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Coordinate components of the velocity vector

In standard Lagrange equations

d
dt

∂L
∂ẋ i −

∂L
∂x i = 0 (1)

we encounter variables x i (generalized coordinates) and ẋ i

(generalized velocities). From the geometrical point of view the
coordinates x i represent the curve γ(t) whereas v i = ẋ i are the
coordinate components of its velocity vector:

x i (t) ↔ γ(t)
v i (t) ≡ ẋ i (t) ↔ γ̇(t)
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Frame components of the velocity vector

Consider a frame field ea

ea(x) = e i
a(x)∂i ∂i = ea

i (x)ea(x) (2)

(any - orhonormal, left invariant, even the original coordinate one).
Then the velocity vector may be expressed in two ways

γ̇(t) = v i (t)∂i = va(t)ea(x(t)) (3)

The variables va are frame ("vielbein") components of the velocity
vector ("pseudovelocities"). So, we can also write

x i (t) ↔ γ(t)
va(t) ↔ γ̇(t)
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Relation between the two kinds of components

From (39) we see that

v i∂i = vaea ⇒ va = ea
i v i v i = e i

av
a (4)

This means that Lagrangian may also be expressed in terms of the
mixed variables (x i , va)

L = L(x i , va) rather than L = L(x i , v i ) (5)
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Variation of Lagrangian

In order to derive equations of motion via the least action principle
in terms of (x i , va), we need the variation

δL(x i , va) =
∂L
∂x i δx

i +
∂L
∂va δv

a (6)

As is the case for δẋ i , the variation δva is related to δx i .
The explicit formula is, however, more subtle.
Therefore we prefer to gain some geometrical insight into the
variational procedure.
(In his paper, Poincaré simply states the result
with laconic comment
"Or on trouve aisément" (one easily finds)).
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Variational field W

We want to perform a small variation of
the curve γ(t).
Consider a vector field W an let Φε

denote its flow. Then the variation may
be realized as

γ(t) 7→ Φε(γ(t)) ≡ γε(t) Φs ↔W
(7)

In this way the flow produces a
two-dimensional (narrow) surface S .
The field W is tangent to the surface.
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Velocity field V

There is another vector field living on
the surface S .
Each curve γε(t) induces in all its points
velocity vector γ̇ε(t).
Altogether, collection of all velocity
vectors of all curves results in a vector
field on S - the velocity field V .
In each point of the surface S , the two
fields,
V and W ,
span the tangent space to the surface.
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Commutator of V and W vanishes

The field V is Lie-dragged with respect to W .
Then the Lie derivative vanishes, LW V = 0, or, put another way,
the two fields commute

[W ,V ] = 0 (8)

In terms of frame components of the fields this reads

0 = [W ,V ]a = WV a − VW a + ca
bcW

bV c (9)

where cc
ab(x) are anholonomy coefficients of the frame field ea

[ea, eb] =: cc
ab(x)ec (10)
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Variation δx i in terms of W

In coordinates, the variation of x i (t) reads

x i (t) 7→ x i (t) + δx i (t)

But we know (see (7)) that the new curve arises by means of the
flow of the original curve along W . So

abstractly γ(t) 7→ ΦW
ε (γ(t)) (11)

in coordinates x i (t) 7→ x i (t) + εW i (t) (12)

and, consequently
δx i = εW i (13)
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Variation δv a in terms of W (1)

We have

vaea = γ̇ (14)
(va + δva)ea = γ̇ε = V (γε(t)) ≡ V (Φε(γ(t))) (15)

(the two ea’s on the left sit in different points) hence

δva = εWV a (16)

H
V (Φε(γ(t))) = V a(Φε(γ(t)))ea

= (Φ∗
εV

a)(γ(t))ea

= (1̂ + εLW )V a)(γ(t))ea
= V a(γ(t)) + ε(WV a)(γ(t))ea
≡ vaea + ε(WV a)ea

N
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Variation δv a in terms of W (2)

Now the vanishing of the commutator [V ,W ] (8, 9) comes in
handy and we get

δva = ε(Ẇ a + ca
bcv

bW c) (17)

H
WV a = VW a − ca

bcW
bV c

= VW a + ca
bcV

bW c

= Ẇ a + ca
bcv

bW c

Everything is evaluated at the original curve γ(t), so that
Vf = γ̇f = ḟ and also V a reduce to va. N
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Using of the results for δx i , δv a for performing δL

Using results (13) and (17), we get

δL(x i , va) = ∂L
∂x i δx i + ∂L

∂va δva

= ε
(
∂L
∂x i W i + ∂L

∂va (Ẇ a + ca
bcv

bW c)
)

= ε
(
W aeaL + ∂L

∂vc (Ẇ c + cc
bav

bW a)
)

= εW a (eaL + cc
bav

b ∂L
∂vc

)
+ εẆ a ∂L

∂va

= εW a (eaL + cc
bav

b ∂L
∂vc − d

dt
∂L
∂va

)
+ d

dt

(
εW a ∂L

∂va

)
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Variation δS of the action functional S [γ]

Then

δS = ε

∫ t2

t1
dt
(

eaL + cc
bav

b ∂L
∂v c −

d
dt

∂L
∂va

)
W a + ε

[
∂L
∂va W a

]t2

t1
(18)

Using standard arguments (δx i vanishing at t1 and t2 and
"arbitrary" inside the interval) we at last get

d
dt

∂L
∂va − eaL + cc

abv
b ∂L
∂v c = 0 Poincaré equations

(19)
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Just n first-order equations

For L(x i , va), Poincaré equations

d
dt

∂L
∂va − eaL + cc

abv
b ∂L
∂v c = 0 (20)

represent just n first-order equations. We know that Lagrange
equations represent n second-order equations.
Where is the origin of the discrepancy?
Don’t panic. The remaining information sits in (4)

ẋ i = e i
a(x)va (21)
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Complete set of equations to be solved

In order to use the equations for actual computation one has to
write down the complete set of equations (Poincaré, 1901)

d
dt

∂L
∂va − eaL + cc

abv
b ∂L
∂v c = 0 (22)

va = ea
i (x)ẋ i (23)

Note that in general they form a coupled system of 2n first-order
differential equations.
In this respect they resemble standard Hamilton, rather then
standard Lagrange, equations.
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Particular case - holonomic (coordinate) frame ea = ∂a

In the particular case of holonomic (coordinate) frame ea = ∂a

1. ea
bc 7→ 0

2. eaL ≡ e i
a(x)∂iL 7→ ∂iL ≡ ∂L

∂x i

3. ∂L
∂va 7→ ∂L

∂v i

The complete system reduces to

d
dt

∂L
∂v i −

∂L
∂x i = 0 (24)

v i = ẋ i (25)

equivalent to standard Lagrange equations
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Elementary example - free motion in Euclidean plane

In polar orthonormal frame we have

er = ∂r eϕ = (1/r)∂ϕ γ̇ = ṙ∂r + ϕ̇∂ϕ = v rer + vϕeϕ (26)

[er , eϕ] = (−1/r)eϕ ⇒ cϕrϕ = −cϕϕr = −1/r (27)

L(r , ϕ, v r , vϕ) =
1
2

((v r )2 + (vϕ)2) ≡ (1/2)(ṙ2 + r2ϕ̇2) (28)

v̇ r − 1
r

vϕvϕ = 0 v̇ϕ +
1
r

v rvϕ = 0 (29)

v r = ṙ vϕ = r ϕ̇ (30)

(True, but no profit here :-)
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Specific features on Lie groups

There are important examples when

1. the configuration space has the structure of a Lie group

Then it is natural to choose left invariant frame field ea.

Position-dependent anholonomy coefficients cc
ab(x)

reduce to position-independent structure constants cc
ab

of the corresponding Lie algebra.
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Left invariant kinetic energy

2. Kinetic energy is left invariant

Then eaL = ea(T − U) = −eaU.

Moreover, left invariant metric tensor reads

g = Iabea ⊗ eb Iab = const. (31)

Therefore
T =

1
2
g(γ̇, γ̇) =

1
2
Iabvavb (32)
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Resulting complete set of equations

Under these conditions, the complete set (22) and (23) reduces to

Iab v̇b + cdabvbvd = −eaU (33)
va = ea

i (x)ẋ i (34)

where
cdab := Idccc

ab (35)

Note the structure similarity of this set of equations
to Euler (rigid body motion) equations.
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Euler dynamical and kinematical equations

And indeed, for G = SO(3) = configuration space of rigid body
and Iab = diag (I1, I2, I3) = moments of inertia of the body,
the set of equations

Iab v̇b + cdabvbvd = −eaU (36)
va = ea

i (x)ẋ i (37)

is nothing but well-known Euler dynamical (36) and kinematical
(37) equations.
Here, frame components va play the role of "body components"
of angular momentum of the rotating body.

Marián Fecko Poincaré (non-holonomic Lagrange) Equations



Introduction
Variation of the action

∫
Ldt in terms of (x i , va)

Structure of Poincaré equations
Poincaré equations on Lie groups

Variation of the action
∫

pdq − Hdt in terms of (x i , pa)

Četajev equations
Further Reading

Coframe components of the momentum vector

In (39) we introduced frame components of the velocity vector.
In the same way one can define coframe components of the
momentum covector.
Consider a coframe field ea (dual to ea)

ea(x) = ea
i (x)dx i dx i = e i

a(x)ea(x) (38)

Then the momentum covector may be expressed in two ways

p(t) = pi (t)dx i = pa(t)ea(x(t)) (39)

The variables pa are coframe components of the momentum
covector.
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Frame coordinates on TM and T ∗M

Consider a frame field ea and the dual coframe field ea.
Then any vector on M may be expressed as v = v i∂i = vaea
and any covector on M may be expressed as p = pidx i = paea.
This means that one can use as local coordinates either

(x i , v i ) on TM (x i , pi ) on T ∗M (40)

or
(x i , va) on TM (x i , pa) on T ∗M (41)

Clearly

va = ea
i v i v i = e i

av
a pa = e i

api pi = ea
i pa (42)
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Expressing
∫

pidx i − Hdt in frame components

In order to derive Hamilton-like equations from the least action
principle we need to express the term

∫
pidx i in terms of frame

components. We have

pi ẋ i = pie i
av

a = pava (43)

Then the action functional reads

S [γ̃] =

∫ t2

t1
(pava − H(x i , pa))dt (44)

Here γ̃(t)↔ (x i (t), pa(t)) is a curve in phase space.
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Variation of
∫

pidx i − Hdt in frame components (1)

We have

δS =

∫ t2

t1
(δpava + paδva − δH(x i , pa))dt (45)

where

δH =
∂H
∂x i δx

i +
∂H
∂pa

δpa (46)

δx i = εW i (47)
δva = ε(Ẇ a + ca

bcv
bW c) (48)

Since the curve (x i (t), pa(t)) is regarded as a curve in phase space,
variations δx i and δpa are to be treated as independent.
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Variation of
∫

pidx i − Hdt in frame components (2)

After usual per partes we get

δS =

∫ t2

t1
δpa

(
va − ∂H

∂pa

)
dt (49)

+

∫ t2

t1
εW a

(
−ṗa − eaH − cc

abv
bpc

)
dt (50)

+ ε (paW a)t2
t1 (51)

(52)

Remember standard variational Hamiltonian folklore:
δx i vanishing and no restrictions on δpa at t1 and t2; both
"arbitrary" inside the interval.
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Variation of
∫

pidx i − Hdt in frame components (3)

Then one obtains

va =
∂H
∂pa

(53)

ṗa = −eaH − cc
abv

bpc (54)

or, using the kinematical equations ẋ i = e i
a(x)va,

ẋ i = e i
a(x)

∂H
∂pa

(55)

ṗa = −eaH − cc
ab
∂H
∂pb

pc (56)

(Četajev, 1927).
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How Poisson bracket looks in frame components

If f (x i , pa) is any function on phase space, then

ḟ = ∂f
∂x i ẋ i + ∂f

∂pa
ṗa

= ∂H
∂pa

(eaf )− ∂f
∂pa

(eaH) + pccc
ab(x) ∂H

∂pa
∂f
∂pb

≡ {H, f }

So, Poisson bracket explicitly reads

{F ,G} =
∂F
∂pa

(eaG )− ∂G
∂pa

(eaF ) + pccc
ab(x)

∂F
∂pa

∂G
∂pb

(57)
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Example - Hamilton equations for Dido problem (1)

Finding subriemannian geodesics needs solving Hamilton equations,
often fairly complicated (see my Stará Lesná 2009 lectures).
It might be instructive to confront both pictures - standard
holonomic versus non-holonomic.
Easy example - Dido problem. The frame is

e1 = ∂x − (y/2)∂z
e2 = ∂y + (x/2)∂z
e3 = ∂z

so the frame components of momentum read

p1 = px − (y/2)pz p2 = py + (x/2)pz p3 = pz

Marián Fecko Poincaré (non-holonomic Lagrange) Equations



Introduction
Variation of the action

∫
Ldt in terms of (x i , va)

Structure of Poincaré equations
Poincaré equations on Lie groups

Variation of the action
∫

pdq − Hdt in terms of (x i , pa)

Četajev equations
Further Reading

Example - Hamilton equations for Dido problem (2)

Resulting equations:

Hamilton equations

ẋ = px − y(pz/2)
ẏ = py + x(pz/2)
ż = (xẏ − y ẋ)/2

ṗx = −(py + xpz/2)(pz/2)
ṗy = −(px − ypz/2)(pz/2)
ṗz = 0

Četajev equations

ẋ = p1
ẏ = p2
ż = (xẏ − y ẋ)/2

ṗ1 = −p2p3
ṗ2 = +p1p3
ṗ3 = 0

Which system would you prefer to solve?
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