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1. Introduction

There are several ways how hydrodynamics of ideal fluid may be treated geomet-
rically. In particular, it may be viewed as an application of the theory of integral
invariants due to Poincaré and Cartan (see Refs. [1, 2], or, in modern presenta-
tion, Refs. [3, 4]). Then, the original Poincaré version of the theory refers to the
stationary (time-independent) flow, described by the stationary Euler equation,
whereas Cartan’s extension embodies the full, possibly time-dependent, situation.

Although the approach via integral invariants is far from being the best
known, it has some nice features which, hopefully, make it worth spending some
time. Namely, the form in which the Euler equation is expressed in this approach,
turns out to be ideally suited for extracting important (and useful) classical conse-
quences of the equations remarkably easily (see more details in Ref. [4]). This refers,
in particular, to the behavior of vortex lines, discovered long ago by Helmholtz.

2. Poincaré integral invariants

Consider a manifold M endowed with dynamics given by a vector field v

γ̇ = v ẋi = vi(x). (1)

The field v generates the dynamics (time evolution) via its flow Φt ↔ v. We will
call the structure phase space

(M,Φt ↔ v) phase space. (2)
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In this situation, let us have a k-form α and consider its integrals over various
k-chains (k-dimensional surfaces) c on M . Due to the flow Φt corresponding to v,
the k-chains flow away, c �→ Φt(c). Compare the value of the integral of α over the
original c and integral over Φt(c). If, for any chain c, the two integrals are equal,
it reflects a remarkable property of the form α with respect to the field v. We call
it (absolute) integral invariant:∫

Φt(c)

α =

∫
c

α ⇔
∫
c

α is integral invariant . (3)

For infinitesimal t ≡ ε we have∫
Φε(c)

α =

∫
c

α+ ε

∫
c

Lvα (4)

(here Lv is the Lie derivative along v). If (3) is to be true for each c, we get
from (4)

Lvα = 0. (5)

Sometimes, however, it may be enough that the integral only behaves invariantly
when restricted to k-cycles (i.e., chains whose boundary vanish, ∂c = 0). We speak
of relative integral invariants. Then the condition (5) can be weakened to

Lvα = dβ̃ (6)

for some β̃. (So, α is to be Lie-invariant modulo exact form.) Using Cartan’s
formula ivd+ div = Lv, the condition (6) may also be rewritten as

ivdα = dβ. (7)

Therefore, the main statement on relative (Poincaré) invariants reads:

ivdα = dβ ⇔
∮
c

α = relative invariant w.r.t. Φt ↔ v. (8)

2.1. Stationary Euler equation

The Stationary Euler equation for the ideal (inviscid) fluid reads (see, e.g., Ref. [5])

(v ·∇)v = −∇p/ρ−∇Φ. (9)

Here the mass density ρ, the velocity field v, the pressure p and the potential Φ
of the volume force field (gz for the usual gravitational field) are functions of r.

It turns out (see Ref. [4]) that for barotropic fluid (when ∇p/ρ = ∇P , where
P is the enthalpy (heat function) per unit mass) it may be rewritten in the form
of Eq. (7) with a particular choice of α and β:

ivdṽ = −dB Euler equation (10)

where

ṽ := v · dr (≡ g(v, · ) ≡ !gv) (11)
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is the velocity 1-form standardly associated with the velocity vector field v = vi∂i
in terms of “lowering of index” (≡ !g procedure) and

B := v2/2 + P +Φ Bernoulli function. (12)

2.2. Vortex lines equation

Vortex lines, γ(λ) ↔ r(λ), are field lines of the vorticity vector field ω, which is
the curl of the velocity field v. So, they satisfy ω × r′ = 0 (the prime symbolizes
tangent vector).

Now we have (see the machinery explained in § 8.5 of Ref. [6])

ṽ = v · dr (13)

dṽ = (curlv) · dS ≡ ω · dS (14)

iγ′dṽ = (ω × r′) · dr (15)

The vorticity 2-form dṽ, present in Eq. (10), is of crucial importance. It encodes
complete information about the vorticity vector field ω and, as we see from (15),

iγ′dṽ = 0 vortex line equation (16)

expresses the fact that γ(λ) is a vortex line.

2.3. Why the form of Eq. (10) is so convenient

For several reasons:

1. Application of iv on both sides gives

vB = 0 Bernoulli equation (17)

(saying that B is constant along streamlines).
2. Application of iγ′ on both sides (where γ′ is from (16)) gives

γ′B = 0 (18)

(saying that B is constant along vortex -lines).
3. Setting dṽ = 0 (when the flow is irrotational) leads to

B = const. (19)

(a version of Bernoulli equation; B is, then, constant in bulk of the fluid).
4. Just looking at (8), (10) and (11) we get∮

c

v · dr = const. Kelvin’s theorem (20)

(velocity circulation is conserved w.r.t. the flow).
5. Just looking at (8), (16) and using the Stokes theorem gives∫

S

ω · dS = const. Helmholtz theorem (21)

(the strength of the vortex tube is constant along the tube).
6. Application of d on both sides gives very quickly. . . see Section 2.4.
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2.4. Helmholtz theorem on frozen vortex lines – stationary case

Application of d on both sides of (10) results in

Lv(dṽ) = 0, i.e., Φ∗
t (dṽ) = dṽ Φt ↔ v. (22)

So, the vorticity 2-form dṽ is invariant w.r.t. the flow of the fluid.
Let us define a distribution D in terms of dṽ:

D := {vectors w such that iwdṽ = 0 holds}. (23)

Due to the Frobenius criterion the distribution is integrable (see Refs. [4], [6]).
From (15) and (16) we see that the distribution is one-dimensional (at those points
where ω �= 0) and that its integral surfaces coincide with vortex lines. Since the
distribution D is invariant w.r.t. Φt ↔ v, its integral surfaces (i.e., vortex lines)
are invariant w.r.t. Φt ↔ v, too. But this means that (another) Helmholtz theorem
is true: vortex lines move with the fluid (are frozen into the fluid; see Refs.[7–9]).

3. Cartan integral invariants

Cartan proposed, as a first step, to study the dynamics given in (1) and (2) on
M × R (the extended phase space; the time coordinate is added) rather than on
M . Using the natural projection

π : M × R → M (m, t) �→ m (xi, t) �→ xi (24)

the forms α and β (from the Poincaré theory) may be pulled-back from M onto
M × R and then combined into a single k-form

σ = α̂+ dt ∧ β̂. (25)

(Here, we denote α̂ = π∗α and β̂ = π∗β.) In a similar way, define a vector field

ξ = ∂t + v. (26)

Its flow clearly consists of the flow Φt ↔ v on the M factor combined with the
trivial lapsing of time in the R factor (so, it is “the same flow”). A simple check
(see Ref. [4]) reveals that the equation

iξdσ = 0 (27)

is equivalent to (7). And the main statement (8) takes the form

iξdσ = 0 ⇔
∮
c

σ = relative invariant. (28)

The first new result by Cartan (w.r.t. Poincaré) is the following observation: Take
any two cycles in M × R which encircle the common tube of solutions (here “so-
lutions” mean integral curves of ξ, i.e., solutions of the dynamics as seen from
M ×R). Then, still, integrals of σ over c1 and c2 give the same number (a simple
proof see in Ref. [4]).

The further Cartan generalization is stronger and much more interesting for
us. Namely, (25) might also be regarded as a decomposition of the most general
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k-form σ onM×R. In this case, α̂ and β̂ need not be obtained by the pull-back from
M . Rather, they are the most general spatial forms on M ×R. In comparison with
just pull-backs, they may be time-dependent, i.e., it may happen that L∂t α̂ �= 0

and/or L∂t β̂ �= 0. (In coordinate presentation, their components may depend on
time.)

It turns out that the proof of (28) does not use any details of the decompo-
sition. The structure of the equation (27) is all one needs. Notice, however, that
the equivalence of (27) and (7) is no longer true, now. Instead, one can check that

iξdσ = 0 ⇔ L∂t α̂+ ivd̂α̂ = d̂β̂ (29)

(the term L∂t α̂ is new). Here d̂ denotes the spatial exterior derivative. (In coor-
dinate presentation – as if the variable t in components was constant.) So, the
equation

L∂t α̂+ ivd̂α̂ = d̂β̂ (30)

is the equation that time-dependent forms α̂ and β̂ are to satisfy in order that the
integral of σ is to be relative integral invariant (in the new, more general, sense of
encircling the common tube of solutions).

3.1. Non-stationary Euler equation

Retell Cartan’s results in the context of hydrodynamics, i.e., for

σ = v̂ − Bdt (31)

where, in usual coordinates (r, t) on E3 × R,

v̂ := v · dr ≡ v(r, t) · dr (32)

From (29) we get

iξdσ = 0 ⇔ L∂t v̂ + ivd̂v̂ = −d̂B. (33)

One easily checks that the r.h.s. of (33) is nothing but the complete, time-depen-
dent, Euler equation. Therefore the time-dependent Euler equation may also be
written in remarkably succinct form

iξdσ = 0 Euler equation . (34)

Just looking at (28), (34), (31) and (32) shows that Kelvin’s theorem is still true
(the two loops c1 and c2 are usually in constant-time hyper-planes t = t1 and
t = t2, so that the Bdt term does not contribute).

3.2. Helmholtz theorem on frozen vortex lines – non-stationary case

Application of d on (34) results in

Lξ(dσ) = 0, i.e., Φ∗
τ (dσ) = dσ Φτ ↔ ξ (35)

So, dσ is invariant w.r.t. the flow of the fluid.
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Define the distribution D in terms of annihilation of as many as two exact
forms:

D ↔ iwdσ = 0 = iwdt. (36)

The new distribution D is integrable as well. It is, however, also invariant w.r.t.
the flow of the fluid. (Because of (35) and the trivial fact that Lξ(dt) = 0.) So,
integral submanifolds (surfaces) move with the fluid.

What do they look like? Although it is not visible at first sight, they are
nothing but vortex lines (see Ref. [10] or, in more detail, Ref. [4]). So, the Helmholtz
theorem is also true in the non-stationary case: vortex lines move with the fluid
(are frozen into the fluid).
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