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In Hamiltonian mechanics, a (continuous) symmetry leads to conserved quantity,
which is a function on (extended) phase space. In Nambu mechanics, a straightforward
consequence of symmetry is just a relative integral invariant, a differential form
which only upon integration over a cycle provides a conserved real number. The
origin of the difference may be traced back to a shift in degrees of relevant forms
present in equations of motion, or, alternatively, to a corresponding shift in degrees
of relevant objects in action integral for Nambu mechanics. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4824684]

I. INTRODUCTION

According to seminal paper of Emmy Nöther (Ref. 1, see also Ref. 2), there is a close corre-
spondence between symmetries of action integral and conserved quantities for the dynamics given
by the action.

Recall briefly, how it works in Hamiltonian mechanics. First, Hamilton equations

q̇a = ∂ H

∂pa
ṗa = − ∂ H

∂qa
(1)

may be succinctly written as

iγ̇ dσ = 0 (2)

(see Refs. 3 and 4), where

γ̇ = q̇a∂qa + ṗa∂pa + ∂t (3)

is the velocity vector to curve γ (on extended phase space), and

σ = padqa − Hdt (4)

is a distinguished 1-form, Poincaré-Cartan integral invariant (on extended phase space as well).
Then, the standard action integral reads (see Refs. 3–5)

S[γ ] =
∫

γ

σ =
∫ t2

t1

(paq̇a − H )dt. (5)

Conserved quantities extracted from (continuous) symmetries of the action are functions on (ex-
tended) phase space (e.g., energy from time translations, components of momentum from space
translations, components of angular momentum from rotations, etc.). Explicitly (for details, includ-
ing a derivation, see Appendix A), if the symmetry is given by a vector field ξ (on extended phase
space), the corresponding conserved quantity fξ is given as

fξ = iξ σ − χξ . (6)
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In 1973, Nambu proposed a modification of Hamiltonian mechanics (Ref. 6). In its basic version,
phase space is three-dimensional (so that extended Nambu phase space is four-dimensional) and
equations of motion (Nambu equations) read

ẋi = εi jk
∂ H1

∂x j

∂ H2

∂xk
i = 1, 2, 3 (7)

or, in vector notation,

ṙ = ∇H1 × ∇H2. (8)

Here, the two “Hamiltonians” are, in general, functions of x1, x2, x3, and t.
It turns out that construction of action integral for Nambu mechanics is a slightly delicate

subject. It was observed (Refs. 7 and 8) that Nambu equations (7) may be succinctly written as

iγ̇ dσ̂ = 0 (9)

too, where

γ̇ = ẋ1∂1 + ẋ2∂2 + ẋ3∂3 + ∂t (10)

is the velocity vector to curve γ on extended Nambu phase space.
Equation (9) formally looks exactly like (2), it has the structure of “vortex-lines equation” (see

Ref. 9). However, there is an important difference between the two equations, in that the form σ̂ , the
counterpart of the one-form (4), is a two-form, now. Explicitly, it reads

σ̂ := x1dx2 ∧ dx3 − H1d H2 ∧ dt. (11)

At first sight, the difference might look innocent. Notice, however, that it is no longer possible to
write down action integral like (5), since there is no candidate for one-form to be integrated along
the curve γ . Instead, the two-form σ̂ is available. Therefore, the only way to produce a number (the
value of action) is to integrate σ̂ over a two-dimensional surface.

In Ref. 7, a possibility to associate a surface with a single trajectory γ is investigated. It leads
to an action, proposed already before in Ref. 10. This is not very satisfactory, since its extremals are
curves on which ṙ is just proportional, not necessarily equal, to the rhs of (8).

A more interesting way of how to come to a surface is proposed in Ref. 8. There, the value of
action integral is associated with an appropriate one-parameter family of trajectories rather than with
a single trajectory.

Namely, consider the family constructed as follows: Let, from each point p of a one-cycle (loop)
c1 at the time t1, emanate the solution γ (t) of Nambu equations (9), fulfilling initial condition γ (t1)
= p. At the time t2, the points γ (t2) (for all p ∈ c1) form a one-cycle (loop) c2 again (the image of
c1 with respect to the Nambu flow for t2 − t1) and the points γ (t), for all t ∈ 〈t1, t2〉 and all p ∈ c1,
form a two-chain (two-dimensional surface) � made of solutions (see Fig. 1; notice that ∂� = c1

− c2). The value of the action, assigned to the family, is defined as

S[�] =
∫

�

σ̂ . (12)

One then easily verifies (see Appendix B) that the surface given by the family of solutions of Nambu
equations is indeed an extremal of the action integral (12).

II. SYMMETRIES OF THE ACTION

Now, let us mimic in Nambu setting, i.e., using Takhtajan’s action integral (12), the standard
“Hamiltonian” procedure for obtaining conserved quantities from symmetries (see Appendix A).

So we call, first, vector field ξ a symmetry if the action integral (12) evaluated on 	ε(�) (the
flow 	ε corresponds to ξ here) gives the same number as on � itself,

S[	ε�] = S[�] (13)
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FIG. 1. A two-chain � made up from a one-cycle c1 using solutions of Nambu equations.

(i.e., δS = 0; there are no restrictions on either time component of ξ or the values of ξ at the boundary
∂� = c1 − c2 of �). By direct computation of δS (see Appendix B), we obtain

δS = ε

∫
�

iξ dσ̂ + ε

∮
∂�

iξ σ̂ . (14)

Now, the first integral on the rhs vanishes on the surface � given by the family of solutions of Nambu
equations (by the argument mentioned in Appendix B, γ̇ is tangent to � and, at the same time, it is
annihilated by dσ̂ ). The second integral is over ∂� = c1 − c2 and the sum of both integrals on the
rhs of (14) is to vanish. So we get

0 =
(∮

c1

−
∮

c2

)
iξ σ̂ (15)

or, equivalently, ∮
c1

iξ σ̂ =
∮

c2

iξ σ̂ . (16)

This is, however, nothing but a conservation law: for solutions of Nambu equations,

fξ (t1; c1) = fξ (t2; c2), (17)

where fξ is given by the integral

f (ta; ca) :=
∮

ca

iξ σ̂ a = 1, 2. (18)

In full analogy with the Hamiltonian case (see the text following (A6)), a more general definition of
symmetry is possible. Rather than using differential version of (13), vanishing of the Lie derivative

Lξ σ̂ = 0, (19)

we define symmetry of Nambu system as a vector field ξ obeying somewhat weaker condition,

Lξ σ̂ = dχξ (20)
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(so, exactness of the Lie derivative is enough). Or, by Cartan’s formula,

iξ dσ̂ = −d(iξ σ̂ − χξ ). (21)

Upon integration over the surface �, we get∫
�

iξ dσ̂ = −
∮

∂�

(iξ σ̂ − χξ ). (22)

Since the lhs vanishes (on solutions), it holds∮
c1

(iξ σ̂ − χξ ) =
∮

c2

(iξ σ̂ − χξ ). (23)

So, we obtain the statement

fξ (t1; c1) = fξ (t2; c2), (24)

where fξ is given by the integral

fξ (ta; ca) :=
∮

ca

(iξ σ̂ − χξ ) a = 1, 2. (25)

In more wordy formulation: Given a symmetry ξ take, at time t1, an arbitrary one-cycle (loop), c1.
Compute the line integral ∮

c1

(iξ σ̂ − χξ ). (26)

Then, let each point of c1 evolve by Nambu flow up to time t2. You get another one-cycle (loop), c2.
Compute, again, the line integral ∮

c2

(iξ σ̂ − χξ ). (27)

The statement is: You get the same number.

III. INTEGRAL INVARIANTS

What we obtained from symmetry ξ is nothing but a relative integral invariant for Nambu
dynamics. In general this is, by definition, a differential p-form α such that, when integrated over
a p-cycle, it gives an invariant with respect to the dynamical flow. Put another way, if a dynamical
vector field � generates the flow 	t (time evolution) and if c2 is the 	t-image of an arbitrary p-cycle
c1, then ∮

c1

α =
∮

c2

α (28)

(see, e.g., Refs. 3, 5, 11, and 12).
In our case, the result (23) may be regarded as the statement that on Nambu extended phase

space endowed with the dynamical vector field � defined by

i�dσ̂ = 0 (29)

(see (9)), we get, as a consequence of existence of a symmetry ξ , a relative integral invariant.
So (28) holds for the one-form

α = iξ σ̂ − χξ . (30)

Of course, as is always the case, our relative integral invariant then automatically yields an absolute
integral invariant, integral of the exterior derivative dα of α over any two-chain (two-dimensional
surface) s. So, taking into account (21),∫

s1

iξ dσ̂ =
∫

s2

iξ dσ̂ . (31)
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IV. AN APPROACH VIA MOMENTUM MAP

Momentum map is a powerful tool for studying connection between symmetries and conserved
quantities in Hamiltonian framework.

Standardly, it is a map from a symplectic manifold (phase space of a Hamiltonian system) to
the dual of the Lie algebra of the symmetry group acting on the phase space (see, e.g., Refs. 3, 4,
and 13).

A slightly modified version enables one to treat momentum map as a map from extended phase
space of the Hamiltonian system to the dual of the Lie algebra (see Appendix C).

Here we mimic the derivation of momentum map within the framework of the extended Nambu
phase space.

So, consider an action of a Lie group G on extended Nambu phase space. The action satisfies
R∗

gdσ̂ = dσ̂ or, infinitesimally, LξX dσ̂ = 0. This can be rewritten as closedness of two-form βX:

dβX = 0 βX := iξX dσ̂ . (32)

(Notice that (32) is a statement concerning complete Nambu system, rather than just the extended
Nambu phase space alone, since σ̂ contains both “Hamiltonians” H1 and H2.) Often βX happens to
be exact; then we get

iξX dσ̂ = −d PX . (33)

Here, PX is a one-form (rather than a zero-form, i.e., a function, as in Hamiltonian case). We can
achieve linearity of PX in X in a standard way (see Ref. 4), write PX = XiPi and introduce

P := Pi Ei . (34)

What we obtained is a G∗-valued one-form on extended Nambu phase space (rather than the corre-
sponding G∗-valued zero-form = function known from Hamiltonian framework as the momentum
map). Its j-th component one-form, Pj, is defined, according to (33), by the equation

iξE j
dσ̂ = −d Pj . (35)

Comparison with (21) and (23) shows that in this way we get, as a reward for finding a symmetry,
the same integral invariants as we found in Sec. II,∮

c
Pj = relative integral invariant (36)

(Pj equals iξE j
σ̂ − χξE j

modulo additive closed one-form, vanishing after integration over the cycle)
and in Sec. III, ∫

s
iξE j

dσ̂ = absolute integral invariant (37)

(see (31) and (35)).
So, to conclude, both approaches (the one discussed in Sec. II as well as the one discussed

here) lead to the same picture regarding the relation between symmetries and conserved quantities
due to them: each symmetry provides us with a relative integral invariant of the form (23) (and,
consequently, with an absolute integral invariant of the form (31)).

Let us remark that the question of momentum map in the context of Nambu mechanics was
already addressed before in Ref. 14. There, it was introduced as a G∗ × G∗ valued mapping (i.e.,
function) defined by the formula

iξX dσ̂ = d P1X ∧ d P2X , (38)

where both components of the pair (P1, P2) are defined by (C3), in which M is Nambu phase space
now. Notice, however, that the formula (38) is inconsistent, since the lhs is linear in X, whereas the
rhs is not.
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V. THE CASE OF MORE NAMBU HAMILTONIANS

What we treated in detail was the “basic” version of Nambu mechanics, the situation when the
Nambu phase space is three-dimensional and there are two Nambu “Hamiltonians,” H1 and H2.

Already in the original paper (Ref. 6) Nambu pointed out that the idea may be straightfor-
wardly generalized to more dimensions, n-dimensional (Nambu) phase space and n − 1 Nambu
“Hamiltonians,” H1, . . . Hn − 1. (There are also other generalizations, see Refs. 6 and 8.)

And it is easily seen that all constructions discussed in this paper work equally well in the
n-dimensional version. In particular, σ̂ becomes (n − 1)-form, c1 becomes (n − 2)-cycle, � is
(n − 1)-dimensional surface, and so on. (See Refs. 8 and 9.) Conserved quantities are still integral
invariants (formally equally looking formulas (23) and (31) hold, where ca are (n − 2)-cycles and
sa are (n − 1)-chains).

VI. CONCLUSIONS

Both Hamiltonian and Nambu mechanics study motion of (formally speaking) points in phase
space (or, by technical reasons, in extended phase space). Therefore, it is natural to expect conserved
quantities to be functions on (perhaps extended) phase space. Once we study a particular motion,
we evaluate the function at the time t1 at the point where the motion begins, and then we profit from
the fact that, at the future points of the trajectory, the same value of the function is guaranteed by the
conservation law.

In Hamiltonian mechanics the story really goes like this. Functions (like energy or vari-
ous components of momentum) are often conserved and this fact then makes life much more
easy.

In Nambu mechanics, there are conserved functions as well. Already in the first paper on the
subject (Ref. 6), Nambu discusses, as a key example, dynamical Euler equations for the motion of a
free rigid rotator. Here, the Nambu phase space is three-dimensional (actually, it is just a subsystem
of a complete six-dimensional Hamiltonian system of equations; one should add kinematical Euler
equations to get the standard picture) and both energy and square of the angular momentum are
conserved. Nambu shows that it is possible to choose these two (conserved) functions as the two
“Hamiltonians” H1 and H2 in his approach. In many papers, thereafter, authors write various systems
of ordinary differential equations in Nambu mechanics form, exactly to “make explicit” conserved
quantities (functions, namely, H1 and H2).

However, the message of this paper is that these conserved functions do not directly follow
from symmetries, as is usual in Hamiltonian case. In the case of symmetries, application of more
or less standard machinery results, because of a peculiar situation with the action integral (presence
of a two-form rather than one-form, necessity of taking a family of trajectories rather than a single
trajectory), in conserved quantities, which have the character of integral invariants rather than
usual conserved functions. Namely, the machinery leads to higher-degree forms rather than usual
zero-forms, that is, functions (one-form for a relative invariant, and its exterior derivative, two-
form, for the corresponding absolute invariant). As a reward for finding a symmetry, the conserved
number is only obtained as integral of the form over a one-cycle (or two-chain for the absolute
invariant).

In order to make the picture complete, let us note that also Liouville theorem holds in Nambu
mechanics (phase volume is conserved) irrespective of concrete Nambu “Hamiltonians” (see Refs. 6
and 9). This means that there is an integral invariant available, not related to symmetries, too. (There
is also a whole series of well-known Poincaré-Cartan integral invariants in Hamiltonian mechanics,
with no relation to symmetries as well.)

So, there are altogether as many as three kinds of conserved quantities in Nambu mechanics.
First, more common, evidently useful quantities (functions), which are, however, not related (at least
in a clear way) to symmetries. Second, more exotic quantities (integral invariants), which, on the
contrary, result from application of standard machinery on symmetries. And third, the phase volume
(integral invariant) which is not related to symmetries again.
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APPENDIX A: HAMILTONIAN MECHANICS – EXTREMALS, SYMMETRIES,
AND CONSERVED QUANTITIES

Here, in order to make comparison with Nambu mechanics easier, we recall briefly how standard
reasoning goes in Hamiltonian mechanics. So, our action integral is given by (5).

On extended phase space, consider a vector field with vanishing time component (otherwise
yet arbitrary), W = W a∂qa + Wa∂pa + 0.∂t (“variational” field). Its infinitesimal flow 	ε performs
(“equal time”) variations of curves γ �→ γ ε = 	ε(γ ). Then S[γ ] �→ S[γ ε], where

S[γε] = ∫
γε

σ = ∫
γ

	∗
εσ = ∫

γ
(1̂ + εLW )σ

= S[γ ] + ε
∫
γ

iW dσ + ε
∫
γ

diW σ

= S[γ ] + ε
∫
γ

iW dσ + ε
∫
∂γ

iW σ.

So, we get for variation of action, δS ≡ S[γ ε] − S[γ ],

δS = ε

∫ t2

t1

〈−iγ̇ dσ, W 〉dt + ε(pa W a)|t2t1 . (A1)

This means that, within the class of curves with fixed qa at t1 and t2 (this corresponds to W a(γ (t1)) =
0 = W a(γ (t2))), extremals of the action (δS = 0) coincide with solutions of equations of motion (2).

Now, vector field ξ is a symmetry if the action integral (5) evaluated on 	ε◦γ (the flow 	ε

already corresponds to ξ here) gives the same number as on γ itself,

S[	ε ◦ γ ] = S[γ ] (A2)

(i.e., δS = 0; there are no restrictions on either time component of ξ or the values of ξ at the ends of
γ ). By the same direct computation as above, however, we obtain

δS = ε

∫ t2

t1

〈−iγ̇ dσ, ξ 〉dt + ε

∫
∂γ

iξ σ. (A3)

Therefore, combining (A2), (A3), and (2), we see that on solutions of Hamilton equations, one has

0 =
∫

∂γ

iξ σ. (A4)

This is, however, nothing but a conservation law: on solutions of Hamilton equations,

fξ (γ (t2)) = fξ (γ (t1)), (A5)

for the function

fξ := iξ σ. (A6)

Actually, requiring (A2) is too restrictive. To see this notice that it is equivalent, according to the
first line of the computation in the beginning of this section, to differential condition

Lξ σ = 0. (A7)

It turns out, however, that a more general definition of symmetry may be useful, namely, as a vector
field ξ fulfilling just

Lξ σ = dχξ , i.e., iξ dσ = −d(iξ σ − χξ ) (A8)

(i.e., exactness of the Lie derivative is enough for gaining a conserved quantity, its vanishing being
too strong requirement). Indeed, integrating (A8) over γ gives∫ t2

t1

〈iγ̇ dσ, ξ 〉dt =
∫

∂γ

(iξ σ − χξ ). (A9)

Since the lhs vanishes (on solutions), we get conservation law (A5) for more general function,
namely,

fξ := iξ σ − χξ . (A10)
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APPENDIX B: TAKHTAJAN’S ACTION AND ITS EXTREMALS

Let us proceed to the Nambu mechanics now. Consider Takhtajan’s action integral (12). In-
finitesimal flow 	ε of variational field W = W x∂x + W y∂y + W z∂z + 0.∂t performs (“equal time”)
variations of surfaces� �→ �ε = 	ε(�). Then S[�] �→ S[�ε], where

S[�ε] = ∫
�ε

σ̂ = ∫
�

	∗
ε σ̂ = ∫

�
(1̂ + εLW )σ̂

= S[�] + ε
∫
�

iW dσ̂ + ε
∫
�

diW σ̂

= S[�] + ε
∫
�

iW dσ̂ + ε
∫
∂�

iW σ̂ .

Now, on � made of solutions of the equations of motion (9), integral
∫
�

iW dσ̂ vanishes, since we
just sum terms proportional to (dσ̂ )(W, γ̇ , u) = −(iγ̇ dσ̂ )(W, u) = 0 (u is tangent to the surface �,
linearly independent of γ̇ ; this is the counterpart of summing terms proportional to (dσ )(W, γ̇ ) =
(−iγ̇ dσ )(W ) = 0 in the Hamiltonian case). So we get for variation of action, δS ≡ S[�ε] − S[�],
when computed on surface � composed of solutions,

δS = ε

(∮
c1

−
∮

c2

)
x(W ydz − W zdy) (B1)

(since iW σ̂ = x(W ydz − W zdy) + (. . .)dt and dt vanishes on c1 and c2). This means that surfaces
made of solutions provide extremals (δS = 0) in the class of surfaces whose boundaries, 1-chains
c1 at t1 and c2 at t2, respectively, have fixed y and z values (put another way, fixed projections onto
the yz-plane). This is because W y and W z should vanish at t1 and t2. (There is no need to fix x at the
ends. This is a counterpart of the Hamiltonian freedom to move pa at the ends.)

APPENDIX C: MOMENTUM MAP AND EXTENDED PHASE SPACE

Most frequently, momentum map is associated with (certain) action of a Lie group G on a phase
space (symplectic manifold (M, ω); see Refs. 3,4, and 13). The action should preserve the symplectic
form, R∗

gω = ω, so infinitesimally LξX ω = 0 (where ξX is the generator of the action, X ∈ G). This
can be rewritten as closedness of αX:

dαX = 0 αX := iξX ω. (C1)

Often αX happens to be exact; then we get

iξX ω = −d PX PX : M → R. (C2)

Finally, since linearity of PX with respect to X may always be achieved, we can introduce momentum
map as follows:

P : M → G∗ 〈P(m), X〉 := PX (m). (C3)

Now, replace ω (on phase space) by dσ (on extended phase space, σ is given by (4)):

dσ = dpa ∧ dqa − d H ∧ dt. (C4)

So, consider an action of G on extended phase space M × R, such that R∗
gdσ = dσ , so infinitesimally

LξX dσ = 0. This can be rewritten as closedness of βX:

dβX = 0 βX := iξX dσ. (C5)

(Notice that, unlike (C1), which says something about the phase space alone, with no reference to par-
ticular Hamiltonian governing the dynamics, (C5) is a statement concerning complete Hamiltonian
system, since σ contains H.) Often βX happens to be exact; then we get

iξX dσ = −d PX PX : M × R → R. (C6)

Finally, we can again introduce “momentum map” as follows:

P : M × R → G∗ 〈P(m, t), X〉 := PX (m, t). (C7)
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(Unlike (C2), we cannot read (C6) as that the field ξX is Hamiltonian; it lives on odd-dimensional
manifold.) This function (i.e., all component “ordinary” functions Pi, given by P = PiEi, PX = XiPi)
is conserved. Indeed, because of (C6) and (2) we can write

ṖX ≡ γ̇ PX = 〈d PX , γ̇ 〉 = −(dσ )(ξX , γ̇ )
= 〈iγ̇ dσ, ξX 〉 = 0,

so that

Ṗi = 0 i = 1, . . . , dim G. (C8)

Comparison of (A8) and (C6) reveals that the two ways of obtaining conserved quantities from
symmetry, discussed in Appendices A and C, respectively, yield the same result. (Modulo, of course,
an additive constant function. One has to fix X and call ξX ≡ ξ . Then PX from (C6) coincides with
fξ from (A10).)
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