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The classic Newton’s pail experiment performed in a freely falling lift is discussed.

L. INTRODUCTION

Newton proposed his celebrated pail experiment in order
to support the concept of absolute space (and
distinguished-inertial-reference frames), especially in con-
nection with an objection of his contemporary Leibnitz,
who protested against such a concept on philosophical
grounds. Let us recall the experiment in a few words:

“He filled a pail with water and suspended it from a
twisted rope. In unwinding itself the rope set the pail into
rotary motion, and the rotation of the pail continued for a
while until it came to rest. The water in the pail was at rest
in the first stage of the rotation of the pail and had a level
surface. The fact that the pail was moving relative to it did
not affect it. In the second phase of the rotation of the pail,
the friction between the fluid and the wall forced the fluid
to participate in the motion. Water and pail then moved as
one body, and, according to Newton, the surface of the
water had the form of a paraboloid of revolution due to the
centrifugal force on the water. In the third stage, the pail
had already come to rest, but the water was still rotating.
In a certain sense the situation was similar to the first stage:
water and pail were in the same relative motion. But now
the surface of the water was parabolic. This showed that
not the relative motion of water and pail were decisive for
the phenomenon of depression of the water surface, but the
rotation of the body of water relative to absolute space and
the consequent centrifugal force. The Leibnitz objection
was thus overruled by experiment.”!

The other “experimental setup” mentioned in the title,
Einstein’s lift,? is certainly not less classic. It enables one to
transform away (‘“switch off’) locally a gravitational
force.

An interesting question now arises: what happens if the
rope keeping the pail filled with a uniformly rotating water
is suddenly cut (Fig. 1), or in other words, what is the
behavior of Newton’s pail in Einstein’s lift?

I1. WHAT HAPPENS

One should first of all realize clearly the reason for the
paraboloid of revolution shape of the surface of the water
(before the rope is cut). There are two forces governing the
behavior of the water (when viewed from the co-moving
=rotating frame of reference; for the explanation within
the laboratory frame by solving Euler equations for ideal
liquid see Ref. 3). Gravitation forces the water to sit as low
as possible while due to the centrifugal force the water tries
to occur as far as possible from the axis of rotation, which
means, however, to climb up (for the usual shape of the
pail) just against the gravitational force. The resulting
form of the surface is merely a “compromise agreement”
between these two contrary tendencies.

When the rope is cut, the gravitational force is disqual-
ified from taking part in the competition and the only com-
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petitor available—the centrifugal force—wins with glorifi-
cation. The water climbs up with no resistance until it
finally pours out of the pail.

II1. FOUR VERSIONS OF PAIL EXPERIMENT

Both forces mentioned in Sec. II are under control —we
can switch off and on separately each of them
(gravitational —“‘to cut or not to cut,” centrifugal —“to
rotate or not to rotate’’). Thus, four different situations can
occur from this point of view (the first and the third stage
from Sec. I plus both of them after the rope is cut). They
are summarized in the following table:

Gravitational ~ Centrifugal
No. force force Result
1 yes yes parabolic surface
2 yes no flat surface
3 no yes water pours out
4 no. no flat surface

(In No. 4 it is assumed that the surface was flat before the
rope is cut.)

IV, SIMPLIFIED (KITCHEN) REALIZATION OF
EXPERIMENT

A “standard” realization using a pail, rope, scissors, etc.
is straightforward but a bit cumbersome to perform (e.g.,

[/
=e

D

Fig. 1. What happens if the rope is suddenly cut?
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in the lecture room). One can demonstrate, however, all
essential features of the experiment equipped with nothing
more than a glass of water and a teaspoon.

First, one has to gain some skill in performing No. 4
experiment (to drop the glass half-filled with water and
catch it again keeping the water inside). and then verify
that no skill can help to confine the water to the glass if the
water is stirred previously (experiment No. 3 is necessarily
i(we 9,).

V. DISCUSSION

As mentioned in Sec. I the moral from the Newton’s pail
experiment (No. 1 compared with No. 2) is that the rela-
tive motion of water and “absolute space” rather than wa-
ter and pail is decisive for the result. The curvature of the
surface serves, in fact, as an indicator of the measuring
instrument which measures quantitatively the relative mo-
tion of the water and absolute space. From the table in Sec.
III. we see, however, that it is possible to produce even

more pronounced deviation of the indicator (or better a
damaging of the apparatus because of too strong signal)
performing experiment No. 3. Although the relative mo-
tion of water and pail can be still the same, the result differs
from that of No. 2 much more dramatically (water outside
vs water inside the pail) in comparison with No. 1 (surface
curved vs surface flat). Thus, No. 3 experiment can be
viewed as in a sense strengthened version of the original
Newton’s experiment (the strenghtening is caused by the
fact that the rest frame of the water just after the cut in No.
3 is in more complicated relation to the “‘absolute space”
than in No. 1: “linear” acceleration is added to rotation).
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Numerical integration routines designed for introductory physics courses, such as the last-point
approximation and the second Taylor approximation, are incompatible with velocity-dependent
forces. A general purpose routine which handles resistive, Coriolis, and magnetic forces, as well
as conservative forces, is obtained by combining the fundamental Euler method with Richardson
extrapolation. Further, this Euler-Richardson method is almost as efficient as the last-point
approximation and the second Taylor approximation for simple central force problems and is
more efficient for difficult problems, such as Earth-Moon orbits.

I. INTRODUCTION

The use of numerical integration techniques in introduc-
tory physics courses supposes that the methods satisfy two
requirements: (a) they can be easily implemented and un-
derstood by the students and (b) they can solve the prob-
lems. To a large extent, these are antagonistic features. The
simplest method is the fundamental Euler method (de-
noted by FEM in this paper), but this is very limited in its
ability to handle interesting problems. On the other hand,
high quality methods such as the fifth-order Dormand-
Prince method! (DP5) or the Bulirsch-Stoer 1:echnique2
(BST), which are the culmination of years of development,
are very sophisticated and not easily explained. As a result,
a number of slightly refined methods have been developed
for student use, typically based on differential equations
that are purely second order. These include the midpoint
approximation (MPA), the half-step agproximation
(HSA), the last-point approximation (LPA),’ and the sec-
ond Taylor approximation (STA).* The second Taylor ap-
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proximation has the additional advantage of being able to
use variable step sizes.*® Of these, the LPA and the STA
have received most attention.

The particular applications in mind during the develop-
ment of the refined methods have all been cases of New-
ton’s Second Law with conservative forces; d’x/df
=F(x)/m, or the equivalent in two dimensions. But it has
also been assumed that the real purpose is to examine vari-
ations of these forces, including the addition of resistive
forces.>* Unfortunately, all these slightly refined methods
are incompatible with velocity-dependent forces, a feature
that has not been recognized (except in one brief note
added in proof)* and never discussed in detail.

The numerical integration of dynamics equations re-
quires a large number of acceleration calculations, many of
which are used to refine earlier estimates of position and
velocity. If the acceleration can be determined using only
position information, without regard for the velocity, this
refinement process is simplified and it is possible to obtain
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