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Adapted basis in L = L1 ⊕ L2

Let us call the subspaces L1 and L2 of L1 ⊕ L2 ≡ L

L ⊃ L1 = vertical
L ⊃ L2 = horizontal

Choose a basis ei ∈ L1 and ea ∈ L2. Then

eα ≡ (ei , ea) = adapted basis in L = L1 ⊕ L2
eα ≡ (e i , ea) = adapted dual basis in L∗ = L∗1 ⊕ L∗2
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Duality conditions in detail

The overall duality conditions

〈eα, eβ〉 = δαβ (1)

are equivalent to four particular cases:

〈ea, eb〉 = δab 〈e i , ej〉 = δij 〈ea, ei 〉 = 0 〈e i , ea〉 = 0 (2)

Then, clearly, we can write

v is vertical ⇔ v = v iei ⇔ 〈ea, v〉 = 0 (3)
u is horizontal ⇔ u = uaea ⇔ 〈e i , u〉 = 0 (4)
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Forms in L = L1 ⊕ L2

A general p-form in L = L1 ⊕ L2 reads

α =
1
p!
αα...βe

α ∧ · · · ∧ eβ (5)

(p pieces of basis 1-forms eα, . . . , eβ are wedge-multiplied).
Now each eα is either e i or ea. So, (5) is actually a sum of terms
of the structure

α = α̂ + e i ∧ α̂i + e i ∧ e j ∧ α̂ij + . . . (6)

where the hatted forms (α̂, α̂i , α̂ij , . . . ) do not contain e i (they
only contain ea).
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Forms in L = L1 ⊕ L2 (2)

Or, equivalently,

α = α(0) + α(1) + α(2) + . . . (7)

where

α(0) := α̂ (8)

α(1) := e i ∧ α̂i (9)

α(2) := e i ∧ e j ∧ α̂ij (10)

α(3) := e i ∧ e j ∧ ek ∧ α̂ijk (11)
etc. (12)

Observation: Individual terms in the decomposition (7) are well
defined (they do not depend on the choice of ei ∈ L1 or ea ∈ L2).
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Forms in L = L1 ⊕ L2 (3)

So, a general p-form in L = L1 ⊕ L2 is a sum of terms characterized
by another integer (in addition to the integer p).
We call it vertical degree (recall that p is the degree of α).
Namely,

vertical degree of α(q) is (by definition) q ∈ Z (13)

A general p-form in L = L1 ⊕ L2 is
(from the point of view of the vertical degree) inhomogeneous.
(It is a sum of homogeneous terms.)
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Horizontal part of a form, horizontal form

The first term of the sum is of particular interest. We call it

horizontal part of α is (by definition) α(0) (14)

Then we introduce the concept of

horizontal form α : such that α = α(0) (15)

So, horizontal p-form is a particular homogeneous form:

horizontal form α : such that its horizontal degree is 0 (16)
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Some useful observations (1)

Observation 1:

α is horizontal ⇔ iejα = 0 (for all j) (17)

That is, α is killed by any vertical argument.
So, horizontal forms only can survive on horizontal arguments.

Observation 2 (more general):

iejα = 0 ⇔ α = α(0) (18)
iej iekα = 0 ⇔ α = α(0) + α(1) (19)

iej iek ielα = 0 ⇔ α = α(0) + α(1) + α(2) (20)
etc. (21)
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Some useful observations (2)

Define
Q := jk ik ik ≡ iek , jkα := ek ∧ α (22)

Observation 3:
Qα(q) = qα(q) (23)

Why?
Recall (see 5.8.11 in [1]), that

jβ iβα = pα for α a p-form (24)

(hint: jαiβ is a derivation (of the algebra of forms) of degree 0).
For jk ik similarly. (It works like number operator a+

k ak :-)
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Observer field V

Let (M, g) be a space-time (signature +−−−) and
let V be a future-oriented vector field with g(V ,V ) = 1.
Integral curves of V may be regarded as world-lines of observers.
In each (world-)point,
- V ≡ e0 defines (observer’s, local) time direction
- V⊥ defines (observer’s, local) 3-space.
So, we can regard (in tangent space)

L1 := Span V L2 := V⊥ ≡ the 3-space (25)

Then
ei ↔ V ≡ e0 e i ↔ Ṽ ≡ g(V , · ) ≡ e0 (26)
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Observer field V and 1+3 decomposition

Since there is just a single e i ↔ Ṽ , the general expression

α = α(0) + α(1) + α(2) + . . . (27)

= α̂ + e i ∧ α̂i + e i ∧ e j ∧ α̂ij + . . . (28)

reduces, here, to just two terms

α = α(0) + α(1) (29)

= r̂ + Ṽ ∧ ŝ (30)

A general form is given (w.r.t. V )
by a pair of spatial (= horizontal) forms (ŝ, r̂).
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Principal G -bundle - adapted frame and co-frame fields (1)

Let
- G be a semi-simple Lie group, G its Lie algebra
- Ei an orthonormal basis in G (w.r.t. Killing-Cartan K )
- π : P → M be a principal G -bundle over space-time (M, ĝ)
- ω = ωiEi be a connection form
- ξX , X = X iEi , be the fundamental field of Rg : P → P
- ξEi

be the generators of Rg : P → P
- wh be the horizontal lift of a vector field w on M
- êa be an orthonormal (w.r.t. ĝ) frame on (a part of) M
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Principal G -bundle - adapted frame and co-frame fields (2)

Then

eα ≡ (ei , ea) eα ≡ (e i , ea) 〈eα, eβ〉 = δαβ

where

ei := ξEi
ea := ê

h

a (31)
e i := ωi ea := π∗êa (32)

constitute a frame and the dual co-frame, respectively
(on part of P).
Moreover, the frames happen to be ortho-normal w.r.t.

g := π∗ĝ + K (ω, ω) (33)
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Principal G -bundle - adapted frame and co-frame fields (3)

Now, in each tangent space L ≡ TpP in point p ∈ P , define

L1 := verTpP L2 := horTpP (34)

in the sense of connection theory (!).
Then the decomposition (the essence of connection concept)

TpP = verTpP ⊕ horTp (35)

exactly matches the decomposition studied above

L = L1 ⊕ L2 (36)

(including meaning of hor and ver).
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Principal G -bundle - adapted frame and co-frame fields (4)

So, as an example,
- the curvature 2-forms Ωi = 1

2Ωi
abe

a ∧ eb are horizontal (≡ α(0))
- the connection 1-forms ωi have vertical degree equal 1 (≡ α(1))
- the expression 1

2c
i
jkω

j ∧ ωk has vertical degree equal 2 (≡ α(2))
- and so on

Marián Fecko Vertical degree of forms and some applications



Introduction
Forms on L = L1 ⊕ L2

Application: Observer field V on a spacetime (M, g)
Application: Connections on principal G -bundles

Computation of Ω ≡ Dω
Computation of Dα for α ∈ Ω

p
(P, ρ)

References

Computation of Ω ≡ Dω

By definition, the curvature 2-form Ω
is the exterior covariant derivative

D := hor ◦ d (37)

of the connection form ω ≡ ωiEi .
So, we need to compute

Ωi := hor (dωi ) ≡ (de i )(0) (38)
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Computation of Ω ≡ Dω (2)

Definition properties of connection form ω:

R∗gω = Ad g−1ω (39)
〈ω, ξX 〉 = X (40)

Their infinitesimal version

LξXω = − ad Xω ≡ − [X , ω] (41)
iξXω = X (42)

is equivalent to

iξX dω = − [X , ω] (43)
iξXω = X (44)

(use LW = diW + iW d and (42))
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Computation of Ω ≡ Dω (3)

Finally (for X = Ej , ω = ωiEi , e i = ωi ) we get

iej (de
i ) = −c ijkek (45)

iej e
i = δij (46)

Consequently,

iek iej (de
i ) = −c ijk iem iek iej (de

i ) = 0 (47)
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Computation of Ω ≡ Dω (4)

From the second formula in (47) we can, first, deduce

de i = (de i )(0) + (de i )(1) + (de i )(2) (48)

From the first formula in (47), then, we have

(de i )(2) = −1
2
c ijke

j ∧ ek (49)

and, finally, from (45),
(de i )(1) = 0 (50)

(no vertical degree one term is at the r.h.s of (45)).
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Computation of Ω ≡ Dω (5)

So, we learned that

de i = (de i )(0) −
1
2
c ijke

j ∧ ek (51)

or, already trivially,

(de i )(0) =: hor de i = de i +
1
2
c ijke

j ∧ ek (52)

So, remembering that e i = ωi , we get well-known explicit formula

Ωi := hor dωi = dωi +
1
2
c ijkω

j ∧ ωk (53)
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Bianchi identity: DΩ = 0

In our language:

DDe i = 0 i.e. (dDe i )(0) = 0 (54)

Why is it true?
Because actually

dDe i = (dDe i )(1) + (dDe i )(3) (55)

Indeed,

dDe i = d(de i +
1
2
c ijke

j ∧ ek) = c ijk(de j) ∧ ek (56)

Combine with (68) ⇒ :-)
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Computation of Dα (1)

Definition properties of a horizontal p-form α of type ρ:

R∗gα = ρ(g−1)α (type ρ) (57)
iξXα = 0 (horizontal) (58)

Their infinitesimal version

LξXα = −ρ′(X )α (59)
iξXα = 0 (60)

is equivalent to

iξX (dα) = −ρ′(X )α (61)
iξXα = 0 (62)
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Computation of Dα (2)

Finally (for X = Ej) we get

iej (dα) = −ρ′(Ej)α (63)
iejα = 0 (64)

Consequently,
iek iej (dα) = 0 (65)

From (65) we, first, deduce

dα = (dα)(0) + (dα)(1) (66)

and from (63) we see that

(dα)(1) = −e i ∧ ρ′(Ei )α (67)
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Computation of Dα (3)

Altogether, we learned that

dα = (dα)(0) − e i ∧ ρ′(Ei )α (68)

or, trivially,

(dα)(0) =: hor dα = dα + e i ∧ ρ′(Ei )α (69)

So, remembering that e i = ωi , we get well-known explicit formula

Dα := hor dα = dα + ωi ∧ ρ′(Ei )α ≡ dα + ρ′(ω)∧̇α (70)
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