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On 311 decompositions with respect to an observer field
via differential forms

Marián Feckoa)

Department of Theoretical Physics, Comenius University,
MlynskáDolina F2, 842 15 Bratislava, Slovakia

~Received 9 January 1997; accepted for publication 28 May 1997!

311 decompositions of differential forms on a Lorentzian manifold (M ,g;
1222! with respect to arbitrary observer field and the decomposition of the
standard operations acting on them are studied, making use of the ideas of the
theory of connections on principal bundles. Simple explicit general formulas are
given as well as their application to the Maxwell equations. ©1997 American
Institute of Physics.@S0022-2488~97!01809-4#

I. INTRODUCTION

There is rather extensive literature devoted to 311 split of the laws of physics in curved
space–time~cf. Ref. 1 for a review and also the references therein!. According to Sec. II of Ref.
1 there are two rather different methods available to cope with the problem, viz. the congr
method and the hypersurface one.

Here we present a systematic method of 311 split within thecongruencemethod using the
language ofdifferential formson both~4 and 311! levels.

The use of forms within the 311 decomposition program can be traced back to the class
paper on geometrodynamics2 ~p. 581!, where it was applied, however, in the framework of t
hypersurfacemethod~cf. also Ref. 3, pp. 93–94!; the time serves there as a parameter labeling
spacelike hypersurfaces and the time derivative of a form is interpreted as a differentiatio
respect to a parameter.

The observer field approach similar to ours can be found in Ref. 4~pp. 193–197!. What we
add here is the introduction of the~simply realized! operator hor~cf. Sec. III! and a spatial exterior
derivative within the general congruence approach~Sec. IV B!. These objects turn out to be ver
convenient to manipulate and enable one to derive very simple and at the same time g
decomposition formulas and rules.

The following data are assumed in the article: a four-dimensional Lorentzian~g of the signa-
ture1222! manifoldM with orientation~[space–time!, and anobserver~velocity! field, i.e., a
future oriented vector field onM obeying

g~V,V![iVi251 ~1.1!

~the integral curves ofV provide then the congruence of proper-time parametrized world line
observers!.

All the constructions are in fact local, i.e., it is enough that the objects mentioned abov
available only in a domainU,M rather than globally and consequently no global properties oM
are assumed.

a!Present address: Department of Theoretical Physics, Comenius University, Mlynska´ Dolina F2, 842 15 Bratislava,
Slovakia; Electronic mail: fecko@fmph.uniba.sk
0022-2488/97/38(9)/4542/19/$10.00
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4543Marián Fecko: On 311 decompositions via differential forms
II. THE DECOMPOSITION OF FORMS

For any vector fieldW let us define the following standard operations on forms:

i W :Vp~M !→Vp21~M !,

j W :Vp~M !→Vp11~M !,

i Wa~U,...!:5a~W,U,...!, ~2.1!

j Wa:5W̃`a, W̃[g~W,.![[gW. ~2.2!

Then the following identity holds:

j Wi U1 i U j W5g~U,W!, ~2.3!

in particular,

j Vi V1 i Vj V51[ identity on V~M !. ~2.4!

Further, introducing

P :5 i Vj V , Q :5 j Vi V , ~2.5!

one checks easily that they represent the set ofprojection operatorson Vp(M ), i.e.,

P 25P , Q 25Q , P Q505QP , P 1Q51. ~2.6!

Then for anyaPVp(M ) one has

a5~Q1P !a5Ṽ` i Va1 i Vj Va, ~2.7!

i.e., one obtains thedecomposition

a5Ṽ` ŝ1 r̂ , ~2.8!

where

ŝ[ i Va, r̂[ i Vj Va. ~2.9!

III. OPERATOR HOR AND SPATIAL FORMS

At any point mPM we definevertical ~instantaneous time! direction—parallel toV and
horizontal~instantaneous 3-space! directions—perpendicular toV. Then for any vector there is th
unique decomposition

U5U i1U'[ver U1hor U

and one can define~in the spirit of the theory of connections on principal bundles, cf. Ref. 5!

~hor a!~U,W,...!:5a~hor U,hor W,...!. ~3.1!

It turns out~cf. Appendix A! that this operation is realized explicitly as

hor a5 i Vj Va[P a[ r̂ , ~3.2!
J. Math. Phys., Vol. 38, No. 9, September 1997
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4544 Marián Fecko: On 311 decompositions via differential forms
so that the decomposition in Eq.~2.8! can be rewritten also as

a5Ṽ` i Va1hor a. ~3.3!

We also introduce the space of purelyspatial ~horizontal! p-formsby

V̂p~M !:5$aPVp~M !ua5hor a% ~3.4!

@i.e., ŝ50 in the decomposition~2.8!# and the Cartan algebra of spatial forms

V̂~M !:5 % pV̂p~M ! ~3.5!

~it is closed with respect tò !. One readily verifies@inserting arguments and using the definitio
~3.1!# that the projection operatorP [hor is compatible with the algebra structure inV(M ),

hor~a1lb!5hor a1l hor b, a,bPV~M !, lPR, ~3.6!

hor~a`b!5hor a`hor b, a,bPV~M !, ~3.7!

i.e.,

hor:V~M !→Im hor[V̂~M !<V~M ! ~3.8!

is anendomorphismof the Cartan algebraV(M ). From Eq.~3.3! we obtain useful criterion:

a5spatial form⇔ i Va50. ~3.9!

Then we see thatr̂ ,ŝ in the decomposition~2.8! are spatial@Eq. ~2.9! plus i Vi V50#.
Note: If a local orthonormal frame fieldea[(e0[V,ei) and its dualea[(e0[Ṽ,ei) are used

and if

a5
1

p!
aa•••bea`•••`eb, ~3.10!

then the decomposition~2.8! is just split into two parts which do and do not contain, respective
the basis 1-forme0[Ṽ, i.e.,

a5e0` ŝ1 r̂ , ~3.11!

whereŝ, r̂ , being spatial, do not already contain the local ‘‘time’’ basis 1-forme0, but rather only
the ‘‘spatial’’ basis 1-formsei ; explicitly

~3.12!

IV. THE DECOMPOSITION OF THE OPERATIONS ON FORMS

According to Eq.~2.8! any form on (M ,g,V) can be 311 decomposed as

a5Ṽ` ŝ1 r̂ ,
J. Math. Phys., Vol. 38, No. 9, September 1997
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4545Marián Fecko: On 311 decompositions via differential forms
so that the full information aboutaPVp(M ) is encoded~in an observer-dependent way! into a
pair of spatialforms ŝPV̂p21(M ) and r̂ PV̂p(M ). In this section we perform the decompositio
of the standardoperationson forms, viz. theHodge star* and theexterior derivative d~some
other important operators are then easily obtained by their combinations!. By this, we mean to
introduce some ‘‘spatial’’ operations~acting directly onŝ, r̂ and dependent on the observe!
producing the same effect as does the given operator acting ona.

A. The Hodge star

The horizontal subspace of a tangent space at each point inherits natural metric tensorĥ ~with
signature1 1 1 by definition, i.e.,g5Ṽ^ Ṽ2ĥ) and orientation@a spatial frame (e1 ,e2 ,e3) is
declared to be right-handed if (V[e0 ,e1 ,e2 ,e3) is right-handed#. These data are just enough fo
the uniquespatial Hodgeoperator

*̂ :5* ĥ :V̂p~M !→V̂32p~M ! ~4.1!

~it is to be applied only on spatial forms!. Using the operator

ĥa:5~21!degaa

one readily computes~cf. Appendix B! that the decomposition of the ‘‘full’’ Hodge star reads

* ~Ṽ` ŝ1 r̂ !5Ṽ` *̂ r̂ 1 *̂ ĥ ŝ. ~4.2!

As an example, applying this to 1PV0(M ) ~ŝ50, r̂ 51! results in the decomposition of th
4-volume form

* 1[v5Ṽ` *̂ 15:Ṽ`v̂, ~4.3!

where

v̂:5 *̂ 1 ~4.4!

is thespatial volume form. In the local orthonormal right-handed coframe fieldea it is just

v[e0`e1`e2`e35e0`~e1`e2`e3![Ṽ`v̂. ~4.5!

B. The exterior derivative

Let b̂ be a spatial form,D a spatial~[horizontal! domain~i.e., the domain of any possibl
dimension with the property that any vector tangent to it is horizontal!. Then

E
D

db̂5
1. E

]D

b̂ due to Stokes’s theorem

5
2. E

D

hor db̂[E
D

d̂b̂ since D is horizontal

⇒

E
D

d̂b̂5E
]D

b̂, ~4.6!
J. Math. Phys., Vol. 38, No. 9, September 1997
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4546 Marián Fecko: On 311 decompositions via differential forms
where we introduced thespatial exterior derivative

d̂:V̂p~M !→V̂p11~M !,
~4.7!

d̂:5hor d[ i Vj Vd

~exactly like thecovariantexterior derivative of forms on principal bundle with connection!. Thus
for spatial forms and domains the ‘‘full’’ operatord in the Stokes formula can be replaced byd̂.

This means thatd̂ and *̂ provide the basic building blocks for the ‘‘three-dimensional vec
analysis’’ operations, being the natural generalizations of div, curl etc. used in Minkowski s

~div;*̂ d̂*̂ , curl; *̂ d̂,...!. We emphasize that the validity of thespatial Stokes formula~4.6! for d̂
is essential for the usefulness and naturality of the latter, e.g., as a means to relate th
differential 311 laws to the corresponding integral ones~like div B50↔rB•dS50!.

So our task now is to express the action of the fulld operator in terms ofd̂ ~and possibly some
other ones! directly on ŝ, r̂ present in the decomposition~2.8! of a. We have

da5dṼ` ŝ2Ṽ`dŝ1dr̂

so that we are to focus our attention on two particular issues, viz.d of Ṽ andd of a spatial form.
The decomposition of the 2-formdṼ according to Eq.~2.8! results in

dṼ5Ṽ`â1 ŷ ~4.8!

with âPV̂1(M ), ŷPV̂2(M ). The formsâ,ŷ are thekinematical characteristicsof the observer
field V, which can be easily extracted from any givenV using Eq.~2.9!. Their physical meaning
is discussed in Appendix C. It turns out~see also Refs. 6–8! that â equals theacceleration 1-form

â5g~¹VV,• ![g~a,• ![ã ~4.9!

~a[¹VV is theacceleration fieldcorresponding toV! and the 2-formŷ, thevorticity form~tensor!
is the measure of the~non!integrability of the spatial~horizontal! distribution, i.e., it encodes
whether or not the instantaneous 3-spaces mesh together to form a~local! spatial 3-domainD ~or,
equivalently, whether or not thetime synchronizationis possible!. These properties ofâ andŷ are
reflected in the terminology:V is said to begeodesicif â50, irrotational or time synchronizable
if ŷ50 andproper-time synchronizableif both â and ŷ vanish ~then V5] t , Ṽ5dt in adapted
coordinates!.

The computation of the action ofd on a spatial form, as well as on a general forma then, is
performed in Appendix D and the result reads

d~Ṽ` ŝ1 r̂ !5Ṽ`~2d̂ŝ1LVr̂ 1â` ŝ!1~ d̂r̂ 1 ŷ` ŝ!. ~4.10!

The formula~4.10! gives the desired 311 decomposition of the fulld operator. Notice the explicit
occurrence of both kinematical characteristicsâ and ŷ.

The spatial exterior derivatived̂ shares some important properties with the fulld. In particu-
lar, it is thegraded derivationof the spatial Cartan algebraV̂(M ). Indeed, according to Eq.~3.7!
we have

~4.11!
J. Math. Phys., Vol. 38, No. 9, September 1997
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4547Marián Fecko: On 311 decompositions via differential forms
On the other hand, it isnot nilpotentin general, but rather~see Appendices D and G!

d̂d̂b̂52 ŷ`LVb̂, b̂PV̂~M ! ~4.12!

holds. This may seem to contradict Eq.~4.6!, since the~full ! exterior derivative can be uniquel
defined by the~full ! Stokes formula9 ~and it is then nilpotent due to the nilpotence of the bounda
operator!. The situation can be clarified as follows: Forany domainD andaPV(M ) one has

E
D

dda5E
]]D

a50 ~4.13!

~since]]50! which leads todda50 identically, i.e.,d is nilpotent. For aspatial domainD and
spatial form b̂ one has similarly

E
D

d̂d̂b̂5E
]]D

b̂50. ~4.14!

This does not mean, however, thatd̂d̂b̂50 identically, now, but ratherd̂d̂b̂ should vanish upon
restriction to anyspatialD . The only nontrivial cases are for the dimension ofD being 3 or 2. For
dim D53, ŷÞ0 @and thusd̂d̂b̂Þ0 due to Eq.~4.12!# means~via Frobenius theorem! that spatial
D @to be used in Eq.~4.14!# does not exist at all. For dimD52 we haveb̂5function[f and the
question is whether (V f) ŷ vanishes~for any f ! upon restriction on any spatial two-dimension
domainD . This is, however, the case as a result ofŷ being the measure of nonintegrability~the
bracket of any two vectors tangent toD is trivially again tangent toD!. Thus there isno conflict
between Eqs.~4.6! and ~4.12!.

V. MATRIX NOTATION

For the computation of more complex expressions@e.g., thecodifferential in Eq. ~5.3!# it is
quite useful to introduce matrix realization of the operators. If the decomposition~2.8! of a is
represented by a column

a[Ṽ` ŝ1 r̂↔S ŝ
r̂ D

then, e.g.,

* ~Ṽ` ŝ1 r̂ !5Ṽ` *̂ r̂ 1 *̂ ĥ ŝ↔S *̂ r̂

*̂ ĥ ŝ
D [S 0 *̂

*̂ ĥ 0
D S ŝ

r̂ D
so that

*↔S 0 *̂

*̂ ĥ 0
D .

For the exterior derivative we obtain similarly

d~Ṽ` ŝ1 r̂ !↔S 2d̂ŝ1LVr̂ 1â` ŝ

d̂r̂ 1 ŷ` ŝ D[S 2d̂1â LV

ŷ d̂
D S ŝ

r̂ D
or
J. Math. Phys., Vol. 38, No. 9, September 1997
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4548 Marián Fecko: On 311 decompositions via differential forms
d↔S 2d̂1â LV

ŷ d̂
D .

In the same sense we can then also express other useful operations in terms of such matr
the sake of convenience we collect them here together:

*↔S 0 *̂

*̂ ĥ 0
D , * 21↔S 0 2 *̂ ĥ

*̂ 0
D , ~5.1!

ĥ↔S 2ĥ 0

0 ĥ D , d↔S 2d̂1â LV

ŷ d̂
D , ~5.2!

d:5* 21d* ĥ↔S 0 2 *̂ ĥ

*̂ 0
D S 2d̂1â LV

ŷ d̂
D S 0 *̂

*̂ ĥ 0
D S 2ĥ 0

0 ĥ D
5S d̂ *̂ ~ ŷ` *̂ !

2 *̂ LV*̂ 2 d̂1 *̂ ~ â` *̂ ĥ !
D , ~5.3!

where

d̂:5 *̂ 21d̂*̂ ĥ ~5.4!

is thespatial codifferential,

i V↔S 0 0

1 0D , j V↔S 0 1

0 0D , ~5.5!

hor5 i Vj V↔S 0 0

1 0D S 0 1

0 0D 5S 0 0

0 1D , ~5.6!

LV[ i Vd1diV↔S LV 0

â LV
D . ~5.7!

VI. THE MAXWELL EQUATIONS

According to the standard conventions on the relationship between the components
electromagnetic field 2-formF[ 1

2Fabe
a`eb ~ea is g-orthonormal frame! and the 3-space vector

of the electric and magnetic fields, respectively,

F0a5Ea5Ea, Fab52eabgBg[2eabgBg ~6.1!

~ea is ĥ-orthonormal frame;a, b,... run from 1 to 3, being raised and lowered by thespatialmetric
tensorĥab[1dab[2hab!, one can associate with the electric and magnetic fields thespatial
forms

Ê5Eaea5:E–dr , B̂5BadSa5:B –dS,
~6.2!

dSa :5 1
2eabgeb`eg.
J. Math. Phys., Vol. 38, No. 9, September 1997
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Then

F5Ṽ`Ê2B̂↔S Ê

2B̂D ~6.3!

~so thatŝ5Ê, r̂ 52B̂ here!. Similarly the electric4-current 1-formdecomposes to

j 5 j aea5 j 0e01 j ie
i[rṼ2 ĵ↔S r

2 ĵ D , ĵ :5 j aea5 j aea. ~6.4!

Then

* F5Ṽ`~2 *̂ B̂!2 *̂ Ê↔S 2 *̂ B̂

2 *̂ Ê
D , ~6.5!

* j 5Ṽ`~2 *̂ ĵ !1rv̂↔S 2 *̂ ĵ
rv̂

D ~6.6!

and so the 311 decomposition of the Maxwell equations

d* F524p* j , ~6.7!

dF50 ~6.8!

and the continuity equation

d* j 50, ~6.9!

respectively, result in

d̂*̂ Ê1 ŷ` *̂ B̂54prv̂, ~6.7a!

d̂*̂ B̂2LV*̂ Ê2â` *̂ B̂54p *̂ ĵ , ~6.7b!

d̂Ê1LVB̂2â`Ê50, ~6.8a!

d̂B̂2 ŷ`Ê50, ~6.8b!

and

LV~rv̂!1d̂*̂ ĵ 2â` *̂ ĵ 50. ~6.10!

In particular, in the simplest situation, viz. for the irrotational (ŷ50), geodesic (â50) observer
field V ~thenV5] t , Ṽ5dt! we get

d̂*̂ Ê54prv̂, ~6.7a8!

d̂*̂ B̂2L] t*̂ Ê54p *̂ ĵ , ~6.7b8!

d̂Ê1L] t
B̂50, ~6.8a8!
J. Math. Phys., Vol. 38, No. 9, September 1997
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4550 Marián Fecko: On 311 decompositions via differential forms
d̂B̂50, ~6.8b8!

and

L] t
~rv̂!1d̂*̂ ĵ 50 ~6.108!

~there is a simple rule to modify these equations to the caseâÞ0 but still ŷ50; cf. Appendix I!.
Since Eqs.~6.7a!–~6.10! are written in terms of differential forms and standard well-beha

operations with respect to integrals, one can readily write down their correspondingintegral
versions: let spatial domains of necessary dimensions exist~two-dimensional surfaceS , three-
dimensional volumeD—the latter case needsŷ50, therefore we putŷ50 in the equations where
the integration over the three-dimensional domain is performed!; then

R
]D

*̂ Ê54pE
D

rv̂[4pQ, ~6.11a!

R
]S

*̂ B̂2
d

dtU
0
E

Ft~S !
*̂ Ê2E

S

â` *̂ B̂54pE
S

*̂ ĵ , ~6.11b!

R
]S

Ê1
d

dtU
0
E

Ft~S !
B̂2E

S

â`Ê50, ~6.12a!

R
]D

B̂50, ~6.12b!

and

d

dtU
0
E

Ft~D !
rv̂1 R

]D

d̂*̂ ĵ 2E
D

â` *̂ ĵ 50, ~6.13!

whereFt is the ~local! flow generated byV.
Equations~6.7a!–~6.10! can be also expressed in more familiar form, making use of th

dimensional vector analysis operators div, curl, etc.; this is done in Appendix H@cf. ~H8!–~H12!#.
Equivalently, if instead of Eq.~6.7!

dF54p j ~6.14!

is used, Eqs.~6.7a! and ~6.7b! are to be replaced by

d̂Ê2 *̂ ~ ŷ` *̂ B̂!54pr, ~6.14a!

d̂B̂2 *̂ LV*̂ Ê2 *̂ ~ â` *̂ B̂!54p ĵ ~6.14b!

@they can be obtained directly by also applying*̂ on Eqs.~6.7a! and ~6.7b!#.
The decomposition of the4-potential1-form

A↔S f

2ÂD ~6.15!

gives
J. Math. Phys., Vol. 38, No. 9, September 1997
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4551Marián Fecko: On 311 decompositions via differential forms
S Ê

2B̂D↔F[dA↔S 2d̂1â LV

ŷ d̂
D S f

2ÂD5S 2d̂f1fâ2LVÂ

f ŷ2d̂Â D , ~6.16!

so that

Ê52d̂f1fâ2LVÂ, ~6.17!

B̂5d̂Â2f ŷ. ~6.18!

Finally, the gauge transformation:

A°A8[A1dx↔S f

2ÂD1S 2d̂1â LV

ŷ d̂
D S 0

x D ~6.19!

is

f°f8[f1Vx, ~6.20!

Â°Â8[Â2d̂x. ~6.21!

VII. CONCLUSIONS AND SUMMARY

In this article we presented a simple method of 311 decomposition of the physical equation
written in terms of differential forms on space–time (M ,g) with respect to a general observer fie
V.

The method consists of the decomposition of both forms and operations on them. The d
position of forms is based technically on a simple identity~2.4!, which can be interpreted in term
of projection operators onVp(M ). The decomposition of the operations on forms consists firs
the decomposition~4.2! of the Hodge star operator and then the decomposition of the ext
derivatived. Here the formalism mimics the approach used standardly in the theory of con
tions on principal bundle, viz. we first introduce the operator hor@projecting on the ‘‘spatial part’’
of the form; its simple realization is given by Eq.~3.2!# and then define thespatial exterior
derivative asd̂:5hor d̂ ~the counterpart of thecovariantexterior derivative on principal bundle
with connection!. The decomposition ofd is then given by Eq.~4.10!. The essential property ofd̂,
which makes it a useful object, is the validity of thespatial Stokes formula~4.6!. It provides the
usual link between the differential and integral formulations of the physical laws, respect
The language of differential forms on both 4 and 311 levels turns out to be the most convenie
tool for realization of this link, since forms are the objects directly present under the integral

Let us also mention that the quantities of physical interest which ‘‘are not’’ forms~energy–
momentum tensor, Ricci and Einstein tensors, etc.! admit description in terms of forms;4 it is then
possible to apply the decomposition presented here also to them.
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APPENDIX A: PROOF OF EQ. (3.2)

The formula to be proved

~hor a!~U,...,W![a~hor U,...,horW!5~ i Vj Va!~U,...,W! ~A1!
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is F linear⇒ it is enough to take either all vector fields (U,...,W) horizontal or one vertical~then
V is enough! and the rest horizontal. The former case means to check

a~U,...,W!5a~U,...,W!2~Ṽ` i Va!~U,...,W!, ~A2!

the latter case

05~ i Vi Vj Va!~U,...,W!. ~A3!

Both are easily seen to hold.

APPENDIX B: PROOF OF EQ. (4.2)

In general, one has in any orthonormal right-handed frame by definition

~B1!

Let

~B2!

~B3!

and

~B4!

Then if
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ŝ[
1

~p21!!
ŝi ••• je

i ••• j , ~p21!2form,

r̂[
1

p!
r̂ k••• le

k••• l , p2form,

and

a5e0` ŝ1 r̂ , ~B5!

we have

* ~e0` ŝ1 r̂ !5
1

~p21!!
ŝi ••• j* e0i ••• j1

1

p!
r̂ k••• l* ek••• l5e0` *̂ r̂ 1 *̂ ĥ ŝ. ~B6!

APPENDIX C: INTERPRETATION OF â AND ŷ IN EQ. (4.8)

Let

dṼ5Ṽ`â1 ŷ

be the decomposition~4.8! of the 2-formdṼ. Then according to Eq.~2.9! one has

~C1!

However, for the Levi-Civita connection one has in arbitrary coordinates

~LVg! i j 5Vi ; j1Vj ; i ~C2!

⇒

so that

~C3!

where

a:5¹VV ~C4!

is theacceleration fieldcorresponding to the observer fieldV; thus

â5g~a,• ![ã. ~C5!
J. Math. Phys., Vol. 38, No. 9, September 1997

Downloaded 11 Jul 2012 to 132.199.100.62. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



iza-

ed

4554 Marián Fecko: On 311 decompositions via differential forms
The 2-form yˆ: According to the Frobenius theorem,ŷÞ0 means the nonintegrability of thehori-
zontal ~3-space! distribution. This can also be rephrased as the impossibility of the synchron
tion of the clocks within the 3-space for the observers moving alongV. Indeed, let

t:U→R

be a time function~coordinate! in a 4-regionU, synchronized for any two nearby space-relat
points, i.e.,

~1! Wt50 for any horizontalW ~t is constant along the instantaneous 3-space!,
~2! Vt[x.0 ~time increases along any observer’s world line!.

Condition ~1! can also be rewritten as

05~hor W!t5^dt,hor W&5^hor dt,W&[^d̂t,W&

for any W, i.e.,

d̂t50 ~C6!

as a 1-form. According to Eq.~D 1!

05d̂t5dt2~Vt!Ṽ[dt2xṼ

or

Ṽ5cdt, c[x21.0. ~C7!

Then

dṼ5dc`dt5
dc

c
`cdt5Ṽ`S 2

dc

c D5Ṽ`S 2
d̂c1~Vc!Ṽ

c D 5Ṽ`S 2
d̂c

c D .

Comparison with Eq.~4.8! then gives

ŷ50, â52
d̂c

c
[2d̂F, c[eF. ~C8!

Thus ŷÞ0 is the obstacle for existence of a time functiont synchronized in 3-space and~if ŷ
50! F:5ln c is the ‘‘ gravitational potential’’ ( Ref. 6, p. 33).

APPENDIX D : THE PROOFS OF EQS.(4.10) AND (4.12)

Let b̂ be any spatial form, i.e.,i Vb̂50; then

so that onspatial forms

db̂5Ṽ`LVb̂1d̂b̂. ~D1!

Then on ageneralforms a,
J. Math. Phys., Vol. 38, No. 9, September 1997
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da5d~Ṽ` ŝ1 r̂ !5dṼ` ŝ2Ṽ`dŝ1dr̂

5~Ṽ`â1 ŷ!` ŝ2Ṽ`~Ṽ`LVŝ1d̂ŝ!1Ṽ`LVr̂ 1d̂r̂

5Ṽ`~LVr̂ 2d̂ŝ1â` ŝ!1~ d̂r̂ 1 ŷ` ŝ!, ~D2!

where all forms in the brackets are already spatial.
The computation ofd̂d̂: for arbitrary horizontal formb̂

~D3!

since

~D4!

APPENDIX E: THE VOLUME EXPANSION COEFFICIENT u

According to Eq.~4.2!

v[* 15Ṽ` *̂ 1[Ṽ`v̂,

wherev̂[ *̂ 1 is thespatial volume form. The standard definition of thevolume expansioncoef-
ficient u is ~Ref. 6, p. 9!

u:5V;m
m [¹•V[div V. ~E1!

Since

LVv5~div V!v[uv

one can write

uv5Ṽ`~uv̂!5LVv5~LVṼ!`v̂1Ṽ`LVv̂5~cf. Appendix C!5â`v̂1Ṽ`LVv̂.

The first term vanishes~spatial 4-form!, LVv̂ is spatial~the end of Appendix D! so that

LVv̂5uv̂, ~E2!

which means thatu is the rate of change of3-volumesalong the observer’s word lineg ~with ġ
5V!. As an exampleLV(rv̂)5(Vr1u)v̂ @see Eq.~6.10!#.

APPENDIX F: THE IDENTITIES RESULTING FROM dd 50

Applying d on the decomposition~4.8! and using~4.10! one obtains

05ddṼ5dṼ`â2Ṽ`dâ1dŷ5Ṽ`~LVŷ2d̂â!1~ d̂ŷ1 ŷ`â!
J. Math. Phys., Vol. 38, No. 9, September 1997
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4556 Marián Fecko: On 311 decompositions via differential forms
so thatâ and ŷ are always related by

d̂â5LVŷ, ~F1!

d̂ŷ52 ŷ`â. ~F2!

In particular, forŷ50 we get

d̂â50. ~F3!

From Eq.~C8! we even know that

â52d̂F ~F4!

in this case.
Applying dd50 on a spatial formr̂ and taking into account Eqs.~F1! and ~F2! we obtain

another useful identity:

@LV ,d̂#52â`LV on V̂~M ! ~F5!

@this shows that ‘‘time’’ derivativeLV and ‘‘space’’ derivatives hidden ind̂ do not commute in
general; they do commute, however, for the geodesic observer field (â50)#.

APPENDIX G: FORMAL LINKS WITH THE THEORY OF CONNECTIONS ON PRINCIPAL
BUNDLES

The formulation used in this article resembles in many respects the theory of connectio
principal bundles.5 There is a~right! actionRg of a Lie groupG on the total spaceP, if we set
G[(R,1), P[M ~globally one needsV to becompletefor this! and the action is identified with
the flow generated byV. The difference is, however, that the horizontal distribution here isnot G
invariant in general: sinceṼ is the counterpart of theconnection formv—both define the hori-
zontal distribution via annihilation—and the group is one dimensional, the~R,1! invariance
meansLVṼ50. But

LVṼ 5
~C3!

âÞ0 in general ~G1!

@thus forgeodesic~[nonaccelerating! observer field thereis in fact R connection available#.
Many formulas here are very similar to those in the connection theory, e.g.,

d̂b̂5db̂2Ṽ`LVb̂ ~G2!

@cf. Eq. ~D1!# is the counterpart of the standard formula valid for the computation of thecovariant
exterior derivative of the horizontal forma of type r, viz.

Da5da1r8~v!`̇a, ~G3!

wherev is the connection form,r a representation ofG. To see this more explicitly, one has t
notice that the forms of typer satisfy

Lj i
a52r8~Ei !a ~G4!

(j i[jEi
being the fundamental field corresponding to the basis elementEi of the Lie algebraG of

G! and consequently
J. Math. Phys., Vol. 38, No. 9, September 1997
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r8~v!`̇a5v i`r8~Ei !a52v i`Lj i
a ~G5!

or

Da5da2v i`Lj i
a. ~G6!

This formula is valid forall horizontal forms on the principal bundle~not only of typer!. For the
one-dimensional group~as is the case here! we have exactly the form~G2!.

In the same way one can see the similarity of

d̂d̂b̂52 ŷ`LVb̂ ~G7!

@Eq. ~4.12!# with the standard formula

DDa5r8~V!`̇a[V i`r8~Ei !a, ~G8!

whereV, the curvature 2-form, is the counterpart of ourŷ: both encode the~non!integrability of
the horizontal distribution and consequently both are computed by the same rule, viz.

ŷ:5hor dṼ[d̂Ṽ vs V:5hor dv[Dv.

The counterpart of theBianchi identity DDv50 is

d̂d̂Ṽ5d̂ŷ 5
~F2!

2 ŷ`â.

This is not zero in general, but itis zero for â50, whenṼ doesdefine a connection.

APPENDIX H: THE MAXWELL EQUATIONS IN THE STANDARD VECTOR ANALYSIS
NOTATIONS

We use the standard three-dimensional Euclidean space relations@cf. the definitions in Eq.
~6.2!#

Ê5E–dr , B̂5B–dS, ĵ 5 j–dr , ŷ5y–dS, â5a–dr ,
~H1!

*̂ Ê5E–dS, *̂ B̂5B–dr , *̂ ĵ 5 j–dS, *̂ ŷ5y–dr , *̂ â5a–dS,

ŷ` *̂ B̂5~y–B!v̂, â` *̂ B̂5~a3B!–dS, â` *̂ ĵ 5~a–j !v̂,

ŷ`Ê5~y–E!v̂, â`Ê5~a3E!–dS.

One can then introduce curl and div operations according to

d̂Ê5:~curl E!–dS, ~H2!

d̂*̂ Ê5:~div E!v̂, ~H3!

and consequently,

d̂B̂5:~div B!v̂, ~H4!

d̂*̂ B̂5:~curl B!–dS. ~H5!
J. Math. Phys., Vol. 38, No. 9, September 1997
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These definitions guarantee the validity of ‘‘standard’’ integral formulas like

R
]D

E–dS5E
D

~div E!v̂, ~H6!

R
]S

B–dr5E
S

~curl B!–dS ~H7!

as a consequence of the ‘‘spatial’’ Stokes formula~4.6!. Then from Eqs.~6.7a!–~6.10! we obtain

div E1y–B54pr, ~H8!

~curl B!–dS2LV~E–dS!2~a3B!–dS54p j–dS, ~H9!

~curl E!–dS1LV~B–dS!2~a3E!–dS50, ~H10!

div B2y–E50, ~H11!

and

LV~rv̂!1~div j !v̂2~a–j !v̂50 ~H12!

or ~cf. Appendix E!

Vr1ur1div j2a–j50 ~H13!

as well as the corresponding integral versions

R
]D

E–dS54pE
D

rv̂[4pQ , ~H14!

R
]S

B–dr2
d

dtU
0
E

Ft~S !
E–dS2E

S

~a3B!–dS54pE
S

j–dS, ~H15!

R
]S

E–dr1
d

dtU
0
E

Ft~S !
B–dS2E

S

~a3E!50, ~H16!

R
]D

B–dS50, ~H17!

and

d

dtU
0
E

Ft~D !
rv1 R

]D

j–dS2E
D

~a–j !v̂50. ~H18!

In the simplest situation, i.e., for irrotational~y50!, geodesic~a50! observer fieldV ~then V
5] t , Ṽ5dt! we get

div E54pr, ~H19!

~curl B!–dS2L] t
~E–dS!54p j–dS, ~H20!
J. Math. Phys., Vol. 38, No. 9, September 1997
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~curl E!–dS1L] t
~B–dS!50, ~H21!

div B50, ~H22!

and

] tr1ur1div j50. ~H23!

APPENDIX I: THE EQUATIONS d a5b AND da5g FOR IRROTATIONAL OBSERVER
FIELD

Let V be anirrotational ( ŷ50) observer field. Then@cf. Eq. ~C 8!#

â52d̂F, F[ ln c, Ṽ5cdt, V5c21] t ~I1!

~eF[c—lapse function, cf. Ref. 10!. Let us study the equation of the structure

da5b. ~I2!

If

a↔S ŝ
r̂ D , b↔S Ŝ

R̂D , ~I3!

we have

S 2d̂1â LV

0 d̂
D S ŝ

r̂ D5S Ŝ

R̂D ~I4!

or

~2d̂1â!ŝ1LVr̂ 5Ŝ, d̂r̂ 5R̂. ~I5!

Now

~2d̂1â!ŝ52d̂ŝ2d̂F` ŝ52e2Fd̂~eFŝ!,

LVr̂ 5e2FL] t
r̂

so that we obtain

2d̂~eFŝ!1L] t
r̂ 5eFŜ, d̂r̂ 5R̂. ~I6!

Thus we have the simple rule: The acceleration termâ52d̂F manifests itself only through the
replacement

ŝ°eFŝ[c ŝ, Ŝ°eFŜ[cŜ ~I7!

of the upper components of Eq.~I3! ~the lower ones being unchanged! in the corresponding
equations withâ50, i.e., in

2d̂ŝ1L] t
r̂ 5Ŝ, d̂r̂ 5R̂. ~I8!
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The similar analysis repeated for the equation

da5g

where

g↔S G

R
D ~I9!

shows that the replacement to be performed in the corresponding equations withâ50 is

r̂ °eF r̂[c r̂ , R°eFR[cR, ~I10!

i.e., only thelower components do change now.
For the case of the Maxwell equations~6.14!, ~6.8!, and the continuity equation~6.9! it results

in the replacements

Ê°eFÊ[cÊ, r°eFr[cr ~I11!

in the homogeneouspair ~r is, however, trivial since it is not present there!,

B̂°eFB̂[cB̂, ĵ °eF ĵ [c ĵ ~I12!

in the inhomogeneouspair and

ĵ °eF ĵ [c ĵ ~I13!

in the continuity equation, i.e., the equations forâ52d̂F read ~cf. Ref. 10, pp. 18–19 and
Appendix H here!

d̂*̂ Ê54prv̂, d̂*̂ ~eFB̂!2L] t*̂ Ê54p *̂ ~eF ĵ !, ~I14!

d̂~eFÊ!1L] t
B̂50, d̂B̂50, ~I15!

and

L] t
~rv̂!1d̂*̂ ~eF ĵ !50. ~I16!
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