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Czechoslovakia 
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A variational principle for the Nambu dynamics is analyzed. Since the equations of motion 
single out a distinguished two-form rather then a one-form, the usual construction of 
the action S[y] as an integral of a one-form along the curve y on the extended phase space 
has to be modified. 

1. INTRODUCTION 

In our previous paper’ we discussed a geometrical 
formulation of Nambu dynamics (Ref. 2; see also refer- 
ences in Ref. 1 ), i.e., a dynamical system in 3 N-dimen- 
sional phase space M with local coordinates &i 
= 1,2,3; a = l,...,ZV, in which the time evolution is given 
by 

ia=VflxV,G, a= l,..., N, (1) 

where rO’a- (x~,x~,x~); and H,G are arbitrary functions on 
the phase space M. In what follows we restrict ourselves 
to the basic “one triplet” case, N = 1, i.e., to the equation 

f=VHxVG (2) 

and analyze the question of whether it can or cannot be 
derived from some variational principle. 

In Ref. 3 the action integral 

SE t2 
I 

L(r,i)dt, L=H(VG +) (3) 
t1 

was proposed. The Lagrangian is linear in velocities (and 
therefore singular, leading to a constrained Hamiltonian 
system) since (2) is a system of first-order equations. The 
corresponding Lagrange equations 

fx(VHxVG)=O 

are equivalent, however, to 

(4) 

i=f(r)(VHxVG), (5) 

with arbitrary function f(r), not only f = 1 as is the case 
in (2). This means that not all extremals of the action 
[solutions of (4)] represent the solutions of the primary 
equation (2) but, in general, a reparametrization is 
needed to obtain a solution of (2) from a given extremal 
of (3). In other words the solutions of the variational 
problem given by (3) coincide with the solutions of (2) 
as paths but do not in general coincide as curves. Recall 
that such asymmetry between the extremals of the action 

integral and the solutions of the dynamical equations is 
absent in the standard (nonsingular) Lagrangian dynam- 
ics as well as in the Hamiltonian one. 

In what follows we analyze the problem of the vari- 
ational principle, making use of the geometrical formula- 
tion of (2) given in Ref. 1 (or as well in Ref. 4 since they 
are identical for N = 1). 

II. A DISTINGUISHED TWO-FORM x ASSOCIATED 
WITH EQ. (2) 

According to Refs. 1 and 4, the geometrical version 
of (2) reads (for the autonomous systems) 

l?, J o=dHAdG, (6) 

where w is a nondegenerate (and automatically closed on 
the grounds of dimensionality ) three-form on M (dim M 
= 3) and I0 is the dynamical vector field on M repre- 

senting the time development. Recall that in the Hamil- 
tonian case, one has to work on the extended phase space 
M X R’[t] to either incorporate a general time-dependent 
Hamilton function situation or even to formulate the 
variational principle for the autonomous systems as well. 
Having this in mind, (6) is to be replaced by 

l-’ _I (w - dHAdGAdt) =O, (7) 

where I? E I0 + a, represents the dynamical vector field 
on M x R’[t]. This is clearly the counterpart of 

I? J (a,-dHAdt)=l- 1 d(8,--Hdt)=O, (8) 

valid for the Hamiltonian dynamics (o,=d6,-the sym- 
plectic form). Guided by (8) we introduce a two-form 8 
such that (at least locally) 

o=de (9) 

and rewrite (7) as 

r J dx=r J d(8-HdGAdt)=O. (10) 
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Thus the geometrical formulation of the Nambu dy- 
namics reveals that the latter singles out the distinguished 
two-form x E 0 - H dG A dt on the extended phase space 
M X R’[t] just as the Hamiltonian dynamics singles out 
the one-form 6, - H dt. However, a distinguished one- 
form is needed for a straightforward construction of the 
action (it is a line integral). Thus we come to the con- 
clusion that there is a substantial difference (from the 
point of view of a variational principle) between the two 
classes of the dynamical systems in question: the Hamil- 
tonian (as well as Lagrangian) dynamics offers a natural 
candidate to the role of the action one-form, viz., the 
Cartan one-form 0, - H dt (and a similar one in the La- 
grangian case). Nambu dynamics, on the contrary, offers 
no such one-form but instead the two-form x-8 
- H dG Adt. This fact is the source of some difficulties 

connected with the formulation of a variational principle 
for the Nambu dynamics. 

Ill. A CONSTRUCTION OF THE ACTION INTEGRAL 

The action integral is to assign a number S[y] to a 
given curve y on M x R’[t]. Only the distinguished two- 
form x is, however, available. There are in principle two 
ways out of this inconsonance: (a) We can construct 
some distinguished two-dimensional surface 8, from y 
and then integrate x over 2, or (b) we can construct 
some distinguished one-form a from x and integrate it 
along y. In what follows, we show that both these proce- 
dures lead to the same result (for appropriate choices of 
8, and a). 

A. The action as a surface Integral 

Let us define 

S,[yl:= Jx x3 
Y 
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FIG. 1. A surface Z, associated 
with y. 

i 
X  

X’(T,O) =x!(7), t(7,a) =a, (12) 

where (T,a)d2=(tl,t2) x (tl,t2) (see Fig. 1). 
Now, let us turn to the evaluation of the change of 

the action integral caused by a small variation of the 
curve y. Let U, be a deformation field (defined in some 
neighborhood of y) and @A the corresponding flow. Then 
a deformation ~Y~‘E a,( y) leads to a uniquely definfd 
deformation ~+--GD~.(~~), inducing thus some flow @A 
and its vector field U defined on some neighborhood of 
8, The change of the action integral is 

Sl[YJ = J& (z x 
* Y 

) 

= I 6),*X 
=7 

= Jzy x+e I,, fbx+o@) 

(11) =S,Erl + E s EfJX + o(&. 
=, 

(13) 

where BY is a two-dimensional surface associated in some 
natural way with the given curve y. There are two criteria 
for its choice: First, only the geometrical structure avail- 
able is to be used for its construction and, second, the 
variation of ( 11) has to lead to the equation “as close as 
possible” to ( 10). The first criterion implies that, in fact, 
only the product structure (plus the natural geometry of 
R’[t]) on M X R’[t] can be utilized (e.g., since y is not 
closed, no “minimal surface philosophy” is viable, etc.). 
This means that 8, is to be taken as a cylinder over the 
projection of y to M X tl. Its more precise shape is 
dictated by the needs of the second criterion (see below) 
and it is possible to choose it in the following way: Let 
xi,t represent local coordinates on M X R’[t] and let 
(x’(r) ,r) be a coordinate expression of y. Then the coor- 
dinate expression of 8, is 

Thus the extremal y is to satisfy 

s 
i&=0. 

=Y 

Now, 

(14) 

j-Y Q,X= s,, in _I dx+ j-, d@‘X) 

ZZ s iJ Jdx+ 
s 

fi AX- (15) 
=, a=7 

If we restrict the class of possible deformations of y by the 
condition 
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s 
iJ Jx=O (16) 

a=r 

(this can be achieved, as a simple calculation shows, by 
keeping the endpoints of y fixed in the course of a varia- 
tion), then 

s t? J dx=O (17) 
=7 

is to be fulfilled for arbitrary 6 [subjected to ( 16)] or 

t?J dx z =O. (18) 
Y 

The vectors i: ~3, form the basis of the vectors tangent to 
2, (more precisely p transported from the curve y to 
arbitrary point of 8, using the action of R’ on M  
x R’[t]), so that (18) can be written as 

dX(jJJ,&) =o, 

or, equivalently, 

(19) 

C? J dx) (&,a,) =O. 

A comparison of (20) with the equation 

(20) 

+ J dx=O (21) 

[valid for any solution of (2), see (lo)] shows that, al- 
though each solution of (2) is an extremal of the action 
integral ( 1 1 ), the converse is not the case in general [the 
two-form fJ dx vanishes identically for the solutions of 
(2)) but only on some special arguments for the extrem- 
als of (ll)]. 

Let us translate ( 11) into the coordinate language. If 
(12) is interpreted as@* --* 2, then 

S,[yl= j-z fx= r dr I” daH(x(7))G,,(x(T))~‘o 
11 

= (t* - t1)S. (22) 

Thus it coincides (up to irrelevant constant multiple) 
with the action S given by (3). 

Remark If the surface 2, is replaced by EF given by 

X’(T,C) =xi(7), t(7,a) =7- + a, (23) 

where (~,a)~(ti,t2) X (0,~) (see Fig. 2), then a simple 
calculation shows that 

s ZE x=sl[Yl (24) 
7 

t 

tz --------,5 

fj t 

l-A 

? ; 
E 

-r 
t I -1 

XL x’ XL 
I * 

FIG. 2. A surface Et associated 
with y. 

for any E > 0 and the action can be defined as well as the 
limit 

S;[y]= lim S;,[y]. (25) 
c-+0+ 

Here, the integration is performed over the infinitesimally 
narrow strip obtained by the translation of y in the r 
direction. This version of the action is directly connected 
to the one discussed in the following section. 

B. The action as a line integral 

One has to assign a one-form Q to the two-form x in 
some natural way (in the sense described in the previous 
section). The structure of M  X R’[t] offers the distin- 
guished vector field a,; consequently, one obtains the one- 
form 

a&l, Jx=HdG, (26) 

and therefore the action integral 

S*[Yl:= s, (at JX)= Jr HdG. 

Now, 

(27) 

s2k1 = S, (v) (4 J XI 
l 

=S*[Yl + t-z h (a, -I XI + 03. (28) 

If the variations of y are restricted by 

u J (at JX)~x(d,U)IY(‘2)=H(UG),7(‘2)=0 
Y(‘I) 70,) 

(29) 

(it is achieved by keeping the endpoints of y fixed, too), 
then 
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s u J&at ,1X)=0 (30) 
7 

is to be fulfilled, or [since U = U’(x)a, Vi arbitrary] 

Cf -1 dX)(wA=O, (31) 

which is identical with (20). In coordinates, (24) gives 

(32) 

Once more, the action S given by (3) is the result. 

IV. SUMMARY AND CONCLUSIONS 

A variational principle for the one-triplet Nambu dy- 
namics is analyzed, making use of the geometrical formu- 
lation of the latter. Equation (10) singles out the distin- 
guished two-form ~‘8 - H dG Adt which is the 
counterpart of the Cartan one-form 0, - H dt in the 
Hamiltonian dynamics. Since, however, it is a two-form, 
the action cannot be defined as the integral of x along the 
curve y (as is the case in the Hamiltonian dynamics). In 
order to make the integration possible, one has either to 
construct some one-form a from x and integrate it along 
y or to associate some two-dimensional surface X, with 
the curve y and integrate x over 2, Both of these possi- 

bilities are studied and the resulting action integrals 
Sdyl (or&k]> and&k1 givenby (11L (12L W ),and 
(27) turn out to be, in fact, identical. Moreover, they 
happen to coincide with the action S given by (3)) which 
was proposed in Ref. 3. 

The inevitable feature of the action for the Nambu 
dynamics is its reparametrization (in M) invariance: All 
the curves in M  that coincide with some solution of (2) 
as paths represent the extremals of S. In terms of the 
extended phase space M  X R’[t], it means that the action 
S does not single out the extremal vector field I? [given by 
(7)] but rather a two-dimensional distribution A, which 
spans on I and a, Indeed, if +A, then 

i=ar + ba, 

for some a,b, and 

(33) 

C? ..I&)#, ho. (34) 

This is, however, equivalent to (20), expressing just the 
fact that y is an extremal of S, N S. The distribution A is 
integrable (r and a, commute) and 8, is its integral 
submanifold. 
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