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A geometrical formulation of the N-triplet Nambu dynamics is given. It enables one to treat 
some general issues of the latter, including integral invariants and canonical 
transformations in a simple way. A possible underlying geometrical structure is discussed. 

I. INTRODUCTION 

In Ref. 1 Nambu presented an interesting modifica- 
tion of the classical Hamiltonian dynamics. In his ap- 
proach a three-dimensional phase space with the coordi- 
nates r= (x,y,z) is introduced (“Nambu triplet”), with 
the dynamics given by the system of first-order differen- 
tial equations 

i=VHxVG, (1) 

H(r),G( r) being arbitrary functions on phase space. 
Equivalently, one can write 

f= 
a( f,H,G) af 
a(x,y,z) +Z (2) 

for any function on the “extended” phase space f (r,t). 
Thus the time evolution is governed by two “Hamilto- 
nians,” H,G, as opposed to a single one, H, in the Hamil- 
tonian case. He showed that the Euler equations for a free 
rigid rotator take just this form if one identifies (xg,z) 
with the body-system projections of the angular momen- 
tum and Hand G with the two conserved quantities avail- 
able in this case, viz., the energy and the square of the 
angular momentum. He demonstrated that the dynamical 
systems (see Ref. 2 for some other examples) given by 
( 1) share some important properties with the Hamil- 
tonian ones, in spite of being obviously non-Hamiltonian 
(the dimension of the phase space is odd). In particular, 
the Liouville theorem holds (such “Liouville” systems 
were studied later in Ref. [3]). He also proposed the nat- 
ural generalization to more “triplets”: 

i,=VflxV,G, a= l,..., N, (3) 

or, equivalently, 

N au-ma af 
f = ,z, a(x,,ya,z,) + x ? f =f h-~~rNt~)~ (4) 

Later on, several different aspects of the dynamics were 
studied by many authors.4 

In this paper, we focus our attention on a geometrical 
formulation of Eqs. (3), since it enables one to study the 
more advanced issues of Nambu dynamics in a simple 
way. 

In Ref. 5 (published almost immediately after Ref. 
1 ), the first attempt in this direction was made. As is well 
known,6 the geometrical version of the Hamiltonian 
equations reads (for the autonomous system) 

l? Jos= -dH, (5) 

where w, is symplectic form and I? is the dynamical vec- 
tor field. The standard form 

. fm aH 
qll=g-/ ia=--@ (6) 

is obtained using the canonical coordinates @,po (guar- 
anteed via the Darboux theorem) in which 

w,=dp, Adql + *** + dpNAdq! 

In full analogy, the three-form 

(7) 

o=dx;Adx;Adx;+ a.* +dx:,Adx;Adx; (8) 

is introduced [it is closed and has maximum rank just as 
does (7)] in Ref. 5 and the equation 

l- J o=dHAdG (9) 

is claimed to be equivalent to (3) and thus to represent its 
geometrical version. 

The first hint that it cannot be the case comes from 
the observation (made in Ref. 5) that the Liouville the- 
orem does not hold for N > 1 for (9). Indeed, although 

Ep=O (10) 

is a simple consequence of (9), the 3N-form w A * * * A o 
[the only candidate for a volume form constructed from 
the elements occurring in (9)] vanishes identically (be- 
cause of the properties of A >. This means that all but the 
lowest “Poincar&Cartan” integral invariants vanish 
identically. In particular, there is no r-invariant volume 
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form for (9); i.e., the Liouville theorem does not hold 
(for N> 1) for (9). 

This is, however, in contradiction to the opposite as- 
sertion [concerning, however, (3)] in Ref. 1, and one can 
simply verify by “traditional” means that the dynamical 
field in (3) actually is divergenceless with respect to the 
natural volume form [cf. (27)] 

hdx;A...Adx$. (11) 

Indeed, if I’mr, + -.- + rN, r+v~Xv,G, then 

div nr=V1*rl -t- -‘- j- V&,v=O, (12) 

and the Liouville theorem does hold [cf. (29)] in agree- 
ment with Ref. 1. This indicates that (9) cannot repre- 
sent the geometrical version of (3) for N > 1 and it has to 
be changed (in the next section, we show that it is even 
inconsistent). 

II. A GEOMETRICAL FORMULATION OF EQ. (3) 
The three-form w at a fixed point P can be interpreted 

as a linear map: 

wpTp A’T$ o-+vJ wp (13) 

( Tp is the tangent space in P, A2T$ is the space of two- 
forms in P). Since dim Tp < dim A2T$ (for N > 1 ), the 
two-form field I’, o in (9) is not “general” and cannot be 
therefore equated to dH A dG without some additional 
restrictions on H and G. There are, however, no restric- 
tions on H,G in (3), or, in the coordinates used in (8), 
I’, w does not contain products dxi A d$i if a#b, while 
dH A dG, in general, does. This shows that (9) is not only 
unequivalent to (3) for more than one triplet but is then 
even inconsistent for general H,G. 

Let us define “partial” (ath triplet) exterior deriva- 
tive operators d,, a = l,..., N, operating in the following 
way: If 

a=oi,s..jpdx”A, e-e Adxj.sqdx’ 

is any p-form, then let (the summation convention with 
respect to i from l-3 is understood but is in abeyance 
with respect to the index “a” in what follows) 

aaJ dp = i ax, dx; A dd. 
a 
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d;=O. 
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(17) 

In addition, let us define N three-forms as 

w,: =dx; A dx; A dx;. (18) 

Then, a simple calculation shows that 

I? J o,=d&Ad,G, a= l,...,N (19) 

is equivalent to (3) and therefore represents a geometri- 
cal formulation of the N-triplet Nambu equations. 

Ill. SOME PROPERTIES OF THE NAMBU DYNAMICS 

In this section we use the formulation (19) of the 
Nambu dynamics to analyze some of its more advanced 
issues. 

A. Integral invarlants 

From the Hamiltonian equations, it follows immedi- 
ately that 

EpTll,=O 

: . (20) 

Ww,A --*Aw,)=Erw:=O, 

which results in the series of the PoincaA-Cartan (abso- 
lute) integral invariants: 

12/p 
s 

o$, k= l,..., n, (21) 
MZk 

M2k being any 2k-dimensional domain in the phase space. 
Let us investigate whether similar integral invariants 

occur in Nambu dynamics also. We have 

+,=r J (dw,) + d(r J w,) =d(dJfAd,G)#O, 
(22) 

in general, (since dd,#O) and similarly 
(14) 

(15) 

(16) 

&-co= i d(d$fAd,G)#O 
a=1 

(23) 

[w coincides with the three-form introduced in (8) and 
(9)]. This means, however, that neither 

(24) 

nor 
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Then, 

d=d, + *-. + d,v 

and 

d, db= - dbd,; 

in particular, 

Downloaded 11 Jul 2012 to 132.199.100.62. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



928 Mar&n Fecko: Geometrical formulation of the Nambu dynamics 

I$’ (25) 

is invariant with respect to the time evolution in phase 
space. In the same manner, one verifies that none of the 
products U, A c&, w, A tib A o,..., is I invariant except for 
the last one: 

frh A *** AoN)=O. 

If we therefore define the volume 3N-form as 

(26) 

f-k=o, A *** Ao,=dx;A-- Adx:, (27) 

[it is up to a constant multiple the only candidate which 
can be constructed from w, and happens to coincide with 
(ll)], we have 

&d-l=0 

equivalent to the Liouville theorem 

(28) 

13N: = 
s 

Cl = invariant. 
lu3N 

(29) 

The conclusion is then that no integral invariant ex- 
ists but the highest one-the result just opposite to that 
given in Ref. 5 (and also different from Ref. 7, according 
to which even the complete series of the integral invari- 
ants 13,...,13N exists). 

B. Canonical transformations 

Let an be the one-parameter group of coordinate 
transformations generated by the vector field U. Then 
( 19) shows that they are canonical [preserving the struc- 
ture of Eqs. (3 )] iff they preserve the structure ( 18) of 
each w, separately; i.e., iff 

E@,=O, a= l,...,N 

holds. Equation (30) leads to 

(30) 

N a au:, 
u= c u~cx~,x~,x~, ax') ax,=0 

Cl==1 0 a 
(31) 

( ui does not depend on .$ for b#a). 
This means that a general canonical transformation 

(homotopic to the identity) preserves the decomposition 
into the triplets (only the variables of the ath triplet enter 
the “new” ath triplet) and, in addition, it is volume pre- 
serving within each triplet: 

x~=f~(x~,x~,x;), J(x,,xi) = 1, (32) 

where fi are arbitrary functions and J is the Jacobian of 
the transformation x, -+ x’=. Since any permutation of 
complete triplets 

1 
x:=xa(a) (33) 

[a-a permutation of (l,...,N)] is clearly a canonical 
transformation, too; its combination with (32) then rep- 
resents the most general canonical transformation. 

This is clearly a much more trivial situation than in 
the Hamiltonian dynamics, where a general canonical 
transformation thoroughly mixes up all the old coordi- 
nates (it does not preserve the canonical pairs). In par- 
ticular, the time development is not a series of successive 
canonical transformations, since it does mix the coordi- 
nates of different triplets in general. These conclusions 
agree with the analysis performed in Ref. 1, but once 
again contradict.’ 

Remark: Recall that the integrals (21) are, in fact, 
invariant with respect to arbitrary canonical transforma- 
tion in the Hamiltonian dynamics. Since the time devel- 
opment is a special canonical transformation, they are, in 
particular, invariant with respect to the time develop- 
ment. 

In Nambu N-triplet dynamics, however, this connec- 
tion breaks down, and one should therefore strictly dis- 
tinguish between integral invariants of both types. Then, 
the results of Sets. III A and B show that, although there 
are a lot of “integral invariants with respect to the canon- 
ical transformations” [ (1s ) a) ( 16) .b-the integral of 
c~,Aq,,...,], only a single one (29) exists invariant with 
respect to time development. 

IV. ON A GEOMETRY BEHIND (19) 

The geometrical formulation ( 19) of Nambu N-trip- 
let equations singles out a class of distinguished coordi- 
nates in which the decomposition into the triplets occurs 
and one can search for the intrinsic geometrical (coordi- 
nate independent) reason of this phenomenon. 

Let us analyze some concrete physical system of this 
type, e.g., a coupled spin system mentioned in Ref. 1. Its 
phase space is the direct product of the phase space for a 
single rotator. The case of one rotator was studied in Ref. 
8 and the coordinate-free description of the three-form w 
( =ul) as well as the geometrical meaning of the neces- 
sary distinguished coordinates is given there. (One 
should realize that the rotator is, in fact, a Hamiltonian 
system, its Hamiltonian phase space is six dimensional, 
and the Euler dynamical equations represent only a half 
of the whole system of equations--the “kinematical” 
Euler equations are to be added to make the system com- 
plete). Therefore, the origin of the dimensionality 
( =3N) of the Nambu phase space as well as the decom- 
position of all 3N coordinates into N triplets is quite clear 
(ath triplet describes ath rotator). 

However, one can as well forget the primary physical 
context and treat instead the dynamical system described 
by (19) in its own right, trying to find the underlying 
geometrical structure leading to ( 19) in appropriate dis- 
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tinguished coordinates. This remains, in fact, an open 
problem, which can be formulated as follows: Find a ten- 
sor field such that it can live only on a 3N-dimensional 
manifold and it singles out naturally “canonical” coordi- 
nates occurring in (15)-( 19). A manifold iU endowed 
with a tensor field of this type should be then the natural 
living space for N-triplet Nambu dynamics. 

As an example, the symplectic form, as is well 
known, can live only on an even dimensional manifold 
and singles out the class of canonical coordinates (via 
Darboux theorem). 

Another useful example is when the almost complex 
structure on a manifold [the ( 1,l) type tensor field C with 
the property C? = - 11, which can also exist only on an 
even-dimensional manifold, induces the coordinates z’,,? 
as well as the decomposition [compare with (15)~( 18)] 
of the exterior derivative operator: 

d=a + 2, (34) 

(36) 

&=&;?2=0, a;?= - &3 (37) 

[here, x= (z’,..., z”,? ,..., 2); note that, by introducing the 
notations x’, =.zi, xi=?; the formal coincidence of the 
corresponding formulas is obtained). Similarly, the well- 
known decomposition of a p-form as the sum of (k, I)- 
type (k + I =p) forms invariant with respect to com- 
plex-analytical coordinate transformations (playing the 
role of the canonical transformations for C) has its evi- 
dent counterpart in Nambu dynamics in the unique de- 
composition of a p-form into the sum of (kt,...&)-type 
forms, k, + *-a + kN = p, invariant with respect to the 
coordinate transformations preserving triplets. 

One might guess that the role of the tensor field men- 
tioned above could be played by the maximum-rank 
closed three-form as opposed to the maximum-rank 
closed two-form ( = symplectic form), which serves this 
purpose in the Hamiltonian dynamics. If a theorem 
(analogous to the Darboux theorem) leading to the ca- 
nonical expression ( 8) (and restricting thus automaticaly 
the dimension of the manifold to 3N) existed, then it 
would be possible to define the triplet-decomposition via 
this form, since one can readily verify that the canonical 
transformations preserving expression (8) for w as a 
whole coincide with those for each w, separately (they do 
not, in particular, mix triplets). 

Unfortunately, such generalization of the Darboux 
theorem does not exist since the forms with the properties 
mentioned above occur in dimensions different from 3N, 
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too. An elementary example provides the three-form 
dx’ A dx* Adx3 + dx3 Adx4 Adx5 in &---it is closed and 
has rank 5. 

This means that the requirement of maximum rank 
and closure is not enough for a three-form to guarantee 
the canonical expression (8) and some of its additional 
characteristics are needed. 

V. CONCLUSIONS 

The aim of this paper was to give a geometrical for- 
mulation of N-triplet Nambu dynamics and to demon- 
strate its usefulness for obtaining some general results. 
We showed that Eq. (9) proposed in Ref. 5 is, in general, 
inconsistent for N > 1 and leads to unacceptable conse- 
quences. It was replaced by Eq. (19). Two issues were 
studied then. First, the question of the integral invariants 
was analyzed. It was shown that only the highest one, 
13N, exists (with respect to the time development; see 
remark at the end of Sec. III B). This means, in partic- 
ular, that the Liouville theorem does hold for any N. 
Second, the canonical transformations were studied, and 
the analysis confirmed the results of Ref. 1. 

A formulation (19) singles out a class of distin- 
guished coordinates-a decomposition into triplets is 
needed. The origin of this decomposition is clear for some 
known concrete systems (e.g., the coupled spin system). 
Some speculations were made, however, concerning a 
possible geometrical structure leading to ( 19) naturally. 
It was shown that a maximum-rank closed three-form is 
not enough to serve this purpose since a straightforward 
generalization of the Darboux theorem to such three- 
forms does not hold. 
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