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Integral invariants - original sources (1)

[1] H. Poincaré, "Sur le problème des trois corpses et les équations
de la dynamique" Acta Math. , 13 (1890) pp. 1–270

[2] H. Poincaré, "Les méthodes nouvelles de la mécanique céleste" ,
3, Invatiants intégraux, Gauthier-Villars et fils (1899), Chapt. 26

[3] E. Cartan, "Leçons sur les invariants intégraux" ,
Hermann (1922)
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Henri Poincaré and Élie Cartan

Henri Poincaré (1854 – 1912) Élie Cartan (1869 – 1951)
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Integral invariants - original sources (2)

Cartan’s monograph (from 1922 :-)
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Integral invariant à la Poincaré (1)

Consider a triple (M, v , α), i.e.
1. a manifold M with the flow of
a vector field v

(M,Φt ↔ v) phase space

i.e. also the dynamics

γ̇ = v ẋ i = v i (x)

2. A p-form α on M.
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Integral invariant à la Poincaré (2)

On (M, v , α), if ∫
Φt(c)

α =

∫
c
α

holds for each p-chain c , the integral∫
c
α is known as absolute integral invariant

If it only holds for each p-cycle c (i.e. ∂c = 0),
we speak of relative integral invariant.
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Absolute invariant - infinitesimal condition

Since, for t = ε, we have∫
Φε(c)

α =

∫
c
α + ε

∫
c
Lvα

(Lv is Lie derivative) and since c is arbitrary, we get

(v , α) gives absolute invariant ⇔ Lvα = 0

i.e.
α is to be Lie-invariant w.r.t. v
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Relative invariant - infinitesimal condition (1)

For relative invariants (i.e. when ∂c = 0)
Lie invariance is overly strong requirement.
What is needed is Lie invariance modulo exact form:

(v , α) relative invariant ⇔ Lvα = d β̃

H This is so due to de Rham theorem:∫
c

(. . . ) = 0 for each cycle c ⇔ (. . . ) is exact

N
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Relative invariant - infinitesimal condition (2)

Now Cartan’s formula

Lv = ivd + div

enables one to rewrite it as

Lvα = (ivd + div )α = d β̃

so that
ivdα = d(β̃ − ivα) ≡ dβ
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Relative invariant - infinitesimal condition (3)

Therefore, an alternative (and often useful)
infinitesimal condition for relative invariants reads:

(v , α) relative invariant ⇔ ivdα = dβ (for some β)
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Well known example - Hamiltonian mechanics

On exact symplectic manifold (M, ω ≡ dθ)
Hamiltonian field is defined by

iζHdθ = −dH

So, it is

ivdα = dβ for v ≡ ζH α = θ β = −H

Therefore, we get relative integral invariant∫
c
θ ≡

∮
c
padq

a
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Another example - hydrodynamics

Consider the following realization of (M, v , α, β):
- M = E 3 = (R3, “standard” g)
- v = velocity field of ideal fluid
- α = velocity 1-form ṽ , i.e. ṽ ≡ g(v , · ) ≡ v · dr
- β = v2/2 + P + Φ ≡ B ≡ Bernoulli function (dP = dp/ρ)
Then

ivdα = dβ ⇔ (v ·∇)v = −∇P −∇Φ Euler equation

Therefore, we get relative integral invariant∫
c
ṽ ≡

∮
c
v · dr Kelvin’s theorem
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Cartan’s generalization of relative invariants - step 1 (1)

Consider a relative integral invariant given by (v , α) on M.
Cartan’s 1-st idea:
1. Replace M by M ×R[t] (extended phase space, time axis added)
2. On M × R, construct vector field

ξ := ∂t + v

3. On M × R, construct p-form

σ := α̂ + dt ∧ β̂

where
α̂ ≡ π∗α β̂ ≡ π∗β π : M × R→ M
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Cartan’s generalization of relative invariants - step 1 (2b)

So, v is encoded into ξ and (α, β) into σ.
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Cartan’s generalization of relative invariants - step 1 (2)

Cartan’s observation:

ivdα = dβ ⇔ iξdσ = 0

So, yet, one can express
the result of Poincaré (left, on M) in
the language of Cartan (right, on M × R).
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Cartan’s generalization of relative invariants - step 1 (3)

One can also easily prove directly:

iξdσ = 0 ⇒
∫
c1

σ =

∫
c2

σ

if c1 and c2 encircle the same tube of
solutions.

This already generalizes Poincaré result, since here the two cycles
c1 and c2 do not necessarily lie in fixed-time hyperplane (as is the
case for Poincaré as well as at the picture on the right side).

Marián Fecko Surfaces which behave like vortex lines



Introduction
Poincaré integral invariants
Cartan’s integral invariants

Hydrodynamics - vortex lines
Helmholtz theorem in hydrodynamics of ideal fluid

Surfaces “frozen into the fluid”

Cartan’s generalization of relative invariants - step 2 (1)

Cartan’s 2-nd idea: regard

σ = α̂ + dt ∧ β̂

as the standard (unique) decomposition
of a general p-form σ on M × R[t].
Here, explicitly,

β̂ := i∂tσ α̂ := σ − dt ∧ i∂tσ

and α̂ and β̂ are just general spatial forms,

i∂t α̂ = 0 i∂t β̂ = 0
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Cartan’s generalization of relative invariants - step 2 (2)

So, it is not necessarily true, now, that

α̂ ≡ π∗α β̂ ≡ π∗β

What is important, their time (Lie-) derivatives

L∂t α̂ L∂t β̂

do not necessarily vanish (contrary to π∗α and π∗β).
Forms α̂ and β̂ correspond (in the language of Poincaré)
to time-dependent forms α and β on M
(where time is, however, just a parameter).
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Cartan’s generalization of relative invariants - step 2 (3)

In this new situation, one easily checks that

iξdσ = 0 ⇔ L∂t α̂ + iv d̂α̂ = d̂ β̂

So, there is a new term (the time derivative), in general,
in Cartan’s infinitesimal condition iξdσ = 0
for existence of relative integral invariant,
when expressed in Poincaré language on M:

L∂t α̂ + iv d̂α̂ = d̂ β̂ ⇔
∫
c1

α̂ =

∫
c2

α̂
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Example - back to hydrodynamics

Consider again the realization (M, v , α, β) = (R3, v , ṽ ,B):
Then

L∂t α̂ + iv d̂α̂ = d̂ β̂ ⇔ ∂tv + (v ·∇)v = −∇P −∇Φ

So, we get the complete, time-dependent Euler equation, now.
And we see that we again get as relative integral invariant
expression∫

c
ṽ ≡

∮
c
v · dr Kelvin’s theorem (still true!)
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Vortex lines equations in hydrodynamics

In hydrodynamics:

v velocity field
curl v vorticity field

Lines r(s), which are, at each
point, tangent to vorticity vector,
i.e. for which (curl v) ‖ r′ holds,
are vortex lines. So they satisfy
differential equations

r′ × curl v = 0
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The same in the language of differential forms (1)

Velocity field may be encoded into 1-form

ṽ = v · dr

Its exterior derivative is 2-form

dṽ ≡ d(v · dr) = (curl v) · dS

Interior product with the tangent vector r′ ≡ dr/ds gives again
1-form

ir′dṽ = (curl v × r′) · dr
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The same in the language of differential forms (2)

This means that differential equations for finding vortex lines r(s)

r′ × curl v = 0

may also be written in the form

ir′dṽ = 0

Notice, that parametrization r(s) is completely irrelevant
(reparametrization leads to a change which drops out).
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The same in the language of differential forms (3)

For time-dependent flow (velocity field) we have
(on extended “phase space” M × R ≡ R3 × R)

v̂ = v(r, t) · dr

Its spatial exterior derivative is (spatial) 2-form

d̂ v̂ ≡ d̂(v · dr) = (curl v) · dS ≡ ω(r, t) · dS

Interior product with (spatial) vector r′ gives

ir′ d̂ v̂ = (curl v × r′) · dr
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The same in the language of differential forms (4)

So differential equations

r′ × curl v = 0

may now be written as

ir′ d̂ v̂ = 0
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Vortex lines - how they move

Helmholtz theorem (1858): if

1. ideal and barotropic fluid
2. only conservative forces

then vortex lines

- move with the fluid
= are frozen into the fluid
= are material lines
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Why it is so - distribution perspective (1)

First - time-independent case (i.e. in Poincaré approach).
On M ≡ R3 introduce distribution

D := {vectors w such that iwdṽ = 0 holds}

So
w ∈ D ⇔ w is tangent to vortex line

Moreover,
vortex lines are exactly

integral submanifolds of D.
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Why it is so - distribution perspective (2)

H Check of integrability of the distribution D:
Let w1,w2 ∈ D, i.e.

iw1dṽ = 0 iw2dṽ = 0

Then

i[w1,w2]dṽ = Lw1 iw2dṽ − iw2Lw1dṽ = −iw2(iw1d + diw1)dṽ = 0

So, also [w1,w2] ∈ D.
This guarantees integrability of D due to Frobenius theorem. N
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Why it is so - distribution perspective (3)

Observation: the distribution D is Lie-invariant w.r.t. v

H Indeed, application of d to Euler equation ivdṽ = dB gives

Lv (dṽ) = 0 i.e. Φ∗t (dṽ) = dṽ

so dṽ is Lie-invariant.
But dṽ carries full information about D.
So, necessarily, D is Lie-invariant as well.

Φt(D) = D

N
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Why it is so - distribution perspective (4)

Now
1. D is Lie-invariant w.r.t. v (i.e. w.r.t. the flow of fluid)
2. D is integrable (so, there exist integral submanifolds)
So,
3. integral submanifolds are invariant w.r.t. the flow
But
4. integral submanifolds coincide with vortex lines, so
5. vortex lines are invariant w.r.t. the flow (= move with the fluid)
But
6. this is exactly what Helmholtz claims
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Time dependent case - distribution perspective (1)

On M × R[t] (i.e. in Cartan’s approach) introduce distribution

D := {vectors w such that iwdσ = 0 and iwdt = 0 holds}

So
w ∈ D ⇔ w is spatial and annihilates dσ

Similarly as before, we easily check that D is

integrable and Lie-invariant w.r.t. ξ (i.e. the flow of the fluid)

So integral submanifolds of D move with the fluid.
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Time dependent case - distribution perspective (2)

However, it is not evident, here,
that integral submanifolds of D, which move with the fluid,
coincide with vortex lines.

Recall that
- integral submanifolds annihilate the pair (dσ, dt),
- vortex lines annihilate the pair (d̂ v̂ , dt).

Actually, the two objects do coincide.
We show it (next slide) in the general context of integral invariants.
(That is, even beyond the hydrodynamics context.)
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Relative integral invariants - distinguished surfaces (1)

Consider the data needed for
general relative integral invariant in Cartan’s approach,
i.e. extended phase space M × R[t] endowed with
a vector field ξ and a p-form σ

ξ := ∂t + v σ := α̂ + dt ∧ β̂

satisfying
iξdσ = 0

Marián Fecko Surfaces which behave like vortex lines



Introduction
Poincaré integral invariants
Cartan’s integral invariants

Hydrodynamics - vortex lines
Helmholtz theorem in hydrodynamics of ideal fluid

Surfaces “frozen into the fluid”

Relative integral invariants - distinguished surfaces (2)

Introduce distribution

D := {vectors w such that iwdσ = 0 and iwdt = 0 holds}

So
w ∈ D ⇔ w is spatial plus annihilates dσ

One easily checks (as it was done in hydrodynamics) that D is

integrable and Lie-invariant w.r.t. ξ

(i.e. invariant w.r.t. the flow Φt)
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Relative integral invariants - distinguished surfaces (3)

So, whenever (!) we encounter relative integral invariant situation,
distinguished surfaces occur,
namely integral submanifolds of the distribution D.
They possess remarkable property that

they move with (= are frozen in) the flow

This means the following:

S is distinguished ⇒ Φt(S) is distinguished, too
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The surfaces - regarded as living on M (1)

Since w ∈ D ⇔ w is spatial (plus ...),
the distinguished surfaces are spatial, too.
So, they may be regarded as surfaces
on M (rather than on M × R).
And they may also be described as surfaces
on M (in terms of α̂ rather than σ)
Namely, instead of annihilation (dt, dσ)
one can (see below) use (dt, d̂α̂)
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The surfaces - regarded as living on M (2)

So, we can describe the same D

either on M × R as

D ↔ annih (dt, dσ) ↔ annih (dt, d̂α̂)

or on M as
D ↔ annih d̂α̂

On M the distribution D is time-dependent
(since α̂, and consequently d̂α̂, is such).
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Why it is so (1)

H Recall that

iξdσ = 0 ⇔ L∂t α̂ + iv d̂α̂ = d̂ β̂

Then

dσ = d̂α̂ + dt ∧ (L∂t α̂− d̂ β̂) direct computation
= d̂α̂ + dt ∧ (−iv d̂α̂) on solutions

and, for spatial w ,

iwdσ = b̂ − dt ∧ iv b̂ b̂ ≡ iw d̂α̂

So,
iwdσ = 0 ⇔ b̂ = 0 ⇔ iw d̂α̂ = 0

N
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Dimension of the distribution D
On M, consider the map

f : w 7→ iwdα (D ↔ Ker f )

Then
dim Ker f =: dimD dim Im f =: rank dα

Rank-nullity theorem says

dimD + rank dα = dimTxM ≡ dimM

Since α is a p-form, rank dα ≥ p + 1, finally

dimD ≤ dimM − (p + 1)
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Example 1: Hamiltonian dynamics

Here
σ = θ̂ − Hdt ≡ padq

a − H(q, p, t)dt

so D consists of spatial vectors

w = Aa(q, p, t)∂/∂qa + Ba(q, p, t)∂/∂pa

which annihilate
d̂ θ̂ ≡ dpa ∧ dqa

But d̂ θ̂ has maximum rank, so only zero vector annihilates it.
The distribution is 0-dimensional, integral surfaces are just points
so the whole stuff is of no interest, here.
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Example 2: ideal fluid in 3D

Here
σ = v̂ − Bdt

so D consists of spatial vectors

w = w ·∇ which annihilate d̂ v̂ ≡ ω(r, t) · dS

The form is annihilated iff

w ‖ ω

so integral submanifolds of D are vortex lines.
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Conclusions & The End

Conclusions:
In this sense, the surfaces, in the general case,
may be treated as a generalization of vortex lines.

(More details: arXiv:1603.09563 [math-ph])

Thanks for Your attention!
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