Saint-Venant's compatibility condition and Einstein tensor

Marián Fecko

Department of Theoretical Physics Comenius University in Bratislava fecko@fmph.uniba.sk

Student Colloqium and School on Mathematical Physics, Stará Lesná, Slovakia, August 22 - 28, 2021

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

We will learn:

• What is Saint-Venant's operator

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

- What is Saint-Venant's operator
- What Saint-Venant's compatibility condition says

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

- What is Saint-Venant's operator
- What Saint-Venant's compatibility condition says
- How Riemann tensor may be parametrized in 2D

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

- What is Saint-Venant's operator
- What Saint-Venant's compatibility condition says
- How Riemann tensor may be parametrized in 2D
- How Riemann tensor may be parametrized in 3D

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

- What is Saint-Venant's operator
- What Saint-Venant's compatibility condition says
- How Riemann tensor may be parametrized in 2D
- How Riemann tensor may be parametrized in 3D
- How Einstein tensor in 3D is related to Saint-Venant's operator

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

- What is Saint-Venant's operator
- What Saint-Venant's compatibility condition says
- How Riemann tensor may be parametrized in 2D
- How Riemann tensor may be parametrized in 3D
- How Einstein tensor in 3D is related to Saint-Venant's operator
- Why, then, Saint-Venant's compatibility condition is true

Saint-Venant's operator Riemann curvature tensor in 2D and 3D Saint-Venant operator and Einstein tensor Why Saint-Venant's compatibility condition is true

- 3 Riemann curvature tensor in 2D and 3D
- 4 Saint-Venant operator and Einstein tensor
- 5 Why Saint-Venant's compatibility condition is true

Reminder - gradient vector fields in 3D

There is a well-known query in vector analysis: Under what circumstances a given vector field v happens to be a gradient field?

when
$$v \stackrel{?}{=} \nabla \psi$$
 i.e. $v_i \stackrel{?}{=} \frac{\partial_i}{\psi}$ (1)

And there is also a well-known (local) answer:

$$\mathbf{v} = \nabla \psi \quad \Leftrightarrow \quad \operatorname{curl} \mathbf{v} = \mathbf{0} \tag{2}$$

Reminder - gradient vector fields in 3D (2)

So, there is a differential operator on vector fields

$$\operatorname{curl} \equiv \nabla \times \qquad (\operatorname{curl} v)_i = \epsilon_{ijk} \partial_j v_k \tag{3}$$

with a key property that, when applied on v, the result

- being zero guaranties existence of potential ψ
- being non-zero obstructs existence of potential $\psi.$

Reminder - gradient vector fields in 3D (3)

There are two implications involved in a single equivalence (2). It turns out that one of them is easy part whereas the other hard part of the statement.

Easy part:

$$(\operatorname{curl} \nabla \psi)_{i} = \epsilon_{ijk} \partial_{j} (\nabla \psi)_{k}$$
$$= \epsilon_{ijk} \partial_{j} \partial_{k} \psi$$
$$= \epsilon_{ijkl} \partial_{(j} \partial_{k)} \psi$$
$$= 0$$

Hard part: Poincaré lemma for differential forms (see [Fecko 2006]).

Reminder - strain tensor in linear elasticity

In linear elasticity, for a given displacement (vector) field u, we compute corresponding

Its geometrical (and therefrom physical) meaning:

$$\epsilon_{ii} = 0 \qquad \Leftrightarrow \qquad \text{no deformation caused by } u \qquad (5)$$

Reminder - strain tensor in linear elasticity (2)

Notice that strain tensor is always symmetric second rank tensor

$$\overline{\epsilon_{ij}} = \epsilon_{ji} \tag{6}$$

Therefore a natural query arises:

Under what circumstances a given symmetric second-rank tensor h happens to be a strain tensor for some displacement field u?

when
$$h_{ij} \stackrel{?}{=} \partial_i u_j + \partial_j u_i$$
 (7)

Adhémar Jean Claude Barré de Saint-Venant (1797 - 1886)

The answer to the query was found, in 1864, by French mechanician and mathematician Barré de Saint-Venant.

(The figure is from Wikipedia.)

Operator curl curl

In order to formulate Saint-Venant's result, we need, first, to define (2-nd order differential) operator curl curl on 2-nd rank symmetric tensors (rather than on vectors).

It is given by formula

$$(\operatorname{curl}\operatorname{curl} h)_{ij} := \epsilon_{iab}\epsilon_{jcd}\partial_a\partial_c h_{bd}$$
(8)

(So as if "usual" curl was applied separately on both indices.) This operator is also called Saint-Venant operator.

Symmetry of the result

Notice that operator curl curl indeed returns symmetric output tensor for symmetric input tensor:

$$\begin{aligned} (\operatorname{curl}\operatorname{curl} h)_{ji} &= \epsilon_{jab}\epsilon_{icd}\partial_a\partial_c h_{bd} \\ &= \epsilon_{icd}\epsilon_{jab}\partial_a\partial_c h_{bd} \\ &= \epsilon_{iab}\epsilon_{jcd}\partial_c\partial_a h_{db} \\ &= \epsilon_{iab}\epsilon_{jcd}\partial_a\partial_c h_{bd} \\ &= (\operatorname{curl}\operatorname{curl} h)_{ij} \end{aligned}$$

Saint-Venant's compatibility condition

Now we are already prepared to understand what Saint-Venant's compatibility condition claims.

Namely, it is the following statement:

For symmetric tensor $(h_{ij} = h_{ji})$,

$$(\operatorname{curl}\operatorname{curl} h)_{ij} = \mathbf{0} \quad \Leftrightarrow \quad h_{ij} = \partial_i u_j + \partial_j u_i$$
(9)

Easy part of Saint-Venant's compatibility condition

There are two implications involved in a single equivalence (9). As it was the case for gradient fields, one of them is easy part whereas the other hard part of the statement.

Easy part:

$$(\operatorname{curl}\operatorname{curl}\epsilon)_{ij} = \epsilon_{iab}\epsilon_{jcd}\partial_a\partial_c(\partial_b u_d + \partial_d u_b) = \epsilon_{i[ab]}\epsilon_{jcd}\partial_(a\partial_c\partial_b)u_d + \epsilon_{iab}\epsilon_{j[cd]}\partial_{(a}\partial_c\partial_d)u_b = 0 + 0 = 0$$

Hard part: The main topic of this lecture :-)

Summing up

Let us recapitulate:

For vector fields

- some of them happen to be gradient fields
- ullet it is so iff application of ${f curl}$ on it vanishes

For symmetric 2-nd rank tensor fields

- some of them happen to be strain tensor fields
- it is so iff apllication of curl curl on it vanishes

Reminder: Symmetries of Riemann curvature tensor Rijkl

Complete Riemann curvature tensor R_{ijkl} has, apriori, n^4 components. However, because of its (index) symmetries

$$R_{abcd} \stackrel{1.}{=} -R_{bacd} \tag{10}$$

$$\stackrel{2.}{=} -R_{abdc} \tag{11}$$

$$\stackrel{3.}{=} + R_{cdab} \tag{12}$$

$$R_{a[bcd]} \stackrel{4.}{=} 0 \tag{13}$$

(for Levi-Civita connection)

number of independent components = $\frac{n^2(n^2-1)}{12}$ (14) So, as an example, it reduces to just 1 for n = 2 and to 6 for n = 3.

Warm up: Riemann curvature tensor in 2D

In 2D (see 15.6.10 in [Fecko2006]), the symmetries lead to parametrization (check!)

$$R_{abcd} = \epsilon_{ab} \epsilon_{cd} \mathbf{b} \tag{15}$$

Computation of scalar curvature R gives

$$R = 2b \tag{16}$$

and therefore, finally,

$$R_{abcd} = \frac{1}{2} \epsilon_{ab} \epsilon_{cd} R \tag{17}$$

(Btw., b = R/2 is just the celebrated Gauss curvature K.)

Riemann curvature tensor in 3D

Particular case of 3D in not treated at all in [Fecko2006]! So, it is indeed a truly awkward book!! Shame on it!!!

Fortunately, we fill the gap in our education, here!!!!

Symmetries lead to parametrization (check!)

$$R_{abcd} = \epsilon_{abi} \epsilon_{cdj} \frac{\mathsf{B}_{ij}}{\mathsf{B}_{ij}} \tag{18}$$

in terms of a (yet unknown) symmetric tensor B_{ij}

$$B_{ij} = B_{ji} \tag{19}$$

Riemann curvature tensor in 3D(2)

Computation of Ricci tensor R_{ij} and scalar curvature R gives

$$R_{ij} = \delta_{ij}B - B_{ij} \tag{20}$$

$$R = 2B \tag{21}$$

where

$$B := B_{jj} \tag{22}$$

We use components w.r.t. an orthonormal frame, as we already did in 2D. So $g_{ij} = \delta_{ij}$ and raising/lowering of indices is trivial.

Riemann curvature tensor in 3D (3)

From (20) and (21) we get

$$\mathbf{B}_{ij} = \frac{1}{2} Rg_{ij} - R_{ij} \equiv -\mathbf{G}_{ij} \tag{23}$$

where

$$G_{ij} := R_{ij} - \frac{1}{2} Rg_{ij}$$
 Einstein tensor (24)

So, the parametrization (18) actually reads

$$R_{abcd} = -\epsilon_{abi}\epsilon_{cdj}\mathbf{G}_{ij} \tag{25}$$

Riemann curvature tensor in 3D(4)

So, in 3D, we can reconstruct complete Riemann tensor from just Einstein tensor alone! Because of both-directions way $G_{ii} \leftrightarrow R_{ii}$

$$G_{ij} = R_{ij} - \frac{1}{2} Rg_{ij}$$
 (26)
 $R_{ij} = G_{ij} + \frac{1}{2 - n} Gg_{ij}$ (27)

(for $n \neq 2$), Ricci can be obtained from Einstein and, consequently, we can reconstruct complete Riemann tensor from just Ricci tensor as well!

Summing up

Let us recapitulate:

- In 2D, one can reconstruct
 - Riemann tensor R_{abcd} from just scalar curvature R alone
 - so just a single independent component in R_{abcd}
- In 3D, one can reconstruct
 - Riemann tensor R_{abcd} from just Einstein tensor G_{ab} alone
 - Riemann tensor R_{abcd} from just Ricci tensor R_{ab} alone
 - so just six (3(3+1)/2) independent components in R_{abcd}

Einstein tensor for $g_{ij} = \delta_{ij} + \epsilon h_{ij}$

Consider variation of flat metric

$$\delta_{ij} \mapsto g_{ij} = \delta_{ij} + \epsilon h_{ij}$$
(28)

What the corresponding variation of Einstein tensor looks like?

For flat metric δ , complete Riemann tensor vanishes, so, consequently, Einstein tensor vanishes.

Therefore Einstein tensor for ${\it g}=\delta+\epsilon h$ is necessarily of the form

$$G_{ij}[\delta + \epsilon h] = G_{ij}[\delta] + \epsilon(\dots)_{ij} = \epsilon(\dots)_{ij}$$
(29)

We want to compute $(...)_{ij}$ explicitly.

Einstein tensor for
$$g_{ij} = \delta_{ij} + \epsilon h_{ij}$$
 (2)

Recall standard general formulas for computing R^{i}_{ikl} for given g_{ij} :

$$\Gamma_{ijk}[g] = \frac{1}{2}(g_{ij,k} + g_{ik,j} - g_{jk,i})$$
 (30)

$$\Gamma_{jk}^{i}[g] = g^{il}\Gamma_{ljk}[g] \tag{31}$$

$$R^{i}_{jkl}[\Gamma] = \Gamma^{i}_{jl,k} - \Gamma^{i}_{jk,l} + \Gamma^{m}_{jl}\Gamma^{i}_{\ mk} - \Gamma^{m}_{\ jk}\Gamma^{i}_{\ ml} \qquad (32)$$

Here, we have, to first order in ϵ ,

$$g_{ij} = \delta_{ij} + \epsilon h_{ij}$$
 so that $g^{ij} = \delta_{ij} - \epsilon h_{ij}$ (33)

Einstein tensor for
$$g_{ij} = \delta_{ij} + \epsilon h_{ij}$$
 (3)

Then, in our case (up to first order), step by step,

$$\Gamma^{i}_{jk}[g] = \Gamma_{ijk}[g] = \epsilon \Gamma_{ijk}[h]$$
(34)

$$R^{i}_{jkl}[g] \equiv R^{i}_{jkl}[\Gamma[g]] = \Gamma^{i}_{jl,k}[g] - \Gamma^{i}_{jk,l}[g]$$
(35)

$$\equiv 2\Gamma^{i}_{j[l,k]}[g] \equiv 2\epsilon\Gamma_{ij[l,k]}[h] \qquad (36)$$

Using (30), we get the full Riemann tensor in the form

$$R^{i}_{jkl}[\delta + \epsilon h] = R_{ijkl}[\delta + \epsilon h] = \epsilon(h_{i[l,k]j} - h_{j[l,k]j})$$
(37)

Einstein tensor for
$$g_{ij} = \delta_{ij} + \epsilon h_{ij}$$
 (4)

Then, by contractions, we get Ricci tensor and scalar curvature as follows:

$$R_{ij}[\delta + \epsilon h] = \frac{1}{2}\epsilon(h_{ik,kj} + h_{jk,ki} - h_{kk,ij} - h_{ij,kk}) \qquad (38)$$

$$R[\delta + \epsilon h] = \epsilon (h_{jk,jk} - h_{jj,kk})$$
(39)

This means that **Einstein tensor**

$$G_{ij}[\delta + \epsilon h] \equiv R_{ij}[\delta + \epsilon h] + \frac{1}{2}R[\delta + \epsilon h](\delta_{ij} + \epsilon h_{ij})$$
(40)

becomes a sum of six terms containing expressions of structure $h_{ij,kl}$ with various combinations of indices.

Einstein tensor for $g_{ij} = \delta_{ij} + \epsilon h_{ij}$ in 3D

One can check that the six terms may be compactly written as follows:

$$G_{ij}[\delta + \epsilon h] = \epsilon \frac{1}{2} 3! \delta_a^{[b} \delta_i^k \delta_j^{l]} h_{jl,ik}$$
(41)

Because of the well-known identity (in 3D)

$$3!\delta_{aij}^{bkl} \equiv 3!\delta_a^{[b}\delta_i^k\delta_j^{l]} = \epsilon_{aij}\epsilon^{bkl}$$
(42)

this can be rewritten as

$$G_{ij}[\delta + \epsilon h] = \epsilon \frac{1}{2} \epsilon_{aij} \epsilon_{bkl} h_{jl,ik}$$
(43)

Saint-Venant operator on the scene again!

But notice that at the r.h.s. of (43) we can identify nothing but the good old Saint-Venant operator curl curl from (8)!

$$(\operatorname{curl}\operatorname{curl} h)_{ij} := \epsilon_{aij}\epsilon_{bkl}h_{jl,ik}$$
(44)

This leads us to the most important formula of the presentation.

It is so important that it deserves a separate frame :-)

Saint-Venant operator and Einstein tensor

The most important formula of the presentation:

$$G_{ab}(\delta + \epsilon h) = \epsilon \frac{1}{2} (\operatorname{curl} \operatorname{curl} h)_{ab}$$
(45)

It reveals that (in 3D) the Saint-Venant operator is (by definition)

- the first variation w.r.t. metric tensor
- of Einstein tensor

in 3D

- evaluated at flat (= Euclidean) metric.

Why the formula (45) is important for us

The formula (45) is important for us because we can use

standard knowledge from "general relativity"
(mainly properties of flat space :-)

to prove easily the hard part of the Saint-Venant compatibility condition!

Further Reading

Hard part of the Saint-Venant's compatibility condition

So we want to understand

why the hard part

of the Saint-Venant's compatibility condition,

i.e. the statement that,

for symmetric tensor $(h_{ij} = h_{ji})$,

$$\left(\operatorname{curl\,curl} h\right)_{ij} = \mathbf{0} \quad \stackrel{?}{\Rightarrow} \quad h_{ij} = \partial_i u_j + \partial_j u_i \qquad (46)$$

holds.

Further Reading

Hard part of the Saint-Venant's compatibility condition (2)

Well, assume that, in 3D, a symmetric tensor $(h_{ij} = h_{ji})$ satisfies

$$(\operatorname{curl}\operatorname{curl} h)_{ij} = \mathbf{0} \tag{47}$$

Then

1. From (45)

$$G_{ab}(\delta + \epsilon h) = \epsilon \frac{1}{2} (\operatorname{curl} \operatorname{curl} h)_{ab}$$
(48)

we deduce that

$$G_{ab}(\delta + \epsilon h) = 0 \tag{49}$$

Further Reading

Hard part of the Saint-Venant's compatibility condition (2)

2. From (25)

$$R_{abcd} = -\epsilon_{abi}\epsilon_{cdj}\mathbf{G}_{ij} \tag{50}$$

we can deduce, then, that complete Riemann tensor (for $g = \delta + \epsilon h$) vanishes

$$R_{abcd}(\delta + \epsilon h) = 0 \tag{51}$$

3. Of course, the same is true for "unperturbed" Euclidean space

$$R_{abcd}(\delta) = 0 \tag{52}$$

Further Reading

Hard part of the Saint-Venant's compatibility condition (3)

- **4**. Folklore wisdom from "general relativity" says, that if
- connection is metric
- connection is symmetric (torsion-free)
- Riemann tensor vanishes, $R_{abcd}(\Gamma(g)) = 0$

then

there exist adapted coordinates, say $z_a \leftrightarrow g$, in which the metric is Euclidean

$$g = \delta_{ab} dz_a \otimes dz_b \tag{53}$$

Further Reading

Hard part of the Saint-Venant's compatibility condition (4)

5. Then 2. and 3. say, that

$$\delta \leftrightarrow x_{a} \qquad \delta + \epsilon h \leftrightarrow y_{a} \tag{54}$$

i.e.

 $\delta = \delta_{ab} dx_a \otimes dx_b \qquad \delta + \epsilon h = \delta_{ab} dy_a \otimes dy_b \qquad (55)$

(coordinates x_a are adapted to δ , y_a are adapted to $\delta + \epsilon h$).

Further Reading

Hard part of the Saint-Venant's compatibility condition (5)

6. Metric tensors δ and $\delta + \epsilon h$ are close to one another. Therefore also corresponding adapted coordinates are necessarily close to one another:

$$y_a = x_a + \epsilon u_a(x) \qquad \text{for some functions } u_a(x) \qquad (56)$$

and, consequently,

$$dy_{a} = dx_{a} + \epsilon u_{a,c} dx_{c} \equiv (\delta_{ac} + \epsilon u_{a,c}) dx_{c}$$
(57)

Further Reading

Hard part of the Saint-Venant's compatibility condition (6)

7. Then

$$\begin{split} \delta + \epsilon h &= \delta_{ab} dy_a \otimes dy_b \\ &= \delta_{ab} (\delta_{ac} + \epsilon u_{a,c}) dx_c \otimes (\delta_{bd} + \epsilon u_{b,d}) dx_d \\ &= \delta_{ab} dx_a \otimes dx_b + \epsilon (u_{a,b} + u_{b,a}) dx_a \otimes dx_b \\ &= \delta + \epsilon (u_{a,b} + u_{b,a}) dx_a \otimes dx_b \end{split}$$

and therefore, finally,

 $h = (u_{a,b} + u_{b,a})dx_a \otimes dx_b \qquad \text{ i.e. } \qquad \left| h_{ab} = u_{a,b} + u_{b,a} \right| \tag{58}$

This is exactly what Saint-Venant's compatibility condition says.

Further Reading

Damned nice place to contemplate

on Saint-Venant's compatibility condition; in particular on how it is related to Einstein tensor.

From Kôprovský štít, August 25, 2021 (a trip within The School :-)

Further Reading

From the trip

On the peak, with Tomáš (left) and Dominik (middle). Pretty nice trip, indeed.

Kôprovský štít, ("Dill" Peak), August 25, 2021

Further Reading

For Further Reading (1)

🥿 M. Eastwood.

Ricci curvature and the mechanics of solids. Austral. Math. Soc. Gaz. 37 238-241 (2010)

Further Reading

For Further Reading (1)

🫸 M. Eastwood.

Ricci curvature and the mechanics of solids. Austral. Math. Soc. Gaz. 37 238-241 (2010)

🛸 Ch. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan On Saint Venant's compatibility conditions and Poincaré's lemma.

C. R. Acad. Sci. Paris, Ser. I 342 887-891 (2006)

Further Reading

For Further Reading (1)

🫸 M. Eastwood.

Ricci curvature and the mechanics of solids. Austral. Math. Soc. Gaz. 37 238-241 (2010)

🛸 Ch. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan On Saint Venant's compatibility conditions and Poincaré's lemma.

C. R. Acad. Sci. Paris, Ser. I 342 887-891 (2006)

嗪 Philippe G. Ciarlet, C. Mardareb, M. Shen Recovery of a displacement field from its linearized strain tensor field in curvilinear coordinates. C. R. Acad. Sci. Paris, Ser. I 344 535-540 (2007)

Further Reading

For Further Reading (1)

🫸 M. Eastwood.

Ricci curvature and the mechanics of solids. Austral. Math. Soc. Gaz. 37 238-241 (2010)

🛸 Ch. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan On Saint Venant's compatibility conditions and Poincaré's lemma.

C. R. Acad. Sci. Paris, Ser. I 342 887-891 (2006)

嗪 Philippe G. Ciarlet, C. Mardareb, M. Shen Recovery of a displacement field from its linearized strain tensor field in curvilinear coordinates. C. R. Acad. Sci. Paris, Ser. I 344 535-540 (2007)

Further Reading

For Further Reading (2)

M. Fecko.

Differential geometry and Lie groups for physicists. Cambridge University Press 2006 (paperback 2011)

Further Reading

For Further Reading (2)

M. Fecko.

Differential geometry and Lie groups for physicists. Cambridge University Press 2006 (paperback 2011)