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Riemannian geometry (review)

In Riemannian geometry, at each
x ∈ M, there exists

g(u, v) ≡ gµνuµvν

for each pair of vectors u, v (at the
same point x ∈ M)
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Horizontal distribution (H, g) on M

In subriemannian geometry, at each
x ∈ M there is, first,
a distinguished k-dimensional subspace

Hx ⊂ TxM

called horizontal subspace in x .
Now, the concept of the (positive
definite) scalar product

g(u, v) ≡ gµνuµvν

is only defined for u, v from Hx .
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Horizontal distribution (H, g) on M (cont.)

So, altogether,
a k-dimensional horizontal
distribution H on M is
given
the subriemannian metric,
g , is (only) defined in H
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Subriemannian structure on M

The structure (M,H, g) is known as
the subriemannian structure on M.
It is studied in subriemannian geometry.
Alternative names:

Carnot-Carathéodory geometry (Gromov, ...)
Non-holonomic Riemannian geometry (Vershik-Gershkovich)
Singular Riemannian geometry (Hermann, ...)
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How to describe a distribution on M

Two most frequent ways how a distribution D is described:

k (linearly independent) vector fields are given
n − k (linearly independent) covector fields are given

In particular, let (ea, ei ) be a frame and (ea, e i ) the dual coframe.
Then the prescriptions

D = Span {ea}
D = common null-space of e i =

⋂
Ker e i

define the same distribution.
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How to describe a distribution on M (cont.)

An alternative way how a distribution D may be described:

let a
(2
0

)
-tensor field h (of rank k) be given

Then

D = Im h (the range = image of h)
provides a k-dimensional distribution,
where h is regarded as a linear map

hx : T ∗
x M → TxM α 7→ h(α, . ) αµ 7→ ανhνµ
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How to describe a distribution on M (cont.)

We want to "optimize" description of D in terms of h.
Fix an adapted frame (ea, ei ), i.e. ea ∈ D. Write

h = habea ⊗ eb + haiea ⊗ ei + hiaei ⊗ ea + hijei ⊗ ej

i.e.

h ↔
(

hab hai

hia hij

)
Then

h(α, . ) = · · · = (αbhba + αihia)ea + (αahai + αjhji )ei

Since D = Span {ea}, we get hai = 0 = hji
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How to describe a distribution on M (cont.)

The simplest additional choice is hia = 0, hab = hba

So, finally, a distribution D = Span {ea} is encoded in

h = habea ⊗ eb hab = hba

with any symmetric, rank k matrix hab.
Or, equivalently, in

h ↔
(

hab hai

hia hij

)
=

(
hab 0
0 0

)
hab = hba
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H and g in a single object - the cometric h

Now we need to tell h about the metric g in H.
Let gab := g(ea, eb). It is non-singular ⇒ there exist (unique)
inverse gab. Define tensor gabea ⊗ eb. Take this as h (i.e. choose
hab = gab)

h = habea ⊗ eb habgbc = δa
c

In a component-free language

g(h(α), v) = 〈α, v〉 , v ∈ H

Single tensor h, the cometric on M, carries full information
about both D and g .
Subriemannian geometry is given by a pair (M, h).
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Riemannian geometry as a particular case

Riemannian geometry is a particular case, when

Hx = TxM

(so that g operates on all pairs of vectors in x).
Riemannian geometry is usually described by

g = gabea ⊗ eb metric

but (since it is non-degenerate) one can equivalently use

g = gabea ⊗ eb cometric

So the cometric is (in this sense!) more universal object,
it works in both Riemannian and subriemannian case.
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Subriemannian hamiltonian

There is even a simpler object equivalent to h.
Recall that we can canonically "lift" completely
symmetric contravariant tensors on M into
(particular) functions on T ∗M. The general
formula is

◦
t(p) := t(p, . . . , p)

or, in canonical (Darboux) coordinates (xµ, pµ)
on T ∗M

◦
t(x , p) := tµ...ν(x)pµ . . . pν
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Subriemannian hamiltonian (cont.)

If, say,
V = V µ(x)∂µ

is a vector field on M, the corresponding function on T ∗M

◦
V = V µ(x)pµ

is called momentum corresponding to V .
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Subriemannian hamiltonian (cont.)

In particular, for
the coordinate basis vector fields ∂µ and
the frame vector fields ea = eµ

a (x)∂µ

we get

◦
∂µ = pµ the µ-th canonical momentum
◦
ea = eµ

a (x)pµ ≡ Pa(x , p) the a-th canonical momentum
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Subriemannian hamiltonian (cont.)

And, finally, for the cometric h on M

h = habea ⊗ eb

we obtain the function on T ∗M,
the subriemannian Hamiltonian
corresponding to h

H(x , p) ≡ 1
2

◦
h = 1

2 habPaPb
= 1

2 hab(x)(eµ
a (x)pµ)(eν

b (x)pν)
≡ 1

2 hµν(x)pµpν
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Total space as a subriemannian manifold

Let (M, g) be a Riemannian manifold.
Let π : P → M be a principle bundle
with connection ω.
Then, there is natural subriemannian
structure on P . It is given in terms of
the connection and the metric on M:

Horp := Ker ωp

gp(u, v) := gx(π∗u, π∗v)
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Riemannian geodesics - Lagrangian language

In the Riemannian case, on (M, g), the
geodesic equations read

(∇γ̇ γ̇)µ ≡ ẍµ + Γµ
νρẋ

ν ẋρ = 0

They are second order equations on M
and turn out to coincide with the
Euler-Lagrange equations
for the (free motion) Lagrangian

L(x , v) =
1
2
gµν(x)vµvν
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Riemannian geodesics - Hamiltonian language

But

L(x , v) =
1
2
gµν(x)vµvν ↔ H(x , p) =

1
2
gµν(x)pµpν

so the geodesic equations may also be
written as first order equations on T ∗M
in the form of the Hamiltonian
equations

ẋµ = ∂H/∂pµ = gµνpν

ṗµ = −∂H/∂xµ = −(1/2)gνρ
,µpνpρ
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Riemannian geodesics - Hamiltonian language (cont.)

A useful observation:
this particular Hamiltonian is nothing but the "lift"
of the "inverse" metric tensor (cometric): if

g−1 := gµν∂µ ⊗ ∂ν

then

H(x , p) ≡ 1
2
gµν(x)pµpν =

1
2

◦
g−1

What’s nice: this is a coordinate-free expression for
"geodesic" Hamiltonian H(x , p) on T ∗M out of g on M.
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Horizontal curves

Whenever a distribution D is defined on
a manifold M, there are specific curves γ(t)
such that

γ̇ ∈ D

They "reside in the distribution".
In particular, for the horizontal distribution
H on a subriemannian manifold (M, h) the
curves are called horizontal curves.
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Horizontally lifted curves on the total space P

Important example: let
γ be a curve on M and let
γh be its horizontal lift
onto the total space of a principal
bundle π : P → M with connection.
Then, the lift is also a horizontal curve
in the sense of the subriemannian
structure on P .
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The length of a horizontal curve

For a horizontal curve on (M, h), the
length of the velocity vector

||γ̇|| :=
√

g(γ̇, γ̇)

makes sense. Then, the "standard"
definition

l [γ] :=

∫
γ
||γ̇||dt

makes sense, too.
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Example - the length of a horizontally lifted curve

In particular, for π : P → (M, g), the
length of a horizontally lifted curve γh is
a well-defined concept and it is given as

l [γh] = l [γ]

where the latter is (as usual)

l [γ] =

∫ tB

tA

√
g(γ̇, γ̇)dt

This is simply because

gp(γ̇
h, γ̇h) := gπ(p)(π∗γ̇

h, π∗γ̇
h) = gx(γ̇, γ̇)
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Extremal horizontal curves

Subriemannian distance of two points A and B on M is

d(A, B) := inf l [γ]

over horizontal curves that connect A and B.
If no such curve exists, we set d(A, B) = ∞.
(The existence depends on details of the distribution.)
Subriemannian geodesic is the path which realizes the (finite)
distance.
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How to find subriemannian geodesics

To find geodesics in the particular case, in Riemannian geometry,
we can write down Hamiltonian equations
with the "cometric" Hamiltonian

H(x , p) =
1
2
gµν(x)pµpν ≡

1
2

◦
g−1

Remarkable fact: this is also true in subriemannian case !
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How to find subriemannian geodesics (cont.)

Namely, if we write down Hamiltonian equations

ẋµ = ∂H/∂pµ ṗµ = −∂H/∂xµ

with the subriemannian Hamiltonian

H(x , p) =
1
2

habPaPb =
1
2

hab(x)(eµ
a (x)pµ)(eν

b (x)pν)

then the projection to M of a solution is
1. automatically horizontal (!)
2. extremal (!)
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Why this method works

Let (ea, ei ) be any adapted frame (ea ∈ H, orthonormal)
on a given subriemannian manifold (M, h).

We promote (ea, ei ) to become orthonormal
with respect to an auxiliary Riemannian metric,
i.e. define G such that

G := ea ⊗ ea + e i ⊗ e i

So

G ↔
(

δab 0
0 δij

)
G−1 ↔

(
δab 0
0 δij

)
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Why this method works (cont.)

On the Riemannian manifold (M, G ), the geodesics may be
expressed in the standard Hamiltonian language on T ∗M,
the Hamiltonian being

H(x , p) =
1
2

◦
G−1 =

1
2
(PaPa + PiPi )

The projections onto M of the solutions are, however,
not horizontal, in general.
(There is no reason for the shortest path with respect to G
to be horizontal.)

Marián Fecko Subriemannian geodesics - an introduction



Introduction
Subriemannian geometry
Subriemannian geodesics

Isoholonomic problems

Riemannian geodesics (review)
Subriemannian geodesics

Why this method works (cont.)

We can force the shortest curves to be "willingly" horizontal
by economical means - by severe penalization of "bad"
(nonhorizontal) motions.
Introduce new metric as

Gλ ↔
(

δab 0
0 λ2δij

)
G−1

λ ↔
(

δab 0
0 1

λ2 δij

)
with λ2 >> 1 (still with respect to (ea, ei )).
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Why this method works (cont.)

If γ̇(t) is not horizontal somewhere, the segment of the curve
around this point adds a huge contribution.

So, the curves which are everywhere horizontal,
are the only candidates to be reasonably short.
Then, in the limit λ2 →∞, the shortest paths,
the solutions
of Hamiltonian equations with

Hλ =
1
2
(PaPa +

1
λ2 PiPi )

are automatically horizontal.
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Why this method works (cont.)

But, in the limit λ2 →∞,

Hλ =
1
2
(PaPa +

1
λ2 PiPi ) →

1
2
PaPa

which is nothing but the subriemannian Hamiltonian
corresponding to (M, h).
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What are isoholonomic problems

Isoholonomic means that the holonomy
of a loop γ(0) = γ(1) is kept constant.
And something else (namely the length)
is to be minimized. So one tries to get a
given holonomy via the shortest loop.
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What are (dual) isoperimetric problems

Isoperimetric means that a perimeter is kept constant.
And something else (namely area) is to be maximized.
The dual problem: keep the area constant and minimize the length.

Isoperimetric classics - the Dido’s
problem:
Find the shape of a strip
(realized by an ox hide, originally)
enclosing the maximum area,
given the length of the strip constant.
Solution: arc of a circle,
see Prof. Virgil’s Aeneid.
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How (dual) isoperimetric becomes isoholonomic

Let E 2 be the standard Euclidean plane.
Construct a principal bundle π : P → E 2

with the group G = (R,+) or U(1),
such that

F ≡ dA = π∗dS

where dS is the area 2-form in E 2.
Then, for any section σ,

σ∗F = (π ◦ σ)∗dS = dS
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How (dual) isoperimetric becomes isoholonomic (cont.)

Now, consider a loop

γ(0) = γ(1)

which happens to be the boundary of S

γ = ∂S

Then, we get

area of S :=

∫
S

dS =

∫
S

σ∗F =

∮
γ
σ∗A = holonomy of γ
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Ant on a turntable

Consider a gramophone turntable and an Ant
living on it. When he performs a loop-shaped
walk, at the end the turntable gets rotated.
This can be treated in terms of a SO(2)-bundle
with connection over the turntable: the net
rotation is the holonomy of the loop.
So, we come to a subriemannian structure
discussed above.
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Ant on a turntable - resulting Hamiltonian equations

ṙ = pr
ϕ̇ =

pϕ

r2 − pα

1+r2

α̇ =
(

pϕ

r2 − pα

1+r2

) (
− r2

1+r2

)
≡ ϕ̇

(
− r2

1+r2

)
ṗr =

(
pϕ

r2 − pα

1+r2

) (
2rpα

1+r2

)
≡ ϕ̇

(
2rpα

1+r2

)
ṗϕ = 0
ṗα = 0
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Falling cat

Old wisdom: a cat, dropped from upside down, will
land on her feet.
Freely falling reference frame - no fall.
So she is able to reorient herself while floating
weightless in space.
Physical mechanism: angular momentum equals zero.
Mathematical expression:
there is an SO(3)-principal bundle with connection
and the resulting net rotation is the holonomy for the
loop in the space of abstract shapes.

picture from
Montgomery
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Berry phase

In Quantum Mechanics of (n + 1)-level
systems, there is a natural U(1)-principal
bundle

π : S2n+1 → CPn Hopf bundle, if n = 1

Here, S2n+1 is the space of normed vectors in
the Hilbert space Cn+1 whereas CPn is the
space of the states. There is a distinguished
metric tensor on CPn (Fubiny-Study). In
addition, there is also a canonical connection in
the bundle. So, we come to a subriemannian
structure discussed above.
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For Further Reading

R. Strichartz.
Sub-Riemannian Geometry.
J.Diff.Geom. 24, 221-263, 1983.

R. Montgomery.
Isoholonomic Problems and some Applications.
Commun.Math.Phys., 128, 565-592, 1990.

R. Montgomery.
A Tour of Subriemannian Geometries, Their Geodesics and
Applications.
American Mathematical Society, 2006.

Numerous other authors.
Plenty of other papers and several monographs.
Lot of other journals.
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