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Usual Hamilton's equations

Start from standard Hamilton's equations

ẋa =
∂H

∂pa
ṗa = −

∂H

∂xa
a = 1, . . . , n (1)

In phase space, introduce coordinates

zα ≡ (xa, pa) α = 1, . . . , 2n (2)

and rewrite the equations as

(ẋ , ṗ)︸ ︷︷ ︸
ż

= (∂xH, ∂pH)︸ ︷︷ ︸
dH

(
0 −I
I 0

)
︸ ︷︷ ︸

P

i.e. żα = (dH)βPβα (3)

Marián Fecko Hamiltonian systems with degenerate Poisson tensor



Introduction
Usual Hamilton's equations - symplectic presentation

The story of Poisson bracket
Hamiltonian distribution

Symplectic leaves
Canonical coordinates

A similarity to sub-Riemannian geometry

Usual Hamilton's equations (2)

Then, for for the curve γ(t)↔ zα(t), we have

γ̇ ≡ żα∂α = P(dH, dxα)∂α ≡ P(dH, · ) (4)

So we get a coordinate-free version of Hamilton's equations

γ̇ = ζH ζH := P(dH, · ) (5)

where

P ≡ Poisson tensor ζH ≡ Hamiltonian �eld (6)
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Usual Hamilton's equations (3)

We see, that Poisson tensor is a bi-vector

(skew-symmetric
(
2
0

)
-type tensor)

and, since the matrix P in (3) is invertible,
the tensor P is non-degenerate:

P(α, · ) = 0 ⇒ α = 0 (7)
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Usual Hamilton's equations (4)

This enables one to de�ne
a non-degenerate skew-symmetric

(
0
2

)
-type tensor ω

(i.e. a 2-form)
via (minus of) the inverse matrix,

ωαρPρβ := −δβα (8)

In original coordinates (xa, pa) one can check that

ω = · · · = dpa ∧ dqa ⇒ dω = 0 (it is closed) (9)
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Usual Hamilton's equations (5)

From (3) we then see that

żαωαρ = (dH)βPβαωαρ = −(dH)ρ (10)

So, we get another coordinate-free version of Hamilton's equations

γ̇ = ζH iζHω := −dH (11)

ζH = Hamiltonian �eld ω = symplectic form (12)

(Recall that, by de�nition, we call symplectic form any 2-form
which is, in addition, closed and non-degenerate.)
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Usual Hamilton's equations (6) - summing up

Let us recapitulate: Usual Hamilton's equations

may be expressed in geometrical (coordinate-free) way

as equations for integral curves of Hamiltonian �eld ζH

In order to tell what Hamiltonian �eld ζH is, we can choose

either Poisson language (express it in terms of P, see (5))

or symplectic language (express it in terms of ω, see (11))

From practical side, symplectic language smoothly wins!
Why? Because

there is exterior calculus available for di�erential forms, but

nothing comparably powerful for bi-vectors.
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Poisson bracket for non-degenerate case

Still in context of �usual� Hamilton's equations,
Poisson bracket is introduced as

{f , g} ≡ ∂f

∂pa

∂g

∂qa
− ∂g

∂pa

∂f

∂qa
(13)

In the two languages, its coordinate-free expression reads as follows:

Poisson {f , g} = P(df , dg) (14)

symplectic {f , g} = ω(ζf , ζg ) iζf ω := −df (15)

Marián Fecko Hamiltonian systems with degenerate Poisson tensor
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Poisson bracket for no-degenerate case (2)

In either of the two languages, one easily checks that the following
well-known identities hold

{f , g} = − {g , f } skew-symmetry (16)

{f , g + λh} = {f , g}+ λ{f , h} linearity (17)

{f , gh} = {f , g}h + g{f , h} derivation (18)

{{f , g}, h}+ cycl. = 0 Jacobi identity (19)
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Poisson bracket given by properties alone

It proves to be a very fruitful idea to study
Poisson bracket in general, simply given by its properties

{f , g} = − {g , f } skew-symmetry (20)

{f , g + λh} = {f , g}+ λ{f , h} linearity (21)

{f , gh} = {f , g}h + g{f , h} derivation (22)

{{f , g}, h}+ cycl. = 0 Jacobi identity (23)

with no assumption about how it is constructed.
Surprisingly, an interesting new possibility emerges in this way,
namely the one with degenerate Poisson tensor (see below).
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How to �solve� axioms (20)-(23)

First, combination of (21) and (22) reveals that
Poisson bracket acts as a vector �eld on F(M)

{f , · } = ζf {f , g} = ζf g ζf ∈ X(M) (24)

Then, with the help of (20) we obtain

{f , g} = 〈dg , ζf 〉 = −〈df , ζg 〉 (25)

This says that the function {f , g} depends linearly
on two covectors, df and dg .
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How to �solve� axioms (20)-(23) - cont.

Therefore, a
(
2
0

)
-type tensor, let us call it Poisson tensor P,

is behind, de�ned by

{f , g} = P(df , dg) (26)

Because of (20), P is actually a bi-vector (skew-symmetry holds).

So, the �rst three properties, (20)-(22)

are �solved� by the construction (26),

i.e. they just reveal the existence of the bi-vector P.
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How to �solve� axioms (20)-(23) - cont.

And what about the last property (Jacobi identity)
of the Poisson bracket?

First notice that the vector �eld ζf may be written as

ζf = {f , · } = P(df , · ) Hamiltonian �eld (27)

Then, Jacobi identity is translated to the following property of
Poisson tensor P:

∀f : Lζf P = 0 ⇔ Jacobi identity (28)

i.e. to the statement that Poisson tensor is
Lie-invariant w.r.t. to any Hamiltonian �eld.
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A proof of (28)

H Indeed, for any f , g , h,
formal computation of Lie derivative reads

Lζf (P(dg , dh)) = (Lζf P)(dg , dh) + P(Lζf dg , dh) + P(dg ,Lζf dh)
On the other hand,
Jacobi identity may be re-written, step by step, as

{f , {g , h}} = {{f , g}, h}+ {g , {f , h}}
ζf {g , h} = {ζf g , h}+ {g , ζf h}

Lζf (P(dg , dh)) = P(Lζf dg , dh) + P(dg ,Lζf dh)
Therefore, for any g , h

(Lζf P)(dg , dh) = 0 i.e. Lζf P = 0 ∀f
N
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Possibly degenerate P?

Notice that our �solution� (26) of axioms of Poisson bracket
says nothing about (non-)degeneracy of the Poisson tensor P.

Originally, in (5),
the tensor resulted directly from Hamilton's equations
and in this case it was non-degenerate
(there is invertible matrix in (3)).

Here, in (26),
it emerges from general properties of Poisson bracket
and there is no sign for necessity of non-degeneracy.

It seems like as if non-degeneracy is not needed to ful�l all axioms.
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Possibly degenerate P? (2)

And indeed, consider the following highly trivial example:

three-dimensional space R3 with coordinates (q, p, y)

endowed with the following formula for Poisson bracket

{f , g} := ∂f

∂p

∂g

∂q
− ∂g

∂p

∂f

∂q
(29)

= (∂qf , ∂pf , ∂y f )︸ ︷︷ ︸
df

0 −1 0
1 0 0
0 0 0


︸ ︷︷ ︸

P

∂qg∂pg
∂yg


︸ ︷︷ ︸

dg

(30)
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Possibly degenerate P? (3)

One can easily check that

it works (= satis�es everything needed to ful�l the axioms),

the corresponding Poisson tensor is degenerate.

(There is no skew-symmetric odd-dimensional regular matrix.
So any Poisson bracket in R3 is necessarily degenerate).

So, degenerate Poisson tensors (and, consequently, brackets)

really do exist,

might be of interest somewhere (they indeed are),

are to be studied in more detail.
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How Hamiltonian distribution emerges

Any
(
2
0

)
-type tensor t may be regarded

as a linear mapping �covector to vector�

t : α 7→ t(α, · ) ≡ v (31)

and de�nes as many as two subspaces,

the kernel (a subspace �in covectors�),

the image (a subspace �in vectors�).

For us

the latter case is relevant, now,

with t = P.
Marián Fecko Hamiltonian systems with degenerate Poisson tensor
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How Hamiltonian distribution emerges (2)

So, on (M,P), let us consider a distribution DP
given as the image space of the Poisson tensor

DP := ImP ≡ {v ∈ X(M) | ∃α, v = P(α, · )} (32)

Notice that the distribution becomes technically trivial
if the Poisson tensor is non-degenerate (i.e. isomorphism).

(Each vector is in the distribution, then.)

So, in order to speak of something (technically) worth attention,
the Poisson tensor P is to be degenerate.
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How Hamiltonian distribution emerges (3)

Now, realize that

any Hamiltonian �eld, ζf = P(df , · ), is in DP ,
so that Hamiltonian �elds provide a subset of DP ,
for a coordinate basis dxα, α = 1, . . . , dimM, we have

DP := ImP := Span {P(dxα, · ) = Span {ζxα} (33)

so that (point-wise)

DP = Dham ≡ Span {Hamiltonian �elds} (34)

So the distribution DP (given as ImP) coincides
with the distribution given by (all) Hamiltonian �elds.
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Integrability of the Hamiltonian distribution

Therefore,

DP is integrable (see the next page) (35)

So, our Poisson manifold (M,P) is foliated by leaves
(= integral sub-manifolds of the distribution).

Since time evolution of a Hamiltonian system (M,P,H)
consists of motion of a point along Hamiltonian �eld ζH ,
the point spends whole life on a single leaf
(�xed by initial conditions).
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A proof of integrability of DP (1)

For any pair of Hamiltonian �elds it holds

[ζf , ζg ] = ζ{f ,g} (36)

H Indeed,

[ζf , ζg ] = Lζf (P(dg , · )
= (Lζf P)(dg , · ) + P(Lζf dg , · )
= 0+ P(d(ζf g), · )
= P(d{f , g}, · )
= ζ{f ,g}

N
Marián Fecko Hamiltonian systems with degenerate Poisson tensor
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A proof of integrability of DP (2)

In particular,

[ζxα , ζxβ ] = ζ{xα,xβ} = ζPαβ = P(dPαβ, · ) = Pαβ,ρζxρ (37)

Then, for U,V ∈ DP ,

[U,V ] = [fαζxα , gβζxβ ] = · · · = hαζxα ≡W ∈ DP (38)

So, due to Frobenius integrability criterion, DP is integrable.
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Convenient description of DP on (M,P)

Fix, locally, an adapted frame (ea, ei ), i.e. let ea ∈ DP .
(Well, this needs constant rank of P within the patch.
This is not always the case.)
So,

ea-part is directed along leaves,

therefore it may serve (when restricted)
as a frame on a particular leaf;

ei -part is transversal to leaves.

Write

P = Pabea ⊗ eb + Paiea ⊗ ei + P iaei ⊗ ea + P ijei ⊗ ej (39)
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Convenient description of DP on (M,P) (2)
Or, as a matrix,

P ↔
(
Pab Pai

P ia P ij

)
(40)

Then, for general
α = αae

a + αie
i (41)

we get

P(α, . ) = · · · = (αbPba + αiP ia)ea + (αaPai + αjP ji )ei (42)

Since, however, DP ≡ ImP = Span {ea}, we can deduce

Pai = 0 = P ji (43)
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Convenient description of DP on (M,P) (3)
Thus, so far,

P ↔
(
Pab 0
P ia 0

)
(44)

Now, the tensor P is to be skew-symmetric,
so we actually have

P ↔
(
Pab 0
0 0

)
Pab = −Pba (45)

The non-zero block Pab is already non-degenerate (why?)
and, therefore, it is even-dimensional (why?). Dimensionally,

n ≡ dimM = 2m + k a = 1, . . . , 2m , i = 1, . . . , k (46)
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Convenient description of DP on (M,P) (4)

In (any) adapted frame (ea, ei ), things look pretty simple:

P : ea 7→ P(ea, · ) = Pabeb 6= 0 (47)

e i 7→ P(e i , · ) = 0 (48)

P = Pabea ⊗ eb (49)

{f , g} = P(df , dg) = (eaf )Pab(ebg) (50)

ζf = P(df , · ) = (eaf )Pabeb (51)

Notice that no ei appear in either P, ζf or {f , g}.
So functions f , g , . . . are only di�erentiated along leaves.
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Symplectic form ω on leaves S ⊂ (M,P)

Consider formula

ω(ζf , ζg ) := P(df , dg) ≡ {f , g} ζf ≡ P(df , · ) (52)

In non-degenerate case it describes two equivalent ways
of expressing the same Poisson bracket on (M,P),
see (14) and (15).

In degenerate case, on the other hand, it turns out that
it may be regarded as a de�nition
of symplectic form ω living (only) on leaves of DP .
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Symplectic form ω on leaves S ⊂ (M,P) (2)

Indeed, ω(ζf , ζg ) := . . .

de�nes a
(
0
2

)
-type tensor �eld (only) on leaves of DP ,

the tensor �eld is clearly skew-symmetric,

so a 2-form ω is de�ned on (each) leaf S ⊂ (M,P)
What is not yet clear is

whether ω is closed and

whether ω is non-degenerate.

Actually both statements do hold (see the next page).
Hence the standard nomenclature - symplectic leaves.
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Closedness of ω

Closedness of ω:

(dω)(ζf , ζg , ζh) = ζf (ω(ζg , ζh)) + · · · − ω([ζf , ζg ], ζh) + . . .
= {f , {g , h}}+ · · · − {{f , g}, h}+ . . .
= . . . (six terms)
= 2({f , {g , h}}+ cycl.)
= 0 (Jacobi identity)

(In the �rst line, Cartan formulas for computing d were used.)

So,
ω is closed : dω = 0 (53)

Marián Fecko Hamiltonian systems with degenerate Poisson tensor



Introduction
Usual Hamilton's equations - symplectic presentation

The story of Poisson bracket
Hamiltonian distribution

Symplectic leaves
Canonical coordinates

A similarity to sub-Riemannian geometry

Components ωab of ω

Let us compute components of ω w.r.t. adapted frame (ea, ei ).
Using (50), (51) and (52) we get

ω((eaf )Pacec , (ebg)Pbded ) := (eaf )Pab(ebg) (54)

or
(eaf )(−PacωcdPdb)(ebg) = (eaf )Pab(ebg) (55)

This says, since f , g are arbitrary, that

− PacωcdPdb = Pab (56)

or, since Pac is regular, that

Pacωcb = −δab i.e. ωab = −(P−1)ab (57)
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Non-degeneracy of ω

The formulas

Pacωcb = −δab i.e. ωab = −(P−1)ab (58)

show, as a by-product, that the matrix ωab of the form ω,
being the inverse to the regular matrix Pac ,
is regular as well.
But this is just a way to say
that the form ω itself is non-degenerate:

ω(v , · ) = 0 ⇒ v = 0 (59)

(Compare with (7).)
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Casimir functions - de�nition

Functions which Poisson commute with all functions
play important role and deserve special name:

g is Casimir function : {f , g} = 0 ∀f (60)

It is useful to understand this property
also from a di�erent point of view.
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Casimir functions - properties

Recall (see (50),(51)) that the following expressions hold:

{f , g} = (eaf )Pab(ebg) (61)

ζf = (eaf )Pabeb (62)

From them one can easily see that

ζf = 0 ⇔ eaf = 0 ⇔ f = const. on leaves (63)

{f , g} = 0 ∀g ⇔ eaf = 0 ⇔ f = const. on leaves (64)
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Casimir functions - various characterizations

So we can equivalently characterize Casimir functions
by any of the following properties:
They

Poisson commute with all functions

are constant on each symplectic leaf

are conserved quantities for any Hamiltonian on (M,P,H)

generate vanishing Hamiltonian �elds

generate (as Hamiltonians) trivial Hamiltonian dynamics
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Canonical coordinates on (M,P)
We already learned that adapted frame (ea, ei ) helps to treat
the �DP -distribution stu�� of (M,P).

Now, since the distribution is integrable,
we can choose (due to Frobenius theorem)
the (still adapted) frame to be coordinate (holonomic)

(ea, ei ) = (∂a, ∂i ) ↔ (xa, y i ) (local coordinates) (65)

Here

xa, a = 1, . . . , 2m, may be used as coordinates on leaves

y i , i = 1, . . . , k label the leaves themselves

Casimir functions depend on y i alone
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Canonical coordinates on (M,P) (2)
Finally, since there is (canonical) symplectic structure
on each leaf, we can further optimize coordinates xa, a = 1, . . . , 2m
and come to canonical Darboux-type coordinates

xa = (qµ, pµ) µ = 1, . . . ,m (66)

So, altogether, we can use, on (M,P), local canonical coordinates

(qµ, pµ, y
i ) µ = 1, . . . ,m; i = 1, . . . , k (67)

Here, again,

(qµ, pµ), µ = 1, . . . ,m may be used as coordinates on leaves

y i , i = 1, . . . , k label the leaves themselves

Casimir functions depend on y i alone
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Canonical coordinates on (M,P) (3)
In canonical coordinates (qµ, pµ, y

i ) important quantities
acquire their �usual look�:

{f , g} =
∂f

∂pµ

∂g

∂qµ
− ∂g

∂pµ

∂f

∂qµ
(68)

ζf =
∂f

∂pµ

∂

∂qµ
− ∂g

∂pµ

∂

∂qµ
(69)

Bear in mind, however, that the functions f , g live on (M,P),
so they, in general, also depend on Casimir part of the coordinates

f (q, p, y) , g(q, p, y) (70)

There is, nevertheless, no derivative w.r.t. y i present in (68)-(69).
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Canonical coordinate version of Hamilton equations

From (69) we see that Hamilton equations,
being the equations for integral curves
of the Hamiltonian �eld ζH ,
look as follows:

q̇µ =
∂H

∂pµ
ṗµ = − ∂H

∂qµ
ẏ i = 0 (71)

where

H(q, p, y) µ = 1, . . . ,m , i = 1, . . . , k (72)
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Common description of a distribution D on M

Both

sub-Riemannian geometry (MF, Stará Lesná 2009, [3])

Poisson geometry (MF, Stará Lesná 2020 :-)

use a
(
2
0

)
-type degenerate tensor �eld t

for description of a distribution D
in terms of the image space of the tensor:

D = Im t

where t is regarded as a linear map

tx : T ∗xM → TxM α 7→ t(α, . ) αµ 7→ ανt
νµ
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Common description of a distribution D on M (2)

In both cases, we proceed as follows: Fix, locally,

an adapted frame (ea, ei ),
i.e. such that ea ∈ D
and (ea, e i ) - the dual coframe.

This means that

ea-part is directed �along� the distribution D,
ei -part is �transversal� to the distribution D.

This choice simpli�es the description of D in terms of t a lot!
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Common description of a distribution D on M (3)

Namely, write

t = tabea ⊗ eb + taiea ⊗ ei + t iaei ⊗ ea + t ijei ⊗ ej

i.e.

t ↔
(
tab tai

t ia t ij

)
Then, for α = αae

a + αie
i ,

t(α, . ) = · · · = (αbt
ba + αi t

ia)ea + (αat
ai + αj t

ji )ei

Since D = Span {ea}, we get tai = 0 = t ji .
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Two important special cases

Thus, so far,

t ↔
(
tab 0
t ia 0

)
(73)

Now, in two important special cases
we automatically, free of charge, get rid of t ia as well:
Namely, when the tensor t is

symmetric - co-metric h in sub-Riemannian geometry,

skew-symmetric - Poisson tensor P in Poisson geometry.
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Two important special cases (2)

We then actually have

h↔
(
hab 0
0 0

)
P ↔

(
Pab 0
0 0

)
(74)

Or, equivalently,

h = habea ⊗ eb hab = hba (75)

P = Pabea ⊗ eb Pab = −Pba (76)

Marián Fecko Hamiltonian systems with degenerate Poisson tensor



Introduction
Usual Hamilton's equations - symplectic presentation

The story of Poisson bracket
Hamiltonian distribution

Symplectic leaves
Canonical coordinates

A similarity to sub-Riemannian geometry

Further Reading

Induced structures in the distribution D

Now both
(
2
0

)
-type tensors, h and P,

canonically induce
(
0
2

)
-type tensors, g and ω.

However, only in the distribution D!

The corresponding formulas share the same pattern:

g(h(α, · ), h(β, · ) := h(α, β) gach
cb = δba (77)

ω(P(α, · ),P(β, · ) := P(α, β) ωacPcb = −δba (78)
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Induced structures in the distribution D (2)

So we can sum up comparison yet presented:
On the whole manifold M we have

either P - the Poisson tensor (in Poisson geometry),

or h - the co-metric (in sub-Riemannian geometry).

Only in the distribution we have, then,

ω - the symplectic form (in Poisson geometry),

g - the metric (in sub-Riemannian geometry).

Notice that a single (degenerate) tensor (h or P, respectively),
carries full information about
both D and g or ω, respectively.
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Important di�erence between Poisson and sub-Riemannian

Perhaps the most important di�erence is that the distribution D is

integrable in Poisson geometry

non-integrable in sub-Riemannian geometry.

So, there are

symplectic leaves in Poisson geometry, whereas

no metric leaves in sub-Riemannian geometry.

Technically, integrability of �Poisson� distribution originates in
Jacobi identity ful�lled by P (see (36)).
There is no counterpart assumed to hold by h.
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Damned nice place to contemplate,

of course,
on Hamiltonian
systems;
especially
on those
with
degenerate Poisson
tensor.

Jah¬ací ²tít (Lamb Peak), August 26, 2020 (within The School :-)
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For Further Reading (1)

[1] A. Weinstein.
The local structure of Poisson manifolds.
Journal of Di�erential Geometry, 18 (523-557) 1983

[2] P. Olver
Poisson structures and integrability.
http://www.math.umn.edu/�olver

[3] E. Meinrenken.
Introduction to Poisson geometry.
Lecture notes, Winter 2017
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For Further Reading (2)

[1] R.G. Littlejohn.
Singular Poisson tensors.
AIP Conference Proceedings, Volume 88, pp. 47-66 (1982)

[2] M. Fecko.
Di�erential geometry and Lie groups for physicists.
Cambridge University Press 2006 (paperback 2011)

[3] M. Fecko
Subriemannian geodesics - an introduction.
presentation from Stará Lesná 2009,
davinci.fmph.uniba.sk/�fecko1/referaty/stara_lesna_2009.pdf

Marián Fecko Hamiltonian systems with degenerate Poisson tensor


	Introduction
	Usual Hamilton's equations - symplectic presentation
	The story of Poisson bracket
	Hamiltonian distribution
	Symplectic leaves
	Canonical coordinates
	A similarity to sub-Riemannian geometry

