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1 Smooth manifolds

1.1 Manifolds

Local (as opposed to global) coordinates xi, change of coordinates xi
′
(x) on overlaps

of domains, charts, atlas, con�guration spaces in mechanics as manifolds (double
plane and spherical pendulum), (smooth) mapping of manifolds, injective, surjec-
tive and bijective mappings, coordinate presentation ya(x) of a mapping of mani-
folds, a curve γ on a manifold M (as a mapping

γ : R →M

of manifolds), its coordinate presentation xi(t), a function ψ on a manifold M (as
a mapping

ψ :M → R

of manifolds), its coordinate presentation ψ(xi)

1.2 Vectors and vector �elds on manifolds

Curves tangent at a point, tangency as an equivalence relation γ1 ∼ γ2, equivalence
class [γ] (of curves; γ is a representative), linear combination of such equivalence
classes, directional derivative, algebra F(M) of functions on M , four (equivalent)
de�nitions of a vector in m ∈M (vector as: equivalence class of curves, derivation
of algebra of functions plus Leibniz rule, expression ai∂i|x, set of numbers ai), the
tangent space TmM at m ∈ M - the (linear) space of vectors in m ∈ M (in any
of the four versions), vector �eld V as a �rst order di�erential operator V i(x)∂i,
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transformation law for its components V i(x) (from V i∂i = V i′∂i′), integral curve
of a vector �eld, equations

ẋi = V i

for �nding integral curves, �ow

Φt :M →M

of a vector �eld,
m ≡ γ(0) 7→ γ(t) =: Φt(m)

1.3 Tensors in linear algebra

Finite dimensional linear space L, the dual space L∗, a basis ea ∈ L, the dual basis
ea ∈ L∗, de�ned by

⟨ea, eb⟩ = δab ,

tensor of type (p, q) in L (as a multi-linear map), identi�cation of well known
examples, components ta...bc...d, space T

p
q (L) of tensors of type (p, q) in L, various

roles played by the same tensor, tensor product ⊗ and its properties, the basis

ea ⊗ · · · ⊗ eb ⊗ ec ⊗ · · · ⊗ ed

in T p
q (L) induced by a basis ea in L, the unit tensor

ea ⊗ ea ↔ δab ,

metric tensor
g = gabe

a ⊗ eb ,

the inverse metric tensor (co-metric)

gabea ⊗ eb ,

lowering of indices

♭ : L→ L∗ (va 7→ va := gabv
b) ,

raising of indices
♯ : L∗ → L (αa 7→ αa := gabαb) ,

contraction operation as a mapping

C : T p
q (L) → T p−1

q−1 (L)
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1.4 Tensors and tensor �elds on manifolds

A tensor in m on M : take TmM as L from linear algebra, the space T p
q (M) of

tensor �elds of type (p, q) onM , the gradient dψ of a function ψ as a covector �eld
on M , dxi as the dual basis to ∂i, the (coordinate) basis

dxi ⊗ · · · ⊗ dxj ⊗ ∂k ⊗ · · · ⊗ ∂l

in T p
q (M) (on a coordinate patch) induced by a (coordinate) basis ∂i for vector

�elds, metric tensor g = gijdx
i ⊗ dxj on a manifold, Riemannian manifold, trans-

formation of components under change of coordinates from

g = gijdx
i ⊗ dxj = gi′j′dx

i′ ⊗ dxj
′

and
dxi

′
= J i′

k dx
k ,

where
J i′
k (x) ≡ ∂xi

′
/∂xj

is the (always square) Jacobi matrix of the transformation of coordinates, the
Euclidean metric tensor in the plane

gij = δij ,

i.e.
g = dx⊗ dx+ dy ⊗ dy = dr ⊗ dr + r2dφ⊗ dφ ,

the length functional

γ 7→
∫ t2

t1

|γ̇|dt ≡
∫ t2

t1

√
g(γ̇, γ̇)dt ≡

∫ t2

t1

√
gij ẋiẋjdt ,

the gradient as a vector �eld
∇ψ := ♯dψ

i.e.
(∇ψ)i = gij∂jψ

1.5 Mapping of tensors induced by mapping of mani-
folds

Push-forward
v 7→ f∗v

of a vector in x ∈M to a vector in f(x) ∈ N (induced by f :M → N), explicitly

vi∂i 7→ (Ja
i v

i)∂a ,
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or, on the coordinate basis,

f∗ : ∂i 7→ f∗∂i = Ja
i ∂a ,

where
Ja
i (x) ≡ ∂ya(x)/∂xj

is the Jacobi matrix (in general non-square) of the mapping f , pull-back of a
function ψ on N , the result being a function

f∗ψ = ψ ◦ f

on M (in coordinates ψ(y) 7→ ψ(y(x))), pull-back

α 7→ f∗α

of a covector in f(x) ∈ N to a covector in x ∈ M (induced by f : M → N), given
as

⟨f∗α, v⟩ := ⟨α, f∗v⟩ ,

on the coordinate basis

dya 7→ f∗dya = dya(x) = Ja
i dx

i ,

where
Ja
i (x) ≡ ∂ya(x)/∂xj

is the Jacobi matrix of the mapping f (the same as for push-forward of vectors),
an alternative (equivalent) formula is

f∗(αa(y)dy
a) = αa(y(x))dy

a(x) = αa(y(x))J
a
i (x)dx

i ,

pull-back of a metric tensor - the induced metric tensor, its example in Lagrangian
mechanics, "curved" and "�at" torus, general properties of pull-back - behavior on
tensor product and linear combination, commutation with taking of the gradient
(f∗d = df∗ on functions)

1.6 Lie derivative, isometries, Killing vectors

Pull-back of a metric tensor w.r.t. the in�nitesimal �ow generated by a vector
�eld V , comparison of a tensor in x with that pulled-back from Φϵ(x), de�nition
of Lie derivative, component computation of Lie derivative, general properties of
Lie derivative, isometry = such

f :M →M

which preserves length of any curve, one-parameter group (�ow) of isometries,
Killing equations

LV g = 0 ,
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commutator of vector �elds
[V,W ] ,

Lie algebra of solutions of Killing equations, explicit solution for the common plane,
explicit solution for (pseudo)-Euclidean spaces, Lorentz algebra (rotations and
boosts = hyperbolic rotations = pseudo-rotations), Poincaré algebra (rotations,
boosts and translations), strain tensor (small deformations of continuous media)

2 Di�erential forms

2.1 Volumes of parallelepipeds and forms in linear al-
gebra

Parallelepiped associated with several vectors, degenerate parallelepiped, a p-form
in L, anti-symmetrization operation

ti...j 7→ t[i...j] ,

the wedge product
α ∧ β

(bilinear, associative, graded commutative), basis forms

ea ∧ · · · ∧ eb ,

expression
α = (1/p!)αa...be

a ∧ · · · ∧ eb

of a general p-form, how it helps in practical wedge multiplication, interior product

ivα ,

its nice properties

2.2 Di�erential calculus of forms on manifolds

Comma operation does not work as tensor operation, it works as an operation on
forms (when followed by square brackets), a good idea

ti...j 7→ t[i...j,k] ,

exterior derivative
d : Ωp → Ωp+1 ,

it is nilpotent
dd = 0
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and it obeys graded Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

for α = a p-form, Cartan's (magic) formula

LV = diV + iV d ,

Cartan's formulas for
dα(U, V, . . . ) ,

Lie derivative commutes with the exterior one

[LV , d] = 0 ,

formula
[LV , iW ] = i[V,W ]

2.3 Closed and exact forms

Closed form - such α that
dα = 0 ,

exact form - such α that
α = dβ

for some β (if it exists, β is called potential), the freedom

β 7→ β + d(. . . ) ,

exact ⇒ closed always holds because of dd = 0, closed ⇒ exact not always holds,
but it does hold locally, e.g. in a coordinate patch (more detailed information
about the relation between closed and exact forms on M is given by "deRham
cohomology" theory)

2.4 Forms on manifolds - integral calculus

An intuitive picture why exactly di�erential forms are integrated, Stokes formula∫
∂D

α =

∫
D
dα ,

some special cases (Newton-Leibniz formula, area under the graph of a function,
Green's formula, integration by parts), the formula∫

f(D)
α =

∫
D
f∗α
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3 Hamiltonian mechanics and symplectic mani-

folds

3.1 How Poisson tensor emerges

Hamiltonian equations

ẋa = ∂H/∂pa ṗa = −∂H/∂xa

as linear relations between dots of (all) coordinates and (all) components od dH,
most easily visible when (xa, pa) coordinates are relabeled to zA, A = 1, . . . 2n, we
get

żA = (dH)BPBA

with

PAB ↔
(
0 −1
1 0

)
,

it de�nes (skew-symmetric) Poisson tensor P of type
(
2
0

)
, which raises index on the

gradient dH. Poisson bracket is then

{f, g} = P(df, dg)

and Hamilton equations read

γ̇ = VH VH = P(dH, . )

3.2 How symplectic form emerges

Poisson tensor P ↔ PAB of type
(
2
0

)
de�nes a (skew-symmetric) tensor ω ↔ ωAB

of type
(
0
2

)
as its "inverse" via

PACωCB = −δAB ,

ωAB ↔
(
0 −1
1 0

)
,

so we obtain a 2-form

ω = (1/2)ωABdz
A ∧ dzB = dpa ∧ dxa

which is closed (dω = 0) and non-degenerate (det ωAB ̸= 0); any closed and non-
degenerate 2-form is called symplectic form; Hamilton equations read

γ̇ = VH iVH
ω = −dH
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3.3 Hamiltonian �elds and Poisson brackets

Hamiltonian �eld Vf generated by a function f is de�ned either as

Vf = P(df, . )

(i.e. via raising of index on df with the help of P), or, in terms of the symplectic
form, as Vf obeying

iVf
ω = −df

(de�nitions are, for non-degenerate P, equivalent); Poisson brackets may be ex-
pressed in several ways, too, as

{f, g} = P(df, dg) = ω(Vf , Vg) = Vfg = −Vgf ;

closure of Hamiltonian �elds w.r.t. the commutator:

[Vf , Vg] = V{f,g} ;

Jacobi identity for Poisson bracket is equivalent to

dω = 0

(i.e. to the fact that ω is closed), invariance of ω w.r.t. (any) Hamiltonian �ow

LVf
ω = 0 ,

comparison with isometries and Killing vectors

3.4 Symmetries and conserved quantities (no action in-
tegral)

What is a symmetry of a Hamiltonian triple (M,ω,H), Cartan symmetries, exact
Cartan symmetries, i.e. Hamiltonian �elds Vf , whose generators f obey

{H, f} = 0

and the bijection
Vf ↔ f

onto conserved quantities f , new solutions

γs(t) ≡ Φf
s (γ(t))

from an old solution γ(t) and a symmetry

Vf ↔ Φf
s
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3.5 Canonical transformations

Darboux theorem (canonical "appearance" of a closed 2-form), its manifestation in
symplectic case, transformations of coordinates which preserve canonical "appear-
ance" of ω,

dpa ∧ dqa = dPa ∧ dQa ≡ dPa(q, p) ∧ dQa(q, p)

their manifestation on the appearance of Hamilton equations, two ways of explicit
work with canonical transformations (generators and generating functions)

3.6 Poincaré integral invariants

A form invariant w.r.t. to a vector �eld, consequences for their integrals; on a
phase space,

ω ω ∧ ω ω ∧ ω ∧ ω . . .

are forms invariant w.r.t. any Hamiltonian �eld, Poincaré (absolute) integral in-
variants ∫

D2

ω

∫
D4

ω ∧ ω
∫
D6

ω ∧ ω ∧ ω . . . ,

Liouville theorem as a particular case, canonical Liouville volume form

Ω ≡ ω ∧ · · · ∧ ω ,

Poincaré (relative) integral invariants∮
c1

θ

∮
c3

θ ∧ ω
∮
c5

θ ∧ ω ∧ ω . . . ,

where
θ = padx

a dθ = ω ∂c1 = ∂c3 = · · · = 0

3.7 Volume form and (the corresponding) divergence of
a vector �eld

Volume form - a non-zero n-form on n-dimensional manifold, coordinate expression

Ω = f(x)dx1 ∧ dx1 ∧ · · · ∧ dxn ,

divergence de�ned as
LV Ω =: (divV )Ω ,

its geometrical meaning (it measures how volumes are changing due to the �ow
of V ), divergence-less �elds (the �ow preserves volumes), examples - metric diver-
gence, symplectic divergence (Hamiltonian �elds are divergence-less)

10



3.8 Algebra of observables of classical mechanics

Pure states (m ∈ (M,ω)) and observables (f ∈ F(M)) in Hamiltonian mechanics,
prediction of the result of measurement of an observable in a state (f(m) ∈ R),
time development of pure states

m 7→ Φt(m) ,

(Schrödinger-like picture), time development of observables

f 7→ ft := Φ∗
t f ,

(Heisenberg-like picture), equivalence of the two pictures

f(Φt(m)) = (Φ∗
t f)(m) ,

two products in the algebra F(M) (fg and {f, g}), Hamiltonian �ows preserve
whole structure of the algebra, more general states (probabilistic distributions ρ
on M), their time evolution

ρ 7→ ρt := Φ∗
−tρ ,

equivalence of the two pictures∫
M
(Φ∗

−tρ)fΩ =

∫
M
ρ(Φ∗

t f)Ω ,

equations of motion

∂tft = {H, ft} ∂tρt = −{H, ρt}

3.9 Cotangent bundle T ∗M as a phase space

Construction of T ∗M fromM (in our context, construction of the phase space T ∗M
associated with a con�guration spaceM), canonical coordinates (xa, pa), canonical
(exact) symplectic form on T ∗M , �ber bundle, base space, total space, �ber over
x, projection

3.10 Time-dependent Hamiltonians - what changes are
needed

Extended phase space, Hamilton equations in the form

αa = 0 βa = 0 ,

Hamilton equations in the form

iγ̇dσ = 0 ,

where
dσ = αa ∧ βa = d(padx

a −Hdt)
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3.11 Action integral, Hamilton's principle

How action integral for Hamiltonian mechanics can be constructed:

S[γ] =

∫
γ
σ ,

how one can easily see that the action is stationary on solutions of Hamilton equa-
tions, the di�erence between endpoints �xation in Lagrangian and Hamiltonian
cases

3.12 Symmetries and conserved quantities (based on ac-
tion integral)

If the in�nitesimal �ow Φϵ of a vector �eld ξ on extended phase space does not
change the action, i.e.

S[Φϵγ] = S[γ] ,

we speak of a symmetry of the action; then it turns out that the function

iξσ

is the corresponding conserved quantity; e.g. for

ξ = ∂t

we get that it is a symmetry if
∂tH = 0

and that
iξσ = −H

(so, the time translation is a symmetry if ∂tH = 0 and the corresponding conserved
quantity is H itself, the energy)

3.13 Poincaré-Cartan integral invariants

On extended phase space, integrals of

σ σ ∧ dσ σ ∧ dσ ∧ dσ . . . ,

over any two closed surfaces (i.e. ∂c = 0) of (corresponding) odd dimension en-
circling the same tube of trajectories (solutions of Hamilton equations) are equal
(relative Poincaré-Cartan integral invariants, integrals∮

c1

σ

∮
c3

σ ∧ dσ
∮
c5

σ ∧ dσ ∧ dσ . . . ,
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where
σ = padx

a −Hdt ;

if the surfaces lie in hyper-planes of constant time, we return to relative Poincaré
integral invariants); similarly, integrals of

dσ dσ ∧ dσ dσ ∧ dσ ∧ dσ . . .

over any two domains of (corresponding) even dimension connected by trajectories
are equal, absolute Poincaré-Cartan integral invariants = integrals∫

D2

dσ

∫
D4

dσ ∧ dσ
∫
D6

dσ ∧ dσ ∧ dσ . . .

4 Field theory in the language of forms

4.1 The Hodge star operator

Metric volume form (�xation of f(x) in

Ω = f(x)dx1 ∧ dx2 ∧ · · · ∧ dxn ),

∗ as a linear isomorphism from p-forms to (n− p)-forms, it holds

∗∗ = ±1̂

Important scalar product on forms

⟨α, β⟩ :=
∫
D
α ∧ ∗β

From
d(α ∧ ∗β) = dα ∧ ∗β + η̂α ∧ d ∗ β

one gets

⟨dα, β⟩ = ⟨α, δβ⟩+
∫
∂D

α ∧ ∗β

where
δ := ∗−1d ∗ η̂

If the surface integral vanishes, we obtain

d+ = δ
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4.2 Forms in E3 and how vector analysis drops out

In E3, the most general 0,1,2 and 3-forms read

f A.dr B.dS = ∗(B.dr) hdV = ∗h ,

so all of them are parametrized either by scalar (0- and 3-forms) or by vector (1-
and 2-forms) �elds, therefore the exterior derivative

Ω0 d→ Ω1 d→ Ω2 d→ Ω3

produces e�ectively three di�erential operators, of type scalar 7→ vector, vector 7→
vector and vector 7→ scalar, respectively; they are just well-known grad, rot=curl
and div operations from vector analysis; then (the general form-version of the)
Stokes theorem gives standard integral identities relating integrals of neighboring
dimensions

4.3 Forms in Minkowski space E1,3

In E1,3, each form may be decomposed as

α = dt ∧ ŝ+ r̂

where ŝ and r̂ are "spatial", i.e. they do not contain dt; that's why spatial forms
may be expressed as forms in E3, but with t present in components, e.g. a 2-form
reads

α = dt ∧ a.dr+ b.dS

with
a(t, r) b(t, r) ;

similarly, operations on forms can be expressed through "spatial" operations; in
particular

dα ≡ d(dt ∧ ŝ+ r̂) = dt ∧ (∂tr̂ − d̂ŝ) + d̂r̂

and
∗α ≡ ∗(dt ∧ ŝ+ r̂) = dt ∧ (∗̂r̂) + ∗̂η̂ŝ ;

e.g. on 2-forms we get

d(dt ∧ a.dr+ b.dS) = dt ∧ (∂tb− curla).dS+ (divb)dV

and
∗(dt ∧ a.dr+ b.dS) = dt ∧ b.dr− a.dS
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4.4 Maxwell equations in terms of forms

Introducing
F = dt ∧E.dr−B.dS

we get
dF = dt ∧ (−∂tB− curlE).dS+ (−divB)dV

so that the homogeneous half of Maxwell equations simply reads

dF = 0 ;

now
∗F = ∗(dt ∧E.dr−B.dS) = dt ∧ (−B).dr−E.dS

and so
d ∗ F = dt ∧ (−∂tE+ curlB).dS− (divE)dV

Therefore the inhomogeneous half of Maxwell equations reads

d ∗ F = −J

where
J := dt ∧ (−j.dS) + ρdV

is the source 3-form. Equivalently,

δF = −j

where
j := ∗J

4.5 Some immediate consequences

Existence of 4-potential:

dF = 0 ⇒ F = dA

for some 1-form A. Gauge freedom

A ∼ A′ ≡ A+ dψ

(Then F ′ := dA′ = dA = F .) Consistency of d ∗ F = −J needs

dJ = 0

(= the continuity equation, local conservation of the charge)
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4.6 The action formulation of Maxwell equations

From

S[A] := −1

2
⟨dA, dA⟩ − ⟨A, j⟩

we get
S[A+ ϵa] := S[A] + ϵ(−⟨a, δdA+ j⟩)

So the variation principle gives the equation

δdA = −j

When denoting
F = dA

we get (both halves of) Maxwell equations

dF = 0 δF = −j
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