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a b s t r a c t

Helmholtz theorem states that, in ideal fluid, vortex lines move with the fluid. Another
Helmholtz theorem adds that strength of a vortex tube is constant along the tube. The lines
may be regarded as integral surfaces of a 1-dimensional integrable distribution (given by
the vorticity 2-form). In general setting of theory of integral invariants, due to Poincaré
and Cartan, one can find d-dimensional integrable distribution (given by a possibly higher-
rank form) whose integral surfaces show both properties of vortex lines: they move with
(abstract) fluid and, for appropriate generalization of vortex tube, strength of the latter is
constant along the tube.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In hydrodynamics, vortex lines are field lines of vorticity vector field ω, which is curl of velocity field v. Vortex tube is a
surface made of vortex lines passing through each point of a transversal circuit (so that the circuit then encircles the tube).

It was as early as 1858 (see Ref. [1] and Refs. [2–6]) that Helmholtz proved that, in the case of ideal and barotropic fluid
that is only subject to conservative forces,

–vortex lines ‘‘move with the fluid’’ (the same fact is sometimes expressed as that the lines are ‘‘frozen into the fluid’’ or
that ‘‘vortex lines are material lines’’) and that

–strength of a vortex tube is the same at all cross-sections.
Here the strength is defined as the flux of the vorticity fieldω for cross-section itself or, via Stokes theorem, as circulation

of the velocity field v round the circuit cut by the cross-section.
Geometrical (and even topological) language has proved very effective in hydrodynamics since a long time ago. In

particular, for obtaining and classifying of conserved quantities, one can useHamiltonian structure of hydrodynamic equations
or the interconnection of symmetries and conserved quantities, see e.g. Refs. [7–10].

When treated geometrically, the Helmholtz statements may get specific meaning.
For example, Arnold succeeded to show (see Ref. [11]), that the Euler equation for incompressible fluid on n-dimensional

Riemannianmanifold has an elegant formulation as the geodesic equation on the Lie group of volume-preserving diffeomor-
phisms of the given manifold. (In strong analogy with a much simpler – finite-dimensional – description of a rotating top,
where the Lie group is SO(3).) In this approach, Helmholtz theorem stems from invariance of coadjoint orbitswith respect to
the dynamics. (For subsequent work in this direction, see Refs. [12–16], and, in particular, monography [7].)

The point of view this paper is based on starts from regarding hydrodynamics of ideal fluid as an application of the theory
of integral invariants due to Poincaré and Cartan (see Refs. [17,18], Ref. [19] or, in modern presentation, Ref. [20–23]). Then,
original Poincaré version of the theory refers to stationary (time-independent) flow, described by stationary Euler equation,
whereas Cartan’s extension embodies the full, possibly time-dependent, situation.

Let us remark that although integral invariants due to Poincaré and Cartan are mostly known from classical Hamiltonian
mechanics, see e.g. Ref. [24], its realm of applications is wider (see Refs. [18,19]).
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The idea of a proof of Helmholtz theorem on vortex lines might go, within the integral invariants setting, as follows (for
details, see below). First, vortex lines are identified with integral surfaces of a 1-dimensional integrable distribution, defined
in terms of an appropriate 2-form. Second, structure of the (Euler) equation ofmotion immediately reveals that the 2-form is
Lie-invariant w.r.t. the flowof the fluid. So, third, the corresponding distribution is invariantw.r.t. the flow and, consequently,
its integral surfaces are invariant w.r.t. the flow of the fluid. But this is exactly what Helmholtz statement says.

Now, it turns out that the same reasoning may be repeated within the general integral invariant setting (so beyond
even the ‘‘n-dimensional Riemannian hydrodynamics’’). What differs is that we have an integrable distribution based on
a possibly higher-degree Lie-invariant differential form, there. In particular, the distribution may be higher-dimensional and,
consequently, its integral surfaces become then higher-dimensional, too. Nevertheless, they still obey the Helmholtz-like
rule of ‘‘moving with the fluid’’ (i.e. the abstract flow in the general theory translates the integral surfaces into one another).

Concerning the vortex tubes Helmholtz theorem, proof of the original statement is very easy and corresponding
generalization to integral invariants setting is almost self-evident.

The structure of the paper is as follows.
In Section 2.1, in order tomake the text self-contained, we shortly remind the reader, inmodern language, of the Poincaré

theory of integral invariants. Then, in Section 2.2, we present stationary Euler equation rewritten in a form needed for
profiting from the Poincaré theory. Sections 2.3 and 2.4 then show how (easily) one obtains Helmholtz results within this
scheme.

The same program is then repeated, for the case of time-dependent Euler equation (based on Cartan’s extension of the
theory of integral invariants), in Sections 3.1–3.4 .

Finally, as the principal topic of the paper, general, possibly higher-dimensional surfacesmoving with the (abstract) fluid
in the phase space of a system, are studied in Sections 4.1 (stationary case) and 4.2 (time-dependent case; here also extended
phase space plays a role).

2. Time-independent flow

2.1. Poincaré integral invariants

Consider a manifoldM endowed with dynamics given by a vector field v

γ̇ = v ẋi = vi(x). (1)

The field v generates the dynamics (time evolution) via its flow Φt ↔ v. We will call the structure phase space

(M, Φt ↔ v) phase space. (2)

In this situation, let us have a k-form α and consider its integrals over various k-chains (k-dimensional surfaces) c onM . Due
to the flow Φt corresponding to v, the k-chains flow away, c ↦→ Φt (c). Compare the value of integral of α over the original
c and integral over Φt (c). If, for any chain c , the two integrals are equal, it reflects a remarkable property of the form α with
respect to the field v. We call it integral invariant:∫

Φt (c)
α =

∫
c
α ⇔

∫
c
α is integral invariant. (3)

For infinitesimal t ≡ ϵ we have∫
Φϵ (c)

α =

∫
c
α + ϵ

∫
c
Lvα (4)

(plus, of course, higher order terms in ϵ; here Lv is Lie derivative along v). Since (3) is to be true for each c , we get from (4)

Lvα = 0. (5)

This is the differential version of the statement (3).
In specific situations, it may be enough that some integral only behaves invariantly when restricted to an important

sub-class of k-chains, namely k-cycles. These are chains whose boundary vanishes:

∂c = 0 c = cycle. (6)

If this is the case, the condition (5) is overly strong. It can be weakened to

Lvα = dβ̃ (7)

for some form β̃ . (The form Lvα may just be exact rather than vanish.) Indeed, in one direction, Eqs. (6) and (7) then give∫
c
Lvα =

∫
c
dβ̃ =

∫
∂c

β̃ = 0 (8)
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so that (3) is fulfilled. In the opposite direction, if (3) is to be true for each cycle, the form under the last integral sign in (4) is
to be exact due to de Rham theorem, so (7) holds.

According to whether the integrals of forms are invariant for arbitrary k-chains or just for k-cycles, integral invariants are
known as either absolute invariants (for any k-chain) or relative ones (just for k-cycles; notice that Lv(dα) = 0 holds from
(7), so whenever α gives relative invariant, dα already gives an absolute one).

Now, let us see what we can say about relative integral invariants. The condition (7) may be rewritten, using Cartan’s
formula

ivd + div = Lv (9)

as

ivdα = dβ (10)

(where β = β̃ − ivα). Therefore the following main statement on relative invariants is true:

ivdα = dβ ⇔

∮
c
α = relative invariant. (11)

So we can identify the presence of relative integral invariant in differential version: on phase space (M, v), we find a form α
such that the l.h.s. of Eq. (10) is exact.

2.2. Stationary Euler equation

Euler equation for ideal (inviscid) fluid

ρ (∂tv + (v · ∇)v) = −∇p − ρ∇Φ (12)

(see, e.g. Refs. [4,25]) reduces, for stationary flow, to

(v · ∇)v = −
1
ρ

∇p − ∇Φ. (13)

Here mass density ρ, velocity field v, pressure p and potential Φ of the volume force field are functions of r.
In general, equation of state of the fluid may be written as

p = p(ρ, s) general fluid (14)

where s is (specific) entropy (i.e. entropy per unit mass). However, one can think of an important model, where the pressure
depends on ρ alone:

p = p(ρ) barotropic fluid. (15)

In this case, there exists P(r), called specific enthalpy, such that
1
ρ

∇p = ∇P (16)

and (13) takes the form

(v · ∇)v = −∇(P + Φ). (17)

Now it turns out (check in Cartesian coordinates) that Eq. (17) may be rewritten in the form of Eq. (10) for the particular
choice α = ṽ and β = −E , i.e. as

ivdṽ = −dE Euler equation (18)

(stationary and barotropic), where

ṽ := v · dr (≡ ♭gv ≡ g(v, · )) (19)

is the covector (= 1-form) associated with the velocity vector field v = vi∂i in terms of ‘‘lowering of index’’ (≡ ♭g procedure)
and

E := v2/2 + P + Φ Bernoulli function. (20)

The vorticity 2-form dṽ, present in Eq. (18), is of crucial importance for us. We have

ṽ = v · dr (21)

dṽ = (curl v) · dS ≡ ω · dS (22)

iγ ′dṽ = (ω × r′) · dr (23)
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(see , e.g. $8.5 in Ref. [26]) so that, first, dṽ indeed encodes complete information about vorticity vector field ω and, second,
the equation

iγ ′dṽ = 0 vortex line equation (24)

expresses the fact that γ (λ) ↔ r(λ) corresponds to vortex line (the prime symbolizes tangent vector w.r.t. parameter λ;
particular parametrization is, however, irrelevant).

The form (18) of the Euler equation turns out to be very convenient. Short illustration:
1. Application of iv on both sides gives

vE = 0 Bernoulli equation (25)

(saying that E is constant along stream lines).
2. Application of iγ ′ on both sides (where γ ′ is from (24)) gives

γ ′E = 0 (26)

(saying that E is constant along vortex-lines).
3. Putting dṽ = 0 (irrotational flow) leads to

E = const. (27)

(a version of Bernoulli equation saying that E is, then, constant throughout the fluid).
4. Just looking at (11), (18) and (19) one obtains∮

c
v · dr = const. Kelvin’s theorem (28)

(velocity circulation is conserved quantity).
5. Application of d on both sides gives Helmholtz theorem (see the next Section 2.3).

2.3. Helmholtz statement on vortex lines—stationary case

Application of d on both sides of (18) and using (9) results in

Lv(dṽ) = 0. (29)

This is, however, nothing but infinitesimal version of the statement

Φ∗

t (dṽ) = dṽ Φt ↔ v (30)

or, in words, that the vorticity 2-form dṽ is invariant w.r.t. the flow of the fluid.
Now, we can define a distribution D in terms of dṽ:

D := {vectors w such that iwdṽ = 0 holds}. (31)

Due to Frobenius criterion the distribution is integrable. Indeed, let w1, w2 ∈ D. Then, because of the identity

i[w1,w2] = [Lw1 , iw2 ] ≡ Lw1 iw2 − iw2Lw1 (32)

(see, e.g., Ch.5. Ex.21 in Ref. [27] or $6.2 in Ref. [26]) plus (9) one immediately sees that

i[w1,w2]dṽ = 0 (33)

i.e. [w1, w2] ∈ D, too. So D is integrable.
From (23) and (24) we see that the distribution is 1-dimensional (in those points where ω ̸= 0) and that its integral

surfaces are exactly vortex lines. But this means that Helmholtz statement is true: because of (30) and (31) the distribution
D is invariant w.r.t. Φt ↔ v and, consequently, its integral surfaces (i.e. vortex lines) are invariant w.r.t. Φt ↔ v, too.

2.4. Helmholtz statement on vortex tubes—stationary case

This statement is purely kinematical, it concerns the concept of vorticity itself. It holds for arbitrary velocity fields v, even
those which do not satisfy equations of motion (so they cannot occur).

Let u be a vector field defined by iudṽ = 0, i.e. a field tangent, at each point, to the vortex line passing through the point
(see Eq. (24)). Notice that any vortex line may be created from its single point by the flow Φs of u and the same holds (using
evident freedom u ↦→ fu, f being a function) for the vortex tube bounded by fixed circuits c1 and c2 (boundaries of fixed
cross-sections S1 and S2, see Fig. 1).
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Fig. 1. Vortex tube Σ is made of vortex lines emanating from (all points of) circuit c1 = ∂S1 and entering the circuit c2 = ∂S2 . Eq. (35) says that strength
(vorticity flux) for the cross-section S1 is the same as the strength for the cross-section S2 .

Consider the artificial (!) ‘‘dynamics’’ given by u. Then the equation iudṽ = 0 may be regarded as a particular case of the
basic equation (11) from the general theory of Poincaré integral invariants (with v ↦→ u, α ↦→ ṽ and β ↦→ 0). So,∮

c
ṽ ≡

∮
c
v · dr is relative invariant (34)

and, consequently,∫
S
dṽ ≡

∮
S
ω · dS is absolute invariant, (35)

both of them w.r.t. our ‘‘artificial dynamics’’ generated by u (as opposed to the real dynamics generated by the fluid velocity
field v). Then, however, Eq. (35) exactly says that the vorticity flux does not depend on particular choice of cross-section S
cutting the tube.

Alternatively, one can use the proof of Eq. (40) given in Appendix B (with ξ ↦→ u and σ ↦→ ṽ).

3. Time-dependent flow

3.1. Cartan integral invariants

Cartan proposed, as a first step, to study the dynamics given in (1) and (2) onM×R (extended phase space; time coordinate
is added) rather than onM . Using the natural projection

π : M × R → M (m, t) ↦→ m (xi, t) ↦→ xi (36)

the forms α and β (from Poincaré theory) may be pulled-back fromM onto M × R and then combined into a single k-form

σ = α̂ + dt ∧ β̂. (37)

(Here, we denote α̂ = π∗α and β̂ = π∗β .) In a similar way, define a vector field

ξ = ∂t + v. (38)

Its flow clearly consists of the flow Φt ↔ v on the M factor combined with the trivial lapsing of time in the R factor. Now a
simple check (for which Appendix A might come in handy) reveals that the equation

iξdσ = 0 (39)

is equivalent to (10). And the main statement (11) takes the form

iξdσ = 0 ⇔

∮
c
σ = relative invariant. (40)

Here the meaning of the r.h.s. of (40) is as follows: take a cycle c1 located in the hyper-plane t = t1 and its image c2 w.r.t.
the flow of ξ (it is located in the hyper-plane t = t2). Then integrals of σ over c1 and c2 give the same number. (Notice that
dt ∧ β̂ part of σ does not contribute, since dt vanishes on the hyper-planes.) So, indeed, statements (11) and (40) are, in this
interpretation, equivalent.

First new result by Cartan (w.r.t. Poincaré) is an observation that more general interpretation of (40) is possible. Namely,
take any two cycles inM×Rwhich encircle common tube of solutions (here ‘‘solutions’’mean integral curves of ξ , i.e. solutions
of the dynamics as seen fromM×R). Then, still, integrals of σ over c1 and c2 give the same number. See a proof in Appendix B.
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Further Cartan’s generalization, however, is much more interesting for us. Recall that (37) might also be regarded as a
decomposition of themost general k-form σ onM×R, see Appendix A. In this case, α̂ and β̂ need not be obtained by pull-back
from M . Rather, they are the most general spatial forms on M × R. One easily sees that, in comparison with just pull-backs,
they may be time-dependent, i.e. itmay happen that

L∂t α̂ ̸= 0 L∂t β̂ ̸= 0. (41)

(In coordinate presentation, their componentsmay depend on time.)
Recall that the proof of (40) from Appendix B did not use any details of the decomposition. The structure of Eq. (39) is

all one needs. Notice, however, that the equivalence of (39) and (10) is no longer true when (41) holds. Instead, one easily
computes (with the help of Appendix A) that

iξdσ = 0 ⇔ L∂t α̂ + iv d̂α̂ = d̂β̂ (42)

(the term L∂t α̂ is new). So, the equation

L∂t α̂ + iv d̂α̂ = d̂β̂ (43)

is the equation that time-dependent forms α̂ and β̂ are to satisfy in order that integral of σ is to be a relative integral invariant.

3.2. Non-stationary Euler equation

Let us retell Cartan’s results from the last section in the context of hydrodynamics, i.e. for particular choice (see Eq. (18))

σ = v̂ − Edt (44)

where, in usual coordinates (r, t) on E3
× R,

v̂ := v · dr ≡ v(r, t) · dr. (45)

From (42) we get

iξdσ = 0 ⇔ L∂t v̂ + iv d̂v̂ = −d̂E. (46)

One easily checks (e.g. in Cartesian coordinates (r, t)) that

L∂t v̂ + iv d̂v̂ = −d̂E (47)

is nothing but the complete, time-dependent, Euler equation (12). Therefore the time-dependent Euler equation may also
be written in remarkably succinct form as

iξdσ = 0 Euler equation. (48)

The form (48) of the Euler equation turns out to be very convenient for analyzing some of its cosequences. Two examples:
1. Just looking at (40), (48) and (44) one obtains∮

c
v · dr = const. Kelvin′s theorem (49)

(the two loops c1 and c2 are usually in constant-time hyper-planes t = t1 and t = t2).
2. Application of d on both sides gives very quickly Helmholtz theorem (see the next Section 3.3).

3.3. Helmholtz statement on vortex lines—general case

Application of d on both sides of (48) and using formula (9) results in

Lξ (dσ ) = 0. (50)

This is, however, nothing but infinitesimal version of the statement

Φ∗

t (dσ ) = dσ Φt ↔ ξ (51)

or, in words, that the dσ is invariant w.r.t. the flow of the fluid (regarded as the flow of ξ onM × R).
Now, we want to see an integrable distribution behind vortex lines, again. Define the distribution D in terms of

annihilation of as many as two exact forms:

D ↔ iwdσ = 0 = iwdt. (52)

By repeating the reasoning from (32) and (33) one concludes that D is integrable.
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The distribution D is, however, also invariant w.r.t. the flow of the fluid. (Because of (50) and the trivial fact that
Lξ (dt) = 0.) So, integral submanifolds (surfaces)move with the fluid.

What do they look like? Although perhaps not visible at first sight, they are nothing but vortex lines.
Indeed, making use of general formula (A.3) from Appendix A and the form (47) of Euler equation we can write

dσ = d̂v̂ + dt ∧ (L∂t v̂ + d̂E) always (53)

= d̂v̂ + dt ∧ (−iv d̂v̂) on solutions. (54)

Let us now contemplate Eq. (52). It says, that the distribution consists of spatial vectors (i.e. those with vanishing time
component, therefore annihilating dt) which, in addition, annihilate dσ .

Let w be arbitrary spatial vector. Denote, for a while, iw d̂v̂ =: b̂ (it is a spatial 1-form). Then, from (54),

iwdσ = b̂ − dt ∧ iv b̂ (55)

from which immediately

iw(dσ ) = 0 ⇔ b̂ ≡ iw d̂v̂ = 0. (56)

This says that we can, alternatively, describe the distribution D as consisting of those spatial vectors which, in addition,
annihilate d̂v̂ (rather than dσ , as it is expressed in the definition (52)). But Eqs. (45) and (22) show that

d̂v̂ = ω · dS ≡ ω(r, t) · dS (57)

so that d̂v̂ is nothing but the vorticity 2-form and, therefore, the integral surfaces of D may indeed be identified with vortex
lines. So, Helmholtz statement is also true in the general, time-dependent, case. (Notice that the system of vortex lines looks,
in general, different in different times. This is because its generating object, the vorticity 2-form d̂v̂, depends on time.)

3.4. Helmholtz statement on vortex tubes—general case

Vortex tube is a genuinely spatial concept and the statement concerns purely kinematical property of any velocity field
at a single time (see the beginning of Section 2.4). So, no (change of) dynamics has any influence on it. If the statement were
true before, it remains to be true now.

4. Generalization to surfaces

In this section we present details concerning the surfaces mentioned in the Introduction. By now it is easy, since we
already know all the relevant ideas from hydrodynamics parts.

All symbols which occur here refer to objects mentioned in the general theory of integral invariants (due to Poincaré and
Cartan, respectively, i.e. objects from Sections 2.1 and 3.1) rather than to their special instances used in hydrodynamics
(including the n-dimensional case).

4.1. Time-independent (Poincaré) case

We apply d on both sides of (10) or (7) and get

Lv(dα) = 0. (58)

So, the (k + 1)-form dα is invariant w.r.t. the flow generated onM by v.
Now, define a distribution D given by annihilation of the form dα:

D := {vectors w such that iwdα = 0 holds}. (59)

Its dimension is therefore

dim D = dim M − rank dα (60)

≤ dim M − (k + 1) (61)

(if α is k-form, see Appendix C; the rank of dα is expected to be constant).
The distribution D has the following two properties.
First, it is invariant w.r.t. the flow generated onM by v. (This is because of (58).)
Second, with the help of (32) and (9) we see that

iw1dα = 0 = iw2dα ⇒ i[w1,w2]dα = 0 (62)
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Fig. 2. Higher-dimensional analog of vortex tube, Σ . It is bounded by a k-dimensional boundary c1 of a transversal (k+ 1)-dimensional surface S1 from the
left and similarly by c2 ≡ ∂S2 from the right. Here S2 ≡ Φs(S1) for some s.

i.e.

w1, w2 ∈ D ⇒ [w1, w2] ∈ D. (63)

So, due to Frobenius criterion, D is integrable.
Put the two properties together, this means that integral surfaces (submanifolds) of the distribution move with the

(abstract) fluid, exactly in the spirit of the Helmholtz theorem on vortex lines. (Notice that this behavior equally holds for
any surface of smaller dimension which resides within the maximal-dimension one.)

Now consider a vector field W ∈ D (so it satisfies iWdα = 0; this is analog of the field w directed along vortex lines,
discussed in Section 2.4). Application of its flowΦs on k-dimensional boundary c1 ≡ ∂S1 of a transversal (k+1)-dimensional
surface S1 gives a (k + 1)-dimensional analog of vortex tube, Σ (see Fig. 2). So

∂Σ = c1 − c2. (64)

Repeating either the reasoning from Appendix B or that from Section 2.4 we show that the (analog of the) strength of the
tube is constant along the tube∫

S1

dα =

∫
S2

dα. (65)

This is an analog of Helmholtz theorem on vortex tubes.

4.2. Time-dependent (Cartan) case

We apply d on both sides of (39) and get

Lξ (dσ ) = 0. (66)

So, the (k + 1)-form dσ is invariant w.r.t. the flow generated onM × R by ξ .
Now, define a distribution D given by spatial vectors which annihilate the form dσ :

D := {spatial vectors w such that iwdσ = 0}. (67)

Put another way, it is defined as

w ∈ D ⇔ iwdσ = 0 = iwdt. (68)

The distribution is invariant w.r.t. the flow generated on M × R by ξ (since both its generating forms, dσ as well as dt , are
Lie-invariant w.r.t. ξ ).

In addition, due to Frobenius criterion, the distribution is integrable. (One just applies (62) to both dσ and dt .)
Put the two properties together, this means that integral submanifolds (surfaces) of the distribution move with the

(abstract) fluid in the spirit of the Helmholtz theorem on vortex lines.
Finally, notice that, on solutions of Eq. (39), the distribution D generated by the pair of forms (dσ , dt) coincides with that

generated by the pair (d̂α̂, dt). (Just repeat argumentation in (53)–(56) replacing v̂ ↦→ α̂, E ↦→ −β̂ and Eq. (47) ↦→ Eq. (43).)
So it consists of spatial vectors annihilating d̂α̂. Therefore, the statement about surfaces moving with the (abstract) fluid
here, in Section 4.2, is a natural generalization (namely to time-dependent flow) of the corresponding statement mentioned
in Section 4.1.

Concerning the ‘‘vortex tube’’ Helmholtz theorem, it has nothing to dowith dynamics and therefore it is trivially true also
here (see Section 3.4).
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5. Conclusions

The main point discussed in this paper is a statement concerning the general setting of the theory of integral invariants
(rather than the ‘‘ideal hydrodynamics onRiemannianmanifolds’’ or ‘‘higher-dimensional hydrodynamics’’ discussed, e.g., in
Ref. [7] and in the numerous papers mentioned in references therein).

Namely, in the theory of integral invariants, both the time-independent version of Poincaré and the extended, time-
dependent version of Cartan, one can find specific surfaceswhich move with the (abstract) ‘‘fluid’’.

When the theory is applied to 3D-hydrodynamics of ideal and barotropic fluid only subject to potential force, the surfaces
become 1-dimensional and reduce to well-known and useful concept of vortex lines. Their property of moving with the fluid
(now the real one) becomes the celebrated Helmholtz theorem from 1858.

So, in this sense, the surfaces may be regarded as a generalization of the vortex lines.
One can also define, in the general higher-dimensional case, an analog of the hydrodynamical concept of vortex tubes and

check that (an analog of) Helmholtz theorem on strength of the tubes is still true.
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Appendix A. Decomposition of forms

OnM × R, a p-form α may be uniquely decomposed as

α = dt ∧ ŝ + r̂ (A.1)

where both ŝ and r̂ are spatial, i.e. they do not contain the factor dt in its coordinate presentation (here, we assume adapted
coordinates, t onR and some xi onM). Simply, after writing the form in coordinates, one groups together all terms which do
contain dt once and, similarly, terms which do not contain dt at all. Note, however, that t still can enter components of any
(even spatial) form. Therefore, when performing exterior derivative d of a spatial form, say r̂ , there is a part, d̂r̂ , which does
not take into account the t-dependance of the components (if any; as if it was performed just on M), plus a part which, on
the contrary, only operates on the t variable. Putting both parts together, we have

dr̂ = dt ∧ L∂t r̂ + d̂r̂. (A.2)

Then, for a general form (A.1), we get

dα = dt ∧ (−d̂ŝ + L∂t r̂) + d̂r̂. (A.3)

Appendix B. A proof of (40)

The proof is amazingly simple (see $44 of Ref. [20]). Consider integral of dσ over the (k + 1)-chain Σ given by the family
of trajectories (solutions) connecting c1 and c2 so that ∂Σ = c1 − c2, see Fig. 3. Then∫

Σ

dσ 1.
=

∫
∂Σ

σ =

∮
c1

σ −

∮
c2

σ

2.
= 0.

The second line (zero) comes from observation, that ξ is tangent to Σ by construction, so that integral of dσ over Σ consists
of infinitesimal contributions proportional to dσ (ξ, . . .), all of them vanishing because of (39).

Appendix C. Dimension of the distribution D

The distribution D from Eq. (59) is given as the kernel of the linear map

f : w ↦→ iwdα. (C.1)

Rank of the form dα is, by definition, the dimension of the image space of themap (C.1). Then, due to the standard rank-nullity
theorem applied to f , we have

dim Ker f + dim Im f = dim TxM ≡ dim M (C.2)

or

dim D + rank dα = dim M. (C.3)

So, (60) holds.
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Fig. 3. Σ is given by the family of trajectories (solutions) connecting c1 and c2 , so that ∂Σ = c1 − c2 . Integral of dσ over Σ vanishes, since ξ is tangent to
Σ and annihilates dσ .

Now rank of a p-form is at least p (it is p for decomposable form), so

rank dα ≥ k + 1 (C.4)

and, therefore, (61) holds.
The dimension of D in time-dependent case (i.e. given by (67) or (68)) equals the dimension of D from the time-

independent case (given by (59)). Indeed, as is mentioned in the last paragraph of Section 4.2, the distribution D on M × R
generated by the pair of forms (dσ , dt) coincides, on solutions, with that generated by the pair (d̂α̂, dt). So it consists of
spatial vectors annihilating d̂α̂ or, when thinking of dimensions alone, of vectors onM annihilating dα.
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