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1 Introduction
In modern theoretical physics, including many-particle systems, topological reason-
ing sometimes proves to be remarkably effective. As an example, it enables one to
conclude that some integral, relevant for physics, is insensitive to smooth changes
of the domain of integration. Or, that it has always integer values. Or, that an
integral, which contains some gauge fields under the sign of integration, actually
does not depend at all on particular choice of the gauge fields.

These lectures are intended as a simple and short introduction into this beau-
tiful subject (with many important topics, however, completely omitted). They
primarily try to focus on essential underlying ideas rather than on systematic and
detailed treatment of the topics.

The notes [3] from my 2007 lectures might be useful to readers who do not
feel certain in basics of modern differential geometry. At the end of this text some
further reading is mentioned. Of course, there is a vast amount of texts of all kinds
available on the subject.
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2 Closed and exact forms

2.1 Homotopic invariance of integrals of closed forms
Differential forms may be integrated over chains.

From the point of view of this section there are three types of differential forms:

general form : α
closed form : α such that dα = 0
exact form : α such that α = dβ

And there are three types of chains

general chain : c
cycle : c such that ∂c = 0

boundary : c such that c = ∂S

Let α be a closed k-form on a manifold M and let c be a k-cycle (closed k-
dimensional surface) on M . Then the integral∫

c
α (1)

has the following remarkable property. Replace

α 7→ α′ = α+ dβ (2)
c 7→ c′ = c+ ∂S (3)

where β is a (k − 1)-form and S is a (k + 1)-chain ((k + 1)-dimensional domain).
Then it turns out that ∫

c′
α′ =

∫
c
α (4)

so that the integral (1) is completely insensitive to both replacements (2) and (3).
H The standard nomenclature is

α and α′ = α+ dβ are called cohomological (5)
c and c′ = c+ ∂S are called homological (6)

Then, in words, we can replace the form to be integrated by a cohomological one
and the chain by a homological one.

Indeed, the general

Stokes theorem
∫
s
dσ =

∫
∂s
σ (7)

gives ∫
c+∂S

(α+ dβ) =

∫
c
α+

∫
c
dβ +

∫
∂S
α+

∫
∂S
dβ =

∫
c
α
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since dα = 0, ∂c = 0, ∂∂ = 0 and dd = 0. N
Let us divide the combined statement (4) into two parts. The first impor-

tant observation is that the integral of an exact form over a closed surface always
vanishes ∫

c
dβ = 0 if ∂c = 0 (8)

The second important observation is that the integral of a closed form over a boun-
dary always vanishes so that addition of a boundary to a closed surface c does not
change the value of the integral, i.e.∫

c+∂S
α =

∫
c
α (9)

Figure 1: Here c′ equals c plus a boundary ∂S, so integrals over c and c′ are the same.
(c′ and c are k-dimensional closed surfaces, S is a (k + 1)-dimensional domain.)

Example 2.1.1: Perhaps the best known example provides elementary complex
analysis. It is well known that the value of the integral∮

c
f(z)dz (10)

remains unchanged if we deform the closed curve c (k = 1; the deformation must
not cross poles, if there are any, of f(z)). The reason is that the 1-form f(z)dz is
closed

d(f(z)dz) = f ′(z)dz ∧ dz = 0 (11)

Example 2.1.2: In the punctured plane (the plane with the origin removed,
M = R2\{0, 0}), consider polar coordinates (r, φ) and the 1-form (again, k = 1)

α = dφ (12)
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When expressed in the cartesian coordinates (x, y), we get 1

α =
xdy − ydx

x2 + y2
(13)

(One easily verifies by (not so) brute force that it is indeed closed.) Let c ↔
(x(t), y(t)) be a closed curve (a loop) in R2\{0, 0}. Then no smooth deformation
of the loop (never crossing the origin) changes the value of the integral (1).

For example, take the circle

x(t) = R cos t y(t) = R sin t t ∈ ⟨0, 2π⟩ (14)

(with R being arbitrary). Then we get∫
c
α =

∫ 2π

0

xẏ − yẋ

x2 + y2
dt = · · · = 2π (15)

Notice that it is independent of R. So the smooth deformation of the circle con-
sisting in increasing of the radius has no influence on the integral.

We checked explicitly the invariance of the integral on a very simple example.
The invariance holds, however, for a much wider class of deformations - all smooth
deformations for which the final loop c′ together with the inversely oriented original
loop c realize the boundary of some area S (i.e. the boundary of S consists of two
parts, the final c′ plus inversely oriented original c, ∂S = c′ − c) should work.
Indeed, as we already saw,∫

c′
α =

∫
c+∂S

α =

∫
c
α+

∫
∂S
α =

∫
c
α+

∫
S
dα =

∫
c
α+

∫
S
0 =

∫
c
α (16)

So, the essential point here is the closedness of α.
Of course we could evaluate the integral much more easily in polar coordinates.

The expression of the circle is

r(t) = R φ(t) = t t ∈ ⟨0, 2π⟩ (17)

and we get ∫
c
α =

∫ 2π

0
φ̇dt = [t]2π0 = 2π (18)

From the expression of α in polar coordinates (1) the additional remarkable prop-
erty of the integral is clear - whatever the closed curve is, the value of the integral
is always an integer multiple of 2π. Indeed, the integral just expresses, when di-
vided by 2π, how many times the curve encircles the origin, i.e. it represents the

1The 1-form dφ is actually ill-defined at the x-axis (where φ = 0), since the coordinate
φ itself is ill-defined there. However, dφ may be uniquely defined also in the missing
points so that it is smooth everywhere in the punctured plane (i.e. except for the origin;
the resulting 1-form being, when expressed in cartesian coordinates, just (13).)
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winding number of the particular loop. (Notice that in the case of curves which are
not convex, the angle contribution may be locally fairly complicated, both positive
(when the curve rotates counter-clockwise) and negative (clockwise). The resulting
net angle is, however, always an integer multiple of 2π.)

Example 2.1.3: This is a generalization of the preceding example to n dimensions.
If one looks for a rotation-invariant and at the same time closed (n − 1)-form in
the punctured Rn, one finds (see Appendix A.2) that it is a constant multiple of
the form

α =
n · dS
rn−1

≡ r · dS
rn

≡ xidSi
rn

(19)

For the case n = 2 we get

xidSi
r2

=
xiϵijdx

j

r2
=
x1dx2 − x2dx1

r2
≡ xdy − ydx

x2 + y2
(20)

which is exactly (13) or, in polar coordinates, (12). Similarly, for the case n = 3
we get

xidSi
r3

=
xiϵijkdx

j ∧ dxk

r3
=
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

(x2 + y2 + z2)3/2
(21)

This gives, when expressed in spherical polar coordinates (r, ϑ, φ), simply

α = sinϑdϑ ∧ dφ (22)

so that it measures, when integrated over a surface, the net solid angle subtended
by the surface.

H For general n, by usual physical/dimensional language/reasoning

dS(r) = rn−1dS(1)

so that
n · dS
rn−1

≡ n · dS(r)
rn−1

= n · dS(1) = dS(1)

So when this form is integrated over some (n − 1)-dimensional (hyper)surface, it
gives projected area on the unit sphere (by projection r 7→ n ≡ r/r), which is - by
definition - the corresponding solid angle. N

For any n, whenever ∂D = S′ − S, i.e. whenever an n-dimensional volume D
(not containing the origin) is enclosed by two (n− 1)-dimensional (hyper)surfaces
S′ and S, we get ∫

S′
α =

∫
S+∂D

α =

∫
S
α+

∫
∂D

α =

∫
S
α (23)

So one can deform the hyper-surface with no effect on the value of the integral.
Notice also that, for n = 3, (19) is just E · dS for the electric field of static

point charge sitting in the origin. The integral (23) just represents, due to Gauss
law from electrostatics, the total amount of charge enclosed by S.
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2.2 De Rham cohomologies
It turns out that the relation between closed and exact forms has a potential to tell
us a lot about topology of the underlying manifold. In general terms it means that
geometry of manifolds (represented here by a delicate difference between two types
of geometric objects living on manifolds) is deeply interrelated with their topology.

Recall (see section (2.1)) that dd = 0 implies that exact forms are automatically
closed. Further, both closed and exact forms are (infinite dimensional) subspaces
of the (infinite dimensional) vector space of all forms. Denote the three relevant
spaces as follows:

general p-forms on M : Ωp(M)
closed p-forms on M : Zp(M)
exact p-forms on M : Bp(M)

Then the subspace structure is

Bp(M) ⊂ Zp(M) ⊂ Ωp(M)

For us the first part is important, the statement that the (infinite dimensional)
vector space of exact p-forms on M is a(n infinite dimensional) subspace of the
(infinite dimensional) vector space of closed p-forms on M

Bp(M) ⊂ Zp(M)

Highly valuable topological information about the manifold M lies in "precise re-
lation" between these vector spaces. All this may be used in two directions. If we
are able to compute the structure of the forms, we can learn from it something
about the topology of M . If we, on the contrary, need the know the relation be-
tween closed and exact forms on M , we are to get knowledge (by some independent
means) of appropriate topological property of M .

What is meant by "precise relation" between these vector spaces? The just
measure of the "difference" of the two vector spaces is their factor-space

Hp(M) := Zp(M)/Bp(M) (24)

This is a vector space in its own right.

H Let W ⊂ V . Declare v1 to be equivalent to v2 if v2 = v1 + w for some
w ∈ W . Then equivalence classes (sets, denoted as [v], of all mutually equivalent
vectors) have a natural vector space structure. Indeed, we can define the linear
combination of classes in terms of representatives (i.e. [v1] + λ[v2] := [v1 + λv2])
and check that it actually does not depend on representatives. N

What is much more surprising is that it is finite-dimensional. It is known as
the p-th cohomology space of M .
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H Hp(M) is more frequently known as the p-th cohomology group of M (al-
though it is a vector space, here). First, a vector space is a group (w.r.t. addition)
and second, our Hp(M) is, in more accurate notation, Hp(M ;R), the real coho-
mology. There is also a more general "G-valued" case, denoted Hp(M ;G) where
the word group is more deserved. N

If Hp(M) comes out to be 0-dimensional (one writes Hp = 0), it means there
is no difference between close and exact p-forms on M . Or, that each closed form
is necessarily exact. This is often a very valuable information. If Hp(M) is 1-
dimensional (one often writes Hp = R1, where = stands for linear isomorphism), it
means there is exactly one "type" of closed forms which fail to be exact. (So closed
forms are either exact or not exact and there is just "one way" to be not exact.) If
Hp(M) is 2-dimensional (Hp = R2), it means there are two "independent types" of
closed forms which fail to be exact. (So closed forms are either exact or not exact
and there are "two different ways" to be not exact.) And so on.

The case p = 0 is a special one. You can check right from the definition (it is
quite easy) that dim H0(M) = k just means that the manifold M has k connected
components. (So, for example, the sphere and the torus, both being connected,
have H0(Sn) = H0(Tn) = 1.)

For real computation of cohomology spaces of concrete manifolds, there is a
number of methods, from fairly easy algorithms up to ingenious tricks needed for
complicated cases. Using these methods a lot of concrete results were computed.

For example, for the spheres the following statement holds:

H0(Sn) = Hn(Sn) = 1 all other cases vanish (25)

See Appendix A.2 for explicit computation of the simplest case, S1.
There is a lemma, due to Poincaré, stating that if a manifold is contractible (to

a point), all Hp(M) (except for p = 0) vanish. So, on such manifolds, there is no
difference between closed and exact forms (see Section 9.2 in [2]). Any coordinate
patch is contractible, so closed = exact on any such patch. (E.g. the form dφ is
exact in the domain of the coordinate φ, but it is not so on the whole circle, as we
can see from (18).)

2.3 Betti numbers
Betti numbers bp (of a manifold M) are just dimensions of the cohomology spaces
discussed in the last section

bp ≡ bp(M) := dimHp(M) (26)

They are important topological invariants of a manifold. So, instead of writing

Hp(Tn) = R(
n
p) (27)
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for cohomological groups of n-dimensional torus one simply writes

bp(Tn) =

(
n

p

)
p = 0, 1, . . . , n (28)

Alternating sum of Betti numbers is of special interest:

χ(M) := b0 − b1 + b2 − . . . Euler characteristic of M (29)

For example, we see from (25), (28) and Poincaré lemma, that the Euler char-
acteristics of two-dimensional sphere, two-dimensional torus and two-dimensional
disk

χ(S2) := b0 − b1 + b2 = 1− 0 + 1 = 2 (30)
χ(T 2) := b0 − b1 + b2 = 1− 2 + 1 = 0 (31)
χ(D2) := b0 − b1 + b2 = 1− 0 + 0 = 1 (32)

We will encounter alternative expressions of Euler characteristic later on (see
(58), (63) and (64)). Clearly, they are expected to give the same number for the
same manifold (which is the case; it is a highly non-trivial fact).

2.4 Hopf invariant
Consider a map of two spheres

f : S2n−1 → Sn n = 2, 3, . . . (33)

Take a normalized volume form ω on the target Sn∫
Sn

ω = 1 (34)

It is trivially closed (because of its highest possible degree on Sn), but not exact
(otherwise the l.h.s. of (34) was zero by Stokes theorem). However, its pull-back
f∗ω to S2n−1 is not only closed (this is guaranteed by f∗d = df∗) but also exact

f∗ω = dα for some (n− 1)-form α (35)

This is a consequence of the results on cohomology groups of spheres (25) and the
clever observation, that n is neither equal to 0 nor 2n−1 :-). So, any closed n-form
on S2n−1 is necessarily exact. Then, α ∧ dα is a (2n − 1)-form on S2n−1. So, it
may be integrated over S2n−1. We get

Hopf invariant H(f) :=

∫
S2n−1

α ∧ dα (36)
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It is a well-defined number associated with any map f of type (33).

H Let α 7→ α+ dβ (freedom in potential (35)). Then, for α ∧ dα ≡ σ,

σ 7→ σ + dτ τ := β ∧ dα

and since ∫
S2n−1

(σ + dτ) =

∫
S2n−1

σ

by Stokes theorem, H(f) is not sensitive to the choice of potential. N
What is interesting about the number H(f) is that it is, for any f , an integer

(the proof is far from being easy). Knowing this, however, we can immediately
conclude, that it is a topological invariant of f .

H Standard argument: Small changes of f should produce small changes of
α∧ dα and, finally, small changes of H(f). If H(f) is an integer, no small changes
are possible. N

If f is a constant map (each point of S2n−1 is mapped to a single point of Sn),
the pull-back f∗ω vanishes and H(f) vanishes too. If f can be smoothly deformed
to a constant map, H(f) is zero as well (it is zero at the end of a smooth procedure,
being an integer all the time). So a non-zero value of H(f) indicates that f cannot
be smoothly deformed to a constant map (it is essential).

In particular, the Hopf map

f : S3 → S2 χ 7→ n ≡ χ+σχ χ ∈ C2 χ+χ = 1 (37)

has H(f) = 1.

H This shows (very loosely speaking) that it is not always possible "to shrink
to a point a 3-dimensional sphere’s image on a 2-dimensional sphere" and, conse-
quently, that the "3-rd homotopic group of S2 is non-trivial". N
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3 Gauss-Bonnet theorem
Gauss-Bonnet theorem 2 states that the sum of the integral of the Gaussian cur-
vature K over a two-dimensional surface S and the integral of geodesic curvature
k along the boundary ∂S of the surface is an integer multiple of 2π, the integer
being the Euler characteristics χ(S) of the surface:∫

S
KdA+

∮
∂S
kds = 2πχ(S) (38)

(The two terms on the left are also known as the total Gaussian and the total
geodesic curvature respectively.) In the simpler situation, when the surface is closed
(∂S = 0) the boundary integral is vacuous and we get∫

S
KdA = 2πχ(S) if ∂S = 0 (39)

The statement (38) is known for more than one and half century and it is highly
remarkable. First, the Gaussian curvature is a function on the surface and the

Figure 2: A surface S and its boundary ∂S

geodesic curvature is a function on its boundary. (Both depend on the metric g
on the surface: K ≡ Kg and k ≡ kg.) It is indeed a remarkable restriction on the
two functions that the sum of their integrals (when divided by 2π) always gives an
integer.

Then, the Euler charakteristics χ(S) is a topological invariant of the surface.
That’s why a change of the metric g on the surface (caused, for example, by a
change of the embedding of the surface into the Euclidean space E3) by no means
influences the right-hand side of the equation (its topology remains the same). Then
it may not influence the left-hand side as well. However, the metric is formally
present there. This is highly remarkable.

2Wikipedia teaches us that it is named after Carl Friedrich Gauss (1777-1855) "who
was aware of a version of the theorem but never published it", and Pierre Ossian Bonnet
(1819-1892) "who published a special case in 1848."
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Figure 3: A sphere Figure 4: An egg

Imagine, to be more concrete, a sphere and (the surface of) an egg. The egg
is nothing but a smoothly deformed sphere, so that both surfaces share the same
topology. They share, consequently, the same value of the Euler characteristics
(being 2, as we know from (30) and we will confirm independently later). The
induced metrics from their embedding into E3, however, differ. So their Gaussian
curvatures differ, too. (And it can be a fairly complicated function for a "general
egg".) In spite of this, the integral of the new (egg) curvature over the new surface
leads to the same number as the integral of the old (sphere) curvature over the old
surface. (Irrespective, of course, of any details of the egg shape or size.)

Gauss-Bonnet theorem is a classical prototype of a number of modern (20-th
century) deep statements, which generalize its content in various directions. We
touch some of them in next chapters. In this chapter, however, we concentrate on
the good old original version.

3.1 Geodesic and Gaussian curvature - intuitive picture
Let us begin with a curvature of a curve in the Euclidean plane. Imagine we travel
along a road in a car and we want to introduce a numerical measure of an "intensity
of a curve" (big number = severe bending, small number = moderate bending). A
good idea is to use the centrifugal force, which causes the push against the door.
(Severe push apparently means tight turn.) The formula for the circular motion
is, as is well known,

F =
mv2

r
(40)

However, in this formula there are still elements which characterize ourselves rather
than the curve under consideration. Say, (our) mass m is not a property of the
curve. Deleting the mass we get centrifugal acceleration

a =
v2

r
(41)

But, neither the velocity we pass the curve is a property of the latter, it is still
our characteristic. So take some fixed velocity. The simplest choice being the
unit velocity. Now, the magnitude of the centrifugal acceleration is exclusively
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a property of the curve. Huge acceleration - tight turn, negligible acceleration -
negligible turn (and, in particular, zero acceleration - straight road).

a(v=1) =
1

r
(42)

We will call this the curvature of the circle. It behaves reasonably - small radius
produces big curvature and vice versa. Further, let add to the definition that it is
positive for a turn to the left and negative for a turn to the right:

k = ± 1

r
± = to the left/to the right (43)

So, within a single number, we pack information about both intensity of the curve
as well as whether it is to the left or to the right .

And what about roads which are not circular? Take very small piece of the
road and measure the acceleration. Define this acceleration to be the curvature
within this small piece. So, curvature becomes, in general, a function on the curve.
Notice that this also means that in a small vicinity of each point of an arbitrary
(smooth) curve the curve behaves like a circle. (This is exactly like when we say,
that any motion becomes uniform when restricted to short enough time intervals.)

Now, on a general two-dimensional surface, the same idea applies. We just
need first think of what a uniform and straight line motion is. This is studied in
differential geometry. One comes to the concept of geodesic curves as a natural
generalization of uniform straight motion.

Consider a curve γ on a surface. Parametrize it "naturally", i.e. as γ(s) such
that ||γ̇|| = 1 (unit velocity). Then the acceleration vector a = ∇γ̇ γ̇ is necessarily
perpendicular to the velocity vector γ̇

Figure 5: When traveling with unit speed, the acceleration is othogonal to the velocity

g(a, γ̇) = 0 (44)

H
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Since 0 = ∇γ̇1 = ∇γ̇g(γ̇, γ̇) = 2g(a, γ̇). N
There are just two discrete possibilities for the direction of a. Perpendicular

"left" or "right". Denote w the unit (||w|| = 1) vector perpendicular to γ̇, to the
left. (The frame (γ̇, w) is to be right-handed.)

Then, the definition of the geodesic curvature k is as follows:

a =: kw (45)

So, it is plus/minus the magnitude of the vector a, plus when a sticks to the left

Figure 6: Geodesic curvature k is plus/minus the length of the vector a

and minus to the right w.r.t. γ̇, respectively.
(On surfaces in E3 it is also possible to express it in terms of the outer normal n.
One constructs the vector product n× ṙ (which is indeed a unit vector directed to
the left with respect to ṙ) and then makes the dot product of the acceleration a
and the vector. This gives exactly plus/minus of the magnitude of the vector a.)

Now we would like to introduce a measure of the bending of a surface. Consider
a 2-dimensional surface. Fix a point on it and erect a vector normal to the surface in
the point. Imagine two planes, mutually perpendicular and containing the vector.
(There is infinite number of such pairs. Fix any of them.) The planes cut two
curves out of the surface in the vicinity of the point. (Two mutually perpendicular
meridians, if we think of the North pole on the Earth surface). Each of them is a
planar curve, so it possesses the curvature introduced above. Let us call them k1
and k2.

[Here, the sign convention is as follows: if k1 and k2 have equal sign, it means, that
the surface is, in the vicinity of the point, bent towards the same side with respect
to the tangent plane in the point (and, in particular, positive k1 and k2 indicate
that the surface lies on the side of the normal vector). If the signs of k1 and k2
differ, the surface behaves like a saddle - it is bent towards one side along the first
curve and towards the other side along the second curve.]

It turns out it exists an optimal choice of the planes. They are known as
principal directions.
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[For this case, the values of k1 and k2 are extremal. They are given as eigenvectors
of the Hessian matrix of the height function at the point.]

So in each point we have two mutually perpendicular directions and correspond-
ing

principal curvatures: k1 = ± 1

r1
k2 = ± 1

r2
(46)

Example 3.1.1.: Surface = a plane. Let fix the plane xy. Then the orthogonal
vector in each point has z-direction and both planes are vertical. The xy-plane is
cut by them in two lines. Lines may be regarded as circles with ∞ radius, so both
principal curvatures vanish. Thus the principal curvatures of a plane read

plane : k1 = 0 k2 = 0 (47)

Example 3.1.2.: Surface = a sphere of radius R. Take the North Pole. The
normal vector is directed along z-axis and the planes cut two (mutually orthogonal)
meridians. They are circles with radius R, consequently curvature k = 1/R. Thus
the principal curvatures of the sphere read

sphere : k1 = 1/R k2 = 1/R (48)

(Equal signs - there is no saddle at the North Pole.)

Example 3.1.3.: Surface = a cylinder (say, infinite) of radius R. The principal
directions are (at each point) along the axis and around the cylinder. The two
lines cut by the planes are a line (along the axis), and the circle of radius R. So,
the principal curvatures of the cylinder read

cylinder : k1 = 0 k2 = 1/R (49)

There are two combinations of principal curvatures k1 and k2 which deserve special
attention. Namely, their mean value and their product. In this way, two new kinds
of curvature of surfaces appear:

mean curvature: H :=
1

2
(k1 + k2) (50)

and
Gaussian curvature: K := k1k2 (51)

Mean curvature is an important measure of how a surface is embedded into the
ambient space. It plays crucial role, for example, in how soap bubbles (minimal
surfaces) are created. For us, however, the Gaussian curvature is of interest. Its
most astonishing property is 3 that it is an entirely intrinsic property of a surface.
It means, it can be computed solely by means of the geometry of the surface

3It was shown in 1828 by Gauss in his Theorema Egregium ("Remarkable Theorem")
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itself, without referring to its embedding into an ambient space. Recall that the
two factors themselves, k1 and k2, do make use of the embedding - we need the
third dimension in order to introduce curvatures of the relevant planar curves. In
contrary, their product k1k2 turns out to be, as Gauss has discovered, an entirely
intrinsic quantity.

[For readers from University of Regensburg, two glass showcases, entitled Krüm-
mung and Minimalflächen respectively, situated near lecture room H32 in Mathe-
matics part, are highly recommended for inspection. There display various 3D
models of surfaces and one can see the difference between the Gaussian and the
mean curvature. "Sie haben in jeden punkt die mittlere Krümmung Null!" says
the text in the "Minimalflächen" showcase.]

3.2 The net angle of rotation for a loop γ

In this section the following problem will be discussed. Consider a 2-dimensional
surface (manifold) endowed with a Riemmannian metric and orientation (it results,
for example, from an embedding into E3, but it is not necessary). There is a smooth
loop, γ, on it, which is the boundary γ = ∂S of a domain S. In the whole domain
(including the boundary) there is an orthonormal frame field ea. To be more
specific, imagine that the domain is a coordinate patch and the frame field results
from the coordinate one (using Gramm-Schmidt procedure). Now, we move along
the loop and observe how the tangent vector γ̇ rotates with respect to the frame
field. One can derive how much it rotates within a small piece and then obtain the
net angle of rotation (it is sometimes called, when divided by 2π, rotation index
of the loop) by summing (integrating) all the small contributions. The aim of the
computation, however, is not to determine the resulting net angle, since the latter
is clear from the very beginning - it is 2π (just a single turn; rotation index is 1).
The true reason to perform the computation is to derive an equation saying that
a sum of two particular integrals (obtained from summation of small increments)
equals 2π, the fact we otherwise did not know. In this way we get a particular case
of the Gauss-Bonnet theorem.

Then we will study what changes are to be performed if the boundary fails to
be smooth (for example if it is a triangle).

Eventually we will study surfaces which may be decomposed into triangles. In
this point the situation becomes global, the Euler characteristics enters the scene
and the general statement of the Gauss-Bonnet theorem emerges.

3.2.1 Expression of the net angle of rotation in terms of total
geodesic and total Gaussian curvature

So, let us return to the situation of interest. Consider a loop γ, which is the
boundary of a two-dimensional domain S ⊂ (M, g), γ = ∂S. Within the entire

16



domain S (including its boundary γ = ∂S), there is a smooth orthonormal frame
field ea.

Introduce the angle θ between e1 and γ̇.

Figure 7: Definition of the angle θ

Then
γ̇ = cos θ e1 + sin θ e2
w = − sin θ e1 + cos θ e2

Make a small step of length ds along the loop γ. The corresponding increment dθ
of the angle θ may be computed (see the details in Appendix A). What we are
interested in is the net angle [θ]	 of rotation summed up along the whole loop.
This is given by integrating dθ along γ ≡ ∂S. The result turns out to be (see
Appendix B.1)

[θ]	 =

∮
∂S
kds+

∫
S
KdA (52)

At the same time, however, the value of the net angle is clear from the outset: the
velocity vector is the same at the end as is was at the beginning (it is a smooth
vector field on the curve) and it is evident, by inspection, that it undergoes a single
(counterclockwise) rotation. So the angle is 2π. Therefore we get∮

∂S
kds+

∫
S
KdA = 2π (53)

This is already the statement (38) for χ(S) = 1 (being, as we know from (32),
exactly the value of χ(S) for domains S under consideration here).

3.2.2 Polygon - count in the jumps in vertices

The result (52) refers to a smooth boundary. In the case of polygons the boundary
consists of smooth pieces (edges) as well as corners (vertices). So, it is only piecewise
smooth. In the vertices, the velocity vector clearly jumps (in order to become
tangent to a new edge) and it is the sum of all these jumps which is to be added to
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the r.h.s. of (52) (or, then, the l.h.s. of (53)) in order to obtain the true net angle
of rotation.

Consider an n-gon. Let the jump be θ̂k in the k-th vertex. Then we are to add
θ̂1 + · · ·+ θ̂n to the r.h.s. of (52). Now θ̂k is the exterior angle in k-th vertex. The
corresponding interior angle θk, by definition, when combined with the exterior
angle, sums up to the flat angle, i.e. θ̂k + θk = π.

Figure 8: k-th vertex: exterior angle θ̂k and interior angle θk

Therefore

θ̂1 + · · ·+ θ̂n = (π − θ1) + · · ·+ (π − θn) = nπ −
∑

(interior angles)

So the result (52), for an n-gon, is to be replaced by

[θ]	 =

∮
∂S
kds+

∫
S
KdA+ nπ −

∑
(interior angles)

Here, ∂S stands for smooth parts of the boundary alone (edges of the polygon).
However, nothing changes in the observation made in Section 3.2.1 that the

net angle [θ]	 is known from the outset, being 2π (still the velocity vector under-
goes, when the jumps are included, a single counterclockwise rotation altogether).
Therefore we get the final general result for the net (interior) angle of an n-gon S
on a (possibly curved) surface∑

(interior angles) =
∮
∂S
kds+

∫
S
KdA+ (n− 2)π (54)

Example 3.2.2.1: An important particular case is provided by a geodesic n-gon,
i.e. an n-gon whose edges happen to be geodesic curves. On a geodesic, the
acceleration vanishes (by definition), so k = 0, and the line integral contribution
becomes vacuous. What remains is the statement∑

(interior angles) =
∫
S
KdA+ (n− 2)π

18



Example 3.2.2.2: For example, the net angle of a geodesic triangle (so n = 3) on
a sphere with radius ρ (so K = 1/ρ2) reads

net interior angle of a geodesic triangle on a sphere = π +A/ρ2

where A stands for the area of the triangle. This statement is known as Girard
theorem.

3.2.3 Triangulation - how Euler characteristics appears

The result (54) gives for a triangle (which is a subset of a coordinate patch on the
surface) ∑

(interior angles △) =

∮
∂△

kds+

∫
△
KdA+ π (55)

Now consider a surface S. It may not be closed, so it may have a smooth boundary
∂S. Let us slice the surface to triangles ("triangulate" it), each of them entirely
residing in a coordinate patch.

Figure 9: Surface S is sliced into triangles (triangulated)

For each triangle, the result (54) applies. Write down all the corresponding
equations and add them. The following happens in doing so:

• summation of all terms
∫
△KdA gives simply integral over the whole surface,∫

SKdA

• summation of all terms
∮
∂△ kds gives simply integral over the whole bound-

ary,
∮
∂S kds (each interior edge contributes twice, with opposite sign, sum-

ming up to zero; exterior edges sum up to the total real boundary)

So we get∑
(interior angles of all △) =

∫
S
KdA+

∮
∂S
kds+ fπ (56)
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where f denotes the total number of triangles (faces), present in the triangulation.
Now three elementary observations are fairly useful. 4

First, the sum of the angles of triangles, which meet 5 at a common interior
vertex is 2π and the sum of the angles, which meet at a common boundary vertex
is π (since the boundary is smooth).

Consequently, the l.h.s. of the equation (56) may be written as

2πvi + πvb

where vi is the number of interior vertices of the triangulation and vb is the number
of vertices on the boundary.

Second, each triangle has three edges. Once more, there are either interior or
boundary ones. For the interior ones, each real edge is shared by a pair of triangles,
boundary edges count just once. Therefore there is a simple relation between the
number of two kinds of edges and the number of faces:

3f = 2ei + eb

Third, the number of vertices sitting on the boundary equals the number of
boundary edges (boundary of the boundary vanishes, so that each vertex may be
regarded as a starting point of exactly one boundary edge)

eb = vb

Let us write all the relevant relations together:

2πvi + πvb =
∫
SKdA+

∮
∂S kds+ πf

2ei + eb = 3f
eb = vb

One can easily deduce from this system of equations (take it as a small exercise),
that ∫

S
KdA+

∮
∂S
kds = 2π(f − e+ v) (57)

where e ≡ ei + eb is the total number of edges and v ≡ vi + vb is the total number
of vertices.

The number (clearly an integer) asociated with the surface S by the rule

χ(S) := f − e+ v (58)

4The actual summation in the l.h.s. of (56) may be organized as follows: label each
particular angle by "its" vertex. Doing this, discriminate between interior vertices and
vertices sitting on the boundary. Then sum, first, all angles associated with a fixed vertex
and then sum over all vertices (separately interior and boundary ones).

5Recall that we consider triangles drawn on a smooth surface S rather than a discretized
version of the surface, composed of "flat" triangles. A small surroundings of each vertex
is thus a small plane and angles indeed sum up to 2π or π respectively, there.
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is (once more, see (29) :-) the celebrated Euler characteristics of the surface S. It
turns out that it does not depend on the particular triangulation (it should be clear
from (57) - the l.h.s. does not know about any triangulation) - it is a topological
invariant of the surface, it does not feel continuous deformations of the latter.

[Notice, we have as many as two independent definitions of Euler characteristic
χ(S) of a two-dimensional surface S - (29) and (58)

χ(S) = b0 − b1 + b2

= v − e+ f

(See also (63) and (64), where further alternative formulas are presented.) They
share a common feature of being alternating sum of "0,1 and 2-dimensional ob-
jects". Note, however, that whereas individual terms in the first expression have
objective meaning in its own right, individual terms in the second expression de-
pend on particular triangulation and it is only the alternating sum which has
intrinsic meaning.]

So we finally get the desired result∫
S
KdA+

∮
∂S
kds = 2πχ(S) Gauss-Bonnet theorem

notified in (38).

3.3 Euler characteristics and critical points of smooth
functions

Consider a closed surface S and a function on it whose all critical points are non-
degenerate (to be defined in a moment). Then it turns out that the knowledge of
the number and type of these points (minima, maxima, saddle points) is already
enough for computing Euler characteristics of the surface.

3.3.1 How one can compute χ(S) with the help of critical points

Let f : S → R be a function on S. In critical points we have (by definition) df = 0,
so that outside critical points the surface is endowed with a global non-vanishing
gradient (vector) field ∇f = ♯gdf (or, in components, (∇f)i = gij∂jf). We norm
the field to unity and call it e1.

Non-degenerate critical point of f : S → R is a critical point (i.e. df = 0) in
which the Hessian does not vanish (i.e. the matrix of second derivatives is non-
singular).

H This is a coordinate-free concept. Indeed, the Hessian matrix transforms
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as follows:

Hij = ∂i∂jf = Jk
i ∂

′
k(J

r
j ∂

′
rf) = Jk

i J
r
j (∂

′
k∂

′
rf) + (∂iJ

r
j )(∂

′
rf)

= Jk
i H

′
krJ

r
j + (∂iJ

r
j )(∂

′
rf)

(where J i
j stands for the Jacobian matrix ∂jxi

′). In critical point the second term
vanishes and what remains is

Hij = (JTH ′J)ij

so that for the determinant of the Hessian matrix (the Hessian H) we have

H = (detJ)2H ′

Thus non-degeneracy of the critical point is an invariant concept. N
Let us have a look how Taylor expansion looks like in the vicinity of the non-

degenerate critical point. Let P be such a point of a function f and let choose
coordinates xi centered at P (so that xi(P ) = 0). Then

f(x) = f(P )+ (∂if)(P )x
i+

1

2
(∂i∂jf)(P )x

ixj + · · · = f(P )+
1

2
Hijx

ixj + . . . (59)

By a linear change of coordinates we can diagonalize the symmetric bilinear form
and get a canonical form with just two squares. From this we see that each non-
degenerate critical point is necessarily isolated.

Therefore we can place each critical point into a small disk Ri (the i-th one)
with the boundary γi = ∂Ri.

Call Y the complement to all the disks (so S = Y +
∑
Ri, see Figure 10).

Figure 10: Y is the surface S minus all the disks around the critical points

Recall that, on the entire Y , there is a well-defined unit vector field e1. Then,
we can add the unique second unit field e2 and form a right-handed orthonormal
frame field (e1, e2) (an orientation on S is assumed here).

Now, some computations similar to those in Section 3.2.1 may be performed.
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First, one can compute, for each boundary γi = ∂Ri, the net angle [θi]	 between
the velocity (tangent) vector γ̇i and the gradient field ∇f . Put it differently (when
divided by 2π), how many times γ̇i makes a complete turn w.r.t. the frame field
(e1, e2) while traversing the loop γi = ∂Ri exactly once. When summed over all
disks, one gets (see Appendix B.2)∫

Y
KdA =

∑
i

∮
γi

(k)ids−
∑
i

[θi]	 (60)

Second, one can compute, for each boundary γi = ∂Ri, the net angle [ϕi]	 between
the same γ̇i and an arbitrary (but fixed) frame field (ê1, ê2) inside the disk Ri.
When summed over all disks, one gets (see Appendix B.2)∑

i

∫
Ri

KdA =
∑
i

[ϕi]	 −
∑
i

∮
γi

(k)ids (61)

Then, summation of (60) and (61) gives∫
S
KdA =

∑
i

[ϕi]	 −
∑
i

[θi]	 ≡
∑
i

[ϕi − θi]	 (62)

(since line integrals
∮
γi
(k)ids enter the sum with opposite signs and they pairwise

cancel).
What is the meaning of the angle ϕi − θi, emerging in this expression? Since

ϕi is the angle from ê1 to γ̇i and θi is the angle from e ≡ e1 to (the same) γ̇i, their
difference ϕi − θi is the angle from ê1 to e1 ≡ e, i.e. from an arbitrarily chosen
frame field in the i-th disk Ri to the gradient field generated by the function f .

Figure 11: The angle ϕi − θi is the angle from ê1 to e1

Then [ϕi−θi]	 is just (the 2π−multiple of) the winding number of the gradient
field w.r.t. an (arbitrarily chosen) frame field (ê1, ê2) in the i-th disk Ri (it says
how many times the gradient field makes a complete turn w.r.t. the frame field
(ê1, ê2) while traversing the loop γi = ∂Ri exactly once).
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Already this fact alone is remarkable enough since it reveals, that the (1/2π)-
multiple of the total Gaussian curvature (integral over the whole surface of the
Gaussian curvature) is necessarily an integer

1

2π

∫
S
KdA = sum of some winding numbers = an integer

If, moreover, this integers might be found somehow, we would be able, according
to (39), compute the Euler characteristics of the surface S in a completely new
way (without triangulation of the surface or referring to Betti numbers). So let us
study the winding numbers in some more detail.

3.3.2 Contribution of a non-degenerate critical point

So, we need to choose (arbitrarily) a frame field (ê1, ê2) in each Ri and compute
the winding number of the gradient field w.r.t. the frame field.

On a two-dimensional surface, a critical point may be minimum (both squares
with plus sign), maximum (both with minus sign) or saddle point (both signs
present). So there are just three types of (non-degenerate) critical points, here.

We need a metric tensor (to raise the index) for construction of gradient field
((∇f)i = gij∂jf). Since the disks Ri are expected to be small, geometry on
them will be not far from Euclidean one (the smaller is the disk, the better is the
approximation). And since our aim is to compute winding number, i.e. an integer,
there should be no difference between nearly Euclidean and truly Euclidean case.
So we choose exactly Euclidean geometry in each Ri, gij(x) = δij = gij(x).

The (symmetric) matrixHij may be diagonalized with the help of an orthogonal
transformation (i.e. not spoiling gij = δij). In these adapted coordinates x, y we
have

1
2Hijx

ixj = 1
2(ax

2 + by2)
df = axdx+ bydy
∇f = ax∂x + by∂y 0 ̸= a, b ∈ R

So, the task is as follows: in a small disk R centered in origin of the plane xy we are
given the vector field ax∂x+by∂y and we are to compute its winding number w.r.t.
some (orthonormal right-handed) frame field defined in whole disk R. Standard
Cartesian frame field meets all the requirements. Moreover, any other frame field
which meets the requirements may be obtained by a smooth deformation of the
Cartesian one. Then, because of the fact that the resulting number is known to be
integer, the choice of the Cartesian frame is as good as is any other choice.

Still another great simplification may be based on the fact that the resulting
number is known to be integer. We can smoothly deform the gradient vector field
∇f (or the function f itself). We already know that we have just a 2-parametric
family of the fields, so we can smoothly deform parameters a, b with no effect on
the resulting winding number. Remember, however, that both parameters should
be non-zero (otherwise the critical point cease to be non-degenerate). This means
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Figure 12: The field x∂x + y∂y
in selected points of the circle

Figure 13: The field x∂x − y∂y
in selected points of the circle

that the pair (point) (a, b) must not lie on the axes in the plane ab. Starting with
a given pair (a, b), the deformation has to preserve the quadrant of the pair in the
plane ab. This enables one to choose obvious "canonical representatives" in each
quadrant: twice plus-minus 1. We obtain the following 4 possibilities

(a, b) 2f type of critical point vector field
(1, 1) x2 + y2 minimum x∂x + y∂y

(−1,−1) −x2 − y2 maximum −x∂x − y∂y
(1,−1) x2 − y2 saddle point x∂x − y∂y
(−1, 1) −x2 + y2 saddle point −x∂x + y∂y

Now, the fields in the first two lines only differ in the overall sign and this
same is true for the two fields in the third and fourth line. However, if fields only
differ in the overall sign (stick in opposite directions), they rotate, when traversing
the loop, by the same angle in the same direction. Consequently, their winding
numbers coincide. It is then enough to examine the first and the third field. If we
draw their values in some selected points on the circle (e.g. on the axes x, y as well
as on the axes of all quadrants, to be sure, altogether 8 arrows, see Figures 12 and
13), it is evident that the first field turns once counter-clockwise and the third field
also turns once, but clockwise. Consequently, their winding numbers are +1 a -1.

type of the critical point winding number
minimum, maximum +1

saddle point −1

This means, however, that the sum of winding numbers of the gradient field in
all critical points, which is present on the r.h.s. of (62), may be expressed as the
number of minima plus the number of maxima minus the number of saddle points.
So we obtain the following formula for the Euler characteristics:

χ(S) = number of maxima − number of saddles + number of minima (63)
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Figure 14: Height function
on the sphere: one maxi-
mum and one minimum

Figure 15: Height function
on the button with 2 holes:
one maximum, one mini-
mum and 4 saddle points

Recall that this is true for any function f on S such that all its critical points are
non-degenerate.

How to find these useful functions? It turns out that, for all closed oriented sur-
faces a possible choice is the height function. Simply imagine the surface placed in
our three dimensional Euclidean space and choose f to assign the value of the z-th
coordinate to each point on the surface. Critical points of this particular function
are easily found by inspection and the same "method" also immediately reveals
their type.

Example 3.3.2.1: Take as a surface S the sphere S2 and as a function f on
S the height function (value of the z-coordinate, see Figure 14). It has a single
maximum (uppermost), single minimum (undermost) and no saddle points, so that
it gives χ(S2) = 2. In order to make a check, imagine a tetrahedron drawn on the
sphere (it does provide a triangulation of the latter). For the tetrahedron one has
f = 4, e = 6, v = 4, so that f − e + v = 2. Or, do the check via total Gaussian
curvature: K = 1/ρ2, so that

∫
S2 KdA = (1/ρ2)A = 4πρ2/ρ2 = 4π. This only

matches Gauss-Bonnet theorem (39) if χ(S2) = 2. Or, finally, see (30).

Example 3.3.2.2: Consider S ≡ Sg, a surface with genus g. Namely, either
the sphere S2 with g handles or, alternatively, a button with g holes. (It turns
out the two surfaces are topologically equivalent (homeomorphic)). In particular,
g = 0 reduces to the sphere itself and g = 1 corresponds to the torus T 2. For Sg
the Euler characteristics is given by a simple formula

χ(Sg) = 2(1− g) (64)

Indeed, consider the button realized so that its holes stand in a vertical column
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Figure 16: Here the for-
mula works

Figure 17: Here one should
be careful

(see Figure 15). Choose, again, the function f to be the height function (value of
the coordinate z). Now we have a single maximum (uppermost), single minimum
(undermost) and, in addition, 2g saddle points (in each hole one saddle up and one
saddle down). This gives χ(Sg) = 1− 2g + 1.

3.4 Few statements closely related to G-B theorem
Here we mention some statements closely related to Gauss-Bonnet theorem. Some
of them might be fairly hard to prove without knowing the theorem.

Statement 1: Sum of angles of a triangle in the (Euclidean) plane is π.
Indeed: The formula (55) gives, for the plane (K = 0) and for a usual (geodesic!)
triangle (n = 3, k = 0) just π (extremely surprising :-)

Statement 2: Sum of angles of a geodesic triangle on the sphere with radius
ρ is π +A/ρ2 (here A stands for the area of the triangle).
This is Girard’s theorem. The formula (55) gives for a geodesic triangle (n = 3, k =
0) on the sphere (K = 1/ρ2) just π +A/ρ2.

Statement 3: The formula from the last example is often illustrated on the trian-
gle, whose vertices are the North Pole plus two vertices on the equator, separated
by the angle ∆φ (of arbitrary magnitude; the edges are then parts of two meridians
and of the equator, see Figure 16). The sum of its angles is ∆φ + π (by inspec-
tion), the area is A = ρ2∆φ (by the same method), so that ∆φ + π = π + A/ρ2

indeed holds. If we, however, replaced the equator by the parallel line with ϑ0 (see
Figure 17), the formula cease to be valid. Why? Is there a way to recover the right
result?
Solution: The parallel line is not a geodesics. So, it is not a geodesic triangle.
We are to add the term containing the geodesic curvature. Its computation: on
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the parallel line, using the natural parameter, we have γ̇ = eφ, so the accelera-
tion reads a = ∇eφeφ = ωϑ

φ(eφ)eϑ = ⟨α, eφ⟩eϑ. Since eϑ is directed to the right
w.r.t. eφ, geodesic curvature k = −⟨α, eφ⟩ = cosϑ0/ρ sinϑ0. Its integration along
the relevant piece of the parallel line gives ∆φ cosϑ0. The area of the triangle is
A = ρ2∆φ(1 − cosϑ0), so that A/ρ2 = ∆φ(1 − cosϑ0). The sum of the angles in
the triangle is still ∆φ+π (the parallel line is still perpendicular to the meridian).
If we forgot the term containing geodesic curvature, we would assert that

∆φ+ π = π +A/ρ2 = π +∆φ(1− cosϑ0)

which is not true, whereas after taking the term seriously we assert that

∆φ+ π = π +A/ρ2 +

∫
kds = π +∆φ(1− cosϑ0) + ∆φ cosϑ0

which (for a change) does hold.

Statement 4: Consider a manifold with topology of T 2 (two-dimensional torus).
Define a(rbitrary) metric tensor on it. Compute the corresponding Gaussian cur-
vature K. Then the function K necessarily vanishes in some point on T 2.
Solution: First one has to check that χ(T 2) = 0. (Either via appropriate trian-
gulation or, more easily, using the formula χ(Sg) = 2(1 − g) for a surface with
genus g.) Since the torus has no boundary, Gauss-Bonnet theorem (39) says that∫
T 2 KdA = 0. Then, the function K has no other choice than to vanish somewhere.

Statement 5: If, on a simply connected surface with negative Gaussian curva-
ture two geodesics rush out, they never meet again. (A fairly sad story, you have
to admit.)
Solution: By contradiction. If they met (see Figure 18), a domain S between
them would be created (simple connectedness guarantees one can deform the first
geodesics to the other one, drawing thus the domain). Apply G-B theorem (38) to
S. The boundary consists of two geodesics, so k = 0. Topology of S is the one of
(say) one triangle, i.e. χ(S) = 1. So l.h.s. is negative whereas r.h.s. is positive.
We should never tolerate equations to behave so poorly.

Figure 18: This assumption (that they meet) leads to a contradiction
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4 Fiber bundles and connections
Fibre bundles play very important role in topology. They are used in a number of
ways. Here we just introduce basic concepts, more or less intuitively, and then focus
our attention on how connections are treated in this setting. For this, principal
(and associated vector) bundles play the key role.

4.1 Cartesian products and bundles
Cartesian product in general is a useful concept in mathematics. It enables one to
regard a more complicated object as kind of combination ("product") of simpler
objects. For example, we can regard a square as a product of two intervals. What
does it mean? It means the following - instead of speaking of a single point s of
the square (the more complicated object) we speak of two points, a and b, each
one from the corresponding interval (two simpler objects).

In general let A and B be sets. Then A × B is a new set whose points are
ordered pairs (a, b) where a ∈ A and b ∈ B. If the sets happen to be manifolds,
one can easily make a manifold from A×B as well (see (1.3.3) in [2]). There is a
natural projection map on the first factor 6

π1 : A×B → A (a, b) 7→ a (65)

(so it simply "forgets about" the second entry of the pair (a, b)). This simple
structure, the two manifolds A × B and A, together with the projection map π1,
constitute an extremely useful and powerful tool called fiber bundle (its simplest
version, the product bundle). Where are the "fibers" from the nomenclature? They
are the subsets "(a,B)" ⊂ A × B, that is the pairs (a, b) such that a is fixed and
b runs over whole B. Notice that their alternative (and more succinct) description
is

fiber over a := π−1(a) ≡ the inverse image of the point a (66)

(those points of A × B which π1 maps to a). The total space of the bundle, here
the manifold A×B, is "fibered", i.e. it is a union of all fibers.

In a general fiber bundle this product structure is still present, but it is only
required locally. So, there are two manifolds, the total space E and the base M ,
plus a (surjective) map, the projection, from the total space onto the base

π : E →M (67)

such that any two fibers (π−1(m1) and π−1(m2)) are "equal" (both of them diffeo-
morphic to some F ). What means "local product" structure? For each point m
on M such a neighborhood O should exist (perhaps fairly "small") that its inverse
image, π−1(O), "is" the product of O and F . (Note, however, that, contrary to

6There is also a map π2 to the second factor, here, but this map does not survive
passing to a general case.
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Figure 19: Principal bundle - ac-
tion of a Lie group in the total
space along fibres

Figure 20: Vector bundle - linear
structure available in each fibre

the product bundle, the whole total space E ≡ π−1(M) is not required to be the
product M × F .)

Perhaps the simplest way to see the difference is to compare two concrete
bundles, the cylinder and the Möbius strip. They both share the same base (it is a
circle S1) and fibre (an interval), but they clearly substantially differ in topology of
the total space. The cylinder is a product bundle whereas the Möbius strip is not.
However, note that even on the Möbius strip, the inverse image of a neighborhood
of any point on the base S1 is a product (of this neighborhood and the interval). So,
there is no difference between inverse images of such neighborhoods on the cylinder
and on the Möbius strip. The difference suddenly appears when the inverse images
of the whole base manifold, the circle, are compared. One can say, that both
bundles ale glued from equal pieces (products of two intervals, in this case), but
the way how they are glued together is different. Exactly in this point bundles
substantially generalize the concept of Cartesian products. And this particular
generalization turns out to be very fruitful.

4.2 Principal and (associated) vector bundles
In interesting cases, the fibers, which are sub-manifolds in the total space E, are
endowed with some structure. For connection theory, two kinds of structures in
fibers are of great importance.

First, in principle bundles, denoted here as π : P →M , each fibre is a principle
G-space for some Lie group G, see Figure 19. This means that the group G acts
in each fibre (for each group element g there is a transformation Rg of the fibre)
and the action enjoys the following properties. It is

- right (i.e. Rg1g2 = Rg2Rg1)
- free (i.e. each non-unit G ∋ g ̸= e ∈ G really moves all points away)
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- transitive (any two points in the fiber may be connected by action of the
group)

From these three properties it follows, that each fibre is diffeomorphic to the
group G itself when regarded just as a manifold. (It is, however not a group,
there is, for example, no multiplication rule for two points. The total space, as a
manifold, is then glued from pieces of the product structure O×G, where O ⊂M .)

The actions in all fibers combine into a single action on the total space P :

Rg : P → P p 7→ pg

which is right, free and transitive in each fibre.
Second, in vector bundles, each fibre is a vector space, see Figure 20. (The total

space, as a manifold, is then glued from pieces of the product structure O × Rn,
where O ⊂M .)

Example 4.2.1: For each manifold M , there exits the frame bundle π : LM →M .
The points of LM are (by definition) all frames (bases) in all points of the man-
ifold M . (For each point x ∈ M there is the tangent space TxM in x. It is an
n-dimensional vector space (n = dimM) and we can choose, in infinitely many
ways, a basis ea there. The totality of all these bases (frames in x) gives the fiber
over x.) There is a natural action of GL(n,R) on LM : ea 7→ Ab

aeb ≡ (RAe)a. So,
the frame bundle of an n-dimensional manifold M provides an example of a prin-
cipal GL(n,R)-bundle.

Example 4.2.2: For each manifold M , there exits the tangent bundle π : TM →
M . The points of TM are (by definition) all (tangent) vectors (elements of TxM)
in all points x of the manifold M . (The totality of all vectors in x (elements of
TxM) gives the fiber over x.) There is a natural linear structure in each fiber of
TM (i.e. in each TxM ; clearly each fiber is isomorphic to Rn). So, the tangent
bundle of an n-dimensional manifold M provides an example of a vector bundle
(with n-dimensional fibre).

Example 4.2.3: The Hopf map mentioned in (37)

π : S3 → S2 χ 7→ n ≡ χ+σχ χ ∈ S3 ⊂ C2 χ+χ = 1 (68)

may be regarded as the projection in a principal U(1)-bundle over S2, known as
the Hopf bundle. The action of U(1) on S3 reads χ 7→ eiαχ. You can check that
n 7→ n, so that U(1) indeed acts in fibers. This bundle (and a natural connection
in it) may be used in description of magnetic monopoles as well as Berry phase.

Consider a principal G-bundle π : P → M . In addition, imagine we have
a representation ρ of G in a vector space V . Then, there is a construction (see
Section 21.4. in [2]) enabling one to "replace" each fiber in P by the vector space
V . In this way, a new vector bundle over M is obtained. It is said to be associated
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with the original principle bundle. The other way round, one can construct, for
a vector bundle whose fibres carry a representation of a group G, a unique principle
bundle such, that the original vector bundle is associated with the principal one.

It is important to remark, that the way in which a principal bundle is glued
from simple (product) pieces is inherited by the associated vector bundle.

It turns out, as an example, that the tangent bundle (from Example 4.2.2) is
associated with the frame bundle (from Example 4.2.1).

4.3 Connections
Consider the following two important structures used in theoretical physics:

- parallel transports, semicolons, Riemannian curvature tensor and all this stuff
well known from, say, general relativity (or advanced continuum mechanics) and

- the (classical) gauge field theory.
Surprisingly enough, both of them may be incorporated into an elegant and

(conceptually) simple common scheme, called by mathematicians connection the-
ory. (It is, unfortunately, not so short and trivial story to show here how exactly
this is actually done. The interested reader is referred to chapters 19-21 in [2]).

The playing ground for the theory is a principal G-bundle. In this section, just
some essential ideas will be mentioned. We focus on the concept of the curvature
form. This concept will be then used, in the next chapter, in construction of
topological invariants based on "characteristic classes".

In order to define a connection in a principal G-bundle π : P → M , one has
to introduce a connection form ω, a one-form of type Ad (see Appendix C.1) on
the total space P . So, first, they are one-forms (ω1, . . . , ωn) on P , where n = the
dimension of the Lie algebra G of the group G. They combine into a single object,
Lie algebra valued one-form

ω = ωiEi Ei ∈ G (69)

And finally, under the action of the group G on P the resulting ω behaves as follows

R∗
g ω = Ad g−1 ω or, equivalently R∗

g ω
i = (Ad g−1)ij ω

j (70)

The form ω (living on the total space P ) carries all information about the connec-
tion. In terms of ω, say, one can perform parallel transport of various objects on
(the base) M . Notorious phenomenon of a parallel transport is its path-dependance.
Information, whether a particular connection really leads to path-dependance phe-
nomena, sits in the curvature form Ω. It is a two-form of type Ad living on the
total space P . It may be computed from ω by means of the formula

Ω = ΩiEi Ωi = dωi +
1

2
cijkω

j ∧ ωk (71)

where cijk are structure constants of the Lie algebra G w.r.t. the basis Ei (so that
[Ei, Ej ] = ckijEk).
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Figure 21: In physics, section is
called a gauge. It directs upwards,
right against the projection.

Figure 22: Therefore its pull-back
σ∗ directs downwards, along the
projection. One can "download"
ω and Ω and get A and F .

Both ω and Ω live "upstairs", on P . But physics usually takes place "down-
stairs", on M . So a way is needed to somehow get ω and Ω on M . It is achieved
with the help of local sections.

A local section σ (in physics known as a gauge) is a mapping

σ :M ⊃ O → P π ◦ σ = idO (72)

from an open subset O on the base M to the total space P . (The additional
condition π ◦ σ = idO simply says that the image of x lies in the fiber over x.)
Then, its pull-back σ∗ "downloads" forms from P to O, see Fig.21 and Fig.22.
In this way we get σ∗ω (a one-form on O) and σ∗Ω (a one-form on O). The
nomenclature is as follows:

ωi = connection forms (73)
Ωi = curvature forms (74)

σ∗ωi ≡ Ai = gauge potentials (75)
σ∗Ωi ≡ F i = gauge field strengths (76)

So, gauge potentials and gauge field strengths live on M , "where physics takes
place", and they depend on the choice of section (they are gauge dependent).

Now imagine we have as many as two sections (see Figure 23), σ and σ′ (both
M ⊃ O → π−1O ⊂ P ). Quantitatively, they are related by a function S : O → G
such that σ′(x) = σ(x)S(x), see Figure 24. Then one can "download" forms from
P to O in two ways, too, and get A and A′ as well as F and F ′. There is a
natural (and useful) question of how the two results are related. (In physics, these
are gauge transformations of A and F .) Well, the transformation rule for A is
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Figure 23: Two different sections
(in physics, two different gauges).

Figure 24: Quantitative measure
of how two sections are related is
a function S : O → G such that
σ′(x) = σ(x)S(x).

more complicated and, fortunately, we do not need it. The formula for F 7→ F ′ is,
however, simple:

F ′ = Ad S−1F ≡ S−1FS (77)

(see (21.2.3) in [2]; the second expression being only valid for matrix groups).
Let xµ be local coordinates on O ⊂M . Then we can write

Ai = Ai
µ(x)dx

µ (78)

F i =
1

2
F i
µν(x)dx

µ ∧ dxν (79)

So, in components, A carries two kinds of indices. Lie algebra index i and coordi-
nate tensor index µ. Similarly, F carries (still a single) Lie algebra index i and a
pair of coordinate tensor indices µν.

Since the most interesting Lie groups (and their Lie algebras) are realized as
square matrices, instead of the Lie algebra index a pair of matrix indices may also
be used, see Appendix C.2.

Example 4.3.1: Consider a SU(2)-connection. Here, the curvature 2-form F
is su(2)-valued, i.e.

F = F jEj = − i

2
F jσj ≡ − i

2

(
F 3 F 1 − iF 2

F 1 + iF 2 −F 3

)
≡

(
F 1
1 F 1

2

F 2
1 F 2

2

)
(80)
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5 Characteristic classes
There is a way, invented by Chern and Weil, to characterize topology of a fibre
bundle in terms of closed forms on the base of the bundle. Curvature form of a
connection is used for the construction. So, de-Rham cohomology classes may be
associated with the bundle.

[This construction forms a bridge between algebraic topology and differential ge-
ometry. Connection is a geometrical concept defined on the bundle and it is used
to construct an object from algebraic topology, the cohomology class. And, what
is essential, it turns out that the resulting class actually does not depend on the
particular choice of the connection. Thus, geometry is just a means of computing
something, which is purely topological.]

The forms are known as characteristic classes. Two bundles, whose characteris-
tic classes differ, cannot be equivalent. Trivial bundles have trivial (zero) character-
istic classes. In this chapter, we first describe a general scheme of the construction,
and then we show explicit examples, which lead to standard characteristic classes
(Chern, Pontryagin and Euler).

From the perspective of physics, the logic is a bit reversed. In physics, the
integrals come as objects of primary interest (they have direct physical meaning).
Useful conclusions then may be deduced by recognizing their topological meaning.

5.1 Chern-Weil theory
Let Ω = ΩiEi be the curvature 2-form of a connection in a principal G-bundle
π : P →M . Consider a symmetric, multilinear, Ad-invariant form (with k entries)
in the Lie algebra G

w : G × · · · × G → R w(Ad gX, . . . ,Ad gY ) = w(X, . . . , Y ) (81)

Then

w(Ω, . . . ,Ω) := w(Ei, . . . , Ej) Ω
i ∧ · · · ∧ Ωj ≡ wi...j Ωi ∧ · · · ∧ Ωj (82)

is a 2k-form on P
w(Ω, . . . ,Ω) ∈ Ω2k(P ) (83)

This form is closed. 7

H First notice, that it is invariant with respect to the action Rg of G on P
(Ω is of type Ad and w is Ad -invariant) so that D = d here. Then

d(w(Ω, . . . ,Ω)) = D(w(Ω, . . . ,Ω))
= w(DΩ, . . . ,Ω) + · · ·+ w(Ω, . . . , DΩ)
= w(0, . . . ,Ω) + · · ·+ w(Ω, . . . , 0)
= 0

7It is even exact, but this is not important, now.

35



where the Bianchi identity DΩ = 0 was used. N
It turns out that this form on P induces a well-defined global and closed 2k-form

on M
w(F, . . . , F ) ∈ Z2k(M) (84)

(It is, however, already not exact on M , contrary to w(Ω, . . . ,Ω) on P .) So, it also
defines a cohomology class on M .

H Consider two local sections, σ and σ′ (both M ⊃ O → π−1O ⊂ P ), re-
lated by σ′(x) = σ(x)S(x), S : O → G. Recall, that pull-backs of Ω with respect
to the two sections, F := σ∗Ω and F ′ := σ′∗Ω (i.e. field strengths in two gauges,
in physical parlance), are related via the simple formula (see (77))

F ′ = Ad S−1F ≡ S−1FS (85)

(gauge transformation formula for F ). This means, however, that the pull-back of
w(Ω, . . . ,Ω) does not depend 8 on the choice of section (= it is gauge invariant):

w(F ′, . . . , F ′) = w(Ad S−1F, . . . ,Ad S−1F ) = w(F, . . . , F ) ∈ Ω2k(O) (86)

(since w is Ad-invariant).
Consequently, we get a global 2k-form on M : Take any covering of M by

open subsets together with a local section on each of these subsets. Then, on any
intersection, we get the same form starting with any section.

Closeness: simply because dσ∗ = σ∗d. N
So we learned that given a symmetric Ad-invariant k-linear form on G, a unique

element of the cohomology class H2k(M) is induced. This element is given by the
representative w(F, . . . , F ) ∈ Z2k(M) and remember that a connection ω is needed
for its construction.

However, it turns out - surprisingly enough - that the resulting cohomology
class [w(F, . . . , F )] ∈ H2k(M) does not depend at all on the connection (see Ap-
pendix D.1)! It is given by the bundle alone (the way it is glued together from
trivial pieces).

[This allows us, from the pragmatic point of view, to proceed as follows: If we
need to compute the class [w(F, . . . , F )] and there are two connections available
for the computation, we choose the one for which the job is easier :-)]

Moreover, standard reasoning described in section (2.1) says, that the integral
over a 2k-cycle S (2k-dimensional closed surface)∫

S
w(F, . . . , F ) (87)

8Notice that this is not the case for the pull-back of Ω itself.
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of the 2k-form w(F, . . . , F ) does not depend on the particular cycle within the same
homology class, i.e. it is not changed if S 7→ S+∂D (D being a 2k+1-dimensional
chain (domain)). So, in addition to its insensitivity to the change of connection it
does also not depend on a smooth deformation of the cycle.

By this general construction we get a topological invariant associated with the
bundle π : P →M . ∫

S
w(F, . . . , F ) = topological invariant (88)

In the next three subsections we will see how some particular mappings of the
needed type (81) may be (fairly easily) constructed. Then we will be able to write
down explicit expressions for corresponding topological invariants.

5.2 Pontryagin classes
Consider, for any n×n real matrix A and a real number λ, the following remarkable
expression

det (λI+A) (89)

For example, in the case n = 2 we have the explicit result

det (λI+A) = det

(
λ+A11 A12

A21 λ+A22

)
= λ2 + λTrA+ detA (90)

For general n, it is clearly a polynomial in λ. Its coefficients are real numbers as
well. From the way how a determinant is computed one can see, that the coefficient
standing by λn−k is a polynomial of order k in matrix elements of A. So one can
write

det (λI+A) =

n∑
k=0

λn−kPk(A) (91)

and regard this formula as a convenient way to define the polynomials Pk(A).
Once more back to n = 2 case - we get explicitly

P0(A) = 1 (92)
P1(A) = A11 +A22 ≡ TrA (93)
P2(A) = A11A22 −A12A21 ≡ detA (94)

Recall that the Ad-representation of any matrix group is given by a simple
formula

AdBC = BCB−1 (95)

Therefore it is clear that if we interpret the matrix A in (91) as an element of the
Lie algebra gl(n,R) (or any of its subalgebras), all the polynomials Pk(A) become
Ad-invariant.
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H On the left-hand side we have

det (λI+ AdBA) = det
(
λI+BAB−1

)
= det(B (λI+A)B−1)
= det (λI+A)

Therefore the right-hand side has to have the same property:

Pk(AdBA) = Pk(A) (96)

N
Imagine now that A belongs to the subalgebra so(n) ⊂ gl(n,R) (we will see in

a moment why this case is interesting). Then we find that

A ∈ so(n) ⇒ Pk(A) = 0 for k odd (97)

H Matrices from so(n) ⊂ gl(n,R) are skew-symmetric, AT = −A. Then, on
the left-hand side, we have

det (λI+A) = det (λI+A)T

= det (λI−A)
= det (λI+ (−A))

Therefore the right-hand side has to have the same property:

n∑
k=0

λn−kPk(A) =

n∑
k=0

λn−kPk(−A) (98)

so that
Pk(A) = Pk(−A) (99)

But Pk(A) is a polynomial of order k so, at the same time,

Pk(−A) = (−1)kPk(A) (100)

from which (97) follows. N
For explicit computation (and results) of the polynomials Pk(A) the reader is

referred to Appendix D.2.
Ok, come to bundles and connections. Consider a real n-dimensional vector

bundle. There is a (unique) principal GL(n,R)-bundle π : P̂ → M behind it. Let
ω̂ be any connection form on P̂ and let Ω̂ be the corresponding curvature form.
The latter is a gl(n,R)-valued 2-form, so we can regard it as a n× n matrix with
2-form entries.
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Now imagine we introduced a metric tensor into each fiber of the vector bundle
(a smooth fiber metric; one can show it is always possible). Then the group which
preserves this (stronger) structure is the (smaller) group of orthogonal matrices,
O(n), a subgroup of the original group GL(n,R). Then, there is a smaller principal
bundle π : P → M , which is only O(n)-bundle (it is a subbundle of π : P̂ → M).
The vector bundle endowed with the fiber metric is an associated vector bundle
for π : P → M . So, we can introduce a new connection in the new bundle, with
connection form ω and curvature form Ω, both of them being just o(n)-valued; in
particular, we can regard the curvature form Ω as an n×n skew-symmetric matrix
with 2-form entries.

Introducing of a fibre metric has clearly no consequence at all on the topology
of the vector bundle. So, if there is some topological invariant which characterizes
the bundle, it has to have the same "value" after introducing metric as it had
before. Now, there is a technique (see e.g. section 20.5. in [5]) which enables one
to (uniquely) "extend" a connection from the "restricted" bundle P (subbundle)
to the original "big" one P̂ . So, in our case here, a connection appears by this
mechanism on P̂ . This means, however, we have already as many as two (in
general different) connections on P̂ . The one introduced before (with curvature
form Ω̂) and the connection obtained by "extension" of the connection from the
subbundle π : P →M . Which one is better to compute topological invariants?

Well, according to the earlier discussion (see the text in the bracket in section
5.1), the result will be the same, but notice, that when using the second one we
can profit from the fact that the curvature matrices are skew-symmetric. So, we
choose this possibility.

That is to say, let us write down the expressions (91) with the matrix A replaced
by −F/2π (which is an antisymmetric matrix with entries = 2-forms on M)

det

(
λI− 1

2π
F

)
=

n∑
k=0

λn−kPk (−F/2π) ≡
n∑

k=0

λn−kPk(F ) (101)

so that
Pk(F ) = Pk (−F/2π) (102)

Since the Ad-invariant polynomials Pk(A) are sums of products of k matrix ele-
ments and the matrix elements are 2-forms, the polynomials Pk(F ) are 2k-forms,
now. They are nothing but particular examples of global an closed forms w(F, . . . , F ) ∈
Z2k mentioned in (84). Then, as we know from the general expression (88), inte-
grals of any of Pk(F ) over 2k-cycles (2k-dimensional closed surfaces) are topological
invariants ∫

S2k

Pk(F ) = topological invariant (103)

(of the bundle π : P →M as well as π : P̂ →M).
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H Two issues should be perhaps explained a bit more carefully. First, why
we replace A by −F/2π and not just F? If we put just F , we obtained a topo-
logical invariant as well! The reason is rather deep (but the proof is far beyond
the level of exposition in this text). Namely it turns out that the correction factor
1/2π guarantees that the numbers obtained by integration of the polynomial over
c2k become integers.

Second, we mentioned that we use the "better" connection on P in order to
obtain F skew-symmetric. This is really the case provided we only use local sections
with image in P̂ ⊂ P . Although a general section of π : P →M does not enjoy this
property (so that F fails to be skew-symmetric), since we know that the resulting
polynomial (87) does not depend on particular choices of sections, we can pretend
we only work with specific sections with image in P̂ ⊂ P . It then greatly helps, for
example, to see that Pk(−F/2π) necessarily vanishes for k = odd. N

Since it is a wasting of ink (electrons) to denote vanishing polynomials as
P2k+1(F ) :-), we rename those which can in principle survive as follows:

P2k(−F/2π) ≡ P2k(F ) =: pk(F ) (104)

so that now

det

(
λI− 1

2π
F

)
= λnp0(F ) + λn−2p1(F ) + λn−4p2(F ) + . . . (105)

Taking into account the explicit expressions of Pk(A) (see Appendix D.2) and
relations pk ↔ Pk ↔ Pk from (104), we get the first few Pontryagin classes :

p0(F ) = 1 (106)

p1(F ) = −1

2

(
1

2π

)2

TrF 2 (107)

p2(F ) = +
1

8

(
1

2π

)4

((TrF 2)2 − 2TrF 4) (108)

where, in more detail,

TrF 2 ≡ F a
b ∧ F b

a

(TrF 2)2 ≡ F a
b ∧ F b

a ∧ F c
d ∧ F d

c

TrF 4 ≡ F a
b ∧ F b

c ∧ F c
d ∧ F d

a

Notice, that
p1(F ) = 4-form on M
p2(F ) = 8-form on M
p3(F ) = 12-form on M

etc.

so that we need a sufficiently large dimensional base manifolds (at least dim M
= 4 for giving p1(F ) a chance, etc.) in order to profit from these invariants in a
non-trivial way.
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As we already mentioned above, integrals (over closed 4k-dimensional surfaces)
of Potryagin classes are always integers. They are known as Pontryagin numbers

pk :=

∫
S4k

pk(F ) = k-th Pontryagin number (109)

H Recall that Potryagin classes (and, consequently, Potryagin numbers) are
topological characteristics of vector (or corresponding principal) bundles and do
not depend on particular choice of connection in this bundle. So, the (standard)
notation pk(F ) (in which F is present) is a bit misleading; pk(E), where E →M is
the vector bundle, would be more pregnant. In this sense, the Euler class discussed
in Example 5.4.1 is a positive exception. N

5.3 Chern classes and Chern numbers
Now, consider a complex n-dimensional vector bundle. There is a (unique) principal
GL(n,C)-bundle π : P̂ → M behind it. Let ω̂ be any connection form on P̂ and
let Ω̂ be the corresponding curvature form. The latter is a gl(n,C)-valued 2-form,
so we can regard it as a n×n matrix with complex valued 2-form entries (i.e. each
entry is an expression α+ iβ, where both α and β are "ordinary" (= real valued)
2-forms).

Now, we can repeat, with minor modifications, the steps we did in the case of
Potryagin classes. We can introduce a smooth hermitean fibre metric. Then the
group which preserves this (stronger) structure is the (smaller) group of unitary
matrices, U(n), a subgroup of the original group GL(n,C). Then, there is a smaller
principal bundle π : P → M , which is only U(n)-bundle (it is a subbundle of
π : P̂ → M). The vector bundle endowed with the hermitean fiber metric is an
associated vector bundle for π : P →M . Again, we can introduce a new connection
in the new bundle, with connection form ω and curvature form Ω, both of them
being just u(n)-valued; in particular, we can regard the curvature form Ω as an
n×n anti-hermitean matrix with 2-form entries (i.e. it becomes an anti-hermitean
matrix after inserting two tangent vector arguments).

That is to say, we first consider, for real λ and anti-hermitean n× n matrix A,
determinant

det (λI+ iA) =

n∑
k=0

λn−kPk(iA) (110)

The polynomials Pk(iA) are real (in spite of the fact, that they are constructed
from a hermitean - i.e. complex - matrix iA).

H Indeed, complex conjugation of the l.h.s. gives

[det (λI+ iA)]∗ = det (λI+ iA)+ = det
(
λI+ (iA)+

)
= det (λI+ iA)
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Therefore also the r.h.s. is real and λ is real. N
Then we replace the matrix A by F/2π; we get

det

(
λI− 1

2πi
F

)
=

n∑
k=0

λn−kPk (iF/2π) ≡
n∑

k=0

λn−kck(F ) (111)

so that the Chern classes are given by the formula

ck(F ) = Pk (iF/2π) (112)

Since we already derived explicit expressions of first few polynomials Pk(A) (see
Appendix D.2), we get the first few Chern classes

c0(F ) = 1 (113)

c1(F ) =
i

2π
TrF (114)

c2(F ) =

(
i

2π

)2 (TrF )2 − TrF 2

2!
(115)

c3(F ) =

(
i

2π

)3 (TrF )3 − 3(TrF 2)(TrF ) + 2TrF 3

3!
(116)

and so on, where, in more detail,

TrF ≡ F a
a

TrF 2 ≡ F a
b ∧ F b

a

(TrF )2 ≡ F a
a ∧ F b

b

TrF 3 ≡ F a
b ∧ F b

c ∧ F c
a

(TrF 2)(TrF ) ≡ F a
b ∧ F b

a ∧ F c
c

Finally, on general grounds (see (88)) we know, that integrals of any of ck(F )
over 2k-cycles (2k-dimensional closed surfaces S2k) are topological invariants; they
are the celebrated Chern numbers

ck :=

∫
S2k

ck(F ) = k-th Chern number (117)

(of the bundle π : P →M or any of its associated complex vector bundle). Because
of the factor 1/2π in the definition (112), they may be shown to be integers.

Example 5.3.1: Consider a U(1)-connection (say, electromagnetism). Here the
curvature 2-form F is u(1) ≡ iR-valued, i.e.

F = F 1e1 = iF e1 = i, F 1 ≡ F (118)

and, since U(1) is abelian, F is given simply as

F = dA =
1

2
(∂µAν − ∂νAµ) dx

µ ∧ dxν (119)
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So F is just a 1× 1-matrix, now. Then, the defining equation (111) says

det

(
λI− 1

2πi
F

)
= λ− 1

2π
F =

1∑
k=0

λ1−kck(F ) = λ+ c1(F ) (120)

and, consequently, there is just a single nontrivial Chern number here, namely the
first Chern number

c1 :=

∫
S2

c1(F ) = − 1

2π

∫
S2

F ≡ − 1

2π

∫
S2

dA (121)

(Vanishing of higher Chern numbers is also formally visible from (115)), (116)),
since here TrF = F, TrF 2 = F 2 ≡ F ∧ F etc.)

Example 5.3.2: Consider a particular case of Example 5.3.1, when the base mani-
fold is two-dimensional (say, the sphere S2 or the torus T 2). If (x1, x2) are local
coordinates, then

A = A1dx
1 +A2dx

2 and F ≡ dA = (∂1A2 − ∂2A1)dx
1 ∧ dx2 (122)

So, the first Chern number (121) reduces to the surface integral

c1 = − 1

2π

∫
S2

(
∂A2

∂x1
− ∂A1

∂x2

)
dx1dx2 (123)

Example 5.3.3: Let |ψ(s)⟩ be a (normalized) quantum state, dependent on a
set of parameters sµ ≡ (s1, . . . , sn) (say, components of external magnetic field).
Then it turns out that

Aµ(s) := −i⟨ψ(s)|∂µψ(s)⟩ ∂µ ≡ ∂/∂sµ (124)

gives a U(1)-connection form A = iAµds
µ on the parameter space (playing the role

of the base space of the U(1)-bundle). It is the celebrated Berry connection.

H Because of ⟨ψ(s)|ψ(s)⟩ = 1, one easily checks that Aµ is real so that the
one-form A = iAµds

µ is indeed u(1)-valued. N
Its curvature 2-form is F = iF , where

Fµν(s) = −i(⟨∂µψ|∂νψ⟩ − ⟨∂νψ|∂µψ⟩) (125)

so that the first Chern number of the corresponding U(1)-bundle is

c1 := − 1

2π

∫
S2

F =
i

2π

∫
S2

⟨∂µψ|∂νψ⟩dsµ ∧ dsν (126)
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Example 5.3.4: On a two-dimensional base (here parameter) manifold, the for-
mula (126) simplifies to

c1 =
i

2π

∫
S2

(⟨∂1ψ|∂2ψ⟩ − ⟨∂1ψ|∂2ψ⟩)ds1ds2 (127)

Now if we rename the coordinates (s1, s2) 7→ (k1, k2), the integral (127) becomes
(it is exactly (123) for connection (124))

c1 =
i

2π

∫
S2

d2k

(⟨
∂ψ

∂k1

∣∣∣∣ ∂ψ∂k2
⟩
−

⟨
∂ψ

∂k2

∣∣∣∣ ∂ψ∂k1
⟩)

(128)

Expressions of this type, or those explicitly specified for the general closed surface
S2 being two-dimensional torus T 2

c1 =
i

2π

∫ 2π

0
dα

∫ 2π

0
dβ

(⟨
∂ψ

∂α

∣∣∣∣∂ψ∂β
⟩
−

⟨
∂ψ

∂β

∣∣∣∣∂ψ∂α
⟩)

(129)

play important role in papers which use the first Chern numbers in integer quantum
Hall effect, see for example [11], [12].

Example 5.3.5: Consider a SU(2)-connection. From (90) we see that

det (λI+ iF/2π) = det

(
λ+ iF 1

1 /2π iF 1
2 /2π

iF 2
1 /2π λ+ iF 2

2 /2π

)
= λ2+

iλTrF
2π

− detF

(2π)2
(130)

Here, the curvature 2-form F is su(2)-valued, i.e. it may also be written using Lie
algebra component forms (i.e. F j instead of F a

b )

F = F jEj = − i

2
F jσj ≡ − i

2

(
F 3 F 1 − iF 2

F 1 + iF 2 −F 3

)
≡

(
F 1
1 F 1

2

F 2
1 F 2

2

)
(131)

We see that

TrF = 0 detF =
1

4
(F 1 ∧ F 1 + F 2 ∧ F 2 + F 3 ∧ F 3) ≡ 1

4
F j ∧ F j (132)

So, in reality,

det (λI+ iF/2π) = λ2 − 1

(4π)2
F j ∧ F j !

= λ2 + λc1(F ) + c2(F ) (133)

This shows that the first Chern number always vanishes for SU(2)-connection and
that the second Chern number, given by explicit formula

c2 :=

∫
S4

c2(F ) = − 1

(4π)2

∫
S2

F j ∧ F j (134)

is the only nontrivial case of interest for SU(2)-connection.
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5.4 Euler class and Chern-Gauss-Bonnet theorem
In addition to determinant and trace, there is still another (useful) number which
may be associated with a square matrix A. Although it is not so generally known
as are determinant or trace, its properties are equally remarkable. It is the pfaffian
PfA. For even-dimensional (2m× 2m) and skew-symmetric matrix A it is defined
by the formula

Pf (A) =
1

2mm!
ε

2m︷ ︸︸ ︷
ab . . . cd Aab . . . Acd︸ ︷︷ ︸

m matrices

(135)

(see (5.6.8) in [2], where You can find also an alternative definition in terms of forms,
which is more convenient for studying general properties of pfaffian). Notice, that
it is a polynomial of order m of matrix elements (determinant of the same matrix
being polynomial of order 2m). For example, for m = 1 we get explicitly

Pf
(

0 a
−a 0

)
= a whereas det

(
0 a
−a 0

)
= a2 (136)

so that in this particular case

(Pf (A))2 = detA (137)

One can show, however, that this holds in general. Another important property of
pfaffian is, that

Pf (BTAB) = (detB) PfA (138)

Recall that for B ∈ SO(2m), i.e. for B a special orthogonal matrix, one has
BT = B−1 and detB = 1, so that for A ∈ o(n), the Lie algebra of the group, the
content of (138) may also be rephrased as

Pf (AdBA) = PfA (139)

Thus the pfaffian provides another Ad-invariant polynomial in the Lie algebra o(n)
(in addition to polynomials pk(A) given by the receipt (105) and leading to Pon-
tryagin classes) which can be used to construct a new characteristic class.

H Note, however, that a smooth choice of orientation in each fiber of a vector
bundle is needed in order to be able to reduce the group of the relevant principal
bundle further from O(2m), always possible because of the possibility to introduce
a (smooth) fibre metric, to SO(2m)). Such orientation, contrary to the fiber met-
ric, may not exist (it does not exist, for example, in the Möbius strip regarded as
a vector bundle over the circle). N

So, let us define the Euler class (of a real vector bundle with 2m-dimensional
fibre) as

e(F ) := Pf
(
F

2π

)
(140)
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In full details it gives

e(F ) =
1

(4π)mm!
ε

2m︷ ︸︸ ︷
ab . . . cd Fab ∧ · · · ∧ Fcd︸ ︷︷ ︸

m matrices

(141)

where Fab ≡ F a
b .

H

e(F ) = Pf
(
F

2π

)
=

(
1

2π

)m

Pf (F ) =
(

1

2π

)m 1

2mm!
ε

2m︷ ︸︸ ︷
ab . . . cd Fab ∧ · · · ∧ Fcd︸ ︷︷ ︸

m matrices

N
So, for the first two cases, m = 1 and m = 2 (i.e. for two and four-dimensional

fibers respectively) we get

e(F ) =
1

4π
ϵabFab ≡

1

2π
F12 (142)

e(F ) =
1

32π2
ϵabcdFabFcd ≡

(
1

2π

)2

(F12F34 − F13F24 + F14F23) (143)

Example 5.4.1: The tangent bundle π : TM →M is a real vector bundle over M .
So, for 2m-dimensional orientable M (when the fiber dimension of TM is 2m), one
can define Euler class of TM . However, since TM is canonically constructed from
M , the Euler class, in this particular case, is actually a (topological) characteristics
of M itself rather than of some bundle over M , as is the case usually. This is the
reason why it is often denoted as e(M) (= actually e(TM)).

The tangent bundle TM is an associated bundle for the frame bundle LM .
From the general scheme of this chapter it follows, that the Euler class can be ex-
pressed (by the formula (140)) in terms of any connection in LM . This is, however,
the common linear connection on M (well known, say, from general relativity or
continuum mechanics).

In order to distinguish this particular connection, we will denote its curvature
2-forms as Rab (instead of general Fab used for any connection). They are related
in a standard way (see section (15.6) in [2], where, however, the curvature 2-forms
are denoted as Ωab) with the Riemann (curvature) tensor Rabcd on M by

Rab =:
1

2
Rabcd e

c ∧ ed (144)

So, for 2m-dimensional oriented manifold M endowed with arbitrary linear con-
nection the Euler class of M is given by

e(M) =
1

(4π)mm!
ε

2m︷ ︸︸ ︷
ab . . . cd Rab ∧ · · · ∧Rcd︸ ︷︷ ︸

m matrices

(145)
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Example 5.4.2: For a two-dimensional manifold (m = 1) equation (145) gives

e(M) =
1

2π
KdA (146)

H
e(M) =

1

4π
εab Rab =

1

4π
εab εabdα =

1

2π
dα =

1

2π
KdA

See (15.6.10) and (15.6.13) in [2], also mentioned at the end of Appendix A.1. N
This is a remarkable observation, however, since the r.h.s. of (146) coincides

with the expression to be integrated in Gauss-Bonnet theorem (39). Put it differ-
ently, the good old Gauss-Bonnet theorem (39) may be rewritten as the statement∫

S
e(S) = χ(S) (147)

In words: The integral of the Euler class over a closed two-dimensional surface S
equals Euler characteristics of the surface.

What was to be expected here and what was not? Well, the Euler class, when
integrated over any closed surface, should necessarily result in a topological invari-
ant of the surface. This is the general idea behind (88). What particular invariant?
It is here where equation (147) comes to help. It says that the invariant turns out
to be the Euler characteristics of the surface.

Example 5.4.3: Now for any closed (and oriented) 2m-dimensional manifold M ,
integral of the Euler class e(M) over M itself is necessarily a topological invariant
of M (once more, because of (88)). What particular invariant? According to a
theorem due to Chern, it is (still, as for m = 1) the Euler characteristic of M , de-
fined, however, in terms of alternating sum of Betti numbers of M (see (29)). So,
the Chern-Gauss-Bonnet theorem (alternatively called generalized Gauss-Bonnet
theorem) holds: ∫

M
e(M) = χ(M) (148)

where
χ(M) := b0 − b1 + b2 − · · ·+ b2m (149)

H The theorem is clearly a generalization of the classical Gauss-Bonnet the-
orem. It was proved by Chern in 1945 (roughly houndred years after the original
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G-B theorem) without assuming the manifold to be a hyper-surface. For hyper-
surfaces, the result had been shown first by Allendoerfer and Weil in 1940, see
Wikipedia. N
Example 5.4.4: Standard Einstein-Hilbert action, from which gravitation field
equations may be derived, does not work for two-dimensional gravity.
Indeed: The action reads

S[g] ∝
∫
Rω ≡

∫
R
√

|g|d4x (150)

where R is the scalar curvature. In two dimensions, R becomes (up to a factor 2)
the Gaussian curvature, ω ≡

√
|g|d2x becomes dA, so we get

S[g] ∝
∫
KdA (151)

This is, however, nothing but the integral of the Euler class (see (146)). Upon a
change of connection, it acquires just an additive exact ("boundary") term (this
is true for any characteristic class, see (180)). So, under standard "variational"
conditions (no variation on the boundary) the integral is insensitive to a change
of connection. (Put another way, its variation with respect to the metric tensor
g vanishes and no equations of motion emerge from it; the action becomes "topo-
logical" in two dimensions).

48



A Appendix to Chapter 2

A.1 Derivation of the expression (19) in section 2.1
What we want to construct is a rotation-invariant and at the same time closed
(n− 1)-form in Rn. (Some working knowledge of forms is needed.)

Start with a standard (rotation-invariant) volume form in Rn

ω = dx1 ∧ · · · ∧ dxn (152)

Take its interior product with a vector field V

iV ω = V idSi dSi :=
1

(n− 1)!
ϵij...kdx

j ∧ · · · ∧ dxk (153)

This form is closed iff the divergence of the vector field vanishes.

d(iV ω) = 0 ⇔ divV = 0 (154)

H Indeed, from the definition of the divergence LV ω =: (divV )ω (see (8.2.1) in
[2]) and the Cartan magic formula LV = iV d+ diV we have

(divV )ω = LV ω = d(iV ω) + iV (dω) = d(iV ω)

since dω = 0 simply because of its (too high :-) degree. N
So wee need a rotation-invariant vector field with vanishing divergence. Try

the (clearly rotation-invariant) ansatz

V i(x1, . . . , xn) = f(r)xi (155)

then
divV = V i

,i = rf ′(r) + nf(r) = 0 for f(r) = k/rn

So the wanted (n− 1)-form in Rn is a constant multiple of the form

n · dS
rn−1

≡ r · dS
rn

≡ xidSi
rn

(156)

A.2 Explicit computation of Hp(S1)

Just a sketch. Since S1 is one-dimensional and connected, the only space to be
computed is H1(S1). Well, consider a closed 1-form β. If it is exact and β = df
for a smooth f on S1, then ∫

S1

β = 0

by Stokes theorem. It holds, however, also the converse of the statement: let∫
S1 β = 0, fix a point P and define the function f(s) =

∫ s
P β (it is only single

valued if
∫
S1 β = 0). Then (check) df = β. So∫

S1

β = 0 ⇔ β is exact (157)
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Now let α be any closed 1-form on S1 and let
∫
S1 α = k ̸= 0. Let α̂ be another

such form. Then
∫
S1(α̂− α) = 0, so α̂− α = dχ for some smooth χ and therefore

the classes coincide
[α̂] = [α] (158)

So there is a bijection ∫
S1

α ↔ [α] (159)

(actually a linear isomorphism) between (linear space of) real numbers and (linear
space of) equivalence classes of closed 1-forms. Therefore H1(S1) = R.

Do there exist closed one-forms for each k? Take the one-form ”dφ” (i.e. (13)
restricted to the unit circle). It is closed and its integral over S1 is clearly 2π. So,
its k/2π multiple is closed and corresponds to k. We see, that any closed one-form
with integral over S1 equal to k may be written as

α =
k

2π
”dφ” + dχ (160)

for some smooth function χ.

B Appendix to Chapter 3

B.1 Derivation of formula (52) in section 3.2.1
Consider a loop γ, which is the boundary of a two-dimensional domain S ⊂ (M, g),
γ = ∂S. The domain is expected to be a coordinate patch. Apply the standard
Gramm-Schmidt procedure: first normalize the coordinate field ∂1 to unity, thus
obtaining e1 and then construct the second field e2 such that (e1, e2) becomes an
orthonormal right-handed frame. So, within the entire domain S (including its
boundary γ = ∂S), there is a smooth orthonormal frame field ea.

With respect to the frame, there are well defined 1-forms of (metric and sym-
metric) connection ωa

b on the whole S. As usually (see 15.6.10 in [2]), complete
information about ωa

b is actually present in a single 1-form α defined by the
parametrization ωab = ϵabα. In the same way, all information about curvature
2-forms Ωa

b is in a single 2-form dα, since Ωab = ϵabdα.
Now

γ̇ = cos θ e1 + sin θ e2
w = − sin θ e1 + cos θ e2

and a simple computation gives

a = (θ̇ − ⟨α, γ̇⟩) w
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H Since

a ≡ ∇γ̇ γ̇
= ∇γ̇(cos θ e1 + sin θ e2)

= −θ̇ sin θ e1 + cos θ⟨ω2
1, γ̇⟩e2 + θ̇ cos θe2 + sin θ⟨ω1

2, γ̇⟩e1
= −θ̇ sin θ e1 − cos θ⟨α, γ̇⟩e2 + θ̇ cos θe2 + sin θ⟨α, γ̇⟩e1
= (θ̇ − ⟨α, γ̇⟩) (− sin θ e1 + cos θ e2)

= (θ̇ − ⟨α, γ̇⟩) w

N
Comparison with the definition (45) gives the expression

k = θ̇ − ⟨α, γ̇⟩

from which
dθ = kds+ ⟨α, γ̇⟩ds

= kds+ γ∗α

This dθ may be regarded as an increment of the angle θ corresponding to a small
step of the length ds along the loop (boundary). So this is the angle of rotation of
the velocity vector. When traversing the whole loop, the resulting net angle is the
sum (integral) of all those small pieces

[θ]	 =

∮
∂S
dθ =

∮
∂S

(kds+ γ∗α) =

∮
∂S
kds+

∫
S
dα =

∮
∂S
kds+

∫
S
Ke1 ∧ e2

where the definition (in Cartan language) of the Gaussian curvature K was used

dα =: Ke1 ∧ e2 ≡ KdA (161)

(see 15.6.10 and 15.6.13 in [2]; K is a function on the surface, serving as a factor
between the curvature 2-form dα and the canonical (metric) area 2-form e1 ∧ e2).
So, the net angle of rotation of the velocity vector may be expressed as

[θ]	 =

∮
∂S
kds+

∫
S
KdA (162)

B.2 Derivation of formula (62) in section 3.3.1
The computations are similar to those from Appendix B.1.

First we concentrate on rotation of γ̇i about the gradient field ∇f defined in
Y . On i-th loop γi = ∂Ri introduce the angle θi between the (unit) vector γ̇i and
the frame vector e1 (normed gradient field ∇f), i.e. set

γ̇i = cos θi e1 + sin θi e2
wi = − sin θi e1 + cos θi e2
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(wi is such that (γ̇i, wi) represent a right-handed orthonormal frame field on the
loop γi). Then

ai = (θ̇i − ⟨α, γ̇i⟩) wi

and
dθi = (k)ids+ γ∗i α

(Here, α is the connection form w.r.t. the frame (e1, e2) defined in Y .) So, for the
net angle of rotation (winding number, when divided by 2π) we get

[θi]	 =

∮
γi

(k)ids+

∮
γi

α (163)

(just mimic the derivation of (52) performed in Appendix A.1). Now realize that
the totality of γi provides the boundary of Y , more precisely 9

−∂Y =
∑
i

γi

So, when all equations (163) are summed up, we get∫
Y
dα =

∑
i

∮
γi

(k)ids−
∑
i

[θi]	

i.e. ∫
Y
KdA =

∑
i

∮
γi

(k)ids−
∑
i

[θi]	 (164)

Ok. Now move to (the interior of) the disks Ri. Consider the i-th of them. Its
boundary is γi = ∂Ri. Fix arbitrary orthonormal right-handed frame field (ê1, ê2)
inside Ri. Introduce the angle ϕi between the i-th velocity vector γ̇i and ê1, i.e.
set

γ̇i = cosϕi ê1 + sinϕi ê2
wi = − sinϕi ê1 + cosϕi ê2

If α̂ is the connection form w.r.t. this frame, then the counterpart of (163) is

[ϕi]	 =

∮
γi

(k)ids+

∮
γi

α̂

and since γi = ∂Ri, the last term may also be rewritten with the help of Stokes
formula, producing a 2-form

dα̂ = dα ≡ KdA

under the integral. Notice the first equality sign, so that it is the same 2-form
KdA, which is present in the integral (164). So,∫

Ri

KdA = [ϕi]	 −
∮
γi

(k)ids

9Recall that S = Y +
∑
Ri and ∂S = 0.
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H The formKdA lives on the whole surface S. On Y , on the disks, and even right
in critical points of f (the metric, and consequently the connection, has nothing to
do with the function f :-). It is, however, expressed w.r.t. different frame fields in
different parts of S. In general (see (15.6.2) and (15.6.3) in [2]), under the change
of frame e 7→ eB, connection forms transform as ω 7→ B−1ωB + B−1dB and the
corresponding curvature forms transform as Ω 7→ B−1ΩB. Here we live on a 2-
dimensional manifold and we use orthonormal frames, so that B ∈ SO(2). We can
standardly parametrize B in terms of a single angle χ, the latter being a smooth
function in the disk Ri Using ωab = ϵabα and Ωab = ϵabβ, this gives α 7→ α + dχ
and β = dα 7→ d(α+ dχ) = β. Therefore

dα̂ = β̂ = K̂ê1 ∧ ê2 = β = Ke1 ∧ e2 K̂ = K

So, even though the connection form depends on the choice of a frame field, the
curvature form does not (in this particular case). And since neither does the area
element,

ê1 ∧ ê2 = e1 ∧ e2 ≡ dA

the same is true for the Gaussian curvature K. N

C Appendix to Chapter 4

C.1 A simple example of a form of type ρ

Let
Ra : x 7→ x+ a

be the action of G = (R,+) on M = R. Then for the two functions sinx and cosx
we have

cos(x+ a) = cos a cosx− sin a sinx sin(x+ a) = sin a cosx+ cos a sinx

i.e.

R∗
a

(
cosx
sinx

)
=

(
cos a − sin a
sin a cos a

)(
cosx
sinx

)
≡ ρ(−a)

(
cosx
sinx

)
(165)

for the 2× 2 matrix representation

a 7→ ρ(a) :=

(
cos a sin a
− sin a cos a

)
(166)

of the group G = (R,+). So the two functions are actually (the only) members of
a secret society created in order to stand against a common enemy - the action of
the group (by pull-back). None of them is able to resist the cruel enemy separately.
However, as a pair, they are already strong enough. As a matter of fact, as we can
see from the formula (165), the group is not a tittle able to harm the pair. The pair
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spans an invariant two-dimensional sub-space (w.r.t. the action of the group) in
the infinite-dimensional space of all smooth functions and each attack of the group
just results in a simple defence manoeuvre performed by the pair - creation of a
new linear combination in the same sub-space.

Arbitrary element of the subspace is of the form(
cosx
sinx

)
= cosx

(
1
0

)
+ sinx

(
0
1

)
= f1(x)E1 + f2(x)E2 = f iEi ≡ f (167)

and the result (165) may be written neatly as

R∗
af = ρ(−a)f (168)

H In this particular case, the basis is usually denoted as E1 = 1, E2 = i so
that

cosx E1 + sinx E2 = cosx+ i sinx ≡ eix

and (168) is better known in the form

ei(x+a) = eiaeix : −)

N
The general case includes
- p-forms (not just functions = 0-forms)
- Lie group G (not just G = (R,+))
- representation ρ of G in vector space V (not just R2)
So, a general formula for a p-form of type ρ reads

R∗
gα = ρ(g−1)α α = αiEi Ei ∈ V (169)

Here, the secret society consists of the n-tuple of p-forms (α1, . . . , αn).

C.2 Matrix versus Lie algebra indices
Perhaps two types of indices (matrix indices versus Lie algebra indices) might be
potentially a source of confusion. The field strength form F is Lie algebra valued,
so F = F iEi, where Ei is a basis of the Lie algebra G. However, for matrix Lie
groups, elements of the Lie algebra are matrices as well. So, Ei are matrices, too.
If we use the natural basis Ea

b for matrices (1 at a-th column and b-th row, 0
elswhere), then

Ei = (Ei)
b
aE

b
a (Ea

b )
c
d := δadδ

c
b (170)

so
F = F a

b E
b
a = F i(Ei)

b
aE

b
a (171)
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So, there are two types of components 10 of the field strength, F a
b and F i (the same

is true for gauge potentials) and they are related as

F a
b = F i(Ei)

b
a (172)

Take, as a simple (yet important) example, group SU(2). Its Lie algebra has a
basis

Ej = − i

2
σj (173)

so that

F = F jEj = − i

2
F jσj ≡ − i

2

(
F 3 F 1 − iF 2

F 1 + iF 2 −F 3

)
≡

(
F 1
1 F 1

2

F 2
1 F 2

2

)
(174)

D Appendix to Chapter 5

D.1 Why [w(Ω, . . . ,Ω)] does not depend on the choice of
connection

In order to see this, one has to study first, how w(Ω, . . . ,Ω) is sensitive to a change
of ω.

There are infinitely many connections on a given principle fibre bundle. Let ω
and ω1 be any two of them. Then, their difference α := ω1 − ω satisfies

R∗
gα = Ad g−1α ⟨α, ξX⟩ = 0 (175)

So α is a horizontal 1-form of type Ad. Conversely, if ω is a connection form and
α is a horizontal 1-form of type Ad, then their sum is a connection form as well.
This means, that all connection forms on P constitute an affine space.

Consider the "linking line" between the two connection forms ω and ω1 and
the corresponding "linking line" between the curvature forms Ω and Ω1

ωt := ω + tα Ωt := dωt +
1

2
[ωt, ωt] 0 ≤ t ≤ 1 (176)

(For each t, ωt is a connection form and Ωt is its curvature form. So we have one-
parameter family of connection forms and the corresponding family of curvature
forms.) Now, the object of interest is the t-dependent 2k-form on P , w(Ωt, . . . ,Ωt).
The most interesting fact about this form is that the derivative with respect to the
parameter t is an exact form 11

d

dt
w(Ωt, . . . ,Ωt) = d (w(α,Ωt . . . ,Ωt)) ≡ dβ̂t (177)

10Of course, neither of them is related to 2-form-indices µν. In full, F is expressed as
F = (1/2)F i

µνdx
µ ∧ dxν

11It’s proof is a not so hard routine computation.
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And since β̂t is G-invariant (both α and Ωt are of type Ad and w is Ad-invariant)
and at the same time horizontal (both α and Ωt are horizontal), its pull-back onto
M does not depend on the choice of a section and we get a well-defined form βt on
M . So, we get a similar (important) equation on M :

d

dt
w(Ft, . . . , Ft) = dβt (178)

Performing integration 12 ∫ 1
0 dt (and making use of Newton-Leibniz formula) we

get

w(F1, . . . , F1)− w(F, . . . , F ) = d

(∫ 1

0
dt βt

)
≡ dβ (179)

But the equation we obtained

w(F1, . . . , F1) = w(F, . . . , F ) + dβ (180)

shows, that the choice of a different connection within the same principal bundle
π : P →M results in just adding an exact form to the closed 2k-form w(F, . . . , F )
on M . So, the forms w(F, . . . , F ) and w(F1, . . . , F1) are cohomological and they
induce the same cohomological class

[w(F1, . . . , F1)] = [w(F, . . . , F )] ∈ H2k(M) (181)

D.2 Computation of the relevant determinant in (101)
Consider, for any n× n real matrix A and real number λ, the determinant

det(A+ λI)

We would like to express coefficients standing by powers of λ

det (A+ λI) =
n∑

k=0

λn−kPk(A) (182)

Recall a general formula for determinant of a matrix B (see (5.6.5) in [2])

detA = δc...da...b B
a
c . . . B

b
d︸ ︷︷ ︸

n matrices

or in brief detA = δ(n) B . . . B︸ ︷︷ ︸
n matrices

where n-delta is defined as follows

δa...bc...d = δa[c . . . δ
b
d] ≡ δ[ac . . . δ

b]
d ≡ δ

[a
[c . . . δ

b]
d]

12Here, we are not "integrating forms" in the sense usual for forms, since the variable
t is a parameter. What we do is actually nothing but a continuous "linear combination".
At the end we still have a form rather than a number.
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Then
det(A+ λI) = δ(n) (A+ λI) . . . (A+ λI)︸ ︷︷ ︸

n matrices

=
∑n

k=0 λ
n−k

(
n
k

)
δ(n)A . . . A︸ ︷︷ ︸

k

n−k︷ ︸︸ ︷
I . . . I

so that

Pk(A) =

(
n

k

)
δ(n)A . . . A︸ ︷︷ ︸

k

n−k︷ ︸︸ ︷
I . . . I

Unit matrices at the end produce (n− k) contractions of n-delta, in indices

δc...du...va...br...s δ
r
u . . . δ

s
v = δc...du...va...bu...v =

1(
n
k

)δc...da...b or in brief δ(n)

n−k︷ ︸︸ ︷
I . . . I =

1(
n
k

)δ(k)
(for the last equality, see (5.6.4) in [2]), so that

Pk(A) = δ(k)A . . . A︸ ︷︷ ︸
k

= δc...da...b A
a
c . . . A

b
d︸ ︷︷ ︸

k

= δc[a . . . δ
d
b]A

a
c . . . A

b
d︸ ︷︷ ︸

k

= Aa
[a . . . A

b
b]︸ ︷︷ ︸

k

Thus we obtained a simple final expression

Pk(A) = Aa
[a . . . A

b
b]︸ ︷︷ ︸

k

(183)

In this way we can compute, from the general formula (183), the following
concrete expressions:

P0(A) = 1 (184)
P1(A) = TrA (185)

2!P2(A) = (TrA)2 − TrA2 (186)
3!P3(A) = (TrA)3 − 3(TrA2)(TrA) + 2TrA3 (187)
4!P4(A) = (TrA)4 − 6TrA2(TrA)2 + 3(TrA2)2 (188)

+8(TrA3)TrA− 6TrA4 (189)

H As an example,

P2(A) = Aa
[aA

b
b] =

1

2
(Aa

aA
b
b −Aa

bA
b
a) =

1

2
((TrA)2 − Tr (A2))

N

57



Notice, that for skew-symmetric matrices, AT = −A (and, consequently, TrA =
0 = TrA3), the results simplify to

P0(A) = 1 (190)
P1(A) = 0 (191)

2!P2(A) = −TrA2 (192)
3!P3(A) = 0 (193)
4!P4(A) = 3(TrA2)2 − 6TrA4 (194)

For an alternative method of computation, using eigenvalues of matrices, the reader
is referred to [8].
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