Vertical degree of forms and some applications

Marián Fecko
Department of Theoretical Physics
Comenius University
Bratislava
fecko@fmph.uniba.sk

Student Colloqium and School on Mathematical Physics, Stará Lesná, Slovakia, August 26 - September 1, 2018

We will learn:

- What is the structure of (exterior) forms on $L=L_{1} \oplus L_{2}$

We will learn:

- What is the structure of (exterior) forms on $L=L_{1} \oplus L_{2}$
- What is horizontal p-form

We will learn:

- What is the structure of (exterior) forms on $L=L_{1} \oplus L_{2}$
- What is horizontal p-form
- What is vertical degree q of a p-form

We will learn:

- What is the structure of (exterior) forms on $L=L_{1} \oplus L_{2}$
- What is horizontal p-form
- What is vertical degree q of a p-form
- What it looks like for spacetime with an observer field

We will learn:

- What is the structure of (exterior) forms on $L=L_{1} \oplus L_{2}$
- What is horizontal p-form
- What is vertical degree q of a p-form
- What it looks like for spacetime with an observer field
- What it looks like for principal bundle with connection

We will learn:

- What is the structure of (exterior) forms on $L=L_{1} \oplus L_{2}$
- What is horizontal p-form
- What is vertical degree q of a p-form
- What it looks like for spacetime with an observer field
- What it looks like for principal bundle with connection
- How it might help in computing exterior covariant derivative

Contents

(1) Introduction
(2) Forms on $L=L_{1} \oplus L_{2}$
(3) Application: Observer field V on a spacetime (M, g)
(4) Application: Connections on principal G-bundles

- Computation of $\Omega \equiv D \omega$
- Computation of $D \alpha$ for $\alpha \in \bar{\Omega}^{p}(P, \rho)$

basis in $L=L_{1} \oplus L_{2}$

Let us call the subspaces L_{1} and L_{2} of $L_{1} \oplus L_{2} \equiv L$

$$
\begin{aligned}
& L \supset L_{1}=\text { vertical } \\
& L \supset L_{2}=\text { horizontal }
\end{aligned}
$$

Choose a basis $e_{i} \in L_{1}$ and $e_{a} \in L_{2}$. Then

$$
\begin{aligned}
e_{\alpha} \equiv\left(e_{i}, e_{a}\right) & =\text { adapted basis in } L=L_{1} \oplus L_{2} \\
e^{\alpha} \equiv\left(e^{i}, e^{a}\right) & =\text { adapted dual basis in } L^{*}=L_{1}^{*} \oplus L_{2}^{*}
\end{aligned}
$$

Duality conditions in detail

The overall duality conditions

$$
\begin{equation*}
\left\langle e^{\alpha}, e_{\beta}\right\rangle=\delta_{\beta}^{\alpha} \tag{1}
\end{equation*}
$$

are equivalent to four particular cases:

$$
\begin{equation*}
\left\langle e^{a}, e_{b}\right\rangle=\delta_{b}^{a} \quad\left\langle e^{i}, e_{j}\right\rangle=\delta_{j}^{i} \quad\left\langle e^{a}, e_{i}\right\rangle=0 \quad\left\langle e^{i}, e_{a}\right\rangle=0 \tag{2}
\end{equation*}
$$

Then, clearly, we can write

$$
\begin{align*}
v \text { is vertical } & \Leftrightarrow v=v^{i} e_{i} \Leftrightarrow\left\langle e^{a}, v\right\rangle=0 \tag{3}\\
u \text { is horizontal } & \Leftrightarrow u=u^{a} e_{a} \Leftrightarrow\left\langle e^{i}, u\right\rangle=0 \tag{4}
\end{align*}
$$

$$
\text { in } L=L_{1} \oplus L_{2}
$$

A general p-form in $L=L_{1} \oplus L_{2}$ reads

$$
\begin{equation*}
\alpha=\frac{1}{p!} \alpha_{\alpha \ldots \beta} e^{\alpha} \wedge \cdots \wedge e^{\beta} \tag{5}
\end{equation*}
$$

(p pieces of basis 1 -forms $e^{\alpha}, \ldots, e^{\beta}$ are wedge-multiplied).
Now each e^{α} is either e^{i} or e^{a}. So, (5) is actually a sum of terms of the structure

$$
\begin{equation*}
\alpha=\hat{\alpha}+e^{i} \wedge \hat{\alpha}_{i}+e^{i} \wedge e^{j} \wedge \hat{\alpha}_{i j}+\ldots \tag{6}
\end{equation*}
$$

where the hatted forms $\left(\hat{\alpha}, \hat{\alpha}_{i}, \hat{\alpha}_{i j}, \ldots\right)$ do not contain e^{i} (they only contain e^{a}).

$$
\text { in } L=L_{1} \oplus L_{2}(2)
$$

Or, equivalently,

$$
\begin{equation*}
\alpha=\alpha_{(0)}+\alpha_{(1)}+\alpha_{(2)}+\ldots \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha_{(0)} & :=\hat{\alpha} \tag{8}\\
\alpha_{(1)} & :=e^{i} \wedge \hat{\alpha}_{i} \tag{9}\\
\alpha_{(2)} & :=e^{i} \wedge e^{j} \wedge \hat{\alpha}_{i j} \tag{10}\\
\alpha_{(3)} & :=e^{i} \wedge e^{j} \wedge e^{k} \wedge \hat{\alpha}_{i j k} \tag{11}\\
& \text { etc. }
\end{align*}
$$

Observation: Individual terms in the decomposition (7) are well defined (they do not depend on the choice of $e_{i} \in L_{1}$ or $e_{a} \in L_{2}$).

$$
\text { in } L=L_{1} \oplus L_{2} \text { (3) }
$$

So, a general p-form in $L=L_{1} \oplus L_{2}$ is a sum of terms characterized by another integer (in addition to the integer p).
We call it vertical degree (recall that p is the degree of α).
Namely,
vertical degree of $\alpha_{(q)}$ is (by definition) $q \in \mathbb{Z}$
A general p-form in $L=L_{1} \oplus L_{2}$ is (from the point of view of the vertical degree) inhomogeneous. (It is a sum of homogeneous terms.)

of a form,

The first term of the sum is of particular interest. We call it

$$
\text { horizontal part of } \alpha \text { is (by definition) } \alpha_{(0)}
$$

Then we introduce the concept of

$$
\begin{equation*}
\text { horizontal form } \alpha \text { : such that } \alpha=\alpha_{(0)} \tag{15}
\end{equation*}
$$

So, horizontal p-form is a particular homogeneous form:
horizontal form α : such that its horizontal degree is 0

Some useful observations (1)

Observation 1:

$$
\begin{equation*}
\alpha \text { is horizontal } \Leftrightarrow i_{e_{j}} \alpha=0 \text { (for all } j \text {) } \tag{17}
\end{equation*}
$$

That is, α is killed by any vertical argument.
So, horizontal forms only can survive on horizontal arguments.

Observation 2 (more general):

$$
\begin{align*}
i_{e_{j}} \alpha=0 & \Leftrightarrow \quad \alpha=\alpha_{(0)} \tag{18}\\
i_{e_{j}} i_{e_{k}} \alpha=0 & \Leftrightarrow \quad \alpha=\alpha_{(0)}+\alpha_{(1)} \tag{19}\\
i_{e_{j}} i_{e_{k}} i_{e_{l}} \alpha=0 & \Leftrightarrow \quad \alpha=\alpha_{(0)}+\alpha_{(1)}+\alpha_{(2)} \tag{20}\\
& \text { etc. } \tag{21}
\end{align*}
$$

Some useful observations (2)

Define

$$
\begin{equation*}
Q:=j^{k} i_{k} \quad i_{k} \equiv i_{e_{k}}, \quad j^{k} \alpha:=e^{k} \wedge \alpha \tag{22}
\end{equation*}
$$

Observation 3:

$$
\begin{equation*}
Q \alpha_{(q)}=q \alpha_{(q)} \tag{23}
\end{equation*}
$$

Why?
Recall (see 5.8.11 in [1]), that

$$
\begin{equation*}
j^{\beta} i_{\beta} \alpha=p \alpha \quad \text { for } \alpha \text { a } p \text {-form } \tag{24}
\end{equation*}
$$

(hint: $j^{\alpha} i_{\beta}$ is a derivation (of the algebra of forms) of degree 0).
For $j^{k} i_{k}$ similarly. (It works like number operator $a_{k}^{+} a_{k}:-$)

Let (M, g) be a space-time (signature +---) and
let V be a future-oriented vector field with $g(V, V)=1$.
Integral curves of V may be regarded as world-lines of observers.
In each (world-)point,

- $V \equiv e_{0}$ defines (observer's, local) time direction
- V^{\perp} defines (observer's, local) 3-space.

So, we can regard (in tangent space)

$$
\begin{equation*}
L_{1}:=\text { Span } V \quad L_{2}:=V^{\perp} \equiv \text { the 3-space } \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
e_{i} \leftrightarrow V \equiv e_{0} \quad e^{i} \leftrightarrow \tilde{V} \equiv g(V, \cdot) \equiv e^{0} \tag{26}
\end{equation*}
$$

V and $1+3$ decomposition

Since there is just a single $e^{i} \leftrightarrow \tilde{V}$, the general expression

$$
\begin{align*}
\alpha & =\alpha_{(0)}+\alpha_{(1)}+\alpha_{(2)}+\ldots \tag{27}\\
& =\hat{\alpha}+e^{i} \wedge \hat{\alpha}_{i}+e^{i} \wedge e^{j} \wedge \hat{\alpha}_{i j}+\ldots \tag{28}
\end{align*}
$$

reduces, here, to just two terms

$$
\begin{align*}
\alpha & =\alpha_{(0)}+\alpha_{(1)} \tag{29}\\
& =\hat{r}+\tilde{V} \wedge \hat{s} \tag{30}
\end{align*}
$$

A general form is given (w.r.t. V)
by a pair of spatial (= horizontal) forms (\hat{s}, \hat{r}).

- adapted frame and co-frame fields (1)

Let

- G be a semi-simple Lie group, \mathcal{G} its Lie algebra
- E_{i} an orthonormal basis in \mathcal{G} (w.r.t. Killing-Cartan K)
- $\pi: P \rightarrow M$ be a principal G-bundle over space-time (M, \hat{g})
$-\omega=\omega^{i} E_{i}$ be a connection form
- $\xi_{X}, X=X^{i} E_{i}$, be the fundamental field of $R_{g}: P \rightarrow P$
- $\xi_{E_{i}}$ be the generators of $R_{g}: P \rightarrow P$
- w^{h} be the horizontal lift of a vector field w on M
- \hat{e}_{a} be an orthonormal (w.r.t. \hat{g}) frame on (a part of) M

Principal G-bundle - adapted frame and co-frame fields (2)

Then

$$
e_{\alpha} \equiv\left(e_{i}, e_{a}\right) \quad e^{\alpha} \equiv\left(e^{i}, e^{a}\right) \quad\left\langle e^{\alpha}, e_{\beta}\right\rangle=\delta_{\beta}^{\alpha}
$$

where

$$
\begin{align*}
e_{i} & :=\xi_{E_{i}} & e_{a}:=\hat{e}_{a}^{h} \tag{31}\\
e^{i} & :=\omega^{i} & e^{a}:=\pi^{*} \hat{e}^{a} \tag{32}
\end{align*}
$$

constitute a frame and the dual co-frame, respectively (on part of P).
Moreover, the frames happen to be ortho-normal w.r.t.

$$
\begin{equation*}
g:=\pi^{*} \hat{g}+K(\omega, \omega) \tag{33}
\end{equation*}
$$

Principal G-bundle - adapted frame and co-frame fields (3)

Now, in each tangent space $L \equiv T_{p} P$ in point $p \in P$, define

$$
\begin{equation*}
L_{1}:=\operatorname{ver} T_{p} P \quad L_{2}:=\operatorname{hor} T_{p} P \tag{34}
\end{equation*}
$$

in the sense of connection theory (!).
Then the decomposition (the essence of connection concept)

$$
\begin{equation*}
T_{p} P=\text { ver } T_{p} P \oplus \text { hor } T_{p} \tag{35}
\end{equation*}
$$

exactly matches the decomposition studied above

$$
\begin{equation*}
L=L_{1} \oplus L_{2} \tag{36}
\end{equation*}
$$

(including meaning of hor and ver).

Principal G-bundle - adapted frame and co-frame fields (4)

So, as an example,

- the curvature 2-forms $\Omega^{i}=\frac{1}{2} \Omega_{a b}^{i} e^{a} \wedge e^{b}$ are horizontal $\left(\equiv \alpha_{(0)}\right)$
- the connection 1-forms ω^{i} have vertical degree equal $1\left(\equiv \alpha_{(1)}\right)$
- the expression $\frac{1}{2} c_{j k}^{i} \omega^{j} \wedge \omega^{k}$ has vertical degree equal $2\left(\equiv \alpha_{(2)}\right)$
- and so on

Computation of $\Omega \equiv$

By definition, the curvature 2-form Ω
is the exterior covariant derivative

$$
\begin{equation*}
D:=\text { hor } \circ d \tag{37}
\end{equation*}
$$

of the connection form $\omega \equiv \omega^{i} E_{i}$.
So, we need to compute

$$
\begin{equation*}
\Omega^{i}:=\operatorname{hor}\left(d \omega^{i}\right) \equiv\left(d e^{i}\right)_{(0)} \tag{38}
\end{equation*}
$$

Computation of $\Omega \equiv D \omega$ (2)

Definition properties of connection form ω :

$$
\begin{align*}
R_{g}^{*} \omega & =\operatorname{Ad}_{g-1 \omega} \tag{39}\\
\langle\omega, \xi x\rangle & =x \tag{40}
\end{align*}
$$

Their infinitesimal version

$$
\begin{align*}
\mathcal{L}_{\xi_{x}} \omega & =-\operatorname{ad} x \omega \equiv-[X, \omega] \tag{41}\\
i_{\xi_{x}} \omega & =X \tag{42}
\end{align*}
$$

is equivalent to

$$
\begin{align*}
i_{\xi_{X}} d \omega & =-[X, \omega] \tag{43}\\
i_{\xi_{x}} \omega & =X \tag{44}
\end{align*}
$$

(use $\mathcal{L}_{W}=d i_{W}+i_{W} d$ and (42))

Computation of $\Omega \equiv D \omega$ (3)

Finally (for $X=E_{j}, \omega=\omega^{i} E_{i}, e^{i}=\omega^{i}$) we get

$$
\begin{align*}
i_{e_{j}}\left(d e^{i}\right) & =-c_{j k}^{i} e^{k} \tag{45}\\
i_{e_{j}} e^{i} & =\delta_{j}^{i} \tag{46}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
i_{e_{k}} i_{e_{j}}\left(d e^{i}\right)=-c_{j k}^{i} \quad i_{e_{m}} i_{e_{k}} i_{e_{j}}\left(d e^{i}\right)=0 \tag{47}
\end{equation*}
$$

Computation of $\Omega \equiv D \omega$ (4)

From the second formula in (47) we can, first, deduce

$$
\begin{equation*}
d e^{i}=\left(d e^{i}\right)_{(0)}+\left(d e^{i}\right)_{(1)}+\left(d e^{i}\right)_{(2)} \tag{48}
\end{equation*}
$$

From the first formula in (47), then, we have

$$
\begin{equation*}
\left(d e^{i}\right)_{(2)}=-\frac{1}{2} c_{j k}^{i} e^{j} \wedge e^{k} \tag{49}
\end{equation*}
$$

and, finally, from (45),

$$
\begin{equation*}
\left(d e^{i}\right)_{(1)}=0 \tag{50}
\end{equation*}
$$

(no vertical degree one term is at the r.h.s of (45)).

Computation of $\Omega \equiv D \omega$ (5)

So, we learned that

$$
\begin{equation*}
d e^{i}=\left(d e^{i}\right)_{(0)}-\frac{1}{2} c_{j k}^{i} e^{j} \wedge e^{k} \tag{51}
\end{equation*}
$$

or, already trivially,

$$
\begin{equation*}
\left(d e^{i}\right)_{(0)}=: \text { hor } d e^{i}=d e^{i}+\frac{1}{2} c_{j k}^{i} e^{j} \wedge e^{k} \tag{52}
\end{equation*}
$$

So, remembering that $e^{i}=\omega^{i}$, we get well-known explicit formula

$$
\begin{equation*}
\Omega^{i}:=\operatorname{hor} d \omega^{i}=d \omega^{i}+\frac{1}{2} c_{j k}^{i} \omega^{j} \wedge \omega^{k} \tag{53}
\end{equation*}
$$

: $D \Omega=0$

In our language:

$$
\begin{equation*}
D D e^{i}=0 \quad \text { i.e. } \quad\left(d D e^{i}\right)_{(0)}=0 \tag{54}
\end{equation*}
$$

Why is it true?
Because actually

$$
\begin{equation*}
d D e^{i}=\left(d D e^{i}\right)_{(1)}+\left(d D e^{i}\right)_{(3)} \tag{55}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
d D e^{i}=d\left(d e^{i}+\frac{1}{2} c_{j k}^{i} e^{j} \wedge e^{k}\right)=c_{j k}^{i}\left(d e^{j}\right) \wedge e^{k} \tag{56}
\end{equation*}
$$

Combine with (68) \Rightarrow :-)

Computation of $D \alpha$ (1)

Definition properties of a horizontal p-form α of type ρ :

$$
\begin{array}{lc}
R_{g}^{*} \alpha=\rho\left(g^{-1}\right) \alpha & \quad \text { (type } \rho) \tag{57}\\
i_{\xi x} \alpha=0 & \text { (horizontal) }
\end{array}
$$

Their infinitesimal version

$$
\begin{align*}
\mathcal{L}_{\xi_{X}} \alpha & =-\rho^{\prime}(X) \alpha \tag{59}\\
i_{\xi_{X}} \alpha & =0 \tag{60}
\end{align*}
$$

is equivalent to

$$
\begin{align*}
i_{\xi x}(d \alpha) & =-\rho^{\prime}(X) \alpha \tag{61}\\
i_{\xi_{x}} \alpha & =0 \tag{62}
\end{align*}
$$

Computation of $D \alpha$ (2)

Finally (for $X=E_{j}$) we get

$$
\begin{align*}
i_{e_{j}}(d \alpha) & =-\rho^{\prime}\left(E_{j}\right) \alpha \tag{63}\\
i_{e_{j}} \alpha & =0 \tag{64}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
i_{e_{k}} i_{e_{j}}(d \alpha)=0 \tag{65}
\end{equation*}
$$

From (65) we, first, deduce

$$
\begin{equation*}
d \alpha=(d \alpha)_{(0)}+(d \alpha)_{(1)} \tag{66}
\end{equation*}
$$

and from (63) we see that

$$
\begin{equation*}
(d \alpha)_{(1)}=-e^{i} \wedge \rho^{\prime}\left(E_{i}\right) \alpha \tag{67}
\end{equation*}
$$

Computation of $D \alpha$ (3)

Altogether, we learned that

$$
\begin{equation*}
d \alpha=(d \alpha)_{(0)}-e^{i} \wedge \rho^{\prime}\left(E_{i}\right) \alpha \tag{68}
\end{equation*}
$$

or, trivially,

$$
\begin{equation*}
(d \alpha)_{(0)}=: \text { hor } d \alpha=d \alpha+e^{i} \wedge \rho^{\prime}\left(E_{i}\right) \alpha \tag{69}
\end{equation*}
$$

So, remembering that $e^{i}=\omega^{i}$, we get well-known explicit formula

$$
\begin{equation*}
D \alpha:=\operatorname{hor} d \alpha=d \alpha+\omega^{i} \wedge \rho^{\prime}\left(E_{i}\right) \alpha \equiv d \alpha+\rho^{\prime}(\omega) \dot{\wedge} \alpha \tag{70}
\end{equation*}
$$

References (1)

M. Fecko.

Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge, UK $(2006,2011)$

References (1)

M. Fecko.

Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge, UK $(2006,2011)$
M. Dubois-Violette, J. Madore

Conservation Laws and Integrability Conditions for Gravitational and Yang-Mills Field Equations. Commun. Math. Phys. 108, (1987) 213-223

References (1)

M. Fecko.

Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge, UK $(2006,2011)$
M. Dubois-Violette, J. Madore

Conservation Laws and Integrability Conditions for Gravitational and Yang-Mills Field Equations. Commun. Math. Phys. 108, (1987) 213-223

