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1.3.1 On a circle S1 of radius R we introduce local coordinates x, x′ as shown
on the �gure (this is called the stereographic projection). On higher-dimensional
spheres S2,...,Sn a natural generalization of this idea results in coordinates r, r′.
Verify that
i) on the intersection of the patches, where the primed and unprimed coordinates
are in operation, we get for S1 and Sn respectively the following explicit transition
relations

x′ =
(2R)2

x
r′ =

(2R)2

r

r

r

ii) in this way an analytic atlas comprised of two charts has been constructed on
Sn; the sphere Sn is thus an n-dimensional analytic manifold
iii) if the complex coordinates z and z′ are introduced on S2

r ↔ (x, y) ↔ z ≡ x+ iy r′ ↔ (x′, y′) ↔ z′ ≡ x′ + iy′

then the transition relations look

z′ = (2R)2/z̄ z̄ ≡ x− iy

Hint: on Sn a projection is to be performed onto n-dimensional mutually par-
allel planes, touching the North and South Poles respectively (in these planes
r ≡ (x1, . . . , xn) represent common Cartesian coordinates centered at the poles).
Then r′ = λr and one easily �nds λ from the observation that in the (two-
dimensional) plane given by the poles and the point P the situation reduces to
S1.
(More information to this exercise, in particular a detailed treatment of the n-
dimensional case, You can �nd in Additional material �le on my web-page.)

∗e-mail: fecko@fmph.uniba.sk

1



1.3.2 The real projective space RPn is the set of all lines in Rn+1 passing through
the origin. The complex projective space CPn is introduced similarly - one should
replace R 7→ C in the preceding de�nition. (Here, a complex line consists of all
complex multiples of a �xed (non-vanishing) complex vector (point of Cn+1) z, so
that it is a two-dimensional object from a real point of view.)
i) Introduce the structure of an n-dimensional smooth manifold (= local coordi-
nates) on RPn

ii) the same for CPn (it is 2n-dimensional)
iii) show that the states of an n-level system in quantum mechanics are in one-to-
one correspondence with the points of CPn−1

iv) show that CP 1 = S2 (in the sense of (1.4.7)) ⇒ (pure) states of spin 1/2 cor-
respond to unit vectors n in R3.
Hint: i) one line (a point from RPn) consists of those points of Rn+1 which
may be obtained from a �xed (x0, x1, ..., xn) using the freedom (x0, x1, ..., xn) ∼
(λx0, ..., λxn); in the part of Rn+1 where x0 ̸= 0 the freedom enables one to make 1
from the �rst entry of the array (visually this means that the point of intersection
of the line with the plane x0 = 1 has been used as a representative of the line);
the other n numbers are to be used as local coordinates on RPn (they are the
coordinates in the plane x0 = 1 mentioned above; see the �gure for n = 1, try to
draw the case n = 2): (x0, x1, ..., xn) ∼ (λx0, ..., λxn) ∼ (1, ξ1, ..., ξn) for x0 ̸= 0,
⇒ (ξ1, ..., ξn) are coordinates (there); in this way obtain step-by-step (n+1) charts,
1 with the last one coming from (x0, x1, ..., xn) ∼ (λx0, ..., λxn) ∼ (η1, ..., ηn, 1) for
xn ̸= 0; ii) in full analogy, ξ, . . . , η are now complex n-tuples, giving rise to 2n real
coordinates; iii) two non-vanishing vectors in a Hilbert space, one of them being a
complex constant multiple of the other, correspond to a single state; iv) spin 1/2
is a 2-level system
(More information to this exercise, in particular a detailed treatment of the identi-
�cation of S2 with CP 1, You can �nd in Additional material �le on my web-page.)

1.4.3 Let
f : R2 × R2 → R2 f(z, w) = zw

be the map induced by the multiplication of complex numbers. Check whether it
is a C∞-map.

1.4.4 Let M = R2�(0, 0) and consider the map de�ned in terms of complex
coordinates as follows

f :M →M f(z) = z−1

Is this a C∞-map?

1In this context the coordinates (x0, x1, ..., xn) in Rn+1 are said to be the homogeneous

coordinates (of the points in RPn). Note that they are not local coordinates on RPn in
the sense of the de�nition of a manifold, since they are not in one-to-one correspondence
with the points (they are o�cial coordinates only in Rn+1).
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2.1.1 Show that the prescription

A 7→ det A ≡ f(A)

de�nes a smooth function on the manifold of all real n× n matrices (∼ Rn2
).

Hint: The determinant is a polynomial in the matrix elements.

2.3.3 Find integral curves of the �eld V = ∂x + 2∂φ on R[x]× S1[φ] (the surface
of a cylinder). Draw the results.

new Find integral curves of the �eld V = y∂x + x∂y on R2. Draw the results and
compare the picture with that for the �eld W = −y∂x + x∂y. What happens if we
study, say, Ŵ = −4y∂x + x∂y or V̂ = 4y∂x + x∂y?
Hint (for the "4" version): rescale the axes

2.3.7 Find a vector �eld V on R2n[q1, . . . , qn, p1, . . . , pn], which corresponds to the
Hamilton equations

q̇a =
∂H

∂pa
ṗa = −∂H

∂qa
a = 1, . . . n

[V = (∂H/∂pa)∂/∂q
a − (∂H/∂qa)∂/∂pa]

2.3.9 Express the results of exercises (2.3.3) and ("new") in the form of a �ow
Φt : x

i 7→ xi(t) ≡ Φt(x
i).

[(r, φ) 7→ (r, φ+ t) or (x, y) 7→ (x cos t−y sin t, x sin t+y cos t); (x, φ) 7→ (x+ t, φ+
2t)]

2.4.3 Prove that the space (L∗)∗ is canonically isomorphic to the space L.
Hint: the canonical isomorphism f : L→ (L∗)∗ is ⟨f(v), α⟩ := ⟨α, v⟩.

2.4.5 Check that
ii) some special instances are given by

T 0
0 (L) = R T 0

1 (L) = L∗ T 1
0 (L) ≈ L

T 1
1 (L) ≈ Hom (L,L) ≈ Hom (L∗, L∗) T 0

2 (L) = B2(L)

where Hom (L1, L2) denotes all linear maps from L1 into L2, B2(L) are bilinear
forms on L and ≈ denotes canonical isomorphism.
Hint: (00), (

0
1) and (02) de�nitions, (

1
0) (2.4.3); (

1
1): the isomorphisms Hom (L,L) →

T 1
1 (L) and Hom (L∗, L∗) → T 1

1 (L) read

t(v;α) := ⟨α,A(v)⟩ and t(v;α) := ⟨B(α), v⟩

or, equivalently (in the opposite direction)

A(v) := t(v; . ) B(α) := t( . ;α)
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3.2.2 Induce a metric tensor on a torus T 2 from its embedding (1.5.7) into E3

x = (a+ b sinψ) cosφ y = (a+ b sinψ) sinφ z = b cosψ

[g = (a+ b sinψ)2dφ⊗ dφ+ b2dψ ⊗ dψ]

3.2.3 Induce a metric tensor on a torus T 2 from its embedding (1.5.8) into E4

(�at torus)
x1 = cosα x2 = sinα x3 = cosβ x4 = sinβ

[g = dα⊗ dα+ dβ ⊗ dβ]

3.2.4 Induce a metric tensor on a sphere S2 from its embedding into E3

x = R sinϑ cosφ y = R sinϑ sinφ z = R cosϑ

[g = R2(dϑ⊗ dϑ+ sin2ϑdφ⊗ dφ)]

3.2.5 Induce a metric tensor on a sphere S3 from its embedding into E4

x = R sinϑ cosφ y = R sinϑ sinφ z = R cosϑ cosψ w = R cosϑ sinψ

Show that the coordinates (ϑ, φ, ψ) (they are called biharmonic coordinates) are
orthogonal.
[g = R2(dϑ⊗ dϑ+ sin2ϑdφ⊗ dφ+ cos2ϑdψ ⊗ dψ)]

2.4.8 Operations, producing tensors from tensors, are said to be tensor operations.
So far we have met linear combination and tensor product. One further important
tensor operation is provided by contraction. It is de�ned (for p, q ≥ 1) as follows:

C : T p
q (L) → T p−1

q−1 (L) t 7→ Ct := t(. . . , ea, . . . ; . . . , e
a, . . . )

where the exact position of arguments ea and e
a is to be speci�ed - it forms a part

of the de�nition (there are several (pq) various possible contractions, in general,
and one has to state which one is to be performed).

Check that
i) the result is indeed a tensor (multilinearity)
ii) C does not depend on the choice of the basis ea (when ea has been �xed,
however, ea is to be the dual)
iii) in components the rule for C looks like 2

t.......... 7→ t...a..a...

2Each contraction thus unloads a tensor by two indices. It breathes with fewer di�-
culties immediately (fewer indices = fewer worries), it feels like after a rejuvenation cure.
This human aspect of the matter is re�ected sensitively in German terminology, where the
word Verjüngung (rejuvenescence) is used.
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i.e. as a summation with respect to a pair of upper and lower indices
iv) independence of a choice of basis results from the component formula, too
Hint: ii) (2.4.2); iv) (2.4.6)

3.2.6 Let r, z, φ be cylindrical coordinates in E3 and consider a rotational surface
S given by both expressions r(z) and z(r). Induce a metric tensor (in coordinates
z, φ and r, φ respectively) on S. Specify for the surface of a cylinder and a cone as
well as for both kinds of rotational hyperboloids and rotational paraboloid.
[g = (1 + (r′(z))2)dz ⊗ dz + r2(z)dφ⊗ dφ = (1 + (z′(r))2)dr ⊗ dr + r2dφ⊗ dφ]

4.3.7 Let D1, D2 be two derivations of the tensor algebra. Check that
i) their linear combination as well as the commutator

D := D1 + λD2 resp. D := [D1, D2] ≡ D1D2 −D2D1

happen to be derivations of the tensor algebra, too
ii) if D1, D2 commute with contractions, then this is true for linear combination
and the commutator, too.

4.3.8 Prove that
i)

LV+λW = LV + λLW L[V,W ] = [LV ,LW ] ≡ LV LW − LWLV

ii) the mapping
L : X(M) → Der T (M) V 7→ LV

is a homomorphism of Lie algebras
Hint: i) according to (4.3.7) we are to prove the equality of two derivations of the
tensor algebra which commute with contractions, or equivalently (after reshu�ing
of all terms to one side of equation), that a certain derivation of this type vanishes.
By (4.3.2) it is enough to verify this on functions and vector �elds, which is easy
(4.3.6); ii) just this is asserted in i).

4.6.7 Find Killing vectors and the corresponding �ows for the ordinary Euclidean
plane.
Hint: denote ξ1(x, y) ≡ A(x, y), ξ2(x, y) ≡ B(x, y). Then the Killing equations
read

A,x = 0 = B,y ⇒ A(y), B(x)

A,y = −B,x ⇒ A′(y) = −B′(x) = const.

so that the general solution is

ξ ≡ A∂x +B∂y = k1e1 + k2e2 + k3e3 ,

e1, e2 and e3 being three linearly independent solutions

e1 = ∂x e2 = ∂y e3 = −y∂x + x∂y
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(they are linearly independent over R; this is a basis of the Lie algebra of Killing
�elds, not to be confused with a basis (in the sense of a frame �eld) of vector �elds
in R2[x, y]!). Their �ows are translations along the x and y directions and rotations
around the origin (0, 0) respectively.

4.6.8 Let x′ = x − x0, y
′ = y − y0 be the coordinates in R2 with respect to the

origin, which is translated into (x0, y0).
i) Check that a general Killing vector, expressed in the initial coordinates (x, y) as
well as the new coordinates (x′, y′), reads

ξ = k1∂x + k2∂y + k3(−y∂x + x∂y)

= (k1 − k3y0)∂x′ + (k2 + k3x0)∂y′ + k3(−y′∂x′ + x′∂y′)

ii) give an interpretation of this computation
Hint: ii) unless the isometry (which may be obtained by the deformation of the
identity) is a pure translation (i.e. if k3 ̸= 0), it may be regarded as a pure

rotation around the appropriate point (x0, y0) (this point is obtained by equating
the coe�cients of the generators of translations ∂x′ , ∂y′ to zero, or using (4.1.6)).

4.6.9 Guess (and then test your intuition by plugging the guess into Killing equa-
tions) a Killing vector for a general rotational surface discussed in (3.2.6).
Hint: the surface is symmetric with respect to rotations around the z-axis; (4.1.7)

4.6.10 Find all Killing vectors for the (pseudo)-Euclidean space, i.e. for Ep,q ≡
(Rn, η), where η is the Minkowskian metric with the signature (p, q), p + q = n.
Show that there are three types of �ows - translations, rotations and hyperbolic
rotations (for p = 1, q = 3 they are known as Poincaré transformations, for q = 0
Euclidean transformations, see also (10.1.15) and (12.4.8)).
Hint: in Cartesian coordinates the Killing equations read

ξi,j + ξj,i = 0 ξi ≡ ηijξ
j

Di�erentiation with respect to xk gives

ξi,jk + ξj,ik = 0

In full analogy we get

ξi,kj + ξk,ij = 0 ξj,ik + ξk,ji = 0

Then
ξi,jk = −ξj,ik = ξk,ij = −ξi,kj ⇒ ξi,jk = 0

⇒
ξi = Ai

jx
j + ai A,a = const.
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and plugging into the initial equations leads to the restriction for the matrix A

(ηA) + (ηA)T = 0 ⇒ A ∈ so(p, q)

(see (11.7.6)), i.e.

ξ = (Ai
jx

j + ai)∂i ≡ ξ(A,a) (A, a) ∈ so(p, q) n Rn

One can check that

ξ(A,a) ↔ −
(
A a
0 0

)
is an isomorphism of the Killing algebra with the semidirect sum so(p, q) n Rp+q

(see (12.4.9)).
We can verify as well that the �eld ξ(A,a) may be written in the form

ξ(A,a) =
1

2
(Aη)ijMji + aiPi

((Aη)ij = −(Aη)ji being a consequence of (ηA) + (ηA)T = 0) where the vector
�elds

Mij ≡ −Mji ≡ xi∂j − xj∂i Pi ≡ ∂i xi ≡ ηijx
j

constitute a basis of the Killing algebra. Flows: solve the equations for the �ow
of Mij and Pj respectively. The �elds Pj correspond to translations, Mij yield
rotations and hyperbolic rotations in the plane (ij), depending on the sign of the
product ηiiηjj (not to be summed; +1 rotations, −1 hyperbolic rotations (boosts)).

4.6.24 In the mechanics of elastic (continuous) media one introduces the strain

tensor in the following way: when the points in the continuum are (in�nitesimally)
displaced according to r 7→ r+u(r) (a vector �eld 3 u(r) is called the displacement

(�eld)), the corresponding deformation is encoded in a second rank tensor (�eld)
with components (in Cartesian coordinates)

εij :=
1

2
(∂iuj + ∂jui)

Check that the coordinate-free expression of this tensor reads

ε =
1

2
Lug

where g is the (standard) metric tensor in E3 and that it follows from the de�nition
of the Lie derivative as well as from the context that a deformation of the medium
(a shift of points, which alters distances between them) is measured by the Lie
derivative of a metric tensor, indeed (ε = 0 ⇔ a deformation did not take place ⇔

3A shift r 7→ r+ u(r) is interpreted as an in�nitesimal �ow generated by a vector �eld
u(r).
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it is an isometry).
Hint: (4.6.5)

6.1.3 LetM = R3[x, y, z], α = xdy−ydz, β = z2dx∧dz−dy∧dx, V = (xy)2∂x+∂y.
Compute

α ∧ β iV α iV β iV (α ∧ β)

Hint: the calculation before (5.2.10), (5.4.2); [−(xz2 + y)dx ∧ dy ∧ dz, x, −dx +
(xy)2dy + (xyz)2, (xz2 + y)dx ∧ dz − (xz2 + y)(xy)2dy ∧ dz]

6.1.7 Let A be a Z-graded and graded commutative algebra and let Dk and Dl

be its derivations of degree k and l respectively; so there holds

A =
∞
⊕

i=−∞
Ai aiaj = (−1)ijajai ai ∈ Ai, aj ∈ Aj

Dk : Ai → Ai+k Dk(aib) = (Dkai)b + (−1)ikai(Dkb) ai ∈ Ai, b ∈ A

Show that their graded commutator

[Dk, Dl] := DkDl − (−1)klDlDk

(being actually a commutator, unless both derivations are of odd degree, when it
becomes the anticommutator) 4 is a derivation of the algebra A (of degree k + l),
too.
Hint: brute force (apply [Dk, Dl] on the product aib and make use of the de�nitions)

6.2.8 Show that the Lie derivative of di�erential forms may be expressed in the
following (very useful) form 5

LV = iV d+ d iV Cartan's identity

Hint: according to (6.1.7) this is an equality of two derivations (of degree 0) of the
algebra Ω(M) ⇒ it su�ces to verify it in degrees 0 and 1, where it is easy (e.g. in
components)

6.2.9 Prove the validity of the (fairly useful) identity

[LV , iW ] ≡ LV iW − iW LV = i[V,W ]

Hint: just like in (6.2.8)

4Although it is written as an ordinary commutator, in graded algebra this means au-
tomatically the graded commutator (since the latter is much more important than the
former).

5The operators which enter this formula may be given a visual meaning in integral

calculus of forms and this identity itself may be interpreted in terms of Stokes' theorem,
see (7.8.2).
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6.2.10 Prove that the exterior derivative commutes with the Lie derivative (along
an arbitrary vector �eld)

[d,LV ] ≡ d LV − LV d = 0

Hint: just like in (6.2.8), or use the result of (6.2.8)

14.1.6 Let Vf ∈ Ham (M), so that it is a Hamiltonian �eld generated by the
function f . Check that
i) the following de�nitions turn out to be equivalent

iVf
ω = −df ⇔ Vf = P(df, . ) ≡ ♯Pdf

ii) there holds
V(f+const.) = Vf

iii) Hamiltonian �elds may also be regarded as the analogues of the Killing vectors
from Riemannian geometry, since they preserve ω in just the same way as Killing
vectors preserve g

LVf
ω = 0

iv) the collection of all Hamiltonian �elds is closed with respect to linear combina-
tions (over R) as well as the commutator; namely

Vf + λVg = Vf+λg [Vf , Vg] = V{f,g}

so that they constitute an (∞-dimensional) Lie algebra Ham (M) ⊂ X(M)
Hint: iii) (6.2.8); iv) making use of (6.2.9) and the preceding items here we get

i[Vf ,Vg ]ω = LVf
iVgω − iVgLVf

ω = d(iVf
iVgω) = ...(14.1.8)... = −d{f, g}

new Show that from (dω)(Vf , Vg, Vh) = 0 follows dω = 0, i.e. that from dω = 0
on (all) Hamiltonian �elds we can deduce that dω = 0 on all �elds.
Hint: Try Vf etc. for coordinate functions

14.1.9 Consider the algebra of observables of the classical mechanicsA(M). Check
that
i) the two �products" A(M)×A(M) → A(M) involved are interconnected by the
identity

{f, gh} = {f, g}h+ g{f, h}

ii) the prescription

ζ : A(M) → Ham (M) f 7→ Vf

is a homomorphism of Lie algebras, its kernel being constituted by the constant
functions on M .
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Hint: i) {f, . } = Vf ( . ) ⇒ it is a vector �eld, i.e. a derivation of the (associative)
algebra F(M); ii) (14.1.6)

4.4.2 Let Φt be the �ow generated by a vector �eld V . Starting from the de�nition

LV :=
d

dt

∣∣∣∣
0

Φ∗
t

prove that
i)

d

dt
Φ∗
t = Φ∗

tLV

ii) for Cω tensor �elds there holds

Φ∗
t = etLV ≡ 1 + tLV +

t2

2!
LV LV + . . .

Hint: i) d
dtΦ

∗
t =

d
ds

∣∣
s=0

Φ∗
t+s, (4.1.2); ii) (

d
dt)

n
Φ∗
t = Φ∗

t (LV )
n

14.1.10 Let A(M) be the algebra of observables of classical mechanics. Since its
elements (observables) are the functions on the phase space M , there is a natural
action of the group of di�eomorphisms on the algebra (f 7→ Φ∗f). Check that
i) the structure of the algebra is preserved just by the symplectomorphisms of
(M,ω), i.e. by such di�eomorphisms of M to itself, which preserve the symplectic
form ω (or equivalently the Poisson tensor P)

Φ∗ω = ω

ii) the �ows of such transformations are generated by the symplectic (in particular
by the Hamiltonian) �elds
iii) the action of the �ow of a Hamiltonian �eld on the algebra A(M)

Uf
t : A(M) → A(M) Uf

t := (Φf
t )

∗ Φf
t ↔ Vf , f ∈ A(M)

can also be expressed in the form of the series

Uf
t g = g + t{f, g}+ t2

2!
{f, {f, g}}+ t3

3!
{f, {f, {f, g}}}+ . . .

iv) the Jacobi identity for the Poisson bracket is just the in�nitesimal version of
the condition that the Poisson bracket (of two arbitrary functions) is preserved by
the �ow of an arbitrary Hamiltonian �eld, i.e. of the condition

Uf
t {g, h} = {Uf

t g, U
f
t h} f, g, h ∈ A(M)

v) the map

Uf
t : A(M) → A(M)

10



is for each t an automorphism of the algebra of observables A(M) (it preserves

its linear structure as well as both products) and the prescription t 7→ Uf
t is the

one-parameter group of such automorphisms

Hint: i) Φ∗{f, g} ≡ Φ∗(P(df, dg)) = (Φ∗P)(dΦ∗f, dΦ∗g)
!
= P(dΦ∗f, dΦ∗g) so that

Φ∗P !
= P and consequently Φ∗ω

!
= ω; ii) in the standard way Φ∗

tω
!
= ω ⇒

LWω = 0; iii) by de�nition d
dt

∣∣
0
Uf
t = LVf

, (4.4.2) and LVf
g ≡ Vfg = {f, g};

iv) the di�erentiation of Uf
t {g, h} = {Uf

t g, U
f
t h} with respect to t in t = 0 gives

LVf
{g, h} = {LVf

g, h}+ {g,LVf
h}; v) preserving of the pointwise product and lin-

ear combinations trivial (this holds for each Φ∗), preserving of the Poisson bracket
solves item iv)

14.3.6 Let (M,ω) be a symplectic manifold, dim M = 2n. Check that
i) the n-fold product of the form ω (as well as its arbitrary non-zero multiple)
de�nes on M the volume form

iii) in canonical coordinates (qa, pa) the form Ω̃ reads

Ω̃ = (−1)
n(n+1)

2 n!dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn ≡ (−1)
n(n+1)

2 n!dqdp

Therefore one usually adopts its appropriate constant multiple, the Liouville form

Ωω ≡ Ω := (−1)
n(n+1)

2
1

n!
Ω̃ = dqdp

as the volume form on a symplectic manifold and as the phase volume of the do-
main D ⊂M we mean the expression

∫
D
Ω (i.e. the volume of the domain D in the

sense of the Liouville volume form).
iv) the Liouville's theorem holds: the phase volume of an arbitrary (2n-dimensional)
domain D is preserved under the time development Φt of the phase points (more
generally under the �ow of an arbitrary Hamiltonian �eld ζf )

6

Φt ↔ ζH ⇒
∫

Φt(D)

Ω =

∫
D

Ω

v) any symplectic manifold is orientable
Hint: i) the fact that ω∧· · ·∧ω is everywhere non-zero is clear from its coordinate
presentation; ii) (5.6.8); iv) (14.3.4); v) (6.3.5)

8.1.1 The most natural de�nition of the integral of a 0-form (function) f over a
0-simplex (point) is given by 7 ∫

P
f := f(P )

6If we regard the �ow Φt as the �ow of a �uid, then the result says that the �uid is
incompressible.

7The intuitive meaning of the integral, as is well known, is the sum of the values of
the function in in�nitesimal domains (resulting from the division of the total domain of
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Check that the Newton-Leibniz formula∫ b

a
f ′(x)dx = f(b)− f(a)

may then be regarded as a particular case 8 of Stokes' theorem.
Hint: M = R1, c = [a, b]

8.1.2 Let D be the domain in the xy plane which is bounded by the straight lines
x = a, x = b, y = 0 and by the curve y = f(x) from above. In full analogy let V
be the domain in the space xyz which lies above the domain S in the plane xy
and which is bounded from above by the surface z = f(x, y). Then we know that
area of the domain D may be computed in two (completely di�erent) ways, namely
either as ∫ b

a
f(x)dx or as

∫
D
dxdy

Similarly, the volume of the domain V may be computed in two (completely di�er-
ent) ways, namely as

∫
S f(x, y)dxdy, but also as

∫
V dxdydz. Show that both cases

may be regarded as a manifestation of Stokes' theorem.
Hint: dx ∧ dy = d(−ydx), dx ∧ dy ∧ dz = d(zdx ∧ dy)

8.1.3 Let α, β be two forms on an n-dimensional manifold M , with their degrees
being such that degα + deg β + 1 = n and let D be an n-dimensional domain.
Check that
i) the following identity holds∫

D
dα ∧ β = −

∫
D
η̂α ∧ dβ +

∫
∂D

α ∧ β

ii) the formula representing the �by parts" method of integration∫ b

a
f ′(x)g(x)dx = −

∫ b

a
f(x)g′(x)dx+ [fg]ba

is but a simple special case of this identity
Hint: i) (6.2.5), (7.6.7); ii) M = R, D = [a, b], α = f, β = g

8.1.4 Given two functions f(x, y), g(x, y) ∈ F(R2) and a (two-dimensional) do-
main D, let C ≡ ∂D be its (oriented) boundary (closed curve, the contour). Show
that there holds ∮

C
fdx+ gdy =

∫
D
(∂xg − ∂yf)dx ∧ dy

integration) multiplied by the volumes of these domains. If the total domain reduces
to a single point P , there is nothing to be divided and it su�ces to take the value of the
function right at this point. Note that in doing this the volume of the point P is e�ectively
regarded to be 1 (

∫
P
1 = 1(P ) = 1).

8although in a sense a tautological one - the de�nition of the integral of a 0-form has
been extended in such a way as to make the theorem hold
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Hint: set α = fdx+ gdy in (7.6.7)

5.5.1 Let E(L) be the set of all bases of a vector space L and let f ∈ E(L). Then
any basis e may be uniquely expressed as

ea = fbA
b
a i.e. e = fA A ∈ GL(n,R)

(GL(n,R) being the set of all non-singular n × n real matrices, see (10.1.3) and
beyond). Show that
i) each basis falls either into E(L)+ or to E(L)−, i.e.

E(L) = E(L)+ ∪ E(L)− E(L)+ ∩ E(L)− = ∅

E(L)± = {e ∈ E(L); detA ≷ 0}

ii) E(L)+ and E(L)− are �equally large", i.e. there exists a bijection of E(L)+
onto E(L)−
iii) dividing of E(L) into E(L)+ and E(L)− does not depend on the choice of
f ∈ E(L), i.e. if e and ẽ share the same half with respect to f , they share the same
half with respect to any other reference basis f̂ ∈ E(L).
Hint: ii) (e1, e2, . . . , en) ↔ (−e1, e2, . . . , en); iii) det(AB) = detAdetB

5.7.1 Let (ea) be an arbitrary basis in L∗. Check that (for n pieces multiplied)
i)

ea ∧ · · · ∧ eb = ϵa...b e1 ∧ · · · ∧ en

ii) the most general n-form ω may be expressed as

ω = λe1 ∧ · · · ∧ en λ ∈ R

iii) if ea 7→ êa ≡ ebA
b
a, then

ω ≡ λe1 ∧ · · · ∧ en = λ̂ê1 ∧ · · · ∧ ên

where
λ̂ = (detA) λ

A quantity which transforms in this way under a change of basis is called a scalar

density (of weight -1; see the text after (6.3.7) and problem (21.7.10))
Hint: ii) (5.2.9), (5.6.1), λ = ω1...n; iii) (2.4.2), (5.6.5).

5.7.3 Let (L, g, o) be an n-dimensional vector space endowed with a metric tensor
g and an orientation o, e ≡ (ea) and ê ≡ (êa) two right-handed orthonormal bases
respectively, f ≡ (fa) an arbitrary basis and ω(f) := f1 ∧ · · · ∧ fn (5.7.2). Prove
that
i)

ω(e) = ω(ê)
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i.e. ωg := ω(e) does not depend on the choice of right-handed orthonormal basis
ii) its expression in terms of the arbitrary basis f reads

ωg ≡ ω(e) = o(f)
√

|g| ω(f)

where o(f) is +1 or −1 depending on whether f is right-handed or left-handed and
|g| ≡ | det g(fa, fb)|
iii)

ωg(f1, ..., fn) = o(f)
√

|g| so that ωa...b = o(f)
√

|g| εa...b
iv)

ωa...b = o(f) sgn g
1√
|g|

εa...b

where sgn g is the sign of the determinant of the matrix gab ≡ g(fa, fb) (for a
metric tensor with signature (r, s) (see the text before (2.4.12)) this is (−1)s)
v) a change of orientation in L results in the change

ωg 7→ −ωg i.e. ωg,−o = −ωg,o

if (−o) is the orientation which is opposite with respect to o.
Hint: ii) let fa be the arbitrary basis, fa = ebB

b
a (i.e. f = eB). Then

g(fa, fb) ≡ gab = Bc
aηcdB

d
b ≡ (BT ηB)ab ⇒ det g = (det B)2 det η

⇒ det B = ±
√

| det g|

The sign is given (since e is right-handed) by the orientation of the basis f , so that
det B = o(f)

√
| det g|. According to (5.7.2) then

ω(e) = ω(fB−1) = detB ω(f) = o(f)
√

| det g| ω(f)

iv) ωa...b ≡ gac . . . gbdωc...d = . . . (5.6.5); v) the only change is o(f) 7→ − o(f)

16.2.1 Check that
i) the second series (homogeneous half) of the Maxwell equations may be written
in the form

dF = 0 where F := dt ∧E.dr−B.dS

is a 2-form of the electromagnetic �eld

ii) an explicit expression of its (Cartesian) components in terms of (Cartesian)
components of vectors of electric and magnetic �eld reads

F0i = Ei

Fij = −ϵijkBk i.e. Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0
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iii) a transition to the dual form may be expressed in terms of the �elds E,B as

F 7→ ∗F ⇔ (E,B) 7→ (−B,E)

Hint: (16.1.4)

16.2.2 Check that
i) the �rst series (inhomogeneous half) of the Maxwell equations may be written
in the form

δF = −j or equivalently d ∗ F = −J ≡ − ∗ j

where the three-dimensional quantities ρ (electric charge density) and j (electric
current density) are built into a single object living in Minkowski space, the 1-form
of current or alternatively its dual 3-form of current

j = ρdt− j.dr ≡ jµdx
µ

J = dt ∧ (−j.dS) + ρdV ≡ jµdΣµ ≡ ∗j

Hint: (16.1.5), (16.1.6)

16.2.3 Check that the total electric charge in a spatial domain D̂3 is given by the
integral

Q =

∫
D̂3

J ≡
∫
D̂3

∗j

Hint: according to (16.2.2) we have J = dt∧ (−j.dS)+ρdV and the �rst term does
not contribute to the integral over D̂3 due to the factor dt
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