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Surfaces Which Behave Like Vortex Lines

Marián Fecko

Abstract. In general setting of theory of integral invariants, due to Poincaré
and Cartan, one can find a d-dimensional integrable distribution (given by a
possibly higher-rank form) whose integral surfaces behave like vortex lines:
they move with (abstract) fluid. Moreover, in a special case they reduce to
true vortex lines and, in this case, we get the celebrated Helmholtz theorem.
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1. Introduction

In hydrodynamics, vortex lines are field lines of the vorticity vector field ω, which
is curl of velocity field v.

A classical theorem due to Helmholtz says that, in the case of ideal and
barotropic fluid that is only subject to conservative forces, vortex lines “move
with the fluid” (see Ref. [1] and Refs. [2, 3]; one also says that the lines are “frozen
into the fluid” or that “vortex lines are material lines”).

Hydrodynamics of ideal fluid may be viewed, albeit it is not quite standard, as
an application of the theory of integral invariants due to Poincaré and Cartan (see
Refs. [4, 5], or, in modern presentation, Refs. [6–8]). Then, the original Poincaré
version of the theory refers to the stationary (time-independent) flow, described
by the stationary Euler equation, whereas Cartan’s extension embodies the full,
possibly time-dependent, situation.

In this picture, one can base a proof of the Helmholtz theorem upon the
concept of a distribution. Namely, first, vortex lines are identified with integral
surfaces of a 1-dimensional integrable distribution, defined in terms of the appro-
priate 2-form. Second, the structure of the (Euler) equation of motion immediately
reveals that the 2-form is Lie-invariant w.r.t. the flow of the fluid. So, third,
the corresponding distribution is invariant as well and, consequently, its integral
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surfaces are invariant w.r.t. the flow of the fluid. And this is exactly what the
Helmholtz statement says.

Now, it turns out that the same reasoning may be repeated within the gen-
eral integral invariant setting (so beyond even the “n-dimensional Riemannian
hydrodynamics”, discussed, e.g., in [9]). What differs is that we have an inte-
grable distribution based upon a possibly higher-degree Lie-invariant differential
form, there. In particular, the distribution may be higher-dimensional and, con-
sequently, its integral surfaces become then higher-dimensional, too. Nevertheless,
they still obey the Helmholtz-like rule of “moving with the fluid” (i.e., the abstract
flow in the general theory translates the integral surfaces into one another).

2. Integral invariants – Poincaré and Cartan

Before considering the main subject of the paper, let us briefly recall key con-
cepts and state main results of Poincaré and Cartan on general theory of integral
invariants. See Ref. [8] in this volume or, for a more detailed account, Ref. [7].

2.1. Poincaré integral invariants

Following Poincaré, one starts from a manifold M endowed with dynamics (time
evolution) given by a vector field v (via its flow)

(M,Φt ↔ v) phase space (1)

Now, consider integrals of a k-form α over various k-chains (k-dimensional surfaces)
c on M . Compare the value of the integral of α over the original c and the integral
over Φt(c). If, for any chain c, the two integrals are equal, we call it (absolute)
integral invariant:∫

Φt(c)

α =

∫
c

α ⇔
∫
c

α is integral invariant. (2)

If we only restrict to k-cycles (i.e., chains whose boundaries vanish, ∂c = 0), we
speak of relative integral invariants. It turns out that one can recognize the relative
invariant by the differential equation

ivdα = dβ, (3)

i.e., the following statement is true

ivdα = dβ ⇔
∮
c

α = relative invariant. (4)

2.2. Cartan integral invariants

Cartan proposed to study dynamics on M × R (extended phase space; time co-
ordinate is added) rather than on M . Analogs of the forms α and β (from the
Poincaré theory) are combined into a single k-form

σ = α̂+ dt ∧ β̂. (5)
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Here, α̂ and β̂ are the most general spatial forms on M ×R. (In coordinate presen-
tation, they do not contain the dt factor. They may be, however, time-dependent,
i.e., their components may depend on time.) In a similar way, the dynamical vector
field v sits in the combination

ξ = ∂t + v. (6)

Then, according to Cartan, one has to replace the crucial equation of Poincaré,
viz. Eq. (3), with

iξdσ = 0. (7)

And the main statement of Poincaré, viz. Eq. (4), takes the form

iξdσ = 0 ⇔
∮
c

σ = relative invariant. (8)

It turns out that the proof of (8) does not use any details of the decomposition.
The structure of equation (7) is all one needs. One can check that

iξdσ = 0 ⇔ L∂t α̂+ ivd̂α̂ = d̂β̂ (9)

(the term L∂t α̂ is new w.r.t. (3)). Here d̂ denotes the spatial exterior derivative.
(In coordinate presentation – as if the variable t in components was constant.) So,
the equation

L∂t α̂+ ivd̂α̂ = d̂β̂ (10)

is the equation that (possibly) time-dependent forms α̂ and β̂ are to satisfy in
order that the integral of σ is to be a relative integral invariant.

3. Surfaces and their motion

3.1. Stationary case

Return back to equation (3). Application of d on both sides results in

Lv(dα) = 0, i.e., Φ∗
t (dα) = dα Φt ↔ v (11)

So, the form dα is invariant w.r.t. the flow Φt.
Let us define a distribution D in terms of dα:

D := {vectors w such that iwdα = 0 holds}. (12)

[Motivation for this definition comes from hydrodynamics. Namely, see Ref. [8] in
this volume, integral submanifolds of this distribution for the particular choice α =
ṽ ≡ g(v, · ), where v is the velocity field in hydrodynamics, are one-dimensional
and coincide with vortex lines.]

Due to the Frobenius criterion the distribution is integrable. Indeed, let
w1, w2 ∈ D, i.e., iw1dα = 0 and iw2dα = 0. Then, because of the identity

i[w1,w2] = [Lw1 , iw2 ] ≡ Lw1 iw2 − iw2Lw1 (13)

(see, e.g., Ref. [11]) plus Cartan’s formula

iud+ diu = Lu (14)
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one immediately sees that

i[w1,w2]dα = 0, (15)

i.e., [w1, w2] ∈ D, too. So D is integrable. Since the distribution D is invariant w.r.t.
Φt ↔ v, its integral surfaces are invariant w.r.t. Φt ↔ v, too. But this means that
a “Helmholtz-like” theorem is true: whenever we encounter the general context
of the Poincaré integral invariants, the integral surfaces of the distribution D are
frozen into “the fluid”.

3.2. General, non-stationary case

Now, a question arises whether or not a similar statement is true in a much more
complex, time-dependent, situation. The answer turns out to be still positive, al-
though the proof is more involved.

Let us start with the application of d on (7). It results in

Lξ(dσ) = 0, i.e., Φ∗
τ (dσ) = dσ Φτ ↔ ξ. (16)

So, dσ is invariant w.r.t. the flow.
Define the distribution D (on M × R, now) in terms of annihilation of as

many as two exact forms:

D ↔ iwdσ = 0 = iwdt. (17)

So, we are interested in spatial vectors (iwdt = 0) which, in addition, annihilate
dσ.

The new distribution D is integrable as well. The Frobenius criterion shows
this easily, again: We assume

iw1dσ = 0 = iw1dt iw2dσ = 0 = iw2dt (18)

and, using (13) and (14), we see that

i[w1,w2]dσ = 0 = i[w1,w2]dt. (19)

So, our new distribution D (on M × R) defined via annihilation of dσ and dt is
integrable and invariant w.r.t. the flow. Consequently, its integral submanifolds
(surfaces) are frozen into “the fluid”.

What is not yet clear, however, is the exact relation of this result to the
result of the time-independent case from Section 3.1. (Recall that the distribution
considered there was spanned by vectors which annihilate dα rather than dσ.)

It is here where Eq. (7) comes to rescue again, now in a more subtle way.
Indeed, applying d on (5) and then using the decomposed version (10) of (7), we
can write

dσ = d̂α̂+ dt ∧ (L∂t α̂+ d̂β̂) always (20)

= d̂α̂+ dt ∧ (−ivd̂α̂) on solutions . (21)

Now, let w be arbitrary spatial vector. Denote, for a while, iwd̂α̂ =: b̂ (it is a spatial
1-form). Then, from (21),

iwdσ = b̂− dt ∧ iv b̂ (22)
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from which immediately

iw(dσ) = 0 ⇔ b̂ ≡ iwd̂α̂ = 0. (23)

This says that we can, alternatively, describe the distribution D as consisting of

those spatial vectors which, in addition, annihilate d̂α̂ (rather than dσ, as it is
expressed in the definition (17)). But this means that we speak of “the same”
distribution as in (12). (The language of σ is more advantageous for proving in-
variance of the distribution w.r.t. the flow as well as for its integrability, whereas

the “decomposed” language of α̂ and β̂ is needed for identification of the distribu-
tion as the one from the time-independent case.) So, the Helmholtz-like statement
from Section 3.1 is also true in the general, time-dependent, case. (Notice that
the system of the surfaces, if regarded as living on M , looks, in general, different

in different times. This is because its generating object, the form d̂α̂, depends on
time.)

[On solutions in Eq. (21) means on solutions of equation (7) or, equivalently, of
(10). In hydrodynamics, (7) turns out to be (see Ref. [8] in this volume) nothing
but the Euler equation, i.e., the equation of motion of ideal fluid. So, the fact
that vortex lines are frozen into the fluid is only true in the case of real dynamics
of the fluid. It is, unlike the Helmholtz statement on strength of vortex tubes, a
dynamical, rather than kinematical, statement.]

4. Conclusions

Theory of integral invariants due to Poincaré and Cartan enables one, when applied
to hydrodynamics, to get a simple and convincing proof of Helmholtz’ classical
theorem on motion of vortex lines. Moreover, this approach reveals that, actually,
there is a generalization of the phenomenon still in the original theory (prior to
application to hydrodynamics). In this case, vortex lines are to be replaced by
appropriate distinguished surfaces.
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