárna)
konexia∇ naM . Umožňuje prenášat’ vektory po danej ceste (od ktorej v prin-
ćıpe záviśı) a tým aj uskutočnit’ vyššie spomı́nané porovnanie (porovnáva sa
vektor v x s vektorom, ktorý sa z y prenesie do x). Tento prenos sa podl’a

defińıcie volá paralelný (v zmysle konexie ∇). Najjednoduchšie sa technicky
zavádza postulovańım vlastnost́ı s ńım súvisiacej kovariantnej derivácie. Ko-
nexia umožňuje zaviest’ pojem rovnej čiary (geodetiky) na (M,∇).

Lineárnej konexii sú priradené dve tenzorové polia, tenzor torzie a krivosti.
Ukazuje sa, že podmienka kompatibility s metrikou (zachovanie skalárnych
súčinov pri paralelnom prenose) a nulovost’ torzie vedú na istú jednoznačnú
konexiu (RLC konexia). Tenzor krivosti kóduje, či paralelný prenos (o in-
finitezimálne vzdialenosti) naozaj záviśı od cesty; prejavuje sa aj v správańı
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sa bĺızkych geodet́ık - spôsobuje ich odklon (Jacobiho rovnica). Nenulový
tenzor torzie signalizuje neuzavretie geodetického rovnobežńıka. Efekt́ıvnym
nástrojom na prácu s konexiou je aparát diferenciálnych foriem. Základné ob-
jekty teórie sa zakódujú do foriem a vzt’ahy medzi nimi sú dané Cartanovými
štruktúrnymi rovnicami.

Konexia sa volá úplný paralelizmus, ak na variete existuje kovariantne
konštantné repérne pole. Tenzor krivosti je vtedy nulový a porovnanie vek-
torov (aj všeobecných tenzorov) v rôznych (aj vzdialených) bodoch vtedy

má zmysel. Úplný paralelizmus s holonómnym (súradnicovým) kovariantne
konštantným repérnym pol’om sa volá plochá konexia. V tomto pŕıpade je
nulový nielen tenzor krivosti, ale aj tenzor torzie.

∇aeb =: Γc
baec koeficienty konexie voči ea 15.2.1

∇j∂i =: Γk
ij∂k Christoffelove symboly 2. druhu 15.2.3

V̇ i + Γi
jkẋ

kV j = 0 rovnice paralel. prenosu vektora 15.2.6

∇g = 0 (gij;k = 0) konexia ∇ je metrická 15.3.1

T (U, V ) := ∇UV −∇V U − [U, V ] tenzor torzie konexie ∇ 15.3.3

Γi
jk = (1/2)gil(glj,k + glk,j − gjk,l) RLC konexia 15.3.4

∇γ̇ γ̇ = 0 (ẍi + Γi
jkẋ

j ẋk = 0) rovnica geodetiky 15.4.1

exp v := γv(1), γ̇v(0) = v ∈ TPM exp. zobrazenie so stredom v P 15.4.10

〈α, ([∇U ,∇V ]−∇[U,V ])W 〉 Riemannov tenzor krivosti 15.5.5

Rab := Rc
acb, R := Ra

a ≡ Rab
ab Ricciho tenzor a skalárna krivost’ 15.5

∇V ea = ωb
a(V )eb (ωa

b = Γa
bce

c) formy konexie ωb
a voči ea 15.6.1

ω′ = A−1ωA+A−1dA transformácia ω pri e′ = eA 15.6.2

de+ ω ∧ e = T, dω + ω ∧ ω = Ω Cartanove štruktúrne rovnice 15.6.7

dΩ+ ω ∧ Ω− Ω ∧ ω = 0 Bianchiho identita (pre RLC) 15.6.16

Ω ∧ e = 0 Ricciho identita (pre RLC) 15.6.16

∇2
γ̇ξ = R(γ̇, ξ)γ̇ Jacobiho rovnica (odklon geod.) 15.7.2

Ra
bcd = 0 = T a

bc plochá konexia 15.8.6

Zhrnutie 16. kapitoly

(Štvor)tenzorový zápis Maxwellových rovńıc v Minkowského priestor(oča-
s)e odhal’uje, že tenzory, ktoré sa v nich objavujú, sú vel’mi špeciálne - ide
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o diferenciálne formy. Preto najprirodzeneǰśım jazykom na štvorrozmernú
formuláciu elektrodynamiky je jazyk diferenciálnych foriem. Formy v Min-
kowského priestor(očas)e majú (ako dôsledok delenia priestoročasu na ”čas”
a ”priestor”) špeciálnu štruktúru: prirodzene vzniká ich vyjadrenie pomocou
dvoch priestorových foriem. Takéto vyjadrenie foriem (a operácíı na nich)
je efekt́ıvnym mostom medzi štvorrozmernou a (historicky staršou) troj-
rozmernou formuláciou elektrodynamiky. Formy sú užitočné nielen v elektro-
dynamike, ale v teórii pol’a všeobecne. Jednoducho sa cez ne zapisujú účinkové

integrály (ked’̌ze podintegrálne výrazy sú vždy formy) a rovnako jednoducho
sa poč́ıtajú aj ich extrémy, ktoré dávajú pohybové rovnice (prirodzene sa
v nich objavuje kodiferenciál). S priestoročasovými symetriami úzko súviśı
tenzor energie-hybnosti pol’a, ktorý vzniká variáciou účinku podl’a metrického
tenzora. Tento tenzor sa objavuje (ako zdroj) aj v Einsteinových rovniciach
gravitačného pol’a. Skúma sa ich variačná formulácia, porovnáva sa Hilber-
tov účinok, kde sa vaŕıruje voči metrickému tenzoru, s Cartanovým, ktorý
je funkcionálom korepérneho (”tetrádneho”) pol’a a foriem konexie. V ne-
lineárnom sigma-modeli hrá úlohu pol’nej premennej zobrazenie dvoch rie-
mannovských variet. Zobrazenia, ktoré extremalizujú prirodzene zavedený
účinok (vedú na ”minimálne plochy”) sa volajú harmonické. Takýmito zo-
brazeniami sa opisujú mydlové bubliny, ale aj svetoplochy v teórii strún.
Variáciou voči jednému z metrických tenzorov sa dá prejst’ od ”kvadratického”
účinku k ”odmocninovému” (čo má praktický význam v opačnom smere).

α = dt ∧ ŝ+ r̂ rozklad foriem v Mink. priestore 16.1.1

dα = dt ∧ (∂tr̂ − d̂ŝ) + d̂r̂ pôsobenie d na rozloženú formu 16.1.4

∗ α = dt ∧ (∗̂r̂) + ∗̂η̂ŝ pôsobenie ∗ na rozloženú formu 16.1.5

δα = dt ∧ (δ̂ŝ) + (−∂tŝ− δ̂r̂) pôsobenie δ na rozloženú formu 16.1.6

F := dt ∧E.dr−B.dS 2-forma elektromagnetického pol’a 16.2.1

j = ρdt− j.dr ≡ jµdx
µ 1-forma prúdu 16.2.2

δF = −j, dF = 0 Maxwellove rovnice 16.2.1, 2

F = dA A je potenciál pre F 16.3.1

− (1/2)〈dA, dA〉 − 〈A, j〉 účinok S[A] pre elmag. pole 16.3.2

(1/2)〈dφ, dφ〉 − (m2/2)〈φ, φ〉 účinok S[φ] pre skalárne pole 16.3.7

Tµν
;ν = 0 základná vlastnost’ tenzora Tµν 16.4.1

Rab − (1/2)Rgab = 8πTab Einsteinove rovnice 16.5

Zhrnutie 17. kapitoly
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S každou varietou M môžeme kanonicky spojit’ d’aľsie dve variety dvojná-
sobného rozmeru, TM a T ∗M . Hrajú dôležitú úlohu ako ihriská klasickej me-
chaniky (lagranžovskej a hamiltonovskej). Z konštrukcie zadarmo dostávajú
do vienka zauj́ımavú geometrickú štruktúru (aj ked’ samotná varieta M je
”prázdna”). Sú totálnymi priestormi vektorových fibrácíı, nesú (rôzne) kano-
nické tenzorové polia (napŕıklad T ∗M symplektickú formu), viaceré objekty
sa dajú z M dv́ıhat’ do totálnych priestorov. V d’aľsej kapitole sa na nich
skúma mechanika, táto obsahuje potrebnú pŕıpravu.

π : (xa, va) 7→ xa kanonická projekcia na TM 17.1.7

τ : (xa, pa) 7→ xa kanonická projekcia na T ∗M 17.1.7

T (f ◦ g) = Tf ◦ Tg vlastnost’ dotykového zobrazenia Tf 17.3.2

γ(t) 7→ γ̇(t) prirodzený zdvih krivky z M na TM 17.5.1

Φt 7→ TΦt zdvih toku z M na TM 17.5.5

△ = va∂/∂va Liouvillovo pole na TM 17.6.1

△ = pa∂/∂pa Liouvillovo pole na T ∗M 17.6.1

S := 1↑ = dxa ⊗ ∂/∂va vertikálny endomorfizmus na TM 17.6.4

〈θp,W 〉 := 〈p, τ∗W 〉 kanonická 1-forma θ = padx
a na T ∗M 17.6.5

ω = dθ = dpa ∧ dx
a kanonická symplectická forma na T ∗M 17.6.7

Zhrnutie 18. kapitoly

Ukazuje sa, ako sa formuluje klasická mechanika na TM a T ∗M . Oba
pŕıpady sú z geometrického hl’adiska (v nedegenerovanom pŕıpade) úplne
rovnocenné: ide o štandardnú symplektickú dynamiku, t.j. pohyb po in-
tegrálnych krivkách hamiltonovského (dynamického) pol’a. Na T ∗M máme
kanonickú symplektickú štruktúru, takže fixovanie funkcie H už dáva priamo
dynamiku. Na TM je to trochu zamaskované; kanonickým pol’om je isté ten-
zorové pole typu

(

1
1

)

a symplektická štruktúra vzniká až jeho kombináciou
s (nedegenerovaným) lagranžiánom (ako funkciou na TM). Projekciou tejto
symplektickej dynamiky na bázuM vznikajú štandardné Lagrangeove rovnice
(táto projekcia pridá jeden rád, takže sú 2.rádu), zatial’ čo Hamiltonove
rovnice operujú priamo v totálnom priestore T ∗M a (ako každé rovnice pre
integrálne krivky) sú len 1.rádu. Pomocou lagranžiánu sa konštruuje Legen-
dreovo zobrazenie TM → T ∗M , ktoré dáva tieto dve dynamiky do súvisu. Ak
hamiltonián (alebo lagranžián) záviśı explicitne od času, formalizmus treba
modifikovat’, lebo nosná varieta je nepárnorozmerná. Do pohybových rovńıc
vstupuje kanonická 1-forma pdq−Hdt. Ukazuje sa, že táto forma hrá rozho-
dujúcu úlohu aj v konštrukcii účinkového funkcionálu.
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θL := S(dL) Cartanova 1-forma 18.2.3

ωL := dθL Cartanova 2-forma 18.2.3

EL := △L− L energia pre lagranžián L 18.2

γ̇ = ζEL
, iζEL

ωL = −dEL Lagrangeove rovnice (na TM) 18.2.6

〈L̂(v), w〉 := (d/dt)|0 L(v + tw) Legendreovo zobrazenie L̂ 18.3.1

L̂ ◦ ΦL
t = ΦH

t vzt’ah medzi lagr. a hamil. tokmi 18.3.4

TRg zdvih akcie Rg z M na TM 18.4.1

T ∗Rg−1 zdvih akcie Rg z M na T ∗M 18.4.1

ξ̃X generátory zdvihnutého pôsobenia 18.4.1

PX = 〈θL, ξ̃X〉, PX = 〈θ, ξ̃X〉 “hamiltoniány” zdvihnutých akcíı 18.4.1

L = (1/2)
◦
g −

◦

φ prirodzený lagranžián na TM 18.4.6
∫

γ

(θ̂ −Hdt) ≡

∫

γ

(pdq −Hdt) účinok pre hamiltonovskú dynamiku 18.5.6

∫

γ̂

(θ̂L − ÊLdt) ≡

t2
∫

t1

L(γ̂(t))dt účinok pre lagranžovskú dynamiku 18.5.6

Zhrnutie 19. kapitoly

Ciel’om tejto kapitoly je preformulovat’ už známe fakty z teórie lineárnej
konexie (15. kapitola) do nového jazyka, v ktorom sa (v d’aľsej kapitole)
obzvlášt’ jasne odhaĺı možnost’ istého d’alekosiahleho zovšeobecnenia. Nový
opis sa odohráva na novom ihrisku, variete LM , ktorá sa dá kanonicky
priradit’ variete M . Jej bodmi sú všemožné repéry vo všemožných bodoch
na M . Zist’uje sa, že už bez konexie na M je v hre bohatá štruktúra: varieta
LM je totálnym priestorom hlavnej GL(n,R)-fibrácie s bázou M . Konexia
na M pridáva na LM d’aľsiu štruktúru, GL(n,R)-invariantnú horizontálnu
distribúciu. Pomocou nej sa dá operácia paralelného prenosu repéru po krivke
γ na M preformulovat’ cez konštrukciu horizontálneho zdvihu γh krivky γ.
Varieta LM dáva aj zauj́ımavú možnost’ technického opisu širokej triedy geo-
metrických objektov na M (špeciálne tenzorových poĺı, všeobecneǰsie poĺı
typu ρ) ako ekvivariantných funkcíı Φ na LM a tiež opisu ich paralelného
prenosu a kovariantnej derivácie (tá sa zmeńı na obyčajnú smerovú deriváciu
funkcie Φ).
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ω ≡ ωa
bE

b
a forma konexie na fibrácii repérov 19.2.1

R∗
Aω = A−1ωA, 〈ω, ξC〉 = C základné vlastnosti formy konexie 19.2.4

U, V ∈ D ⇒ [U, V ] ∈ D D je integrovatel’ná (Frobenius) 19.3

θi
∣

∣

D
= 0 ⇒ dθi

∣

∣

D
= 0 D je integrovatel’ná (iné vyjadrenie) 19.3

V ∈ Dh ⇔ 〈ω, V 〉 = 0 horizontálna distribúcia na LM 19.4.3

TeLM = Ver eLM ⊕Hor eLM rozklad indukovaný konexiou 19.4.5

〈ω, ˙̂γ〉 = 0 γ̂ zodpovedá autoparal. rep. pol’u 19.5.1

Φ ◦RA = ρ(A−1) ◦ Φ Φ je veličina typu ρ 19.6

Φ(γh(t)) = const. autoparalelné pole velič́ın typu ρ 19.6.5

Zhrnutie 20. kapitoly

Preklad pojmov súvisiacich s lineárnou konexiou do reči fibrácie repérov,
ktorý sa udial v 19. kapitole, odhal’uje možnost’ zovšeobecnenia. Namiesto
π : LM → M sa uvažuje π : P → M , hlavná fibrácia s grupou G. Kone-
xiou v tejto fibrácii sa nazve horizontálna distribúcia v totálnom priestore
P , ktorá je invariantná voči pôsobeniu grupy G. Technicky sa opisuje for-
mou konexie ω, čo je istá 1-forma s hodnotami v Lieovej algebre G grupy
G. Analógmi repérov sú body variety P a ich paralelný prenos sa stotožńı
s horizontálnym zdvihom krivky z bázy, po ktorej sa rob́ı prenos. (Lokálna)
závislost’ tohoto paralelného prenosu od cesty sa dá jednoducho vyjadrit’ v ter-
mı́noch integrovatel’nosti horizontálnej distribúcie a ako miera tejto integrova-
tel’nosti vstúpi do hry (cez Frobeniovo kritérium) pojem 2-formy krivosti Ω
(má tiež hodnoty v G). Ako formálny nástroj na výpočet formy krivosti sa
zavádza vonkaǰsia kovariantná derivácia D; pomocou nej dostávame vyja-
drenie Ω = Dω = dω + (1/2)[ω ∧ ω]. Poč́ıta sa tiež pôsobenie D na d’aľsej
triede dôležitých objektov, na horizontálnych formách typu ρ, kde sa źıskava
výsledok Dα = dα + ρ′(ω)∧̇α. Dvojnásobná aplikácia D dáva Bianchiho a
Ricciho identity. Ak je naM definovaná nejaká štruktúra, dá sa pomocou nej
často zostrojit’ istá podfibrácia hlavnej fibrácie, na ktorej pôsob́ı len podgrupa
pôvodnej grupy; hovoŕı sa o ohraničeńı štruktúrnej podgrupy. Napŕıklad me-
trickému tenzoru na M zodpovedá fibrácia ortonormovaných repérov (pod-
fibrácia fibrácie repérov). Za istých podmienok sa na podfibráciu ded́ı aj
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konexia; naopak konexia na podfibrácii indukuje konexiu na celej fibrácii,
ktorá je špeciálna v tom, že rešpektuje štruktúru, ktorá súviśı s podfibráciou.

Rg∗Hor pP = Hor pgP horizont. distr. je G-invariantná 20.2.1

ωp := Ψ−1
p ◦ ver : TpP → G 1-forma konexie v bode p ∈ P 20.2.4

R∗
gω = Ad g−1ω, 〈ω, ξX〉 = X zákl. vlastnosti formy konexie 20.2.5

π ◦ γh = γ, γh(0) = p 20.3.2

〈ω, ˙(γh)〉 = 0 horiz. zdvih γ, začiatok v p ∈ P 20.3.2

(horα)(U, . . . ) := α(horU, . . . ) horizontálna čast’ formy 20.3.4

Dα := hor dα vonkaǰsia kovar. derivácia formy 20.3.5

Ω := Dω = ΩiEi 2-forma krivosti na P 20.4.1, 3

Ω = dω + (1/2)[ω ∧ ω] Cartanova štruktúrna rovnica 20.4.3

Dα = dα+ ρ′(ω)∧̇α D na hor. formy typu ρ 20.4.6

DDω ≡ DΩ = dΩ+ [ω ∧ Ω] = 0 Bianchiho identita 20.4.4, 7

DDα = ρ′(Ω)∧̇α Ricciho identita 20.4.8

Ω = 0 ⇒ ∃σ : σ∗ω = 0 nulová krivost’ ⇒ úplný paral. 20.4.11

Zhrnutie 21. kapitoly

Konexie v hlavnej G-fibrácii sa dávajú do súvisu s kalibračnými pol’ami,
ktoré sú známe z fyziky. Najprv sa opisuje štandardný ”fyzikálny” pŕıstup,
ktorý spoč́ıva v zlokálneńı symetrie účinku, ktorý už je ”globálne” inva-
riantný. Toto zlokálnenie pridáva k teórii d’aľsie polia s konkrétnymi trans-
formačnými pravidlami a konkrétnou interakciou s pôvodnými pol’ami. Ukáže
sa, že tieto polia sa dajú interpretovat’ aj z pohl’adu teórie konexíı. Konkrétne
sa nahliadne, že fixovanie kalibrácie je dané výberom lokálneho rezu σ hlavnej
fibrácie, kalibračné potenciály (v tejto kalibrácii) sa źıskavajú stiahnut́ım
formy konexie na bázu (pomocou rezu), kalibračné transformácie súvisia
so zmenou rezu, intenzita kalibračného pol’a sa źıskava stiahnut́ım formy
krivosti a látkové polia stiahnut́ım ekvivariantnej funkcie na P . Odvodia
sa rovnice paralelného prenosu l’ubovol’nej veličiny typu ρ v kalibrácii σ.
Zavedie sa pojem asociovanej vektorovej fibrácie (ktorá vznikne z hlavnej
fibrácie nahradeńım pôvodného vlákna reprezentačným priestorom grupy G).
Ukazuje sa, akú štruktúru majú účinkové integrály, ktoré sú lokálne kali-
bračne invariantné a ako sa z nich odvodia pohybové rovnice (sú zovšeobec-
neńım Maxwellových rovńıc z elektrodynamiky, ktorá je kalibračnou teóriou
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s grupou U(1)). Zoznamujeme sa s Nötherovej vetou, ktorá dáva do súvisu
symetrie účinkových integrálov so zákonmi zachovania. Táto veta vrhá nové
svetlo aj na staršie výsledky v tomto smere, spojenie zákonov zachovania
s tenzorom energie-hybnosti v teórii pol’a a s exaktnými Cartanovými syme-
triami v hamiltonovskej mechanike. V poslednom paragrafe sa vraciame na
fibráciu repérov LM a zoznamujeme sa s kanonickou 1-formou θ s hodnotami
v R

n. Táto forma úzko súviśı s torziou naM . Vysvetl’uje sa tam tiež ako sa dá
(pre lineárnu konexiu) využit’ vonkaǰsia kovariantná derivácia D na báze M .

φ 7→ e−iα(x)φ, A 7→ A+ dα(x) U(1)-lok. kalibr. transformácia 21.1.2

σ̂(x) = σ(x)S(x) ≡ RS(x)σ(x) dva rezy vo vzt’ahu cez S ∈ GU 21.2.1

φ̂ = B−1φ lok. kalibr. transf. látkového pol’a 21.2.5

Â = B−1AB +B−1dB to isté pre kalibračný potenciál 21.2.5

F̂ = B−1FB to isté pre intenzitu pol’a 21.2.5

v̇ + 〈A, γ̇〉v = 0 rovnica paral. prenosu 21.3.2

S[φ,A] = −(1/2)〈DA,DA〉k

+ (1/2)〈Dφ,Dφ〉h

− (m2/2)〈φ, φ〉h účinok viazanej sústavy (φ,A) 21.5.6

D+F = −J

DF = 0

(D+D −m2)φ = 0 zodpovedajúce pohybové rovnice 21.5.6

S[ρ(eǫs(x))ψ] = S[ψ] + ǫ〈ds, j〉k výpočet nötherovského prúdu j 21.6.1

ji = T (ξEi
, . ) nöther. prúd za Killingov vektor 21.6.6

Θ := Dθ torzia vo formalizme na LM 21.7.2
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Zhrnutie 22. kapitoly

Špeciálne ortogonálne grupy SO(p, q) majú univerzálne dvojlistové nakrý-
vajúce grupy, ktoré sa volajú spinové grupy a označujú sa Spin (p, q). Celá ich
teória sa systematicky buduje pomocou Cliffordových algebier. Konštruuje sa
izomorfizmus týchto algebier na vhodné maticové algebry (ich verná reprezen-
tácia) a pomocou neho sa zavádza pojem spinora ako vektora reprezentačného
priestoru Cliffordovej algebry. Spinové grupy sú podmnožiny v Cliffordovej
algebre a preto ohraničenie spomı́nanej vernej reprezentácie algebry je aj
reprezentáciou spinovej grupy. Tým na spinoroch pôsob́ı aj spinová grupa
(a dvojznačne aj ortogonálna grupa). Táto jej reprezentácia sa volá spinorová.
Pre niektoré špeciálne hodnoty (p, q) existujú špeciálne typy spinorov (wey-
lovské, majoranovské, ...). Spinová štruktúra na M je hlavná fibrácia nad
M (spinová fibrácia), ktorá dvojlistovo nakrýva fibráciu ortonormovaných
repérov a vo vláknach ktorej pôsob́ı spinová grupa. Spinová štruktúra sa
nedá zaviest’ na každej variete. Ekvivariantné funkcie typu ρ na totálnom
priestore spinovej fibrácie (a tiež ich stiahnutia na bázu pomocou rezu), kde
ρ je spinorová reprezentácia, sa volajú spinorové polia na M . Pol’u 1-foriem
typu ρ zodpovedá Raritovo-Schwingerovo pole. Na spinorové polia pôsob́ı
špeciálny operátor prvého rádu, ktorý sa volá Diracov operátor. Vznikol vo
fyzike v kvantovej teórii relativistického elektrónu - vyskytuje sa v Diracovej
rovnici.

eaeb + ebea = 2gab vzt’ahy pre Cliffordov súčin 22.1.1

u = α1 . . . αk, g(αj , αj) = ±1 prvky grupy Pin (p, q) 22.2.1

ueau−1 =: (A−1)abe
b nakrytie Spin (p, q) → SO(p, q) 22.2.3

(1/2)eaeb 7→ Eab odv. izom. spin (p, q) → so(p, q) 22.2.7

γa := ρ(ea) γ-matice 22.3.1

Dψ = dψ + (1/4)ω̂abγ
aγbψ vonk. kovar. der. spinor. pol’a 22.5.1

χα
µ(x)dx

µEα ≡ χα
a (x)e

a(x)Eα Raritovo-Schwingerovo pole 22.5

D/ := iE/ ◦D ≡ γaiEa
D Diracov operátor na SM 22.5.3

D/ = ie/ ◦ D ≡ γaieaD Diracov operátor na M 22.5.3

D/ψ = γaeµa(∂µψ + (1/4)ωbcµγ
bγcψ) Dir. operátor na spinor. poli 22.5.4

D/ψ = γaeµa(∂µψ + (1/2)αµγ5ψ) zjednodušenie pre 2-rozm. M 22.5.4

ρ(u)ατ ρ(u
−1)σβA

a
bγ

bτ
σ = γaαβ γ-matice sú inv. tenzory 22.5.11
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REGISTER

A B
absolútna derivácia 398, 402, 407 báza fibrácie 515
adaptovaná báza 58 Bettiho č́ısla 219
-á na podpriestor W 565 Bianchiho identita 442, 606, 608, 635
-é súradnice 24 biharmonické súradnice 76
adiabatický proces 571 bilineárne spárenie 168, 713
adiabata 571 bivektorové pole 352
adjungovaný 139 bodkované indexy 332
afinná konexia 618, 663 bodovost’ konštrukcie 60
-á grupa 229, 235, 241, 244, 247 boost 100, 331
-é transformácie 229
akcia = pôsobenie 313 C
- efekt́ıvna 342 Cartanova algebra 142
- tranzit́ıvna 315, 560, 587 -ova 1-forma 535
algebraicky uzavreté pole 277 -ova 2-forma 535
algebra -ova symetria 371
- asociat́ıvna 40, 52, 714 - - exaktná 371, 541
- funkcíı na variete M 40 -ove štruktúrne rovnice 437, 606, 634
- horizontálnych foriem na P 602 -ove vzorce 149, 306
- kvaterniónov 678 -ov účinok 495
- Lieova 89, 98, 242, 716 Casimirove operátory 288, 336
- pozorovatel’ných 357 Cauchyho veta 205
A-modul 717 Cauchyho-Riemannove vzt’ahy 103, 204
Ampérov zákon 469 celkový moment hybnosti 342
anihilátor 59, 228, 392, 565 centrálne pole 551
anihilovat’ 565 Clebschov-Gordanov rad 305
ansatz 101 Cliffordova algebra 138, 674, 675
antikomutujúce premenné 127 -ov súčin 675
antisamoduálna forma 204 cyklické súradnice 543
antisymetrická čast’ 111 cyklus 217
atlas 23 Ck-atlas 23
automorfizmus 223, 358, 715, 716 Ck-pŕıbuzná mapa 23
- grupy 282 Ck-varieta 23
- Lieovej algebry 283 Ck -̌struktúra 23
autonómna sústava 46
autoparalelná veličina 638, 642 Č
-é pole 399, 403, 407, 578 časový vývoj stavov 359
azimut 77, 452 čistý stav 358, 385
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D Einsteinova-Cartanova teória 493
D’Alambertov operátor 463 Einsteinove rovnice 489
Darbouxova veta 361 -ove rovnice vo vákuu 492
deformačná retrakcia 215 -ove 1-formy 495
degenerovaný rovnobežnosten 109 -ov tenzor 489
deRhamov komplex 218 ekvivalentné fibrácie 516, 588
derivácia algebry funkcíı 43 -né funkcie 601
- Cartan. alg. stupňa +1 147, 602 -né reprezentácie 276
- tenzorovej algebry 87 ekvivariantný izomorfizmus 276
- asociat́ıvnej algebry 715 -ný difeomorfizmus 588
- Lieovej algebry 310, 716 -né zobr. 275, 317, 320, 376, 580, 591
- stupňa k 719 endomorfizmus 253
determinant matice 125 energia 536
determinant zobrazenia 132 energia pol’a 481
difeomorfizmus 28, 224 entropia 572
difeomorfné variety 28 euklidovská grupa 543
diferenciálne formy 108 -ské transformácie 99, 339
- typu ρ 345 -ský priestor 99
diferenciál (zobrazenia) 70 -ský p-simplex 164
diferenciál (v komplexe) 217 Eulerova-Lagrangeova 1-forma 426, 476
Diracov operátor 673, 702 Eulerovo-Lagrangeovo pole 536
-ova reprezentácia 690 Eulerov-Lagrangeov výraz 537
-ova rovnica 673 Eulerove uhly 263
-ovské spinory 690 exaktná forma 208
Dirichletova úloha 193, 194 -ná symplektická forma 354
diskrétna topológia 19 -né Cartanove symetrie 371, 541
divergencia vekt. pol’a 182, 197 -né prvky 217

d́lžka krivky 65, 66, 96 exponenciálna grupa 262
dotyková fibrácia 514, 517 -ne zobrazenie 248, 422
-ový funktor 519, 524
-ový priestor 39 F
-ový vektor 45 faktoralgebra 119, 715, 716
druhá veta termodynamická 571 faktorpriestor 219
dráha (cesta) 66 Faradayov indukčný zákon 468
duálna báza 48 fázový priestor 357, 363, 543
-ny priestor 48 - objem 368
dvojhladinová sústava 385 - tok 359
dvojlistové nakrytie 324, 715 fibrovaná varieta 515
dvojznačná reprezentácia 333 fibrované zobrazenie 516, 617
dv́ıhanie indexov 56 fibrácia 515

-cia hlavná 586
E -cia repérov 559
efekt́ıvna akcia 342 -cia afinných repérov 663
- potenciálna energia 551 -cia ortonormovaných repérov 614
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f́ıber 515 -na kalibračná transformácia 627, 628
F(M)-linearita 60 gradient 61, 66, 197
formy (diferenciálne) 108 graduovaná algebra 53, 117, 719
forma konexie 433, 562 -ná Lieova algebra 144, 719
- krivosti 434, 604 -ne komutat́ıvna 112, 143
- objemu 128, 152, 225, 368 -ný komutátor 144
- typu ρ 345 graf zobrazenia 29
- typu Ad 598 gravit́ıno 701
- s hodnotami vo V 156 Greenove identity 193
- torzie 434 -va veta 182
1-forma konexie 597
- práce 571 H
- tepla 571 hamiltonián 353, 385
- prúdu 466 Hamiltonove rovnice 47
2-formy torzie 665 hamiltonovská sústava 363, 536
2-forma elmag. pol’a 465 -ské pole 352, 355, 536
3-formy prúdu 466 -ský tok 359
Foucaultovo kyvadlo 414 harmonická funkcia 193, 204, 205, 502
-ov uhol 433, 446 -ké zobrazenie 503
Fourierov rozklad 346 Hausdorffov priestor 20
f -pŕıbuzné 70, 81 Heisenbergov obraz 359
Frobeniovo kritérium 567 hermitovský skalárny súčin 227
fundamentálna reprezentácia 332 Hilbertov účinok 490
-ne pole pôsobenia Rg 335 hladká distribúcia 564, 565
funkcia 37 -ká štruktúra 24
funkcionál d́lžky 426 -ká varieta 23

-ká väzba 31
G -ké pôsobenie 314
Gaussov integrál 127 -ké vektorové pole 43
γ-matice 688, 692 -ké tenzorové pole 60
-ova krivost’ 439 hlavný automorfizmus 118
-ova veta 184, 199 -ná G-fibrácia 560, 586
-ov zákon 469 -ný homogénny priestor 320, 560, 587
generátor algebry 118 hmotnostný člen 474, 475
- modulu 44 Hodgeov operátor 133
- reprezentácie 268 holomorfná funkcia 103, 204, 205
- pôsobenia (akcie) 336 holonomická grupa 433
geodetické okolie 421 holonómia 433
-á deviácia 449 homeomorfizmus 19
geodetika 397, 546 homogénna forma 117
G-invariantný lagranžián 542 -e súradnice 25
globalizovat’ 62 -y člen 52
globálna trivializácia 516, 588 -y priestor 315, 319, 382, 587
-ne hamiltonovská 375, 382, 542 -y tenzor 101
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homológia 217 -é pole 84
homotópia 211, 609 -ý lagranžián 542
homotopická nule 609 -ý podpriestor 274
-é cesty 609 -ý skalárny súčin 272
-é zobrazenia 211 -ý tenzor 303
-ý operátor 211, 216 inverzia 487
homotétia 97 ireducibilná reprezentácia 274
Hopfova fibrácia 590, 592, 595, 694 izometria 22, 56, 96, 503, 659
-vo zobrazenie 28 izotrópny 101
horizontálna distribúcia 574
-a forma 389, 602 J
-a forma typu ρ 701 Jacobiho identita 358
-a krivka 578 - rovnica 449
-y podpriestor 574, 595 jednoducho súvislá 324
-y rez 611 jednoparametrická podgrupa 245
-y vektor 574, 597 -á grupa transformácíı 82
-y zdvih krivky 578, 600
-y zdvih vektora 574, 599 K
hranica 217 kalibračná grupa 623
hraničný operátor 164, 167, 218 -á podmienka 212
hustota lagranžiánu 472 -á transformácia 476, 623, 631, 633
hustota 176 -e invariantný 473, 645
- skalárna 128, 154, 582 -é pole 623
- tenzorová 585 -ý potenciál 627, 629, 637
hybnost’ pol’a 481 kanonická hybnost’ 543
hyperplocha 32 -á plochá konexia 601

-á projekcia 28, 318, 511, 515
CH -á 1-forma na G 244, 262, 284
charakteristický podpriestor 140 -á 1-forma na LM 664
chirálne spinory 690, 691 -á 1-forma na T ∗M 529
Christoffelove symboly 402 -é spárenie 63, 713
- 1. druhu 411 -é súradnice 362, 512

-á symplektická forma na T ∗M 529
I -é transformácie 363
ideál 296, 356, 372, 391, 715, 716 -é vloženie 174
indexová gymnastika 56 kartézsky priestor 20
indukovaný metrický tenzor 58, 75 -y súčin variet 25
integrálna krivka 45 Kählerova-Atiyahova algebra 676
-e invarianty Cartanove 367 Kählerove fermióny 704
integrál prvého druhu 177 Killingova-Cartanova forma 286
- druhého druhu 177 Killingove rovnice 97, 424
intenzita kalibr. pol’a 628, 629, 646 -ove vektory 98, 338, 480, 546, 548
interakčný člen 472, 476 kinetická energia 65, 545
invariantná forma 366 -ý člen 472, 474, 475
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kladná definitnost’ 54 -é Killingove vektory 102, 485
Kleinova-Gordonova rovnica 474 -é Killingove rovnice 102
Kleinova fl’aša 31 kongruencia 47
koadjungované pôsobenie 376, 379 konjugácia 282, 314
-á reprezentácia 292 konjugovaná podgrupa 316
kocyklus 217, 377 kontaktná forma 554
kodiferenciál 189, 443, 644 -á štruktúra 554
kodotyková fibrácia 514, 517 kontragradientná reprezentácia 270
-ý priestor 59 kontrakcia 53, 300
koeficienty konexie 401 kontúr 173
- anholonómie 214, 445, 703 korepérne pole 94
koexaktnost’ 215 kotangenciálny priestor 58
kohomologická grupa 219 kouzavretá forma 204, 205, 215
-á trieda 218 kovariantná derivácia 400, 627
-é kocykly 217 -á divergencia 443
kohomológia 217, 219 -ý gradient 396
-ie Lieovej algebry 308 -ý funktor 519
kohranica 217 -ý kodiferenciál 647
komomentové zobrazenie 379 -ý tenzor 71
kompaktná Lieova grupa 253, 274 -e konštantné pole 406, 453
-á Lieova algebra 291 kovektor 48, 59
-á varieta 189 krivka 37
kompatibilné štruktúry 230 krivočiare súradnice 24
kompenzačné pole 628 krivost’ skalárna 431
komplexná Lieova grupa 234 - Gaussova 439
komplexná varieta 26 k-rozmerná hladká distribúcia 564
- reprezentácia 277 kvadratický Casimirov operátor 288
komplex 217, 308 kvaternióny 714
komponenty pol’a 42, 43 kvázilineárna sústava 46
-ty tenzora 51
-ta súvislosti jednotky 261 L
-tné formy 156 Lagrangeova veta 319
-tné funkcie 341 -e rovnice 419, 426, 534
-tné polia 344 Lamého koeficienty 200
kompozičný zákon 231 Laplaceova rovnica 193
komutat́ıvna grupa 278 Laplaceov-Beltramiho operátor 186, 434
komutátor 89, 716 Laplaceov-deRhamov operátor 189
konexia na hlavnej G-fibrácii 595 látkové pole 629, 648
konečne generovaný 44 Legendreovo zobrazenie 539
konfiguračný priestor 77, 541 lema o vyrovnańı 83
konformne invariantná 136, 489 Levi-Civitova konexia 411
-á transformácia 97, 488, 659 Levi-Civitov symbol 123
-á trieda 505 Lieova algebra 89, 243, 716
-é preškálovanie metriky 135, 485 -a derivácia 80, 86
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-a grupa 230, 234 Majoranova reprezentácia 688
-a podgrupa 234 malá grupa 316
-a zátvorka 89 mapa 23
-a superalgebra 144, 719 matica hustoty 385
-sky konštantné 86 maticová algebra 714
-ský prenos 85 - grupa 234
lift (zdvih) 522 Maurerova-Cartanova 1-forma 244
lineárna konexia 400 Maurerove-Cartanove vzt’ahy 244
-e formy 48 maximálny Ck-atlas 23
-e pole 615 Maxwellov posuvný prúd 469
-y priestor 710 metrická forma objemu 129
-y funkcionál 40 - konexia 409
-y operátor 43, 85 -ý tenzor 54, 613
Liouvillova forma 368 minimálna interakcia (väzba) 629, 645
-a rovnica 385 Minkowského priestor 65, 458
-a veta 368 množina úrovne 32
-o pole 545 modul 44
lokálna trivializácia 515 modulo 2 120
-a kal. transformácia 625, 627, 631 momentové zobrazenie 379, 542
-e izometrické variety 101 moment hybnosti pol’a 481
-e kalibračne invariantný 645 morfizmus hlavných fibrácíı 617
-e Lorentzove transformácie 498 - vektorových fibrácíı 519
-e súradnice 23 - Cartanových algebier 143, 602
-e súčinová štruktúra 515 - tenzorových algebier 74
-e triviálne 516 multilineárne 50
-y homeomorfizmus 324 mydlové bubliny 507
-y rez 517, 562 Möbiov list (pásik) 151
-y tok 80 -ova transformácia 321
Lorentzova grupa 224, 277, 328
-a (štvor)sila 477 N
-ská varieta 486 nabité častice 629
loxodróma 77, 452 náboj 279, 651

nadplocha 32
L’ nakrytie 324
l’avoinvariantné tenzorové pole 235 nakrývajúci homomorfizmus 324
-ý metrický tenzor 289 neabelovská kalibračná grupa 648
l’avá akcia (pôsobenie) 313, 717 nebodkovaný spinor 332
-á regulárna reprezentácia 335 nedegenerovaná 2-forma 354
-á translácia 234, 338 -ý (= regulárny)lagranžián 535
-á zvyšková trieda 318 neholonómne repérne pole 94
-ý G-priestor 322 nehomogénna forma 120

nelineárne pole 509, 630
M - realizácie 322
magnetický náboj (monopól) 478 -y sigma model 509
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neorientovatel’ná varieta 152 - objem 109
nepárne parametre 144 -el’ná varieta 32, 152, 236, 577, 665
nepárny voči chiralite 708 orientácia v L 122
nesingulárny lagranžián 535 ortogonálne matice 224
nesúradnicové repérne pole 94 -e súradnice 64
Neumannova okr. podmienka 194 -a grupa 225
Newtonov-Leibnizov vzorec 181 -a transformácia 684
Nijenhuisov tenzor 538 -y doplnok 275
nilpotentný 164, 167, 217, 308 ortonormovaná báza 55
n-listové nakrytie 324 otvorená množina 19
normálna podgrupa 322 -é pokrytie 23
-ne súradnice 249, 423
-ová derivácia 194 P
Nötherovej veta 655 paralelizovatel’ná 223, 236, 577, 665
-ské náboje 655 paralelný prenos 404, 407
-ské prúdy 655 -e prenášaná veličina typu ρ 641
nulové body 81 -e prenášaný zovšeob. repér 601
-ý rez 588 parametrické vyjadrenie 32

parametrizácia 37
O Pauliho matice 258, 304, 692
objem oblasti 175, 172, 506 p-delta 123
- podvariety 177 per partes 182
- rovnobežnostena 108 pevné body 81
obojstranne invariantný integrál 253 pfaffián 126
- -ý metrický tenzor 289 Pfaffove formy 571
- -á forma objemu 291 plochá konexia 453, 502
obojstranný ideál 119 podalgebra 715, 716
obrátenie Poincarého lemy 212 -fibrácia 613
odvodená reprezentácia 270 -reprezentácia 274
ohraničenie fibrácie 613, 618 -varieta 29
- na podgrupu 267 podmienka integrovatel’nosti 569
- reprezentácie 274 - nestlačitel’nosti 184
- štruktúrnej grupy 613 Poincarého lema 212
- formy 174 - transformácie 99
ohraničujúca 1-forma 565 Poissonov tenzor 352
Ω-divergencia 369 -a rovnica 193, 194
operátor dualizácie 133 -e zátvorky 352
- krivosti 428 -ské pôsobenie 379, 382, 387, 542
- kvadrátu momentu hybnosti 289 -ská varieta 352
- paralelného prenosu 404, 407 polarizačný vektor 385
- spinu 342 polárny rozklad 330
orbita 315 pole posunut́ı 104
orbitálny moment hybnosti 338 - rovnice 2. rádu 534
orientovaný atlas 152 - rýchlost́ı 105, 184
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- typu ρ 582 projektovatel’né pole 71, 251
polopriamy súčin grúp 295 projekt́ıvny priestor 25
- súčet Lieových algebier 296 prvá veta termodynamická 571
poloprosté Lieove algebry 288 pseudometrický tenzor 54
polylineárne zobrazenie 50 -euklidovský priestor 99
póly funkcie 207 -ortogonálna grupa 224
pôsob́ı sprava, zl’ava 313 -ortogonálna matica 224
pôsobenie grupy 313 -sféra 76
potenciál 208 -riemannovská varieta 63
-na energia 66, 545, 544 pull-back 69, 70, 72, 73
-ové silové pole 66 push-forward 70, 73
pozorovatel’ná 357 p-forma 110
práca sily 213 p-forma na variete 142
pravá translácia 234, 338 p-ret’azec 164
-á akcia (pôsobenie) 129, 313 p-ret’azec na variete 166
-á regulárna reprezentácia 335
-ý G-priestor 313 R
pravoinv. forma objemu 273 rád (konečnej) grupy 235

pred́lženie fibrácie 618, 694 rang bivektora 354
preurčené rovnice 97 - formy 139
priamy súčet l. pr. 52, 228, 575, 710 - lineárneho zobrazenia 58
- asociat́ıvnych algebier 715 - 2-formy 354
- Lieových algebier 293, 717 - tenzora 51
- reprezentácíı 297 Raritovo-Schwingerovo pole 701
priamy súčin grúp 292 reducibilná reprezentácia 274
- reprezentácíı 297 redukcia fibrácie 618
pridružená fibrácia 642 - (symplektická) grupou G 390
- reprezentácia = Ad 283 -ovaná hamil. sústava 391
priestorová oblast’ 464 -ovaná symplektická varieta 390
-á forma 460 -ované pole 390
-á Stokesova veta 464 -ovaný fázový priestor 390
-á vonkaǰsia derivácia 461 regulárny lagranžián 535
-ý Hodgeov operátor 462 relat́ıvna invariantnost’ 366
-ý kodiferenciál 463 -a rýchlost’ 448
-ý Laplaceov-deRhamov oper. 463 -e zrýchlenie 448
priestoročas 65, 458, 489 reparametrizácia krivky 46, 66
priestorupodobná nadplocha 77 -začne invariantný 66, 507
prinćıp ekvivalencie 486 reprezentácia grupy 267
prirodzený lagranžián 545 - Lieovej algebry 268
-ý parameter 420 - Cliffordovej algebry 688, 690
-ý zdvih krivky 522, 555 repérne pole 94
- voči difeomorf. 191, 478, 659 rez 568
Procova rovnica 475 reźıduum 207
projektor 111, 280 Ricciho formy 489
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- identita 442, 608, 635 -á konexia 444, 696, 703
- koeficienty rotácie 444, 703 -á štruktúra 694
- tenzor 431 splietajúci operátor 276, 300
Riemannova konexia 411 spojité zobrazenie 19
-ov tenzor (krivosti) 430 spúšt’anie indexov 56
-ovská geometria 63 stabilizátor 316
-ovská varieta 63 stabilný bod 315
ρ-invariantný skalárny súčin 271 stacionárna podgrupa 316
R-linearita 60 -e prúdenie (tečenie) 47, 184
rotačné matice (Wignerove) 347 stavová veličina 208, 571
rotácia (vektorového pol’a) 197 stereografická projekcia 24
rovnica kontinuity 467 stiahnutel’ná varieta 210
-e paral. prenosu 404, 407, 638 642 Stokesova veta 174, 199, 215
rovnomerný priamočiary pohyb 396 stredná hodnota 178
rozklad jednotky 280 stredovanie cez grupu 273
- grupy 318 stupeň 117
rozložitel’ná forma 139 superalgebra 719
rozmer reprezentácie 267 -komutátor 144, 719
rozš́ırenie fibrácie 618 -matematika 120
-ný fázový priestor 552 súradnicová báza 42, 43, 61, 93

-á krivka 39
S -é vyjadrenie 27, 37,
samoduálna forma 204 súvislý priestor 260
samointerakcia 648 súčinová fibrácia 515, 568
samozdružený operátor 190 -á hlavná fibrácia 587
sférické funkcie 348 svetočiara 476, 508
Schrödingerov obraz 359 -plocha 508
Schurova lema 277, 278 Sylvestrova veta 54
siločiary 45 symetrizácia 114
singulárny ret’azec 218 symetrická konexia 410
skalárna elektrodynamika 625 symplektická forma 354
-a hustota 128, 154, 582 -á grupa 225
-a krivost’ 431 -á redukcia 548
-e pole 474, 499, 502 -á varieta 354, 536
-y súčin 54, 136, 188 -é pole 355
-y potenciál 471 -é zobrazenie 359
smerová derivácia 40 -ý ortogonálny doplnok 387
soldering 586 -é pôsobenie (akcia) 374
spinorové indexy 700 symplektomorfizmus 358, 359
-á reprezentácia 328, 332, 688
-é pole 499 Š
-é pole na báze 695 štandardná orientácia 150
spinory 328, 688 -á topológia v R

n 21
spinová fibrácia 618, 693 -é horizontálne polia 577
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-á hladká štruktúra v R
n 24 triviálna fibrácia 516, 588

-ý n-simplex v R
n 165 - topológia 19

-ý (plochý) metr. tenzor v R
n 63 typické vlákno 515

štrukt. konštanty 243, 706, 715, 717 typu Ad 598
štvorpotenciál 470
štvorsila 477 U
štvorzrýchlenie 477 unimodulárne repéry 619

unitárna reprezentácia 272
T - matica 227
tabul’ka násobenia 235 univerzálne nakrytie 715
tangenciálny priestor 39 -a nakrývajúca grupa 324, 685
teleparalelizmus 453 uzavretá forma 208
tenzor deformácie 104 -á plocha 174
- energie hybnosti 479, 489, 658 -ý prvok 217
- kontrakcie 63 U(1)-náboj 279
- krivosti 430
- napätia 105 Ú
- rýchlosti deformácie 105 úplne reducibilná 275
- torzie 410 úplný zdvih 525, 527, 541, 542, 545
tenzorová algebra 52 -ý paralelizmus 453, 610
-á fibrácia 643 účinok 418
-á hustota 582
-á operácia 53 V
-é pole 59, 582 variácia potenciálu 471
-é pole typu ρ 345 - počiatočných podmienok 447
-ý súčin tenzorov 51 -čná derivácia 472
-ý súčin priestorov 160, 711 varieta repérov 558
-ý súčin mat́ıc 712 - hladká 23
-ý súčin algebier 715 väzby 77
teória kohomológíı 217 vektorová fibrácia 517, 588, 643
- momentu hybnosti 288 -é pole 42, 475
- strún 508 -ý súčin 199
termodynamika 570 -ý potenciál 471
tetrádny formalizmus 94, 444 vektor spinu 385
-e pole 94, 443, 494, 703 veličina typu ρ 582, 601, 641
-ový postulát 444 vertikálna akcia 388, 560
tok 47 -y podpriestor 520, 561, 573, 595
topologický priestor 19 -e pole 388
topológia 19 -a distribúcia 573
torus 28, 34 -y endomorfizmus 529
torzia 410, 450, 665 -y zdvih kovektora 525
totálny priestor 515 -y zdvih vektora 523
tranz. pôsob. (akcia) 315, 560, 587 -y zdvih tenzora 524
triedy Ck 21 -y vektor 521
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veta o homomorfizme 323
- ”o vnoreńı” 30 W
viacznačná reprezentácia 333 Weylova báza 238
vielbeinové pole 94, 444, 507, 703 -e spinory 691
v involúcii 372 Wignerove rotačné funkcie 347
vlastná funkcia 348
-ná hodnota 348 Z
-ná Lorentzova grupa 685 zachovávajúca sa veličina 372, 480
-ná ortochrónna Lor. grupa 328, 590 zachováva orientáciu 171
-ný čas 476 zámena súradńıc 23
vlákno v bode x 515 združený 139
vlnový operátor 463 zdvih 522
vloženie 29, 75 - pôsobenia grupy 542
vnorenie 29, 75 - zobrazenia 132, 518
vnútorná derivácia 716 Z2-graduovanost’ 692
-ý súčin 121, 355 zlomkovo-lineárna transf. 321
-ý automorfizmus 282, 717 zložky 42, 43, 51
vol’ná akcia (pôsob.) 342, 560, 587 zmiešaný stav 357, 385
vonkaǰsia algebra 117, 127 zobrazenie 22
-a derivácia (kovariantná) 147 (602) - fibrácíı 516
-a normála 173 zovšeobecnená sila 419
-́ı súčin 112, 157 -é súradnice 77
vytvárajúca funkcia 364 zrýchlenie 395, 477
výkon elektrického pol’a 477 zúženie 53
významné repéry 619
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REGISTER (často použ́ıvaných) OZNAČENÍ

absolútna derivácia v smere krivky γ ∇γ̇ 12.3.2

algebra (hladkých) funkcíı na M F(M) 2.2.5

algebra pozorovatel’ných A(M) 14.1.9

algebra (asociat́ıvna) reálnych n× n mat́ıc R(n),Mn(R) 11.7.1

algebra (Lieova) reálnych n× n mat́ıc gl(n,R) 11.7.2

algebra tenzorových poĺı na M T (M) 2.5

Cartanova algebra diferenciálnych foriem na M Ω(M) 6.1

Cartanova 1-forma a 2-forma (na TM) θL, ωL 18.2.3

Cliffordova algebra C(L, g), C(p, q) 22.1

Diracov operátor D/ 22.5.3

Diracov operátor na báze M D/ 22.5.3

dotyková fibrácia π : TM →M 17.1.1

dotykové zobrazenie v bode x ∈M Txf 3.1.2

dotykový vektor ku krivke γ γ̇ 2.2.2

dotykový priestor v bode x ∈M TxM 2.2.2

duálny priestor L∗ 2.4.1

Einsteinov tenzor Gab 16.5.

elektrické a magnetické polia E,B 9.2.9

euklidovský priestor En 2.6

fibrácia ortonormálnych repérov π : OM →M 20.5.5

fibrácia repérov π : LM →M 19.1.1

forma konexie na totálnom priestore P ω 20.2.5

formy konexie (lineárna konexia na M) ωa
b 15.6.1

forma krivosti na totálnom priestore P Ω 20.4.1

formy krivosti (lineárna konexia na M) Ωa
b 15.6.3

formy torzie T a 15.6.3

fundamentálne pole (generátor pôsobenia) ξX 13.4.3

hamiltonovské pole generované funkciou f ζf 14.1.6

Hodgeov operátor dualizácie ∗, ∗g 5.8.1
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horizontálna distribúcia Dh 19.4.3

horizontálny zdvih krivky γ γh 20.3.2

horizontálny zdvih vektora v vh 20.3.1

horizontálne p-formy typu ρ na P Ω̄p(P, ρ) 21.2

hraničný operátor ∂ 7.2.2

Christoffelove symboly Γk
ij 15.2.3

intenzita kalibračného pol’a F 21.2.4

intenzita kalibračného pol’a (reprezentovaná) F 21.2.4

kalibračný potenciál A 21.2.4

kalibračný potenciál (reprezentovaný) A 21.2.4

kanonická 1-forma na G (Maurer-Cartan) θ = θiEi 11.2.6

kanonická 1-forma na T ∗M θ = padq
a 17.6.5

kanonická 1-forma na LM θ = θaEa 21.7.1

kanonická 2-forma na LM s konexiou Θ = Dθ = ΘaEa 21.7.2

kanonické spárenie L a L∗ 〈α, v〉 2.4.2

kanonické (Darbouxove) súradnice na (M,ω) (qa, pa) 14.2.2

koadjungované pôsobenie (reprezentácia) Ad ∗ 12.3.19

kodiferenciál δ, δg 8.3.2

kodotyková fibrácia τ : T ∗M →M 17.1.4

kodotykový priestor v bode x ∈M T ∗
xM 2.5

komutátor v Lieovej algebre G grupy G [X,Y ] 11.2.2

konjugácia prvkom g Ig 12.3.1

kontragradientná (duálna) reprezentácia ρ̌ 12.1.8

kovariantná derivácia v smere pol’a V ∇V 15.2.1

kvaternióny, komplexné a reálne č́ısla H,C,R 22.1.4

Laplaceov-deRhamov operátor ∆,∆g 8.3.3

Lieova algebra grupy G,H, . . . G,H, . . . 11.2.2

Lieova derivácia v smere pol’a V LV 4.2

Lieova grupa G,H, . . . 10.2

metrická forma objemu ωg 5.7.3

operátor krivosti R(U, V ) 15.5.1

ortogonálna grupa O(n), O(n,R) 10.1.5

Poissonov tenzor P 14.1.1

Poissonova zátvorka funkcíı f a g {f, g} 14.1.1
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pravé a l’avé pôsobenie grupy Rg, Lg 13.1

pridružená reprezentácia Lieovej grupy Ad ,Ad g 12.3.2

pridružená reprezentácia Lieovej algebry ad , adX 12.3.5

pseudo-euklidovský priestor Er,s 2.6

pseudo-ortogonálna grupa O(r, s) 10.1.5

pull-back f∗ 3.1.4

push-forward f∗ 3.1.2

reprezentácia grupy ρ(g) 13.1

Ricciho tenzor Rab 15.5.

skalárna krivost’ R 15.5

skalárny súčin foriem v (L, g) (α, β)g 5.8.4

skalárny súčin foriem na (M, g) 〈α, β〉 8.3.1

skalárny súčin foriem z Ω̄p(P, ρ) 〈α, β〉h 21.5.1

spinová fibrácia π : SM →M 22.4

symplektická forma ω 14.1.4

symplektická grupa Sp (m,R) 10.1.6

špeciálna ortogonálna grupa SO(n), SO(n,R) 10.1.8

špecialna unitárna grupa SU(n) 10.1.12

štruktúrne konštanty voči Ei cijk 11.2.2

tenzorové polia typu (r, s) na M T r
s (M) 2.5.2

tenzory typu (r, s) v L T r
s (L) 2.4.5

tok generovaný vektorovým pol’om V ΦV
t ,Φt 2.3

unitárna grupa U(n) 10.1.12

účinkový integrál (funkcionál) S[γ], S[A], . . . 15.4.4

vnútorný súčin iv, vy 5.4.1

vonkaǰsia algebra priestoru L ΛL∗ 5.3

vonkaǰsia derivácia d 6.2.5

vonkaǰsia kovariantná derivácia D 20.3.5

vonkaǰsia kovariantná derivácia na báze D 21.2.4

vonkaǰśı súčin foriem α ∧ β 5.4.1

vonkaǰśı súčin foriem s hodnotami v G [α ∧ β] 11.2.6

vonkaǰśı súčin foriem s hodnotami v G a W α∧̇β 20.4.5

všeobecná afinná grupa GA(n,R) 10.1.15

všeobecná lineárna grupa GL(n,R) 10.1.3

2-forma elektromagnetického pol’a F 16.2.1


