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1 Smooth manifolds

1.1 Manifolds

Local (as opposed to global) coordinates 2%, change of coordinates z*' (z) on overlaps
of domains, charts, atlas, configuration spaces in mechanics as manifolds (double
plane and spherical pendulum), (smooth) mapping of manifolds, injective, surjec-
tive and bijective mappings, coordinate presentation y*(x) of a mapping of mani-
folds, a curve v on a manifold M (as a mapping

vy:R—>M

of manifolds), its coordinate presentation z*(t), a function 7 on a manifold M (as
a mapping
v: M —R

of manifolds), its coordinate presentation 1 (z*)

1.2 Vectors and vector fields on manifolds

Curves tangent at a point, tangency as an equivalence relation v, ~ 72, equivalence
class [y] (of curves; 7 is a representative), linear combination of such equivalence
classes, directional derivative, algebra F (M) of functions on M, four (equivalent)
definitions of a vector in m € M (vector as: equivalence class of curves, derivation
of algebra of functions plus Leibniz rule, expression a'd;|., set of numbers a’), the
tangent space T,,M at m € M - the (linear) space of vectors in m € M (in any
of the four versions), vector field V as a first order differential operator V*(z)d;



transformation law for its components Vi(z) (from Vid; = V¥'y), integral curve
of a vector field, equations

for finding integral curves, flow
oM —-> M
of a vector field,

m =7(0) = y(t) = ®4(m)

1.3 Tensors in linear algebra

Finite dimensional linear space L, the dual space L*, a basis e, € L, the dual basis
e® € L*, defined by
<ea, eb) = 51? )

tensor of type (p,q) in L (as a multi-linear map), identification of well known
examples, components t%% space T4 (L) of tensors of type (p,q) in L, various
roles played by the same tensor, tensor product ® and its properties, the basis

R Re® - ®eq
in T (L) induced by a basis e, in L, the unit tensor
e’ ®eq <> Op

metric tensor
b
9= gape” ®e’,

the inverse metric tensor (co-metric)

9% @ ey
lowering of indices
b:L— L* (v = vg = gap?®) ,
raising of indices
f:L*—> L (g = o == g%ay) |

contraction operation as a mapping

C:TP(L) — TP\ (L)



1.4 Tensors and tensor fields on manifolds

A tensor in m on M: take T,,M as L from linear algebra, the space T (M) of
tensor fields of type (p,q) on M, the gradient di of a function v as a covector field
on M, dz' as the dual basis to ;, the (coordinate) basis

dr' @+ @dr! @0 @ -+ ® 9,

in 77 (M) (on a coordinate patch) induced by a (coordinate) basis d; for vector
fields, metric tensor g = g;jdz* ® dx? on a manifold, Riemannian manifold, trans-
formation of components under change of coordinates from

g = gijda’ @ da? = gypda” ® dz’’
and ‘ '
dz" = J} da* |

where ‘ ‘ '
Ji (z) = 0x" JOx?

is the (always square) Jacobi matrix of the transformation of coordinates, the
Fuclidean metric tensor in the plane
9ij = 0ij ,
ie.
g=dr@dr+dy@dy =dr®dr+r’de @ dp ,
the length functional
to to to —
ol |¥|dt = Vg, )dt = / Wdt )
t1 t1 t1

the gradient as a vector field
Vip = gdy

l.e.

(Vi)' = g" 0
1.5 Mapping of tensors induced by mapping of mani-
folds

Push-forward
v fyv

of a vector in € M to a vector in f(z) € N (induced by f: M — N), explicitly

iy s (T,



or, on the coordinate basis,
fo 1 0i— fu0i = J0,

where

I (x) = 0y (x) /02

is the Jacobi matrix (in general non-square) of the mapping f, pull-back of a
function ¥ on N, the result being a function

[ffho=vof
on M (in coordinates ¥ (y) — ¥ (y(x))), pull-back
a— ffa

of a covector in f(x) € N to a covector in x € M (induced by f: M — N), given
as

(ffa,v) = (a, fuv)

on the coordinate basis
dy® — f*dy® = dy*(x) = Jidz" |

where

Ji(z) = 0y () /0a

is the Jacobi matrix of the mapping f (the same as for push-forward of vectors),
an alternative (equivalent) formula is

F(aa(y)dy®) = aaly(e))dy*(x) = aa(y(2))Ji (z)dz’

pull-back of a metric tensor - the induced metric tensor, its example in Lagrangian
mechanics, "curved" and "flat" torus, general properties of pull-back - behavior on
tensor product and linear combination, commutation with taking of the gradient
(f*d = df* on functions)

1.6 Lie derivative, isometries, Killing vectors

Pull-back of a metric tensor w.r.t. the infinitesimal flow generated by a vector
field V', comparison of a tensor in x with that pulled-back from ®.(x), definition
of Lie derivative, component computation of Lie derivative, general properties of
Lie derivative, isometry = such

f:M—-M

which preserves length of any curve, one-parameter group (flow) of isometries,
Killing equations
EVg =0 ;



commutator of vector fields
V.W],

Lie algebra of solutions of Killing equations, explicit solution for the common plane,
explicit solution for (pseudo)-Euclidean spaces, Lorentz algebra (rotations and
boosts = hyperbolic rotations = pseudo-rotations), Poincaré algebra (rotations,
boosts and translations), strain tensor (small deformations of continuous media)

2 Differential forms

2.1 Volumes of parallelepipeds and forms in linear al-
gebra

Parallelepiped associated with several vectors, degenerate parallelepiped, a p-form
in L, anti-symmetrization operation

big = i g s

the wedge product
alp

(bilinear, associative, graded commutative), basis forms
PN NE,

expression
a=(1/pag. pe® A---Ae°

of a general p-form, how it helps in practical wedge multiplication, interior product
Ty,

its nice properties

2.2 Differential calculus of forms on manifolds

Comma operation does not work as tensor operation, it works as an operation on
forms (when followed by square brackets), a good idea

i 7= i k] 5

exterior derivative
. +1
d: QP — QP

it is nilpotent
dd=0



and it obeys graded Leibniz rule
dlaNB)=daA B+ (—1)Pandp
for a = a p-form, Cartan’s (magic) formula
Ly = diy +ivd ,

Cartan’s formulas for
da(U,V,...),

Lie derivative commutes with the exterior one
[Ly,d =0,

formula
[Lv,iw] = iv,w

2.3 Closed and exact forms

Closed form - such « that
da=0,

exact form - such « that

a=dg

for some S (if it exists, f is called potential), the freedom

B—B+d(...),

exact = closed always holds because of dd = 0, closed = exact not always holds,
but it does hold locally, e.g. in a coordinate patch (more detailed information
about the relation between closed and exact forms on M is given by "deRham
cohomology" theory)

2.4 Forms on manifolds - integral calculus

An intuitive picture why exactly differential forms are integrated, Stokes formula

/ a:/da,
aD D

some special cases (Newton-Leibniz formula, area under the graph of a function,
Green’s formula, integration by parts), the formula

for- L



3 Hamiltonian mechanics and symplectic mani-
folds

3.1 How Poisson tensor emerges
Hamiltonian equations
&% = 0H/0p, Pa = —OH /0x®

as linear relations between dots of (all) coordinates and (all) components od dH,
most easily visible when (2%, p,) coordinates are relabeled to A A=1,...2n, we
get

¢t = (dH)pPP4

AB 0 -1
P <—><1 0),

it defines (skew-symmetric) Poisson tensor P of type (g), which raises index on the
gradient dH. Poisson bracket is then

{f,9} =P(df,dg)

with

and Hamilton equations read

Y=Vy Ve =P(dH, .)

3.2 How symplectic form emerges

Poisson tensor P <+ PAB of type (3) defines a (skew-symmetric) tensor w <> wap
of type (g) as its "inverse" via

PACLUCB = —5g ,
o 0 -1
WAB 1 0 ’

w = (1/2)wapdz? A dzP = dp, A dz®

so we obtain a 2-form

which is closed (dw = 0) and non-degenerate (det wap # 0); any closed and non-
degenerate 2-form is called symplectic form; Hamilton equations read

Y =Vy iv,w = —dH



3.3 Hamiltonian fields and Poisson brackets
Hamiltonian field V; generated by a function f is defined either as
Vi =P(df, .)

(i.e. via raising of index on df with the help of P), or, in terms of the symplectic
form, as V; obeying
ivfw = —df

(definitions are, for non-degenerate P, equivalent); Poisson brackets may be ex-
pressed in several ways, too, as

{f,9} = Pdf,dg) = w(Vy, Vg) = Vig = =Vo f ;
closure of Hamiltonian fields w.r.t. the commutator:
Vi Vol = Viggy s
Jacobi identity for Poisson bracket is equivalent to
dw=0
(i.e. to the fact that w is closed), invariance of w w.r.t. (any) Hamiltonian flow

Ly

w=0,

comparison with isometries and Killing vectors

3.4 Symmetries and conserved quantities (no action in-
tegral)

What is a symmetry of a Hamiltonian triple (M, w, H), Cartan symmetries, exact
Cartan symmetries, i.e. Hamiltonian fields Vy, whose generators f obey

and the bijection
Vf — f

onto conserved quantities f, new solutions
7s(t) = DL (v(1))
from an old solution y(¢) and a symmetry

Vf(—)q)g



3.5 Canonical transformations

Darboux theorem (canonical "appearance" of a closed 2-form), its manifestation in
symplectic case, transformations of coordinates which preserve canonical "appear-
ance" of w,

dpa N dq* = dP, N dQ® = dP,(q,p) N dQ"(q, p)

their manifestation on the appearance of Hamilton equations, two ways of explicit
work with canonical transformations (generators and generating functions)

3.6 Poincaré integral invariants

A form invariant w.r.t. to a vector field, consequences for their integrals; on a
phase space,
w wAw wWAwAw

are forms invariant w.r.t. any Hamiltonian field, Poincaré (absolute) integral in-

/w /w/\w /w/\w/\w cee
DQ D4 DG

Liouville theorem as a particular case, canonical Liouville volume form

variants

Q=wA--ANw,

Poincaré (relative) integral invariants

f@ 7{9/\(4) 7{0/\w/\w e
c1 c3 C5

0 = p,dx® df = w OJcy =0cg=---=0

where

3.7 Volume form and (the corresponding) divergence of
a vector field

Volume form - a non-zero n-form on n-dimensional manifold, coordinate expression
Q= f(x)dz! Ndzt A - Ada™

divergence defined as
LyQ=:(divV)Q,

its geometrical meaning (it measures how volumes are changing due to the flow
of V'), divergence-less fields (the flow preserves volumes), examples - metric diver-
gence, symplectic divergence (Hamiltonian fields are divergence-less)

10



3.8 Algebra of observables of classical mechanics

Pure states (m € (M,w)) and observables (f € F(M)) in Hamiltonian mechanics,
prediction of the result of measurement of an observable in a state (f(m) € R),
time development of pure states

m— & (m) ,
(Schrodinger-like picture), time development of observables
[ fe=0f,
(Heisenberg-like picture), equivalence of the two pictures
f(@(m)) = (27 f)(m) ,

two products in the algebra F(M) (fg and {f,g}), Hamiltonian flows preserve
whole structure of the algebra, more general states (probabilistic distributions p
on M), their time evolution

p=pri=9p,

equivalence of the two pictures

[ @wra=[ peine.
M M
equations of motion

O ft = {H, ft} Opt = —{H, Pt}

3.9 Cotangent bundle 7T*M as a phase space

Construction of T*M from M (in our context, construction of the phase space T M
associated with a configuration space M), canonical coordinates (2%, p,), canonical
(exact) symplectic form on T M, fiber bundle, base space, total space, fiber over
x, projection

3.10 Time-dependent Hamiltonians - what changes are
needed

Extended phase space, Hamilton equations in the form
g =0 8Y=0,
Hamilton equations in the form
iydo =0,
where

do = ag A B = d(padz® — Hdt)

11



3.11 Action integral, Hamilton’s principle

How action integral for Hamiltonian mechanics can be constructed:

how one can easily see that the action is stationary on solutions of Hamilton equa-
tions, the difference between endpoints fixation in Lagrangian and Hamiltonian
cases

3.12 Symmetries and conserved quantities (based on ac-
tion integral)

If the infinitesimal flow ®. of a vector field £ on extended phase space does not
change the action, i.e.

S[®a] = Shl

we speak of a symmetry of the action; then it turns out that the function
10

is the corresponding conserved quantity; e.g. for

§=0
we get that it is a symmetry if
OH =0
and that
ico = —H

(so, the time translation is a symmetry if 9;H = 0 and the corresponding conserved
quantity is H itself, the energy)

3.13 Poincaré-Cartan integral invariants

On extended phase space, integrals of
o o Ndo o Ndo Ndo RN

over any two closed surfaces (i.e. dc = 0) of (corresponding) odd dimension en-
circling the same tube of trajectories (solutions of Hamilton equations) are equal
(relative Poincaré-Cartan integral invariants, integrals

fa j(l{a/\da ?{U/\da/\da cee
c1 c3 Cs5

12



where
0 = podx® — Hdt ;

if the surfaces lie in hyper-planes of constant time, we return to relative Poincaré
integral invariants); similarly, integrals of

do do N do do Ndo A do

over any two domains of (corresponding) even dimension connected by trajectories
are equal, absolute Poincaré-Cartan integral invariants = integrals

do do A do do N do A do
Do Dy D¢

4 Field theory in the language of forms

4.1 The Hodge star operator
Metric volume form (fixation of f(z) in
Q= f(x)dx' Nda? A - ANda™),
% as a linear isomorphism from p-forms to (n — p)-forms, it holds

sk = +1

Important scalar product on forms

(@)= [ anss

From
dlaAN*8) =daAxB+NaANdx [
one gets
(da, B) = (o, 03) +/ a A x3
oD
where

§:=x"1dxn
If the surface integral vanishes, we obtain

dt =9¢

13



4.2 Forms in E? and how vector analysis drops out

In E3, the most general 0,1,2 and 3-forms read
f A.dr B.dS = *(B.dr) hdV = xh ,

so all of them are parametrized either by scalar (0- and 3-forms) or by vector (1-
and 2-forms) fields, therefore the exterior derivative

Q0 4ol 402403

produces effectively three differential operators, of type scalar — vector, vector —
vector and vector — scalar, respectively; they are just well-known grad, rot=curl
and div operations from vector analysis; then (the general form-version of the)
Stokes theorem gives standard integral identities relating integrals of neighboring
dimensions

4.3 Forms in Minkowski space E'?3

In EY3, each form may be decomposed as

~

a=dtNs+T7

where § and 7 are "spatial", i.e. they do not contain dt; that’s why spatial forms
may be expressed as forms in E3, but with ¢ present in components, e.g. a 2-form
reads

a =dt Aa.dr + b.dS

with
a(t,r) b(tr);

similarly, operations on forms can be expressed through "spatial" operations; in
particular

A~

doa = d(dt A3+ 7) = dt A (O — d8) + dF

and
s = *(dt NS+ 7) =dt N (37) + %75 ;

e.g. on 2-forms we get
d(dt N a.dr + b.dS) = dt A (O;b — curla).dS + (divb)dV

and
*(dt A a.dr + b.dS) = dt A b.dr — a.dS

14



4.4 Maxwell equations in terms of forms

Introducing
F =dt ANE.dr — B.dS

we get
dF = dt A\ (—0;B — curl E).dS + (—div B)dV

so that the homogeneous half of Maxwell equations simply reads
dFF =0;

now

«F = x(dt A E.dr — B.dS) = dt A (—B).dr — E.dS

and so
d+ F =dt N (—0E + curl B).dS — (div E)dV

Therefore the inhomogeneous half of Maxwell equations reads
d«F=—-J

where

J :=dt N (=j.dS) + pdV
is the source 3-form. Equivalently,
O0F = —j
where

Ji=xJ

4.5 Some immediate consequences

Existence of 4-potential:
dF =0 = F=dA
for some 1-form A. Gauge freedom
A~ A=A+ dy
(Then F’ :=dA’ = dA = F.) Consistency of d * F' = —J needs
dJ =0

(= the continuity equation, local conservation of the charge)

15



4.6 The action formulation of Maxwell equations

From

S[A] = —%(dA,dA> (A,

we get
S[A + ea] := S[A] + e(—(a,5dA + j))

So the variation principle gives the equation

SdA = —j

When denoting
F=dA

we get (both halves of) Maxwell equations

dF =0 §F = —j
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