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1-st order Lagrangian L(x , ẋ)

We have standard Lagrange equations

∂L
∂xa −

d
dt

∂L
∂ẋa = 0 a = 1, . . . , n (1)

It is a system of 2-nd order equations

Qa(x , ẋ , ẍ) = 0 a = 1, . . . , n (2)

We would like to isolate the highest (= 2-nd) derivative, i.e. write
it in the form

ẍa = F a(x , ẋ) a = 1, . . . , n (3)
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1-st order Lagrangian L(x , ẋ) (2)

Well, in more detail, the system has the structure

Aab(x , ẋ)ẍb = Ba(x , ẋ) a = 1, . . . , n (4)

where

Aab(x , ẋ) :=
∂2L

∂ẋa∂ẋb

So, the "Newtonian" form (3) is possible iff the matrix Aab is
invertible. We speak then of non-degenerate Lagrangian:

det
∂2L

∂ẋa∂ẋb 6= 0 non-degenerate Lagrangian (1-st order) (5)
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2-nd order Lagrangian L(x , ẋ , ẍ)

We have (a bit less standard) Lagrange equations

∂L
∂xa −

d
dt

∂L
∂ẋa +

d2

dt2
∂L
∂ẍa = 0 a = 1, . . . , n (6)

It is a system of 4-th order equations

Qa(x , ẋ , ẍ ,
...
x ,

....
x ) = 0 a = 1, . . . , n (7)

We would like to isolate the highest (= 4-th) derivative, i.e. write it
in the form

....
x a = F a(x , ẋ , ẍ ,

...
x ) a = 1, . . . , n (8)
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2-nd order Lagrangian L(x , ẋ , ẍ) (2)

Well, in more detail, the system has the structure

Aab(x , ẋ , ẍ)
....
x b = Ba(x , ẋ , ẍ ,

...
x ) a = 1, . . . , n (9)

where

Aab(x , ẋ , ẍ) :=
∂2L

∂ẍa∂ẍb

So, the "Newtonian" form (8) is possible iff the matrix Aab is
invertible. We speak then of non-degenerate Lagrangian:

det
∂2L

∂ẍa∂ẍb 6= 0 non-degenerate Lagrangian (2-nd order)

(10)
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3-rd order Lagrangian L(x , ẋ , ẍ ,
...
x )

We have (still less standard) Lagrange equations

∂L
∂xa −

d
dt

∂L
∂ẋa +

d2

dt2
∂L
∂ẍa −

d3

dt3
∂L
∂
...
x a = 0 a = 1, . . . , n (11)

It is a system of 6-th order equations

Qa(x , ẋ , ẍ ≡ xa(2), . . . , xa(6)) = 0 a = 1, . . . , n (12)

We would like to isolate the highest (= 6-th) derivative, i.e. write it
in the form

xa(6) = F a(x , . . . , x (5)) a = 1, . . . , n (13)
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3-rd order Lagrangian L(x , ẋ , ẍ ,
...
x ) (2)

Well, in more detail, the system has the structure

Aab(x , ẋ , ẍ ,
...
x )xb(6) = Ba(x , ẋ , . . . , xa(5)) a = 1, . . . , n (14)

where

Aab(x , ẋ , . . . , xa(3)) :=
∂2L

∂
...
x a∂

...
x b

So, the "Newtonian" form (13) is possible iff the matrix Aab is
invertible. We speak then of non-degenerate Lagrangian:

det
∂2L

∂
...
x a∂

...
x b 6= 0 non-degenerate Lagrangian (3-rd order)

(15)
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k-th order Lagrangian L(x , . . . , x (k))

Hopefully all boring details not needed. Clearly in the case of

det
∂2L

∂xa(k)∂xb(k) 6= 0 non-degenerate Lagrangian (k-th order)

(16)
Lagrange equations may be written in the "Newtonian" form

xa(2k) = F a(x , . . . , x (2k−1)) a = 1, . . . , n (17)
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Phase space for Lagrange equations

Let’s adopt the definition: Points of the phase space are given as
initial conditions corresponding to Lagrange equations.
In natural coordinates

L(x , ẋ) : phase space ↔ (x0, ẋ0) (18)
L(x , ẋ , ẍ) : phase space ↔ (x0, ẋ0, ẍ0,

...
x 0) (19)

L(x , ẋ , ẍ ,
...
x ) : phase space↔ (x0, x

(1)
0 , . . . , x (5)0 ) (20)

L(x , ẋ , . . . , x (k)) : phase space↔ (x0, ẋ0, . . . , x
(2k−1)
0 ) (21)
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Phase space for Lagrange equations (2)

Then trivially holds: If we know our position in the phase space
now, at time t, we are, in principle, able to predict our position in
the phase space in the (near) future, at time t + ε.
And iterate the procedure.

(We simply solve Lagrange equations using initial conditions.)

This means, however, that the dynamics may be written by sure as
a system of first order equations.

Marián Fecko Ostrogradsky theorem (from 1850)



Introduction
Non-degenerate (possibly higher order) Lagrangian

The phase space
Ostrogradsky variables

How to get to the bottom of the variables
Why it might be of interest today (just a touch)

Phase space for Lagrange equations (3)

Now recall that the phase space is always even-dimensional.
So there is a chance that what we really get as the first order
system will be system of Hamiltonian equations

ẋi = ∂H/∂pi ṗi = −∂H/∂xi (22)

We all know this is the case for 1-st order Lagrangians: Just set

xa(x , ẋ) := xa (23)
pa(x , ẋ) := ∂L/∂ẋa (24)

H := paẋa − L (25)
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Phase space for Lagrange equations (4)

However, it is far from being clear for higher order case since a
generic first order system is far from always Hamiltonian.

What Ostrogradsky explicitly demonstrated as long ago as in 1850
is that the dynamics given by Lagrange equations is always
Hamiltonian. (Plus a strange feature of this particular dynamics.)

So, he found higher order analogues of (23), (24) and (25) such
that equations (22) hold.
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Ostrogradsky variables for L(x , ẋ , ẍ)

Ostrogradsky proposes new coordinates on the phase space:

(x , ẋ , ẍ ,
...
x ) 7→ (x1, x2, p1, p2) (26)

where

x1 := x p1 :=
∂L
∂ẋ
− d

dt
∂L
∂ẍ

(27)

x2 := ẋ p2 :=
∂L
∂ẍ

(28)

Hamiltonian reads
H := p1ẋ + p2ẍ − L (29)

Then, one can check that (6) is equivalent to (22)
Marián Fecko Ostrogradsky theorem (from 1850)



Introduction
Non-degenerate (possibly higher order) Lagrangian

The phase space
Ostrogradsky variables

How to get to the bottom of the variables
Why it might be of interest today (just a touch)

Is it simply the usual Legendre transformation?

In Woodard [3] one can read:

"Ostrogradsky’s Hamiltonian is obtained by
Legendre transforming on ẋ = x (1) and ẍ = x (2) ..."

Well, general formulas for the Legendre transformation read

(xi , ya)
L7→ (xi , za) za(x , y) = ∂L(x , y)/∂ya (30)

(xi , za)
H7→ (xi , ya) ya(x , z) = ∂H(x , z)/∂za (31)

where
H(xi , za) = zaya − L ≡ (new)a(old)a − L (32)

Marián Fecko Ostrogradsky theorem (from 1850)
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Is it simply the usual Legendre transformation? (2)

We see from (26) that the old-new pair is

(ẍ ,
...
x ) 7→ (p1, p2) (33)

whereas (x , ẋ) are nothing but "spectators" (xi in (30)).
However, from the Hamiltonian (29), the old-new pair should be

(ẋ , ẍ) 7→ (p1, p2) (34)

In addition, the expression p1 = . . . in (27) is not of the needed
form (30) (the second term is excessive).
So, even though the structure of the Ostrogradsky Hamiltonian
(29) resembles Legendre transformation, actually it is not the case.
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Ostrogradsky variables for L(x , ẋ , ẍ ,
...
x )

Ostrogradsky proposes new coordinates on the phase space:

(x , ẋ , . . . , x (5)) 7→ (x1, x2, x3, p1, p2, p3) (35)

where

x1 := x p1 :=
∂L
∂ẋ
− d

dt

(
∂L
∂ẍ
− d

dt

(
∂L
∂
...
x

))
(36)

x2 := ẋ p2 :=
∂L
∂ẍ
− d

dt

(
∂L
∂
...
x

)
(37)

x3 := ẍ p2 :=
∂L
∂
...
x

(38)

Hamiltonian reads

H := p1ẋ + p2ẍ + p3
...
x − L (39)

Then, one can check that (11) is equivalent to (22)
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Main feature of the dynamics: instability

L(x , ẋ):

H(x1, p1) = p1ẋ − L (40)
≡ p1ẋ(x1, p1)− L(x1, ẋ(x1, p1) (41)

L(x , ẋ , ẍ):

H(x1, x2, p1, p2) = p1ẋ + p2ẍ − L (42)
≡ p1x2 + h(x1, x2, p2) (43)

L(x , ẋ , ẍ ,
...
x ):

H(x1, x2, x3, p1, p2, p3) = p1ẋ + p2ẍ + p3
...
x − L (44)

≡ p1x2 + p2x3 + h(x1, x2, x3, p3) (45)
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Instability: H is linear in almost all momenta

We see that, starting from the case L(x , ẋ , ẍ)
(the first "higher-order" case),

Hamiltonian depends on all momenta but one linearly.
(This causes various kinds of problems.)

Notice, that
- this inevitably holds for all higher-order Lagrangians
- usual, 1-st order, Lagrangian is (in this sense) exceptional
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First hint for L(x , ẋ , ẍ)

Lagrange equation - old look:

∂L
∂x
− d

dt
∂L
∂ẋ

+
d2

dt2
∂L
∂ẍ

= 0 (46)

Lagrange equation - a new look:

∂L
∂x
− d

dt

(
∂L
∂ẋ
− d

dt

(
∂L
∂ẍ

))
= 0 (47)

∂L
∂x
− d

dt

(
∂L
∂ẋ
− d

dt

(
∂L
∂ẍ

))
= 0 (48)

Marián Fecko Ostrogradsky theorem (from 1850)
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First hint for L(x , ẋ , ẍ) (2)

This might serve as an inspiration to introduce (p1, p2)
in Ostrogradsky fashion. Then Lagrange equation becomes

ṗ1 =
∂L
∂x

ṗ2 =
∂L
∂ẋ
− p1 (49)

and after some effort one can find (x1, x2) as well as
H(x1, x2, p1, p2).
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First hint for L(x , ẋ , ẍ ,
...
x )

Lagrange equation - old look:

∂L
∂x
− d

dt
∂L
∂ẋ

+
d2

dt2
∂L
∂ẍ
− d3

dt3
∂L
∂
...
x

= 0 (50)

Lagrange equation - a new look:

∂L
∂x
− d

dt

(
∂L
∂ẋ
− d

dt

(
∂L
∂ẍ
− d

dt

(
∂L
∂
...
x

)))
= 0 (51)

∂L
∂x
− d

dt

(
∂L
∂ẋ
− d

dt

(
∂L
∂ẍ
− d

dt

(
∂L
∂
...
x

)))
= 0 (52)

∂L
∂x
− d

dt

(
∂L
∂ẋ
− d

dt

(
∂L
∂ẍ
− d

dt

(
∂L
∂
...
x

)))
= 0 (53)
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First hint for L(x , ẋ , ẍ ,
...
x ) (2)

This might serve as an inspiration to introduce (p1, p2, p3)
in Ostrogradsky fashion. Then Lagrange equation becomes

ṗ1 =
∂L
∂x

ṗ2 =
∂L
∂ẋ
− p1 ṗ3 =

∂L
∂ẍ
− p2 (54)

and after some effort one can find (x1, x2, x3) as well as
H(x1, x2, x3, p1, p2, p3).
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Second hint: recall good old L(x , ẋ)

Start with the action integral

S [x ] :=
∫ t2

t1
L(x , ẋ)dt (55)

Then the variation of S turns out to be

δS = · · · =
∫ t2

t1
dt ELδx + [pδx ]t2t1 (56)

Here the Euler-Lagrange expression is defined as

EL :=
∂L
∂x
− d

dt

(
∂L
∂ẋ

)
(57)

and the canonical momentum is

p :=
∂L
∂ẋ

(58)
Marián Fecko Ostrogradsky theorem (from 1850)
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Second hint: recall good old L(x , ẋ) (2)

This is standardly treated as a means to infer

EL = 0 Euler-Lagrange equation (59)

from the assumptions

δS = 0 and δx |t1 = δx |t2 = 0 (60)
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Second hint: recall good old L(x , ẋ) (3)

One can, however, also use the result (56)

to identify the canonical pair (x , p):

It quietly sits at the end of the expression (56):

δS =

∫ t2

t1
dt ELδx + [pδx ]t2t1 (61)
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Apply the trick to L(x , ẋ , ẍ)

Now, we have

S [x ] :=
∫ t2

t1
L(x , ẋ , ẍ)dt (62)

Then (check!)

δS =

∫ t2

t1
dt ELδx + [p1δx ]

t2
t1 + [p2δẋ ]

t2
t1 (63)

where the canonical momenta (p1, p2) are nothing but the
Ostrogradsky variables

p1 :=
∂L
∂ẋ
− d

dt
∂L
∂ẍ

p2 :=
∂L
∂ẍ

(64)
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Apply the trick to L(x , ẋ , ẍ) (2)

This might be treated as a means to infer
Euler-Lagrange equation (6)

EL = 0 (65)

from the assumptions

δS = 0 and δx |t1 = δx |t2 = δẋ |t1 = δẋ |t2 = 0 (66)
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Apply the trick to L(x , ẋ , ẍ) (3)

One can, however, also use the result (63)

to identify the canonical pairs (x1, p1) and (x2, p2):

They quietly sit at the end of the expression (63):

δS =

∫ t2

t1
dt ELδx + [p1δx ]

t2
t1 + [p2δẋ ]

t2
t1 (67)

So we see, that the remaining Ostrogradsky variables are

x1 = x x2 = ẋ (68)
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Apply the trick to L(x , ẋ , ẍ) (4)

Notice: the condition

δx |t1 = δx |t2 = δẋ |t1 = δẋ |t2 = 0 (69)

means that both x and ẋ are to be fixed at both t1 and t2 in the
course of the variation. This is OK. Our equation is of the 4-th
order, it needs initial conditions

(x , ẋ , ẍ ,
...
x )|t1 = given (70)

Instead, one can (for small enough (t2 − t1)) prescribe

(x , ẋ)|t1 = given, plus (x , ẋ)|t2 = given (71)

Marián Fecko Ostrogradsky theorem (from 1850)
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Etc ... apply the trick to L(x , ẋ , ẍ ,
...
x )

Here one gets

δS =

∫ t2

t1
dt ELδx + [p1δx ]

t2
t1 + [p2δẋ ]

t2
t1 + [p3δẍ ]

t2
t1 (72)

So we can, again,

identify the canonical pairs (x1, p1), (x2, p2) and (x3, p3)

at the end of the expression (72). They are exactly Ostrogradsky
variables (36), (37), (38).
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The Hamiltonian: e.g. from conservation of energy

Standard computation: consider L(x , ẋ , ẍ , t). Then, using Lagrange
equation in the form (49),

dL
dt = ∂L

∂x ẋ + ∂L
∂ẋ ẍ + ∂L

∂ẍ
...
x + ∂L

∂t
= ṗ1ẋ + (p1 + ṗ2)ẍ + p2

...
x + ∂L

∂t
= d

dt (p1ẋ + p2ẍ) + ∂L
∂t

or
dH
dt ≡

d
dt (p1ẋ + p2ẍ − L) = −∂L

∂t
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The Hamiltonian: e.g. from conservation of energy (2)

So, if the system is invariant w.r.t.

t 7→ t + const. (73)

i.e. if
L(x , ẋ , ẍ , t) = L(x , ẋ , ẍ) (74)

we get conservation of energy

dH
dt

= 0 H := p1ẋ + p2ẍ − L (75)

Marián Fecko Ostrogradsky theorem (from 1850)



Introduction
Non-degenerate (possibly higher order) Lagrangian

The phase space
Ostrogradsky variables

How to get to the bottom of the variables
Why it might be of interest today (just a touch)

Action as a function of coordinates

Still another view:
Consider action integral

S(x , t) =
∫ x ,t

x0,t0
L(x(t), ẋ(t))dt (76)

computed
- along the real trajectory (= obeying Lagrange equations)
- from a reference point x0 at t0
- to the point x at t
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Action as a function of coordinates (2)

Then (see, e.g., Landau-Lifshitz, Mechanics, $ 43), it holds

∂S(x , t)
∂xa = pa

∂S(x , t)
∂t

= −H (77)

Here
pa = pa(x , t) H = H(x , t) (78)

are the values of the canonical momentum pa and the energy H at
the endpoint of the real trajectory.
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What changes for L(x , ẋ , ẍ)?

Now, we have

S(x , v , t) =
∫ x ,v ,t

x0,v0,t0
L(x(t), ẋ(t), ẍ(t))dt (79)

(here v = ẋ) computed
- along the real trajectory (= obeying Lagrange equations)
- from a reference point (x0, v0) at t0
- to the point (x , v) at t
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What changes for L(x , ẋ , ẍ)? (2)

Then, it holds

∂S(x , v , t)
∂xa = p1a

∂S(x , v , t)
∂va = p2a

∂S(x , v , t)
∂t

= −H
(80)

so that
δS = p1aδxa + p2aδva − Hδt (81)

Here
δS := S(x + δx , v + δv , t + δt)− S(x , v , t) (82)
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Further Reading

Why the topic is relevant today

Pais, Uhlenbeck [3] (1950):

It is investigated whether suitable generalizations of the field
equations of current field theories to equations of higher order may
be of help in eliminating the divergent features of the present
theory.
It turns out to be difficult, if feasible, to reconcile in this way the
requirements of convergence, of positive definiteness of the free
field energy, and of a strictly causal behavior of the state vector of
a physical system. ...
A procedure for deriving a Hamiltonian corresponding to (13) was
given long ago by Ostrogradski ...
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Further Reading

Why the topic is relevant today (2)

Woodard [1] (2006):

I begin by reviewing a powerful no-go theorem which pervades and
constrains fundamental theory so completely that most people
assume its consequence without thinking. This is the theorem of
Ostrogradski ...
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Further Reading

Why the topic is relevant today (3)

Woodard [2] (2009):

... the renormalization of perturbative quantum general relativity
requires that the equations of motion be changed to include terms
with up to four derivatives. ... it is also subject to a virulent
instability that is totally inconsistent with the observed reality of a
universe which is 13.7 billion years old.
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Further Reading

Why the topic is relevant today (4)

Woodard [3] (2015):

The resulting instability imposes by far the most powerful restriction
on fundamental, interacting, continuum Lagrangian field theories.
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Further Reading

For Further Reading (1)

M.V. Ostrogradsky.
Memoires sur les equations differentielles relatives au probleme
des isoperimetres.
Mem. Acad. St. Petersburg 6 (4), 385 (1850)

E.T. Whittaker.
A treatise on the analytical dynamics of particles and rigid
bodies, p.266.
Cambridge University Press, Cambridge, UK (1960), 4th edition

A. Pais and G.E. Uhlenbeck
On Field Theories with Non-Localized Action.
Phys. Rev. 79 145-165 (1950).
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Further Reading

For Further Reading (2)

R.P. Woodard
Avoiding Dark Energy with 1/R Modifications of Gravity.
arXiv:astro-ph/0601672v2 (6 Feb 2006)

R.P. Woodard
How Far Are We from the Quantum Theory of Gravity?.
arXiv (gr-qc): 0907.4238v1. (24 Jul 2009)

R.P. Woodard
The Theorem of Ostrogradsky.
arxiv (hep-th): 1506.02210v1. (7 June 2015)
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