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PREDHOVOR K 2. VYDANIU

Prvé vydanie tejto knihy z roku 2004 vyvolalo medzi ¢itatelmi vAcs{
zaujem, ako som ocakéval, a to nielen na Slovensku, ale aj v Cechéch. To
ma ako autora velmi potesilo. Je v8ak uz dlhsie rozobraté, a tak po dohode
s vydavatelom vychddza toto druhé, opravené a (trochu) rozsirené vydanie.

Medzitym vysla v roku 2006 kniha v nakladatelstve Cambridge University
Press aj v anglictine. Priaca na jej preklade ma printtila s odstupom ¢asu
opat prejst celym textom, pricom som v nej vylepsil mnoho detailov, ale aj
objavil dost vela drobnych a zopar vacsich chyb a nepresnosti. Mnohé dalsie
chyby v nej nasli jej pozorni ¢itatelia. Priebezne aktualizovany zoznam chyb
v prvom vydani sa da najst na mojej stranke. Rad by som tu vyjadril svoju
velkd vdacnost vetkym tym, ktorf si ndjdené chyby nenechali pre seba a dali
mi o nich vediet. Pomohli mi jednak vyvarovat sa ich v anglickom vydani,
ale tiez, ¢o je dolezité pre knihu, ktord drzite v rukach, aj v tomto druhom
slovenskom vydani.

Snazil som sa vyuzit prilezitost, ktord mi poskytlo druhé vydanie a vy-
konat okrem oprév vsetkych chyb, o ktorych som vedel, aj vela drobnych
zmien. Nemd vyznam podrobne rozvadzat, v com presne spocivaju. Za zmien-
ku v tomto smere ale stoji pridanie registra oznaceni (tri strany na konci
knihy) a zoznamov najdolezitejsich vzorcov na konci kazdej kapitoly (za ich
zhrnutiami). Odportcam precitat si vzdy pred stddiom danej kapitoly jej
zhrnutie, vratane spomenutych najdolezitejsich vzorcov a zopakovat to eSte
raz po jej precitani.

Viacero dalsich informaécii, ktoré mozu byt v suvislosti s knihou uzitoéné,
mozno ndjst na mojej stranke

http://sophia.dtp.fmph.uniba.sk/~fecko

V Bratislave, jul 2008
Marian Fecko
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PREDHOVOR K 1. VYDANIU

Téato kniha je Gvodnym textom o istej ¢asti matematiky, o modernej di-
ferencialnej geometrii a o Lieovych grupach ako jej integralnej sucasti. Pritom
je pisand hlavne z pohfadu a pre potreby fyzikov. Orientécia na fyziku sa
prejavuje vo vybere materidlu, v sposobe jeho podania (miere ”rigoréznosti”,
nepouzivani formy ”definicia-veta-dokaz” ), aj v ndplni dloh (sd ¢asto spojené
s fyzikou).

Fyzikmi sa vSak potencidlna c¢itatelskd obec knihy nevycerpava. Kedze
je o matematike a kedze fyzika odjakziva bola a stdle je pre matematiku
vydatnym zdrojom inspiracie, bude uzito¢nd aj pre matematikov. A vSe-
obecnejsie pre kohokolvek, kto ma potrebné (nevelké) predbezné vedomosti
(skonkretizované nizsie) a chcel by sa pristupnym spésobom zozndmif
s touto zaujimavou, dolezitou a zivou disciplinou, ktora ¢oraz viac prenikd
do roznorodych oblasti modernej teoretickej fyziky, matematiky a aj ich apli-
kacii.

S akymi minimdlnymi vedomostami moze prikrocit potencidlny éitatel
k stidiu tejto knihy? Nevyzaduje sa toho vela. Stacia bezné vedomosti z kur-
zov matematickej analyzy (funkcif viacerych redlnych premennych) a linedr-
nej algebry, ktoré v prvom alebo druhom roéniku vysokoskolského studia
absolvuju napriklad vS8etci fyzici a matematici, ale aj va¢sina buducich in-
zinierov. Citatel by teda mal rozumief pojmom parcidlna derivécia, Tay-
lorov rozvoj a viacnasobny Riemannov integral, vediet nasobit matice, mal by
chépat pojem podpriestor n-rozmerného linedrneho priestoru a podobne. Mal
by tiez mat isti prax v zostavovani a rieseni jednoduchych sistav obycajnych
diferencidlnych rovnic a rozumiet, akd myslienka sa nimi realizuje.(Doladenie
formy sa dé robit aj ”za pochodu”, okrem iného pozornym ¢itanim Dodatkov
na konci knihy.)

Typicky teda pojde o vysokoskoldka/¢ku spominanych odborov, spravidla
od druhého ro¢nika vyssie, ale nezriedka maji potrebné vedomosti uz aj
mladsi. Kniha je vSak timyselne pisana tak, aby ju mohol bez tazkosti stu-
dovat aj samouk - ktokolvek, koho ldkaji tenzorové a spinorové polia,
¢i fibrované variety, chce sa naucit derivovat a integrovat diferen-
cidlne formy, vidietf, ako suvisia so symetriami Lieove grupy a alge-
bry a ich reprezentacie, ¢o je krivost a torzia, ako sa vyuziva symplek-
ticka geometria v lagranzovskej a hamiltonovskej mechanike, v akom
zmysle hovoria konexie a kalibraéné polia o tom istom, ako vznikaju
n6therovské pridy a ako suvisia so zakonmi zachovania atd.

Zo zamerania knihy vyplyva, zZe je vyhodou, ak aspon zhruba pozname aj
fyzikalny kontext, ktorého sa tykaju aplikdcie. Avsak aj bez fyzikdlnych vedo-
most{ mozno mat (z hladiska samotnej geometrie) z knihy prospech. Ak sme
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napriklad nikdy nevideli Mlaxwellove rovnice a netusime, akd je ich tloha
vo fyzike, nebudeme sice chapat, preco sa prave im venuje takd pozornost,
ale napriek tomu budeme rozumiet, ¢o sa tu s nimi z technického hladiska
robi. Uvidime na nich, ako sa dajui tieto parcidlne diferencidlne rovnice
vyjadrif v jazyku diferencidlnych foriem, ako pre ne vyzerd ucinok, ako sa
z neho pomocou tenzora energie-hybnosti ziskavaji zdkony zachovania
a podobne. A ak sa ndm to bude zdat zaujimavé, mozeme si o nich precitat
nieco ”tradi¢né” aspon dodatocne.

Podobne, ak nevieme ni¢ o vSeobecnej teorii relativity, nebudeme sice
chépat odkial sa nabrala predstava o ”zakrivenom” priestorocase a o me-
trickom tenzore v nom, dozvieme sa vSak, ¢o to je priestorocas z geome-
trického hladiska a ¢o sa v niom d4 Standardne robif. Neprenikneme sice
do fyzikalnej podstaty Einsteinovych rovnic pre gravitaéné pole, avSak
spozname ich formalnu struktiru a jednoduché a u¢inné technické néstroje
na pracu s nimi. Zvladnutie tejto a mnozstva inej geometrickej techniky nam
potom vyrazne ulahé&i pochopenie fyzikalnej stranky veci, ak si o tejto tedrii
precitame, alebo vypocujeme neskor nieco orientované fyzikalne.

KMcovou poziadavkou na budtceho ¢itatela je velky zdujem porozu-
miet veciam, o ktorych sa tu pise a chut zvladnutf material nielen platonicky
(pre potreby nonsalantnej konverzdcie na spolocenskych vecierkoch), ale aj
na pracovnej urovni. No a samozrejme aj prijatie prirodzeného dosledku,
ze tento ciel sa nedd dosiahnut samotnym pasivnym ¢itanim, ale ze je nevy-
hnutnd znaénd samostatnd préca (z ¢oho by mal mat idedlny budici ¢itatel
radost) a jej zodpovedajica ¢asovd investicia.

Latka sa vyjasnuje pomocou mnozstva jednoduchych tloh (je ich
spolu vyse tisic), v ktorych si ¢itatel ”vlastnymi rukami” rozoberd detaily
7tedrie”, ale aj spustu konkrétnych prikladov. Zaciatok ulohy spozname
podla rdméeka, v ktorom je jej ¢islo (napriklad oznacuje tretiu dlohu
vo §tvrtom paragrafe Strndstej kapitoly), koniec podla symbolu 0. Vacsina
dloh (asi devifsto) ma pripojeny dostatocne podrobny navod a niektoré,
zhruba péatdesiat, aj iplné rieSenie. Symbol e znamend zaciatok ”textu”,
ktory nie je dlohou (“tedria” alebo komentdr k tdlohdm). Ak je pri ¢isle
paragrafu hviezdicka (napriklad 12.6.*), znamen4 to, ze pri prvom ¢itani ho
mozeme vynechat (ide do véacsich detailov, alebo sa zaoberd prilis §pecidlnymi
otazkami). Hviezdickou s oznacené aj niektoré ndrocnejsie tlohy.

Téato kniha obsahuje dost vela materidlu a bude asi uzitotné spomenut,
ako s nou optimélne pracovat. D4 sa ¢itat roznymi sposobmi, ktoré zavisia
od toho, ¢o od nej otakdvame a kolko usilia sme ochotni na jej zvladnutie
venovat.

Zakladnym a najviac odporicanym sposobom je postupovat pekne od
zaciatku do konca a riesit pritom (skoro) vsetky tlohy. Toto je postup,
ktorym sa z textu vytazi maximum. Tému vidime v dostatocnej Sirke, fakty
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vnimame v suvislostiach a mnohorakych aplikacidch. Vyzaduje si to vSak ¢as
a trpezlivost.

Kto jedno alebo druhé nemé, moéze postupovat aj inac. Péjde sice opat od
zaciatku do konca, ale podrobne riesit bude len 1lohy, ktoré ho nie¢im zaujmu
alebo potrebuje ich vysledok. Pri tomto postupe sa moze stat, ze niektord
tlohu nebude vediet zvlddnut; chyba mu na to nejaké podstatné ohnivko (fakt
alebo zru¢nost) z preskoc¢eného materidlu. Ak sa d4 zistif ktoré ohnivko to je
(v ndvode sa velmi ¢asto odvoldvame na &isla potrebnych predchddzajicich
uloh), ni¢ hrozné sa nestalo, jednoducho sa treba vratit a chybajici kiisok
(dlohu) si dodatoéne doplnit.

Este rychlejsi bude postup citatela, ktory sa chce od zaciatku obmedzit
na nejaki konkrétnu oblast a o ostatné sa zaujima iba do tej miery, aké
je nevyhnutné pre ”jeho” tému. Na pomoc takémuto citatelovi uvadzame
(priblizni) schému zavislosti kapitol:

1—92——>3—4 15 19— 20 —» 21 —* 22
5;12
- 10 11>13/'

8§—16
9

S—>6—>7 14— 17— 18

(Tato schéma nezodpovedd skutoénosti uplne, viacero paragrafov, krétkych
casti ¢i dokonca jednotlivych tloh by si v skuto¢nosti vyzadovalo dokreslit
do nej dalsie sipky, ¢im by sa ale stala prakticky bezcennou.)

7 takychto konkrétnych oblasti by sa dali spomenut povedzme tieto:

1. geometria potrebnd pre zdklady vSeobecnej tedrie relativity (kova-
riantné derivicie, tenzor krivosti, geodetiky, apod.)

Ide o liniu 1 - 2 - 3 - 4 - 15 (podobny aparédt sa zide aj do pokrocilej
mechaniky kontinua). Ak chceme zvlddnut aj précu s formami (napriklad
pochopit paragraf 15.6. o vypocte Riemannovho tenzora pomocou Carta-
novych struktirnych rovnic alebo paragraf 16.5. o Einsteinovych rovniciach
a ich odvodeni z i¢inkového integralu), potrebujeme pridat este kapitoly 5 -
6-7.

2. elementdrna tedria Lieovych grup a ich reprezentécii (bez aparitu
diferencidlnej geometrie)

Linia by mohla obsahovat kapitoly (z niektorych len uvedené paragrafy)
1-24-10-11.7-12-13.1,2,3

3. hamiltonovska mechanika a symplektické variety
Minimalna trasa obsahuje kapitoly 1 - 2 - 3 - za¢iatok 4-5-6-7 - 14. Jej
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pokracovanie (formuldcie lagranzovskej a hamiltonovskej mechaniky na fib-
rovanych varietdch TM a T*M) je v kapitolach 17 - 18. Ak chceme rozumiet
aj pokrocilejsim paragrafom o symetridch (14.5.-14.7. a 18.4.), potrebujeme
chéapat geometriu na Lieovych grupach a pésobenia Lieovych grip na va-
rietdch (11.-13. kapitola).

4. zaklady prace s diferencidlnymi formami
Trasa by mohla vyzerat 1 - 2 - 3 - zaciatok 4 -5-6-7 - 8 - 9, pripadne
eSte pridat zaciatok 16. kapitoly.

Tato kniha vznikla usporiadanim a rozsirenim materidlu, ktory uz mnoho
rokov predndSam Studentom teoretickej fyziky FMFI UK (predtym MFF
UK) v Bratislave. Formélne zodpoveda styrom oficidllnym predndskam (¢o
uvadzam len ako inspirdciu pre pripadné zavedenie podobnych prednasSok
inde), jednej véacsej a povinnej (je k nej aj cvicenie) a trom mensim a vybe-
rovym (st bez cvicenia, aktivita sa udrziava len domécimi tilohami). Vacsia,
ktord bezi pod ndzvom ”Matematickd fyzika” (1 alebo 2), zodpovedd zhruba
kapitolam 1-9 a 14-16. Jej napliou su teda zdklady diferencidlnej geome-
trie a nacrt jej hlavnych aplikacii. Mensie sa tykaju Lieovych grip a ich
reprezentdcii (kapitoly 10-13), geometrickych metdd v klasickej mechanike
(17-18 a zvySok 14) a konexif a kalibra¢nych polf (19-21).

Na zdver by som sa rad podakoval Spolo¢nosti autorov vedeckej a odbornej
literatiry (SAVOL) za poskytnutie Stedrej dotdcie potrebnej na vyjdenie
tohoto diela, Centru pre vyskum kvantovej informéacie Fyzikalneho tdstavu
SAV v Bratislave za prispevok na ten isty 1ucel, Literdarnemu fondu za ude-
lenie stipendia na dokoncenie diela, kolegom z Katedry teoretickej fyziky
FMF1I v Bratislave, hlavne Palovi Severovi a Vladovi Balekovi za mnohé obo-
hacujuce diskusie o geometrii vo fyzike, obom (anonymnym) recenzentom pre
SAVOL za mimoriadne starostlivé prec¢itanie nie prave najkratsieho rukopisu
a cenné profesionalne postrehy v posudkoch, Vladovi Buzekovi za povzbu-
denia v pravom ¢ase a za dobré rady, E.Bartosovi, J.Busovi, V.Cernému,
J.Hitzingerovi, J.Chlebikovej, E.Masarovi, E.Sallerovi, S.Sliszovi a A.Surdovi
za rady a nezi$tnd pomoc pri realizdcii elektronickej verzie textu (Specidlne
s jemnostami TEX-u, v ktorom som ho napisal) a svojim synom Stankovi
a Mirkovi za nakreslenie obrézkov (tiez v TEX-u). Osobitne dakujem mo-
jej manzelke Tiubke, ktord spolu s nagimi detmi Stankom, Mirkom a Dankou
trpezlivo zndsala moje nekonecné pisanie a s nim spojent fyzicku, alebo aspon
dusSevnu nepritomnost.

Budem vdacény za akékolvek pripomienky, komentare, ndjdené chyby ¢i
ndvrhy na vylepSenie textu (fecko@ fmph.uniba.sk).

V Bratislave, marec 2004
Marian Fecko
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0. UVOD

Vo fyzike sa kazdd chvilu nie¢o derivuje alebo integruje. Preto treba
stbezne s kurzom fyziky vnikat aj do tajov diferencidlneho a integralneho
poctu. Zacina sa funkciami jednej premennej, potom sa prejde aj na pripad
viacerych premennych. Do hry vstiipia viacndsobné integraly a parcidlne de-
rivécie, ktorych sa budici adept fyziky napocita neirekom.

Ked sa vSak pozornejsie pozrieme na struktiaru vyrazov, zapisanych po-
mocou parcidlnych derivacii v skutoénych fyzikdlnych vzorcoch, zistime, ze
isté kombindcie sa vyskytuju velmi casto, iné prakticky nikdy. Napriklad ak
porovname frekvenciu vyskytu vyrazov tvaru

PfPf  Pf *f ’f 491

o "o T Y o Togee e
tak zistime, ze zatial ¢o prvy (Laplaceov operator aplikovany na funkciu f)
sa vyskytuje velmi ¢asto, druhy v knihdch prakticky nendjdeme (ak nerdtame
zbierku uloh z analyzy, kde treba ratat prave tito kombinaciu derivécii z di-
daktickych dovodov). Kombindcie, ktoré sa v knihdch vyskytuji, su spravidla
vysledkom vypoctu, ktory realizuje isté ndzorné lokdlne geometrické pred-
stavy o uvazovanej realite (napriklad fenomenologicky opis difuzie latky v ho-
mogénnom prostred{). Prave takéto predstavy systematicky studuje lokdina
diferencidlna geometria. V zhode s fyzikalnou skisenostou sa v nej pozoruje,
ze operacii, ktoré su naozaj zaujimavé a ¢asto sa vyskytuju, je skutoéne po-
merne mélo (dobrd sprava, zvlddnu sa v rozumnom case).

Zo v8eobecnej fyziky tiez pozndame fakt, ze t4 ista situdcia sa dé opisovat
pomocou réznych siradnic (kartézskych, stérickych, cylindrickych,...) a z kon-
textu je zrejmé, ze wvysledok urcite nebude zdvisiet od vyberu tychto su-
radnic (¢o sa ale ¢asto nedd povedaf o pracnosti vypoctov; to je dovod,
preco sa vyberaju na rézne tlohy rdézne siradnicové sistavy). Samotné ob-
jekty a operacie s nimi su teda nezavislé od vyberu stradnic na ich opis,
a preto neprekvapi, Ze vo vhodne vybudovanom apardte sa bude dat velkd
cast vypoctov urobif tplne bez suradnic (akéd velkd cast to bude, zdvisi od
problému aj majstrovstva pouzivatela apardtu). Takéto ”abstraktné” (bez-
suradnicové) vypoéty maji viacero prednosti. Byvaji spravidla podstatne
kratsie a prehladnejsie (dajd sa preto napriklad Tahko viackrat skontrolovat),
jednotlivym krokom sa da lepSie nazorne rozumiet a podobne. Porovnajme
na ilustraciu napriklad takéto rovnice

ng =0 <~ fkgij’k + 5’“’1-91@- + fk,jgik =0

Viy =0 o i+ T aldk =0
Vg=10 < Gijk — Ligk — Tjir = 0
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V tomto texte sa postupne dozvieme, Ze dvojice rovnic viavo-vpravo hovo-
ria vzdy presne to isté: vyraz vpravo vznikd rozpisanim do (TubovoInych)
stradnic vyrazu vlavo.

(Prvy pripad st Killingove rovnice a ich obsahom je fakt, ze Lieova de-
rividcia g v smere £ je nulova, t.j. ze metricky tenzor g ma symetriu danu
vektorovym polom &; druhy je rovnica geodetiky a vyjadruje podmienku, ze
ideme rovnomerne priamo¢iaro (= s nulovym zrychlenim); tret{ je podmienka
metri¢nosti konexie a hovori, ze pri paralelnom prenose sa bude zachovavat
skalarny sucin vektorov. Komu je uz teraz vsetko toto jasné, moze tito knihu
hned predat a za ziskané peniaze si kupit a zacat ¢itat nejaki rozumnejsiu
a pokrocilejsiu literaturu; tym, ¢o zostali ¢itat dalej, to bude uplne jasné po
precitan{ stvrtej a patnastej kapitoly.)

Napriek maximalnemu zjednoduSeniu zapisu siradnicovych verzii rovnic
(sumac¢nd konvencia, zdpis parcidlnych derivécii pomocou ¢iarok) je zrejmé,
zZe strucnost Tavych stran je bezkonkurencénd. Ak sa preto nauc¢ime spolahlivo
manipulovat s objektmi typu lavych strén, ziskame tym schopnost efektivne
(nepriamo) narabat s pomerne komplikovanymi vyrazmi, ktoré obsahuji par-
cidlne derivdcie a pritom navySe v kazdom kroku rozumiet, ¢o objektivne
robime.

Analyza sa zvycajne rozvija v kartézskom priestore R™ resp. v otvorenych
oblastiach v R™. V skuto¢nosti vSak mnohé priestory, na ktorych bez mihnutia
oka analyzu pouzivame, prisne vzaté otvorenymi oblastami v R™ nie si, hoci
k nim majd velmi blizko.

V teoretickej mechanike napriklad vySetrujeme pohyb kyvadiel tak, ze
riesime (diferencidlne) Lagrangeove rovnice pre Casovu zavislost sdradnic
v ich konfigura¢nych priestoroch. Pritom tieto konfiguracné priestory nie
st vzdy otvorenymi oblastami v R™. Pre rovinné kyvadlo je to napriklad
kruznica S*. Je to sice jednorozmerny priestor, avsak je intuitfvne zrejmé
(a dé& sa dokézat), Ze je to Cosi iné, ako (otvorend oblast v) R'. Podobne
konfiguraény priestor sférického kyvadla je dvojrozmerns sféra S2, ktora sa
1{i od (otvorenej oblasti v) R2.

Vsimnime si viak, Ze dostatoéne malé okolia TubovoIného bodu na S! aj
52 st na nerozoznanie od dostatoéne malych okoli Tubovolnych bodov v R*,
resp. R?; st v nejakom zmysle ”lokélne rovnaké”, rozdiel je "az globalny”.
Aplikdcie matematickej analyzy (aj vo fyzike) takto prirodzene tla¢ia smerom
k jej rozsireniu na vseobecnejsie priestory, akymi su otvorené oblasti v R™.

Takymito vieobecnejsimi priestormi st hladké variety. Velmi volne pove-
dané ide o priestory, ktoré sa krdtkozrakému pozorovatelovi javia ako R™ (pre
vhodné n), ale celkovo (”topologicky”, ked si zalozi okuliare a vid{ uz dobre
aj do dialky) mozu vyzerat tplne ind¢ ako R™.

Prijemnou pozornostou podniku je fakt, ze aparat, ktory sa vybuduje na
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vysSie spominany opis geometrickych predstav nezavisle od vyberu stradnic,
je zéroven automaticky vhodny aj na opis globdlnych geometrickych objektov,
t.j. objektov korektne definovanych na celej variete. Budeme teda hovorit
aj o globdlnej analyze, analyze na varietdch. Napriklad spomenuté rovnice
Leg =0, Viyy=0a Vg =0 st vietko rovnice na varietdch a ich rieSenia su
tiez globalne dobre definované objekty na varietach.

Samotny kli¢ovy pojem hladkej variety si zavedieme v 1. kapitole. Vyklad
bude hlavne intuitivny. Vela veci, ktoré sa podrobne rozvadzaji v matematic-
kej literatire o diferencidlnej topoldgii, sa spomenie len velmi orientacne alebo
dokonca sa nespoment vobec. Cielom tejto iivodnej kapitoly bude povedat
len to, ¢o treba nevyhnutne vediet na pochopenie (uz na pracovnej trovni)
hlavnej naplne tohoto textu, ktorou je diferencidlna geometria na varietach.
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Zhrnutie 1. kapitoly

Hladkd varieta je zakladnou hracou plochou v diferencialnej geometrii. Je
to zovseobecnenie kartézskeho priestoru R™ (resp. otvorenej oblasti v R™)
na objekt, ktory vyzerd (len) lokdlne ako R™, ale jeho globdlna struktira
moze byt ovela komplikovanejsia. Vzdy sa vsak da predstavit ako celok zle-
peny z niekolkyjch kiskov homeomorfnych R”. Cislo n, ktoré je rovnaké pre
vSetky kusky, sa vola rozmer variety. Technicka realizacia tychto myslienok je
zalozend na pojmoch mapa (lokélne stiradnice) a atlas pozostavajici z niekol-
kych mép. Kartézsky siacin M x N dvoch variet je nova varieta, vytvorend
z povodnych variet M a N. Lubovolnd varieta sa d& realizovat ako velmi
slusne ulozena plocha v dostatotne rozmernom kartézskom priestore.

(x1 —31)* + -+ + (2, — yn)? cuklidovskd vzdialenost bodov v R” 1.1.5

©: 0 =Rz ... 2" mapa (lokdlne stiradnice) v oblasti @ 1.3
wpowy? zédmena stradnic v oblasti O, N Op 1.3
(Pa(),Va(y)) € R*T™ atlas pre kartézsky sucin X x Y 1.3.3
f =¢ofop ':R™ 5 R" stradnicové vyjadrenie f: M — N 14
y" = =y"=0 vnorenie (Gast siradnic na N nulovych 1.4
f(M)c N f(M) je podvarieta N (f = vlozenie) 1.4
P(x)=-=¢™(x)=0 hladké vézby (varieta ako plocha v R™) 1.5
(b, .. u™) parametrické vyjadrenie variety 1.5

Zhrnutie 2. kapitoly

V kazdom bode x n-rozmernej variety M existuje kanonicky isty n-roz-
merny linedrny priestor T, M, dotykovy (tangencidlny) priestor v bode z.
Jeho elementy sa volaju vektory v bode z. Existuje viacero navzajom ekviva-
lentnych definicii tohoto pojmu, ktoré si vyhodné v réznych kontextoch. Vek-
torové pole na variete M je hladké priradenie vektora kazdému bodu x € M.
Integralna krivka vektorového pola je taka krivka, ktord v kazdom bode ide
tak, ako jej diktuje vektor pola v tomto bode. Standardné konstrukcie multi-
linedrnej algebry (konstrukcia tenzorov typu (5 ) pre dany vektorovy priestor

L) vedid k pojmu tenzorového pola typu (’; ) na variete. Specidlnymi pripadmi
su funkcie (typ (8))7 vektorové a kovektorové polia (typ ((1)) a ((1)))7 polia bi-
linedrnych foriem (typ (g) , v symetrickom nedegenerovanom pripade metricky
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tenzor) a linedrnych operdtorov (typ (1))

y:R—-M krivka v na variete M 2.1
f:M—R funkcia f na variete M 2.1
e = Oilp stradnicova baza v Tp M 2.2.6
at v at = Jj (P)d’ transformécia komponent vektora  2.2.6
V(fg) =V g+ f(Vg) Leibnizovo pravidlo pre pole V' 2.2.8
it =Vix) (¥=V) rovnice pre integralne krivky pola V' 2.3.1
v = Z vbeb = vbeb sumacna konvencia 2.4.2
b=1
(%, ep) = 0p béza e je dudlna voéi e, 2.4.2
tod = t(eq,...,ep;e%. .., el) komponenty tenzora t € Ty (L) 2.4.6
Vg i = gap” , % = g%y dvihanie a spustanie indexov 2.4.13
df,Vy =Vf gradient ako kovektorové pole 2.5.3
T = (1/2)h(I", 1) kinetickd energia sistavy N bodov  2.6.7
ta
I[y] := / dtN/g(%,7%) funkciondl dlzky krivky ~ 2.6.9
ty
(V)= gijf’j (Vf :=144df) gradient ako vektorové pole 2.6

Zhrnutie 3. kapitoly

Kazdé (hladké) zobrazenie bodov variet f : M — N indukuje zobraze-
nie tenzorov na nich. Oznacuje sa f., ak prendsa tenzory v smere f (z M
na N) a f* ak ich prendsa proti smeru f (z N na M). Pre difeomorfizmy
sa da zaviest f, aj f* pre Tubovolné tenzorové pole. Ak f nie je difeomor-
fizmus, mo6zu nastaf problémy. Pre tenzorové polia typu (2) existuje zobra-

zenie f* vzdy. Specidlnym pripadom je indukovanie metrického tenzora na
M 7z riemannovskej variety (N, h), ¢im sa ziska riemannovska varieta (M, g),
g = f*h. Najcastejsie ide o indukovanie metrického tenzora na podvariety
M euklidovského priestoru N = E™ (alebo vSeobecnejsie E™°), na ktorom
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existuje kanonicky metricky tenzor h = 7.

ffY:=1vof pull-back funkcie 1 3.1.1
f«lv] == 1f o7 push-forward vektora [7] 3.1.2
([ V) =V (f*Y) push-forward vektora V' 3.1.2
(f*)(U,a) == t(f.U,(f")*a) pull-back tenzorového pola 3.1.6
(go f)*=f*og" pull-back zlozeného zobrazenia 3.1.6
(go fle=gso fs push-forward zlozeného zobrazenia 3.1.6
ffoC=Cof”" pull-back komutuje s kontrakciami 3.1.7
af* = f*d pull-back komutuje s gradientom  3.1.9
g:=fh indukovany metricky tenzor 3.2.1
9ij = thabJ;? = y“yihabyb’j indukovany metricky tenzor 3.2.1
T=(1/2)9(7,%) kinetickd energia v konf. priestore 3.2.9

Zhrnutie 4. kapitoly

Tubovolné vektorové pole V na M indukuje zobrazenie ®; : M — M,
pri ktorom sa bod x posunie o parameter ¢ po integrilnej krivke Startujicej
v x. Hovor{ sa mu tok generovany polom V', alebo vzhladom na skladaciu
vlastnost ®;,s = ®; o & aj jednoparametrickd grupa transformécii. Zo-
brazenie ®; variety M na seba indukuje v zmysle 3. kapitoly zobrazenie
tenzorovych poli ®;, ktoré generuje lieovsky prenos tenzorov (pozdii in-
tegralnych kriviek pola V). Mierou citlivosti (nekonstantnosti) tenzorového
pola A voéi lieovskému prenosu je Lieova derivdcia Ly A := % ’0 ®}A. Dvom
vektorovym poliam V, W sa d& priradif tretie, ich komutator [V, W] (ktory
je zdroven totozny s Ly W). Dve polia komutuji prave vtedy, ked komu-
tuju im zodpovedajice toky; nekomutovanie vektorovych poli takto vedie
na javy anholondémie (zavislosti od cesty). Killingov vektor je vektorové pole,
v smere ktorého je lieovsky konstantny metricky tenzor. Tok Killingovho vek-
tora je izometriou riemannovskej variety (M, g), t.j. zobrazenim M na seba,
pri ktorom sa zachovavaji vsetky diZky a uhly. Ak sa zachovédvajui len uhly,
ide o konformné transformécie a generuju ich konformné Killingove vektory.
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Py =Dy o Dy “skladacia” vlastnost toku 4.1.2
PFA=A pole A je licovsky invariantné 4.2
Ly A:=(d/dt)o®; A Lieova derivicia A v smere V' 4.2
Ly(A4+AB)=LyA+M\LyB L. derivécia lin. kombindcie 4.3.1
Ly(A® B)=LyA® B+ A® Ly BL. derivéicia tenzor. sicinu 4.3.1
LyoC=CoLy L. derivécia a kontrakcie 4.3.1
LyW =[V,W] L. derivicia W v smere V 4.3.6
Lyiaw =Ly + A\lw L. derivacia v smere lin.komb. 4.3.8
Liyvw) = [Lv, Lw] L. derivédcia v smere komutatora 4.3.8
o7 = eV =1 4tLy +... exponenta L. derivéacie 4.4.2
oW oV o @L‘/;ZV] o®W odY =1 interpretdcia komutétora [V, W] 4.5.2
lfor,g] =1y, f*g] spravanie sa funkciondlu dizky 4.6.1
ffg=g f je izometria (M, g) 4.6.2
ffg=o0g f je konformn4 transformécia  4.6.3
Leg=0 Killingove rovnice 4.6.5
ffn=n f je Poincarého transformécia 4.6.10
Leg = xg konformné Killingove rovnice  4.6.16
e=(1/2)Lyyg tenzor deformdcie (pruz. kont.) 4.6.24
(1/2)Lvyg tenzor rychlosti def. (visk. tek.) 4.6.25

Zhrnutie 5. kapitoly

V kontexte vypoctu objemov rovnobeznostenov (a tym aj v tedrii inte-
grovania, kde sa funkéné hodnoty nasobia objemami infinitezimdlnych rov-
nobeznostenov) sa ukdze mimoriadny vyznam tplne antisymetrickych ¢isto
kovariantnych tenzorov, ktorym sa hovori formy. Celd tato kapitola Studuje
formy na tdrovni linedrnej algebry. Okrem vSeobecnych vlastnosti, ktoré pla-
tia pre vSetky tenzory, su v hre aj dolezité Specifikd. Formy maju prirodzené
Z-graduovanie, funguje na nich (graduovane komutativny) vonkajs{ sicin A
(¢im vzniké graduovand vonkajsia = Grassmannova algebra) a vndtorny sicin
1, (ktory je derivaciou stupiia -1 tejto algebry). Ak je k dispozicii aj metricky
tenzor a orientdcia (dand formou objemu), pristupuje Hodgeov operator x.
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Prirodzent interpretdaciu tu nadobuda aj oby¢ajny determinant.

A= <pp—:_q?)! to® vonkajsi stc¢in foriem 5.2.4
B+AT)Na=FANa+ AT Ao

aN(B+AT)=aAB+IaAT bilinearita st¢inu A 5.2.4
(anNB)Ay=aAn(BA7) asociativita sicinu A 5.2.4
aAB= (1B Aa Z-graduovana komutativita A 5.2.4
a=(1/p!) ag. pe*N---Neb vyjadrenie p-formy cez e® 5.2.9
o= (—1)4° @ hlavny automorfizmus v AL* 5.3.3
(ipa)(u,...,w) = a(v,u,...,w) vnitorny sicin (v a «) 5.4.1
(@) g b = VQca. b komponentné vyjadrenie i,  5.4.1
iy(a A B) = (iya) A B+ (i) A (i,8) grad. Leibn. pravidlo pre 4,  5.4.2
60t = 5[[Z e 52% p-delta (Kroneckerov) symbol 5.6.2
n! det A =¢, ¢ Al AZ vyjadrenie determinantu 5.6.2
Wy = o(H\Igl frA-- A f metrickd forma objemu 5.7.3
vol(Au,...) =: (det A) vol(u,...)  determinant lin. zobr. A 5.7.6.
Pl (*)q. b = a® % W da b Hodgeov operétor duality 5.8.1
%g %y = sgng (—1)PTD kvadrét *, je + jednotka 5.8.2
aAxgf =: (a, B)gwy skalarny sicin (a, 3), foriem 5.8.4
pla, B)g = g b gt kompon. vyjadrenie (¢, ),  5.8.4

Zhrnutie 6. kapitoly

Studuju sa formy uz ako polia na variete (diferencidlne formy). Okrem
algebraickych konstrukcii z 5. kapitoly pristupuje kltic¢ovy pojem wonkajsej
derivdcie. Ide o derivaciu stupna +1 Cartanovej algebry foriem na variete,
ktord je navyse nilpotentna (dd = 0). Jednoduchym (ale uzitoénym) zovseo-
becnenim doterajsich foriem si formy s hodnotami v fTubovolnom vektorovom
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priestore (doterajsie mali hodnoty v R).

a=(1/p) a;_j(z)dz" A---Ada?  stradnicové vyjadrenie p-formy 6.1.1
Dy(a;b) = (Dra;)b + (—1)"a;(Dyb) derivacia stupia k 6.1.7

(da). jk = (=1)P (p+1) ap..jx vonkajsia derivicia siradnicovo 6.2.5

dd=20 vonk. derivacia je nilpotentnd 6.2.5
dlaAB) = (da) A B+ (fa) ANdB  grad. Leibnizovo pravidlo pre d 6.2.5
Ly =iy d+diy Cartanova identita 6.2.8
[d,Ly]=d Ly — Ly d=0 v. der. komutuje s Lieovou 6.2.10
d,f'l=d f*—f*d=0 v. der. komutuje s pull-backom 6.2.11
da(U,V)=... Cartanov vzorec (pre p=1)  6.2.13
agu,v,w) = ... Cartanov vzorec (pre p=2)  6.2.13
o= aAEA forma na M s hodnotami vo V' 6.4.1

Zhrnutie 7. kapitoly

Rozborom konkrétnych jednoduchych prikladov sa zistuje, ze na podin-
tegralne vyrazy je uzitocné nazerat ako na diferencidlne formy zo 6. kapitoly.
Definuje sa zédkladny pojem integralu formy po retazci, pricom sa predpoklada
elementarna znalost bezného Riemannovho viacnasobného integralu. Formu-
luje sa Stokesova veta pre diferencidlne formy (ddva do stvisu integral formy
po hranici refazca s integralom vonkajsej derivdcie tejto formy po samotnom
retazci). Diskutuje sa reinterpretdcia integralu po oblasti na orientovatelnej
variete ako integralu po refazci (vratane tvaru Stokesovej vety) a $pecifikum
integrovania po riemannouvskej variete. Odhaluje sa jednoduché spravanie sa



integralu voci zobrazeniam variet.

c=c¢s!

p
(Po,....P) = ...
00=0
/da:/a
c dc

vol (D) ::/ w
D
e/ ivaz/ a
D D.v
[
D D
/./det(gul,x",aa:”’b) dut A du®

— Jp P
<P>D : fD wg
o[
f(9) ¢

euklidovsky p-retazec
hrani¢ny operator na simplexe

hranica nem4 hranicu

Stokesova veta

objem oblasti D na (M,w)

“mincova interpretacia”’ formy iy«

integrdl prvého druhu na (M, g, 0)

plocha dvojrozmernej oblasti

stredna hodnota p cez D

integrél a zobrazenie variet

Zhrnutie 8. kapitoly
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7.2
7.2.2
7.2.2

7.5

7.6

7.6.11

7.7

7.7.5

7.7

7.8.1

Vseobecna Stokesova veta pre diferencidlne formy zo 7. kapitoly ma mno-
horaké klasické prejavy. Ukazuje, Ze je v nej skrytd napriklad Gaussova-
Ostrogradského veta, Greenove identity, ”obyc¢ajnd” Stokesova veta z vekto-
rovej analyzy, niektoré fakty z tedrie funkcii komplexnej premennej. Zavadza
sa kodiferencidl § (ako operdtor zdruzeny k diferencidlu d = vonkajsej de-
rivécii) a samozdruzend kombindcia A = —(dd + dd), Laplaceov-deRhamov
operator (zovSeobecnenie Laplaceovho operdtora na funkcidch na ITubovolné
formy). V casti o vektorovej analyze sa prichddza k zdveru, Ze operécie gra-
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dient, rotacia a divergencia su len zamaskovana vonkajsia derivacia.

Lywg =: (divV) wy definicia divergencie V 8.2.1
1

divV = \/ﬁ(\/\ gl VF) e stiradnicové vyjadrenie divV 8.2.1
g

d 1 D(t

(divV)p = 7 . V(\)/Té) interpretacia divV 8.2.2
tok V oD

(divV)p = o% Yt IE ind interpretédcia divV 8.2.9

objem D
/ (divV) wg = / VidYi|ap Gaussova veta 8.2.7
D aD

(a, B) := / a N xf skaldrny sicin foriem na (M,g) 8.3.1
D

§:=xtdxn definicia kodiferencialu & 8.3.2

(da, BY = (a,08) + / a A xf zékladn vlastnost kodiferencidlu 8.3.2
oD

N := —(6d + d§) = —(dtd + dd*) Laplaceov-deRhamov operdtor ~ 8.3.3

1 ,
Af = i (/] g g™ fi)k Laplaceov-Beltramiho operator — 8.3.5
g

(du, dv) + (u, Av) = / uxdv  “oby¢ajnd” Greenova identita 8.4.1

(u, Av) — (v, Au) = . .éD “symetrickd” Greenova identita 8.4.1
f, A.dr, B.dS, hdV diferencidlne formy na E3 8.5.2
d(A.dr) = (rot A).dS definicia rot A 8.5.4
(A.dr) A (B.dr) = (A x B).dS ako sa objavi vektorovy stcin 8.5.8
g=nh3dz' @dz' + ... Lamého koeficienty 8.5.9
d(f(z)dz) =0 preco plati Cauchyho veta 8.6.5

Zhrnutie 9. kapitoly

Forma sa vold uzavretda, ak m& nulovi vonkajsiu derivaciu a exaktna,
ak je vonkajsou derivdciou inej formy (svojho potencidlu). Vzhladom na
nilpotentnost operdtora d (t.j. platnost dd = 0) je exaktnd forma automa-
ticky uzavreta. Ukazuje sa, ze vo fyzike Casto vyuzivané opacné tvrdenie
(obratenie tvrdenia dd = 0) v8eobecne neplati, ale konstruktivne sa overf jeho
platnost na stiahnutelngch varietdch (resp. lokdlne, t.j. v dostatotne malom
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okolf TubovoIného bodu na Tubovolnej variete). To je obsah Poincarého lemy.
Jemnejsi pohlad na vec umoziuje apardt teérie kohomolégii, v tomto pripade
ide konkrétne o kohomolégie deRhamovho komplexu.

h = —/ dt®;ie homotopicky operator 9.2.3
0
doh+hod=1 zékladnd vlastnost h 9.2.3
o= d(Aoz) =dg B = ha je potencidl formy o 9.2.4
1
xk/ d)\)\p_laki”_j()\x) surad. vyjadrenie (ha);. ;(xz) 9.2.7
0

[€as €] = cop(x)ee koeficienty anholonémie pre e, 9.2.10
ea =0, & lea,e] =0 holonémnost repérneho pola  9.2.11
et =dz® & de*=0 holonémnost korepérneho pola 9.2.11
Z? :=Kerd, p-kocykly 9.3.1
B? :=Imd,_; p-kohranice 9.3.1
H? .= Z?/BP p-ta kohomologicka grupa 9.3

bP := dim H? p-te Bettiho &islo 9.3

Q' (M) < Q' (M) 4.4 O"(M) deRhamov komplex variety M 9.3.2

Zhrnutie 10. kapitoly

Grupy vstupuju do hry vo fyzike aj v matematike ako grupy symetrie
¢ohosi, t.j. (v matematickej reci) ako grupy automorfizmov roznych struktir.
Explicitne sa vySetruji struktiry, ktoré vedu na bezné klasické grupy (vse-
obecni linedrnu, ortogondlnu, symplektickd, unitdrnu,...). Spojenim alge-
braického pojmu grupa a diferencidlno-topologického pojmu (analytickd) va-
rieta vznikd Lieova grupa. Vyssie spominané grupy (aj iné) si priklady Lieo-
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vych grup.

G = Aut (X, 3) grupa automorfizmov (X, 3) 10.1

h(Av, Aw) = h(v,w) A zachovéva bilinedrnu formu h 10.1.4
AﬁhabAZ = heq kompon. vyjadrenie toho istého faktu 10.1.4
AThA=h maticové vyjadrenie toho istého faktu 10.1.4
w(Av, ..., Aw) = w(v,...,w) A zachovava formu objemu w 10.1.7
Al Agsamb =¢€c.4d kompon. vyjadrenie toho istého faktu 10.1.7
det A=1 maticové vyjadrenie toho istého faktu 10.1.7
m(g,h) := gh kompozi¢ny zékon v grupe 10.2.5
"klasické” maticové grupy  su zhrnuté v tlohe 11.7.6

Zhrnutie 11. kapitoly

Efektivnym ndastrojom na stidium pomerne zlozitych objektov, akymi
su Lieove grupy, je vyuzitie ich bohatej diferencidlnej geometrie. T4 je dos-
ledkom kompatibility struktiry grupy a variety. Pomocou lavoinvariantnijch
vektorovych poli sa d& Lieovej grupe kanonicky priradit jej Lieova algebra, co
je objekt nepomerne jednoduchsi, ako samotnd grupa (je to kone¢norozmer-
ny linedrny priestor), napriek tomu vsak kéduje podstatni ¢ast informécie
o grupe. Studuje sa dolezité exponencidlne zobrazenie z algebry do grupy.
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Lgh :=gh, Rgh:=hg  lavd a pravé transldcia na grupe 11.1.1
LT=T Tavoinvariantné tenzorové pole na G 11.14
eq(9) = Ly E, Tavoinv. repérne pole generované E, 11.1.6
(x_l)fcdm? = (x_ldaz); Tavoinvariantné 1-formy na GL(n,R) 11.1.9
m}c@f = (x@); Tavoinv. vektorové polia na GL(n,R) 11.1.10
[Eq, Ep) = ¢Sy Ee struktirne konstanty voci bdze E, 11.2.2
de® + (1/2)cl.e’ A e = 0 Maurerov-Cartanov vzorec cez e® 11.2.3
(0,Lx) =X, 6=eE, kanon. l-forma 6 na G (Maurer-Cartan) 11.2.6
do+ (1/2)[0 A0 =0 Maurerov-Cartanov vzorec cez 0 11.2.6
vt +s) =v(t)y(s) 1-parameterickéd podgrupa na G 11.3
X (t) = X 1-parameterickd podgrupa cez exp 11.4.1
feX) =el' ) odvodeny homomorfizmus f’ 11.5.3
rtdx kanonicks 1-forma na GL(n,R) 11.7.19
§*(x~tdr) = 27! (2)dx(2) kanon. 1-forma na matic. grupach 11.7.21

Zhrnutie 12. kapitoly

Lieova grupa déva o sebe ¢asto vediet cez svoju reprezentdciu, t.j. existuje
homomorfizmus tejto grupy do grupy obrétiteInych linedrnych operdtorov
v nejakom vektorovom priestore a v danom kontexte vidime len jej homo-
morfny obraz. Reprezentécia grupy automaticky indukuje aj istd (odvoden)
reprezentaciu jej Lieovej algebry, ¢o je vSeobecne homomorfizmus Lieovej
algebry do Lieovej algebry (vSetkych) linedrnych operatorov (vo fixnom li-
nedrnom priestore). Ak dand reprezentdcia pripista nejaky netrividlny inva-
riantny podpriestor, vold sa reducibilnd, lebo sa dd redukovat na (mensiu)
reprezentaciu v tomto podpriestore. Ireducibilné sa takto zmensit nedaju.
Kritériam ireducibility sa venuje Schurova lema. Ak k danému podpriestoru
existuje aj invariantny doplnok, reprezentacia je ekvivalentnd priamemu sic-
tu dvoch mensich. Takyto doplnok sa d& dostat napriklad ako ortogondiny
doplnok voéi invariantnému skaldrnemu sicinu (ak existuje; na kompaktnych
grupdch existuje vzdy a ukazuje sa, ako sa da ziskat). S reprezentdciami
sa daju robit isté konstrukcie, napriklad priamy stcet a sucin; kombinaciou
s ohrani¢enim na invariantné podpriestory vo vysledku sa da casto ziskat
spusta reprezentdcii z malej zdsoby na zaciatku (niekedy aj vSetky z jednej).
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Invariantné tenzory a s nimi spojené splietajice operatory umoznuju ”menit
typ” veli¢in, priraditf vektorom, na ktoré poésobi grupa cez reprezentaciu p;
vektory, na ktoré posobi cez ps. Kazda reprezentacia Lieovej algebry indukuje
isty komplex; trochu sa venujeme jeho kohomolégiam.

p(1+eX)=1+¢p'(X) vypoéet odvodenej reprezenticie o’  12.1.6
P (E)Ey =: pb,Ey maticové prvky generatorov 12.1.6
(p(g)a,v) == (a, p(g"Hv)  p je dudlna reprezentdcia k p 12.1.8
h(p(g)v, p(g)w) = h(v,w)  skaldrny sicin h je p-invariantny 12.1.10
hepl; + hacpl; =0 kompon. vyjadrenie toho istého faktu 12.1.10
p2(9)A = Ap1(9) A je splietajiici operdtor pre p1 a ps 12.2
geXg™t = efAdeX pridruz. reprezenticia Ad grupy G = 12.3.1,2
Ad X = AXA™! expl. vyjadrenie Ad pre matic. grupy 12.3.1
ad xY = [X,Y] (ad = Ad’) pridruz. reprezentécia ad algebry G 12.3.5
ad g, B; = cijk komponentné vyjadrenie ad 12.3.5
K(X,Y):=Tr(ad yady) Killingova-Cartanova forma na G 12.3.8
Cy := k' (E;)p'(Ej) kvadraticky Casimirov operétor 12.3.13
(g,h) o (§,h) = (9§, hh) priamy sucin grip 12.4.7
(p1 @ p2)(g) := p1(9) ® p2(g) priamy siéin reprezentdcii G 12.4.11
(p1 @ p2) = p @1 +1® p) odvodens reprezentécia pre p; @ po  12.4.11

Zhrnutie 13. kapitoly

Osobitne doélezitym pripadom pésobeni grip si pre diferencidlnu geo-
metriu ich pdsobenia na varietdch. Casto je na tychto varietdch dodatocnd
Struktura, ktord pritom zachovévaju (napriklad akcie izometriami na rieman-
novskych varietach, alebo symplektické akcie na symplektickych varietach,
pozri paragraf 14.5). Pdsobenie Lieovej grupy dédva na infinitezimélnej drovni
posobenie svojej Lieovej algebry, s ktorou s tzko spojené fundamentdlne
(vektorové) polia. Pdsobenie na bodoch variety standardne (postupmi z pa-
ragrafu (3.1)) indukuje posobenie na funkcidch na variete (a vieobecnejsie na
tenzorovych poliach), ¢m sa ziskava dolezitd konstrukcia (co-rozmernych)
reprezenticii grupy a jej algebry (tenzorové polia, §pecidlne aj funkcie, tvoria
linedrny priestor). Ohrani¢enim na invariantné podpriestory sa z nich ¢asto
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daju vytiahnut aj koneé¢norozmerné reprezenticie. Vydelenie G-invariantné-
ho podpriestoru funkecif (tenzorovych polf) byva castym postupom pri rieen{
diferencidlnych rovnic (ansatz s istym typom symetrie).

Ly, =LgoLy Tavé posobenie G na M 13.1
Ry = Rpo Ry pravé posobenie G na M 13.1
L;lg] := [g9] posobenie G v homog. priestore G/H 13.2.5
l91[g] := [9d] néasobenie vo faktorgrupe G/H 13.2.10
gHg ' =H H je normalna podgrupa G 13.2.10
G/Ker f =Im f veta 0 homomorfizme 13.2.12
em30mT y conl nakrytie SO(3) pomocou SU(2) 13.3.6
p(g)Y =1 o Ry = Ryy reprezentdcia G v F(M) 13.4.1
Ex(m) := (d/dt)|y Rexptxm generdtor pésobenia R, 13.4.3
p(X) =¢&x odvodend reprezentécia v F(M) 13.4.3
& =(-rxV); generétory rotacii v R? 13.4.6
p(9)Y :=p(g) oo Ry reprezentécia G v F(M,V) 13.4.11
P(X) =¢&x +p'(X) odvodend reprezentécia v F(M,V)  13.4.12
RyA = plg™HA A je tenzorové pole typu p 13.5.2
p(g) = p(g) o Ry, reprezenticia G v T, (M, V) 13.5.3

Zhrnutie 14. kapitoly

7 vhodného prepisu Hamiltonovych kanonickych rovnic sa odhaluje, Ze
za tymito rovnicami je skryta elegantnd geometricka Struktira. Jej jadrom
je uzavretd nedegenerovand 2-forma w na fazovom priestore, symplektickd
forma. T4 umoznuje dvihat a spuistat indexy, podobne, ako sa to robi pomo-
cou metrického tenzora. Vektorové pole, ktoré je analégom gradientu v rie-
mannovskom pripade (vznikd teda dvihnutim indexu na gradiente funkcie f
ako kovektorovom poli), sa tu vold hamiltonovské pole generované funkciou
f. Zisti sa, ze Hamiltonove rovnice si vlastne rovnice pre integralne krivky
hamiltonovského pola generovaného funkciou H, hamiltonidnom sistavy. Tak
sa prichddza k pojmu hamiltonovskd sistava (M,w, H). Vektorové polia,
ktoré generuji automorfizmy hamiltonovskej sistavy (zachovdvaji teda sym-
plekticki formu a hamiltonidn) sa volaji Cartanove symetrie a ich isté zjem-
nenie ezxaktné Cartanove symetrie. Ukazuje sa, ze existuje vzdjomne jed-
noznacna korespondencia medzi exaktnymi Cartanovymi symetriami a za-
chovéavajicimi sa velicinami. Do vacsich detailov v tomto smere idd casti
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o momentovom zobrazeni a symplektickej redukcii. Bohatou triedou sym-
plektickych variet su orbity koadjungovanej akcie (¢o je pdsobenie G na dudli
G* svojej vlastnej Lieovej algebry G), na ktorych existuje kanonickd symplek-
ticka struktura.

Cr="Pdf, .) hamiltonovské pole cez P 14.1.1
{f,9} = P(df,dg) Poissonova zatvorka cez P 14.1.1
v ="_(g Hamiltonove rovnice bezsturadnicovo 14.1.1
ic,w = —df hamiltonovské pole cez w 14.1.6
{f, 9} =w((s, ¢y) Poissonova zatvorka cez w 14.1.8
w = dp, N dg® sympl. forma v kanon. sdradniciach ~ 14.2.2
Q, :==const. WA -+ Aw Liouvilleova forma objemu na (M,w) 14.3.6
/ / Liouvilleova veta 14.3.6
@.(D)
tyw=—dF, VH=0 V je exaktna Cartanova symetria 14.4.2
vs(t) := ®Y (y(t)) nové rieSenie generované symetriou  14.4.6
(P(z),X) := Px(z) momentové zobrazenie 14.5.3

wz(€x, &) :=(Z*,[X,Y]) symplektickd forma na koadj. orbite 14.6.3

Zhrnutie 15. kapitoly

Vo viacerych aplikdcidch (napriklad pri vypoéte zrychlenia hmotného bo-
du v mechanike) sa efektivne robia linedrne kombinécie (pri zrychleni kon-
krétne odcitanie) vektorov (alebo vieobecnejsie tenzorov) v réznych bodoch.
To sa na ”prazdnej” variete nedd. Struktira, ktord to legalizuje, je (linedrna)
konexia V na M. Umoziniuje prenasat vektory po danej ceste (od ktorej v prin-
cipe z&visi) a tym aj uskutoénit vyssie spominané porovnanie (porovnava sa
vektor v x s vektorom, ktory sa z y prenesie do x). Tento prenos sa podla
definicie vola paralelny (v zmysle konexie V). Najjednoduchsie sa technicky
zavadza postulovanim vlastnosti s nim suvisiacej kovariantnej derivicie. Ko-
nexia umoznuje zaviest pojem rovnej ¢iary (geodetiky) na (M, V).

Linearnej konexii st priradené dve tenzorové polia, tenzor torzie a krivosti.
Ukazuje sa, ze podmienka kompatibility s metrikou (zachovanie skaldrnych
su¢inov pri paralelnom prenose) a nulovost torzie vedu na istd jednoznaénu
konexiu (RLC konexia). Tenzor krivosti kéduje, ¢i paralelny prenos (o in-
finitezimdlne vzdialenosti) naozaj zdvisi od cesty; prejavuje sa aj v spravani
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sa blizkych geodetik - sposobuje ich odklon (Jacobiho rovnica). Nenulovy
tenzor torzie signalizuje neuzavretie geodetického rovnobeznika. Efektivnym
nastrojom na pracu s konexiou je aparat diferencidlnych foriem. Zakladné ob-
jekty tedrie sa zakéduji do foriem a vztahy medzi nimi sit dané Cartanovymi
Struktirnymi rovnicami.

Konexia sa vola uplny paralelizmus, ak na variete existuje kovariantne
konstantné repérne pole. Tenzor krivosti je vtedy nulovy a porovnanie vek-
torov (aj vSeobecnych tenzorov) v réznych (aj vzdialenych) bodoch vtedy
ma zmysel. ijlny paralelizmus s holonémnym (suradnicovym) kovariantne
konstantnym repérnym polom sa vold plochd konexia. V tomto pripade je
nulovy nielen tenzor krivosti, ale aj tenzor torzie.

Vaeer =: T ec koeficienty konexie voci e, 15.2.1
V,;0; =: rfjak Christoffelove symboly 2. druhu 15.2.3
Vit F;k:'ckvj =0 rovnice paralel. prenosu vektora 15.2.6
Vg=0 (gij;x=0) konexia V je metrickd 15.3.1
T(U,V):=VyV —VyU — [U, V] tenzor torzie konexie V 15.3.3
;‘k = (1/2)9”(9&1@ + gik,; — 9;k,1) RLC konexia 15.3.4
V=0 (@' + F;kijik =0) rovnica geodetiky 15.4.1
exp v :=v,(1), %,(0) =v € TpM exp. zobrazenie so stredom v P 15.4.10
(o, ([Vu, Vv] = Vigy)W) Riemannov tenzor krivosti 15.5.5
Rap := R°,,, R:=R% =R, Ricciho tenzor a skaldrna krivost 15.5
Vyes =wl(V)ey (wi =T¢ef)  formy konexie w® voci e, 15.6.1
W =ATtwA+ A1dA transformdcia w pri e/ = eA 15.6.2
de+wANhe=T, dw+wAw=E Cartanove struktirne rovnice 15.6.7
dA+wAQ—QAw=0 Bianchiho identita (pre RLC)  15.6.16
Qrne=0 Ricciho identita (pre RLC) 15.6.16
V%f = R(%,&)7% Jacobiho rovnica (odklon geod.) 15.7.2
R%..=0=1T%9, ploché konexia 15.8.6

Zhrnutie 16. kapitoly

(Stvor)tenzorovy zépis Maxwellovych rovnic v Minkowského priestor(oca-
s)e odhaluje, Ze tenzory, ktoré sa v nich objavuji, si velmi $pecidlne - ide
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o diferencidlne formy. Preto najprirodzenejsim jazykom na Stvorrozmernu
formuléciu elektrodynamiky je jazyk diferencialnych foriem. Formy v Min-
kowského priestor(ocas)e majui (ako dosledok delenia priestorocasu na ”¢as”
a ”priestor”) $pecidlnu Struktiru: prirodzene vznika ich vyjadrenie pomocou
dvoch priestorovjch foriem. Takéto vyjadrenie foriem (a operécii na nich)
je efektivnym mostom medzi $tvorrozmernou a (historicky starSou) troj-
rozmernou formuléciou elektrodynamiky. Formy st uzito¢né nielen v elektro-
dynamike, ale v tedrii pola vieobecne. Jednoducho sa cez ne zapisuji 4éinkové
integrdly (kedze podintegralne vyrazy si vzdy formy) a rovnako jednoducho
sa poc¢itaju aj ich extrémy, ktoré davaji pohybové rovnice (prirodzene sa
v nich objavuje kodiferenciél). S priestoro¢asovymi symetriami tizko stvisi
tenzor energie-hybnosti pola, ktory vznikd varidciou ti¢inku podla metrického
tenzora. Tento tenzor sa objavuje (ako zdroj) aj v Einsteinovych rovniciach
gravitacného pola. Skiima sa ich variacnd formulécia, porovnéva sa Hilber-
tov 1cinok, kde sa variruje voéi metrickému tenzoru, s Cartanovym, ktory
je funkciondlom korepérneho (”tetrddneho”) pola a foriem konexie. V ne-
linedrnom sigma-modeli hra tlohu polnej premennej zobrazenie dvoch rie-
mannovskych variet. Zobrazenia, ktoré extremalizuju prirodzene zavedeny
ucinok (vedid na ”"minimélne plochy”) sa volaju harmonické. Takymito zo-
brazeniami sa opisuju mydlové bubliny, ale aj svetoplochy v tedrii strin.
Varidciou voci jednému z metrickych tenzorov sa da prejst od ”kvadratického”
icinku k ”odmocninovému” (¢o mé prakticky vyznam v opa¢nom smere).

a=dtNsS+7T rozklad foriem v Mink. priestore 16.1.1
da = dt A (0,7 — d5) + drF posobenie d na rozlozend formu  16.1.4

= dt A (¥7) + *70)8 pdsobenie * na rozlozend formu  16.1.5

Sov=dt A (08) + (8,5 — 67) posobenie & na rozlozentd formu  16.1.6

F:=dt NE.dr — B.dS 2-forma elektromagnetického pola 16.2.1

Jj = pdt —j.dr = j,dz" 1-forma prudu 16.2.2
oF=—j, dF =0 Maxwellove rovnice 16.2.1,2
F=dA A je potencial pre F 16.3.1
— (1/2)(dA,dA) — (A, j) Uc¢inok S[A] pre elmag. pole 16.3.2
(1/2)(dep,dp) — (m?/2)(¢, ¢) tcinok S[p] pre skaldrne pole 16.3.7
™., =0 zékladnd vlastnost tenzora T  16.4.1
Rap — (1/2)Rgap = 81Ty Einsteinove rovnice 16.5

Zhrnutie 17. kapitoly
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S kazdou varietou M moézeme kanonicky spojit dalsie dve variety dvojné-
sobného rozmeru, TM a T* M. Hraju doleziti ilohu ako ihriské klasickej me-
chaniky (lagranzovskej a hamiltonovskej). Z konstrukcie zadarmo dostédvaju
do vienka zaujimavi geometricki struktiru (aj ked samotna varieta M je
"prazdna’”). Su totdlnymi priestormi vektorovych fibrécii, nesi (rézne) kano-
nické tenzorové polia (napriklad T* M symplekticki formu), viaceré objekty
sa daji z M dvihat do totalnych priestorov. V dalsej kapitole sa na nich
skiima mechanika, tato obsahuje potrebni pripravu.

(2%, 0%) — 2® kanonickd projekcia na TM 17.1.7
T (2% pe) — x® kanonickd projekcia na T* M 17.1.7
T(fog)=TfoTyg vlastnost dotykového zobrazenia T f 17.3.2
~y(t) = 4(t) prirodzeny zdvih krivky z M na TM  17.5.1
O, — T, zdvih toku z M na T M 17.5.5
A =v*0/ov® Liouvillovo pole na TM 17.6.1
A =pa0/0p, Liouvillovo pole na T* M 17.6.1
S :=1"=da* ® 9/0v* vertikdlny endomorfizmus na T M 17.6.4

(0p, W) := (p, . W) kanonickd 1-forma 0 = p,dz® na T*M  17.6.5
w =df = dp, N dz* kanonicka symplectickd forma na T*M 17.6.7

Zhrnutie 18. kapitoly

Ukazuje sa, ako sa formuluje klasickd mechanika na TM a T*M. Oba
pripady st z geometrického hladiska (v nedegenerovanom pripade) tplne
rovnocenné: ide o Standardnu symplekticki dynamiku, t.j. pohyb po in-
tegralnych krivkdch hamiltonovského (dynamického) pola. Na T*M méme
kanonickd symplektickt struktiru, takze fixovanie funkcie H uz ddva priamo
dynamiku. Na T'M je to trochu zamaskované; kanonickym polom je isté ten-
zorové pole typu (}) a symplektickd struktira vznikd az jeho kombinaciou
s (nedegenerovanym) lagranzidnom (ako funkciou na TM). Projekciou tejto
symplektickej dynamiky na bazu M vznikaju standardné Lagrangeove rovnice
(tdto projekcia pridd jeden rad, takze st 2.rddu), zatial ¢o Hamiltonove
rovnice operuju priamo v totdlnom priestore T*M a (ako kazdé rovnice pre
integrélne krivky) sd len 1.rddu. Pomocou lagranzidnu sa konstruuje Legen-
dreovo zobrazenie TM — T* M, ktoré dava tieto dve dynamiky do sivisu. Ak
hamiltonidn (alebo lagranzidn) zdvisi explicitne od ¢asu, formalizmus treba
modifikovat, lebo nosna varieta je neparnorozmerna. Do pohybovych rovnic
vstupuje kanonickd 1-forma pdg — Hdt. Ukazuje sa, ze tato forma hré rozho-
dujicu tlohu aj v konstrukeii t¢inkového funkciondlu.
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0 :=S(dL) Cartanova 1-forma 18.2.3
wr, 1= doy, Cartanova 2-forma 18.2.3
E,=AL-L energia pre lagranzian L 18.2

Y =CBy, ¢, wr=—dEL Lagrangeove rovnice (na T'M) 18.2.6
(L(v),w) := (d/dt)|, L(v + tw) Legendreovo zobrazenie L 18.3.1
Lo ol = oH vztah medzi lagr. a hamil. tokmi 18.3.4
TR, zdvih akcie Ry z M na T'M 18.4.1
T*Ry zdvih akcie R, z M na T*M 18.4.1
5 X generatory zdvihnutého posobenia 18.4.1

Px = <0L,f~x>, Px = (0,¢x) “hamiltonidny” zdvihnutych akcii  18.4.1
L= (1/2)5 — ¢ prirodzeny lagranzian na 7'M 18.4.6

/ (é — Hdt) = / (pdq — Hdt) 1cinok pre hamiltonovski dynamiku 18.5.6

vy vy
2]

/(éL — Epdt) = /L(’y(t))dt uc¢inok pre lagranzovski dynamiku 18.5.6

¥ 31
Zhrnutie 19. kapitoly

Cielom tejto kapitoly je preformulovat uz zndme fakty z tedrie linedrnej
konexie (15. kapitola) do nového jazyka, v ktorom sa (v dalSej kapitole)
obzvlast jasne odhali moznost istého dalekosiahleho zovseobecnenia. Novy
opis sa odohrava na novom ihrisku, variete LM, ktorda sa dé kanonicky
priradit variete M. Jej bodmi si vSemozné repéry vo vSemoznych bodoch
na M. Zistuje sa, ze uz bez konexie na M je v hre bohata struktira: varieta
LM je totdlnym priestorom hlavnej GL(n,R)-fibracie s bdzou M. Konexia
na M priddva na LM dalsiu struktiru, GL(n,R)-invariantnd horizontalnu
distribiiciu. Pomocou nej sa da operacia paralelného prenosu repéru po krivke
v na M preformulovat cez kondtrukciu horizontdlneho zdvihu 4" krivky ~.
Varieta LM déva aj zaujimavi moznost technického opisu sirokej triedy geo-
metrickych objektov na M (Specidlne tenzorovych poli, vseobecnejsie poli
typu p) ako ekvivariantnych funkci{ ® na LM a tiez opisu ich paralelného

prenosu a kovariantnej derivécie (t4 sa zmeni na oby¢ajni smerovu derivaciu
funkcie ®).
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w= ngZ forma konexie na fibracii repérov = 19.2.1

Rhw = A"'wA, (w, &) =C zakladné vlastnosti formy konexie 19.2.4

UVeD=[UV]eD D je integrovatelna (Frobenius)  19.3
9i|D =0 = d0i|D =0 D je integrovateInd (iné vyjadrenie) 19.3
VeD" & (w,V)=0 horizontélna distribtcia na LM 19.4.3
T.LM = Ver ,LM @ Hor . LM rozklad indukovany konexiou 19.4.5
(w,f;y> =0 4 zodpoveda autoparal. rep. polu  19.5.1
PoRyA=p(A)od ® je velic¢ina typu p 19.6
d(y"(t)) = const. autoparalelné pole velicin typu p  19.6.5

Zhrnutie 20. kapitoly

Preklad pojmov suvisiacich s linedrnou konexiou do reci fibracie repérov,
ktory sa udial v 19. kapitole, odhaluje moznost zovSeobecnenia. Namiesto
m: LM — M sa uvazuje w : P — M, hlavné fibracia s grupou G. Kone-
xiou v tejto fibracii sa nazve horizontalna distribicia v totdlnom priestore
P, ktora je invariantnd voc¢i posobeniu grupy G. Technicky sa opisuje for-
mou konexie w, ¢o je istd 1-forma s hodnotami v Lieovej algebre G grupy
G. Analégmi repérov si body variety P a ich paralelny prenos sa stotozni
s horizontdlnym zdvihom krivky z bazy, po ktorej sa robi prenos. (Lokélna)
zéavislost tohoto paralelného prenosu od cesty sa dé jednoducho vyjadrit v ter-
minoch integrovatelnosti horizontdlnej distribicie a ako miera tejto integrova-
telnosti vstipi do hry (cez Frobeniovo kritérium) pojem 2-formy krivosti 2
(m4 tiez hodnoty v G). Ako formélny ndstroj na vypocet formy krivosti sa
zavadza vonkajsia kovariantnd derivacia D; pomocou nej dostdvame vyja-
drenie 2 = Dw = dw + (1/2)[w A w]. Pocita sa tiez pésobenie D na dalsej
triede doélezitych objektov, na horizontalnych forméch typu p, kde sa ziskava
vysledok Da = da + p'(w)Aa. Dvojndsobnd aplikdcia D ddva Bianchiho a
Ricciho identity. Ak je na M definovand nejaka struktira, d4 sa pomocou nej
Casto zostrojit ista podfibracia hlavnej fibracie, na ktorej posobi len podgrupa
povodnej grupy; hovori sa o ohranic¢eni struktirnej podgrupy. Napriklad me-
trickému tenzoru na M zodpovedd fibrécia ortonormovanych repérov (pod-
fibrdcia fibracie repérov). Za istych podmienok sa na podfibriciu dedi aj
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konexia; naopak konexia na podfibracii indukuje konexiu na celej fibracii,
ktora je $pecidlna v tom, ze respektuje Struktiru, ktora suvisi s podfibraciou.

Rgy.Hor , P = Hor 4 P horizont. distr. je G-invariantna 20.2.1
wp = \I/;1 over : T,P =G 1-forma konexie v bode p € P 20.2.4
Riw=Ad 1w, (w,&x)=X zakl vlastnosti formy konexie  20.2.5

moyt =19, ¥"0)=p 20.3.2
(w, (")) =0 horiz. zdvih v, zadiatok v p € P 20.3.2
(hor @) (U,...) := a(hor U,...) horizontélna ¢ast formy 20.34
Da := hor da vonkajsia kovar. derivacia formy 20.3.5
Q:=Dw=Q'E; 2-forma krivosti na P 20.4.1,3
Q=dw+ (1/2)[w A w] Cartanova §truktdirna rovnica  20.4.3
Da = da + p'(w)Aa D na hor. formy typu p 20.4.6
DDw = DY = dQQ + [w A Q] = 0 Bianchiho identita 20.4.4,7
DDa = p'(Q)Aa Ricciho identita 20.4.8
Q=0= do : c'w=0 nulova krivost = dplny paral. 20.4.11

Zhrnutie 21. kapitoly

Konexie v hlavnej G-fibracii sa davaji do sivisu s kalibraénymi polami,
ktoré su zname z fyziky. Najprv sa opisuje Standardny ”fyzikalny” pristup,
ktory spociva v zlokdlneni symetrie ucinku, ktory uz je ”globédlne” inva-
riantny. Toto zlokalnenie pridava k tedrii dalsie polia s konkrétnymi trans-
formaénymi pravidlami a konkrétnou interakciou s pévodnymi polami. Ukéze
sa, ze tieto polia sa daju interpretovat aj z pohladu tedrie konexii. Konkrétne
sa nahliadne, ze fixovanie kalibracie je dané vyberom lokalneho rezu o hlavne;j
fibrdcie, kalibra¢né potencidly (v tejto kalibrdcii) sa ziskavaju stiahnutim
formy konexie na bdzu (pomocou rezu), kalibractné transformécie sivisia
so zmenou rezu, intenzita kalibracného pola sa ziskava stiahnutim formy
krivosti a latkové polia stiahnutim ekvivariantnej funkcie na P. Odvodia
sa rovnice paralelného prenosu Tubovolnej veli¢iny typu p v kalibrécii o.
Zavedie sa pojem asociovanej vektorovej fibrdcie (ktord vznikne z hlavnej
fibrdcie nahradenim povodného vldkna reprezentaénym priestorom grupy G).
Ukazuje sa, aku struktiru maja ucinkové integraly, ktoré su lokélne kali-
bra¢ne invariantné a ako sa z nich odvodia pohybové rovnice (st zovseobec-
nenim Maxwellovych rovnic z elektrodynamiky, ktora je kalibracnou teériou
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s grupou U(1)). Zoznamujeme sa s Notherovej vetou, ktord ddva do sivisu
symetrie uc¢inkovych integralov so zakonmi zachovania. Tato veta vrha nové
svetlo aj na starSie vysledky v tomto smere, spojenie zakonov zachovania
s tenzorom energie-hybnosti v teérii pola a s exaktnymi Cartanovymi syme-
triami v hamiltonovskej mechanike. V poslednom paragrafe sa vraciame na
fibraciu repérov LM a zoznamujeme sa s kanonickou 1-formou 6 s hodnotami
v R™. T4to forma tizko stivisi s torziou na M. Vysvetluje sa tam tiez ako sa dd
(pre linedrnu konexiu) vyuzit vonkajsia kovariantnd derivdcia D na béze M.

e @g Ay A4 do(z) U(1)-lok. kalibr. transformécia ~ 21.1.2
6(z) = o(z)S(z) = Rs(y)o(x)  dva rezy vo vztahu cez S € GY  21.2.1

é=B"1¢ lok. kalibr. transf. latkového pola 21.2.5
A=B'AB+ B 'dB to isté pre kalibraény potencidl — 21.2.5
F=B"'FB to isté pre intenzitu pola 21.2.5
v+ (A, 9)v=0 rovnica paral. prenosu 21.3.2

S[¢, Al = =(1/2)(DA, DAk
+ (1/2)(D¢, Dh)n
—(

m?/2)(¢, o)n ti¢inok viazanej stistavy (¢, 4)  21.5.6
DYF=-J
DF =0
(D™D —m?)p =0 zodpovedajice pohybové rovnice 21.5.6
Slp(e*®@ )] = S[¢)] + e(ds, j)r v¥pocet ndtherovského pridu j  21.6.1
Ji=TEx:, ) nother. prud za Killingov vektor 21.6.6

O := D0 torzia vo formalizme na LM 21.7.2
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Zhrnutie 22. kapitoly

Speciélne ortogonalne grupy SO(p, ¢) maji univerzélne dvojlistové nakry-
vajuce grupy, ktoré sa volaju spinové grupy a oznacuju sa Spin (p, q). Celd ich
tedria sa systematicky buduje pomocou Cliffordovych algebier. Konstruuje sa
izomorfizmus tychto algebier na vhodné maticové algebry (ich vernd reprezen-
técia) a pomocou neho sa zavddza pojem spinora ako vektora reprezenta¢ného
priestoru Cliffordovej algebry. Spinové grupy su podmnoziny v Cliffordove;j
algebre a preto ohranicenie spominanej vernej reprezenticie algebry je aj
reprezentaciou spinovej grupy. Tym na spinoroch posobi aj spinova grupa
(a dvojznacne aj ortogondlna grupa). Této jej reprezentdcia sa vold spinorova.
Pre niektoré specidlne hodnoty (p, ¢) existuji $pecidlne typy spinorov (wey-
lovské, majoranovské, ...). Spinové struktira na M je hlavna fibracia nad
M (spinovéa fibrécia), ktord dvojlistovo nakryva fibrdciu ortonormovanych
repérov a vo vladknach ktorej posobi spinova grupa. Spinova struktira sa
nedd zaviest na kazdej variete. Ekvivariantné funkcie typu p na totalnom
priestore spinovej fibrécie (a tiez ich stiahnutia na bdzu pomocou rezu), kde
p je spinorova reprezenticia, sa volaju spinorové polia na M. Polu 1-foriem
typu p zodpovedd Raritovo-Schwingerovo pole. Na spinorové polia posobi
$pecidlny operator prvého radu, ktory sa vola Diracov operator. Vznikol vo
fyzike v kvantovej tedrii relativistického elektrénu - vyskytuje sa v Diracovej
rovnici.

e%e’ + ebet = 240 vztahy pre Cliffordov sicin 22.1.1
u=ai...a5 ¢(aj ;) ==l prvky grupy Pin (p, ) 22.2.1
ueu~t =: (A7h)gel nakrytie Spin (p,q) — SO(p,q) 22.2.3
(1/2)e%eb s £ odv. izom. spin (p, q) — so(p, q) 22.2.7
~* = p(e?) ~-matice 22.3.1
Dy = dip + (1/4) @0y 70 vonk. kovar. der. spinor. pola  22.5.1
Xy (v)dz" By = x5 (v)e (z) Eq Raritovo-Schwingerovo pole 22.5

D:=igo D =~"g,D Diracov operédtor na SM 22.5.3
P=i40D =~",D Diracov operator na M 22.5.3

Db = e (9,9 + (1/4)wpe, Y’y 10) Dir. operdtor na spinor. poli  22.5.4
Py =~v%ek (0 + (1/2) 0 v51) zjednodusSenie pre 2-rozm. M  22.5.4
p(u)?_‘p(u_l)%Ag’yb; =% ~-matice si inv. tenzory 22.5.11
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A

absolitna derivécia 398, 402, 407
adaptovana baza 58

-4 na podpriestor W 565

-é suradnice 24

adiabaticky proces 571
adiabata 571

adjungovany 139

afinnd konexia 618, 663

-4 grupa 229, 235, 241, 244, 247
-é transformacie 229

akcia = posobenie 313

- efektivna 342

- tranzitivna 315, 560, 587
algebraicky uzavreté pole 277
algebra

- asociativna 40, 52, 714

- funkcii na variete M 40

- horizontalnych foriem na P 602
- kvaterniénov 678

- Lieova 89, 98, 242, 716

- pozorovatelnych 357

A-modul 717

Ampérov zakon 469

anihilator 59, 228, 392, 565
anihilovat 565

ansatz 101

antikomutujice premenné 127
antisamodudalna forma 204
antisymetrickd cast 111

atlas 23

automorfizmus 223, 358, 715, 716
- grupy 282

- Lieovej algebry 283
autonémna sustava 46
autoparalelna velic¢ina 638, 642
-é pole 399, 403, 407, 578
azimut 77, 452

B

béaza fibracie 515

Bettiho ¢isla 219

Bianchiho identita 442, 606, 608, 635
biharmonické suradnice 76
bilinedarne sparenie 168, 713
bivektorové pole 352

bodkované indexy 332

bodovost konstrukcie 60

boost 100, 331

C

Cartanova algebra 142

-ova 1-forma 535

-ova 2-forma 535

-ova symetria 371

- - exaktna 371, 541

-ove §trukturne rovnice 437, 606, 634
-ove vzorce 149, 306

-ov uc¢inok 495

Casimirove operatory 288, 336
Cauchyho veta 205
Cauchyho-Riemannove vztahy 103, 204
celkovy moment hybnosti 342
centralne pole 551
Clebschov-Gordanov rad 305
Cliffordova algebra 138, 674, 675
-ov sucin 675

cyklické suradnice 543

cyklus 217

Ck-atlas 23

C*-pribuzné mapa 23
CPk-varieta 23

CF-struktira 23

C
casovy vyvoj stavov 359
Cisty stav 358, 385
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D

D’Alambertov operator 463
Darbouxova veta 361
deformaé¢nd retrakcia 215
degenerovany rovnobeznosten 109
deRhamov komplex 218
derivacia algebry funkcii 43

- Cartan. alg. stupna +1 147, 602
- tenzorovej algebry 87

- asociativnej algebry 715

- Lieovej algebry 310, 716

- stupna k 719

determinant matice 125
determinant zobrazenia 132
difeomorfizmus 28, 224
difeomorfné variety 28
diferencidlne formy 108

- typu p 345

diferencidl (zobrazenia) 70
diferencial (v komplexe) 217
Diracov operédtor 673, 702
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-ova rovnica 673

-ovské spinory 690
Dirichletova tloha 193, 194
diskrétna topoldgia 19
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dizka krivky 65, 66, 96
dotykova fibracia 514, 517
-ovy funktor 519, 524

-ovy priestor 39

-ovy vektor 45

druhd veta termodynamickd 571
drdha (cesta) 66

dualna baza 48

-ny priestor 48

dvojhladinové stustava 385
dvojlistové nakrytie 324, 715
dvojznactna reprezentacia 333
dvihanie indexov 56

E
efektivna akcia 342
- potencidlna energia 551

Einsteinova-Cartanova teodria 493
Einsteinove rovnice 489

-ove rovnice vo vakuu 492

-ove 1-formy 495

-ov tenzor 489

ekvivalentné fibrdcie 516, 588
-né funkcie 601

-né reprezentacie 276
ekvivariantny izomorfizmus 276
-ny difeomorfizmus 588

né zobr. 275, 317, 320, 376, 580, 591

endomorfizmus 253
energia 536

energia pola 481

entropia 572

euklidovska grupa 543
-ské transformacie 99, 339
-sky priestor 99

-sky p-simplex 164

Eulerova-Lagrangeova 1-forma 426, 476

Eulerovo-Lagrangeovo pole 536
Eulerov-Lagrangeov vyraz 537
Eulerove uhly 263

exaktna forma 208

-na symplekticka forma 354

-né Cartanove symetrie 371, 541
-né prvky 217

exponencidlna grupa 262

-ne zobrazenie 248, 422

F

faktoralgebra 119, 715, 716
faktorpriestor 219

Faradayov indukény zakon 468
fazovy priestor 357, 363, 543

- objem 368

- tok 359

fibrovand varieta 515

fibrované zobrazenie 516, 617
fibrdcia 515

-cia hlavna 586

-cia repérov 559

-cia afinnych repérov 663

-cia ortonormovanych repérov 614



fiber 515

F(M)-linearita 60

formy (diferencidlne) 108
forma konexie 433, 562

- krivosti 434, 604

- objemu 128, 152, 225, 368
- typu p 345

- typu Ad 598

- 8 hodnotami vo V' 156

- torzie 434

1-forma konexie 597

- prace 571

- tepla 571

- priudu 466

2-formy torzie 665
2-forma elmag. pola 465
3-formy pruadu 466
Foucaultovo kyvadlo 414
-ov uhol 433, 446
Fourierov rozklad 346
f-pribuzné 70, 81
Frobeniovo kritérium 567
fundamentalna reprezentacia 332
-ne pole posobenia Ry, 335
funkcia 37

funkciondl dizky 426

G

Gaussov integral 127
v-matice 688, 692

-ova krivost 439

-ova veta 184, 199

-ov zakon 469

generator algebry 118

- modulu 44

- reprezentacie 268

- posobenia (akcie) 336
geodetické okolie 421

-4 deviacia 449

geodetika 397, 546
G-invariantny lagranzidn 542
globalizovat 62

globalna trivializdcia 516, 588
-ne hamiltonovska 375, 382, 542

45

-na kalibra¢nd transformaécia 627, 628
gradient 61, 66, 197

graduovana algebra 53, 117, 719

-né Lieova algebra 144, 719

-ne komutativna 112, 143

-ny komutator 144

graf zobrazenia 29

gravitino 701

Greenove identity 193

-va veta 182

H

hamiltonidn 353, 385
Hamiltonove rovnice 47
hamiltonovska ststava 363, 536
-ské pole 352, 355, 536

-sky tok 359

harmonicka funkcia 193, 204, 205, 502
-ké zobrazenie 503

Hausdorffov priestor 20
Heisenbergov obraz 359
hermitovsky skalarny sicin 227
Hilbertov tGc¢inok 490

hladka distribicia 564, 565

-ké struktira 24

-ké varieta 23

-ké vazba 31

-ké posobenie 314

-ké vektorové pole 43

-ké tenzorové pole 60

hlavny automorfizmus 118

-na G-fibracia 560, 586

-ny homogénny priestor 320, 560, 587
hmotnostny ¢len 474, 475
Hodgeov operator 133
holomorfna funkcia 103, 204, 205
holonomicka grupa 433
holonémia 433
homeomorfizmus 19
homogénna forma 117

-e stiradnice 25

-y ¢len 52

-y priestor 315, 319, 382, 587
-y tenzor 101



46

homolégia 217

homotopia 211, 609
homotopicka nule 609

-é cesty 609

-é zobrazenia 211

-y operator 211, 216
homotétia 97

Hopfova fibracia 590, 592, 595, 694
-vo zobrazenie 28
horizontéalna distribucia 574
-a forma 389, 602

-a forma typu p 701

-a krivka 578

-y podpriestor 574, 595

-y rez 611

-y vektor 574, 597

-y zdvih krivky 578, 600

-y zdvih vektora 574, 599
hranica 217

hraniény operator 164, 167, 218
hustota lagranzianu 472
hustota 176

- skalarna 128, 154, 582

- tenzorova 585

hybnost pola 481
hyperplocha 32

CH

charakteristicky podpriestor 140
chirdlne spinory 690, 691
Christoffelove symboly 402

- 1. druhu 411

1

ideal 296, 356, 372, 391, 715, 716
indexova gymnastika 56
indukovany metricky tenzor 58, 75
integralna krivka 45

-e invarianty Cartanove 367
integral prvého druhu 177

- druhého druhu 177

intenzita kalibr. pola 628, 629, 646
interakény clen 472, 476
invariantné forma 366

-é pole 84

-y lagranzian 542

-y podpriestor 274

-y skaldrny sicin 272

-y tenzor 303

inverzia 487

ireducibilnd reprezentacia 274
izometria 22, 56, 96, 503, 659
izotrépny 101

J

Jacobiho identita 358

- rovnica 449

jednoducho suvisla 324
jednoparametrickd podgrupa 245
-4 grupa transforméacii 82

K

kalibracné grupa 623

-4 podmienka 212

-4 transformaécia 476, 623, 631, 633
-e invariantny 473, 645

-é pole 623

-y potencial 627, 629, 637
kanonickd hybnost 543

-4 ploché konexia 601

-4 projekcia 28, 318, 511, 515

-4 1-forma na G 244, 262, 284

-4 1-forma na LM 664

-4 1-forma na T*M 529

-é sparenie 63, 713

-é suradnice 362, 512

-a symplektickd forma na T*M 529
-¢é transformacie 363

-é vlozenie 174

kartézsky priestor 20

-y sucin variet 25
Kahlerova-Atiyahova algebra 676
Kahlerove fermiony 704
Killingova-Cartanova forma 286
Killingove rovnice 97, 424

-ove vektory 98, 338, 480, 546, 548
kinetickd energia 65, 545

-y clen 472, 474, 475



kladnd definitnost 54
Kleinova-Gordonova rovnica 474
Kleinova flaga 31

koadjungované posobenie 376, 379
-4 reprezentacia 292

kocyklus 217, 377

kodiferencidl 189, 443, 644
kodotykova fibracia 514, 517

-y priestor 59

koeficienty konexie 401

- anholonémie 214, 445, 703
koexaktnost 215

kohomologicka grupa 219

-4 trieda 218

-é kocykly 217

kohomolégia 217, 219

-ie Lieovej algebry 308
kohranica 217

komomentové zobrazenie 379
kompaktnd Lieova grupa 253, 274
-4 Lieova algebra 291

-4 varieta 189

kompatibilné struktury 230
kompenzacné pole 628
komplexna Lieova grupa 234
komplexna varieta 26

- reprezentacia 277

komplex 217, 308

komponenty pola 42, 43

-ty tenzora 51

-ta suvislosti jednotky 261

-tné formy 156

-tné funkcie 341

-tné polia 344

kompozi¢ny zakon 231
komutativna grupa 278
komutator 89, 716

konexia na hlavnej G-fibracii 595
konecne generovany 44
konfiguracny priestor 77, 541
konformne invariantnéd 136, 489
-4 transformacia 97, 488, 659

-4 trieda 505

-é preskalovanie metriky 135, 485

47

-é Killingove vektory 102, 485

-é Killingove rovnice 102
kongruencia 47

konjugacia 282, 314

konjugovand podgrupa 316
kontaktnd forma 554

-4 Struktura 554

kontragradientnd reprezentécia 270
kontrakcia 53, 300

kontur 173

korepérne pole 94

kotangencialny priestor 58
kouzavreta forma 204, 205, 215
kovariantna derivacia 400, 627

-4 divergencia 443

-y gradient 396

-y funktor 519

-y kodiferencidl 647

-y tenzor 71

-e konstantné pole 406, 453
kovektor 48, 59

krivka 37

krivociare suradnice 24

krivost skalarna 431

- Gaussova 439

k-rozmerné hladké distribuicia 564
kvadraticky Casimirov operator 288
kvaterniény 714

kvazilinearna sustava 46

L

Lagrangeova veta 319

-e rovnice 419, 426, 534

Lamého koeficienty 200
Laplaceova rovnica 193
Laplaceov-Beltramiho operator 186, 434
Laplaceov-deRhamov operator 189
latkové pole 629, 648

Legendreovo zobrazenie 539

lema o vyrovnani 83

Levi-Civitova konexia 411
Levi-Civitov symbol 123

Lieova algebra 89, 243, 716

-a derivéacia 80, 86
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-a grupa 230, 234

-a podgrupa 234

-a zatvorka 89

-a superalgebra 144, 719
-sky konstantné 86

-sky prenos 85

lift (zdvih) 522

linedrna konexia 400

-e formy 48

-e pole 615

-y priestor 710

-y funkcional 40

-y operétor 43, 85
Liouvillova forma 368

-a rovnica 385

-a veta 368

-0 pole 545

lokalna trivializacia 515

-a kal. transformécia 625, 627, 631
-e izometrické variety 101

-e kalibra¢ne invariantny 645
-e Lorentzove transformacie 498
-e suradnice 23

-e sucinova Struktira 515

-e trivialne 516

-y homeomorfizmus 324

-y rez 517, 562

-y tok 80

Lorentzova grupa 224, 277, 328
-a (Stvor)sila 477

-ské varieta 486

loxodréma 77, 452

L

Tavoinvariantné tenzorové pole 235
-y metricky tenzor 289

lavd akcia (posobenie) 313, 717

-4 regularna reprezenticia 335

-4 transldcia 234, 338

-4 zvyskova trieda 318

-y G-priestor 322

M
magneticky ndboj (monopdl) 478

Majoranova reprezentacia 688
mald grupa 316

mapa 23

matica hustoty 385

maticova algebra 714

- grupa 234
Maurerova-Cartanova 1-forma 244
Maurerove-Cartanove vztahy 244
maximalny C*-atlas 23
Maxwellov posuvny prud 469
metrickd forma objemu 129

- konexia 409

-y tenzor 54, 613

minimdlna interakcia (vézba) 629, 645
Minkowského priestor 65, 458
mnozina urovne 32

modul 44

modulo 2 120

momentové zobrazenie 379, 542
moment hybnosti pola 481
morfizmus hlavnych fibracii 617
- vektorovych fibracii 519

- Cartanovych algebier 143, 602
- tenzorovych algebier 74
multilinedrne 50

mydlové bubliny 507

Mébiov list (pésik) 151

-ova transformécia 321

N

nabité castice 629

naboj 279, 651

nadplocha 32

nakrytie 324

nakryvajici homomorfizmus 324
neabelovskd kalibra¢na grupa 648
nebodkovany spinor 332
nedegenerovand 2-forma 354

-y (= reguldrny)lagranzidn 535
neholonémne repérne pole 94
nehomogénna forma 120
nelinearne pole 509, 630

- realizacie 322

-y sigma model 509



neorientovatelna varieta 152
neparne parametre 144
neparny voci chiralite 708
nesingularny lagranzian 535
nesuradnicové repérne pole 94
Neumannova okr. podmienka 194
Newtonov-Leibnizov vzorec 181
Nijenhuisov tenzor 538
nilpotentny 164, 167, 217, 308
n-listové nakrytie 324
normélna podgrupa 322

-ne suradnice 249, 423

-ovéa derivacia 194

Notherovej veta 655

-ské naboje 655

-ské prudy 655

nulové body 81

-y rez 588

(0)

objem oblasti 175, 172, 506

- podvariety 177

- rovnobeznostena 108
obojstranne invariantny integral 253
- -y metricky tenzor 289

- -4 forma objemu 291
obojstranny idedl 119
obratenie Poincarého lemy 212
odvodena reprezentacia 270
ohranicenie fibracie 613, 618

- na podgrupu 267

- reprezentacie 274

- Struktdrnej grupy 613

- formy 174

ohranicujica 1-forma 565
Q-divergencia 369

operator dualizacie 133

- krivosti 428

- kvadratu momentu hybnosti 289
- paralelného prenosu 404, 407
- spinu 342

orbita 315

orbitdlny moment hybnosti 338
orientovany atlas 152

49

- objem 109

-eInd varieta 32, 152, 236, 577, 665
orientacia v L 122
ortogondlne matice 224
-e suradnice 64

-a grupa 225

-a transformacia 684
-y doplnok 275
ortonormovana baza 55
otvorend mnozina 19
-é pokrytie 23

P

paralelizovatelna 223, 236, 577, 665
paralelny prenos 404, 407

-e prenasana veli¢ina typu p 641
-e prenasany zovseob. repér 601
parametrické vyjadrenie 32
parametrizacia 37

Pauliho matice 258, 304, 692
p-delta 123

per partes 182

pevné body 81

pfaffidn 126

Pfaffove formy 571

ploché konexia 453, 502
podalgebra 715, 716

-fibracia 613

-reprezentacia 274

-varieta 29

podmienka integrovatelnosti 569
- nestlacitelnosti 184
Poincarého lema 212

- transformacie 99

Poissonov tenzor 352

-a rovnica 193, 194

-e zatvorky 352

-ské posobenie 379, 382, 387, 542
-ska varieta 352

polariza¢ny vektor 385

polarny rozklad 330

pole posunuti 104

- rovnice 2. radu 534

- rychlosti 105, 184
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- typu p 582

polopriamy sucin grup 295

- sucet Lieovych algebier 296
poloprosté Lieove algebry 288
polylinedrne zobrazenie 50
poly funkcie 207

posobi sprava, zlava 313
posobenie grupy 313
potencial 208

-na energia 66, 545, 544

-ové silové pole 66
pozorovatelnd 357

préaca sily 213

prava translacia 234, 338

-4 akcia (psobenie) 129, 313
-4 reguldrna reprezenticia 335
-y G-priestor 313

pravoinv. forma objemu 273
predfienie fibracie 618, 694
preurcené rovnice 97

priamy suacet 1. pr. 52, 228, 575, 710

- asociativnych algebier 715
- Lieovych algebier 293, 717
- reprezentacii 297

priamy stcin grup 292

- reprezentacii 297
pridruzend fibracia 642

- reprezentdcia = Ad 283
priestorova oblast 464

-4 forma 460

-& Stokesova veta 464

-4 vonkajsia derivacia 461
-y Hodgeov operator 462

-y kodiferencial 463

-y Laplaceov-deRhamov oper. 463

priestorocas 65, 458, 489
priestorupodobna nadplocha 77
princip ekvivalencie 486
prirodzeny lagranzian 545

-y parameter 420

-y zdvih krivky 522, 555

- voci difeomorf. 191, 478, 659
Procova rovnica 475

projektor 111, 280

projektovatelné pole 71, 251
projektivny priestor 25
prva veta termodynamickd 571
pseudometricky tenzor 54
-euklidovsky priestor 99
-ortogondlna grupa 224
-ortogonélna matica 224
-sféra 76

-riemannovskd varieta 63
pull-back 69, 70, 72, 73
push-forward 70, 73
p-forma 110

p-forma na variete 142
p-retazec 164

p-retazec na variete 166

R

rad (kone¢nej) grupy 235

rang bivektora 354

- formy 139

- linedrneho zobrazenia 58

- 2-formy 354

- tenzora 51
Raritovo-Schwingerovo pole 701
reducibilnd reprezentécia 274
redukcia fibracie 618

- (symplektickd) grupou G 390
-ovand hamil. sistava 391
-ovand symplekticka varieta 390
-ované pole 390

-ovany fazovy priestor 390
regularny lagranzian 535
relativna invariantnost 366

-a rychlost 448

-e zrychlenie 448
reparametrizacia krivky 46, 66
-zaCne invariantny 66, 507
reprezentacia grupy 267

- Lieovej algebry 268

- Cliffordovej algebry 688, 690
repérne pole 94

rez 568

reziduum 207

Ricciho formy 489



- identita 442, 608, 635

- koeficienty rotacie 444, 703

- tenzor 431

Riemannova konexia 411

-ov tenzor (krivosti) 430

-ovska geometria 63

-ovskd varieta 63

p-invariantny skaldrny stucin 271
R-linearita 60

rotacné matice (Wignerove) 347
rotécia (vektorového pola) 197
rovnica kontinuity 467

-e paral. prenosu 404, 407, 638 642
rovnomerny priamociary pohyb 396
rozklad jednotky 280

- grupy 318

rozlozitelnd forma 139

rozmer reprezenticie 267
rozsirenie fibrécie 618

-ny fazovy priestor 552

S

samodualna forma 204
samointerakcia 648
samozdruzeny operator 190
sférické funkcie 348
Schrodingerov obraz 359
Schurova lema 277, 278
silociary 45

singuldrny retazec 218
skaldrna elektrodynamika 625
-a hustota 128, 154, 582

-a krivost 431

-e pole 474, 499, 502

-y sucin 54, 136, 188

-y potencial 471

smerové derivacia 40
soldering 586

spinorové indexy 700

-4 reprezentacia 328, 332, 688
-é pole 499

-é pole na baze 695

spinory 328, 688

spinova fibracia 618, 693

o1

-4 konexia 444, 696, 703

-4 Struktura 694

splietajuci operéator 276, 300
spojité zobrazenie 19
spustanie indexov 56
stabilizator 316

stabilny bod 315
stacionarna podgrupa 316
-e prudenie (tecenie) 47, 184
stavova veli¢ina 208, 571
stereografickd projekcia 24
stiahnutelna varieta 210
Stokesova veta 174, 199, 215
strednd hodnota 178
stredovanie cez grupu 273
stupen 117

superalgebra 719
-komutator 144, 719
-matematika 120
stradnicova baza 42, 43, 61, 93
-4 krivka 39

-é vyjadrenie 27, 37,

suvisly priestor 260
stucinova fibracia 515, 568

-4 hlavné fibracia 587
svetociara 476, 508

-plocha 508

Sylvestrova veta 54
symetrizacia 114

symetrickd konexia 410
symplekticka forma 354

-4 grupa 225

-4 redukcia 548

-4 varieta 354, 536

-é pole 355

-é zobrazenie 359

-y ortogonalny doplnok 387
-é posobenie (akcia) 374
symplektomorfizmus 358, 359
S

Standardné orientacia 150
-4 topoldgia v R™ 21

-¢é horizontalne polia 577



52

-4 hladkd struktura v R™ 24
-y n-simplex v R™ 165
-y (plochy) metr. tenzor v R™ 63

strukt. konstanty 243, 706, 715, 717

Stvorpotencial 470
Stvorsila 477
Stvorzrychlenie 477

T

tabulka ndsobenia 235
tangencidlny priestor 39
teleparalelizmus 453
tenzor deformécie 104

- energie hybnosti 479, 489, 658
- kontrakcie 63

- krivosti 430

- napatia 105

- rychlosti deformacie 105
- torzie 410

tenzorova algebra 52

-4 fibracia 643

-4 hustota 582

-4 operacia 53

-é pole 59, 582

-é pole typu p 345

-y sicin tenzorov 51

-y suéin priestorov 160, 711
-y suéin matic 712

-y stcin algebier 715
tedria kohomolégii 217

- momentu hybnosti 288
- stran 508
termodynamika 570
tetradny formalizmus 94, 444
-e pole 94, 443, 494, 703
-ovy postulat 444

tok 47

topologicky priestor 19
topoldgia 19

torus 28, 34

torzia 410, 450, 665
totalny priestor 515

tranz. posob. (akcia) 315, 560, 587

triedy C* 21

trivialna fibracia 516, 588
- topolodgia 19

typické vldkno 515

typu Ad 598

U

unimodularne repéry 619
unitarna reprezentacia 272
- matica 227

univerzalne nakrytie 715
-a nakryvajuca grupa 324, 685
uzavretd forma 208

-4 plocha 174

-y prvok 217

U(1)-néboj 279

U

tplne reducibilna 275

tplny zdvih 525, 527, 541, 542, 545

-y paralelizmus 453, 610
G¢inok 418

A%

varidcia potencialu 471

- pociatocnych podmienok 447
-¢né derivacia 472

varieta repérov 558

- hladka 23

vézby 77

vektorova fibrécia 517, 588, 643
-é pole 42, 475

-y suéin 199

-y potencial 471

vektor spinu 385

veli¢ina typu p 582, 601, 641
vertikalna akcia 388, 560

-y podpriestor 520, 561, 573, 595
-e pole 388

-a distribucia 573

-y endomorfizmus 529

-y zdvih kovektora 525

-y zdvih vektora 523

-y zdvih tenzora 524

-y vektor 521



veta o homomorfizme 323

- 70 vnoreni” 30 )%

viacznacnd reprezenticia 333 Weylova béza 238
vielbeinové pole 94, 444, 507, 703 -e spinory 691

v involicii 372 Wignerove rotacné funkcie 347
vlastna funkcia 348

-na hodnota 348 Z

-né Lorentzova grupa 685 zachovavajuca sa veli¢ina 372, 480
-né ortochrénna Lor. grupa 328, 590 zachovéava orientaciu 171

-ny cas 476 zdmena suradnic 23

vlakno v bode x 515 zdruzeny 139

vlnovy operator 463 zdvih 522

vlozenie 29, 75 - posobenia grupy 542
vnorenie 29, 75 - zobrazenia 132, 518
vnutorna derivacia 716 Zo-graduovanost 692

-y suc¢in 121, 355 zlomkovo-linedrna transf. 321
-y automorfizmus 282, 717 zlozky 42, 43, 51

volné akcia (posob.) 342, 560, 587  zmieSany stav 357, 385
vonkajsia algebra 117, 127 zobrazenie 22

-a derivacia (kovariantnd) 147 (602) - fibracif 516

-a normala 173 zovSeobecnend sila 419

-1 sucin 112, 157 -é suradnice 77

vytvarajuca funkcia 364 zrychlenie 395, 477

vykon elektrického pola 477 zizenie 53

vyznamné repéry 619
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REGISTER (Easto pouzivanych) OZNACENI

absolitna derivécia v smere krivky ~
algebra (hladkych) funkcii na M

algebra pozorovateInych

algebra (asociativna) redlnych n x n matic
algebra (Lieova) redlnych n x n matic
algebra tenzorovych poli na M

Cartanova algebra diferencidlnych foriem na M
Cartanova 1-forma a 2-forma (na TM)
Cliffordova algebra

Diracov operator

Diracov operator na baze M

dotykova fibracia

dotykové zobrazenie v bode x € M
dotykovy vektor ku krivke ~y

dotykovy priestor v bode z € M

dudlny priestor

Einsteinov tenzor

elektrické a magnetické polia

euklidovsky priestor

fibracia ortonormalnych repérov

fibracia repérov

forma konexie na totalnom priestore P
formy konexie (linedrna konexia na M)
forma krivosti na totdlnom priestore P
formy krivosti (linedrna konexia na M)
formy torzie

fundamentélne pole (generdtor pésobenia)
hamiltonovské pole generované funkciou f

Hodgeov operator dualizacie

<

4

(M)
(M)
(n), Mn(R)
I(n,R)

(M)
Q(M)

Or,wr,

=

Q

\“
S =

C(L,g),C(p,q)

p

4
m:TM — M

T.f

.M
L*
Gab

a
b

T(l
Ex
Cr

*7*9

12.3.2
2.2.5
14.1.9
11.7.1
11.7.2
2.5
6.1
18.2.3
22.1
22.5.3
22.5.3
17.1.1
3.1.2
2.2.2
2.2.2
2.4.1
16.5.
9.2.9
2.6
20.5.5
19.1.1
20.2.5
15.6.1
20.4.1
15.6.3
15.6.3
13.4.3
14.1.6
5.8.1



horizontalna distribuicia

horizontalny zdvih krivky -

horizontélny zdvih vektora v

horizontalne p-formy typu p na P

hrani¢ny operator

Christoffelove symboly

intenzita kalibra¢ného pola

intenzita kalibracného pola (reprezentovand)
kalibrac¢ny potenciél

kalibra¢ny potencidl (reprezentovany)
kanonicka 1-forma na G (Maurer-Cartan)
kanonickd 1-forma na 7% M

kanonickd 1-forma na LM

kanonicka 2-forma na LM s konexiou
kanonické sparenie L a L*

kanonické (Darbouxove) siradnice na (M, w)

koadjungované pdsobenie (reprezenticia)

kodiferencial

kodotykova fibracia

kodotykovy priestor v bode x € M
komutdtor v Lieovej algebre G grupy G
konjugacia prvkom g

kontragradientnd (dudlna) reprezentécia
kovariantna derivacia v smere pola V'
kvaterniény, komplexné a redlne ¢isla
Laplaceov-deRhamov operétor

Lieova algebra grupy G, H, ...

Lieova derivédcia v smere pola V

Lieova grupa

metrickd forma objemu
operator krivosti
ortogonalna grupa
Poissonov tenzor

Poissonova zatvorka funkcii f a g

0 =60'F;
0= padqa
0=0°FE,

0 =D0=0E,

(o, v)
(q":pa)
Ad*
5,6,
T:T"M —- M
T*M
[X,Y]
Ig

)

Vv
H,C,R
A A,

95

19.4.3
20.3.2
20.3.1
21.2
7.2.2
15.2.3
21.24
21.2.4
21.24
21.24

11.2.6
17.6.5
21.7.1
21.7.2
2.4.2
14.2.2
12.3.19
8.3.2
17.1.4
2.5
11.2.2
12.3.1
12.1.8
15.2.1
22.14
8.3.3
11.2.2
4.2
10.2
5.7.3
15.5.1
10.1.5
14.1.1
14.1.1
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pravé a lavé pdsobenie grupy
pridruzend reprezentécia Lieovej grupy
pridruzena reprezentacia Lieovej algebry
pseudo-euklidovsky priestor
pseudo-ortogonélna grupa

pull-back

push-forward

reprezentacia grupy

Ricciho tenzor

skalarna krivost

skaldrny sicin foriem v (L, g)

skaldrny sicin foriem na (M, g)
skaldrny stiéin foriem z QF (P, p)
spinova fibracia

symplekticka forma

symplektickd grupa

Specidlna ortogonalna grupa

Specialna unitarna grupa

struktirne konstanty voci E;
tenzorové polia typu (r,s) na M
tenzory typu (r,s) v L

tok generovany vektorovym polom V
unitdrna grupa

ucinkovy integral (funkcional)
vnutorny sucin

vonkajsia algebra priestoru L
vonkajsia derivéacia

vonkajsia kovariantna derivacia
vonkajsia kovariantna derivacia na baze
vonkajsi sucin foriem

vonkajsi sucin foriem s hodnotami v G

vonkajsi su¢in foriem s hodnotami v G a W

vS8eobecnd afinna grupa
vSeobecnd linedrna grupa

2-forma elektromagnetického pola

Ry, Ly
Ad,Ad,
ad,ad x
ET,S

T (M)

T (L)
o), D,

U(n)

S[v], S[A], ...

AL”

alp

[a A f]
alB
GA(n,R)
GL(n,R)

13.1
12.3.2
12.3.5
2.6
10.1.5
3.1.4
3.1.2
13.1
15.5.
15.5
5.8.4
8.3.1
21.5.1
224
14.1.4
10.1.6
10.1.8
10.1.12
11.2.2
2.5.2
2.4.5

2.3
10.1.12
15.4.4
5.4.1
5.3
6.2.5
20.3.5
21.24
5.4.1
11.2.6
20.4.5
10.1.15
10.1.3
16.2.1



