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A construction of a representation of SO (p + q,p + q) by operators on SO (p + q) is presented, 
connected with a relativistic top kinematics. In addition to a first-order differential operator 
part there is a multiplicative term containing a parameter A. in some of the generators. It is 
shown by the explicit evaluation of the corresponding Casimir invariants that the 
representation (A., ... ,A.), A. = O,p, ... , is realized by this construction. 

I. INTRODUCTION 

Trying to formulate a relativistic theory of a top without 
enlarging its nonrelativistic configuration space [SO (3) 
group manifold], one is faced with a problem of realizing 
SO (3,1) on SO (3), which reduces (if standard generators of 
rotations are used for 5) to a realization of boost generators 
N. The ansatz 

N j = BjkSk + bj (1) 

leads to a system of equations 

EjmnBjmBnk + EkmnBlmBln + ElmnBlnBmk = Eljk' 

(BlmEjmn - BlmElmn )bn = 0, 
(2) 

for unknown quantities Blk and bl' 1 The general solution is 

i.e., 

Blk = Elkjnj + anjnk, a,{3eC, 

bj = /In/> n = unit vector, 

N = - nX5 + an(n • 5) + /In. (3) 

It is shown in Ref. 1 that the free parameters a,fl are con
nected with Casimir invariants c} = - 5 • N, ck 
= - (52 - N 2) of the Lorentz group, i.e., one can use them 

for the fixation of the spin of a top. (The case of spin ~ was 
studied before in Ref. 2; it corresponds to a = 0, /l = !.) 

In this paper we present a generalization of these results. 
We descibe a systematic construction of the generators of 
SO(p + q,p + q) acting on functions on SO(p + q). As in 
the above-mentioned case, nondifferential (multiplicative) 
terms containing a free parameter A. occur in some of the 
generators. By explicit evaluation of the corresponding Casi
mir invariants we identify the representation with (A., ... ,A.). 

II. CONSTRUCTION OF THE GENERATORS 

Let ea , a = 1,2, ... ,(p + q) =N, form an orthonormal 
right-handed system of vectors in M M, i.e., 

'TJa{JeajePj = 'TJ1j' 

Ij -"I ealepj - "laP' 

E
I
.' ·jNe ····e· ( 1 )qe 

ai', aNN = - a l "' 'aN' 

hold, where 

'TJ1j=diag(1, ... ,l, - 1, ... , - 1), 
-r~ 

(4) 

(5) 

(6) 

(7) 

(8) 

'TJa{J =diag(1, ... , 1, - 1, ... , - 1), (9) 
---~ p q 

and eal is the ith component of ea' Generators of SO (p,q) 
can be represented by the antisymmetric tensor Sij = - Sli' 
i,j = 1, ... ,(p + q), obeying 

[Sij,Sk/] = - (nk [iSj]I + Sk [jn l] I ), 

[SIj,eak] = ea[I'TJj]k' 

where 

(10) 

(11) 

A[k/]=Akl -Alk' (12) 

[The eak are to be expressed as functions of the coordinates 
on SO(p,q) and the Sij are first-order differential operators 
with respect to the latter.] 

One can construct additional operators on SO(p,q) 
now, combining eaj and the Sij: 

Sal ='TJkleakS/i =ea kSki> 

Sap =ea je/SIj =epjS/, 

(13) 

(14) 

i.e., transforming successively the vector components of the 
Sij to the scalar ones by means of "vielbein" eal' Then using 
(10), (11) we obtain 

[Sij,Sak] = Sa[1"11] k , 

[ SljtSa{J] = 0, 

[Sal,Spj] = 'TJa{JSij - 'TJijSa{J' 

[Sal'Spy] = 'TJa(ySP]I' 

[Sa{J,sy8] = 'TJy(a SP]8 + Sy(p'TJa)8' 

(15) 

(16) 

(17) 

(18) 

(19) 

from which we deduce that the Sal formN= (p + q) vectors 
and that the Sa{J are scalars, both with respect to "right" 
rotations (generated by the SIj)' We can also change our 
point of view and classify objects according to their transfor
mational properties with respect to "left" rotations (genera
ted by the SaP)' Then the Sij are "scalars" and the Sal form 
N= (p + q) "vectors" for fixed i on each. 

This situation, for the special case p = 3, q = 0, is to 
some extent familiar from the theory of the nonrelativistic 
quantum-mechanical top,3 where the projections on the lab
oratory as well as on the body axes of the quantities in ques
tion are used [including a change of sign in ( 19) in compari
son with (10)]. "Mixed" operators Sal' however, are not 
discussed there at all. 

It is not difficult to determine the algebra generated by 
Sij' Sal' Sa{J' In order to do this we switch to a more compact 
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notation. Let us introduce an index A == (i,a), 
A = 1, ... ,2(p + q}, i = 1, ... ,N== (p + q), a = N + 1, ... ,2N 
(we changed the numeration of Greek indices). All genera
tors form the components of a single object S AB = - S BA 
now, and (10) and (15)-(19) read 

[SAB,SCD] = - (gC[ASB]D +SC[BgA]D)' (20) 

where 

i.e., 

gij==1Jij, 

gaP == - 1Jall' 

ga;==g;a==O, 

(21) 

(22) 

(23) 

gAB ==diag(1, ... , 1, - 1, ... , - 1, 1, ... ,1), (24) 
-..-~---p q+p q 

which reveals that the S AB generate SO(p + q,p + q). 
So far all generators S AB were first-order differential 

operators on SO (p,q ). Now we add a multiplicative term to 
Sa;, introducing 

~ij==Sij' 

~a; ==Sa; + Aeaif 

(25) 

(26) 

~all =,SaP' (27) 

where A is a constant. Direct computation yields 

[~AB'~CD] = - (gC(A ~B]D + ~C[BgA]D) (28) 

independently of A. That means that the I AB form the gener
ators ofSO(p + q,p + q) as well. 

Note that in the case p = 3, q = ° discussed above we 
obtain-in addition to 

(29) 

S~ ='!EaIlYSPY, (30) 

forming the SOC 3) ® SOC 3) algebra of the laboratory and 
body projections of the angular momentum vector s of a top, 
respectively-three new vector operators Ia, a = 1,2,3, 
where 

Ia; = ea kSk; + Aea; = eakEkijSj + Aea; 

== ( - ea Xs + Aea ) if (31) 

Ref. 1, for finite-dimensional representations of a Lorentz 
group one has to choose a = 0, 11= O,p, ... in (3).] 

III. SPECIFICATION OF THE REPRESENTATION 

In this section we evaluate Casimir invariants formed 
from (25)-(27), which enable us to specify the representa
tion realized by this construction. 

Several papers deal with the problem of the explicit form 
and eigenvalues of independent Casimir operators of classi
cal groups (e.g., see Refs. ~8). It was established in Ref. 7 
that N =. (p + q) invariants are to be evaluated in our case, 
viz., (N 1) scalar operators Cn , n = 2,4, ... ,2(N - 1), and 
a pseudoscalar operator C ;." where 

A. Evaluation of en 

(32) 

(33) 

Evaluation of Cn is based on the identity [specific for 
the construction (25)-(27)] 

(I2)AB=.IA~CB = A,(A + N - l)gAB + (N - l)IAB, 
(34) 

proved in Appendix A. This makes it possible to express an 
arbitrary "power" of I by I itself and a constant: 

(r)AB = o(n)gAB + b(n)~AB (35) 

(0 and b can depend on A and N in general as well). Multi
plying (35) by ~B C we obtain recurrence relations 

o(n + 1) = 0(2)b(n), 

ben + 1) = o(n) + b(2)b(n), (36) 

or 

(37) 

where 

R==(OI 0(2») = (0 A(A + N -1)) 
b(2) 1 N - 1 ' 

(38) 

so that 

closing together with Sf and s~ to SO (3,3) and thus offering (Ob)n = R n - I (a b) I = R n - I (°1) . (39) 
a possibility of the relativization of the description of a top. 
We notice that (3) isjust of the form of (31). [According to Evaluation of the necessary power of R gives 

I 

(40) 

i.e., 

(r)AB = A(A + N - 1){(A + N - 1)n-1 - ( - A)"-I} gAB + (A + N - 1)n - ( - A)" IAB. 
U+N-l U+N-l 

(41) 

Then 

(42) 
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We observe that for each n, Cn is a number-not a dif
ferential operator, as is usually the case-when the harmon
ic analysis approach on corresponding homogeneous space 
is used. This means that the explicit construction of the func
tions on SO(p,q) in the space of which our representation of 
SO(p + q,p + q) is realized reduces to solving the eigenval
ue equations for the generators of a Cartan subalgebra (e.g., 
~ 12""'~2N _ 1.2N ), i.e., only first-order differential equations 
are to be solved. 

B. Evaluation of eN 

For evaluation of C iv (A,N) it is useful to realize that 
(41) reveals ~AB to be the only antisymmetric second-rank 
tensor (and gAB the only symmetric one as well) availab
le.That means then that also 

(43) 

holds, which can be readily verified explicitly for not too 
large N, e.g., the coefficient of proportionality is 2 for N = 2, 
8 (1 + A) for N = 3, etc. (see Appendix B). Multiplication 
of both sides of (43) by l:A,B, and taking into account (42) 
leads to the conclusion that C iv does not contain differential 
operators, but reduces instead to the multiplication by a 
number, too (as was the case for all Cn ). Thus we have to 
extract just this nondifferential part of (33), ignoring the 
differential terms completely (they cancel). We can intro
duce formally a symbol MULT, which when applied to any 
combined differential-multiplicative operator leaves its mul
tiplicative part only. The above-mentioned conclusion can 
be written then as 

Civ(A,N) = MULT Civ(A,N). (44) 

Nonvanishing components ofa Levi-Civita tensor come 
from the cases where all indices are mutually different; in 
particular, an equal number of Latin and Greek indices 
should occur. The only distribution of indices which sur
vives under the MULT symbol is one in which a pair of Latin 
and Greek indices stands on each ~. [In the opposite case 
there is at least one ~ with both indices Latin, and it can be 
shifted to the right-hand side of the expression (33) giving a 
differential operator.] Taking into account two possibilities 
for the order of indices on each l: (ia and ai) we can write 

MULT Civ(A,N) = 2N MULT Ei,a""iN'2Nl:i,a, .. 'l:iN'2N, 
(45) 

and, using the result of Appendix C, 

MULT Civ(A,N) 

= ( _ 1 )N(N-I)/22NEi .... iNEa .... aN 

X (Sa,i, + Aea,i, ) ... (Sa~N + Aea~N)' 
With the help of the commutator 

(46) 

(47) 

[for any k,I,Pm = 1,00.,(N - 1), m = 1,00.,k], we can per
form the MULT operation in (46) explicitly and obtain a 
polynomial of order N in A. Let us determine the coefficient 
standing by Ar, r = 1,00.,N.ltcomesfromallcasesin which r 
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"e"'s and (N - r) "S"'s are chosen from the brackets in 
(46) (ea~N should always come from the last one). Then the 
desired coefficient is 

N-I 

L 
P •• ···'PN- r-I = 1 

(allpi different), 

where also [see (6),(7)] 

N-r-I 
IT PI 
1=1 

(48) 

(49) 

was used. One can compare it with the coefficient standing 
by Ar in the expression 

(A + N - 1) ... (A + 1 )A, (50) 

which, taking the numbers from (N - r - 1) brackets and A 
from the rest, is just 

N-I N-r-I 

L IT PI (allpi different), (51) 
P •• ···.PN_,._I=l 1= 1 

so that 

MULT /'···;NEa .... aN(Sa· + Ae .) ... (S . + Ae .) I'. a." aN'N aN'N 

=N!A(A+l)"'(A+N-l), (52) 

and 

Civ(A,N) 

= (- I)N(N-1)/2 2NN!A(A + 1)"'(A +N -1). 

(53) 

C. Comparison with the general results: Conclusion 

Let us study C iv (A,N) first. It is known 7 that its value is 

Civ(ml,oo.mN) = (_I)N(N-I)/22NN!(m l +N-1) 

X ... (m N _ 1 + 1) m N (54 ) 

for the representation (ml,oo.,m N). Our construction thus 
corresponds to the case (A,oo.,A). However, the invariants 
Cn, n = 2,4,00.,2(N - 1), are to be compared, too. For the 
evaluation of Cn for (A,oo.,A) we make use of the results of 
Ref. 8, where the generating function for Casimir invariants 
of all classical groups was derived. In the case of interest to 
us this function reads 

G(z) = 2N 1 + (A - N)z 
(1 + AZ) (1 - Nz) 

+ 2NA(A - 1) 

(1 +AZ)(1- Nz)(l- (A + N - l)z) 
(55) 

and 
00 

G(z) = L Cnzn, (56) 
n=O 

so that 

Cn = G (n)(O)/n!. (57) 

The explicit calculation yields 

C =2NA(A+N-l) {(A+N_1)n-l_(_A)n-l} 
n U+N-l ' 

(58) 
in agreement with (42); that makes the identification with 
(A,oo.,A) complete. 

Marian Fecko 1081 

Downloaded 11 Jul 2012 to 132.199.100.62. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



ACKNOWLEDGMENT 

I would like to thank Professor M. Pettas for turning my 
attention to this problem and for permanent interest in the 
course of my work. 

APPENDIX A: PROOF OF (34) 

The proof is to be done for all four possible cases of pairs 
ofindices, (ij), (ia), (ai), (a{l). We restrict ourselves to the 
first case here; the rest can be done in the same way. We have 

l:iAl:Aj ==gABl:iAl:Bj = ltll:/j + gt'Pl:jul:m = 1JklSikSij - 1JaPl:iul:pj = SikSkj + (ea mSmi + Aeai )(eanSnj + Aea
j ) 

= SikSkj + ea meanSmiSnj + eam [ Smi,ean ]snj + Aeam[Smi,eaj ] + Aea meujSmi + AeajeanSnj + A 2eUieuJ 

= (N - l)Sij +A(A + N -l)1Jij==A(A + N - 1)gij + (N - l)l:ij' 

(Notice that two "unpleasant" second-order terms cancel each other. ) One should be careful when contracting Greek indices 
as to whether gt'P = - 1Jup [e.g., (45)] or 1Jup is understood implicitly there. 

APPENDIX B: (43) FOR N=3 

We are to find the proportionality coefficient rCA) in 

£ABCDEFl:cL7,EF = r(A)l:AB' 

Let us compute the a{l component of the left-hand side: 

£ ~AB~CD _ '\_ ~yi~Jk + 2£ ~Jk~yj - 4£ gYA~ i~ - 4£ £ (eyrS i + ' Yi)SJk apABCD'" '" - kl:;apyijk'" .. apjkYi" '" - - ijkapy "'A "'jk - ijk apy 1 AI 

= 4Eijk eam epn ( - l)q(~nlS/Sjk + A£mniSjk) = 4( - l) qo(,:oj]eam etln [SJ,Si] + 8Aeamepmsmn 

where 

Si ==!£ijkSJk, Sij = ( - 1 )q£ijkSk, 

[Sj,Sj] = - £ijkSk = - ( - 1 )qSij' 

yJ ( 1)q mnJ £apye = - £ eamepn , 

mnk _ ( l)qr:.mr:.n £ijk£ - - u[iuj] 

was used, so that 

£ABCDEFl:cL7,EF = 8( 1 + A)l:AB' 

for N = 3. Multiplying it by l:AB we obtain 

Ci (A,3) = - 8(1 + A)l:ABl:BA 

== - 8(1 +A)C2 (A,3) 

= - 8(1 + A) (6.4(A + 2») 

== - 48A(A + 1)(A + 2) 

in agreement with (53), for N = 3. The same procedure is 
possible for arbitrary N. 

APPENDIX C: PROOF OF (46) 

We are to prove 

Clearly 
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where x(N) is 1 or ( - 1). Then 

so that 

x(N + 1) = ( - 1 )Nx(N) = ( - 1)N( - l)N-IX (N - 1) 

N-l 

= ... =x(1) IT (_1)N-k 
k=O 

N N 
= IT (_l)k= (_l)l:k=l k = (_l)N(N+l)/2, 

k=1 

and 

x(N) = ( _ 1)N(N- l)12, 
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