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On 3+1 decompositions with respect to an observer field
via differential forms

Marian Fecko®
Department of Theoretical Physics, Comenius University,
MlynskaDolina F2, 842 15 Bratislava, Slovakia

(Received 9 January 1997; accepted for publication 28 May )1997

3+1 decompositions of differential forms on a Lorentzian manifold,(;
+———) with respect to arbitrary observer field and the decomposition of the
standard operations acting on them are studied, making use of the ideas of the
theory of connections on principal bundles. Simple explicit general formulas are
given as well as their application to the Maxwell equations. 1897 American
Institute of Physics.S0022-24887)01809-4

I. INTRODUCTION

There is rather extensive literature devoted to13split of the laws of physics in curved
space—timécf. Ref. 1 for a review and also the references thereéhecording to Sec. Il of Ref.

1 there are two rather different methods available to cope with the problem, viz. the congruence
method and the hypersurface one.

Here we present a systematic method ef13split within the congruencemethod using the
language ofifferential formson both(4 and 3+1) levels.

The use of forms within the-81 decomposition program can be traced back to the classical
paper on geometrodynamfc&. 581, where it was applied, however, in the framework of the
hypersurfacanethod(cf. also Ref. 3, pp. 93—94the time serves there as a parameter labeling the
spacelike hypersurfaces and the time derivative of a form is interpreted as a differentiation with
respect to a parameter.

The observer field approach similar to ours can be found in R§fp4193-19Y. What we
add here is the introduction of tlisimply realized operator hoKcf. Sec. 1)) and a spatial exterior
derivative within the general congruence approéghc. 1V B. These objects turn out to be very
convenient to manipulate and enable one to derive very simple and at the same time general
decomposition formulas and rules.

The following data are assumed in the article: a four-dimensional Lorentgiahthe signa-
ture +———) manifold M with orientation(=space-timg and anobserver(velocity) field, i.e., a
future oriented vector field oM obeying

a(V,V)=||V|?=1 (1.

(the integral curves o¥ provide then the congruence of proper-time parametrized world lines of
observers

All the constructions are in fact local, i.e., it is enough that the objects mentioned above are
available only in a domaimsC M rather than globally and consequently no global propertiéd of
are assumed.
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Marian Fecko: On 3+1 decompositions via differential forms 4543

Il. THE DECOMPOSITION OF FORMS

For any vector fieldV let us define the following standard operations on forms:
iw:QP(M)—= QP (M),

jw:QP(M)— QP H (M),

iwa(U,..) =a(W,U,...), (2.1
jwa:=WAa, W=g(W,.)=bW. (2.2
Then the following identity holds:
Jwivtivjw=9(U,W), 2.3
in particular,
jvivtiyjy=1=identity on Q(M). (2.9
Further, introducing
Zi=iviv, Ci=]viv, (2.9

one checks easily that they represent the setrofection operatoroon QP(M), i.e.,
PP=P, =0, P0=0=07 P+o=1. (2.6
Then for anya e QP(M) one has
a=(0+P)a=VAiya+iyjya, 2.7)
i.e., one obtains thdecomposition
a=V/N\&+T, (2.9)
where
S=iya, T=iyjya. (2.9
Ill. OPERATOR HOR AND SPATIAL FORMS

At any pointme M we definevertical (instantaneous timedirection—parallel toV and
horizontal(instantaneous 3-spaadirections—perpendicular 1@. Then for any vector there is the
unigue decomposition

U=U;+U,=verU+horU
and one can definén the spirit of the theory of connections on principal bundles, cf. Ref. 5
(hor @)(U,W,...):=a(horU,horW,...). (3.1
It turns out(cf. Appendix A that this operation is realized explicitly as

hor a=iyjya=Za=r, (3.2

J. Math. Phys., Vol. 38, No. 9, September 1997
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4544 Marian Fecko: On 3+1 decompositions via differential forms

so that the decomposition in E(.8) can be rewritten also as
a=VAiya+hor a. (3.3
We also introduce the space of puralyatial (horizonta) p-formsby
QP(M): ={a e QP(M)|a=hor a} (3.4)
[i.e., =0 in the decompositio2.8)] and the Cartan algebra of spatial forms
Q(M): = ,0°(M) (3.5

(it is closed with respect td\). One readily verifieginserting arguments and using the definition
(3.1)] that the projection operater’=hor is compatible with the algebra structure({M),

hor(a+AB)=hor a+\ hor 8, a,BcQ(M), \eR, (3.6
hor(@/\B)=hor a/\hor B, a,Be (M), 3.7

ie.,
hor:Q(M)—Im hor=Q(M)<Q(M) (3.9

is anendomorphisnof the Cartan algebr&(M). From Eq.(3.3) we obtain useful criterion:
a=spatial form=iya=0. (3.9
Then we see that,s in the decompositiori2.8) are spatia[Eq. (2.9) plusiyiy=0].

Note: If a local orthonormal frame fiele,=(e,=V,e;) and its duak?®=(e’=V,e') are used
and if

1
a’za aa...bea/\---/\eb, (31@

then the decompositiof2.8) is just split into two parts which do and do not contain, respectively,
the basis 1-forme®=V, i.e.,
a=e\§+T, (3.11)

wheres,r, being spatial, do not already contain the local “time” basis 1-f@nbut rather only
the “spatial” basis 1-forms'; explicitly

1 . . 1 ,
s= g€ N\ Nel, F=— ... e"N\---Nel.
(p—1)1 "0 pt "k (3.12
p-1 P

IV. THE DECOMPOSITION OF THE OPERATIONS ON FORMS

According to Eq.(2.8) any form on (M,g,V) can be 3-1 decomposed as

a=VA§+f,

J. Math. Phys., Vol. 38, No. 9, September 1997
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Marian Fecko: On 3+1 decompositions via differential forms 4545

so that the full information about € OP(M) is encodedin an observer-dependent wanto a
pair of spatialformsse QP (M) andf e QP(M). In this section we perform the decomposition
of the standaraperationson forms, viz. theHodge star* and theexterior derivative d(some
other important operators are then easily obtained by their combinatBpshis, we mean to
introduce some “spatial” operation€cting directly ons,r and dependent on the observer
producing the same effect as does the given operator acting on

A. The Hodge star

The horizontal subspace of a tangent space at each point inherits natural metrittemigor
signature+ + + by definition, i.e.,g=V®V—h) and orientatiorfa spatial frame¢€; ,e,,e3) is
declared to be right-handed i¥E&ey,e;,e5,€3) is right-handedl These data are just enough for
the uniquespatial Hodgeoperator

x:=%p:OP(M)— 03 P(M) (4.1)
(it is to be applied only on spatial formsJsing the operator
mai=(—1)%%q
one readily compute&f. Appendix B that the decomposition of the “full” Hodge star reads
* (VASHT)=VA*T +* 8. (4.2)

As an example, applying this toelQ°(M) (§=0, f=1) results in the decomposition of the
4-volume form

*1=w=VA*1=:VA®, (4.3

where
r=+1 (4.9
is the spatial volume formin the local orthonormal right-handed coframe fieftit is just
w=e’Ael\e2\ed=e/\ (et N\e2A\e®) =V b. (4.5

B. The exterior derivative
Letb be a spatial formZ a spatial(=horizonta) domain(i.e., the domain of any possible
dimension with the property that any vector tangent to it is horizpntdden

~ l ~
J db= b due to Stokes’s theorem
@ o

2' ~ A A
=f hor dbzf db since & is horizontal
9 Z

f gaf’: f (7,(/6’ (4.6)

J. Math. Phys., Vol. 38, No. 9, September 1997
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4546 Marian Fecko: On 3+1 decompositions via differential forms

where we introduced thepatial exterior derivative

d: OP(M)— QP+ (M), @

d:=hord=ij,d

(exactly like thecovariantexterior derivative of forms on principal bundle with conneclidrhus
for spatial forms and domains the “full” operatarin the Stokes formula can be replaceddy
This means thatl and * provide the basic building blocks for the “three-dimensional vector
analysis operatlons being the natural generalizations of div, curl etc. used in Minkowski space
(d|v~*d* curl~+d,. ..). We emphasize that the validity of tispatial Stokes formulé&.6) for d
is essential for the usefulness and naturality of the latter, e.g., as a means to relate the usual
differential 3+1 laws to the corresponding integral orféike div B=0+¢B-dS=0).

So our task now is to express the action of the dutiperator in terms ofl (and possibly some
other onesdirectly ons,f present in the decompositid@.8) of «. We have

da=dVAS—VAdS+dF

so that we are to focus our attention on two particular issuesdvciﬁ.v andd of a spatial form.
The decomposition of the 2-formV according to Eq(2.8) results in

dV=VAa+y (4.9)

with e QX(M), e Q?(M). The formsa,y are thekinematical characteristicsf the observer
field V, which can be easily extracted from any givérusing Eq.(2.9). Their physical meaning
is discussed in Appendix C. It turns oigiee also Refs. 638hata equals theacceleration 1-form

a=g(VyV,-)=g(a,-)=a (4.9

(a=V,V is theacceleration fielccorresponding t&/) and the 2-forny, thevorticity form (tensojy
is the measure of thénonjintegrability of the spatialhorizonta) distribution, i.e., it encodes
whether or not the instantaneous 3-spaces mesh together to féooak spatial 3-domairZ (or,
equivalently, whether or not thiéme synchronizatiois possiblé. These properties Gt andy are
reflected in the terminologyV is said to begeodesidf a=0, irrotational or time synchronizable
if y=0 andproper-time synchronizablé both a andy vanish(thenV=4,, V=dt in adapted
coordinates

The computation of the action of on a spatial form, as well as on a general famthen, is
performed in Appendix D and the result reads

d(VAS+T)=VA(—ds+ Af +aA8)+ (df +§AS). (4.10

The formula(4.10 gives the desired-81 decomposition of the full operator. Notice the explicit
occurrence of both kinematical qharacterisﬁcandy.
The spatial exterior derivative shares some important properties with the €llin particu-

lar, it is the graded derivatiorof the spatial Cartan algebf(M). Indeed, according to E¢3.7)
we have

d(FAR)=hor(d?/\R+ ##/\dR)=d#/\hor R + % hor 7 NdR=dF/\R+ #7/\dR.
\‘/ g
R T

(411

J. Math. Phys., Vol. 38, No. 9, September 1997
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Marian Fecko: On 3+1 decompositions via differential forms 4547

On the other hand, it isot nilpotentin general, but rathefsee Appendices D and)G
ddb=—-9yA\%b, beQ(M) 4.12

holds. This may seem to contradict Eg.6), since the(full) exterior derivative can be uniquely
defined by thefull) Stokes formuld(and itis then nilpotent due to the nilpotence of the boundary
operato). The situation can be clarified as follows: Famy domainZ anda € (M) one has

f ddaZJ a=0 (4.13
% 307

(sincedd=0) which leads tadda=0 identically, i.e.,d is nilpotent. For aspatial domain<’ and
spatial form b one has similarly

f ddb= b=0. (4.19
9 90

This does not mean, however, tlddb=0 identically, now, but ratheddb should vanish upon
restriction to anyspatial . The only nontrivial cases are for the dimensiorcobeing 3 or 2. For
dim =3, y+0 [and thusddb+0 due to Eq(4.12] means(via Frobenius theorepthat spatial
2/ [to be used in Eq(4.14)] does not exist at all. For dir=2 we haveb=function=f and the
question is whether\(f)y vanishes(for any f) upon restriction on any spatial two-dimensional
domainZ. Thisis, however, the case as a resultyobeing the measure of nonintegrabilithe
bracket of any two vectors tangent 4o is trivially again tangent t@7). Thus there if10 conflict
between Eqs(4.6) and(4.12).

V. MATRIX NOTATION

For the computation of more complex expressipag., thecodifferentialin Eq. (5.3)] it is
quite useful to introduce matrix realization of the operators. If the decompogRi&n of « is
represented by a column

~ . . (5
aEV/\S+r<—>(F>

then, e.g.,

0 =«
* | .
*7

For the exterior derivative we obtain similarly

~ ~ o n i 0 =
*(V/\é+F)=V/\*F+*37§<_>( E);( )(

so that

—ds+ Af + é/\é)

or

J. Math. Phys., Vol. 38, No. 9, September 1997
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4548 Marian Fecko: On 3+1 decompositions via differential forms

In the same sense we can then also express other useful operations in terms of such matrices; for
the sake of convenience we collect them here together:

0 =« 0 —*7
*<—>(A ), *1<—>(A 7]), (5.0
*;7 0 * 0

X (—;7 o) . —d+a % 52
/A 0 ;71 - 9 a ) .
[0 —xp\[—d+a A\[ 0 (—;7 0)
=+ "ldx pe| . . ~ . A
* 0 Yy d *;7 0 0 n
5 *(§A%)
= . . N (5.3
—* %V* - 5+*(a/\* 77)
where
5=xldx 7y (5.4)
is the spatial codifferential
(o0, (01
|V(_> 1 0 ’ ]VH 0 0 ’ (55)
Hormioi 0 0\/0 1 00
Or=lyJye 1 ollo o/Tlo 1) (5.9
“y=iyd+di v 0
,Jé\/=|\/ + Iy é }Z/V . (57)

VI. THE MAXWELL EQUATIONS

According to the standard conventions on the relationship between the components of the
electromagnetic field 2-forr = iF ,,.e3/\e® (e, is g-orthonormal frameand the 3-space vectors
of the electric and magnetic fields, respectively,

Foa=Ea=E® Fap=—€ap,B"=—€up,B, 6.0

(e,is ﬁ;orthonormal frameg, B,... run from 1 to 3, being raised and lowered by $patial metric
]Eensorhaﬁs + 8,5=— 7n4p), ONE can associate with the electric and magnetic fieldspadial
orms

E—E,e*=:E.dr, B=B%dS,=:B-dS,
(6.2)

dS, = 3€,4,0°\e7.

J. Math. Phys., Vol. 38, No. 9, September 1997
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Marian Fecko: On 3+1 decompositions via differential forms 4549

Then

~ ~ A E
F=V/\E—B<—>(_é> 6.3

(so thats= I%, f=—B here. Similarly the electricd-current 1-formdecomposes to

J=iaea=joe°+jie‘zp\7—i«a(_”Jf). ji=j.em=jer. (6.4
Then
~ an oan _*B
*F=V/\(—*B)—*E« oz) (6.5
=N wpae| 7o) 66
and so the 31 decomposition of the Maxwell equations
d*F=—4m*j, (6.7)
dF=0 (6.8
and the continuity equation
dxj=0, (6.9
respectively, result in
d*E+y/\*B=4mpd, (6.7a
d*B— A+ E—aA*B=4m+], (6.7b
dE+ %4 B—a/\E=0, (6.89
dB—y/AE=0, (6.8b
and
Fpd)+d*j—aA*]=0. (6.10

In particular, in the simplest situation, viz. for the irrotationg=0), geodesic 3=0) observer
field V (thenV=g¢,, V=dt) we get

d*E=47mpo, (6.7d)
d*B— 7, *E=dm+], (6.75)
dE+ #,B=0, (6.84)

J. Math. Phys., Vol. 38, No. 9, September 1997
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4550 Marian Fecko: On 3+1 decompositions via differential forms

dB=0, (6.8b)

and
Zy(pd)+d*j=0 (6.10)

(there is a simple rule to modify these equations to the aase but still y=0; cf. Appendix ).

Since Eqgs(6.73—(6.10 are written in terms of differential forms and standard well-behaved
operations with respect to integrals, one can readily write down their correspomiéggal
versions let spatial domains of necessary dimensions etigb-dimensional surface”, three-
dimensional volumeZ—the latter case needs=0, therefore we pug=0 in the equations where
the integration over the three-dimensional domain is perfojntadn

o i
anod ~a o an
fﬁ e 9 f *E—f aA*B=47Tf i, (6.11b
0 drl,Jo.n 0% v
. d . .
ff Et+— f B—f a\E=0, (6.12a
ar drlgJen )
ff; B=0. (6.128
o
and
d A apn?
— f po+ é d*j—f a\*j=0, (6.13
dr|,Jo ) 0 @

where® _is the (local) flow generated by.
Equations(6.739—(6.10 can be also expressed in more familiar form, making use of three-
dimensional vector analysis operators div, curl, etc.; this is done in Appenftik KH8)—(H12)].
Equivalently, if instead of Eq(6.7)

SF=4mj (6.14

is used, Eqs(6.79 and(6.7b are to be replaced by
SE—*(J/\*B)=4mp, (6.143
SB—* L *E—*(a/\*B)=4m] (6.14h

[they can be obtained directly by also applyi%g)n Eqgs.(6.78 and(6.7b)].
The decomposition of thé-potential 1-form

¢
AH( —A) (6.15

gives

J. Math. Phys., Vol. 38, No. 9, September 1997
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B [N e
so that
E=—d¢+ da— LA, (6.17
B=dA— ¢y. (6.18
Finally, the gauge transformation:
AHA’EA+dx<—>( ¢, + _afa yv 0) (6.19
—A y d/\x
is
P>’ =d+Vy, (6.20
A—A'=A—dy. (6.21)

VIl. CONCLUSIONS AND SUMMARY

In this article we presented a simple method afi3decomposition of the physical equations
written in terms of differential forms on space—tind (g) with respect to a general observer field
V.

The method consists of the decomposition of both forms and operations on them. The decom-
position of forms is based technically on a simple ideni&y), which can be interpreted in terms
of projection operators o@P(M). The decomposition of the operations on forms consists first in
the decompositior{4.2) of the Hodge star operator and then the decomposition of the exterior
derivatived. Here the formalism mimics the approach used standardly in the theory of connec-
tions on principal bundle, viz. we first introduce the operator[lpoojecting on the “spatial part”
of the form; its simple realization is given by E(.2)] and then define thepatial exterior
derivative asd: =hord (the counterpart of theovariantexterior derivative on principal bundle
with connectiof. The decomposition df is then given by Eq(4.10. The essential property of,
which makes it a useful object, is the validity of thpatial Stokes formul&.6). It provides the
usual link between the differential and integral formulations of the physical laws, respectively.
The language of differential forms on both 4 and Blevels turns out to be the most convenient
tool for realization of this link, since forms are the objects directly present under the integral signs.

Let us also mention that the quantities of physical interest which “are not” faensrgy—
momentum tensor, Ricci and Einstein tensors) etdmit description in terms of fornfsit is then
possible to apply the decomposition presented here also to them.
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APPENDIX A: PROOF OF EQ. (3.2)

The formula to be proved

(hor a)(U,.... W)=a(hor U,...,horW)=(iyjya)(U,...,W) (A1)
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4552 Marian Fecko: On 3+1 decompositions via differential forms

is.7 linear= it is enough to take either all vector fieldd {...,W) horizontal or one verticakhen
V is enough and the rest horizontal. The former case means to check

a(U,...W)=a(U,... W)= (VAiya)(U,...W), (A2)
the latter case
O:(|V|VJ\/C¥)(U,,W) (AS)

Both are easily seen to hold.

APPENDIX B: PROOF OF EQ. (4.2)

In general, one has in any orthonormal right-handed frame by definition

1
xe/\---Neb= CEDL 7o 77bd5c~~«de~--fee/\' < Ae’, (B1)
N—  — :
p
Let
0 i = ON eI Nl ek h=eb A Ae!
(B2)
p—1 p
be mixed and spatial basis p forms in (M";g;+ —--- — ), respectively, and let us treat the
N— —

n
orthogonal complement to V=e¢,, as the Euclidean space with the signature (+---+) (its dimension
is n—1). Then

>x<e°"“'i:.W 70 €€t = (1) ke =k et (B3)
(=P (- D=p=D)tge
and
. 1 (—1)? .
xek l_(n—p)' 7%l g pe® b=w("“1’)€kmlop~-seor :
(-p)
1 Or s OAL kool
=(n_p—_1)! €o---Ir---5€ =e"Nxe . (B4)
Then if

J. Math. Phys., Vol. 38, No. 9, September 1997
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we have
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1 o
AE—A. I] [— —
S (p—1)! S...;e"",  (p—1)—form,
~ 1"
rzark...ﬁk ', p—form,
a=e\S+T,
A 1 . 1 Ao
*(eO/\S+r)=(p_—l)!si...j*eo'“'J-i—ark,nl*ek“‘|:e0/\*r+*,75_

APPENDIX C: INTERPRETATION OF a AND y IN EQ. (4.8)

Let

be the decompositio¥.8) of the 2-formdV. Then according to Eq2.9) one has

a=iydV=_(iyd+di))V—d iy\V =%,V=F,8(V,))=(Zyg)(V, ) +8( ZV ,-)

|

dV=VAa+y

By Ivi=1

However, for the Levi-Civita connection one has in arbitrary coordinates

so that

where

(Zv@)ij=Vi;jt+ Vi

((By@)(V, ) =VIV + VIV, =(V, V) + (a3 V),

N
1

a=(Zyg)(V, )=V V=(Vyg)(V, ) +g(V,V, )=g(a,-),

A g
0

a. = Vvv

is theacceleration fieldcorresponding to the observer fielj thus

a=g(a,-)=a.
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The 2-form’y According to the Frobenius theorefy 0 means the nonintegrability of theori-
zontal (3-spacg distribution This can also be rephrased as the impossibility of the synchroniza-
tion of the clocks within the 3-space for the observers moving aléntmdeed, let

t: 77— R

be a time function(coordinatg in a 4-region7Z, synchronized for any two nearby space-related
points, i.e.,

(1) Wt=0 for any horizontaW (t is constant along the instantaneous 3-space
(2) Vt=x>0 (time increases along any observer’'s world Jine

Condition (1) can also be rewritten as
O=(horW)t=(dt,horW>=<hordt,W)E(&t,W)
forany W, i.e.,
dt=0 (Co)
as a 1-form. According to EdD 1)
0=dt=dt—(Vt)V=dt—yV
or
V=ydt, y=yx 1>0. (C7)
Then
dy dl/f):f\v//\(_der(Vw)V):f\v//\( d¢>.

V=dyAdt= — Aydt=VA| — —
dVd¢dt¢¢dtV<¢ ;

Comparison with Eq(4.8) then gives
dy
b

Thusy+0 is the obstacle for existence of a time functiosynchronized in 3-space ari y
=0) ®:=In ¢ is the " gravitational potential’ (Ref 6, p. 33).

=—do, y=e®. (C8)

Q>

y=0,

APPENDIX D : THE PROOFS OF EQS.(4.10) AND (4.12)

Let b be any spatial form, i.eiME):O; then

v e N
Fy~diy d 0
so that onspatial forms
db=VA % b+db. (D1)

Then on ageneralforms «,

J. Math. Phys., Vol. 38, No. 9, September 1997
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da=d(VAS+7)=dVAS—VAdS+dT
=(VAA+§)N\S—VANVA %,8+d8) + VA L f +df
=VA(LF —ds+aA8) + (dFf +JA8), (D2)

where all forms in the brackets are already spatial.
The computation ofld: for arbitrary horizontal formb

A,.,.(Dl) . . - N - . 3.7
ddb = hor d(db—VN\Zyb)=—hor(dVN\Zyb—V\dZyb) =

= —hor dV A hor %y b+hor V Ahor dFb= —$N\Fb, (D3)
— ‘,A_/ ——
y Fyb 0

since

hor Fyb=iyjivd+diy)b=iy jyiy db=iydb—iyiy jydb=(iyd+d iy)b=%b. (D4
e - e e
0 I=iyjy 0 0

APPENDIX E: THE VOLUME EXPANSION COEFFICIENT @
According to Eq.(4.2)

w=*1=VA*1=VAw,

wherew=+1 is thespatial volume form. The standard definition of tkelume expansionoef-
ficient 6 is (Ref. 6, p. 9

0:=V! =V.V=div V. (ED
Since
Syo=(divV)o=~0w
one can write
Bw=V/\(00)= Zyo=(ZN)\o+VA Zyo=(cf. Appendix Q=aAd+VA Zyo.
The first term vanishegspatial 4-form, “yw is spatial(the end of Appendix Dso that
Lyw=0o, (E2

which means tha# is the rate of change @&-volumesalong the observer’'s word ling (with y
=V). As an exampleZy(pw)=(Vp+ 0)w [see Eq(6.10].

APPENDIX F: THE IDENTITIES RESULTING FROM dd=0
Applying d on the decompositiof4.8) and using(4.10 one obtains

0=ddV=dVAA—VAda+dy=VA( % y—da)+(dy+J/a)

J. Math. Phys., Vol. 38, No. 9, September 1997
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so thata andy are always related by

da= %y, (F1)
dy=—9AA. (F2)
In particular, fory=0 we get
da=0. (F3)
From Eq.(C8) we even know that
a=—do (F4)

in this case.
Applying dd=0 on a spatial fornt and taking into account Eq$F1) and (F2) we obtain
another useful identity:

[4,,d]=—3aA %, on QM) (F5)

[this shows that “time” derivative%,, and “space” derivatives hidden id do not commute in
general; they do commute, however, for the geodesic observer feldY].

APPENDIX G: FORMAL LINKS WITH THE THEORY OF CONNECTIONS ON PRINCIPAL
BUNDLES

The formulation used in this article resembles in many respects the theory of connections on
principal bundles. There is a(right) action Ry of a Lie groupG on the total spac®, if we set
G=(R,+), P=M (globally one need¥ to becompletefor this) and the action is identified with
the flow generated by. The difference is, however, that the horizontal distribution heretsG
invariant in general: sinc¥ is the counterpart of theonnection formw—both define the hori-
zontal distribution via annihilation—and the group is one dimensional,(the-) invariance
means %, V=0. But

_(c3)
“yV = a#0 in general (G

[thus forgeodesid=noracceleratingobserver field therés in fact R connection available
Many formulas here are very similar to those in the connection theory, e.g.,

db=db—VA % b (G2

[cf. Eg.(D1)] is the counterpart of the standard formula valid for the computation afdkariant
exterior derivative of the horizontal form of type p, viz.

Da=da+p’(w)/\a, (G3

where w is the connection formyp a representation d&. To see this more explicitly, one has to
notice that the forms of typp satisfy

Zga=—p'(E)a (G4

(gingi being the fundamental field corresponding to the basis eleEarftthe Lie algebrds of
G) and consequently
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p’(w)/\aZwi/\p’(Ei)aZ—wi/\,‘,/;gia (GH)
or
Da=da—wi/\79f§ia. (G6)

This formula is valid forall horizontalforms on the principal bundigot only of typep). For the
one-dimensional groufas is the case herave have exactly the forniG2).
In the same way one can see the similarity of

ddb=—yA\ %,b (G7)
[Eq. (4.12] with the standard formula
DDaIp’(Q)/\aEQi/\p'(Ei)a, (G8)

where(), the curvature 2-form, is the counterpart of qurboth encode thénon)integrability of
the horizontal distribution and consequently both are computed by the same rule, viz.

y:=hordV=dV vs Q:=horde=Duo.

The counterpart of th8ianchi identity DDw=0 is

me A (F2)
ddv=dy = —JAa.

This is not zero in general, but iis zero fora=0, whenV doesdefine a connection.

APPENDIX H: THE MAXWELL EQUATIONS IN THE STANDARD VECTOR ANALYSIS
NOTATIONS

We use the standard three-dimensional Euclidean space rel@tioribe definitions in Eq.

(6.2]

E=E.dr, B=B.dS, j=j-dr, y=y-dS, a=a.dr,

(H1)
*E=E.dS, *B=B.dr, *j=j-dS, *y=y.dr, *a=a.dS,
JA*B=(y-B)&, a/\*B=(axB)-dS, aA*|=(a}j)d,
JA\E=(y-E)®, Aa/\E=(axE)-dS.

One can then introduce curl and div operations according to
dE=:(curl E)-dS, (H2)
d*E=:(div E), (H3)

and consequently,

dB=:(div B)&, (H4)
a;éz:(curl B)-dS. (H5)
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These definitions guarantee the validity of “standard” integral formulas like

fﬁwE-ds: L(div E), (H6)

3@ B-dr=J (curl B)-dS (H7)
0. N

as a consequence of the “spatial” Stokes form{#). Then from Eqs(6.79—(6.10 we obtain

div E+y-B=4mp, (H8)
(curl B)-dS— %\(E-dS)— (axB)-dS=4j-dS, (H9)
(curl E)-dS+ %(B-dS)— (axE)-dS=0, (H10)
div B—y-E=0, (H11
and

Lulp@)+(divj)o—(aj)w=0 (H12)

or (cf. Appendix B
Vp+ 6p-+divj—aj=0 (H13

as well as the corresponding integral versions

35 E~dS=4Trf pw=4m, (H14)
e 9
d .
ff; B-dr—— f E-ds—f (axB)-dS=4Trfj~dS, (H15)
Py drlyJo,n 0% X%
d
j@ E-dr+— f B.ds—f (axE)=0, (H16)
0 drl Jo. K
3§ B-dS=0, (H17)
o
and
d ) A
— f pw+ % j-dS—f (a-j)w=0. (H18)
drjyJo. 07 7

In the_simplest situation, i.e., for irrotation&=0), geodesic(a=0) observer fieldV (thenV
=d,, V=dt) we get

div E=41p, (H19
(curl B)-dS— %, (E-dS)=4mj-dS, (H20)
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(curl E) -dS+;§,{”31(B-dS) =0, (H21)
div B=0, (H22)

and
op+ Op+divj=0. (H23)

APPENDIX I: THE EQUATIONS da=p AND éa=7y FOR IRROTATIONAL OBSERVER
FIELD

Let V be anirrotational (y=0) observer field. Thefcf. Eq. (C 8)]
a=—d®, o=Iny, V=ydt, V=y 14, (1)

(e®= y—lapse functioncf. Ref. 10. Let us study the equation of the structure

da=g8. (12)
If
effl 03]
we have
—d+a “4\/5 (S
] )( - ( ﬁe) 4
or
(—d+a)s+ % f=S, di=R. (I5)
Now

(—d+2)8=—ds—ddAs=—e 2d(e?s),
f=ePs,F
so that we obtain
—d(e®8)+ 7,F=e®s, di=R. (16)

Thus we have the simple rule: The acceleration tarm—dd manifests itself only through the
replacement

§>e®8=ys, S—e?S=ysS (17)

of the upper components of Eq(I3) (the lower ones being unchangeid the corresponding
equations witha=0, i.e., in

—ds+%,f=S, di=R (18)
J. Math. Phys., Vol. 38, No. 9, September 1997
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The similar analysis repeated for the equation
Sa=vy

where

()
7‘_)(91{) (19)
shows that the replacement to be performed in the corresponding equatiors=vttis
r—e®f=yf, R—oe®R=yR, (110)

i.e., only thelower components do change now.
For the case of the Maxwell equatiot@&14), (6.8), and the continuity equatioi®.9) it results
in the replacements

E—~e®E=yE, p—e®p=yp (111)
in the homogeneoupair (p is, however, trivial since it is not present thgre
B—e?B=yB, j—e®j=yj (112)
in theinhomogeneoupair and
j—e?i=yj (113)

in the continuity equation, i.e., the equations for —dd read (cf. Ref. 10, pp. 18-19 and
Appendix H herg

d*E=4mpw, d*(e®B)— ¥, *E=4m=(e?)), (114)
d(e®E)+7,B=0, dB=0, (115)

and
Zo(p@)+d*(e?])=0, (116)
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