$\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations son Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Poincaré (non-holonomic Lagrange) Equations

Marián Fecko

Department of Theoretical Physics Comenius University Bratislava fecko@fmph.uniba.sk

Student Colloqium and School on Mathematical Physics, Stará Lesná, Slovakia, August 23 - 29, 2010

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^i, p_a)

We will learn:

• In which direction Poincaré generalized Lagrange equations

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^i, p_a)

- In which direction Poincaré generalized Lagrange equations
- How can one derive them from the least action principle

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^i, p_a)

- In which direction Poincaré generalized Lagrange equations
- How can one derive them from the least action principle
- What is interesting about their structure

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^i, p_a)

- In which direction Poincaré generalized Lagrange equations
- How can one derive them from the least action principle
- What is interesting about their structure
- What happens, in particular, on Lie groups

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^i, p_a)

- In which direction Poincaré generalized Lagrange equations
- How can one derive them from the least action principle
- What is interesting about their structure
- What happens, in particular, on Lie groups
- How they are related to Euler (rigid body motion) equations

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^i, p_a)

- In which direction Poincaré generalized Lagrange equations
- How can one derive them from the least action principle
- What is interesting about their structure
- What happens, in particular, on Lie groups
- How they are related to Euler (rigid body motion) equations
- How Četajev repeated the story with Hamilton equations

Variation of the action $\int Ldt$ in terms of (x^i, v^a) Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x', p_a)

Contents

Introduction

- 2 Variation of the action $\int Ldt$ in terms of (x^i, v^a)
 - Frame components of velocity and momentum
 - Variational field W and velocity field V
 - How to express δx^i and δv^a in terms of W
 - Variation of S Poincaré equations
- 3 Structure of Poincaré equations
- Poincaré equations on Lie groups
 - Frame components with respect to left invariant vector fields
 - Particular case Euler dynamical and kinematical equations

- **5** Variation of the action $\int pdq Hdt$ in terms of (x^i, p_a)
 - Četajev equations

 $\label{eq:statistical} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action} \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action} \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations

Coordinate components of the velocity vector

In standard Lagrange equations

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}^{i}} - \frac{\partial L}{\partial x^{i}} = 0$$
(1)

we encounter variables x^i (generalized coordinates) and \dot{x}^i (generalized velocities). From the geometrical point of view the coordinates x^i represent the curve $\gamma(t)$ whereas $v^i = \dot{x}^i$ are the coordinate components of its velocity vector:

$$egin{array}{ccc} x^i(t) & \leftrightarrow & \gamma(t) \ v^i(t) \equiv \dot{x}^i(t) & \leftrightarrow & \dot{\gamma}(t) \end{array}$$

 $\label{eq:transformation} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations

Frame components of the velocity vector

Consider a frame field ea

$$e_a(x) = e_a^i(x)\partial_i \qquad \partial_i = e_i^a(x)e_a(x)$$
 (2)

(any - orhonormal, left invariant, even the original coordinate one). Then the velocity vector may be expressed in two ways

$$\dot{\gamma}(t) = v^{i}(t)\partial_{i} = v^{a}(t)e_{a}(x(t))$$
(3)

The variables v^a are frame ("vielbein") components of the velocity vector ("pseudovelocities"). So, we can also write

$$egin{array}{ccc} x^i(t) & \leftrightarrow & \gamma(t) \ v^a(t) & \leftrightarrow & \dot{\gamma}(t) \end{array}$$

 $\label{eq:Variation} \begin{array}{l} Introduction \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ Structure of Poincaré equations \\ Poincaré equations on Lie groups \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations

Relation between the two kinds of components

From (39) we see that

$$v^i \partial_i = v^a e_a \qquad \Rightarrow \qquad v^a = e^a_i v^i \qquad v^i = e^i_a v^a \quad (4)$$

This means that Lagrangian may also be expressed in terms of the mixed variables (x^i, v^a)

$$L = L(x^i, v^a)$$
 rather than $L = L(x^i, v^i)$ (5)

 $\label{eq:action} \begin{array}{c} Introduction\\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a)\\ Structure of Poincaré equations\\ Poincaré equations on Lie groups\\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δ_X^i and δ_V^a in terms of WVariation of S - Poincaré equations

Variation of Lagrangian

In order to derive equations of motion via the least action principle in terms of (x^i, v^a) , we need the variation

$$\delta L(x^{i}, v^{a}) = \frac{\partial L}{\partial x^{i}} \, \delta x^{i} + \frac{\partial L}{\partial v^{a}} \, \delta v^{a} \tag{6}$$

As is the case for $\delta \dot{x}^i$, the variation δv^a is related to δx^i .

The explicit formula is, however, more subtle.

Therefore we prefer to gain some geometrical insight into the variational procedure.

(In his paper, Poincaré simply states the result

with laconic comment

```
"Or on trouve aisément" (one easily finds)).
```

 $\label{eq:Variation} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

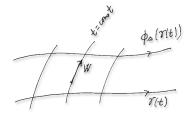
Variational field W

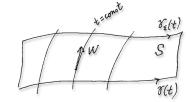
We want to perform a small variation of the curve $\gamma(t)$. Consider a vector field W an let Φ_{ϵ} denote its flow. Then the variation may be realized as

$$\gamma(t) \mapsto \Phi_{\epsilon}(\gamma(t)) \equiv \gamma_{\epsilon}(t) \qquad \Phi_{s} \leftrightarrow W$$
(7)

In this way the flow produces a two-dimensional (narrow) surface *S*. The field *W* is tangent to the surface.

Frame components of velocity and momentum Variational field W and velocity field V How to express δ_x^i and δ_V^a in terms of W Variation of S - Poincaré equations





 $\label{eq:Variation} \begin{array}{l} \\ \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \\ \\ \mbox{Structure of Poincaré equations} \\ \\ \mbox{Poincaré equations on Lie groups} \\ \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Velocity field V

There is another vector field living on the surface S. Each curve $\gamma_{\epsilon}(t)$ induces in all its points velocity vector $\dot{\gamma}_{\epsilon}(t)$.

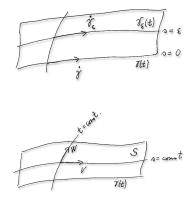
Altogether, collection of all velocity vectors of all curves results in a vector field on S - the velocity field V. In each point of the surface S, the two

fields,

V and W,

span the tangent space to the surface.

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations



 $\label{eq:action} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field V How to express δx^i and δv^a in terms of W Variation of S - Poincaré equations

Commutator of V and W vanishes

The field V is Lie-dragged with respect to W. Then the Lie derivative vanishes, $\mathcal{L}_W V = 0$, or, put another way, the two fields commute

$$[W,V] = 0 \tag{8}$$

In terms of frame components of the fields this reads

$$0 = [W, V]^{a} = WV^{a} - VW^{a} + c_{bc}^{a}W^{b}V^{c}$$
(9)

where $c_{ab}^{c}(x)$ are anholonomy coefficients of the frame field e_{a}

$$[e_a, e_b] =: c_{ab}^c(x)e_c \tag{10}$$

 $\label{eq:Variation} \begin{array}{l} Introduction\\ Variation of the action <math display="inline">\int Ldt \text{ in terms of } (x^i, v^a)\\ Structure of Poincaré equations on Lie groups\\ Variation of the action <math display="inline">\int pdq - Hdt \text{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations

Variation δx^i in terms of W

In coordinates, the variation of $x^i(t)$ reads

 $x^{i}(t)\mapsto x^{i}(t)+\delta x^{i}(t)$

But we know (see (7)) that the new curve arises by means of the flow of the original curve along W. So

abstractly $\gamma(t) \mapsto \Phi_{\epsilon}^{W}(\gamma(t))$ (11) in coordinates $x^{i}(t) \mapsto x^{i}(t) + \epsilon W^{i}(t)$ (12)

and, consequently

$$\delta x^i = \epsilon W^i \tag{13}$$

 $\label{eq:Variation} \begin{array}{c} & \text{Introduction} \\ \text{Variation of the action } \int Ldt \text{ in terms of } (x^i, v^a) \\ & \text{Structure of Poincaré equations} \\ & \text{Poincaré equations on Lie groups} \\ \text{Variation of the action } \int pdq - Hdt \text{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations

Variation δv^a in terms of W(1)

We have

$$v^a e_a = \dot{\gamma} \tag{14}$$

$$(v^{a} + \delta v^{a})e_{a} = \dot{\gamma}_{\epsilon} = V(\gamma_{\epsilon}(t)) \equiv V(\Phi_{\epsilon}(\gamma(t)))$$
 (15)

(the two e_a 's on the left sit in different points) hence

$$\delta \mathbf{v}^{\mathbf{a}} = \epsilon W V^{\mathbf{a}} \tag{16}$$

$$V(\Phi_{\epsilon}(\gamma(t))) = V^{a}(\Phi_{\epsilon}(\gamma(t)))e_{a}$$

= $(\Phi_{\epsilon}^{*}V^{a})(\gamma(t))e_{a}$
= $(\hat{1} + \epsilon \mathcal{L}_{W})V^{a})(\gamma(t))e_{a}$
= $V^{a}(\gamma(t)) + \epsilon(WV^{a})(\gamma(t))e_{a}$
= $v^{a}e_{a} + \epsilon(WV^{a})e_{a}$

 $\label{eq:statistical} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action} \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action} \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field VHow to express δx^i and δv^a in terms of WVariation of S - Poincaré equations

Variation δv^a in terms of W (2)

Now the vanishing of the commutator [V, W] (8, 9) comes in handy and we get

$$\delta v^{a} = \epsilon (\dot{W}^{a} + c^{a}_{bc} v^{b} W^{c})$$
(17)

$$\mathcal{WV}^{a} = \mathcal{VW}^{a} - c^{a}_{bc} \mathcal{W}^{b} \mathcal{V}^{c}$$

 $= \mathcal{VW}^{a} + c^{a}_{bc} \mathcal{V}^{b} \mathcal{W}^{c}$
 $= \dot{\mathcal{W}}^{a} + c^{a}_{bc} \mathcal{v}^{b} \mathcal{W}^{c}$

Everything is evaluated at the original curve $\gamma(t)$, so that $Vf = \dot{\gamma}f = \dot{f}$ and also V^a reduce to v^a .

 $\label{eq:static} \begin{array}{c} {\rm Introduction} \\ {\rm Variation \ of \ the \ action \ } \int Ldt \ in \ terms \ of \ (x^i, v^a) \\ {\rm Structure \ of \ Poincar^e \ equations \\ {\rm Poincar^e \ equations \ on \ Lie \ groups} \\ {\rm Variation \ of \ the \ action \ } \int pdq - Hdt \ in \ terms \ of \ (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field V How to express δx^i and δv^a in terms of W Variation of S - Poincaré equations

Using of the results for δx^i , δv^a for performing δL

Using results (13) and (17), we get

$$\begin{split} \delta \mathcal{L}(x^{i}, v^{a}) &= \frac{\partial \mathcal{L}}{\partial x^{i}} \, \delta x^{i} + \frac{\partial \mathcal{L}}{\partial v^{a}} \, \delta v^{a} \\ &= \epsilon \left(\frac{\partial \mathcal{L}}{\partial x^{i}} \, W^{i} + \frac{\partial \mathcal{L}}{\partial v^{a}} \left(\dot{W}^{a} + c^{a}_{bc} v^{b} W^{c} \right) \right) \\ &= \epsilon \left(W^{a} e_{a} \mathcal{L} + \frac{\partial \mathcal{L}}{\partial v^{c}} \left(\dot{W}^{c} + c^{c}_{ba} v^{b} W^{a} \right) \right) \\ &= \epsilon W^{a} \left(e_{a} \mathcal{L} + c^{c}_{ba} v^{b} \frac{\partial \mathcal{L}}{\partial v^{c}} \right) + \epsilon \dot{W}^{a} \frac{\partial \mathcal{L}}{\partial v^{a}} \\ &= \epsilon W^{a} \left(e_{a} \mathcal{L} + c^{c}_{ba} v^{b} \frac{\partial \mathcal{L}}{\partial v^{c}} - \frac{d}{dt} \, \frac{\partial \mathcal{L}}{\partial v^{a}} \right) + \frac{d}{dt} \left(\epsilon W^{a} \frac{\partial \mathcal{L}}{\partial v^{a}} \right) \end{split}$$

 $\label{eq:Variation} \begin{array}{c} & \text{Introduction} \\ \text{Variation of the action } \int Ldt \text{ in terms of } (x^i, v^a) \\ & \text{Structure of Poincaré equations} \\ & \text{Poincaré equations on Lie groups} \\ \text{Variation of the action } \int pdq - Hdt \text{ in terms of } (x^i, p_a) \end{array}$

Frame components of velocity and momentum Variational field W and velocity field V How to express δx^i and δv^a in terms of W Variation of S - Poincaré equations

Variation δS of the action functional $S[\gamma]$

Then

$$\delta S = \epsilon \int_{t_1}^{t_2} dt \left(e_a L + c_{ba}^c v^b \frac{\partial L}{\partial v^c} - \frac{d}{dt} \frac{\partial L}{\partial v^a} \right) W^a + \epsilon \left[\frac{\partial L}{\partial v^a} W^a \right]_{t_1}^{t_2}$$
(18)

Using standard arguments (δx^i vanishing at t_1 and t_2 and "arbitrary" inside the interval) we at last get

$$\frac{d}{dt} \frac{\partial L}{\partial v^{a}} - e_{a}L + c_{ab}^{c}v^{b}\frac{\partial L}{\partial v^{c}} = 0 \qquad \text{Poincaré equations}$$
(19)

 $\label{eq:action} \begin{array}{l} & \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ & \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Just *n* first-order equations

For $L(x^i, v^a)$, Poincaré equations

$$\frac{d}{dt} \frac{\partial L}{\partial v^a} - e_a L + c^c_{ab} v^b \frac{\partial L}{\partial v^c} = 0$$
(20)

represent just *n* first-order equations. We know that Lagrange equations represent *n* second-order equations. Where is the origin of the discrepancy? Don't panic. The remaining information sits in (4)

$$\dot{x}^i = e^i_a(x) v^a \tag{21}$$

 $\label{eq:action} \begin{array}{c} \\ Introduction\\ Variation of the action <math display="inline">\int Ldt \mbox{ in terms of } (x^i, v^a) \\ & {\bf Structure of Poincar^{\epsilon} equations} \\ Poincar^{\epsilon} equations on Lie groups \\ Variation of the action <math display="inline">\int pdq - Hdt$ in terms of $(x^i, p_a) \end{array}$

Complete set of equations to be solved

In order to use the equations for actual computation one has to write down the complete set of equations (Poincaré, 1901)

$$\frac{d}{dt} \frac{\partial L}{\partial v^{a}} - e_{a}L + c^{c}_{ab}v^{b}\frac{\partial L}{\partial v^{c}} = 0 \qquad (22)$$
$$v^{a} = e^{a}_{i}(x)\dot{x}^{i} \qquad (23)$$

Note that in general they form a coupled system of 2n first-order differential equations.

In this respect they resemble standard Hamilton, rather then standard Lagrange, equations.

 $\label{eq:action} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Particular case - holonomic (coordinate) frame $e_a = \partial_a$

In the particular case of holonomic (coordinate) frame $e_a = \partial_a$

1.
$$e_{bc}^{a} \mapsto 0$$

2. $e_{a}L \equiv e_{a}^{i}(x)\partial_{i}L \mapsto \partial_{i}L \equiv \frac{\partial L}{\partial x^{i}}$
3. $\frac{\partial L}{\partial y^{a}} \mapsto \frac{\partial L}{\partial y^{i}}$

The complete system reduces to

$$\frac{d}{dt} \frac{\partial L}{\partial v^{i}} - \frac{\partial L}{\partial x^{i}} = 0$$
(24)
$$v^{i} = \dot{x}^{i}$$
(25)

equivalent to standard Lagrange equations

 $\label{eq:action} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Elementary example - free motion in Euclidean plane

In polar orthonormal frame we have

$$\mathbf{e}_{\mathbf{r}} = \partial_{\mathbf{r}} \quad \mathbf{e}_{\varphi} = (1/r)\partial_{\varphi} \quad \dot{\gamma} = \dot{r}\partial_{\mathbf{r}} + \dot{\varphi}\partial_{\varphi} = \mathbf{v}^{\mathbf{r}}\mathbf{e}_{\mathbf{r}} + \mathbf{v}^{\varphi}\mathbf{e}_{\varphi} \quad (26)$$

$$[e_r, e_{\varphi}] = (-1/r)e_{\varphi} \quad \Rightarrow \quad c_{r\varphi}^{\varphi} = -c_{\varphi r}^{\varphi} = -1/r \qquad (27)$$

$$L(r,\varphi,\mathbf{v}^{r},\mathbf{v}^{\varphi}) = \frac{1}{2} ((v^{r})^{2} + (v^{\varphi})^{2}) \equiv (1/2)(\dot{r}^{2} + r^{2}\dot{\varphi}^{2})$$
(28)

$$\dot{v}^{r} - \frac{1}{r} v^{\varphi} v^{\varphi} = 0 \qquad \dot{v}^{\varphi} + \frac{1}{r} v^{r} v^{\varphi} = 0 \qquad (29)$$

$$r = \dot{r} \qquad v^{\varphi} = r\dot{\varphi}$$
 (30)

(True, but no profit here :-)

v

Frame components with respect to left invariant vector fields Particular case - Euler dynamical and kinematical equations

Specific features on Lie groups

There are important examples when

1. the configuration space has the structure of a Lie group

Then it is natural to choose left invariant frame field e_a .

Position-dependent anholonomy coefficients $c_{ab}^{c}(x)$ reduce to position-independent structure constants c_{ab}^{c} of the corresponding Lie algebra.

Frame components with respect to left invariant vector fields Particular case - Euler dynamical and kinematical equations

Left invariant kinetic energy

2. Kinetic energy is left invariant

Then
$$e_a L = e_a (T - U) = -e_a U$$
.

Moreover, left invariant metric tensor reads

$$g = I_{ab}e^a \otimes e^b$$
 $I_{ab} = \text{ const.}$ (31)

Therefore

$$T = \frac{1}{2}g(\dot{\gamma}, \dot{\gamma}) = \frac{1}{2}I_{ab}v^{a}v^{b}$$
(32)

Frame components with respect to left invariant vector fields Particular case - Euler dynamical and kinematical equations

Resulting complete set of equations

Under these conditions, the complete set (22) and (23) reduces to

$$I_{ab}\dot{v}^b + c_{dab}v^bv^d = -e_aU \tag{33}$$

$$v^a = e^a_i(x)\dot{x}^i \qquad (34)$$

where

$$c_{dab} := I_{dc} c_{ab}^c \tag{35}$$

Note the structure similarity of this set of equations to Euler (rigid body motion) equations.

Frame components with respect to left invariant vector fields Particular case - Euler dynamical and kinematical equations

Euler dynamical and kinematical equations

And indeed, for G = SO(3) = configuration space of rigid body and $I_{ab} =$ diag $(I_1, I_2, I_3) =$ moments of inertia of the body, the set of equations

$$I_{ab}\dot{v}^b + c_{dab}v^bv^d = -e_aU \tag{36}$$

$$v^a = e^a_i(x)\dot{x}^i \tag{37}$$

is nothing but well-known Euler dynamical (36) and kinematical (37) equations.

Here, frame components v^a play the role of "body components" of angular momentum of the rotating body.

 $\label{eq:construction} Introduction Variation of the action <math display="inline">\int Ldt$ in terms of (x^i, v^a) . Structure of Poincaré equations Poincaré equations on Lie groups Variation of the action $\int pdq - Hdt$ in terms of (x^I, p_a)

Četajev equations Further Reading

Coframe components of the momentum vector

In (39) we introduced frame components of the velocity vector. In the same way one can define coframe components of the momentum covector.

Consider a coframe field e^a (dual to e_a)

$$e^{a}(x) = e^{a}_{i}(x)dx^{i}$$
 $dx^{i} = e^{i}_{a}(x)e^{a}(x)$ (38)

Then the momentum covector may be expressed in two ways

$$p(t) = p_i(t)dx^i = p_a(t)e^a(x(t))$$
 (39)

The variables p_a are coframe components of the momentum covector.

Četajev equations Further Reading

Frame coordinates on TM and T^*M

Consider a frame field e_a and the dual coframe field e^a . Then any vector on M may be expressed as $v = v^i \partial_i = v^a e_a$ and any covector on M may be expressed as $p = p_i dx^i = p_a e^a$. This means that one can use as local coordinates either

$$(x^i, v^i)$$
 on TM (x^i, p_i) on T^*M (40)

or

$$(x^i, v^a)$$
 on TM (x^i, p_a) on T^*M (41)

Clearly

$$v^a = e^a_i v^i \quad v^i = e^i_a v^a \qquad p_a = e^i_a p_i \quad p_i = e^a_i p_a \qquad (42)$$

Četajev equations Further Reading

Expressing $\int p_i dx^i - H dt$ in frame components

In order to derive Hamilton-like equations from the least action principle we need to express the term $\int p_i dx^i$ in terms of frame components. We have

$$p_i \dot{x}^i = p_i e^i_a v^a = p_a v^a \tag{43}$$

Then the action functional reads

$$S[\tilde{\gamma}] = \int_{t_1}^{t_2} (p_a v^a - H(x^i, p_a)) dt$$
(44)

Here $\tilde{\gamma}(t) \leftrightarrow (x^i(t), p_a(t))$ is a curve in phase space.

Četajev equations Further Reading

Variation of $\int p_i dx^i - H dt$ in frame components (1)

We have

$$\delta S = \int_{t_1}^{t_2} (\delta p_a v^a + p_a \delta v^a - \delta H(x^i, p_a)) dt$$
(45)

where

$$\delta H = \frac{\partial H}{\partial x^{i}} \, \delta x^{i} + \frac{\partial H}{\partial \rho_{a}} \, \delta \rho_{a} \tag{46}$$

$$\delta x^{i} = \epsilon W^{i} \tag{47}$$

$$\delta v^{a} = \epsilon (\dot{W}^{a} + c^{a}_{bc} v^{b} W^{c})$$
(48)

Since the curve $(x^{i}(t), p_{a}(t))$ is regarded as a curve in phase space, variations δx^{i} and δp_{a} are to be treated as independent.

Četajev equations Further Reading

Variation of $\int p_i dx^i - H dt$ in frame components (2)

After usual per partes we get

$$\delta S = \int_{t_1}^{t_2} \delta p_a \left(v^a - \frac{\partial H}{\partial p_a} \right) dt \qquad (49)$$

$$+ \int_{t_1}^{t_2} \epsilon W^a \left(-\dot{p}_a - e_a H - c_{ab}^c v^b p_c \right) dt \qquad (50)$$

$$+ \epsilon \left(p_a W^a \right)_{t_1}^{t_2} \qquad (51)$$

$$(52)$$

Remember standard variational Hamiltonian folklore: δx^i vanishing and no restrictions on δp_a at t_1 and t_2 ; both "arbitrary" inside the interval.

Četajev equations Further Reading

Variation of $\int p_i dx^i - H dt$ in frame components (3)

Then one obtains

$$v^a = \frac{\partial H}{\partial p_a} \tag{53}$$

$$\dot{p}_a = -e_a H - c_{ab}^c v^b p_c \tag{54}$$

or, using the kinematical equations $\dot{x}^i = e^i_a(x)v^a$,

$$\dot{x}^{i} = e^{i}_{a}(x)\frac{\partial H}{\partial p_{a}}$$

$$\dot{p}_{a} = -e_{a}H - c^{c}_{ab}\frac{\partial H}{\partial p_{b}}p_{c}$$
(55)
(56)

(Četajev, 1927).

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Variation of the action } \int Ldt \mbox{ in terms of } (x^i, v^a) \\ \mbox{Structure of Poincaré equations} \\ \mbox{Poincaré equations on Lie groups} \\ \mbox{Variation of the action } \int pdq - Hdt \mbox{ in terms of } (x^i, p_a) \end{array}$

Četajev equations Further Reading

How Poisson bracket looks in frame components

If $f(x^i, p_a)$ is any function on phase space, then

$$\dot{f} = \frac{\partial f}{\partial x^{i}} \dot{x}^{i} + \frac{\partial f}{\partial p_{a}} \dot{p}_{a}
= \frac{\partial H}{\partial p_{a}} (e_{a}f) - \frac{\partial f}{\partial p_{a}} (e_{a}H) + p_{c}c_{ab}^{c}(x)\frac{\partial H}{\partial p_{a}}\frac{\partial f}{\partial p_{b}}
\equiv \{H, f\}$$

So, Poisson bracket explicitly reads

$$\{F,G\} = \frac{\partial F}{\partial p_a} (e_a G) - \frac{\partial G}{\partial p_a} (e_a F) + p_c c^c_{ab}(x) \frac{\partial F}{\partial p_a} \frac{\partial G}{\partial p_b}$$
(57)

Četajev equations Further Reading

Example - Hamilton equations for Dido problem (1)

Finding subriemannian geodesics needs solving Hamilton equations, often fairly complicated (see my Stará Lesná 2009 lectures). It might be instructive to confront both pictures - standard holonomic versus non-holonomic.

Easy example - Dido problem. The frame is

$$e_1 = \partial_x - (y/2)\partial_z$$

$$e_2 = \partial_y + (x/2)\partial_z$$

$$e_3 = \partial_z$$

so the frame components of momentum read

$$p_1 = p_x - (y/2)p_z$$
 $p_2 = p_y + (x/2)p_z$ $p_3 = p_z$

Četajev equations Further Reading

Example - Hamilton equations for Dido problem (2)

Resulting equations:

Hamilton equations

Četajev equations

$$\begin{array}{rcl} \dot{x} &=& p_{x} - y(p_{z}/2) & & \dot{x} &=& p_{1} \\ \dot{y} &=& p_{y} + x(p_{z}/2) & & \dot{y} &=& p_{2} \\ \dot{z} &=& (x\dot{y} - y\dot{x})/2 & & \dot{z} &=& (x\dot{y} - y\dot{x})/2 \\ \dot{p}_{x} &=& -(p_{y} + xp_{z}/2)(p_{z}/2) & & \dot{p}_{1} &=& -p_{2}p_{3} \\ \dot{p}_{y} &=& -(p_{x} - yp_{z}/2)(p_{z}/2) & & \dot{p}_{2} &=& +p_{1}p_{3} \\ \dot{p}_{z} &=& 0 & & \dot{p}_{3} &=& 0 \end{array}$$

Which system would you prefer to solve?

Further Reading

For Further Reading

🦫 H. Poincaré.

Sur une forme nouvelle des équations de la méchnique. C.R.Acad.Sci.Paris, v.132, p.369-371, 1901

Further Reading

For Further Reading

🦫 H. Poincaré.

Sur une forme nouvelle des équations de la méchnique. C.R.Acad.Sci.Paris, v.132, p.369-371, 1901

N. Četajev.

Sur les équations de Poincaré. C.R.Acad.Sci.Paris, v.185, p.1577-1578, 1927

Further Reading

For Further Reading

🦫 H. Poincaré.

Sur une forme nouvelle des équations de la méchnique. C.R.Acad.Sci.Paris, v.132, p.369-371, 1901

🛸 M. Četaiev.

Sur les équations de Poincaré. C.R.Acad.Sci.Paris, v.185, p.1577-1578, 1927

🛸 V.I. Arnold. V.V. Kozlov. A.I. Neishtadt Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin Heidelberg, 2009

Further Reading

For Further Reading

🦫 H. Poincaré.

Sur une forme nouvelle des équations de la méchnique. C.R.Acad.Sci.Paris, v.132, p.369-371, 1901

🛸 M. Četaiev.

Sur les équations de Poincaré. C.R.Acad.Sci.Paris, v.185, p.1577-1578, 1927

🛸 V.I. Arnold. V.V. Kozlov. A.I. Neishtadt Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin Heidelberg, 2009