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Nambu Mechanics: Symmetries
and Conserved Quantities

Marián Fecko

Abstract. In Nambu mechanics, continuous symmetry leads to a relative in-
tegral invariant, a differential form which only upon integration over a cycle
provides a conserved real number. This differs sharply from what is the case
in Hamiltonian mechanics, where conserved quantities are functions on (ex-
tended) phase space, which are constant on trajectories. The origin of the
difference may be traced back to a shift in degrees of relevant form present in
action integral for Nambu mechanics.
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1. Introduction

From times when seminal paper of Emmy Noether [1] was published (see also nice
account in [2]), we know that there is close correspondence between symmetries of
action integral and conserved quantities for the dynamics given by the action.

In Hamiltonian mechanics, as an example, the conserved quantity is rep-
resented by a function on the phase space of the system, which is constant on
trajectories (see, e.g., [3, 4] or [5]). In practical applications of Hamiltonian me-
chanics, valuable information may then be obtained by evaluating the function
(say, energy, a component of linear or angular momentum, etc.) in two points of
particular trajectory and using the fact that the two numbers are guaranteed to
be the same.

In 1973, Nambu [6] proposed a different dynamics, which later became known
as Nambu mechanics. It is governed, in its basic version, by two “Nambu Hamilto-
nians” H1 and H2, each of them being a function on “Nambu phase space”. Now,
one easily proves that both H1 and H2 are conserved in the sense described above.
So, one could conjecture that there are two symmetries of the corresponding action
integral which lead to these particular conserved quantities.
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However, construction of action integral for Nambu mechanics turns out to be
a delicate matter (see [7] and [8]). Namely, the action is given by a surface (rather
than line) integral in spite of the fact that equations of motion describe motion
of points along trajectories in phase space (along “world-lines” in extended phase
space; exactly like it is the case for Hamiltonian mechanics). This peculiarity then
leads to the fact, that standard machinery for obtaining conserved quantity from
symmetry leads, in Nambu mechanics, to a strange result: conserved quantity that
one obtains for a continuous symmetry turns out to be a relative integral invariant
rather than a function on the phase space.

2. Nambu mechanics – equations and action integral

In its basic version, Nambu equations read

ẋi = εijk
∂H1

∂xj

∂H2

∂xk
i = 1, 2, 3. (1)

Here, H1 and H2 are, in general, functions of x1, x2, x3 and t.
As was observed in [7] and [8], equations (1) may be rewritten as “vortex

lines equations”

iγ̇dσ̂ = 0, (2)

where

γ̇ = ẋ1∂1 + ẋ2∂2 + ẋ3∂3 + ∂t (3)

is the velocity vector to curve γ on extended Nambu phase space and

σ̂ := x1dx2 ∧ dx3 −H1dH2 ∧ dt (4)

(see also [9]). Formally, Eq. (2) looks exactly like geometrical version of Hamilton
equations

q̇a =
∂H

∂pa
ṗa = −∂H

∂qa
(5)

except for the fact, that for Hamilton equations the role of σ̂ is played by

σ = padq
a −Hdt. (6)

The similarity suggests that one could construct action integral for Nambu me-
chanics simply repeating the way it is done in Hamilton mechanics. Namely, it is
well known (see again [3, 4] or [5]) that the action integral for the Hamiltonian
case reads

S[γ] =

∫
γ

σ =

∫ t2

t1

(paq̇
a −H)dt. (7)

Then, replacing σ by σ̂ might probably lead to the action for the Nambu case.
The idea, however, does not work since one can not integrate two-form over one-
dimensional object (curve). Instead, one is forced to integrate σ̂ over a surface.
A problem then arises how a surface may be naturally associated with Nambu
trajectories.
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Figure 1. A two-chain Σ made up from a one-cycle c1 using solutions
of Nambu equations.

In Takhtajan’s paper [8] it is done by the following trick: The value of action
integral is associated with an appropriate one-parameter family of trajectories
rather than with a single trajectory.

Namely, consider the family constructed as follows: Let, from each point p of
a one-cycle (loop) c1 at the time t1, emanate the solution γ(t) of Nambu equations
(2), fulfilling initial condition γ(t1) = p. At the time t2, the points γ(t2) (for all
p ∈ c1) form a one-cycle (loop) c2 again (image of c1 w.r.t. the Nambu flow for
t2 − t1) and the points γ(t), for all t ∈ 〈t1, t2〉 and all p ∈ c1, form a two-chain
(2-dimensional surface) Σ made of solutions (see Fig. 1; notice that ∂Σ = c1− c2).
The value of the action, assigned to the family, is defined to be

S[Σ] =

∫
Σ

σ̂. (8)

One then verifies [8, 10] that the surface given by the family of solutions of Nambu
equations is indeed an extremal of the action integral (8).

3. Conserved quantity from a symmetry

Having introduced action integral for Nambu mechanics, we can mimic steps which
lead from a symmetry of Hamiltonian action (7) to corresponding conserved quan-
tity (function, there). And see what we get in this way in Nambu mechanics. (See
more details in [10].)
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First, call vector field ξ a symmetry if the action integral (8) evaluated on
Φε(Σ) (the flow Φε corresponds to ξ, here) gives the same number as on Σ itself

S[ΦεΣ] = S[Σ] (9)

(i.e., δS = 0). By direct computation of δS, we obtain

δS = ε

∫
Σ

iξdσ̂ + ε

∮
∂Σ

iξσ̂. (10)

Now, the first integral on the r.h.s. vanishes on the surface Σ given by the family
of solutions of Nambu equations (γ̇ is tangent to Σ and, at the same time, it is
annihilated by dσ̂). The second integral is over ∂Σ = c1 − c2 and so the sum of
both integrals on the r.h.s. of (10) is to vanish. We get

0 =

(∮
c1

−
∮
c2

)
iξσ̂ (11)

or, equivalently, ∮
c1

iξσ̂ =

∮
c2

iξσ̂. (12)

This is, however, nothing but a conservation law : for solutions of Nambu equations,

fξ(t1; c1) = fξ(t2; c2), (13)

where fξ is given by the integral

fξ(ta; ca) :=

∮
ca

iξσ̂ a = 1, 2. (14)

In full analogy with the Hamiltonian case, a more general definition of symme-
try is possible. Rather than using differential version of (9), vanishing of the Lie
derivative

Lξσ̂ = 0 , (15)

we define symmetry of Nambu system as a vector field ξ obeying somewhat weaker
condition,

Lξσ̂ = dχξ (16)

(exactness of the Lie derivative is enough). Or, by Cartan’s formula,

iξdσ̂ = −d(iξσ̂ − χξ). (17)

Upon integration over the surface Σ we get∫
Σ

iξdσ̂ = −
∮
∂Σ

(iξσ̂ − χξ). (18)

Since the l.h.s. vanishes (on solutions), it holds∮
c1

(iξσ̂ − χξ) =

∮
c2

(iξσ̂ − χξ). (19)

So, we obtain the statement

fξ(t1; c1) = fξ(t2; c2), (20)



Nambu Mechanics: Symmetries and Conserved Quantities 31

where (more general, cf. (14)) fξ is given by the integral

fξ(ta; ca) :=

∮
ca

(iξσ̂ − χξ) a = 1, 2. (21)

In words: Given a symmetry ξ take, at time t1, an arbitrary one-cycle (loop) c1.
Compute the line integral ∫

c1

(iξσ̂ − χξ). (22)

Then, let each point of c1 evolve by Nambu flow up to time t2. You get another
one-cycle (loop), c2. Compute, again, the line integral∫

c2

(iξσ̂ − χξ). (23)

The conservation law says: You get the same number.

4. Conserved quantities as relative integral invariants

In Nambu mechanics, conserved quantity associated with symmetry ξ turns out to
be a relative integral invariant. This is, by definition, a differential p-form α such
that, when integrated over a p-cycle, it gives an invariant w.r.t. the dynamical
flow. Put in another way, if a dynamical vector field V generates the flow Φt (time
evolution) and if c2 is the Φt-image of an arbitrary p-cycle c1, then,∮

c1

α =

∮
c2

α (24)

(see, e.g., [4, 11] and [12]).

In our case, the result (19) may be regarded as the statement that on Nambu
extended phase space endowed with the dynamical vector field V defined by

iV dσ̂ = 0 (25)

(see (2)) we get, as a consequence of existence of a symmetry ξ, a relative integral
invariant. Namely, (24) holds for the one-form

α = iξσ̂ − χξ. (26)

Of course, as is always the case, our relative integral invariant then automatically
yields an absolute integral invariant, integral of the exterior derivative dα of α
over any two-chain (two-dimensional surface) s. So, taking into account (17),∫

s1

iξdσ̂ =

∫
s2

iξdσ̂. (27)
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5. More Nambu Hamiltonians

Already in the original paper [6] Nambu pointed out that the idea of three-
dimensional phase space and two Nambu “Hamiltonians”, H1 and H2, may be
straightforwardly generalized to more dimensions, n-dimensional (Nambu) phase
space and n− 1 Nambu “Hamiltonians”, H1, . . . , Hn−1. (There are also other gen-
eralizations, see Refs. [6, 8].)

And it is easily seen that all constructions discussed in this paper work equally
well in the n-dimensional version. In particular, σ̂ becomes (n−1)-form, c1 becomes
(n − 2)-cycle, Σ is (n − 1)-dimensional surface and so on (see [8, 9]). Conserved
quantities are still integral invariants (formally equally looking formulas (19) and
(27) hold, where ca are (n− 2)-cycles and sa are (n− 1)-chains).

6. Conclusions

Both Hamiltonian and Nambu mechanics study motion of points in phase space
along their trajectories. Therefore it is natural to expect conserved quantities to
be functions on phase space. Once we study particular motion, we evaluate the
function at the time t1 at the point where the motion begins, and then we profit
from the fact that, at the future points of the trajectory, the same value of the
function is guaranteed by the conservation law.

In Hamiltonian mechanics it is really so. In Nambu mechanics, there are
conserved functions as well. Namely, the two “Hamiltonians” H1 and H2 are con-
served.

However, as we have seen, these conserved functions do not directly follow
from symmetries, as we might expect from the Hamiltonian case. Instead, in the
case of symmetries, application of more or less standard machinery results, because
of a peculiar situation with the action integral, in conserved quantities which
have the character of integral invariants rather then usual conserved functions.
(The machinery leads to higher-degree forms rather than usual zero-forms, that
is, functions.) As a reward for finding a symmetry, the conserved number is only
obtained as integral of the form over a one-cycle.

We stress again that the reason lies in the peculiar structure of the action inte-
gral: Since we only can associate the action with a family of trajectories, conserved
quantities also reflect properties of the family and they are, therefore, constructed
using integration “over the family”.

Let us note that there is the whole series of well-known Poincaré–Cartan in-
tegral invariants in Hamiltonian mechanics, where numbers only come out from in-
tegration “over (an appropriate) family” of trajectories. These integral invariants,
however, have nothing to do with symmetries of particular Hamiltonian system
(they hold in general, irrespective of the concrete form of the Hamiltonian).
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