UNIVERZITA KOMENSKEHO, BRATISLAVA

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

TEORETICKA MECHANIKA

Bratislava, 2014 B. RABATIN



Uvod
1 Matematicky aparat teoretickej mechaniky
1.1 Einsteinova sumacna konvencia . . . . . . . . .. ...
1.1.1  Zéakladné operdcie s vektormi podla Einsteinovej sumaénej konvencie . . . .
1.1.2 Diferencidlny operétor ﬁ, divergencia, gradient a rotacia . . . . . . ... ..
1.2 Priklady na vektorovy a diferencidlny pocet v Einsteinovej sumac¢nej konvencii . .
1.2.1 Vektorové identity . . . . . . . . . . ...
1.2.2  Diferencidlne operdtory . . . . . . . ...
1.2.3  Gauss-Ostrogradského veta™ . . . . .. .. ... L oL
1.2.4 Kelvin-Stokesova veta™ . . . . . . .. ...

2 Mechanika sustavy viazanych hmotnych bodov

2.1 d’Alembertov - Lagrangeov princip . . . . . . . . . ... L oo
2.1.1 Vagby, vazbové rovnice . . . . . . ...
2.1.2  Aktivne sily, reakéné sily vizieb . . . . ... ... L L oL
2.1.3 Nezavislé vizby, dimenzia konfigura¢ného priestoru . . . . . . . .. ... ..
2.1.4  Princip virtudlneho posunutia . . . . . . . ... L oL oL
2.1.5 d’Alembertov - Lagrangeov princip . . . . . . . . ... . oL

2.2 Lagrangeove rovnice Il. druhu . . . . . ... ..o oo
2.2.1 ZovSeobecnené sturadnice, Lagrangeove rovnice II. druhu . . . . . . . .. ..
2.2.2 Zékony zachovania . . . . . . . ... ... e
2.2.3 Zékon zachovania energie . . . . . . .. ... ..o oo

2.3 Princip najmensieho Géinku . . . . ... L oo
2.3.1 Matematické okienko do varia¢ného poctu . . . . . . ...
2.3.2 Ij(:inok7 princip extremalneho uéinku . . . . . .. ..o oL

2.4 Hamiltonove rovnice . . . . . . . . .. Lo
2.4.1 Legendreova transformécia . . . . . .. .. ... ... ... .. ... ...
2.4.2 Hamiltonove rovnice . . . . . . . . ...
2.4.3 Poissonove zatvorky . . . ... ..o

3 Dalsie aplikicie Lagrangeovského a Hamiltonovského pristupu v mechanike

3.1 Potencidlna energia a sila®* . . . . . . ... L
3.1.1 ZovSeobecnend potencidlna energia®* . . . ... ... L L
3.1.2 Nepotencidlovd zlozka sily a jej vykon™ . . . . ... ... oL

3.2 Fazovy priestor . . . . . . ...
3.2.1 Kuvalitativne rieSenie Hamiltonovych rovnic* . . . . . . ... ... ... ...
3.2.2 Liouvilleova veta* . . . . . . . .. ...

3.3 SKAlovanie . . . . . ...

3.4 Problém dvoch telies . . . . . . . ...

3.5 Malé kmity . . . . . . L
3.5.1 Priklady z kmitov . . .. ...

3.6 Pohyb v neinercidlnej vztaznej stistave . . . . . . . . ... ..
3.6.1 Volny pad telesa na rotujicuzem . . . . . . . . ... ... ... ... ...

3.7 Tuhételeso . . . . . . . . e
3.7.1 Kineticka energia, rotacna energia a moment zotrvacnosti tuhého telesa . .
3.7.2 Steinerova veta a veta o kolmych osiach®* . . . ... ... ... ... .. ..
3.7.3 Kinematika volného sférického zotrvaénika . . . . . . . ... ... ... ...
3.7.4  Eulerove rovnice pre rotaciu tuhého telesa, Eulerove uhly . . . .. ... ..
3.7.5 Dalsie priklady™ . . . . . ... ...

ii

Obsah

[

— =



4 Uvod do mechaniky kontinua a hydrodynamiky 123
4.1 Vseobecnd pohybové rovnica kontinua . . . . .. ... L Lo 124
4.2 Kvapaliny . . . . . . e e 127

4.2.1 Tok idealnej kvapaliny, Eulerova rovnica . . . . . . . . ... ... L. 127
4.2.2 Rovnica kontinuity . . . . . . ... L 129
4.2.3 Tok idedlnej nestlacitelnej kvapaliny . . . . . . ... ... .. ... ... ... .. ... 129
4.2.4 Hydrostatika . . . . . .. L 130
4.2.5 Staciondrne tecenie nevirového pola, Bernoulliho rovnica.. . . . . . . . ... ... ... 131
4.2.6 Fyzikdlna interpretacia virivosti . . . . . . . ... oL oo 133
4.2.7 Tok viskéznej kvapaliny, Navier-Stokesova rovnica . . . . . . .. ... ... ... ... 137
4.2.8 Dalsie priklady z hydrodynamiky riesitelné analyticky* . . . . . ... ... ... ... 139
4.3 Pruzné kontinuum . . . . ..o e 156
4.3.1 Tenzor deformécie . . . . . . . . .. e 156
4.3.2 Hookov zadkom . . . . . . . ... e 157
4.3.3 Hookov zdkon pre homogénne a izotrépne kontinuum . . . . . . . . ... .. ... ... 159
4.3.4 Objemova dilatacia. . . . . . . . . .. L 160
4.3.5 Homogénne a izotrépne pruzné kontinuum, Lamého rovnica . . . . . . . .. . ... .. 160
4.4 Vlny v pruznom kontinuu a v kvapalindch . . . . . .. .. ..o oo 161
4.4.1 Vlny v izotropnom pruznom kontinuu . . . . . .. ..o 161
4.4.2 Vlny videdlnej kvapaline . . . . . . . ... oo 163

iii



Uvod

Napriek tomu, ze je cely tento text chapany ako okrajovy doplnkovy materidl, bez ktorého sa predmet
teoretickd mechanika bez problémov zaobide, som mal cely éas nutkanie napisat o tychto zdlezitostiach éo
najviac a ¢o najzaujimavejsie. Mnohokrat uz pocas pisania ba aj po napisani a pri naslednej kontrole som
sa prichytil ako uvazujem, ¢o vietko by sa eSte dalo doplnit, ¢o vietko tu este nie je a kolko zaujimavych
prikladov a demonstracii by sa mohlo v tomto texte eSte nachddzat. Tieto myslienky treba v istom okamihu
rézne stopnif, ina¢ sa zo 100 stranového textu za isty ¢as stane 150 stranovy, ndsledne 200 stranovy,
potom 300 stranovy a kto ovlada inziniersku indukciu, dojde ku divergencii jeho rozsahu s ¢asom iddcim do
nekonecna (este ze zijeme obmedzeny ¢as). Uzitotnd fréza, ktort som si zopakoval, najmé pri kontrole a
diskusii tohto textu s inymi fudmi bola, Ze predsa mojim cielom nie je ,,spasit svet”. V opacnom pripade
by hrozilo, ze uz i tak dlhy text nadobudne formu zbierky toho, ¢o povazujem za zaujimavé, no s ¢asom
(a rozsahom) rastticim nad vSetky medze by sa text nendvratne vzd'aloval od sylabu a myslienky tohto
predmetu. Napriek rdznym pokusom prigkrtif moje vyéiflanie sa stalo, Ze nie vSetky veci tu spisané sa
naozaj aj skiisaji, ba dokonca vobec spominaji na prednaske. V takom pripade si prislusné casti oznacené
hviezdickou (dana ¢ast je uzitotnd a vyzaduje sa ako vieobecnd vedomost ku skigke), popripade dvoma
hviezdickami (keby tu dani dvojhviezdickovd East nebola, vobec ni¢ by sa nestalo). Po tomto podivnom
ivode k tivodu by sme mohli prejst ku seriéznemu tivodu, ktory aj spomenie, o éom predmet vlastne bude.

O ¢om je vlastne teoretickd mechanika? Citatel ma mozno po absolvovani predmetu mechanika pocit,
7e vie véetko vypoéitat a ni¢ v mechanike mu uz problém nerobi. Opak je pravdou, ti pozornejsi museli
postrehnit, Ze celd mechanika je v podstate tazko univerzalne obsiahnutelnd oblast problémov, no tam,
kde existuje ist4 algoritmizdcia riesenia mechanickych problémov, je dobré ju najst a naucit sa ju pouzivat.
Tymto rozhodne nechceme naznacovat, Ze kurzom teoretickd mechanika je uZ vyrieseny kazdy problém a
druh problému v mechanike. Dalo by sa povedat, Ze napriek zloZitosti a krése tychto algoritmov, sme pokryli
len isty zlomok toho, ¢o vietko by sa este mohlo daf vyriesif. Sikovnému citatelovi ni¢ nebréani zobrat do
ruky pero, d'alej stavat na tychto odvodeniach vlastné ivahy a pokdsit sa riesif d’alsie mechanické problémy,
ktoré samozrejme nemozu byt vietky zaradené do jediného jednosemestralneho kurzu.

Od predmetu mechanika sa 1isi hlavne pristupom k jednotlivym mechanickym problémom. Jednou
z hlavnych vyhod teoretického pristupu k mechanike je samotné oSetrovanie vézieb pohybu. V klasickom
pristupe k mechanike je potrebné pre kazdi vizbu (napr. kyvadlo viazané palickou ku stene) uvazovat sily,
ktoré dané teleso udrzuji na drahe, ktort tato viizba uréuje. Toto méze byt vo vSeobecnosti velmi obtiazne.
Ukazuje sa, ze hladaf tieto sily v skutoénosti nie je potrebné, staci poznat vizbové rovnice a tzv. aktivne
sily, ktoré si v systéme pritomné.

Prvy pristup, v ktorom nepotrebujeme poznat priamo sily vizieb je d’Alambertov - Lagrangeov princip,
ktory sa ale ukéZe byt nie velmi vhodny na rieenie praktickych problémov mechaniky. Obsahuje totiz viac
rovnic, ako je na rieSenie nutné. Ako d'alsie sa vyuZije nijdenie takej parametrizécie, ktora spiﬁa vazbové
rovnice a hlavnym vystupom budi Lagrangeove rovnice.

V d'alsej ¢asti tohto kurzu sa budeme venovat Hamiltonovym rovniciam, ktoré za cenu zdvojnésobenia
poc¢tu rovnic znizia ich rdd. Hamiltonian sa objavuje hlavne v kvantovej mechanike, avsak je uzitoctné sa s
nim obozndmit uz teraz.

V nasledujicej kapitole sa venujeme neinercidlnym vzfazZnym ststavam a problémom tykajicich sa
tuhych telies.

V poslednej casti pokracujeme témou o kontinuu, kde sa pozrieme na kvapaliny a elastické kontinuum.
Pri kvapalinidch opustime zname vody Lagrangeovského opisu systému a vyuzijeme Fulerov opis, ¢o vSak
nakoniec prinesie svoj uzitok.

Pri vsetkych tychto témach sa nauéime aktivne pouzivat Einsteinovu sumaéni konvenciu a rdézne
pomocky skracujice zapis, ¢o setrf miesto a zdravy rozum v odvodeniach. Tento apardt je velmi uZzitoény
aj ku d'alsfm predmetom (tedria relativity, kde sa indexovd matematika privedie do tplne inej tirovne,
popripade tedria elektromagnetického pola a iné) a fyzik sa bez neho uréite nezaobide (avSak kazdy ¢lovek
m4 int hranicu straty zdravého rozumu). Aj ked je moZné vsetky odvodenia prejst kompletne bez pouzivania
tohto aparatu, je velmi silno odportiéané si ho rychlo osvojit, ked'ze jeho krésa a vyhody d'aleko prevysuji
tych par hodin namahy.



OBSAH

Tento text je zalozeny na prednaskach doc. Maridana Fecka z predmetu Teoretickd mechanika. Kvalita
tychto prednasok je kazdorotne vyzdvihovana v studentskej ankete. Samotny text sa opiera o zrozumi-
telny vyklad na predniskach a v niektorych smeroch ho rozsiruje o riesenia d’alich zaujimavych problémov
mechaniky.

Moja velkd vd'aka patri Frantiskovi Hermanovi, ktory znovu presiel celé skriptd a naozaj detailne sa
venoval ich obsahu aj forme, ¢o ho stélo uréite vela nervov a ¢asu. Napriek tomu, kolko energie bolo vloZenej
do opravy samotnych skript sa urcite eSte vela chyb nenaslo. Najlepsia spitné viézba vsak pochadza od
samotnych ¢itatelov, preto prosime priamo Vas: akikolvek nezrovnalost, nejasnost, nebodaj chybu, ni¢
nehovoriaci obrazok, alebo éokolvek, ¢o by sa VAm nezdalo ndm poslite na mail rabatin.b@gmail.com, uréite
sa budeme periodicky snazit o ndpravu nahromadenych chyb!.

1Napisat mézete aj ked nds chcete potesit, skritizovat nés, alebo ndm len zapriat pekny def.
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Matematicky aparat teoretickej mechaniky

V tomto uéebnom texte budeme pouzivat rézne znacky, skratky a konvencie, ktoré maju za ciel skrétit,
zjednodusit a zintuitivnit zapisy, ktoré budeme pouzivat.

Je dobré pri odvodeni mnohych vektorovych rovnic pracovat len s jednou komponentou naraz. Ak sa
daju tieto odvodenia robitf vieobecne pre i-tu komponentu, budeme to tak robit. Namiesto vektora A tak
budeme napr. pre jeho i-tu zlozku pisat A4;. V texte budeme taktiez hojne vyuzivat koncepciu volnych a
s¢itacich indexov, ktord ma nazov Einsteinova sumacnd konvencia.

1.1 Einsteinova sumaéna konvencia

Jednoduchy popis tejto konvencie je, ze ak sa vo vyraze obajvi nejaky index dvakrdt, automaticky to
implikuje sumdciu. Takyto index budeme volat séitaci. Vyvstiva otdzka, aké st hranice sumdcie, ¢o ak
mam vo vyraze jeden index len jedenkrdt a ¢o ak mam vo vyraze jeden index viac nez dva razy? Ak méme
vo vyraze index, ktory sa tam nachddza len jedenkrdt, ide o tzv. volng index, teda vysledok vyrazu zavisi
od konkrétnej volby indexu (¢o za neho dosadime). Najlepsie sa na tiito otdzku odpovedd v prikladoch. Ak
sa vo vyraze nachddza niektory index viac nez dvakrdt, ide o nezmysel, teda o preklep (aspoii ¢o sa tyka
Einsteinovej sumacnej konvencie, ako takd nepoznd, ¢o je vyraz s troma rovnakymi indexami). Ak sme si
vedomli, 7e tie tri indexy maju opodstatnenie, sumu ruéne pripiseme. Co sa tyka hranic sumécie, povacsinou
sa sumuje od 1 po 3, ak sa nachddzame v priestore R3, no hranice zdvisia od konkrétnej situécie (v pripade
poriadneho zna¢enia sa daji hranice dobre uréit a nebyva s tym problém).

1.1.1 ZAkladné operacie s vektormi podla Einsteinovej sumaénej konvencie
Symboly 5” a gijk

Vyraz 6;; sa nazyva Kroneckerova delta (popr. Kroneckerov delta symbol). Ako na prvy pohlad vidno,
st v ilom préve dva rézne indexy, kazdy z nich pouzity len jedenkrdt, teda oba si volné (teda vysledok zdvisi
od ich volby, ¢o za ne konkrétne dosadime). Ked'Ze si oba volné, ocakdva sa, Ze doplnime, ¢o je vysledkom
vyrazu d;; pre konkrétne ¢ a j. Definicia znie jednoducho:

1, i=j

8ii =1 1.1

N {07 i# . -

Této definicia naozaj uréi hodnotu vyrazu é;; pre akékolvek i a j, ktoré si vymyslime. Dalsiu précu s
tymto symbolom uvidime na praktickych prikladoch, no jeden si moézeme dovolif uz teraz:

0ii =011+ 022 +d33=1+1+1=3 (1.2)



1.1. EINSTEINOVA SUMACNA KONVENCIA

Vyraz €51 je Levi-Civitov symbol, je to iplne antisymetricky tenzor. Je zdlhavé definovaf tento vyraz
pre kazdé i, j a k (1 <14,j,k < 3), ale plati, Ze €123 = 1 a navyse pri vymene akychkolvek dvoch indexov sa
znamienko zmeni na opac¢né:

€123 =1 (1.3)
€ijk = —Ejik = —E€kji = —Eikj

Z tejto definicie je jednoduché odvodit, ze ak sa pri Levi-Civitovom symbole zhoduji aspoii dva indexy,
cely vyraz je nulovy. Napr.:

€123 =1 €132 =-1
€131 =0 e321 =—1
€33 =0

Davis Cup identita

Plati velms délezitd a casto vyuZivand identita':
EijkEmnk = 51’”},6]11 - 5zn§jm (14)

Béza R3

V trojrozmernom Euklidovskom priestore existuje pravouhld pravotocivd bdza. Téato béza je tvorend
troma vektormi jednotkovej dl/iky, ktoré su navzajom kolmé. ZvycCajne sa oznacuju ;, j ak (jednotkovy
vektor v smere osi x, v smere osi y a v smere osi z). Pre potreby Einsteinovej sumacnej konvencie je dobré,
ak miesto vektorov 7, ja k pouzivame oznacenia €1, €3 a €3. Potom €7 bude jednotkovy vektor v smere osi
T, €3 v smere osi y a €3 v smere osi z. Zjavna vyhoda je, Ze tieto oznacCenia maju v sebe index, ak teda
napfSeme vektor €;, mysli sa tym i-ty bazicky vektor (teda vo vyraze ostane jediny volny index, ktory m4
taki tlohu, Ze ak sa chceme uz konkrétne spytat , ktory?” tak si za i dosadime konkrétne ¢&islo).

Vektor a jeho vyjadrenie

Majme vektor @, ktory je z R3. Jeho zlozky budii:

ay
a= as (15)
as

Ak teda budeme chciet vyjadrif nejaki zlozku vektora @ no bez blizsej pecifikdcie, pouzijeme oznaéenie
a;. Vyjadrenie tohto vektora pomocou bazy €; (uz pouzivame to, ¢o sme prave zaviedli, teda baza €; znamend
pravotociva pravouhld béza, z ktorej sa sustredime na jej i-tu komponentu bez blizsieho urcenia, ¢o je to
vlastne ) je suma:
3
= a1€1 + ax€s + azés = Zaié}
i=1
No v zmysle Einsteinovej sumacnej konvencie si okamzite uvedomime, ze sumu pred vyrazom mozeme
zmazat, ¢o nam nickedy moze naramne skratit vyrazy, s ktorymi pracujeme:

a= ai(?i (16)

Je zrejmé, Ze index i je len séitaci - na nom vysledok nezdvisi (tak ako v pripade urcitého integrdlu
vysledok nezavisi na tom, & integraénd premennt pomenujeme z, ¢, alebo u, vysledok bude zavisiet len od
hranic a tvaru funkcie). Rovnako dobre by sme mohli napisat: @ = a;€;, alebo @ = ay€j, alebo @ = a €., ...

IKtoréa dostala nizov podla konvencie: kazdy (voIny index) s kazdym (volnym indexom).
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1.1. EINSTEINOVA SUMACNA KONVENCIA

Skalarny stcin
Ak teraz mame dva vektory, d a b (a vektor b mé zlozky oznacené b;, teda analogicky k prvému pripadu,

ked sme oznacovali vektor @), ich skaldrny stcin je dany vyrazom:

3
a-b= a1b1 + a2b2 + a3b3 = Zalbl
i=1
teda podla Einsteinovej sumaénej konvencie piseme:

Stvorec dfzky vektora @ potom vypocitame ako skaldrny sicin s tym istym vektorom:

5:2

U

= a;Qa; (18)

Dobré by bolo zistit, ako interaguji Kroneckerova delta a vyraz, ktory mé v sebe jeden z indexov tohto
symbolu. Skisme, ¢o dé sicin a; s d;5:

ai6ij = a151j + a252j + (1353j

Toto zdanlivo nikam neviedlo, avsak je treba si uvedomit, Ze pre konkrétne j len jeden z vyrazov na
pravej strane je nenulovy (pretoze Kroneckerova delta je rovnd nule, ak sa jej dva indexy nezhodujui a j moze
byt rovné len jedinému éislu). Konkrétne ktory? No predsa ten, ktory trafil éiselne j, teda z troch séitancov
ostane jediny, a to a;:

(J,Z'(Sij = aj (19)

V praxi teraz vidime, Ze vysledok nie¢oho, ¢o mé jeden volny index j (lebo i je séitaci index) je zas
nie¢o, ¢o mé v sebe jeden volny index a tym je j. Toto je dobra intuitivna pomocka na overenie spravnosti
vyrazov, ktoré sme poéitali - ak sa nezhoduji volné indexy toho, ¢o po¢itame s tym, ¢o sme dostali, niekde
je chyba.

Skaldrny stéin teraz mozeme napisat este trochu inak, pomocou delta symbolu:

a- 5: aiéijbj (110)

Ked'7e symbol delta funguje tak, ze ,,sko¢{” na cudzi index a premeni ho na dostupny volny (tak, ako

sme videli v priklade a;8;; = a;), tak si moze vybrat, ¢i v tomto pripade delta sko¢f na a;, alebo na b,

vysledok nebude zdvisiet od tejto volby (ani nemoze - lebo i a j st v tomto pripade séitacie indexy, vysledok
od nich nezévisi):

ai5ijbj = Cijj = aibi =da- g

Vektorovy sucin

Vektorovy suéin sa uz vyjadruje trochu zlozitejsie, budeme na to potrebovat e;;; (tak ako sme na
skaldrny sic¢in potrebovali d;;, o v8ak nebolo tplne nutné). Je zvykom z vyrazov, ktoré si vektory (popripade
viacrozmerné tenzory), vyjadrovat len i-tu zlozku (popripade ij-tu zlozku v pripade matice, ijk-tu zlozku, ...
v pripade viacerych rozmerov). Potom i-ta zlozka vektorového sticinu vektorov @ a b sa pocita nasledovne:

(C_i X 5) = Eijkajbk (111)

Tento fakt sa d4 overif ruéne v pripade kazdej zlozky vektorového sicinu. Este predtym si treba
uvedomit, Ze ked' za i dosadime konkrétne ¢islo (napr. 1), tak ohladom j a k sa ma zmysel zaoberat len ak
i # j # k # 1, pretoze inak ;5 aj tak dd nulu (vid definicia ;5 (1.3)).
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1.1. EINSTEINOVA SUMACNA KONVENCIA

Mobzeme sa presvedéit o spravnosti vyjadrenia vektorového sti¢inu pomoou Levi-Civitovho symbolu:

(C_i X b>1 = €1k05br = €123a2b3 + €132a3b2 = a2bz — azbs
(C_i X b)2 = 52jkajbk = g913a1b3 + €231a3b1 = agby — aibs

<ﬁ X b>3 = €3jkajbk = 6312&1()2 + 5321(121)1 = a1b2 — agbl

Ak by sme z nejakého dovodu cheeli poéitat cely vektorovy st¢in ako vektor, teda nie po zlozkéch, je to
mozné - pozndme totiz i-tu zlozku vektora, ktory poéftame, takZze k nemu staéf pripisat i-ty bézicky vektor:

axb= €; €ijkajbk (1.12)

1.1.2 Diferencialny operator ﬁ, divergencia, gradient a rotacia

Pomocou indexovej notécie je v kartézskej suradnicovej sistave definovany operator V; (nabla) ako
vyraz 8%17 ¢o sa v nasledujticich pripadoch ukéze byt opodstatnené.

V nasledujicich ¢astiach povazujeme vyraz x; za i-tu zlozku polohového vektora 7 v kartézskych
suradniciach, teda z1 = x, 2 =y, T3 = 2.

Divergencia

Divergencia je operator, ktory sa standardne aplikuje na vektorovi funkciu (vektor) a jej symbolicky
zapis je skaldrny sucin:

P
- o , . , OF,  0F, 0OF3
V- F=(2%2, 2, 2)|R|="-+—"4""2"2 113
( Oz Oxa Ox3 ) Fz o0x1 0xo Ors ( )

Tu vidno, ze ak sme vyraz % oznacili ako V;, potom skaldrny sicin V s vektorovou funkciou dé presne
i

ten vysledok, aky od divergencie o¢akavame:

oF; O0F, O0F, O0OF;3
=—+—+

&m a$1 8x2 81'3

V.-F=V,F = (1.14)

Gradient

Gradient sa pusfa na skaldrnu funkciu (ale su pripady, ked gradient aplikujeme na vektor), vysledkom
je vektor (v pripade, ak ho aplikujeme na vektor, vysledkom bude tenzor - matica) a jej symbolicky zapis je
nasledovny:

- (8 & #) 119
V tomto pripade prisne sledujme indexovi notéciu, k ¢omu nas dovedie:
. of
Vi) =
Rozpisané vektorovo:
- af af af of
V=== - - 1.16
f 8331 € (61‘1 3%2 8:03 ( )

¢o je to, ¢o sme od gradientu ocakavali.




1.1. EINSTEINOVA SUMACNA KONVENCIA
Gradient pusteny na vektor by sme pocitali nasledovne:
= o OF;
VF) =22 1.17
( ij O ( )
Jeho vysledkom je matica:
8:51 83;‘2 8%3
- o OF; 0F, O0F;
VF=|— — —= 1.18
8301 8$2 81‘3 ( )
8:61 31‘2 8£E3
Ni¢ ndm v8ak nebrani definovat gradient vektora opacne:
S OF;
VF) = 2 1.19
( ij 0z ( )
Jeho vysledkom je ind matica (transponovand k tej povodnej):
8%1 6],‘1 8.731
- = OF, 0F, OF;3
VF=]| — —— — 1.20
81'2 8:52 8:@ ( )
81‘3 8373 6333

Ak v priebehu nejakych odvodeni narazime na gradient vektora, bude vzdy zrejmé, o ktory pripad sa
jednd (popripade dostaneme oba vyssie pripady v stcte, ¢o je ale necitlivé na zdmenu indexov i a j, vdaka

symetrii).

Rotacia

Rotécia je operator, ktory sa aplikuje na vektor a pocita sa ako vektorovy sicin:

V xF (1.21)
Potom i-ta zlozka rotdcie F sa pocita pomocou Levi-Civitovho symbolu &;;:
- o OFy
VxF) =epst 1.22
( i “ik Ox; ( )
Vysledkom je vektor:
Y OFy _, OF; O0Fy\ oF, O0F3)\ | oFy, OF\ |
VXF=¢gjr—6€=|-———— —— _— - 1.23
Fijh 8£L'j c <85L'2 Bxg 1+ 8;1@3 81'1 €z + 89c1 8x2 s ( )




1.2. PRIKLADY NA VEKTOROVY A DIFERENCIALNY POCET V EINSTEINOVEJ SUMACNEJ
KONVENCII

1.2 Priklady na vektorovy a diferencidlny pocet v Einsteinovej sumacne;j
konvencii

1.2.1 Vektorové identity

Zatneme dolezitymi (a menej dolezitymi) identitami, ktoré sivisia so skaldrnym a vektorovym sic¢inom.
Vsimneme si, ze zakaZdym, ked chceme napisat skaldrny alebo vektorovy stéin, skontrolujeme, & uz vo
vyraze nemame indexy, aké sme zamyslali pouzit - ak 4no, premenime séitacie indexy za nové, aby sme
predisli viac nez dvom rovnakym indexom vo vyraze.

(@x5) = zun abe = —zighra; = — (bx @) = axb=-Fxa
i ~—~ 7
—Eikj
a- (b X 5) = aiaijkbjck = ckakijaibj = bjEj]m'Ckai = a- (b X 5) =c- (5: X b) =b- (EX 5:)
. > > (DC)
adx (bxC)| =eira;(bxc L= €ijkQi€kimbiCm = €ijk€imk@ibiCm = (0:10jm — dim0j1) ajbicm =
T

= aje;bi — ajbie; = [(5.5)5— (5.5) é’] — @x (Ex 5) - (a’-a)z}’— (5-6)5
7

Tu sa pozastavime nad tym, ze chvilu predtym, ako sme chceli napisat &;;,a;bxe;jkc;dy sa zhdcime a
viimneme si, Ze takto by sme mali niektoré indexy az Styrikrdt, preto vyraz zmenime na €;;,a,;br€imnCmdn.
Samostatne st oba pravdivé (g;;,a;by je i-ta zlozka @ x b, aj €;jxcjdy, je i-ta zlozka & x d ), no ked ich chceme
zlacit spolu, je nutné indexy premenovat:

((_1: X g) . (EX Ci) = ((3: X 5) (EX Ci) = eijkajbkgimncmdn =
%/—2 E/—z

6ijkajbk 5imncmdn
(DC)
= 5jk,;5mm;ajbkcmdn = (5jm5kn — §jn5km) ajbkcmdn = ajcjbk.dk — ajdjbkck
— (axb)-(exd)=(a-)(5-d) - (a-d)(F-7)

Predtym, nez sa pustime do kapitoly o diferencidlnych identitdch, zavedieme oznacenie, ktoré mnohokrat
usetri miesto a rovnice sa budi dat pisat do jedného riadku - miesto vyrazu derivacie podla i-tej stradnice

budeme pouzivat vyraz 0;.

0
8131'




1.2. PRIKLADY NA VEKTOROVY A DIFERENCIALNY POCET V EINSTEINOVEJ SUMACNEJ
KONVENCII

1.2.2 Diferencialne operatory

Sem patria vsetky lahodky typu divergencia, gradient a rotacia v roéznych kombindciach nasobného
aplikovania, kde moznych sposobov je nekoneéne vela.

V- (fﬁ) —0,(fF) = Fidif + fO;F; — V- (fﬁ) - (W) +f (ﬁﬁ)
v (ﬁ x é) = 0 (ei;u FyGr) = i,k GrdiFj + 1,6 F0:Gr = Grenii0F; — FiejindiGh
— ﬁ-(ﬁxé):é-(ﬁxﬁ)—ﬁ-(ﬁxé)

[ng)]i =0, (f9)=90if + [0ig = V(f9)=gVf+fVyg
[V (F- é)} = 0, (F;G;) = G;0:F; + F;0,G,

6(ﬁ~é):<ﬁﬁ)~é+(ﬁé>.ﬁ

Skalarny sucin ,,-” je teraz chapany ako stucin matic:
Oy OWFy O1F3 G1 01G1 01Gy 01G3 F
(VF) -G+ (VG)-F=|0aF 0P uFs | [ Ga| + | 0:G1 6262 2G5 | | o
OsFy O0sFy O3F3 Gs 03G1 03Ga 053G I

Gradient skaldrneho suc¢inu maé este iné, krajsie vyjadrenie. Jeho ddkaz pozostdva v rozpisani oboch
strén a v manudlnom overen{ pravdivosti tvrdenia (bez dokazu - odvodenie by obsahovalo isté umelé kroky):

ﬁ(ﬁé) = (ﬁ'ﬁ)é+(é‘ﬁ>ﬁ+ﬁx (ﬁxé)Jréx (ﬁxﬁ)
[V % (f ﬁ)} = k0 (f Fi) = eijnFrd; f + ciju fO; Fy = ciju fO; Fy — ein; 0, f
V X (fﬁ):fﬁxﬁ—ﬁxﬁf
[ﬁ x (ﬁ x é)} = cijnd; (ﬁ % G) = 2ijnd; (EomnFmGn) = Eigremnn (CudyFm + Find;Gn) =

G (G 1P

—
= (6im6jn — 6in6jm) (Gnaij + FmajGn) = jS’?jF, GlajFJ + F,(')JG] — Fjasz

e V< (Fx ) =F(9-0)-G(VF)+ (@-9)F ( 5
Vyraz (é . ﬁ) F chapeme nasledovne:

G101 F1 + G20 Fy + G303 F,
(é . 6) ﬁ = GjﬁjF,» € = (G161 + G905 + Gg@g)ﬁ = | G101 F5 + G20>F5 + G305 F>
G101F3 + G302 F3 + G303 F5




1.2. PRIKLADY NA VEKTOROVY A DIFERENCIALNY POCET V EINSTEINOVEJ SUMACNEJ
KONVENCII

. o o 1

V- (V X F) = & (Eijkaij) = 5ijk8i8ij = 5 <8ijk8i8ij + Sijkaiﬁij> =
&»@Fk 5jik8j8iFk
—— 1

(eijkaiaij + Ejik 8381Fk> = 5818]Fk (&'jk — 51’jk) =0

1
2
ﬁ-(ﬁxﬁ):O

analoglcky

{6 X (6,]0)]Z = Eijkaj (6]”) = Euka 8kf = =0

V X (ﬁf) =0
v (ﬁf) — 8 (B,f) = 0,0.f = V2f = Af

Operator A voldme Laplaceov operdtor, pista sa na skaldrnu funkciu alebo na vektorovi funkciu po
zloZkdch a v kartézskych siradniciach vyzera nasledovne:

7}
Af = V2f = ((3'1, 02, (93) (62> f= (8181 + 0202 + 0303) f = 0101 f + O202f + D305 f
s

[V % (¥ x ﬁ)} AN ﬁ)k = 231005 (kmnOmFn) = €1jnEmmid;0m Fr =
= (imbin — Gin0;m) 0;0m F = 0:0;F; — 0,0, F;
— V x <§xﬁ) :6(6-13)—Aﬁ
A(ﬁ ﬁ) 0:0,0,F; = 0,0,0,F; —> A(ﬁ-ﬁ) =V (Aﬁ)
V- (£V9) = 0: (f0r9) = (9:9) (i) + fOhdhg = V- (f V) = fAg+ V- Vg
fAg—gAf = f0i0;g — 90;0if = [0i (0ig) — 90; (0if) =
= 0i (f0;9 — g0if) — (0:) (90i f) + (9;) (f0ig) = 0; (fOig — 9O; f)
— [Ag—gAf =V (Vg gV])
A(fg)=0i0:(fg)=0:10: (f9)l = 0i (90i f + fOig) =
= (0i9) (0if) + g0:0; f + (0if) (0ig) + f0i0ig

— A(fg) = fAg+2Vf-Vg+gAf

Téato cast sa snazila ukdzat struénost narabania s Einsteinovou sumaénou konvenciou. Kto by neveril,
moze si skiisif dané vyrazy rozpisovat pre jednotlivé zlozky a pouzivat sumy. Existuje mnoho d'algich identit,
na niektoré narazime pri odvodeniach v mechanike viazanych hmotnych bodov, tuhom telese, mechanike
kontinua a hydrodynamike.
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1.2. PRIKLADY NA VEKTOROVY A DIFERENCIALNY POCET V EINSTEINOVEJ SUMACNEJ
KONVENCII

V neskorsich kapitoldch budeme hojne vyuzivat dve vety prerabajice oblast integrovania: Gaussovu a
Stokesovu (popr. Greenovu) vetu.
1.2.3 Gauss-Ostrogradského veta*

Nech V C R3 je uzavretd a ohrani¢end mnozina, ktord mé po éastiach hladkd hranicu OV = S a
vektorové pole F je spojite diferencovatelné. Potom plati veta?:

/ﬂﬁ.ﬁdvz#ﬁ.dg (1.24)
Vv S

Najprv sa pozrime na lavi stranu; podintegralna funkcia je skaldrna a je vysledkom divergencie vek-
torového pola, je teda mozné ju napisat ako 9;F;. Prava strana je uz plosny integral II. druhu, teda nésobime
vektorové pole v danom bode s diferencidlom plochy, ¢o vSak mozno napisat ako:

F.dS = F-7ds

kde 7 je norméalovy vektor plochy hranice v danom mieste. Celi Gaussovu vetu mozeme prepisat ako:

/// 0;F; dV = # FdS; (1.25)
1% S

V pripade pola vyssieho rddu (tenzorového), alebo v pripade viacerych indexov zmotanych na Tavej
strane (alebo pravej strane, ak zac¢iname od plosného integrdlu) je recept nasledovny: pozri sa, na ktory
index skdée derivdcia (napr. i-ty), ked ho najdes, zmaz derivéiciu a diferencial dV a pripi§ prislusnd zlozku
diferencidlu plochy dS; (a integrdl zmen z objemového na plosny).

1.2.4 Kelvin-Stokesova veta*

Nech C (= 9D) je kladne orientovand, po castiach hladkd, jednoduchd uzavretd krivka a nech D je
plocha, ohrani¢end touto krivkou a vektorové pole F je spojite diferencovatelné. Potom plati veta3:

//(ﬁxﬁ).d:?:&éﬁ.df (1.26)
D C

Podobnym postupom mozno dani vetu napisat v indexoch:

//EijkaijdSi = ?gFidli (1.27)
D ol

2Divergence theorem
3Curl theorem

11



Mechanika sustavy viazanych hmotnych bodov

Pripominame, Ze vo vietkych vyrazoch odteraz budeme pouzivat Einsteinovu sumaéni konvenciu - pre
kazdy index, ktory uvidime vo vyraze dvakréat (v sicine, napriklad a;b;) si pred nim predstavime sumu (¢ize
z a;b; by vzniklo: Zi\;l ab; = d- 5) V prvych vyrazoch tejto kapitoly pripomenieme sumaéni konvenciu
pridanim sumy do zatvorky, neskor je treba tiito konvenciu spoznat automaticky.

2.1 d’Alembertov - Lagrangeov princip

2.1.1 Vazby, vazbové rovnice

Kazda vazba, ktort v sebe system m4, je oby¢ajne urcend rovnicou:
(bi (7"1,7“2,...,7““,7“1,7“2,...,Tn,t> =0 (21)

kde ®; (Fl,f'g, e ,7?,“?1,7'?2, e ,?n,t) je vo vseobecnosti funkcia casu, poloh a rychlosti hmotnych bodov

v ststave, ktord skiimame. MnoZinu bodov, ktoré spliiaji vizbové rovnice budeme nazyvat konfiguracnyj
priestor M.

Priklad: Majme v rovine zz (y = 0) jeden hmotny bod hmotnosti m a polohou 7, ktory je vSak viazany
na kruznicu s polomerom R so stredom v bode [0,0,0]. Vieme, 7Ze rovnica takejto kruznice je:

z? + 22 = R?
Druhé obmedzenie, ktoré méame je fakt, ze pohyb sa kond v rovine xz, teda:
y=0
Vieme, ze vazbové rovnice si tvaru ®; (Fl, U SO & DI o) t) = 0, teda nage vazbové rovnice budu
vyzerat nasledovne:

@y (77t) =2+ 22 = B2 (=0)

@, (F,ﬁt) =y(=0)

Systém, ktory sme préve poplsovah mé aj meno, oznacuje sa ako rovinné matematické kyvadlo. Vieme,
ze na hmotny bod 7 uré¢ite posobi sila F = mg = mi. Avsak takyto opis by viedol ku pohybu po parabole,
ked'Ze v tejto rovnici nie je zohladnend prave sila, ktora udrzuje hmotny bod na danej kruznici (vieme, Ze
by to v skuto¢nosti bola dostrediv sila).

12



2.1. D’ALEMBERTOV - LAGRANGEOV PRINCIP

2.1.2 Aktivne sily, reakéné sily vazieb

Zavedme teraz vo vieobecnosti dve zlozky sily, ktoré posobia na body v systéme. Jedna zlozka budi
aktivne sily F"(a), teda také sily, ktoré ostand pritomné aj po tom, ¢o by sme si odmysleli vazby (teda
pri rovinnom matematickom kyvadle je aktivna sila jedine gravitaénd, pretoze tato sila ostane, aj ked bod
nebude viazany na kruznicu). Dalej zavedieme reakciu vizieb F(T), ¢o su prave sily, ktore udrzuji hmotné
body na trajektériach urcenych vazbovymi rovnicami. Plati:

F = F@ 4 FO) (2.2)

Samotné viizbové rovnice by mali byt nezdvislé. V praxi to znamend, Ze Ziadnu skupinu vizieb
nemozeme vylucit bez toho, aby sme mnestratili informéciu o konfiguraénom priestore (v priklade mate-
matického kyvadla nemoézeme vyliéit druhi rovnicu y = 0, pretoze takyto pohyb by sa konal na celom valci
a nielen na kruznici). Zaroveii pripisfame len ,slusné” viizby (napriklad vizba z? + y? + 22 (= 0) nie je
slusnd, pretoZe aj ked je len jedna, jej rieSenim je jediny bod z = y = z = 0). Presné definovanie tejto
zélezitosti by v tomto momente nicomu neprospelo.

2.1.3 Nezavislé vazby, dimenzia konfiguracného priestoru

Za tychto predpokladov plati, ze dimenziu konfigura¢ného priestoru vypocitame ako rozdiel dimenzie
priestoru, v ktorom uvazujeme pohyb hmotnych bodov (pre N hmotnych bodov potrebujeme 3N premennych
na ich opis, teda dimenzia tohto priestoru je 3N) a poctu vézbovych rovnic. Ak mdme N hmotnych bodov a
pocet nezavislych, slusnych vézbovych rovnic je k, potom dimenziu konfigura¢ného priestoru n vypocitame
ako:

n=3N—k (2.3)

Odteraz sa budeme zaoberat len véizbami, ktoré su holondmne, teda také, ktoré zavisia len od 7 a nie
od 7, popr. vyssich derivacii, alebo explicitne od ¢asu.

Uvazujme teraz vieobecny pripad, kedy mame N hmotnych bodov 7y, 7, ... az 7y. Ich hmotnosti si
mi, Mo, ... az my. Pre tieto hmotné body plati:
mlﬁl = 11:,1
m2772 = F2

myy = Fy
Polohy 71, 7, ..., "ny chdpeme ako N bodov v 3D:
71 = (21,Y1, 21)
7y = (2,2, 22)

™~ = (TN, YN, ZN)

Definujme jedinid polohu 7:

r= (7?17F27~~~7FN) = ($17y17217$27y272’2»~~,$NayN;ZN) (24)

Tito polohu 7 chapeme ako jeden hmotny bod v 3ND. Teraz jednoducho definujeme konfigura¢ny
priestor M:

M={rVi:1<i<k:®;(F)=0} (2.5)
M CR3N—F
M c R3N

13



2.1. D’ALEMBERTOV - LAGRANGEOV PRINCIP

Analogicky ku 7 definujeme rychlost :

U= (7.7177.?2,---,7.?1\1) = (@1,91, 21, %2, Y2, 22, . ., EN, YN, 2N) (2.6)
Hybnost p bude:
]5 = (ﬁl, e 7ﬁ]\]) = <m17l“'1, ey me“'N) = (mla'sl,mlyl,mlz’l, mgjfg, e ,mNyN, mNZN) (27)
Sila F:
F= (ﬁl,FQ,...,FN) (2.8)

V tejto pruhovanej konvencii plati zakon sily:

F=p (2.9)
Pre nezdvislé vizby @1, @3, az ®j, plati, ze hodnost Jacobiho matice J;; (1<i <k, 1<j<N):

o,

Jij = o0x;
J

je maximélna moznd, teda h(J) = min (r (J),s (J)) = min (k,3N) a to v kazdom bode 7, ktory spliia ticto
véazbové rovnice. Pripominame, ako vyzera Jacobiho matica J:

0P, 0P, 097 09, 0P,
dx1 Oy Om Q0w  Ozy
0Py 0Py 0Py 0Dy 0P,
g | oe o 9m Gm T Oz
6¢’k 8¢’k 6<I>k 6¢Jk 8<I>k
dr; Oyp 0z Oxo o %

14



2.1. D’ALEMBERTOV - LAGRANGEOV PRINCIP

2.1.4 Princip virtualneho posunutia

Predstavme si teraz, ze sa nachddzame v takom bode 7, ktory naozaj spiﬁa véazbové rovnice, teda patri
do konfigura¢ného priestoru M. Posunime sa do bodu 7+ 67, ktory taktiez spliia vazbové rovnice, teda plati:

Vi:1<i<k:®,(F)=®;,(F+07) =0 (2.10)
Orienta¢ny obrazok k situdcii:

F

Rozvifime vyraz ®; (7 + 67) do Taylorovho radu v okol{ bodu 7 (ked'ze hodnotu 67 pokladdme za mali):

N\ 5o
e @ e ov; 2
O, (74 6F) = &, (1) + j; ar, 57‘J—|—(’)(|(5r\ )

kde O (|5F|2> je zvysok radu, ktory sa vzhladom na malost 67 men{ len mélo (a teda je mozné ho zaned-

bat). Ak operétor % oznacime ako V; (1 < i < 3N), potom druhy vyraz v Taylorovom rozvoji bude
(ZfﬁJ (?@i)j 07;, teda skalarny sicin gradientu i-tej vézbovej funkcie s virtudlnym posunutim v 3ND
(zaroven uz zanedbdme zvysok radu, ktory sa nemen{ do prvého rddu zmeny malej hodnoty 67):

®; (7 + 0F) = ®; (F) + VO, - 67

Za predpokladu, Ze sa naozaj uspokojime s dvoma ¢lenmi Taylorovho rozvoja, potom ¢len V®; - §7 musi
byt rovny nule, pretoZe oba body (7 aj 7 + §7) spliaji vizbové rovnice, teda pouzitim (2.10) musi platit:

@ (1) = @i (r +67) =0 = (2.11)

15



2.1. D’ALEMBERTOV - LAGRANGEOV PRINCIP

Tento vysledok bude este dolezity. Rozoberme si teraz samotni reakéni silu F(). Na to, aby udrzala
bod na konfigura¢nom priestore M, musi platit, ze tato sila bude kolma na dotycnicu ku konfiguraé¢nému
priestoru. V tomto pripade viac napovie obrazok:

R3N

Plati teda, ze skalarny sicin virtualneho posunutia s touto reakénou silou je nulovy:

F 57 =0, (2.12)

teda ze skalarny sicin virtualneho posunutia s celkovou silou bude rovny skalarnemu sucinu virtualneho
posunutia s aktivnou silou, ¢o znamenad, ze pracu kond len aktivna zlozka sily, ktora na bod posobi:

F.o6F = F9 . 6F (2.13)

Z (2.9) a (2.13) vyplyva:
p-oF=F.0r = F\9.5F (2.14)

Co mozno prepisat ako:
(ﬁ - F<a>) 67 =0 (2.15)
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2.1. D’ALEMBERTOV - LAGRANGEOV PRINCIP

2.1.5 d’Alembertov - Lagrangeov princip

7 prave odvodenych vysledkov a z vazbovych rovnic dostdvame d’Alembertov - Lagrangeov princip:

(]5 — F“”) 67 =0
Vo, (F) - 57 =0 (2.16)
0

Vzhladom na to, Ze index i bezi od 1 do k, d’Alembertov - Lagrangeov princip zahfia 2k + 1 rovnic. Toto
sa ukazuje byt velmi neefektivne, ak narast4 po¢et bodov zaroveii s poétom vizbovych rovnic. Prikladom by
bol opis pohybu tuhého telesa, kde na kazdy novy bod, ktory v telese uvazujeme, musime uvazovat aj vizbovi
rovnicu ktorad povie, ze v pripade rotacie tento bod rotuje okolo jedinej osi spolu so vSetkymi ostatnymi
bodmi a d'algiu viizbovi rovnicu, ktord udrzuje vzdialenosti medzi kaZdymi dvoma bodmi. Je jasné, Ze
d’Alembertov - Lagrangeov princip je v tomto pripade (a v mnohych inych) len fazko aplikovatelny - vznika
velké mnozstvo d'alsich rovnic, ktoré v koneénom doésledku d4vaji opis nie¢oho, &o vébec nepotrebujeme
(virtudlne posunutia). Na nasledujicom jednoduchom priklade demonstrujeme neefektivnost tohto principu.

Priklad: rovinné matematické kyvadlo. V systéme je jediny hmotny bod s hmotnostou m viazany na
kruznicu so stredom v bode [0,0,0] a polomerom [ (diéka kyvadla), ktord lezi v rovine zz, pricom y = 0.
Jedind aktivna sila je gravitatnd v smere —z. Toto st vSetky potrebné informécie na vypocet nasledujicich
vyrazov potrebnych na zostavenie stistavy rovnic:

p=m(i,y,2) = p=m(ii,Z)
ﬁ(a) = (0a07 _mg)

&, =22+ 2212

Oy =y
Vo, = (2z,0,22)
Vo, = (0,1,0)

67 = (6z,0y,02)"

Samotnéa sustava rovnic:

ox
(2161) = < (& 4, z+g)-[oy| =0 (@)
6z
ox
(J:, 0, z) oy =0 (b)
(216 I1.) = ;S; (2.17)
(0. 1, 0)-foy| =0 (9
0z
?2+22-012 =0 (d)
(2.16 IIL) = {y P
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2.1. D’ALEMBERTOV - LAGRANGEOV PRINCIP

7 (2.17 ¢) vyplyva, Ze 6y = 0 (pohyb sa kon4 len v rovine zz, teda sistava nepriptsta virtudlne posunutie
v smere y). Z (2.17 b) vyplyva zdx + 26z = 0. Ak oy = 0, potom z (2.17 a) vyplyva &dz + (£ + g) 6z = 0.
Maticovy zapis oboch vysledkov naraz je teraz uzitoc¢nejsi:

¥ Z+g)\ (ox\ (0O
Tz 6z) \0
Vieme, Ze tato rovnost ma byt splnend vizdy, pre kazdé dz a dz, ktoré vyhovuju virtudlnym posunutiam
v ramci konfiguraéného priestoru M. Potom vsak musi platit, Ze determinant tejto ststavy je rovny nule:
T Z4g
x z

!
=0

Spolu s prvou vizbovou rovnicou dostdvame takéto rovnice:

iz—x((+49)=0
s s (2.18)
e+ 2z =1
Jednou z moznosti, ako sa dopracovat k nejakému vysledku je vhodne zvolit stradnicovi ststavu. V
tomto pripade zvolime poldrnu ststavu (r, ) takt, Ze pre ¢ = 0 dostaneme volne visiace kyvadlo. KedZze

kyvadlo mé konStantnu dfiku, tak r = | a mozeme pisat:

x Isin(p)
yl|= 0
z —lcos(p)

Vidime, ze pri takto zvolenych suradniciach si automaticky splnené obe vazbové rovnice. Vypocitajme
T az:

x = lsin(yp)

& =lcos(p)p

& = —Isin(p)@? + L cos(p)p
z = —lcos(p)
Z =Isin(p)y

% = lcos(p)p? + Isin(p)@

Z rovnice (2.18 I.) (rovnica (2.18 II.) je splnena automaticky) teda dostdvame:

[~Isin(p)@? + Leos(ip)8] [l cos(p)] - Isin(i) [Lcos(9)® + Lsin(p)p + g] = 0
—1%p [cos2(<p) + sin2(<p)} —lgsin(p) =0
®+ % sin(¢) =0

Toto je naozaj spravna rovnica rovinného matematického kyvadla. Vidime, ze pocas jej odvodenia sme
museli pouzit rézne kroky a postupy, ktoré sa nedaji univerzélne algoritmicky opisat, aviak vo vysledku
dostdvame rovnicu pre jedind premenni ¢. Intuicia ndm teda vravi, Ze z piatich rovnic by stacila jedna (vo
vhodnej kombinécii), aby sme sa dopracovali k rovnakému vysledku. KIti¢ovy rozdiel medzi piatimi rovnicami
d’Alembertovho - Lagrangeovho principu a jedinou vyslednou rovnicou je, ze zatial ¢o povodne sme dovolovali
virtudlnym posunutiam ist v ktoromkolvek smere a jeho spravnost uréili az samotné rovnice, v priebehu
vypoctu sme zistili, ze existuju sdradnice (parametrizdcia), ktoré st akoby ,,3ité na mieru” a poskytuju
prave tolko volnosti, kolko je v systéme treba, teda pre ziaden uhol ¢ sa nedostaneme mimo kruznice,
na ktorej sa deje pohyb, no zaroven rozumnym sposobom opiSe celil kruznicu. Za pomoci zovSeobecnenia
myslienky siradnic uSitych na mieru vazbovym rovniciam odvodime Lagrangeove rovnice, ktorych pocet je
rovny poétu stupiiov volnosti systému.
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2.2. LAGRANGEOVE ROVNICE Il. DRUHU

2.2 Lagrangeove rovnice |l. druhu

2.2.1 Zovseobecnené suradnice, Lagrangeove rovnice II. druhu

Ako sme uz naznagcili, ¢asto plati, ze pre nas systém existuju také siradnice, ktoré su pren ako §ité na
mieru, pre matematické kyvadlo to bol napriklad uhol . Predpokladajme, ze takd parametrizicia existuje,
teda existuje n sturadnic ¢q takych, ze automaticky plati:

D, (7) = @, (7(q)) =0,Vi; 1 <7 < n,
teda rovnica (2.16 III.) je automaticky splnend (definitoricky). Pomocou Taylorovho rozvoja pocitajme §7:
or = f(‘]l +0q1,q2 +0q2, ..., Gn +5Qn) —f(Q1,L]2,---7qn) =
or or or = or
=7(q1,92,---sqn) + 01— +0a— + -+ 0gn=— — T (q1, 92, - - -, Gn) = 0q;—
F(@1: 020+ 0n) + 001 5 + 82— O~ — (01 2,1 0n) <§> i
Spocitajme teraz vyraz v (2.16 II.) pre a-tu vézbovi funkciu:
3N n 3N
0P 0P 0q; Or;

0/5 . — a 7] 3 6 —

(Z> or " ( 2 ) 94, <Z> or; ag. " (

i=1 Gk=1

0

i=1 J

"\ 0%,
) (qu' ; 0
— /) 94

=3

Vieme, Ze pre akékolvek q je kaZdd viazbovd rovnica rovnd nule (pretoze ¢ parametrizuji kofiguraény
priestor tak, aby to platilo), ¢o ale znamen4, Ze vzhladom na zovSeobecnené suradnice ¢ je kazdd vazbova
—2 =0, teda vyraz vyssie je
8qj
identicky rovné nule. To ale znamend, Ze rovnica (2.16 II.) taktiez bez ndmahy automaticky plat{ a ostdva
uz len rovnica (2.16 1I.):

rovnica konstantou (konkrétne rovnou nule), ¢o sa inak d4 napisat tak, Ze

(5_F<a>)-5f~: fj% (@_F;@) g—z&hzo

i=1 j=1

Vieme, Ze tato rovnost plati pre kazdy vektor 6q. Potom neostdva ni¢ iné, len Ze zvysok musi byt rovny
nule (ak je skaldrny stéin « - y rovny nule pre kazdé x, potom plati, ze y = 0):
or

Viq: (ﬁj —F}“)) a(;Z(sqi =0 = Vi;l<i<n: (ﬁj —Fj(“))

or;

0q; =0
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2.2. LAGRANGEOVE ROVNICE Il. DRUHU

Rozndsobme zatvorku a vyraz s aktivnymi silami presuime na druhd stranu. Oznacme tento vyraz ako
Qi(q) - zovieobecnené sily:

or; . (a) @
9q; P = ; i (2.19)
Qi(q)

Prav4 strana je tym vybavend, v lavej si vSimneme, Ze prvy stéinitel je nederivovany podla ¢asu,
kym druhy je, ¢o sa da prepisat ako ¢asovd derivdcia st¢inu dvoch funkceii, od ktorej odpoéitame opaént

kombindciu derivovania podla éasu':

87"] orj _ or;
9g; 17 dt 9g: 77 pjdt 9q;

31"]
0g; 1

Vyraz:

(2.20)

mé fyzikdlny rozmer:

[8rj 5 ] Js _J
dgi’ @] [di)
Vyraz:

(g;z ) Bj (2.21)

(5 )7] =g

Intuicia ndm vravi, ze ak ma nieco jednotku Joule na jednotku i-tej zovSeobecnenej siradnice, jedna
z moznosti je, Ze vyraz je parcidlnou deriviciou energie podla zovieobecnenej siradnice. Kedze vyrazy na
lavej strane sa skladajt z poloh a aj z hybnosti, je pravdepodobné, Ze pojde o kineticki energiu sistavy (k
tomuto tuSeniu prispieva aj fakt, ze aktivne sily sme presunuli na pravu stranu - potencidlna energia by sa
mohla skryvat iba v aktivnych sildch). N4jdime teda kinetickd energiu sistavy:

M4 rozmer:

1 1N af o7
_ -2 k k .
Ekin = 5 kavk =3 ka 900 Da = dalp
k=1 k=1
E mn
Nijdime ——=
0¢;
OF, 1L ar o7 & o, OF) oF, OF
kin k k k k . k k .
== 2R s Z i} kLR | =
D4, 5 ;mk 90, Do (0iap + Gadin) 2 1;::1 { oa Q + mka o, da

Z ’Fk 8Tk Z N 6’rk; i _’ 3N, _ 87:] 877] _
- Qb mgTk - k: a. = j = bj
“0q; " oq, % = "0q;  Oqi’

Vidime, ze vyraz, ktory sme dostah, zodpovedd vyrazu (2.20).

10dteraz uz neuvddzame pomocné sumy, pre spravne rozpisanie vyrazov s dvoma zhodnymi indexami staéi pouzit Ein-
steinovu sumaé¢nt konvenciu (a dand sumu si tam domysliet). Namiesto parcidlnej derivicie podla ¢asu pouzijeme vyraz O f,
pre derivaciu podla i-tej kartézskej siradnice pouzijeme &; f.
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2.2. LAGRANGEOVE ROVNICE Il. DRUHU

Spocitajme Elin.
0q;
OB, 1 < 9%, O O, 0% > .
= - m o —_— —|— . a =
dqi 2 kz::l “\04.0¢; 0a, " 942 D00 ) "
I B A A W SR A £ A W P
2 | 9g: \0qa ) 90, " " g \ 0y ) * g | T
k:1 . .
o (07 .\ # 0 [(0f.\ W
0¢; 3qa fa 0q; \ Oqp o
N 3N _ _
B ory . o\ _d [or;\ i orj\ _
o Z 6ql < ) Zpk 8ql Z Pk dt <6qi) - Zp]dt (8qi) dt (aqi P
k=1 Jj=1

Dostali sme vyraz zhodny s (2.21).
Z (2.19) a predoslych vypoétov vyplyva nasledujica rovnost:

d [oT oT
5 (55) - 5= (2.22)

kde T sme oznacili celkovi kineticki energiu sustavy.

Velmi délezit4d poznamka: tento vzfah plati len vtedy, ak pouZijeme predpoklad, Ze parcidlna derivacia
q podla ¢ je nulové, teda tieto veliciny na sebe nezdvisia (mozu sa menit nezavisle od seba). V odvoden{
(2.22) sme tento fakt skryto predpokladali (z toho vyplyva, Ze ani ¢ nezavisi 7 a tak d'alej, vietky kombindcie
vyrazov, kde jeden je bodkovany a druhy nie je). Tento predpoklad sa zd4 byt vzhladom na situdciu trochu
zvlastny, pretoze ¢lovek sa zamysli a povie si - ved poc¢kaj, vak ked menim funkciu polohy, potom aj funkcia
rychlosti sa musi menit! To je sice pravda, lenze po prvé fakt, ze g—g = 0 moézeme brat ako postulat, za

ktorého pravdivosti plati aj (2.22) a po druhé, vsetky funkcie, v ktorych vystupuje q aj ¢ mézeme chépaf
ako funkciu dvoch okienok (plus d'alsie okienko za ¢as): f (g, q) > f (¢,0). Jej derivacia podla niektorého
okienka teda nesuvis{ s inymi okienkami a opaéne. Niekoho by mohlo pri zévislosti g od ¢ napadnuf vytvarat
nezmyselné refazce vzajomnych parcidlnych derivacii:

0fla(a,t),d(a,t),t(a.9) _ 0f  0f0q  Of Ot

dq Qg  9qdq Ot 5‘q
Tento pristup vsak pripomina skor totdlnu derivéciu, preto sa dohodneme, ze v pripade parcidlnej
derivécie si budeme viimat jedine explicitné zavislosti a derivacie budeme vykondvat slepo podla okienok:

0 0 0 0 0] 0]
f[qM7QM7tM:f(q,(bt)(_)f(ovov*) %:%7 87';:87'];7 87{:87{

Koniec-koncov, vyzadovaf od parcidlnej derivacie, aby menila len ti svoju premennt nie je az také
zvlastne, na totdlne zmeny boli vymyslené totdlne derivdcie. Na tento princip musime pamitat aj pri
vetkych nasledujiicich odvodeniach, teda akékolvek parcidlne derivovanie podla niektorej z premennych
bude ignorovat ostatné premenné, pokial nie je pritomna explicitnd zavislost. Priklad explicitnej zévislosti:

. : , of of _ of
,q,t] = sin(q) — 2 t; —=— = cos t, —2q, - =
fla,q.1] (@) —¢ +4q 94 (q) + 9q = X 5 = 4
Pripad implicitnej zavislosti. Pri totalnej derivécii najprv zderivujeme funkciu podla okienok (ignoru-
jeme ostatné okienka) a zderivujeme okienko podla ¢asu (priddme nad okienko bodku a pamiitame, ze f = 1):

Flaat] = et +4t) = flg.¢.)] = or _y c1f_8qu+8fc1q+§< af of,

_ _ 9l q
ot T dt Oqdt  Oqdt 0q +8qq et

21
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Pocas odvodenia sme dogli k uzitoénému postupu, ako sa d4 vypocitat kinetickd energia stistavy, pokial
mame zadani parametrizaciu g:

Ty Tz - T GQ1
N !
1 or, o0, .. 1, ) ] Ty Ty -0 Ty Go
T=; “a. 4iq; = 5 ) y oty . . .
5 ;mk dq; g qiq; B (fh a2 qn) : : : :
T Tnl Tn2 et Tnn Qn
N
ory, 0r
T = M il (2.23)
! kz:l dq;  0q;

Podstatnou myslienkou d'alsich odvodeni Je, ze castokrat plati, ze sila F(@) je potencidlovd. Nutnou aj
postacujiicou podmienkou potencidlovosti sily F(@) je?:
OF; _ OF;
(9£Ej 31172
Potom sa zovieobecnen4 sila d4 napisat pomocou gradientu nejakej funkcie U(q) - potencidlnej energie:

oF«@  OF"™ _ _
i Fla) — _

Ve B3 : & 3JU:F=VU

Detaily tohto vypoétu budeme prezentovat v prikladoch, ktoré sa v texte vyskytni. Pre zovSeobecnené
sily Q;(q) mdzeme pisat:

_ or _ or oU Or; oU
; — o, _ . e R
Qila) 0¢; vu 0q; or; dq; 0¢;

Pouzitim tohto vysledku z (2.22) dostdvame:

d <8T) or ~ Qi)

dt \9¢; ) 9q;
d /oT oT oU
dt (aQi) T g g
d (8T> Lor-v)
de¢ 8q1 (9(]1‘

Predpokladame, ze potencidlna energia U nezdvisi od inych parametrov, ako st zovSeobecnené siradnice.

0 )
Potom plati 50 = 0 a m6zeme pisat:

qi
=0

d AT —U) (T —-U)
dt 04¢; 0q;

Ak teraz zavedieme funkciu zvani Lagrangidn L =T — U, teda rozdiel kinetickej a potencidlnej energie
sustavy, tak dostavame vysledné Lagrangeove rovnice Il. druhu:

d /0L OL
a@ (8%) “og ° (2.24)

2Toto plati len pre sily a k nim prislichajice potencidly, ktoré v sebe obsahuji len stiradnice v Euklidovskom priestore, ktory
oznacujeme E3. Sily, ktoré v sebe obsahuji aj ¢as a popripade vyssie derivécie poldh, mézu mat zovseobecnentd potencidlnu
energiu, ale nebude to tak vzdy. Ak by sme totiz aj silu zavisld od rychlosti pocitali len ako F; = —0;U, dostali by sme, ze
trecia sila F; = —k%; by mala mat potencidl U = ki;x;, ¢o vSak nie je pravda, ako uvidime neskor.

22



2.2. LAGRANGEOVE ROVNICE Il. DRUHU

Priklad: dvojné rovinné matematické kyvadlo. Takyto systém sa skladd z dvoch hmotnych bodov v
rovine zz (y = 0). Prvy hmotny bod 7 hmotnosti m; je zaveseny na nehmotnej palicke (pociatok v [0, 0, 0])
diZky l1. Na nom je zavesena druhd nehmotnd palicka dfzky l2, na ktorej konci je umiestneny druhy hmotny
bod 75 hmotnosti msy. Na cely systém pdsobi homogénne tiazové pole v smere —z. Nakres:

Na opisanie kazdého stavu tohto systému su potrebné len dva parametre - uhly ¢ a 5. Parametrizacia
prvého hmotného bodu je jednoducha:

l1 sin(<p1)
7 = 0
—l1 cos(p1)
Polohu druhého hmotného bodu opiseme takmer rovnako, akurdt stred druhej kruznice (s polomerom
l3) nebude v [0, 0, 0], ale tam, kde lez polohovy vektor 77:

lo sin(p2) Iy sin(p1) + I sin(gp2)
7y =717 + 0 = 0
—ls cos(p2) —l1 cos(p1) — la cos(p2)

Na vypocet kinetickej energie potrebujeme poznat rychlosti oboch bodov:

_ Iy cos(p1)¥1 cos(p1)
171 = 7?1 = 0 = (p1l1 0
Iy sin(p1)¥1 sin(1)

{1 cos(p1)p1 + 1o cos(p2) e
0

Iy sin(p1)p1 + Lo sin(p2) o

S
I
o
I

Kineticka energia sustavy:

1 1
1 . 1 . Lo 1 .
= §m1@§l% + §m2<ﬂ%l% + mapr1galils cos(pa — 1) + §m2<,0§l§
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1. . m112 + m2l2 m211l2 COS (CPQ - ng) Sbl
T=_ ! 2 ;
2 (61 42) (mzlllg cos (2 — 1) mal3 P2

Potencidlnu energiu spocitame ako stucet jednotlivych potencidlnych energii oboch bodov, mighy + magho,
kde hy a hg st vysky bodov 71 a 7 oproti pociatku [0, 0, 0]:

U = myghy + magha = —migly cos(p1) — mag [l1 cos(¢1) + l2 cos(p2)]

Lagrangian L tejto sustavy bude:

L=T-U
1 (61 o) ( myl? + mol3 malils cos (w2 — <p1)> (<,b1>
2 malilz cos (p2 — 1) mol3 P2

+mygly cos(p1) + mag [11 cos(p1) + I cos(p2)]

Vyslednym produktom budid dve Lagrangeove rovnice, kazd4 za jeden stupen volnosti.

d(oL\_oL _,
dt \ 0¢1 op1
d oLy _oL _,
dt \ Opq 8<p2_

Ich vysledny tvar nebudeme kvoli ich zloZitosti uvadzat (nie je viak fazké ich ziskatf, ak mé ¢lovek
dostatok miesta). Vo vysledku je to stustava dvoch nelinedrnych diferencidlnych rovnic druhého radu, ktoré
samozrejme nie je mozné riesit analyticky a ktoré vykazuju silné chaotické spravanie (teda ich ¢asovy vyvoj
pohybu velmi citlivo zavisf od poéiatoénych podmienok). Moze sa zdat, Ze sme si vyjadrenim pohybovych
rovnic tejto sistavy nijako nepomohli, faktom vsak ostava, ze bez aparatu Lagrangeovych rovnic by bolo
samotné vyjadrenie velmi obtiazne. Vo fyzike sa za dolezity medzivysledok povazuje uz len samotné napisanie
pohybovych rovnic, ich analytické riesenie castokrat nie je mozné. Co sa tyka nejakej Gasti analytického
riesenia, obéas vieme uhadnut, ¢o by systém mal robit za uréitych podmienok - napriklad vieme, Ze dvojné
rovinné matematické kyvadlo vie pokojne stat, ak ho nebudeme drazdif, v tom pripade ¢; = @y = 0.
Tuto podmienku samozrejme vysledné rovnice urcite spfﬁajﬁ, no takyto pohyb je zna¢ne trivialny. Podobné
,,tipy”, ktoré chceme preverit analytickym vypo¢tom sa nazyvaji ,,ansatz” (an educated guess - kvalifikovany
odhad), teda uhddneme ¢ast rieSenia, dosadime ho do pohybovych rovnic, z ktorych ndm potencionélne este
moze vyjst nejakd podmienka na parametre, ktoré si v ansatzi uréime. Ako priklad na tento princip dobre
posluzi sférické matematické kyvadlo.
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Priklad: sférické matematické kyvadlo. Sférické matematické kyvadlo je sistava pozostdvajica z
jediného hmotného bodu # hmotnosti m v gravitatnom poli, ktory je viazany na sféru s polomerom [
so stredom [0, 0,0] (zaveseny na palicku dfiky I, ktord je ukotvend v pociatku siradnicovej stistavy). Ako
zovSeobecnené stradnice tu poslizia uhly ¢ a 6. Uhol § bude odklon palicky od osi —z (ked kyvadlo volne

visi, tak # = 0), uhol ¢ bude uhol, ktory zviera priemet polohy 7 do roviny zy s kladnym zmyslom osi z.
Viac napovedia obrazky:

Xy

Bod 7 teda bude v stradniciach ¢ a 6 vyzerat nasledovne:

Isin(6) cos(p)
7= | Isin(@) sin(p)
—lcos(0)
Vektor rychlosti ¥ vypocitame ako 7

. Lcos(0) cos(p)0 — Usin(0) sin(p)p
U=7=|lcos(f)sin(p)d + lsi.n(ﬂ) cos(p)p
Isin(6)6

Kineticka energia T
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Potencidlna energia U:

U = mgh = —mgl cos(9)

Lagrangian sustavy bude:

1 .
L=T-U=zmP (92 + sm2(0)¢2) + mgl cos(6)

d oLy oL
dt \ 96 80

b %sin(%])gbz + %sin(@) =0

d (oL\_oL
dt \ 9¢ dp

sin(260)60¢ + sin?(0)g = 0

Rovnica pre sturadnicu 6:

Rovnica pre stradnicu ¢:

Tieto rovnice predstavuji znova sustavu nelinedarnych diferencidlnych rovnic druhého radu, ktoré sa
nedaju riesit analyticky, ale mozeme sktimat konkrétny ansatz, ktory nds zaujima. Zaujimavé by napriklad
bolo zistit, ¢ existuje riesenie v tvare § = 0y = konst., ¢ = wt. Ansatz sa overuje dosadenim do vSetkych
rovnic, ktoré mame k dispozicii (nie do Lagrangidnu!). Dalsie tpravy ukézu, ¢i je systém schopny konaf
taky druh pohybu, popripade aj dostaneme podmienku, aké musia byt parametre, aby taky pohyb stistava
mohla vykondvat (pri tomto ansatzi sme blizsie nespecifikovali, kolko presne je w a 0, takZe ocakdvame, Ze
ndm tuto informdciu rovnice ldskavo podaji). Dosadenim dostaneme tieto rovnice:

— sin(f) cos(fp)w? + % sin(6p) = 0
0=0

7 druhej rovnice sme sa takto ni¢ nedozvedeli, plati automaticky, ¢o znamend, ze druhd rovnica ani
nepozaduje nejaké §pecidlne podmienky ohladom w a g - je splnend automaticky pre kazdy pohyb, ktory
maé konstantné 6 a ¢asovo linedrne premenné . Predpokladajme, ze 6y nie je ani 0, ani 7, zaroven nech m
aj 1 su kladné. Potom prva rovnica hovori nasledovné:

g =lcos(fp)w? = w? = A
lcos(bp)

Co sme to vlastne dostali? Skimali sme, ¢i dokaze dakéto kyvadlo konaf ustéleny pohyb po kruznici
v istej vyske nad rovnovdznou polohou tak, ze 6 ostdva konstantnd a ¢ s ¢asom linedrne narastd (bod sa
otaca dookola rovnomerne). Zistili sme, ze takyto pohyb je mozny a navyse sme dostali aj podmienku, kedy
je tato rovnovéaha splnens. Jednak systém moZe takyto pohyb konat len ak 0 < 8y < % (aby w bola redlna
konstanta), zaroven sme aj dostali presny vztah medzi 6y a w (ak [ a g si dané). Navyse sme zistili, Ze tento
vzfah neobsahuje hmotnost m, ¢o znamen4, Ze hmotnost bodu na palicke nem4 vplyv na takyto rovnomerny
pohyb po kruznici. Dalsiu vec, ktortd vidime zo vztahu pre 6 a w je, ze ked sa 0 blizi ku Z, w mus{ narastat
nad vSetky medze do nekoneéna, aby mohla takd rovnovaha nastat. Toto ale tiplne vystihuje nagu intuitivnu
predstavu o takomto druhu pohybu - kazdy, kto sa uZ snazil rozto¢it gulicku na sntirke si musel v&imnit, ze
¢im rychlejsie toci snirkou, tym vyssie sa dvihne gulicka, no nikdy nedosiahne do takej vysky, aby Snirka
kmitala v jednej rovine.
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Dals{ zaujimavy ansatz tohto problému je pripad, kedy ¢ = ¢o = kont., pricom na 6 nenakladdme
nijakii podmienku, teda nemoézeme predpokladat, Ze by nejakd (a tym pddom aj vsetky d'alSie) ¢asova
derivécia 6 bola nulova. Vtedy z pohybovych rovnic dostaneme:

b+ %sin(@) =0

0=0

Ako vidime, druhi rovnicu né§ ansatz znovu vobec nezaujima - je pravdiva. Prva rovnica je vlastne
rovnica rovinného matematického kyvadla. Naozaj, pri konstruovani tohto ansatzu sme mali na mysli pripad,
kedy sa kyvadlo, napriek tomu, Ze je sférické, bude kyvat len v jednej rovine, preto ¢ = g. Na 6 sme
nekladli Ziadnu podmienku (t.j. systém si mohol robif o uznal za vhodné v medziach konstantného ¢) a
systém si povedal, Ze najvSeobecnejsi pohyb, aky bude @ robit, je pohyb rovinného matematického kyvadla.
Thito rovnicu je moZné analyticky riegit pomocou eliptického integralu prvého druhu (dostaneme zivislost
t(#)) a Jacobiho amplitidne] funkcie am (dostaneme zdvislost (t)). Tento systém, narozdiel od linedrneho
harmonického oscildtora m4 viac moznosti ako sa spravat v zdvislosti od energie, ktord mu na zadiatku
udelime. Ak m& mélo energie, bude kmitat v okoli rovnovéznej polohy (vtedy sa zvykne pisat sin() ~ 0)
a jeho ¢asovy vyvoj bude takmer zhodny s linedrnym harmonickym oscildtorom (aspon prvych pédr periéd).
Ak mu udelime presne tolko energie, aby vlddal vystipit do rovnovaznej polohy navrchu gule (vtedy celkova
energia T + U bude rovnd potencidlnej energii U v bode navrchu gule), ¢asovy vyvoj 6 bude uhol, ktory sa
bude exponencidlne pomaly blizif k hodnote 7, no teoreticky sa do tejto polohy nikdy nedostane. Dalsou
moznostou je pripad, kedy je energia o nie¢o (nie ovela) vyssia ako energia potrebnd na vystiipanie do vratkej
rovnovaznej polohy - vtedy bude bod obiehat kruznicu nerovnomernou uhlovou rychlostou, teda @ bude rést,
ale nie linedrne (pohyb je periodicky, avsak 6 uz nie je periodickd funkcia ¢asu). Ak bude energia ovela vicsia
ako energia potrebna na vystiupanie do vratkej rovnovéaznej polohy, potom tento pohyb bude znovu pohyb
po kruznici, avsak € bude takmer linedrne rastica funkcia casu - kyvadlo si skoro ani nevSimne, ze sa mu
nejako men{ potencidlna energia, pretoze tato bude zanedbatelnd oproti kinetickej (vtedy plati, ze T' > U,
teda E =T+U ~ T). Vsetky tieto pripady si zahrnuté v §pecidlnych Jacobiho funkcidch, teda pri urcitych
hodnotach energie, alebo pri konkrétnych zanedbaniach sa tieto pripady daji nijst vo vyslednom éasovom
vyvoji #, no ak aj tieto funkcie nepozname, tieto pripady sa daji overif ansatzmi.

Jednu z hlavnych vyhod Lagrangeovych rovnic sme uz nacrtli - je iou samotny pocet rovnic, ktory je
presne taky, aky je pocet stupiiov volnosti v systéme. DalSou nespornou vyhodou je, Ze z Lagrangidnu sa
dajt priamo odéitat zakony zachovania (ktoré mozu znaéne ulahéit rozbor vyslednych rovnic).
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2.2. LAGRANGEOVE ROVNICE Il. DRUHU

2.2.2 Zakony zachovania

Zakony zachovania 2 s nespornou vyhodou konstrukcie lagrangidnu a rovnic, ktoré z neho vyplyvaju.
Lagrangian je vo vS8eobecnosti funkcia zovSeobecnenych siradnic, zovSeobecnych rychlosti a ¢asu. Taku
stradnicu, ktord nebude vstupovat do Lagrangidnu explicitne (t.j. ked napiSeme Lagrangian a jedno
pismenko, ktoré by v ilom mohlo byt, v iom nie je) budeme nazyvat cyklickou. Plat{ teda:

. . . . oL . C s .
L(g1, - sqn:G1s--yGn,t) = L(q1s- s @3 Qs G1s e ooy Gy t) = 94 =0 = ¢, je cyklickd stradnica
K3

Odvodme si, aky to md vlastne vyznam, napiSme teda pohybovi rovnicu pre i-tu zovieobecnent
suradnicu g;:

d oL 0
dt 0¢;
Vyrok, ktory dostdvame tvrdi, ze totdlna ¢asova derivéacia vyrazu —— je rovna nule. To ale znamenj,

04¢;

ze samotny vyraz je Casovo nepremenny, teda konstantny:

d oL oL 3
—— =0 = —— = konst.
dt 9¢; 9gi
Vyraz BE budeme nazyvat zovseobecnend hybnost p;, ktorej vyznam pochopime hlbsie az neskor,
qi

pri Hamiltonovych rovniciach - zatial ndm sta¢i, Ze ak i-ta zovSeobecnend poloha je cyklicka, potom i-ta

~ 7z ) ~ Ve )~ (e . ) 7 v}
zovSeobecnend hybnost p;, sa v case zachovava. Kedze potencidlna energia nezvykne obsahovat rychlost,
tato parcidlna derivécia sa vztahuje zrejme na kinetickd energiu. Zaujima nés teda vyraz:

oL (3£=0) ot

0¢; 04;

Z odvodeni vieme, ¢omu je rovnd kineticka energia, pocitame teda vyraz:

oT 0 (1 1 1 1 1 1
= 7Ta .a ] = 5da 6ia ] -a(si = 7Ti ] 7Tai .a = 7Ti ] 7Tai .a = Lai .a
94, 04, (2 b4 Qb) 5 b (iaGp + Gadiv) 5 be+2 q 5 be+2 q q

V poslednom kroku sme vyuzili, ze matica Ty, je symetrickd, ¢o vidno z definicie (2.23), teda Ty = Thq.-
Este sme nespomenuli, ¢o to znamend, ak ndhodou do Lagrangidnu nevstupuje zovéeobecnend rychlost
¢;- Overme si, ¢o sa v tom pripade stane:

oL
oq;

Za tejto podmienky sa z pohybovej rovnice vykluje:

To ale znamend, Ze ani zovSeobecnens suradnica g; nesmie vystupovat v Lagrangiane explicitne. Ak sa
teda v lagrangidne nachadza zovSeobecnens siradnica g; a zovSeobecnens rychlost ¢; sa v iom nenachddza,
nieco je zle.

3Mimochodom, miesto pojmu ,,zachovévajiica sa veli¢ina” (conserved quantity) sa ob&as pouziva vyraz ,,integral pohybu”
(integral of motion).

28
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2.2.3 Zakon zachovania energie

Nerozobrali sme poslednii moznost, ktord ndm ostala - cykliénost éasu ¢, teda fakt, Ze ¢as ¢ explicitne
nevystupuje v Lagrangiane. Tieto odvodenia su platné len pre potencidlne energie, v ktorych nevystupuje
explicitne 7iadna zovseobecnend rychlost. Za tychto predpokladov plati:

gy W
ot 04

Pozrieme sa na to, aky to mé pre nas dosledok. Pocitajme totdlnu ¢asovu derivéaciu:
e _; oL, 0L +%§
a9 " T 0g "

7 Lagrangeovej rovnice pre i-tu siradnicu vieme:

0

oL _ao
dq; At 0
Mozeme teda pisat:
AN
~ g, "t \9g,) "

Na pravej strane spozname totalnu derivaciu:

A (oL.\ _oL. ~d (0L .
at \0g, ") " 8% " ar \ag ) ¥

Teda L bude:
. d [OL
L=—|—¢ 2.25
dt <5Qiq > (2.25)
Rozoberme vyraz g—éql—:
oL 1 0 1 1 1
G = sTab 77 (datn) @ = 5 Tab (05ag 1a0ib) @i = 5 Tab@pda + 5 TabGads = Tavgago = 2T
8qiq 5 baqi(qu)q 5 b (Giady + Gadiv) ¢ 5 Tabdvd +2 vqa b vqa b
Potom z (2.25) dostaneme:
L:%@T):zf — of =2l (T U) =T+ U=E=0
oL : <
E:O = EF=0 = FE = konst. (2.26)

teda vyslo nam tvrdenie, ze ak ¢as explicitne nevstupuje do Lagrangianu, potom sa energia v ¢ase zachovava.
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2.3 Princip najmensieho G¢inku

2.3.1 Matematické okienko do variacného poctu

Cokolvek, ¢o funkeii f(z) priradi ¢islo s(f) budeme volaf funkciondl. Moze nim byt napr. funkcionél
operujuici na funkcidch definovanych v bode x = 0 a jeho hodnota bude s(f) = f(0). Tymto kazdej funkecii
f definovanej v bode 0 priradime jej funkéni hodnotu v bode 0. Dalsim funkcionglom, ktory sa ndm priam
pontika, je nejaky uréity integral - napr. funkciondl operujtci na funkcidch integrovatelnych na mnozine
(0,1), ktory potom kazdej funkcii f(z) prirad{ ¢islo - hodnotu urcitého integralu v hraniciach od 0 po 1:

n=J f(a)de

Takto méme priam nekoneéne vela zaujimavych funkciondlov, ktoré st prakticky vyuzitelné aj vo fyzike,
ako sa uvidi neskor:
f(a)

s(f) = 4 J2 fla)da

Predstavme si napr. lubovolnt funkciu f(x) na intervale (a, b). Dizku tejto funkcie vypoéitame pomocou

funkciondlu:
LY(f / W1 + Z B (2.27)

Vieme, Ze najkratsia spojnica dvoch bodov je tdsecka. Preto bude [ pre danu dvojicu a, b, A a B
minimélne prave vtedy, ked je funkcia f linedrna (konstantna, ak A = B). Avsak najst univerzdlny sposob
minimalizacie funkcionalu pre takéto typy problémov je vo vieobecnosti tazks tloha. Za povsimnutie stoji
nutnost okrajovej podmienky - bez nej by v rie§eni ostali stupne volnosti navyse?.

B__

a b

Obrazok 2.1: Usecka je najkratsia spojnica dvoch bodov. Linedrna funkcia minimalizuje funkciondl (2.27)
pri danych okrajovych podmienkach.

4V tomto pripade by bez definovania okrajovej podmienky bola vyhovujicou funkciou konstantna funkcia (vtedy f’ = 0, ¢o
je najoptimdlnejsia hodnota v danej situdcii) a to v lubovolnej vyske nad osou x.
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Iny priklad by bola tzv. brachistochréna®. Predstavme si fubovolni krivku y = f(x), po ktorej sa moze
bez trenia kizat kordlka. Ak by sme skusali rozne tvary kriviek, zistili by sme, ze koralky pustené z urcitého
bodu x = a dorazia do bodu x = b v réznych ¢asoch. Brachistochréna je krivka, po ktorej je ¢as potrebny na
sklznutie miniméalny. Tento problém sa tiez d4 zakédovat do reéi funkciondlu a jeho minimalizdcie. PouZijeme
pri tom uz znamy fakt, ze infinitezimalna dizka kusku krivky v bode x je:

du\ 2
ds = 1+(y> dx
dx

Rychlost kordlky v bode z bude infinitezimalna trajektéria ds, podelend infinitezimalnym ¢asom dt, za
ktory tito trajektoriu koralka prejde:

_ds
At
Zadefinujme, ze y(0) = 0, teda potencidlna energia m gy(0) bude nulova. Na zac¢iatku korédlka stoji,
takze aj kinetickd energia bude nulovd. Krivka, po ktorej pojde korédlka, bude zrejme zdpornd, ak y(0) =0
(aby platil zdkon zachovania energie). Nech je teda nasa funkcia y(x) kladné a krivka teda bude opisovand
pomocou funkcie —y(z). Potom potencidlna energia bude —m g y(z).
Pouzijeme zdkon zachovania energie:

1
v — dt = —-ds
v

1
E,+E,=0= iva—mgy = v=1+/29Yy
Z toho dostavame vyraz je dt:
2
1 1+ (%)

dt = -ds = \| ———dx
v 2gy

Celkovy ¢as, ktory bude kordlka potrebovat na sklznutie po krivke, bude dany nasledujicim vyrazom:

z0 B 1+ (%>2 (0)=0
T (y) = / dt = T\ g, YT (2.28)
0 . 29y y(zo) =90 >0

Znovu sme dostali integralny vyraz, ktory obsahuje funkciu y a jej derivaciu. Kazdej takejto funkcii
priradime T (¢as), ktoré reprezentuje istti vlastnost danej krivky.

Xo
I

Obrazok 2.2: Brachistochréna je ¢ast nadol obratenej cykloidy.

5Brachys = kratky, brachistos = najkratsi.
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Dalsi typicky variaény problém je krivka iného druhu, zvand refazovka. Predstavme si, ze méme v
priestore dva body, na ktoré zavesime tenucky dokonale ohybny drét s rozlozenim hustoty A. Plati teda:

d 2
dm = Ads = A 1+(y> dz
dz

Potencidlna energia daného kiusku drotu bude:

du\ 2
dU =dmgy=Agy 1+<y> dx
dz

Tentoraz sa poloha (tvar) drotu zrejme ustéli v stave, kedy mé ¢o najnizsiu celkovi potencidlnu energiu

danu v tvare:
b
b 2
dy fla)=A
E, = dU = A 1 — | da; 2.29
= / R ) L (229

Vidime, ze problém znovu vedie na extremalizdciu takéhoto funkcionalu.

B__

A__

a b

Obrézok 2.3: Riesenim tohto problému je krivka zvana katenoid (catenary).
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Doteraz sme zakazdym dosli k vyrazu typu:

b
/ L(y,y' x)dz (2.30)

kde L je nejaka funkcia premennej x, funkcie y a jej derivécie, ktord nam prirodzene vysla pri odvodzovani
tohto integrélu. Riegenie pre funkciu y sme mohli dostat minimalizdciou tohto integrdlu. Tato tloha vyzera
velmi obtiazne, hlavne ked nevieme, éfm zacaf (napr. by ndm mohlo napadniit dosadzovaf do integralu
rozne funkcie a skigat, kedy ndm vyjde ¢o najmensie &islo pre akékolvek hranice). Teraz odvodime metédu,
akou sa mozno dopracovat k vyslednej funkcii, ktord minimalizuje dany integrdl. Zavedme teda oznagenie:

b
Lyl = / L(y,y' z)dx (2.31)

Predstavme si teraz, Ze mdme nejaki funkciu y(z). Zavedme malicki odchylku od tejto funkcie, dy.
Pre vselijaké mozné vychylky teda dostdvame rozne funkcie y + dy, ktoré sa od funkcie y lisia len o malo.
Vsetky vSak vychadzaji z toho istého bodu v [a,y(a)] a koné¢ia v tom istom bode [b, y(b)], preto teda plati
dy(a) = oy(b) = 0.

Skimajme hodnotu . pre takito funkciu trosku zmenend oproti povodne;j:

b
Sy + oy] = / L(y+dy,y + 0y, z)da
a
Ked'7e dy je velmi malé (spomeiime si na virtudlne posunutie v prvej kapitole), podintegralnu funkciu
mozeme rozvintit do prvého rddu Taylorovho radu:

b , oL oL . .,
Ly + 5yl —/a {E(y,y ;) + 5y5y+ oy (dy) }dfc

Chceme sa dopatrat k tomu, éo musi platit, ked sme prdve nasli ti nasu spravnu funkciu, ktord
minimalizuje vyraz .. To ale znamend, ze zmena tohto vyrazu .# sa nemeni v rdde dy, ak jeho argument
(¢ize funkciu) zmenime len o mald hodnotu dy - je to v podstate tiplna analégia k extrému hladkej funkcie
redlnej premennej, ktord mé extrém v tych bodoch, v ktorych je funkcia necitlivd na zmenu premennej do jej
prvého radu - inak povedané, jej prva derivécia je rovna nule. Tu nemoZeme privelmi hovorit o derivacidch
(pretoZe y je funkcia), no stdle sa moézeme pozriet na vyraz . [y + dy| — .7 [y], ktory v podstate pripomina
diferencidl .7, ak y berieme ako premennu:

b , oL oL b ,
Ay 0~ ) = [ {Lta)+ Gooy G pdo [ Ly )de =

broc L . .,
—/a {aycsy—kayl(zsy)}dx

Druhy vyraz pod integrdlom doplnime nasledovne:

oL aL \’ L\’
G 0 = (Gyo) ~ (55) o

Z rozdielu . [y + dy] — . [y] tak dostaneme:

s o= [ { |55 (55) |afacs [ (50 o
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V druhom integrali, ked'ze integrujeme derivéaciu funkcie, je primitivna funkcia priamo gj, 0y. Vysledok
tohto integralu teda bude:

b / b
oL oL
dy ) de = —dy| =
/a (33/ y> oy, ’
Samozrejme, vyuzili sme fakt, ze dy(a) = dy(b) = 0.
Prvy integral napiSeme krajsie:
b
oL d oL
dy] — =/ —_— - —
Aol - 7l = [ outo) (G - 255

Musi samozrejme platit, Ze pre také y, ktoré minimalizuju éislo ., je tento vyraz nulovy. No to md
platit pre kazdé dy(x), ¢o moze byt splnené len ak druhd ¢ast (v zatvorke) pod integralom je nulova®:

b oL d oL oL d oc
V(Sy(x)/a dy(z) (8y o ay) dr =0 = =0 (2.32)
Tuto rovnicu nazyvame Eulerova rovnica, ktora je vo vSeobecnosti diferencidlna rovnica druhého radu.
Takéto diferencidlne rovnice na jednoznacéné rieSenie potrebuji okrajové podmienky, napr.: y(a) = Y, y(b) = Y5,
popripade pociatoéné podmienky, uréujice y(a) a y'(a). V priebehu odvodenia sme predpokladali existenciu
y" v kazdom bode intervalu (a, b), dostdvame teda extremaly triedy C2.
Ako priklad méZzeme skusit vyriesit problém pre najkratsiu cestu. Funkcia £ definujica tento problém

bola:
dy 2
= 1 _
£—/f +(dx)

Taktto funkciu by sme mali dosadit do Eulerovej rovnice a riest. Este kym sa pustime do bezhlavého
derivovania uvedomime si, ze v £ nevystupuje explicitne y, ¢o ale znamend, ze z Eulerovej rovnice ostane:

d 2y’ 2y’
_ = <y>:0 _— i:C:kans‘t.

dx ,/1_|_y/2 /1_|_y/2

Tito rovnicu viak vieme jednoducho riesit:

2y/ CQ
—_— C — /2 = = :k
T Vi =1—cz y=ka+q

Konstanty & a ¢ mozno vybrat tak, aby boli splnené okrajové, alebo pociatocné podmienky.

Teraz velmi sugestivne pod seba napiSeme Eulerovu rovnicu a int rovnicu, ktort sme doteraz uz velakrat
pouzivali:

doc o

de 0y Oy

gﬁj ) @ L (2.33)
dt 8¢ 0q

6Vid zdkladnd léma variaéného poctu.
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Pozorny ¢itatel si v&imne istt podobnost, ktord je v skuto¢nosti velmi vyznamnd. Podla jednoduchej
schémy zamenime symboly:
L

Y

)
T

- Qo ™

V skutoénosti st tieto dve rovnice tplne totozné po zédmene symbolov. Pred chvilou sme vsak tvrdili,
ze Eulerovu rovnicu riesi taka funkcia y, ktord extremalizuje prislusny funkciondl a opaéne, funkcie, ktoré
extremalizuji funkciondl zaroven riesia Eulerove rovnice. Presne rovnaky princip moézeme aplikovat na
Lagrangeove rovnice a prislusny funkcional budeme oznaéovat jeho pravym menom - tiéinok.

2.3.2 Uginok, princip extremalneho tuc¢inku

Uplne analogicky definujme funkciondl pre Lagrangidn, ktory budeme nazyvat wicinok (a ozna¢ime ho
sugestivne S, ako analdgiu ku .#):

Sla] = /t L (a,9,t)dt (2.34)

Posledna skladacka do schémy teda bude:

b ty
/ £(y,y/,$)d$ / L(q,qat) di
a t

a

Syl - Sld

Teraz moZeme sformuloval princip extremalneho téinku nasledovne: wéinok S[q] je extremdlny na
takych trajektériach ¢(t), ktoré si priroda sama vybrala. Zaroven plati, ze tieto ¢(t) si rieSeniami La-
grangeovych rovnic. Ak do L(q,q,t) dosadime také ¢, ktoré ndm vyjde z rieSenia Lagrangeovych rovnic,
potom tcinok S[q] bude necitlivy na zmenu v prvom réde dq. Inak povedané, uc¢inok S[q] mé extrém tam,
kde je riesenie Lagrangeovych rovnic v q.

Systém extremalizuje i¢inok < Systém bez{ podla Lagrangeovych rovnic

Este spomenieme, Ze z hladiska téinku sa dlohy delia na variacné, teda také, pre ktoré ti¢inok existuje
a nevaria¢né, pre ktoré ucinok neexistuje.
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2.4 Hamiltonove rovnice

Odvodenie Hamiltonovych rovnic bude vychiddzat z Lagrangeovych rovnic II. druhu, eSte predtym si
viak dovolfme uviest matematicki poznamku o Legendrovej transformécii.

2.4.1 Legendreova transformacia

Predstavme si, zatial bez zjavnej motivéicie, Ze by sme chceli istym zvldstnym sposobom definovat
transforméciu suradnic, ktoré mame k dispozicii:

T1,T2, " ,Tn

Zavedme funkciu L, zavisli od siradnic z;, na ktort zatial nenalozime Ziadne predpoklady okrem
moznosti diferencovatelnosti tejto funkcie podla jednotlivych stiradnic. Radi by sme teraz ziskali stiradnice
Y1, Y2, - ,Yn podla nasledovnej definicie:

oL
yz—axi

Symbolicky tuto transformaciu naznac¢ime nasledovnym diagramom:

(2.35)

x 55 y(x),

ktory symbolicky znaci transforméaciu suradnic z; pomocou funkcie L.

Radi by sme teraz poznali transformdciu, ktora by previedla siradnice y; spif na z;. Este radsej by sme
boli, ak by bola takito transformdcia realizovatelna za pomoci nejakej funkcie H premennych y1,y2, - , Yn,
o ktorej plati:

OH
i = 2.36
! dyi ( )
Symbolicky:
H
y — X(y)a
Ukazuje sa, ze funkcia, ktord spiﬁa tito podmienku, je nasledujiceho tvaru:
H(y) = zi(y)yi — L[x(y)] (2.37)

Zderivovanim takto vybranej funkcie H podla y; dostaneme:
OH 633]‘ + OL 6$j 8a:j 333]‘
L T — — — s
y; ui yi 533;‘ Oyi vi 0yi bi 0yi
~—

=Y;

+x =2

Vidime, ze funkcia H spfﬁa presne to, ¢o od nej pozadujeme.
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2.4. HAMILTONOVE ROVNICE

Majme teraz siradnice xi,xo, -+ ,Tp & 21,29, - ,2p 2 ktorych chceme transformovat len x; na ;.
Méme teda funkciu L(x,y), o ktorej plati:

L
(X7 Z) — (Ya Z)
Teda stale zdanlivo bezo zmeny (aZ na pritomnost inych premennych vo funkcii L, okrem x) plati:
oL
8$i

Aj k takejto transformécii by sme si priali najst funkciu H, ktord analogicky zabezpe¢i transforméciu
opacénym smerom, bezo zmeny siradnic z:

Yi =

(y,2) = (x,2)
oOH
5’%

T; =
Funkcia H méa kupodivu rovnaky tvar ako predtym a spfﬁa rovnakd podmienku:

H(y,z) = z:(y,2)y: — L[x(y), 2] (2.38)

Presved¢ime sa o tom tuplne rovnako ako v predoslom pripade.
Skidmajme teraz diferencidl funkcie H podla vztahu (2.38):

L
dH = z;dy; + gy — %& = x;dy; — g dz;
2

=y;dz;

Zéroveii ale mozeme najst diferencidl H podla premennych x; a z;:

H
dH — 0 8H oH
y; Bzi
Teraz porovname, ¢o stoji pri jednotlivych diferencidloch a dostaneme dva dolezité vysledky:
OH oL OH
;= — = 2.39

Ten prvy nds vlastne utvrdil v tom, Ze funkcia H naozaj rob{ to, ¢o mé (na to bola skonstruovand).
Druhy vysledok ndm zatial nié rozumného nehovori, no bude ddlezity neskor.
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2.4. HAMILTONOVE ROVNICE

2.4.2 Hamiltonove rovnice

Vychéadzajme z Lagrangeovych rovnic. Za funkciu L si” zoberme Lagrangidn nejakej stistavy L(q, ¢, t).
Ako i-tu zovseobecnenti hybnost, p;, oznaéme parcidlnu deriviciu Lagrangianu L podla i-tej zovieobecnenej
rychlosti ¢;:
oL

oL 4
i 2, (2.40)

N L
(qv q, t) — (q7 P, t)

Vidime, Ze tilohu x tu prebrala vlastne zovieobecnena rychlost ¢, ktord sa transformuje na zovseobecnent
hybnost p, pricom zovieobecnené stiradnice q a ¢as ¢ ostdvaji nemenné, prebrali teda tlohu z.

Funkciu, ktora transformuje hybnost sp#t na zovieobecnent rychlost, a ktorti budeme volat Hamiltonidn
stistavy, bude podla (2.38) definovani nasledovne:

H= q'ipi —L (241)
Z (2.39) dostdvame:
. O0H
“= Op;
OH 0L A OH 0L
dg;  Og ot ot
oL S OH
9q; = Di bi = 9q;
Ststava teda Spiﬁa Hamiltonove rovnice:
= OH
f Opi
- 75‘H (2.42)
pi = B

Priklad: rovinné matematické kyvadlo v Hamiltonovych rovniciach. Ako vieme z predoslych prikladov,
Lagrangian tejto sustavy je:

1
L(p, ¢,t) = 5m12gb2 -+ mgl cos(y)

Pre Hamiltonian z 2.41 dostavame:

1
H = ¢ mi*¢— | =ml*$* + mgl cos(y)
—— 2

Py

. . Db
= l2 = 7<P
Dy = ml~p 2:> %) —"
= H= 5 5012 — mgl cos(p)
Hamiltonove rovnice:
p = Lo v = —mgl sin(p)
=15  Pp=—mglsin(p

7 Ako sme uz sugestivne v matematickej pozndmke naznagéili oznacenim funkcie pismenkom L.
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2.4. HAMILTONOVE ROVNICE

Ako vidime, tieto rovnice si ocividne dve. Obe spolu, ako sistava diferencidlnych rovnic si ekvivalentné
rovnici rovinného matematického kyvadla:

3+ Tsin(p) =0

Zaroven vsak vidime, ze derivacie, ktoré sa v Hamiltonovych rovniciach objavujui, si nanajvys prvého
radu (narozdiel od Lagrangeovych rovnic). Ich rieSeniami st okrem zovseobecnych siradnic aj zov§eobecnené
hybnosti.

Vseobecne plati, ze Hamiltonovych rovnic je dvojnésobok oproti Lagrangeovym rovniciam, no ich rad
derivacie je zredukovany na prvy.

V priebehu odvodenia Hamiltonidnu (to je funkcia, v ktorej uz nevystupuje ziadna siradnica derivovand
podla éasu) sme museli upravit tvar samotnej funkcie tak, aby sa v ilom neobjavilo (. Tento postup sa dé4
vyjadrit vieobecne. O Lagrangidne vieme, 7e sa (pre potencidlnu energiu zavisld len od zovSeobecnenych
stradnic) d4 zapisat v tvare:

1. ..
L= 5Tijdid; — U(a)
Z (2.40) vieme, ¢omu je rovnd i-ta zovseobecnend hybnost:

Di = o0, =T;;4;

7

Thto hybnost dosadime do (2.41):

Dostali sme dolezity vysledok vyjadrujici, ze Hamiltonidan je vlastne rovny celkovej energii ststavy.
Vyjadrime si este raz Hamiltonian, tentoraz len pomocou zovseobecnenych rychlosti a stradnic:

.. .. 1 .. 1 ..
H=T,;q:4; — L = T};4;q; — iTijQin +U = iTz’jQin +U

Budeme hladat sposob, ako vyjadrit jednotlivé zovieobecnené rychlosti pomocou zovieobecnenych hyb-
nosti:

pi =14 = ¢ = (T_l)ijpj
Hamiltonian tak prejde na tvar:
| 1 -1 -1
H:§TijQin+U:§Ti’(T )i Px (T )ljpz-i-U
Matica Tj; je symetrickd. Z toho vyplyva, Ze aj matica (T _1)”. je symetrickd, teda plati:
-1 -1
Ty =T = (T )ij = (T )ji

Vréfme sa teda k Hamiltonidnu, kde tito symetriu vyuZijeme:

1 _ _ 1 _ _
H =T (T70), (T pepe + U = 5 T (T71), (T71) ywpr + U =
:(TTfl)jk
1 1
D) (TT?l)jk (Tﬁl)ljpkpl +U= 5 (Tﬁl)klpkpl +U
N———

=0,

Dostédvame teda tvar Hamiltonidnu, ktory vieme vyjadrif ak pozname maticu kinetickej energie, 1":

(TY),,prpr + U(q)

N |

H(q,p) =
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2.4. HAMILTONOVE ROVNICE

2.4.3 Poissonove zatvorky

Majme danu funkciu f zovSeobecnenych suradnic, zovSseobecnenych hybnosti a casu. Pocitajme jej
casovi derivéciu (totdlnu):

_ _oH
o Op; B dq;

Objekt v gulatej zdtvorke nazveme Poissonovou zdtvorkou:
OH of Of OH
{fa H} = -
Op; 9q;  Op; 9q;
Analogicky Poissonova zétvorka z dvoch fubovolnych funkciif, f a g, je definovand nasledovne:
of 9g 09 Of
= - = - 2.44
tg} 9q; Op;  0q; Op; (2.44)
Je zrejmé, ze ak vo funkcii f nevystupuje explicitne ¢as ¢, potom jej ¢asova derivécia je rovna Poissonovej
zatvorke Hamiltonidnu s danou funkciou:
flapf) = f={fH}
Poissonova zatvorka dvoch rovnakych funkcii je nulova:
of of of of _
{f.f}=
Opi a‘h 31% a(h

Poissonova zatvorka {¢;,p;} je rovnd d;;:

(2.43)

(g} 9q¢; Op;  0gq; Op; .
U 9, 0pe Opk O

¢o je jedna, ak je sistava opisana len jednou zovieobecnenou siradnicou a hybnostou.
Ak Poissonove zatvorky chapeme ako operator, ktory z priestoru funkcii vyberie dve a priradi im tretiu

funkciu, potom takyto operator je bilinearny:
{f+Xg.h}y ={f h}+ Mg, h}
{f,9+Ah} ={f, g9} + X{f,h}

Poissonove zdtvorky su taktiez antisymetrické (zmenia znamienko po vymene argumentov):

V tomto vidiet analdgiu s vektorovym si€inom, ktory po vymene argumentov (vektorov) tieZ zmeni
znamienko. Dalsiu analégiu uvidime v takzvanej Jacobiho identite, ktorti poissonove zatvorky, tak ako aj

vektorovy sucin, spliajui:

{rgr.ny+{g.h}, f1+{{h f},9} =0

Poissonove zatvorky maju svoju analdgiu v kvantovej mechanike, kde namiesto nich pouzivame ko-
mutétor [A B] AB — BA, kde A a B st operatory. Komutétor tiez splna Jacobiho identitu a komutétor

operatora polohy a operatora hybnosti je rovny ih, [Z,p,]| = ih.
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Dalsie aplikdcie Lagrangeovského a Hamiltonovského
pristupu v mechanike

3.1 Potencialna energia a sila*

3.1.1 Zovseobecnena potenciilna energia*

Doteraz sme sa zaoberali len aktivnymi silami, ktoré zavisia explicitne len od polohy a k nim prislichajicimi
potencidlmi, ktoré taktiez zavisia len od polohy. Ukazeme si, ze aj niektoré sily, ktoré zavisia od vyssej de-
rivicie polohy, popr. &asu, je mozné opisat potencidlom a to dokonca aj vtedy, ak nie st potencidlové!.
Najprv viak musime poupravit vypocet potencidlu, ak mé zavisiet aj od zovSeobecnenych rychlosti a casu,
nielen od zovSeobecnenych stradnic. Podla (2.22) pre Q; zavislé aj od ¢asu a zovseobecnenych rychlosti
piSeme:

d oT 0T
dt d¢;  0q;

Nech je teraz dané Q; (g, ¢,t) opisatelné jedinou funkciou U (g, q,t) tak, ze stéle plati L = T — U a
zaroven plati pre toto L pohybova rovnica pre g;:

= Q’L (qa (ja t)

d oL OL

dtdg;  0q;
dor-v) arT-U)
dt 86]1 8qi

dor dev (or Uy _
dt8¢; dtdg; \dq; dqi)
dor 9T _doUu U
dtd¢; Oq; dtoq;  Og;
N——

=Qi(q,d,t)
. U (q,q4,t) = d 9U (q,q,t)
, - _ - 1
Qi (g.4¢,1) o4 TR (3.1)

Vhodnym prikladom na taktto silu je Lorentzova elektromagneticka sila, danad predpisom:

ﬁ=Q<E+ﬁx§>

INie st potencidlové v zmysle, ze krivkovy integrdl II. druhu v ich poli zévisf od vyberu krivky.
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3.1. POTENCIALNA ENERGIA A SILA*

To, ¢i je tato sila potencidlovd v zmysle, ze krivkovy integral II. druhu v poli tejto sily nezavisi od
krivky, po ktorej integrujeme, sa da lahko preverit. Tento fakt je totiZ ekvivalentny tomu, Ze krivkovy
integral po niektorej uzavretej krivke nevyjde nulovy. Pocitajme teda taky krivkovy integral po niektorej
blizsie nespecifikovanej uzavretej krivke:

%F(ﬂ Q%ﬂ E+va)
%F‘ﬂ Q¢£7ﬂ+Q¢m va

Na integral E-dl mame jednoduchy liek, je nim Faradayov zdkon elektromagnetickej indukcie. Problém

moze robit druhy integral, prepiSme si vyraz di’- (17 X E) do indexov a upravujme:
di'- (7% B) = di; (7 x B) = dliesjpv; By = Brepgdiyo; = B - (dl'x 7)
K3

Avsak tento vyraz je identicky rovny nule, pretoze v kazdom bode krivky je rychlost hmotného bodu,
ktory sa po nej pohybuje, dotyénicou k tejto krivke. No rovnaky smer méa aj diferencial tejto krivky, teda
plati:

dl |7 = dix7=0

Druhy integral je tymto vybaveny, je identicky rovny nule. Ostdava ndm vyraz:

%ﬁﬂéQ¢Edf
C C

Tu vyuzijeme spominany Faradayov zakon elektromagnetickej indukcie, ktory vravi: elektromotorické
napitie je dané zdpornou éasovou zmenou toku magnetického pola. Zapisané v reéi matematiky:

35 E.df:_i//é.dg
95 dt JJs

V tomto kroku sa zdanlivo vzdialime od prave poc¢itaného vyrazu a pozrieme sa na jednu z maxwellovych
rovnic:

V-B=0

Toto plati vidy, za kazdych okolnosti, teda to nds opraviiuje zaviest vektor /Y, magneticky potencial,
ktory bude spliiat rovnicu:

B=VxA (3.2)
Je tomu tak preto, lebo divergencia rotacie je vzdy identicky rovna nule:
V- (6 x A ) =0

Vratme sa k pocitanému vyrazu, kde vyuzijeme (3.2):
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3.1. POTENCIALNA ENERGIA A SILA*

V tejto chvili za¢ina byf zrejmé, Ze ¢asovo premenné magnetické polia uz nebudi generovat potencidlové
sily. Dokonéime odvodenie - na lavii stranu pouZijeme Kelvin-Stokesovu vetu:

835-df=//g(§><ﬁ)-d§

Tento vyraz dame do rovnosti s magnetickym indukénym tokom a vyuzijeme vetu o derivovani para-
metrického integralu:

JLeseyas= & [ 9y s [[ (o) as

Vsetko presunieme na lavi stranu a vloZzime pod jeden integral:

//<€xﬁ+ﬁx%f>.d§o (VS)
S

Toto mé ale platif pre kaZdi plochu S, ¢o moze byt splnené len vtedy, ak vnitro integralu je rovné
nule:

S o o 04
VXE+VX—=0
MY
Este vyraz upravime tak, ze vlozime E aj 0 A pod operator rotécie:
- (= 04
Vx|E+—]=0 3.3
(5+5)) 33)

Okrem faktu, Ze Lorentzova sila je vo véeobecnom pripade nekonzervativna, dostdvame velmi zaujimavy
vysledok. Pre tplne vseobecné polia E a B uz neplati, ze rotacia E je nulova. Plati vsak rovnaky vztah, ak
k nej pripoéitame opravny ¢len - prave ¢asovii zmenu magnetického potencidlu. Preto teraz mézeme zaviest
potencial ¢ tak, aby platilo:

L 9A
E+ o=

Potom rovnica (3.3) bude automaticky splnena:
Y A . ./ .
v x <E+8t> —V x (—ws) — ¥ x (w) —

Podla (3.2) a (3.4) moZeme napisat potencial Lorentzovej sily, o ktorého platnosti s vyuzitim (3.4) sa
presvedéime na par nasledujicich riadkoch:

U(F,?,t) :Q(¢>—?.A’)

Podla (3.1) ma teda pre tento potenciél (v suradniciach z;, ;) platit:

V¢ (3.4)

} 2 U dou
i o 6@ dtai‘i’

Fi:Q[Ei—&—(?xE) kdeU:Q(gb—?-A’)
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3.1. POTENCIALNA ENERGIA A SILA*

Tito rovnost teraz overime:

—SZ = —Qaii (¢—?~5) = —Qaii (¢ —i;45) = —Qg;i + Q%%;lj
—Qgi_ -0 (Vs) = om + 0%
o5, = 2 [ax; (-7 4)] = 0 |55 (0 -] = @ sa) = -0
—SZ +%Z:Z- =Q (Ei+ aa‘ii +a‘cj%2§ - % - ZCEA;']) =Q [Eiﬂ'cj (%;1; - gi)]

Ostava nam jeden nevyjasneny vyraz v zatvorke. Pocitajme 7x B =ix (ﬁ X ff)

5> o 0A
Bj = (V X A)j = Ejabaixa
L3 . . 0A . 0A . 0A . 0A;
<T X B)i = girjtrBj = 5ikj5jabxk%: = (8ia0p — 5ib5ka)$k£z = Iy axf — Iy 02,
L= L o(e @ . (0A,  0A;
— (#xB) =[ix (VXA)}_Ik(a; - axk)
d oU

déva i-tu zlozku

. . o . . 0 ou
teda dany nevyjasneny vyraz je presne to, ¢o ma na tom mieste stat, vyraz —— 4+ — —

Lorentzovej sily:

7§Z+%§Z :Q{Eﬂr(?x B')J —F

¢im je dokaz zaviseny.
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3.1. POTENCIALNA ENERGIA A SILA*

Dalsia silu, ktorej sa pokisime néjst zovseobecnent potenciglnu energiu, bude trecia sila. Jej predpis v
kartézskych sturadniciach je:
F=—ki = F,=—ki; k>0 (3.5)

Odvodenie spravime vSeobecnejsie, a to pre zovSeobecnené siradnice a rychlosti. Ukazuje sa, ze prepis
trecej sily @Q; (@) bude o trochu zlozitejsi:

ki ki oo ki (@
- kor koo --r ko 42 . . o 1 .
Q=—-1 . . ) ) = Qi = —kijG;; kij je kladne definitnd a symetrickd matica?
knl kn2 o knn Qn
(3.6)

Vo vieobecnosti nepredpokladédme, Ze po zavedeni parametrizécie konfiguraéného priestoru, bude nad’alej
platit, Ze pri pohybe v smere niektorej zo stiradnic g; bude trecia sila posobit presne opaéne. Avsak, mozeme
si byt isti, ze ak plat{ (3.6), tak najhorsie, ¢o nas moéze z hladiska odporu stretnif, je vo vSeobecnosti
nanajvys linedrny vzfah medzi zovieobecnenymi rychlostami ¢ a trecou silou Q.

Pre takuto silu by sme radi napisali potencialnu energiu U, ktora je vo vSeobecnosti zavisla na zovseobecnenych
stiradniciach, rychlostiach a ¢ase a podla (3.1) prent bude platit:

U doUu_
dq; At dg; i
O tomto potencidli zatial ni¢ nevieme, podme si teda rozpisat lavii stranu rovnice:
_8U+<8+q_8+d_8> <8U> __8£+ 0%U N 0*U it 0*U Q'-L—k--(j-—Q-(q)
9q; ot Voq T og;) \0gi dqi  0tdg;  9q;0¢; 7 0¢;04; R '

Vidime, ze vzhladom na to, ze @; mé zdvisiet len od ¢, ¢len, pri ktorom stoji ¢; musi byt nulovy:

02U
94;0q;
O ¢om nam vlastne hovori tato podmienka? Hovori, ze druha parcidlna derivacia potencidlnej energie

podla zovseobecnenych rychlosti d4 nulu. To viak znamen4, Ze samotnd potencidlna energia musi zdvisiet
od zovSeobecnenych rychlosti nanajvys linearne:

!
=0

’ —! 0 = U ( ) t) —! a ( t) ] +b( t)
. . » 4, % ) i )

Vd'aka tejto podmienke vypadne nezelany clen, ktory obsahoval ;. Dalsie pozorovanie, ktoré urobime,
sa bude tykat ¢asovych zavislosti:

oUu 82U 82U . 8Clj . ob 8ai aai . <8al aaj) q 8ai ob
J

T0q 004 006" T "9 " ag T ot Tag% T \8g,  a ot o,

Qi m4a byt funkciou ¢, no dva posledné ¢leny uz nemaji Sancu byt funkciou q (pretoze a; aj b st
funkciami q a t). Musf teda platit, Ze tieto ¢leny st nulové:

8ai ob
ot =0 = az(q7t)_az(q)7 _3(]1

=0 = b(qt)=b(t)

2To, ze matica k;; je kladne definitnd moézeme intuitivne nahliadnut z analégie s trecou silou v kartézskych stradniciach.
Ak by sa to nepodarilo, este existuje argument, ku ktorému déjdeme neskoér. Jej symetriu tiez polahky ukdZzeme neskor.
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3.1. POTENCIALNA ENERGIA A SILA*

V hre ostane jediny ¢len:

da; 8aj) . :
— 20 ) g = —kyid
<aqj 3(11 J 1347
Avsak toto je problém. Vyraz na lavej strane:

- 8(1,» (')aj
G = —2 223
Yo dq; g
je totiz antisymetrickd matica, pretoze plati:

aij = —aji,

¢o okrem iného znamena, ze d11 = do2 = a33 = 0. AvSak pre maticu k;; plati:

kij = kja,
¢o je v priamom rozpore s dij.B
Presvedéili sme sa, 7e neexistuje potencidlna energia (ani zovieobecnend), ktord by vedela v sebe zahrnuf

treciu silu. Tento fakt je ndm motivaciou ku d'alsiemu paragrafu, kde si povieme nieéo o tom, ako nardbat
s nepotencidlovymi silami v Lagrangeovych rovniciach.

3Tto neexistenciu sme ukézali len pre Lagrangisn, ktory mé struktiru L =T — U = % wbdads — U (g, 4,t). Existuje takd

struktira Lagrangidnu, #e problém hmotného bodu v odporovom prostredi zapisany v tomto Lagrangidne bude mat svoju
pohybovii rovnicu (ekvivalentni s Newtonovou) v tvare:

doL oL _

dt 0¢; 9q;

Lahko sa ukaze, ze Lagrangian pre jednu casticu v smere x, ktory vedie na pohybovii rovnicu s odporovym élenom, je v tvare:

t t [ 1
L=ewn (T—U)=em [5m¢2 - U(x)}
Takyto tvar Lagrangidnu vedie na pohybovt rovnicu v tvare:
mi=—— —"2

ozr
Tento Lagrangian ale zavisi od ¢asu explicitne a nie je tvaru 7' — U.
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3.1.2 Nepotencidlova zlozka sily a jej vykon*

V predoslom paragrafe sme si na priklade o trecej sile ukazali, Ze neexistuje taka zovSeobecnena po-
tencidlna energia, ktora by v sebe zahffiala takito silu. Na tento problém z hladiska Lagrangeovych rovnic
existuje jednoduché rieSenie. Predpokladajme, Ze mame silu, ktord sa d4 napisat ako siéet potencidlove;
a nepotencidlovej ¢asti. Modzeme rovno ratat s tym, ze potencidlova ¢ast zavisi len od zovSeobecnenych
siradnic a d4 sa vyjadrif pomocou gradientu nejakého potencidlu:

ou
i=—7 -+
Q 4 Q
Ukdzeme si, na aky tvar prejdd pohybové rovnice s takouto silou. Z (2.22) dostdvame:
dor or ou
S = Q= o + G
dt9¢;  Oqgi 9q;

Znovu zavedme Lagrangian, tentoraz ako rozdiel kinetickej energie a potencidlnej energie potencislovej

zlozky sily, L = T — U. Z tejto rovnice teda dostaneme?:

doT _or dou oUu _
dtdq; Oq;  dtog  Oq
=0
AT -U) &T-U) _5,
dt dq; 0¢; -
d 0L 0L -~
&5% B oq; @ 37

Budeme situdciu znovu skimat za predpokladu, Ze ¢as nevsttipi explicitne do Lagrangidnu. Plati:

Qi

oL

E_O

Za tejto podmienky skimajme vyraz Q;g;:
~ d (0L oL
iGi== |5 |4i— 5@ 3.8
Qidi = (aq)q 90, (3.8)

Tento vyraz je v platny zmysle Einsteinovej sumacnej konvencie - vezmeme Lagrangeovu rovnicu pre
prvii zovSeobecnent stiradnicu, prendsobime ju prvou zovieobecnenou rychlostou a k nej pripoé¢itame druhi
rovhnicu prendsobent druhou zovseobecnenou rychlostou atd'.

Urobime uzitoéné pozorovanie:

dfoL.\_d oLy, oL.  d oLy, d(OL.\ oL,
i \ag ) " @ \ag )T g a\ag )" 1w \9g ) " g%

Toto vyuzijeme v (3.8):

~ . d /0L . oL .. OL .
Qiq; = & (%%) - aTjiC]z - %ql (3-9)

4Pripominame, Ze tito struktira nie je povinné. Nikto nediktuje, ktord konkrétnu ¢ast sil musi ¢lovek zahrnit do U - ak je
vyjadrovanie potencidlu danej sily prili§ zlozité, ni¢ nebrani v presunuti celej sily (teda aj potencidlovej ¢asti) na pravi stranu.
Dévodom, preco sa tieto rovnice nenechali v tvare (2.22), je dzky suvis medzi Lagrangeovymi rovnicami v tvare:
d oL oL _ 0
dt8¢; dqi

a ucinkovym integralom z Lagrangidnu.
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Teraz poc¢itajme totalnu ¢asovu derivaciu L:

%_L-_%{+8L._+87L..__8L._+87L..'
a7 94, di 94; qi = £ 4i EY di

No presne tento vyraz sa nachddza so zdpornym znamienkom v (3.9):

d /0L . oL . OL. d [/OL :
e <aquh> "0l T8t T @ (a%%) —L (3.10)
—_——

)

Na vyraz — ( > sme narazili uz niekolkokrat:

" 04
0 (1 L) . d .. d :
(8(11 QZ) [8@ <2TaanQb) q¢:| =3 (Tivvds) = T (2T) =2T

dt
Teda z rovnice (3.10) dostdvame:

d [OL . .. .. )
Qqu_dt(@ %) L:2T—(T—U):T+U=E
E = Qig: (3.11)

Vzfah E = Q;q; vlastne udava vykon nepotencidlovej zlozky sily. Ak je sila nepotencidlova, potom sa
pri nevstupovani ¢asu do Lagrangidnu nezachovdva energia (to je pripad E = 0), ale dostdvame vzfah pre
vykon.

Vratme sa teraz k prikladu o trecich sildch. V podstate empiricky sme dogli k tvrdeniu, Ze trecie sily
mozno reprezentovat linedrnou formou:

Qi = —kijq;
Ak sa pokisime najst vykon trecej sily pre Jjednu casticu, podla (3.11) dostaneme (cel4 sila sa v tomto
pripade ukryje do nepotencidlovej ¢asti, preto Q; = Q;):

P =Qi¢i = —kijd;di

Lenze tento vykon musi mat logicky vidy zdpornt hodnotu az na pripad, ked st vietky zovieobecnené
rychlosti nulové (staticky pripad). Ak by to tak nebolo, dostali by sme pripad, ked sa systém nejakym
sposobom pohybuje, no vykon je kladny (energia narastd), alebo nulovy (nestrica sa), ¢o neznie pravde-
podobne. Vzhladom na to, ze vykon P je dany kvadratickou formou —k;;q;q; a plati, Ze je zdporny prave
vtedy, ked aspoii jedna zo zovSeobecnenych rychlosti ¢ nie je nulovd, potom této kvadraticks forma je zdporne
definitnd. To ale znamend, Ze matica tejto formy je zdporne definitnd. Touto maticou je —k;;, teda samotna
matica k;; musi byt kladne definitnd.

Samotné odvodenie symetrie matice k;; vyplyva ako priamy désledok definicie (2.19) zovSeobecnenych
sil:

87’]
@Z

Vieme, ze v kartézskych stiradniciach je nasa trecia sila vyjadrend v tvare (pre nejakych N bodov, vo
vSeobecnosti s roznymi koeficientami trenia):

Qi =

Fp = — K7,

kde Fj je trecia sila k-teho hmotného bodu v sustave, 1 < k < N, K je jeho treci koeficient a e jeho
rychlost.
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Potom z (2.19) dostdvame:

o7 ST = o7
Qi = k'JZ—ZKka';:—ZKk< i

Oznacme teraz:

N
or, or
Sl Uy,
1 qi q;

L i
9qi b1 m

Potom trecia sila v zovSseobecnenych sturadniciach prejde na tvar:

Qi = —kijq;
kde k;; spliia symetriu®:

N N

or, 0ry or, 0ry
Ly A N L

; " 0q; Jq; Z kaqj 0¢;

— kij = kﬁ

5Symetria je splnend pre najjednoduchsi pripad, kedy sme predpokladali, Ze trecia sila pre kazdy hmotny bod v nejakej

ststave hmotnych bodov je zavisla len linedrne od rychlosti daného hmotného bodu:

F; = _Kijf'fj

Dalsi predpoklad bol, ze K;; = Kd;;, teda trecia sila pésobi v smere opa¢nom voci smeru pohybu hmotného bodu (ﬁ | f')
Existuji samozrejme aj zlozitejSie koncepty trenia. Napriklad teleso, ktoré sa pohybuje v tekutom prostredi, je brzdené
trenim, ktoré pre vysoké hodnoty Reynoldsovho ¢&isla zdvisi od druhej mocniny rychlosti pohybu telesa voé¢i prostrediu. Pre

také trenie vsak linearita neméze byt splnend uZ len z principu kvadratického odporu.
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3.2 Fazovy priestor

Pokial sme pracovali s Lagrangeovymi rovnicami, mali sme definovany konfiguraény priestor, v ktorom
. ’ . ’ v ¥l ~1 . ’ . . . ’ . -~
mali siradnice q dovolené sa pohybovat. Ked sme presli ku Hamiltonovym rovniciam, zdvojnasobil sa pocet
premennych, ktoré vstupuji do tychto rovnic. Pre tieto premenné zavedieme pojem fazového priestoru, ¢o
je priestor, v ktorom majt dovolené hybat sa prave zovieobecnené stiradnice a zovseobecnené hybnosti.

3.2.1 Kbvalitativne riesenie Hamiltonovych rovnic*

Predstavme si, kvoli jednoduchosti, ze nés systém je opisany prave jednou zovSeobecnenou siradnicou
¢. Fazovy priestor teda bude rovina, kde na jednej osi bude aktudlna hodnota ¢ a na druhej hodnota p,.
Tieto sturadnice maji vyhovovat Hamiltonovym rovniciam, samozrejme aj s po¢iatoénymi podmienkami. Do
fazového priestoru sa ndm pociatoénd podmienka premietne existenciou nejakého ¢ a py, - stav systému v
case t = 0 (alebo inom pociatoénom ¢ase tg). Z tohto bodu mézeme vychidzat d'alej. Hamiltonove rovnice
ndm totiZ jednozna¢ne hovoria, ktorym smerom (vo fdzovom priestore) sa mame pohntit dalej, aby sme tym
sledovali redlny opis systému. Vseobecne, ak sa v ¢ase ¢t nachddzame v bode [p(t), p, ()], potom Hamiltonove
rovnice diktujd, kde budeme v ¢ase t 4+ dt¢ (o kisok neskor):

OH 0OH OH
=— = dp=—dt = t+dt) = p(t) + —dt
°= o Y= o p(t +dt) = o(t) .
. O0H OH 0H

Rovnaki tivahu moézeme pouzit na pripad, kedy by sme sa pytali, kde bol systém v ¢ase t —dt, ak v ¢ase
t (teraz) je v bode [¢(t), py(t)]? Odpoved na tito otdzku sa skryva tiez v Hamiltonovych rovniciach a ide
vlastne o obratenie smeru casu, teda dt zamenime za —dt a pozrieme sa, kde sme boli o kiisok skor. To ale
znamend, ze tvarom Hamiltonovych rovnic a zadanymi pociatoénymi podmienkami je automaticky urcena
trajektdria vo fézovom priestore, po ktorej sa bude pohybovat siradnica ¢ a jej hybnost p,, pricom této
trajektoria je parametrizovand ¢asom®. Pre rézne poéiatoéné podmienky tak dostadvame roézne krivky, ktoré
sa navzajom nepretinaji’. Kazd4 krivka opisuje mozné chovanie systému pri nejakej konkrétnej pociatoéne;
podmienke, ¢o budeme nazyvat fdzovy, alebo Hamiltonovsky tok®. Ak do jedného fazového priestoru za-
kreslime vela kriviek pre vela réznych pociatoénych podmienok, takyto obrdzok sa nazyva fdzovi portrét.
Uvedieme si dva nateraz zaujimavé fazové portréty - jeden pre linedrny harmonicky oscilator, druhy pre
rovinné matematické kyvadlo.

Lagrangidn linedrneho harmonického oscildtora kmitajticeho v smere osi z bez posobenia inych sil (napr.
gravitdcie) ma nasledovny tvar:

1 1
L(z) = imz’2 - §kz2

7 toho vyplyva, ze Hamiltonian tejto sustavy bude:

2
1
H(zp) = 5+ 5k2

6Toto nie je tazké si uvedomit - v kazdom ¢ase t mame totiz jednoznaéne z poéiatoénej podmienky uréeni hodnotu ¢(t)
a py(t). To ale znamend, ze ked sa pohybujeme v ¢ase ¢, bod [¢(¢), p,(t)] sa vo fdzovom priestore pohybuje po istej krivke
(uréenej prave Hamiltonovymi diferencidlnymi rovnicami) - inak povedané, stradnica a jej hybnost sa pohybuji po krivke
parametrizovanej ¢asom.

"Pre dve rozne pociatoéné podmienky mozno dostat totozné trajektérie vo fazovom priestore. Co sa nemdze staf, ze by sa
dve krivky pretinali, spajali, ani rozdelovali - musela by totiz nastat situdcia, kedy sa bod z daného miesta vo fazovom priestore
pohne do viacerych smerov naraz, ¢o vSak nie je mozné (pretoze tento smer je jednoznaéne ur¢eny Hamiltonovymi rovnicami v
prislusnom ¢ase t).

8Hamiltonian flux
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Hamiltonove rovnice pre z a p:

2.;:

3=

p=—kz

Tieto rovnice sa daji nastastie vyriesit analyticky pre p(z), z(p) (popripade implicitne®) nasledovnym
postupom:

2:2 — dz:ipdt E— dt:mdz
m m p
. dp
p=—-kz = dp=-kzdt = dﬁ:—E
mdz_ dl ki
p  kz m

1
kzdz=——pdp /
m

2

1 P

“k2+—=C

2 2m

Pokiisme sa interpretovat tento vysledok. Na lavej strane mame vlastne siéet potencidlnej energie a

kinetickej energie (tu ma zovseobecnend hybnost naozaj zmysel hybnosti p = m ). No tento sticet sa ale
rovné celkovej energii, teda integraénd konstanta je vlastne celkovd energia (a teraz vidime, Ze musi byt
nezaporna):
7

=Iy>0
om 0=

L 5
5 kz® 4+
Za tychto podmienok teraz moézeme nakreslit fazovy portrét vo fazovom priestore - na horizontalnu os
nanesieme hodnoty z, na vertikdlnu p. Je jasné, ze tento portrét bude tvoreny sustrednymi elipsami, kde
hlavna a vedlajsia os zévisia od tuhosti k, hmotnosti m a celkovej energie oscildtora Ey. Toto Ey je nakoniec
len skélovaci parameter (jeho zva¢senim/zmensenim sa zvacsi/zmensi celd elipsa, bezo zmeny pomeru dizok
hlavnej a vedlajsej poloosi).

9Tmplicitnym rieSenim nazveme také, v ktorom nemame k dispozicii priamo funkciu y = f(x), alebo = = f~1(y), no mame
k dispozicii implicitni zavislost « a y uréent nejakou funkciou F(z,y) nasledovne:

F(z,y) =0
Ak bod (zo,y0) spliia funkéntd zévislost F(zo,y0) = 0, za danych podmienok, o ktorych hovori veta o implicitne zadanej
funkcii, existuje v okoli tohto bodu funkéna zavislost z(y), alebo y(z). Existencia este nehovori ni¢ o tom, Ze by sme taki

funkciu vedeli napisat explicitne.
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Nasledujuci graf ilustruje fazovy portrét pre linedrny harmonicky oscildtor kmitajici v smere osi z,
pricom jeho hmotnost je 1kg a jeho tuhost je 0.5 Nm™1:

Féazovy portrét 3.1: Linearny harmonicky oscilator
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Prvy priklad, zndzornenie fdzového portrétu pre linedrny harmonicky oscildtor, bol velmi jednoduchy,
pretoZe stistavu ktord ho opisuje, je mozné riesif analyticky. Mnohokrit sa stdva, Ze systém, ktorého
spravanie by sme radi poznali, nie je riesiteny analyticky v elementarnych funkciach, v niektorych pripadoch
dokonca ani v kvadratirach!?.

Druhy priklad, rovinné matematické kyvadlo, vieme riesif v kvadratirach. Problém je vSak v tom,
ze neexistuje elementarna funkcia, ktora by tento pohyb opisovala. Pre ilustraciu tejto potiaze sa naozaj
poktisime riegif diferencidlnu rovnicu rovinného matematického kyvadla. Lagrangidn tejto ststavy je:

1
L=T-U= iml%bg + mgl cos(p)
Vidime, ze v iom explicitne nevystupuje cas, teda plati zdkon zachovania energie:
1 2.9 .
E=T+4+U= iml $° — mgl cos(p) = konst.

Rovnaky tvar by sme dostali, ak by sme upravovali rovnicu rovinného matematického kyvadla:

3+ Tsin(p) =0 /sb:if

2+ 9 gin(o) 3P —
<pg0+lsm(ga)dtf0 // dt

Pocitame oba integrély:

... .. PP .. 1.
/Wdt = w—/wdt = /Wdt=§s02

l
2.2 _ 2 _ .
ml“p® —mgl cos(p) = Cml® = konst.
L 5.0
gml $° —mglcos(p) =F (3.12)

Vidime, Ze sme dostali rovnaky tvar, ako zo zdkona zachovania energie. Podme sa pozrief na rieSenie
tejto rovnice.

10Rjesit rovnicu v kvadratirach znamend najst integralne vyjadrenie pre ¢(t) zadané implicitne:

%] t
£y’ = [ gryar
Y0 Jto
kde tento tvar (pri moznom néjden{ primitivnej funkcie ku f ako F(p) = [ f(p)dy a ku g G(t) = [ g(t)dt) implicitne zadava
tvar (t). Niekedy je mozné najst aj explicitny tvar:

F(p) = F(po) = G(t) = G(0) == ¢(t) = F~'[G(t) + F(p0) — G(0)]

Mnohokrat vsak rovnicu nevieme riesit v kvadratirach, ¢o moze znamenat, Ze napr. nevieme separovat premenné. Druhy
problém sa skryva v samotnej integracii, no ak uz mdame riesenie v kvadratiurach, zvycajne sa to poklada za uspech. Integraly
totiz mozno spolahlivymi metédami riesif numericky, kdezto hladat rieSenie diferencidlnych rovnic (najmi nelinedrnych) je
tazsia tloha.
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Vo fyzike byva zvykom, Ze Ziadnu rovnicu neriesime v takom tvare, v akom sme ju napisali (aj s
fyzikdlnymi konstantami a prislusnymi rozmermi). Kazdt rovnica, ktort chceme riesit, je dobré priviest
do bezrozmerného tvaru - jednak samotné premenné, ktoré st predmetom riesenia, budi mat bezrozmerny
tvar a taktiez rozne konstanty, ktoré v nej vystupovali, sa vielijako §ikovne zakryji. Budeme demonstrovat
proces, ktorym privedieme rovnicu (3.12) na jej bezrozmerny tvar. Vychddzame zo zdkona zachovania energie
pre rovinné matematické kyvadlo - dovod je ten, ze je to oby¢ajné diferencidlna rovnica prvého radu, ¢o je
ovela lepsie, ako mat rovnicu druhého rddu (v skuto€nosti ¢lovek riesi radsej rovnice s ¢im mensim rddom,
¢o je aj dovod, preco su zdkony zachovania tak obltibené a hojne vyuzivané). Rovnicu napiseme tak, aby
nulova potencidlna energia bola pre ¢ = 0, teda ked volne visi:

1
§ml2¢2 +mgl [l —cos(p)] = E

Vidime, Ze na pravej strane vystupuje celkova energia kyvadla. Prirodzenou snahou pri oddimenzionali-
zovani rovnice je prepisat doleZito vyzerajiice konstanty pomocou inych konstant, ktoré v nej tiez vystupuju.
Jeden z ndpadov, ktoré moze ¢lovek dostaf ked sa pozrie na celkovi energiu E, Ze ju vyjadri pomocou
hmotnosti m, gravita¢ného zrychlenia g a diiky kyvadla [. Skutocne, vyraz mgl ma jednotku energie a je
to velmi prirodzens konstanta vzhladom na situdciu, ktord riesime. Kvoli tomu, aby neskor vysla rovnica v
prijemnejsom tvare, pouzijeme hodnotu 2mgl. Celd podstata tejto tivahy teda bude tkvief v nasledujicom
vztahu:

E =2mgle

V tejto rovnici je zachytend myslienka, ze celkova energia sustavy (ktord je pri zadanych pociatoénych
podmienkéach uz naveky konstantnd) sa dd vyjadrit ako nejaky redlny (bezrozmerny) kladny ndsobok po-
tencidlového rozdielu medzi spodnou a vrchnou polohou kyvadla. Dosadme teda takto vyjadrent energiu
do rovnice:

1

1 5.9
= + 1- =2 —
2ml ©° + mgl [1 — cos(¢)] mgle /2m i

Teraz ocenime, Ze sme miesto E vzali 2mgle, plati totiz vztah:

[1 — cos(ip)] = sin® (f)

1
2 2

Clen % prirodzene nijdeme aj v prvom vyraze na lavej strane:
Lo L(#Y
4g<'0 g\ 2
PrepiSeme rovnicu pomocou poloviéného uhla ¢:
N\ 2
(¢ + sin? (f) =c
g \ 2 2
Natiska sa samozrejme prirodzena substitiicia daného poloviéného uhla:

1.
L=0 = -9 +sin’(®)=¢ (3.13)
g

o6
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V rovnici stale vystupuji konstanty g a [, avSsak stdle mame k dispozicii eSte jeden Sikovne skryty
parameter s rozmerom - ¢as. Naozaj, prvy ¢len obsahuje deriviciu podla ¢asu a teda rozmer ¢asu musi tiez v
prvom élene vyskoéit. Znovu sa pontika prirodzeny argument - moze existovat také Ty konstantné, Ze potom
akykolvek Easovy interval redlneho ¢asu t bude bezrozmernym nisobkom tohto Ty. Inak zapisané:

t=Tyt = dt =Tpdr
Potom sa ndm mierne upravi pravidlo pre derivovanie funkcii zavislych od t:

g'_g_i%_ig
_dt_TodT_To

Toto pravidlo spolu s danou substiticiou pouzijeme v rovnici (3.13):
l 1
g To

Okamzite vidime celkom vhodny vyber konstanty Ty (¢o je takmer periéda malych kmitov kyvadla):

— @ 4 sin® (@) =«

Ty = \/> — 07 +5in? (D) =¢ (3.14)

Této rovnica (po danych spatnych substiticiach) opisuje rovinné matematické kyvadlo, no matematicky

sa s fiou pracuje ovela lepsie - nemusime totiz rozmyslat, kolko je g, [, m a E tak, aby sme kreslili pekné
obrazky. Substitiicie tento problém vyriefili za nas. Rovnicu d'alej upravujeme:

®? = ¢ —sin? (D)

P2 = [1 ~ Llan (@)}

:——\f\/ fsm

" /\f Lsin® (@)
1 A //
Ve /1- Lain? (@)
1/@:/&
Ve w/l—ésinQ(q))

Mozeme si gratulovaf - prave sa nam podarilo vyriesit rovnicu v kvadratiirach, ¢o viak vobec neznamend,
7e si jej riegenie vieme predstavit (v skutoénosti ndm z tohto tvaru nie je zndme takmer nié¢ - ku vieobecnému
rieSeniu je eSte dlhd cesta). Ukdzeme vSak eSte omnoho viac, zdvislost ®(7) vyjadrime explicitne, no tiez
nam to vela nepovie. Kvoli explicitnému vyjadreniu budeme musiet siahnut po nejakej matematickej knihe
s eliptickymi integralmi, kde ndjdeme nasledovni definiciu'!:

/ )
0 1 — k2sin? (t)

U http://mathworld.wolfram.com/JacobiEllipticFunctions.html
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Pravé strana nasej rovnice v kvadrattirach tak bude rovnd 7 a Iava bude vyjadritelnd pomocou tejto
funkcie F12:

[t o) s ()
F (q>, \2) =\er+F <<1>07 \2) (3.15)

Dostali sme implicitné vyjadrenie ®(¢). Pre explicitné musime poznat funkciu F~1, ktorou je Jacobiho

amplittidna funkcia, ktord spina (celkom logickd podmienku inverznosti funkcie)®3:

u="F(® k) = F '(u, k) =®=am(u,k)

Nasa funkcia ®(¢) teda bude vyjadritelnd explicitne za pomoci Jacobiho amplitiidnej funkcie v nasle-
dovnom tvare:

1 -1 1
ﬁ) = O(1)=F (u,%

1 1
®(7) = am [\@T +F <<I>0, \/§> , \/g} (3.16)

Ako iste vidime, z tohto tvaru vlastne ni¢ nevidime. Z daného vyjadrenia (aj ked explicitného) sme
v skutoénosti zfskali velmi mdlo. Ak méame poruke dobry plotter grafov s implementovanymi eliptickymi
integrdlmi a ich inverznymi funkciami, mozeme si skisit daf vykreslif dand rovnicu pre rézne € (¢o velmi
zdsadne meni vyvoj pohybu kyvadla v case) a ®¢ (vyvo]j kyvadla meni len okrajovo, v podstate vyjadruje
pociatoéni polohu kyvadla). Ak taky plotter poruke nemdme, tato rovnica ndm nehovori vébec ni¢. Bolo by
teda dobré pouzit ind metédu, pomocou ktorej pohodlne nahliadneme do daného systému bez explicitného
rieSenia jeho rovnic. Tou je préve kreslenie Hamiltonovského toku vo fadzovom priestore (Co je teraz celkom
dobre mozné, vzhladom na to, Ze jeho rozmer je 2).

u=F(®, )

12Volanej eliptickyj integrdl prvého druhu. Je vhodné poznamenat, ze zapisov tejto funkcie existuje viac:
4 dt
Flp.k) = Flplk?) = Fsingib) = [~ ————r
Jo 1 —k2sin?t

13V tomto okamihu sa nebudeme zaujimat, i je, ako funkcia F(z, k), tak aj funkcia am prosté - postaci ndm fakt, ze vysledn
funkcia am, napriek tomu, Ze nie je (pre kazdé k) injektivna (prostd), ddva dobré vysledky o priebehu otd¢ania kyvadla v
¢ase. Analégiu mézeme vidiet vo funkcii sinus a jej inverznej cyklometrickej funkcie arkus sinus. Sinus nie je prostd funkcia,
napriek tomu sme schopnf riesit rovnicu linedrneho harmonického oscildtora implicitne (najprv v kvadratirach a d'alej pomocou
vypoctu integrdlu) v podobe:

. x .
arcsin (—) =wt = z(t) = zo sin(wt),
xo

teda problémy s tym, Ze by funkcia am (alebo sinus) nebola prostd, prisne vzaté neberieme do tvahy. Koho by zaujimali
defini¢né obory, ohladom funkcie F(z, k) rychlo vidime, Ze pre k > 1 je vyraz nedefinovany (komplexny) pre niektoré z € R
(vidime analégiu s funkciou arcsin, ktord nie je definovand pre |x| > 1). Naopak, funkcia am (bez ddékazu), je pre k > 1

periodickd, pre k = 1 neperiodickd, neparna, asymptoticky sa bliziaca k hodnote 5 a pre 0 < k < 1 neperiodick4, rastiica.
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Otédzkou teda je: ,,Ako riesit pohybové rovnice bez riesenia pohybovych rovnic?”. Mohli by sme sa
vratit ku Hamiltonovym rovniciam pre rovinné matematické kyvadlo a skusit z nich pre rozne parametre
zostrojit fazovy portrét, no natiska sa lepsia moznost. Mame totiz k dispozicii bezrozmerni rovnicu (3.14):

"2+ sin? (®) = ¢

KedZe zovieobecnend hybnost pre stradnicu ¢ je imernd ¢, tak je mozné povedat, ze ®’ rovnako dobre
poslizi namiesto zovieobecnenej hybnosti a ® namiesto zovieobecnenej stiradnice p'4. Na horizontalnu os
teda budeme znacit stradnicu ®, na vertikdlnu ®’. Este pripomenieme, Ze situdcia sa v uhle ¢ opakuje
s periddou 27, v uhle ® sa teda opakuje s periédou w. Situdciu si teraz rozdelime na tri pripady, po
kvalitativnom vysetren{ vSetkych troch nakoniec nakreslime aj fazovy portrét.

Prvy pripad, ¢ < 1. Cim je vlastne tento pripad taky zaujimavy? Podmienka ¢ < 1 vlastne hovori o
do ktorého sa kyvadlo méze dostaf (teraz sa ndm $kala, ktort sme zaviedli na zaciatku, velmi hod{). To
ale znamend, Ze samotné kyvadlo sa pohybuje okolo spodnej hodnoty - ked'Ze energie m4 len tolko, aby sa
ledva kyvalo okolo ® = 0. Za tychto podmienok méZzeme zanedbat nelinedrnost funkcie sin(®) a nahradit ju
priamo argumentom. Dostaneme:

P2+ =¢ (k1)

Tym sme vlastne dostali rovnicu kruznice s malym polomerom +/c. A presne taky pohyb bude kyvadlo
opisovat vo fazovom priestore. Nieto ndm to ndpadne pripomina - linedrny harmonicky oscildtor. Naozaj,
v prvom priblizeni malych kmitov je kyvadlo linedrny harmonicky oscildtor. Tento fakt sa d4 ukizat ako
z rovnice (3.15), tak aj z (3.16). V rovnici (3.15) pouzijeme fakt, ze & <« 1, tym paddom aj 0 < a < P
je zanedbatelnd oproti 1 a teda sin(a) moézeme zamenit za « a (z prislusného parametrického integralu)
dostaneme:

1/®daml/q)(m:/(b(m:arcsin(@):T
®(7) = Vesin(r) = /(1) = Vecos(t) = %+ P2 =¢

Kto by si dal td pracu a naozaj vykreslil funkciu am(\/gr, %), dostal by podobny graf (tvarom naozaj
podobny funkcii sinus):

0

0.10 -
| A //\
L L L L
5 10 15 T

20

-0.051

-0.10+

Graf funkcie 3.2: ®(7) pre ¢ = 0.01

MKomu by sa tito argumentdcia nevidela, méze skisif doviest Hamiltonove rovnice do bezrozmerného tvaru a zisti, Ze to,
¢o sme tvrdili v tejto argumentécii kvalitativne, bude zodpovedat skuto¢nosti. Cielom kreslenia fdzového portrétu nie je presne
aj s jednotkami zaznacit $kaly, na ktorych sa premenné pohybuji v oboch osiach, ale kvalitativne naznacit charakter pohybu
v sustave.
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Druhy pripad, € = 1. Tento pripad uz nem4 nic¢ spolo¢né s linedrnym harmonickym oscilatorom, takyto
pohyb je totiz neperiodicky. Podmienka ¢ = 1 hovor{ o tom, ze kyvadlo m4 mat presne tolko celkovej energie,
aby sa akurdt vysplhalo na vrchol kruznice, kde ¢ = 7 a ® = 7. Nech uz tento pohyb zacina odkialkol'vek
(okrem vrcholu), jeho priebeh sa s ¢asom rastiicim do nekoneéna asymptoticky blizi ku hodnote ® = 7. Toto
rieSenie sa skryva aj v rovnici (3.14):

P2 sin? (@) =e=1
®"? =1 —sin? (®) = cos?® (P)
¢ = tcos(®); |9 <=
Vo fazovom portréte sa teda bod snazi po takejto Eiare dostat az do bodu, kde ® =0 a ® = 3, o

realne tam dbéjde v nekonecnom case.
Presné riesenie v ¢ase je vyjadritelné v elementdrnych funkciach (bez dokazu):

®(7) = 2arctan(e”) — %

Asymptotika tohto rieSenia pre 7 — oo je:

®(7) = 2arctan(e”) — g = g —2e7T+0(e?); T 00
Vidime teda, 7Ze kyvadlo sa naozaj exponencidlne pomaly bliZi k vrcholu kruznice (vietky daldie ¢leny
uz klesaju k nule rychlejsie, ako e™7).
Grafom tohto ¢asového vyvoja je funkcia podobnd arctan(7), no jej asymptotika je exponencidlna
(arctan(7) méd asymptotiku 7/2 — 1/7 pre 7 — 00):

1.5

1.0

0.5

Graf funkcie 3.3: ®(7) pree =1
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Tret{ pripad, € > 1 a € > 1. Situdcia je pre € > 1 lahsie nahliadnufeln - ak je celkovd energia kyvadla
ovela vicsia, ako potencidlovy rozdiel medzi spodnou a vrchnou polohou, mozno povedat, Ze dominantny
¢len bude ®'. Je tomu tak preto, lebo ¢len sin?(®) sa meni len v intervale (0, 1), ak je teda e velké (napr.
1000), druhy ¢len zavazi naozaj malo. Cim vicsie je teda e, tym , konstantnejsie” je ®'. Fyzikilne sa v
tomto pripade deje to, ze kyvadlo sa zakazdym pretoci cez vrchol - ¢im vacsie je €, tym menej citi, ze sa mu
vObec meni potencidlna energia a tym viac sa tento pohyb podoba na rovnomerny pohyb po kruznici a ¢len
®’ sa blizi ku konstante ®' = /. Pohyb je v premennej ® neperiodicky. V elementdrnych funkcidch sa dd
opisat len pripad € > 1, vtedy ®(7) = /7. Zaujimavy bude zrejme ten, kde & bude len o trochu viac ako
1 a potom ten, kde € > 1:

\““\““\““\T

5 10 15 20

Graf funkcie 3.4: ®(7) pre e = 1.001. ModZeme si viimnit, Ze energia ledva staéi na pretocenie kyvadla cez
vrchol, ktoré v tom momente znacne spomalf - len s fazkostou sa pretod.

S

35

30

25

20

\““\““\““\Z'

5 10 15 20

Graf funkcie 3.5: ®(7) pre € = 4. Tentoraz je energia kyvadla o dost vicsia, ako potencidlovy rozdiel medzi
spodnym a vrchnym bodom. Vidime, ze vyvoj ® (a teda aj ¢) v ¢ase je takmer linedrna funkcia, kyvadlo si
teda ledva ,,v§imne”, ¢i je v spodnej, alebo vrchnej polohe.
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Este raz ukdzeme postupné zvySovanie € z velmi malej hodnoty az po 1. Pre porovnanie dokreslime aj
kmity linedrneho harmonického oscilatora s rovnakou frekvenciou uvazovanych malych kmitov. Uvedieme

taktiez pripad € > 1.
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3.2. FAZOVY PRIESTOR

Samotny fazovy portrét zostrojime z ¢iastkovych informaécii o jednotlivych limitnych pripadoch:

el = d?+d*=¢
e=1 = @ =4cos?(®)
e>1l = & =+/c

Tam, kde nepozndme presny tvar, v mysli extrapolujeme medzi zndmymi tvarmi, alebo si ddme vykreslit
tzv. contour map funkcie ®2 + sin? (®) = e. Tato metéda ddva jednoznacne najlepsiu predstavu o fdzovom
toku:

3 | I I | I I I I | I I I | | I I I | | I I I | | I I |

—3 T T T T T T T T T T T T T T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3

Fézovy portrét 3.6: Rovinné matematické kyvadlo. Energia € sa men{ od 0 (fialovd) po 10 (bézov4).
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3.2. FAZOVY PRIESTOR

Do takychto obrazkov sa zvyknu kreslit aj sipky, aby bolo jasné, ktorym smerom sa tok pohne z daného
miesta fdzového priestoru (tento smer odpovedd skutocnej snahe kyvadla zvacsit /zmensit stradnicu @, resp.

D):

_2 ’—é—&

Vektorové pole 3.7: Fézovy portrét s vektorovym polom pre rovinné matematické kyvadlo. V rovnovézne;
polohe (® ~ 0,9’ =~ 0) a v okol{ vrchnej polohy (@ = ig, &’ ~ () st sipky malé, pretoze v tychto miestach

je pohyb pomals{ (zanikd v oboch polohdch).




3.2. FAZOVY PRIESTOR

3.2.2 Liouvilleova veta*

Majme fazovy priestor, ktory budeme symbolicky znacit v dvoch rozmeroch (no veta plati vieobecne).
V tomto priestore sa pohybuji stradnice ¢ a hybnosti p k nim prislichajice, ktorych pohyb v case sa
riadi Hamiltonidnom H. Na zaciatku (¢ = 0) si vyberieme mysleny objem V vo fazovom priestore (teda
zapiSeme mnozinu vsetkych pociatocnych stavov, ktoré do tohto objemu v ¢ase t = 0 patria, ¢im dany objem
definujeme). Tento objem oznac¢ime D(0) a pocitame ho ako ndsobny integral cez tento objem z funkcie 1
(teda ako mieru danej oblasti):

D(0) = / dgy - dg,, dpy -~ dp, (3.17)
D(0)
=dngq =d"p

Ked sa teraz pohneme v ¢ase do vSeobecného momentu ¢, aj stradnice a hybnosti sa vo vieobecnosti
nejako pohnt, no stéle budt vo fdzovom priestore tvorit objem (ktory tentoraz definujeme tak, Ze stradnice,
ktoré si pamitdme uz z éasu t = 0, budeme hladat po celom priestore a ked ich nijdeme, tak priestor,
ktory budui zapfﬁat’ budeme povaZovaf za objem, o ktorom je momentdlne re¢) D(t). Obdobnym sposobom
pocitame objem D(t):

D(t) = / d"qd’p (3.18)
D(t)
Plati veta (Liouvilleova):

D(t) = D(0) (3.19)

Dékaz: v integraloch, ktoré definuji rovnicu (3.19) integrujeme jednotkovi funkciu, teda délezita bude
zrejme len zmena stradnic v dosledku posunu v éase. Budeme uvazovat infinitesimdlny posun v éase.
Suradnice q a p sa transformujui z casu t do ¢asu t + dt.

<q1(t), e qn(t),p1(8), ... 7pn(t)) — <q1(t +dt),...,qn(t+dt),p1(t+db),...,pa(t+ dt)) (3.20)

Z Hamiltonovych rovnic dostdvame (pre malé dt):

. OH
4 —>Qi+q1'dt:fh+?dt:qg
bi (3.21)

. oH
pi — pi + pidt = p; — Tdt =7
qi

Cel4 veta zrejme bude staf a padat na transformécii objemového elementu za €as dt. Element sa
transformuje podla vzfahu zndmeho uz z matematickej analyzy:

AV (t + dt) = JAV(¢) (3.22)
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J je determinant Jacobiho matice:

9 da  Oa o4 O
Oq1  0qe 9gn Op1 Ipn
gy Oqy  9gy Oqy gy
o1 Oqo 0gn  Op1 Ipn
: R oo 9q;  Oq;
/ / / / / 8q . 8]) .
7 |%n a4 . 0w Oqn  Oaqn| _|9% OPi (3.23)
01 Ogo 04,  Op Opn op;,  Op,
o on o ok onk| |90 O
0q1  Oqa 0q,  Op1 Opn
oy o ol
o1 Ogqo ¢, Op1 Opn,
V nasom pripade bude J vyzerat nasledovne:
0’H 0°H 0°H 0°H 0°H
14+ dt dt s dt ——dt e dt
Op10qy Op10qa Op10qn, op? Op10pn
0*’H 0’H 0°H 0*’H 0*’H
dt 1+ de --- de dt . dt
Op20qq Op20qs2 Op20qn Op20p1 Op20pn
O H 02 H ' O H 02 H  om
J=| ——dt —dt R dt dt cee ——dt 3.24
8pn8q1 apnaQQ apnaQrL 8pnap1 8p% ( )
2H 2H 2H 2H °H
_672 _6 dt ... _ 9 dt 1-— 9 ¢ ... = 9
dqi 0q19q2 9q10qn 0q10p1 0q10pn
Z.H 2-H . Q.H .2 . .QH
_L _ 9 U _82 _ 9 & . 1= 9 dt
99 0q 0¢n.9q2 oq; 9¢n0p1 0Gn9pn,

Vidime, Ze Jakobidn je mozno vyjadrit ako determinant stétu jednotkovej matice a dt-ndsobok nejakej
inej matice. Kedze je vSak dt malé, tento determinant mozno rozvinit do prvého radu Taylorovho radu v
okolf det (I5,,) = 1, pricom zvysok radu bude klesat k nule aspoii rovnako rychlo, ako dt?:

J =det (Ip, + dt D) = 1 + tr (D) dt + O (dt?) (3.25)

Matica D je vlastne zvySok po pévodnej matici, ak z diagonédl odoberieme jednotky. Této matica sa da
vyjadrit po blokoch:

2n

~nn_ mn

oOH oOH

opi0q; | | Ap.op;

D= 2n

 O0H || 0H

04;0q; | | Oq;0p;

n=n n<n
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Stopa matice je stcet jej diagonalnych prvkov, v tomto pripade zoberieme len diagondlne bloky a z nich
polozenim ¢ = j a vysumovanim cez prislusny sumacny index dostaneme jej stopu:
0’H 0*°H
tr(D)= ——— - ——=0 (3.26)
Opi0q;  0q;0p;
Tento vyraz je identicky rovny nule, pretoze predpokladdme spojitost druhej zmieSanej parcidlnej de-
rivdcie Hamiltonidnu podla zovieobecnenej siradnice a prislusnej zovseobecnenej hybnosti (a teda tieto
derivécie sa po zdmene poradia rovnaji). Pre Jakobidn teda dostdvame:

J =det (Ip, +dt D) = 1+ tr (D) dt + O (dt*) = 1+ O (dt?) (3.27)

To pre zmenu Jakobidnu znamen4:

§J = O (dt?) (3.28)

A pre ¢asovi derivéciu jej nulovost:

. dJ
= fim, G = m, 0100 =0 (20

Vidime, ze ak sa z ¢asu t posunieme do ¢asu t + dt, Jakobian transformécie suradnic sa zmeni najskor
az v druhom rade v dt a to plati v kazdom ¢ase t. Lenze to znamend, ze Jakobidn sa v ¢ase nemeni (J =0),
teda sa nemeni ani objem D(t).

Liouvilleovu vetu budeme demonstrovat na rovinnom matematickom kyvadle. V jeho fizovom priestore
si na zaiatku vyberieme mnozinu bodov (za¢iatoénych stavov), ktoré budeme d'alej sledovat v ¢ase. Tvar
tejto mnoziny v kazdom d'alsom ¢ase uréuje vyber zaciatoénych stavov a samozrejme aj tvar potenciilne;
energie. Pre kvadraticky potencidl, ¢o je obycajny linearny harmonicky oscildtor, nenastdva ni¢ zaujimavé.
Frekvencia jeho kmitov totizto nezévisi od zaciatoénych podmienok (az na pripad nulovej energie, ¢o je
oscildtor naveky sediaci v pociatku). Teda nech by sme do jeho fazového priestoru rozhodili akokolvek siibor
oscildtorov, tento sibor bude krizif dookola a jeho tvar ostane nezmeneny.

V pripade kyvadla je situdcia ovela zaujimavejsia: pre e < 1 (teda vsetky oscilatory rozhddzané blizko
® =0 a P =0) by sme ocakavali, Ze bude (aspon isty ¢as) este dobre splnend linedrnost kmitov, t.j., Ze ich
frekvencia nezavisi prilis od vychylky. V ¢asovom vyvoji siboru oscildtorov sa tato takmer-linearita prejavi
nie prilisnym rozmazivanim stiboru, no isté rozmazanie po dostatoéne dlhom Ease prist musi.

Pokial bude nds pociatoény stibor zahfiiaf aj energie blizke, dokonca rovné kritickej energii € = 1),
budeme pozorovat znaéni deforméciu tvaru tohto stiboru. Periéda kmitu kyvadla totiz rastie do nekoneéna s
€ — 1. Pre e = 1 dokonca analyticky vieme, ze ¢asovy vyvoj kyvadla sa exponencidlne blizi ku vrchnej polohe,
no to znamens, ze takyto pociatoény stav skonéi limitne v nekoneénom ¢ase v bode (7/2,0). Ocakdvame
teda, Ze kym energie blizke nule budd poslusne krizit dookola, energie blizke 1 budd zna¢ne zaostavat, éo
uz po relativne kratkom ¢ase sposobi rozmazanie siboru oscildtorov.

Velmi zaujimavy pripad je, ak stibor na zaciatku obsahuje rozne energie - aj mensie, aj vacsie ako 1.
Vieme, ze pre € > 1 je pohyb neperiodicky a vo fdzovom priestore utekd donekone¢na doprava (popripade
dolava pre &' < 0), kym pre € < 1 ostdva pohyb ohrani¢eny v periodickej oblasti. To ale znamena, ze kym
¢ast oscildtorov ostdva krizit okolo stredu, ich druh4 éast v ¢ase stale utekd preé¢. Intuitivne by sa zdalo, Ze
sa takyto sibor (aj ked na za¢iatku tvoriaci spojiti oblast) musf nutne roztrhnit, no nie je tomu tak, ako
uvidime.

Na nasledujticich strandch demonstrujeme tieto pripady a pripominame, Ze podla Liouvilleovej vety st
vietky oblasti konstantné ¢o do plochy (bez ohladu na exoticky vyvoj ich tvaru v case).
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(k) 7 =190
boru oscildtorov s nizkou energiou (¢ < 0.5).
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Obréazok 3.8: V.

(j) m=60
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mal na zac¢iatku energiu € = 1 sa exponenciélne blizi k bodu (7 /2,0).

Obrézok 3.9: V
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3.3. SKALOVANIE

3.3 Skalovanie

Skélovanie veli¢in je proces, pri ktorom zistujeme, ¢ a akym sposobom mozno zmenit skély daného
procesu (€asové, diikové, ...). K vysledku mozno dospiet z pohybovych rovnic, z Lagrangidnu a samozrejme,
aj z rieSenia (no Skédlovanie Castokrat funguje aj bez explicitného vyrieSenia danych rovnic). Vezmime si
napr. pohybovi rovnicu volného padu v gravitaénom poli:

5(t)+g=0 (3.30)

Tvarme sa, Ze stojime na Mesiaci. Chceme dat do stvisu ¢asové a dizkové skély padajiceho telesa v
terajsej situdcii s tymi, ktoré pozndme z podmienok zndmych na Zemi. Myslime tym nasledujiice vzfahy
medzi fyzikdlnymi veli¢inami na Mesiaci (z, ¢, g) s tymi na Zemi (Z, T, go).

z=a/
t=0bT (3.31)
g = C9o

Nasim cielom bude prepisat rovnicu (3.30) na totozni rovnicu pre premenné Z a T a parameter go.
Oznaéme aZ(T) = z(t). V takom pripade bude pre druhi derivéciu Z podla ¢ platit:

d2z(t) d2Z(T) d2Z(T)&PT  ax
2(t) =aZ(T) = oY Y a4 s b—2Z(T) (3.32)
b—zZ(T) +cgo=0 (3.33)

Pre péad telesa na Zemi musi platit rovnica rovnakého tvaru ako (3.30), ibaze v premennych Z, T a s
konstantou go. Rovnicu (3.33) teda upravujeme dovtedy, kym nedostaneme podmienku na konstanty a, b a
c:

ok 2

[% <Z(T) + acgo) =0 (3.34)

Kym konstanta pred zdtvorkou rieseniu rovnice nevadi (pretoZe ju mozeme vykratit z rovnice), konstanta
nasobiaca gy musi byt rovna jednej, z éoho dostaneme podmienku na gkalovanie samotného éasu padu:

2
bc:1:>b:\/g (3.35)
a C

Vysledok zodpoveda intuitivnej predstave: pri pusteni telesa z a-krat vacsej vysky v c-krat silnejsom
gravitatnom poli bude ¢as pddu trvat /a/c dlhsie.
Teraz sa pozrime na Newtonov gravita¢ny zdkon:

mM7

m
; — <1
3

M

Vieme, ze pre planéty v Slnecnej sustave je riesenie 7(t) periodické. Podobne ako v predoslom priklade
preskalujme dlzky a c¢as:

mr=—k
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3.3. SKALOVANIE

To, ¢o sme dostali vyzera, ako Keplerov zédkon; ak preskalujeme dfzky obehu planéty okolo slnka a-krat,
potom doby (teda aj obeznd doba) vystupujice v pohybe sa preskaluji ako a®/?:

L —al = T — d**T

Keplerov zakon hovori, ze pomer tretich mocnin hlavnych poloosi a druhych mocnin obeznych déb
planét je konstanta. Z tejto analyzy by sa mohlo zdat, Ze sme prave velmi lacno odvodili Keplerov zakon.
Nie je vSak tomu tak. Keplerov zakon v skuto¢nosti hovori viac. Vo svojom zakone sa vyjadruje ku vsetkym
planétam Slne¢nej sustavy, kdezto nasa analyza sa vyjadrila len k takym tvarom trajektérii, ktoré su si
podobné (tj zoberiem lupu a na cely pripad sa pozriem zvécsene). Keplerovo pozorovanie sa tykalo aj
planét, ktoré nemaji podobné drahy (v zmysle rovnakej vystrednosti), teda je vSeobecnejsie ako to, ¢o sme
prave ukazali.

Teraz si ukdzeme, Ze aj Skalovanie Lagrangidnu sa niekedy ukdze byf uzitoéné. Najprv si uvedomime,
ze ak nejakym postupom sposobime, ze Lagrangian dostaneme prenasobeny nenulovou konstantou, vlastne
sme ni¢ hrozné neurobili - Lagrangeove rovnice sa tym nezmenia (pretoze v nich mézeme tito konstantu
vykratit. Tato pozndmka plati len pre potencidlové sily):

L — AL = Lagrangeove rovnice sa nezmenia

Tento princip si demonstrujeme na rovnakom priklade volného padu, ktorého Lagrangidn vyzera nasle-
dovne:

1
L(z, %) iméQfmgz
z2(t)=aZ(T), t=0bT
2
1 5 1 (ax
imz —mgz-2<bZ> —mg(aZ)
T—U—L—>(9)2T— U—(a> T—fU “\NT-U) = "
- b “ = - a
di di

Vidime, ze sme sa dopracovali k tomu istému vysledku, ako predtym (pre jednoduchost sme uz gravitacné
zrychlenie neskalovali).

Priklad: predpokladajme, ze doba obehu Mesiaca okolo Zeme je presne jeden mesiac. Ako daleko od
Zeme musi obiehat druZica s dobou obehu 1 defi, ak Mesiac obieha vo vzdialenosti ,,? Podla prikladu zo
skalovania Newtonovho gravitacného zakona vieme:

13 3 1 1 L\
3 = 2:>ld_l§n N;:<m>
(30dni) (1den) 900 1000 10
Priklad: gkdlovanie kyvadla. Pracujme s Lagrangidnom kyvadla a pozrime sa, ¢i vieme nieto zistif

ak budeme gkédlovat velké kmity kyvadla (napr. ako sa zmen{ doba kyvu, ked poéiatoénd vychylka sa
zdvojndsobi?):

b2
¢+%Sin(<p):0—>bi2f¢+%sm(f80) f[@"'f?Sln(f@ )}

Vidime, ze ak f-krat preskdlujeme vychylky kyvadla, ni¢ sa o jeho spravani nedozveddme - neexistuje
totiz moznost, ako z tejto rovnice dostat povodniu rovnicu nejakymi tipravami pre vSeobecné f (povodny
tvar nedosiahneme Ziadnou netrividlnou volbou a a b). Je tomu tak, pretoZe spravanie kyvadla, ako sme uz
videli v predoglych ¢astiach, je vemi exotické - pokial je poéiatoéna vychylka 90 stupiiov, jej zdvojniasobenim
dostaneme nekonecnti dobu kyvu, ak si vSak vychylky malé (tak malé, ze budeme so zanedbanim sin(z) = x
spokojni), doba kyvu nezdvisi od pociatocénej vychylky (malej).
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3.4. PROBLEM DVOCH TELIES

3.4 Problém dvoch telies

Problém dvoch telies je populdrny a zaroven analyticky riesitelny v uzavretom tvare, ¢o ho predurcuje
ako ucebnicovy priklad rozmanitého vyuzitia prednosti Lagrangeovskej mechaniky.

Majme nekonec¢ny, prazdny priestor a v nom dve bodové telesd hmotnosti m; a mso, ktoré maju polohu
(voci nejakému nepodstatnému pociatku) 77 a 7. Predpokladajme, Ze sila medzi tymito dvoma telesami
sa da opisaf jedinou funkciou potenciélnej energie U (7, 7,). Skiisenost ukazuje, Ze v takomto nekoneénom
vesmire nie je ziaden smer ani bod preferovany - preto by mohlo platit, Ze pri posunuti oboch telies o rovnaky
vektor a, sa posobenie medzi nimi nijako nezmeni:

U(r +d, 7 +d) =U (7, 72)

Je mozné, ze tymto obmedzenim sa nejako zuzi pocet potencionalne pripustnych funkcii, ktoré by mohli
opisovat interakciu tychto dvoch telies. Podme néjst taki funkciu (najvseobecnejsiu moznit), ktora toto
spliia. Zaved me nové stiradnice @ a ¥ nasledovne:

— —

U=T] + 75 V=7 — 75
Dostaneme novu funkciu tychto novych siradnic:
U (",72) =V (4,7)

Pozrime sa, ¢o sa stane s novymi siradnicami a s novou funkciou, ked spravime posunutie o vektor a:

™ —rm+a To = Ta+d = U—U+2d D)

U((r,r) =V (u,v) U +adrm+ad) =V (d+2d7)
Ale musi platit:

U(Fl,FQ) e U(’Fl +d, —|—d) — V(’J,’U) = V(ﬁ—I— 26,17)

To ale znamend, Zze funkcia V moze zavisief len od druhého okienka, premennej ¥, no nie od prvého
okienka, premennej @. Pre pévodnu funkciu U to znamena ziiZzenie zo vSetkych moznych kombinacii vektorov
71 a 75 na také, kde dand funkcia zavisi len od kombindcie 7y — 75:

U (71,72) = U (71 — 72) (3.36)

Rovnaka podmienka by mala platit pre otocenia - ak obe telesa otoéim okolo toho istého bodu rovnakym
sposobom, vzédjomné posobenie telies sa nemodze zmenit. Rotécie sa deji pomocou rotacnej matice A:

™ — A Ty — AFQ
Pre funkciu U to méa zasadny dosledok:

U (AF, — Afy) = U [A(Fy — )] = U(F — 7 )

w{

= UAF)=UF) = U@ =U(7) (3.37)

To je vskutku o¢akdvany vysledok - potencidlna energia U musi byt konstantnd na guli s polomerom r,
teda zo vSetkych moznych kombindcii nakoniec potencidlna energia zavisi len od |7} — 73]:

= U (r,7) = U (|f —72[) = U(r) (3.38)
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3.4. PROBLEM DVOCH TELIES

Ked uz sme si ujasnili, od ¢oho potencidlna energia moze a od éoho nemoéze zdvisiet, pustme sa do
rieSenia samotného problému s nejakou vSeobecnou potencidlnou energiou. Lagrangian tejto siistavy bude:

.. 1 . 1
L<_‘7_»7_'7_’7t):7 2 a
1,72,71,72 2m1r1 +2

Lagrangeove rovnice budii bohuzial zrefazené (ani jednu nemozno riesit bez tej druhej). Zavedieme
teda nové stradnice R a 7, ktorych vyhodu spozndme velmi skoro:

maf — U (17 = fal) = L (71,72 71,7, K)

o S - My 4+ meT Lo o
(T1>7"2)_><R77'> Rzil ! 22 T=1T] —T9 (3.39)
mi + mo

Prva suradnica opisuje polohu hmotného stredu sistavy, druha siradnica je vlastne spojnica medzi

dvoma telesami. Inverzné transformécie ziskame l'ahko:

ma - my -

Fl = ﬁ + el FQ - é - r (3'40)
my + mo my + mo
Lagrangian prejde na tvar:
1T, 1 ., L 1 3 ma - > = mi o 2
— - -U - == R+ —"— - R— ——— - U(r) =
5T+ 5mary (|71 — 73]) 57 ( + o +m2r> +5me pe— (r)
1 : 1 m 2 m 2
_ - R’Q - 2 1 _.in _
g (1t ms )R* 4 5 |y (m +m2> +me (ml iy (r)
M
1.5, 1 2 2ma - 1 5, 1 .
_LYype, Lmyms; —i—mlgnng UG = fmRz 4 Lmimg (ma +72n1) 2 () =
2 2 (m1+ma) 2 2 (m1+my)
1 = 1 mimsy -
= _MR?*’+->—"=_7#2_U
2 * 2 my + mo " (T)
———
m
— L(ﬁ *) vz i —ueys w n _mme (3.41)
7)== —urc —=U(r) ; =my +m = .
9 2 2M ) 1 2 1Y m1+m2

Po ceste sme ziskali dve hmotnostné konstanty, prva vyjadruje celkovi hmotnost systému M, druhi je
redukovand hmotnost systému p'°. Prijemnym faktom je, Zze Lagrangian je odseparovany - rovnice pre R st
samostatné, nezavislé na rovniciach pre 7

i
I

M —hotovo (3.42)

0
F, —treba riesit (3.43)

=y
Il

W

Prvé rovnica jednoznaéne vyjadruje, Ze hmotny stred stistavy nesmie robit Ziadne psie kusy - maximalne
sa moze pohybovaf rovnomerne priamoéiaro. Druh4 rovnica je podstata problému dvoch telies a pri zadanej
sile (potencidli) a pociatoénych podmienkach vieme vypoéitat trajektériu v ase. Druhi rovnicu mézeme
este viac zjednodusit. Vieme, ze silové pole je centralne:

- - 1oU , .
FT——VUf—;era(r)r

15Mimochodom, jednd sa o polovicu harmonického priemeru hmotnosti mi a ma.
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3.4. PROBLEM DVOCH TELIES

Ak je silové pole centralne'®, potom nutne moment sily je nulovy:
— — — — 1 ] — g
M=rxF=rx|—--U7T]=0
r
To ale znamena, ze moment hybnosti je konstanta:

L=M=0 = L= konst. (3.44)
Na druhej strane plati:

-

L=Fxp = F-L=7F (Fxp)=0 (3.45)

7 tejto rovnice vyplyva, ze cely pohyb sa deje v rovine, ktora prechddza pociatkom'”. To nds opraviiuje
zahodit jednu z troch siradnic a zaviest na opis len dve stradnice, = a y, ktoré sa budd pohybovat v niektore;
rovine (uréenej uz pociatoénymi podmienkami). Lagrangidn prejde na tvar:

L(z,&,y,9) = ;,u(x —|—y) U(W)

Ukazuje sa, ze vhodnejsi opis by bol v poldrnych stradniciach (napr. z argumentu funkcie U zmizne
skaredd odmocnina a jej obsahom bude zase len jedna stradnica, r):

1 . ;
Qu (7’2 + 1"24,02) —U(r)

Ststava m4 podla Lagrangidnu dve zachovavajice sa veli¢iny:

('Tvy) - (T’ QO) = L(Tﬂ;’}(’ 90) =

1
K = E=pu (P +1°¢) + U(r) = honst. I (3.46)
L
w = g— = ur?p = w = konst. 11 (3.47)
¥

(3.47 1.) je zdkon zachovania energie, (3.47 II.) je zdkon zachovania z-zlozky momentu hybnosti (¢o
sme zistili uz trochu vyssie). Z druhého zékona zachovania vyplyva druhy Keplerov zdkon:

ds .
g = =w = §=kont. = §=So+ 2 (3.48)
1
Dalej by sme mohli pokracovat zdkonom zachovania energie:

1
S (PP +12%) + U(r) =

pr2<,b:w
1
QM(T +r >+U()
B2+ w2 +U(r) = E
2 2ur? B

16Centralne znamens, ze v kazdom bode priestoru je jeho smer totozny so smerom vektora 7. Jeho velkost sme vypoéitali
ako U’.
17 Jedin& moznost, ako urobit skaldrny stucin nulovym je nulovost aspon jedného z vektorov, alebo ich kolmost. Tym dostdvame

) . . P
priamo aj odpoved, v akej rovine sa bude diat pohyb - takej, ktorej normala je ZLA
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3.4. PROBLEM DVOCH TELIES

Pre zadané U(r) postupujeme nasledujicim spésobom:

2. 2
i ==FE — ZUey.(r)
e

kde U.s.(r) je efektivny potencidl sustavy:
w?
Uey.(r) = {U (r) + 2/”2] (3.49)

V rovniciach sa prirodzene objavila akasi efektivna potencidlna energia, ktora v sebe samozrejme skryva
aj skutoénu potencidlnu energiu dvoch telies. Sme v stave, ze ak nam niekto dé konkrétnu potencidlnu
energiu, problém méme vyrieseny v kvadratirach'®:

% = \/E\/E— Uef.(T)

(3.50)

dr —[dt=t—1t
ﬁm_/ o

Vidime, Ze ak by sme poznali U(r) (a vedeli vypoéitat dany integral v elementdrnych funkcidch), dostali
by sme riesenie ¢(r). To je takmer to isté, ako r(t), teda tloha je momentdlne vyriesend najviac, ako len
moze byt vzhladom na parametre, ktoré v ilohe pozndme. Pre uhol ¢ by sme riesenie nasli uz z r(t) znovu
zo zadkona zachovania z-zlozky momentu hybnosti:

9 w w
purryp=w = dp=——dt = ¢ = ——dt (3.51)
(@) (@)

Uz zo zakona zachovania z-zlozky momentu hybnosti vidno, ze pohyb v uhle ¢ je monoténny - vyraz
w/(pr?) totiz nemen{ znamienko.

Doteraz sa tloha volala vieobecne - problém dvoch telies. KedZe sme v stadiu, Ze vela toho uz pre
vieobecni potencidlnu energiu nezistime, zavedieme gravitaéni (popripade elektricki prifazlivii) potencialnu
energiu:

U(r) = —% L a>0 (3.52)

a problém premenujeme na Keplerovu tlohu'®.

18Riesenie v kvadratirach je riesenie, ktoré je vyjadrené ako:

/R(r)dr:/T(t)dt,

teda ku skutoénému explicitnému rieSeniu nieco este chyba, ¢o vSak nie je aZ tak podstatné (rozhodne je problém v lepsom
stadiu, ako ked je vyjadreny pomocou diferencidlnej rovnice, no v horsom stadiu, akokeby sme mali explicitne r(t)).

19Vsimneme si absolitne nepodstatnii vec a to ze predtym sme riesili ilohu, ktord mala v ndzve ‘problém’ a teraz riesime
problém, ktory ma v nazve ‘“tlohu’.
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3.4. PROBLEM DVOCH TELIES

Pre néds problém je potrebny tvar efektivneho potencidlu:

(0% ’11)2 uz2

ro = — (3.53)

Verl) = =5 F g 707

Po zavedeni ry mozeme v skéle tejto dizky naznaéit graf takéhoto potencidlu. Jeho minimum bude v
ro a hodnota tohto minima bude —a/(2r¢):

Uef.( r)

o
2r,

Obrézok 3.11: Efektivna potencidlna energia Keplerovej tlohy.

1
5,# + Uy =E (3.54)

V zévislosti od celkovej energie E sa Zivot systému rozdeluje na tri pripady, ktoré spolu nekoliduji
(bez vonkajsieho podnetu sa nedd docielit, aby jeden pripad presiel na druhy, pretoZe celkovd energia je
konstantnd):

1. Ak je celkovd energia nulovd (F = 0), potom sa jedno oproti druhému pohybuje po parabole (¢o
uvidime neskor), alebo st od seba nekoneéne d'aleko a nehybu sa (to je pripad paraboly, ked ¢t — +00).
Niekomu by sa mohlo podla grafu vyssie zdat, ze riesenie r = ro/2 (t.j. koren Uey.(r) = 0 je tiez pripustné,
no nie je to tak. Nizsie vo vzorci pre ¢(r) je vidno, ze pre r = ro/2 je p(r) nedefinované.

2. Ak je celkovd energia kladnd (E > 0), telesd mozu od seba utiect do nekoneéna. Rovnako rieSenie
r = 7, kde 7 je korenom rovnice E — U.y.(r) = 0, nie je rieSenim pre takito energiu z rovnakého dévodu
(nedefinované ¢(r)). V skutocnosti sa systém s touto energiou pohybuje po hyperbole.

»
>

E - U,(r)

Obrazok 3.12: Celkova energia systému je vicsia ako efektivna potencidlna energia.

75



3.4. PROBLEM DVOCH TELIES

3. Ak je celkova energia zdpornd (E < 0), telesa st od seba v istom intervale vzdialené a obiehaju okolo
seba (nemozu sa oslobodit):

\ 4
A

E - Uef.(r)
Obrazok 3.13: Celkova energia systému je mensia ako efektivna potencidlna energia.
Na kompletné pochopenie problému netreba vediet vyriesit Casové zdvislosti r(t) a o(t), staéi ndm

zévislost r(y), respektive ¢(r), ked'Ze prave v tychto zavislostiach sa skryva tvar trajektérie. Z rovnic 3.47
a 3.4 dostdvame:

w 2 de w 1
dp = —=dt dr =4/ —/E —-U.¢.(r)dt —= — =
(IO MT2 \/; ef( ) d?‘ /2H 7“2 E — Uef (T)
wr2
o(r) = dr (3.55)

V2uE + 2par—1 — w?r—2

Tu uz celkom jasne vidno, preco v pripade E > 0 a E = 0 nie je rieSenim r = konést., hoci aj také, pre
ktoré plati Ues. (r) = 0, rovnica (3.54) by tym sice bola splnend, no ¢(r) by bolo nedefinované.
Integrél vyriesime. Prvou substiticiou prevedieme Skaredy integral na trochu krajsi:

wr—2dr _ [ wrl=p } _ dp
- oy o=
V2RE + 2par-T — w2 [wrTidr = —dp V2UE + 2ep — p?

Vyraz pod odmocninou prevedieme na Stvorec a nésledne spravime druhu substiticiu, ktord integral
prevedie na cyklometrickd funkciu:

2 2 2 2 _ pa
ot 2yt —oum 4 (K2)° - (p - 12) <2,LE+(W) )(1uz); =
w w w w / po

o(r) = o V2”E+(%)2 =— diu = arccos {u[p (7")]} +C

dp =+\/2uE + (%)2du V1—u?

Dostavame implicitné vyjadrenie:

(r) = arccos
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Konstantu C' identifikujeme ako poc¢iatoény uhol ¢ a rovnicu upravujeme az do vysledného tvaru:

w o px
o w__cos(p— )
A 2uE + %)
w o o 2
e 2uE+(lL) cos (¢ — o)
roow w
2 2Ew?
r—ozl—i-ecos(go—goo); rozw—, e= 1_’_7112; (3.56)
r po po

kde e je excentricita elipsy a ¢ je nejaky pociatoény uhol (obe st v podstate reprezenticie nejakych
pociatoénych podmienok).

Toto je rovnica kuzeloseciek?’, ktorej parameter vystrednost je priamo e. Vyraz ro (ktory je koreiiom
Uey.) je len skélovaci parameter.

Tri pripady, ktoré sme rozobrali predtym vidime aj teraz:

1. Ak je celkova energia nulovd (E = 0), potom sa jedno oproti druhému pohybuje po parabole, ¢o
predstavuje vystrednost e = 1.

7o
1+ cos (¢ = ¢o)

Tento pripad hovori o tom, Ze v ¢ase t — F00 su telesd od seba nekoneéne vzdialené a stoja, pretoze ked
r — 00, potom Uy (r) =0 a teda aj 7 = —2U,s. /= 0.

2. Ak je celkovd energia kladnd (E > 0), vystrednost kuzelosetky e je vicsia ako 1 a trajektéria je
hyperbola. V tomto pripade tiez plati, ze v ¢ase t — 400 st od seba telesd nekonecne vzdialené, no ich
vzd alovanie pokracuje limitne konstantnou vzdjomnou rychlostou.

3. Ak je celkovd energia zadporna (E < 0), vystrednost e je v intervale 0 < e < 1, ¢o predstavuje elipsu
alebo kruznicu. V tomto pripade telesd od seba nemézu utiect a riesenie je periodické v ¢ase. Specidlnym
pripadom je kruznica, ked e = 0:

2

t.j. rovnica E — Ues (r) = 0 mé jediné riesenie - trajektéria pohybu s takouto energiou bude kruznica. V
(3.56) to vidno tiez, pre lubovolny uhol ¢ totiz dostdvame:

e:():>rL:1:>rEr0 (3.59)
0

20Conic section, alebo len conic. V literatiire mozno néjst rovnicu kuzelosecky v tvare:

To
— =1—ecos(p— o)
r
Tento tvar sa od nasho lisi nendpadnym znamienkom minus pred e. RieSenie to nijako dramaticky nemeni, jednd sa len
o otocenie celej situdcie o 180° v rovine pohybu. Ak chceme mat aj my v rovnici silou-mocou minus, staé{ urobit zdmenu:

®o — T+ 0.
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e=0 <e<
W O<e<1
o
w2 w2 w2 1
ap i afT+e
2
2 W~
W a
' o
; . . o’ . o2
Obrazok 3.14: Trajektoria je kruznica, ak £ = “ou? = e=0aelipsa,ak —5-5 < EF <0 = 0<e<l.
w
N /
N s
N s

e>1

N
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W
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\
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\
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s
%
%
%
\
s \
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Obrazok 3.15: Trajektoria je parabola, ak £ =0 = e =1 a hyperbola, ak £ >0 = e > 1.
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3.5 Malé kmity

Malé kmity sa ukazuji byt uZitoénym nastrojom vo vsetkych pripadoch, kedy m4 systém ocividne
minimum potencidlnej energie, no jej funkcia nie je kvadratickou formou v danom bode, teda vratna sila
prislichajica okoliu tohto rovnovazneho bodu je nelinedrna. Rovnice s takouto nelinedrnou vratnou silou su
v drvivej vécsine neriesitelné v elementarnych funkcidch, no nds poviésinou zaujimaji tzv. médy kmitania,
teda akési separované elementdrne kmity roznych ¢asti systému prave v dzkom okolf tohto minima (alebo
roznych minim, o ktorych vieme) - médy malych kmitov. Ukazuje sa, Ze pre potencidlne energie spfﬁajﬁce
isté podmienky sa malé kmity daju riesit tiplne algoritmicky.

Ako priklad moéZe poslizit rovinné matematické kyvadlo, ktorého pohybové rovnica je:

G+ %sin (p) =0 (3.60)

Typickd rozpravka o tejto rovnici je, ze ak st vychylky v uhle ¢ malé (kde malé znamend také, ze sme
s malostou rozdielu medzi ¢ a sin (¢) spokojni), potom sin () & ¢ a rovnica prejde na tvar:
2_ 9

pH+wip=0; w =7 (3.61)

Skryto sa vlastne pri tomto procese odvolavame na malé kmity. Potencidlna energia ma tvar:

U = —mgl cos (¢) (3.62)

Vieme, ze tato potencidlna energia ma v okoli ¢ = 0 svoje lokdlne minimum, teda je mozné, aby systém
kmital v tomto okoli, ak sa jeho celkové energia privelmi nelisi od energie v tomto minime:

1 1
U (p) = —mgl + imghpQ +0(¢") = Ulp) ~ —mgl+ §mglgp2 (3.63)

Dosad'me ttito energiu do Lagrangidnu a vyjadrime pohybovii rovnicu pre suradnicu :
L 5.9 L
L:T—U:§ml<p + mgl 5@—1

mi%@ + mglp = 0

G+ %cp ) (3.64)
Vidime, ze dostavame rovnicu totozni s malymi kmitmi rovinného matematického kyvadla. Po ceste sme
sa naucili uzito¢nu vec - pri rozvijani potencidlnej energie do Taylorovho radu v okoli lokdlneho minima staci
zobraf ¢leny do druhej mocniny (vratane), pricom na konstantnom ¢lene nezalezi (pri derivécii Lagrangidnu
v pohybovej rovnici aj tak zmizne). Uvazovat situdciu v blizkom okoli minima potencidlnej energie, kde sa
moéZzeme obmedzit na prvy élen Taylorovho rozvoja, vedie na linedrne diferencidlne rovnice. Takéto rovnice
majui ludia (beric ohlad na zlozitost ich rieSenia) vécsinou radsej ako tie nelinedrne. Ak by sa stalo, ze v
danej suradnici v danom lokalnom minime je koeficient pri druhej mocnine stiradnice nulovy, je to problém.

Predstavme si napr. potencidlnu energiu:

1
Uz) = ~ka?
(x) =7
Tento tvar je sém sebe priamo Taylorovym polynémom (pretoze je to polyném a Taylorov rozvoj

polynému je...polyném), no nevidime v fiom ziaden ¢len, pri ktorom by stdlo 2, to je vSak problém. Pohy-
bova rovnica s takymto potencidlom totiz bude nelinearna:

k
P4+ —22=0
m
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Casovy vyvoj takéhoto oscilatora potrebuje Jacobiho eliptickd funkciu sn (s Eliptickymi funkciami
sme sa uz stretli pri velkych kmitoch kyvadla), periédu kyvu mozno za predpokladu poznania maximalne;j
vychylky vyjadrit ako S-funkciu. Vratme sa vSak k priblizeniu malych kmitov.

Vseobecny postup predpokladé, ze potencidlna energia systému:

U(q1,92;---,qn) = U (q) (3.65)

m4 v nejakom bode (Qp) lokdlne minimum, teda plati:

JU(Qo) VaeU (Qo)\{Qo} : E=T+U(q)>T+U(Qo) (3.66)
Potencialnu energiu potom mozno rozvinut do Taylorovho radu v tomto okoli:

=,

- oU 1 0 | ———— s
U(q) =U(Qo) + 90 q(:q(go— Qoi) + 3 90,00, q(:qézo_ Qoi) (g5 — Qoj) +O [(q— Q) }
=0 =K,

Uvazujme potencidlnu energiu v novych suradniciach x;, ktoré su ako §ité na mieru tomuto problému.
Ich stred sa totiz nachddza priamo v minime starej potencidlnej energie. Nova potencialna energia nebude
obsahovaf ani kongtantny ¢len U (Qg), pretoze tento aj tak vypadne pri derivdcii:

1

Matica K;; musi byt kladne definitnd ak sa jednd o ostré lokdlne minimum?!.
Systém este obsahuje kineticku energiu:

. 1 - 1 .
T(q,9) = §Tz’j () ¢ig; = iTi' (q) &5 (3.68)

Posledné rovnost plati vd'aka definicii z; (linedrne posunutie) a tomu, Ze premenné vystupuji v kinet-
ickej energii len v derivovanej podobe. Aj T;; mozno rozvinit do radu v okoli Qo:

T35 (@) = Ty (Qu) + 5 =) + 0 [(a — Q']

M;;

Prvy ¢len je vlastne konStantnd matica v danom minime, ktord sme oznacili ako M;;. Ukazuje sa,

7e v priblizeni malych kmitov staél braf len prvy ¢len v rozvoji kinetickej energie. Prijemny bonus tejto

aproximacie je, ze vysledné pohybové rovnice, ktoré ziskame, su linedrne. Ziskali sme teda priblizné tvary

kinetickej a potencidlnej energie v okoli daného lokdlneho minima potencidlnej energie, z ktorych zostavime
Lagrangian:

)

1

1
U (X) = §Kijxixj

1 1
L(x,%) = o MiEitj — o Kijziz; (3.69)
Pohybova rovnica pre i-tu stradnicu bude:
d oL  OL _
dt 6.131 6$i B
Mijij + Kijrg =0 (3.70)

21 Algebra 2
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Vidime, ze tdto rovnica obsahuje pre véeobecné M;; a K;; naraz rozne siradnice z, ¢ize stupiie volnosti
v tomto pripade interaguji. Dobra sprava je, ze vhodnou transforméciou siradnic mozno docielit, aby bola
jedna z matic jednotkova a druha diagonalna, ¢o si ukdzeme ¢oskoro. Robime teda vo vseobecnosti linedrnu
transforméciu sturadnic x:

T; = Aijgj = fj = (Afl):rz

ij
Skumajme Lagrangian po tejto transformacii:

. 1 ) | 1 .1
L(&.€) = 5MiAubnAnés — 5K AngiAnge = 5 (A7), MiyAu &y — 5 (A7) Ko Ay 6661 =
—_——— —_———
=(ATMA),, =(ATKA),
1 - 1
= iMijfifj - ilcijfifj (3.71)
M=ATMA K=ATKA (3.72)

Sktsme docielit, aby M = AT M A bola jednotkové matica. Dalsie odvodenie bude skor tivaha. Prejdime
pomocou matice B ku d’alsfm siradniciam, pre ktoré tentoraz plati:

X é) £ E) n; €Xr; = Bijnj (373)

Aj pre tieto stradnice pozadujeme, aby v nich bola matica M jednotkova (v £ aj v n):

M- B"MB=B"B=1, (3.74)

Maticu K to postihne nasledujicim spésobom:

K — BTKB (3.75)

Vieme, ze K je kladne definitnd (pretoze uz pévodnd matica K bola kladne definitnd). Potom ak pre
B plati BTB = 1,,, tak BTKB je diagonalna a kladne definitnd. Dostdvame teda zaver, ze existuje taka
suradnicova sustava, v ktorej bude matica M jednotkovd a matica K diagondlna, kladne definitna - ¢o
znamena, ze vSetky jej prvky budu kladné. Oznac¢me ich teda druhymi mocninami:

K:

Potom Lagrangian sustavy bude:

1. .. 1 1. 1
L= iéijximj — §Kijxixj = §X2 — 50.)12.%12 (376)

Vidime, ze Lagrangidn je separovany na n ¢asti, tak ako aj pohybové rovnice. Pre i-tu stradnicu &€ (vo
vhodnej béze, v ktorej je systém separovany) dostdvame:

. 5
&+ wy & =0

Rovnicu chdpeme bez sumacnej konvencie

Pre kazdu suradnicu v danej vhodnej baze sme dostali rovnicu linearneho harmonického oscilatora.

Pohyb jednotlivych stradnic & st vlastne médy kmitania celého systému a jednotlivé w st frekvencie tychto
moédov.
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K stradniciam x sa dostaneme spétnou transformaéciou:

x; = Ai;&5(t)
Kmitanie k-teho médu sa vyznacuje tym, ze suradnica & kmitd a ostatné stoja:
E—tyméd: &(t) =0, &(t)=0, - &(t) = Skcos(wit) , -+ &) =0
Pozrime sa, ako vyzera i-ta suradnica x v k-tom moéde kmitania:

=0 =0
~ =

“ =~
zi(t) = ZAijfj(t) =Ain &)+ + Aupbi(t) + -+ A &a(t) =
=1

= XAZ-kSk cos (wit) = Xcik cos (wit)

Vidime, ze v danom k-tom mdde kmitania vSetky siradnice z; kmitaji s frekvenciou k-teho médu
(alebo nekmitaju vobec, pokiall A = 0).

Ak chceme zistif frekvencie médov kmitania v péovodnych stradniciach x, o danom méde plati, Ze cely
kmité s jednou frekvenciou:

k —ty méd : x = ¢ cos (wt) = %X = —cw?cos (wt)
Tento poznatok dosadime do pévodnej pohybovej rovnice (3.70) pre siradnice x:
Mijij + KijIEj =0
M [—cw? cos (wt)] + K ¢ cos (wt) =0
(K —w?M) ¢ cos (wt) =0

Pre nenulovy vektor c plati, Ze ak m4 byt tato rovnica splnend, potom nutne:

det (K —w?M) =0 (3.77)
K *WQMM K12*w2M12 Kln*szln
Ko — W2M21 Koy — W2M22 e Koy — W2M2n
. . . . =0 (3.78)
Knl - W2Mn1 KnQ - W2Mn2 et Knn - sznn

Prave zostavenu rovnicu voldme sekuldrna, alebo aj charakteristickd rovnica. Vo vseobecnosti je to
vlastne polyném n-tého stupiia v premennej w?. To ale znamend, Ze rovnica det (K — WM ) = 0 vedie vo
vSeobecnosti na n riesenf v premennej w? a na 2n riesen{ v premennej w (pricom tieto dve sivisia spolu cez
opatné znamienko, no fyzikdlne ma zmysel len kladné frekvencia). Ked uZ mdme pre kazdy méd zistent
jeho frekvenciu, ostdva vyriesit, ako budd kmitat povodné stradnice x. K tomu ndm pomdze rovnica:

(K-—w?M) [ :|=0 (3.79)

¢o je vlastne sustava linedrnych rovnic.
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3.5.1 Priklady z kmitov
Malé kmity spriahnutych pruzin
Majme spriahnuté pruzinky, ako na obrazku:

=

X, X,

T | 0000000000000 00000000000000000¢
k m k m k

Obrazok 3.16: Spriahnuté pruzinky.

Sdradnicu teliesok budeme

Predpokladdame, Ze tuhosti pruzin si rovnaké a hmotnosti teliesok tiez.
merat od ich pokojovych hodnét (t.j. ked sa systém nehybe a vetci st spokojni a pokojni tam, kde si).

(2 -k
T \-k 2k
Vidime, ze tvar potencidlnej energie uz je v tvare malych kmitov. Kinetickd energiu:

. . . . 1, . 0 j 0
T(.’E17x1,$2,x2) = §m (SL’% +x§) = 5 (.1317 1‘2) (767/ m) (i;) = M= (”67/ m) ’

uZ nemusime upravovat. RieSenfm sekuldrnej rovnice ziskame vlastné frekvencie médov kmitania systému:

Napiseme si potencialnu energiu:

1 1 1 1 2k —k
U(z1,22) = ikxf + §k (z1 — :Ug)2 + 5/@3 =3 (a:l, xg) (—k 2k> (2;) K

2. _ [ 2k —w?m —k
(K—wM)—( —k 2k — w?m
2 2k7w2m 7]{7 2 2 2
det(K—wM):O:>‘ _ 2k_w2m:O:>(2k—wm) —k°=0
2k F k
(2k—w2m)2:k2:>2k—w2m::tk::>w2: i
m

[k 3k
w1 = — Wy = —
m m
Riesenim ststavy (3.79) pre vlastné vektory (z1,z3) sa presvedéime o tom, ze jednotlivé médy zod-

povedaji kmitaniu guli¢iek vo faze a v protifaze:
x9(t) = Acos (wit + 1)

1. méd : z1(t) = Acos (wit + ¢1)
x2(t) = —Acos (wat + 1)

2. méd : x1(t) = Acos (wat + 1)
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Malé kmity sférického matematického kyvadla

Majme jeho Lagrangian vo sférickych suradniciach, dizka kyvadla nech je lo = konst.:

L (9, 0,0, 0, t) = %mlg {92 + p?sin? (9)] + mglg cos (6)

Rozviiime potencidlnu energiu do mocninného radu v okoli jej minima, ktoré je uréite v § = 0. Ked'ze
sa tato potencidlna energia sklad4 len z jedného €lenu (v jednej premennej), bude vyzerat jednoducho:

1
U0, p,t) = —mgly + 5m91092

A tu nardzame na problém. Problémom je, 7e aj ked mé potencidlna energia v § = 0 minimum (pre
Tubovolné ¢), nemodzeme polozit ¢ rovné nule (ani inej konstante), pretoZe toto minimum plati pre vietky ¢
(¢o vidno aj z toho, Ze ¢ sa explicitne v potencidlnej energii nenachddza). No ak chceme robif malé kmity
tejto stistavy len v premennej 6 (pretoZe ¢ v Ziadnom pripade nem4 pre¢o byt len malé), musime sa pozrief
na kinetickt energiu a hned zbaddme problém. Premenné @ a ¢ st zrefazené, éo znamend, ze bud obe naraz
vykonévaji malé kmity, alebo malé kmity nevykonéva ani jedna. Obe naraz nemoézu konat malé kmity, lebo
takdto podmienka je pre nis systém nefyzikdlna??. Ked ani jedna stiradnica nekond malé kmity, sme niteni
riesif povodnu ststavu, ¢o nie je cielom tejto tlohy 23.

Nastdva ¢as na zamyslenie, ¢i je tento problém sposobeny suradnicami, alebo systémom ako takym.
Skisme sa na systém pozrief v kartézskych stradniciach. V takychto siradniciach (x,y,z) mame pre z v
okoli rovnovaznej polohy:

2= /12 — 22 —y? (3.80)

Potencidlna energia bude:

U =mgz=—mgy/I} — 2% —y?

Rozvifime tito potencidlnu energiu do Taylorovho radu so stredom v (z,y) = (0,0):

U = —mgly + 4 (z® + %)
2l

Kineticka energia:

22 bude:

2
Z’2 = %jj + % y ’ = —xi‘ + yy = IQj:Q + QIyiy. + y2y2
ox 8yy i 2 12— a2 — 2

1 2.2 2 . 2.2
= T:2m<552+y2+xm + myﬁﬂy+yy>

2 2 2
lg—z% -y
V maticovom tvare:

2

1+ T Ty

1 . lQ—xz—yQ l2—m2—y2 T
T=-m(x 0 0 .
g (& 9) xy Y’ 0

1+

22Predstava sférického kyvadla nés vedie k zdveru, ze ¢ nemé preco byt ohrani¢ené v malom okoli nejakého ¢q.
23 A celkom by sme si aj fandili, keby sme sa o to poktsali vo vieobecnosti.
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Zvolme teraz v kinetickej energii z = 0 a y = 0 (lebo v okoli tychto bodov sa konaji malé kmity) a
napisme vysledny Lagrangidn (bez konstantnych ¢lenov):
1 . . m
L:fm(:vz—l—yQ)——g( 2+y2)
2 2l
Vidime, ze Lagrangian sa nam rozdelil na dva Lagrangiany, pricom kazdy z nich opisuje len jednu
stiradnicu, bud z, alebo y. Potom ne¢udo, Ze vysledné Lagrangeove rovnice malych kmitov sférického
kyvadla v minime opisuju izotrépny dvojrozmerny linedrny harmonicky oscilator:
T+ Je=0 y+ gy =0
lo lo
Tieto rovnice opisuju dvojrozmerny izotrépny oscilator — to je taky, ktory nerozpozna, do ktorého
smeru kmitd?*. V oboch osiach na neho pdsobi rovnaks sila imernd vychylke, tento systém mé teda jednu
frekvenciu jednoznaé¢ne urcéenu vyrazom:

9
lo

Ak kyvadlo kond malé kmity v okoli x = 0, y = 0, pohybuje sa v priemete do roviny x, y po elipse.
Stradnicu z dopoéitame zo vztahu (3.80).

Vrafme sa k povodnej otdzke: je problém v samotnom systéme, alebo v sférickych stradniciach?
Ocividne sa nam prave podarilo vyriesit malé kmity uvazovaného systému v kartézskych stradniciach,
problém teda nebude v systéme, ale v sférickych suradniciach. Zobrazenie (x,y) do (0, ) sposobilo, ze
to ¢o bolo v (z,y) v malych kmitoch separované, je v (6, ) zrefazené. Kym pre suradnice = a y znamenaji
malé kmity naozaj maly pohyb v ohrani¢enom priestore, pre siradnicu ¢ ni¢ také neexistuje. Malé kmity
moze sférické kyvadlo vykonavat aj tak, Ze sa to&i dookola blizko pri rovnovaznej polohe.

wy =

24 Ak sa nepozrie na cenovku stradnej osi kiipenej v Tescu, na ktorej stoji , kartézska os (resp. y), drevend, dlzka: nekoneéno,
cena: 5 eur”.
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Malé kmity stustavy n rovinnych kyvadiel spriahnutych pruzinami**

® ? @

OO ORaa0 00000 0nRea0nn00000000000 Caman00n 000000000 e 0000000 20000000 0000000000000000000000000- 0 o o

Obrazok 3.17: Spriahnuté kyvadla.

Ukazuje sa, ze tentoraz budi na opis kinematiky tohto systému uhly ¢4, 2, ..., ¢,. Budeme predpokla-
dat také rozostupy kyvadiel v rovnovaznych polohich, v ktorych vietky kyvadlé visia zvislo nadol. V malych
kmitoch budeme zanedbavat prejavy kyvadlovitosti (a to Ze s uhlom ¢ sa trochu (alebo aj velmi) zmeni vyska,
v ktorej je kyvadlo) na deformdciu pruzin (ze vo vSeobecnom stave je pruzina nie vzdy vodorovne).

Prepocitajme sturadnice i-teho kyvadla v premennej ¢;, ako aj ich derivacie a kvadraty derivécii.
Definiény vztah?® pre mapovanie (z,2) do (I,¢) je:

= 17 cos® (p1) ¢}
= 1% sin® (©4) %2

Dolezity detail je, ze polohy x; st brané ako zvisly priemet vijchylky kyvadla do siradnej osi . Absolitna
pozicia kyvadla v priestore je irelevantna. Kinetickd energia stistavy bude:

x; = Isin (y; = 1; =lcos(p;)p; = &
2 (pi) ¢ (3.81)

BRI

zi=—lcos(p;) =% =lsin(p)p; = 2

T:%Zm (&7 + 27) :%ﬂzmﬁ (3.82)
i=1 i=1

Zapis v podobe kvadratickej formy:

ml> 0 - 0 o1

1 . 0 ml2 -~ 0 :
T=gl--ce)l oo ] (383)

0 0 - mi?) \p,

Maticu tejto kvadratickej formy oznacme M.
Zapisme teraz potencidlnu energiu ststavy. T4 sa bude skladaf jednak z potencidlnej energie v gravitaénom
poli a aj potencidlnej energie stlacenych, respektive natiahnutych pruzin:

1

[k (21— 2e11)?
1

n

U= Ugrav. + Uprui‘ = Z (mgzz> +

i=1 %

n

DN =

V stdradniciach uhlov ¢; prejde potencidlna energia na tvar:

n n—1
1 . .
U= —mgl Z cos (¢;) + 3 k1 Z [sin (¢;) — sin (@i41)]?
i=1 i=1

25Po kratkom rozmysleni je zrejmé, 7e je to m tplne rovnakych definiénych vztahov.
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3.5. MALE KMITY

Spravme teraz rozvo]j potencidlnej energie v okoli nulovych sdradnic ¢; (Co je zaujimavé minimum
potencialnej energie celej stustavy):

n n, 9 [S15 in () — sin (pis)]?]
1 , 1., [ i=1 i i+1
U=—-nmgl+ imglizzlgoi + §kl Z

a=1b=1

PaPb
Opa0py ¢
Konstantny ¢len z potencidlnej energie odstranime, aditivna konsStanta sa totiz nijako neprejavi v po-
hybovych rovniciach. Samotny vypocet derivécii robif nebudeme, uvedme radSej rovno maticovy zapis
potencialnej energie v okoli minima. Ozna¢me K maticu kvadratickej formy potencidlnej energie:

mi? (4 + &) —k1? 0 0 0
—k1? mi? (4 4 28) —k1? 0 0
0 —k1? mi? (4 4+ 2) ... 0 0
K = . . : . : : (3.84)
0 0 0 comi? (442 —k?
0 0 0 —kI2 mlz(%_’_%)
Potom potencidlnu energiu v okoli jej minima moZno zapisat ako kvadratickd formu:
1 T
U= ignga (3.85)
Riesime sekuldrnu rovnicu v nasledujicom tvare:
. —k 0 0 0
_% % + 2% — wz —% 0 0
0 -k 942k w2 .. 0 0
0 = det (K —w’T) = ml? _ _ , ) , . (3.86)
0 0 0 0 ge2E %
0 0 0 0 -k g4k 2

Budeme verit tvrdeniu, Ze tato rovnica m4 pre premenni w? a n oscildtorov naozaj n rieseni - koretiov.

Dalej budeme verit, Ze vetky riesenia sa daji napisat v nasledovnom tvare:

W= 4 d (3.87)

kde a; st bezrozmerné konstanty. Tomuto tak celkom nemusime iba verif. Clen g /1 totiz po dosadeni tohto
ansatzu sposobi vyhubenie akejkolvek zmienky o tiaZovom zrychleni alebo dfzky kyvadla v sekuldrnej rovnici.
Nasledne v rovnici ostanu len ¢leny, ktoré obsahuji konstanty k£ a m a ziadne iné, ¢ize aj vysledok sa musi
skladat len z tychto €lenov. To, Ze to bude prave kombindcia k/m uréime rozmerovou analyzou. Toto nie
je tak celkom kosér argumentécia, no ukludni nas inzinierska indukcia?®. Zistime, Ze pre n = 2 mame prave
dva korene, o1 a ag. Pre n = 3 ndm vyjdu tri korene, pre n = 4 vyjdd Styri korene atd. Celd podstata
frekvencif vlastnych kmitov sa odteraz teda skryva v konstantéch ;. Volba w? = — (a; — 2) k/m + g/I by
bola azda logickejsia, no terajsia volba je nézornejsia (a lepsie ¢itatelnd voéi vysledku).

26Ktorej matematicks rigoréznost pokrivkava (a ani nechodf).
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Dosad'me tvar zvolenej w do sekuldrnej rovnice (3.86):

1-a)k -k - 0 0
“k (2-a)k - 0 0
s A .| =0
0 0 0 2-a)k -k
0 0 0 -k (1-a)k

Tu vidime, Ze vietky konstanty aZ na k vypadli. Aj to k moze vypadnit (za predpokladu, ze k # 0):

1-a)k -k - 0 0 a-1 1 - 0 0
-k 2-a)k - 0 0 1 a—2 - 0 0
. . ) . . = (=k)"| : : : =0
0 0 0 2-ak  —k 0 0 0 a-2 1
0 0 0 &k (1-a)k 0 0 0 1 a-2
a—1 1 0 0
1 oa—2 0 0
= | : : © | =|E[=0 (3.88)
0 0 0 a-2 1
0 0 0 1 a—1

Tu jasne vidno, Ze argumentécia vyssie sa opiera o (nedokdzany) fakt, ktory od tohto determinantu
pozadujeme: pre kazdé n m4 rovnica (3.88) n roznych redlnych korenov.

Toto je najviac, ¢o sa d4 vo vseobecnosti povedat o m spriahnutych kyvadldch. Této rovnica ani pre
konkrétne vyssie n nemé ,,pekné korene“. Nasleduju priklady pre konkrétne n > 2 (pre n = 1 mame jediné

kyvadlo s vlastnou frekvenciou /g/1).
a—1 1
1 a—1

n = 2: Matica F ma tvar:
Jej determinant je polyném druhého stupna:

(a—1)°=1=0

ktorého korene su:

a1 =0 (%) =2 (389)
n=3F
a—1 1 0
1 a—2 1
0 1 a—1

Jej determinant je polyndém tretieho stupna:

(a—D(a—1)(«—2)—2]=0

ktorého korene su:

o] = 0 Qg — 1 Q3 — 3 (390)
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n=4:. F
a—1 1 0 0
1 a—2 1 0
0 1 a—2 1
0 0 1 a—1

Jej determinant je polyndém stvrtého stupna:

(a—1) [(a—2)2(a—1)—(a—l)—(a—Q)} “1fa-1)(a—2)—1]=0

ktorého korene su:

a1:0 042:2—\6 053:2 Q4:2+\f2 (391)

Vsimneme si isté pravidlo. RieSenie o = 0 sa nadm doteraz zakazdym objavilo ako koren. Plati to
naozaj véeobecne? Vskutku dno, predsa sa jednd o zdkladny méd kmitania akéhokolvek poétu spriahnutych
kyvadiel. Staci, ak sa kyvaji spolu (ich vychylky si rovnaké v ¢ase), potom sa pruziny do tohto pohybu
neangazujui a dostaneme tak vlastni frekvenciu, ktora sa rovna vlastnej frekvencii jedného kyvadla.

Dalsie menej zrejmé pravidlo je, e rieSenie o = 2 sa objavuje pri kazdom parnom poéte kyvadiel. Preco
to tak je? Tento fakt sa d4 ukdzat, ked si predstavime parny pocet kyvadiel a sparujeme ich po dvojiciach,
vzdy susedné k sebe. Potom mdd odpovedajuci tejto vlastnej frekvencii je taky, kedy sa kazdy takyto par
kyvadiel kyve k sebe a od seba. Kazd4 pruzina v ststave je tak sicasne sprava aj zlava stld¢ans symetricky.
Keby sa takyto pohyb dial bez angaZovania gravitacného pola, potom vlastnd frekvencia by z \/k/m naréstla
na +/2k/m. Pruziny sa vsak do vlastnej frekvencie pri spriahnutych kyvadlach angazujd tplne samostatne,
rovnaks dvojka teda pred €len k/m pride aj v tomto pripade. Toto pravidlo sa d4 dokézaf aj priamo z
uprav determinantu po dosadeni za o = 2. Ked'ze determinant matice nemeni svoju hodnotu pri pri¢itani
a-nasobku fubovolného riadku, alebo stfpca k inému riadku, alebo stl/pcu7 potom mozeme prvy riadok odéitat
od druhého a prvy stipec odéitat od druhého a na mieste (2,2) dostaneme —1. Teraz pripocitame druhy
riadok ku tretiemu a druhy stl,pec k tretiemu a na mieste (3,3) dostaneme 1. Tento postup opakujeme az
ku poslednému riadku a stipcu - hodnota na mieste (n,n) bude 0, ak n je parne, no zaroven nikde inde uz
nenulové ¢islo v tomto riadku alebo stipci nebude - mame nulovy determinant. V pripade, Ze n je nepérne,
tato hodnota bude 2 a vieme, Ze determinant sa bude poécitat ako si¢in prvkov na diagondle (vzhladom na
to, ze prvky mimo diagondly budi nuly), ¢o je isto nenulové éislo.

Teoreticky sa d4 bez problémov pokracovat az do n = 6, pretoZe pre n = 5 bezpe¢éne pozndme jeden
koren a to a = 0, ktorym ked rovnicu vydelime tak dostaneme polyném $tvrtého stupiia. Tento, ak sa aj
ned4 upravif na jednoduchsi tvar, urcite je riesitelny pomocou radikalov. Pre n = 6 bezpeéne poznime dva
korene a to a = 0 a o = 2, ktorymi podelime rovnicu a dostaneme znovu polyném Stvrtého stupna.

Prakticky je mozné st d’alej, aj pre vysSie n, jednak numericky, no stale existuje Sanca, Ze polynémy,
ktoré dostaneme, sa budi dat rozumne upravit na tvar, z ktorych budeme vidiet d’alsie korene pre .

Ako &eresnicku na torte, bez rozmazdvania zloZitych technickych detailov (kltiovy pojem je Laplaceov
rozvoj a vela papiera) mame pre n = b:

(5-v5)  ai=5(3+Vv5) as=5(54V5) (392

1
2

N =

a1 =0 as=2-+3 as=1 oy =2 a5 =3 ag=2+V3 (3.93)
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Periéda kmitov anharmonického oscilatora**

Je dand potencidlna energia anharmonického oscilatora:

Ulx) = %k: [ (3.94)

Periédu budeme vyjadrovat samozrejme z konstant, ktoré vystupuji v potencidlnej energii, hmotnosti
a maximalnej vychylky X,,, ktord mame zadanti. Vychddzame zo zdkona zachovania energie, kde celkova

energia je rovnd energii, ktora je ulozend vo vézbe anharmonického oscilatora, ak sa nachddza v maximélne;j
vychylke:

1 1 1
§m$2 + §]€ ‘Jf|a =F= ik |X77l|a

Néjdeme diferencidl dt:

1 1 1
2mj:2 + ok 2| = 3k | X, |

k
22 v Xma_ a
i = K (x0 — Jaf®)

dz
VE (Xl = [2%)

Vd'aka symetrii potencidlnej energie mézme pisat, Ze pre periédu plati:

dt =

Xom

/ \/7/ a/2 F/ dx _

Xok a

N h o7 : m
_{ Xxm } X,d€
- dz = X,,dE \/ X“ Vi-é \/ X5~ 2k ~/175a
1—¢% =y 1/0‘ 1dn 4 1/2 1 /a—1 7

_[dgz—i(l—n)”“ } \/E/ E\/ o Hom =

- r(;)r@)
T

ko (1
r(z+s+1)
_ (3.95)
a2V k(1 1
o/ X F<+a+1>

Q%
/3]
®
-
~
SEIES

7
%
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Vidime zaujimavy fenomén: pre o > 2 vidno, zZe s rastiicou maximélnou vychylkou sa periéda skracuje.
Toto koresponduje s nasou predstavou. Ak « > 2, tak vratnd sila odpovedajica tejto potencidlnej energii
je nelinedrna a s narastajicou vychylkou tvrdne, teda tfahd viac. KedZe taha viac, teleso viac urychluje a
teleso rychlejsie prejde cely cyklus. Takisto vidno, zZe jedine kvadraticky potencidl ma ti vysadu, ze peridéda
kmitov v takomto potencidli nezdvisi od vychylky. Ak dosadime za o = 2, dostaneme:

m 27

FTGE)_ _,, [m_ 2 (3.96)

4 m
T2 (Xm) = - Y
22\ k 1 1 k  wo
2\ X0, F(§+§+1>

¢o je Standardnd periéda kmitov linedrneho harmonického oscildtora s tuhostou k a hmotnostou m.

Na nasledujiicom obrézku vidime zavislost doby kmitu (hned4 farba - mald doba kmitu, biela farba -
velkd doba kmitu) od koeficientu « (os x) a maximalnej vychylky X, (os y). Pre a = 2 doba kmitu nezdvisi
od X,,.

N r()

TX,) = NG a['(%+%+l)\/)7m

T(X,) [m]

X

m

50

10

|
1 2 3 4 a

Obréazok 3.18: Periéda kmitu anharmonického oscildtora v zavislosti od « a X,,,, k = konst., m = konst.
Vsimnime si, ze ked o = 2, tak periéda kmitu nezdvisi od maximalnej vychylky.
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3.6 Pohyb v neinercidlnej vztaznej sustave

Na obrazku je naznacena laboratorna sistava L, ktora je inercidlna. V tejto stustave sa nachadza ina
ststava S, ktorej pociatok R sa vzhladom k laboratérnej sistave pohybuje. Oznaéme vektor 7 ako polohu
telesa v neinercidlnej ststave:

S

F’

R/ 5
L

Obrazok 3.19: Laboratérna a neinercidlna sistava.
V inercidlnej vztaznej ststave posobi na teleso sila podla Newtonovho zékona, sily:

mp=F (3.97)
Kedze §= R+ 7, v stistave S plati iny zékon sily:

mi = F —mR (3.98)

Veli¢inu R oznaéime ako A - jedna sa o zrychlenie poc¢iatku neinercidlnej stustavy. Vzorcek, ktory sme
odvodili, plati len pre takd sistavu S, ktord sa neotdca. Pre stistavu ota¢ajtcu sa uhlovou rychlostou &
odvodime zlozitejs vztah.

Na to, aby sme tak urobili, potrebujeme problém uchopit za spravny koniec (cez lepsi aparat ako len
vektory 7, R, gad).

Zavedieme pojem repér - bude to baza niekde v priestore, ktord bude ortonorméalna. Rozne repéry
mozu byt rézne natocené.

e _
362
&

Obrazok 3.20: Rozne repéry. Niekedy je mozné vytvorit si k nim citovii viizbu ich pomentivavanim - repér
Jano, repér Fero, repér e, repér .
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Majme teraz dva repéry e a ¢, ktoré budd sedief na tom istom mieste, liSif sa budi len natocenim.

Ked'ze kazdy repér tvori bdzu v trojrozmernom priestore, kazdy vektor z tohto priestoru mozno do
takého repéra rozlozit. Nech vektor 7 ma zlozky X; vzhladom na repér (¢ize bdzu) e a zlozky z; vzhladom
na repér €. Potom plati:

Nech teraz repér e stoji a jeho osi s zarovno s laboratérnymi osami. Repér ¢ sa nejako to¢i (pri¢om
stale sedf na rovnhakom mieste, ako e). Rovnica (3.99) ostdva v platnosti 27, ale vyjadrenie 7 sa zment:

7= X8 = @& + 76 (3.100)

Vyvstava otdzka, ¢o je to vlastne &;. Nez ju zodpovieme, odboé¢ime k inym rovniciam, zdanlivo bez
suvisu.
Skimajme takito rovnicu:

3 % b, (3.101)

U

b=3
kde w(t) je dané. Pozrime sa najprv na pripad, ked w;(t) = kongt. Tato diferencidlna rovnica ma tvar:

b= Ab,
kde maticu A ziskame z:
, 0 —Wws3 w2
[w X b} = 6ijkwjbk = Aikbk — Aik = EijkWj ; A= w3 0 —Ww1
¢ —Ww?2 w1 0

Situdciu skimajme v béze, kde & mé smer bs. Rovnice (3.101) potom prejdu na tvar:

by = —wb
. ? (3.102)
b2 = —wbl

Toto je sustava, ktord opisuje pohyb po kruznici s uhlovou frekvenciou |&|. V priestore sa bude vektor
b tocit okolo vektoru ¢ uhlovou rychlostou |&|. Obréazok:

@ g

Obrézok 3.21: Rotécia vektora b okolo vektora .

27jeding zmena by spocivala v pridani ¢asovej zavislosti ku &; do zatvorky
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Pripad pre naozajstni ¢asovii zdvislost &(t) uz nie je taky Tahky, no mozno nahliadnut podobné
spravanie v kratuckom case dt:

=

b(t+ dt) = b(t) + dtb(t) = b(t) + dt @(t) x b(t)

Tentoraz sa stihne vektor za ¢as dt otoéit o kiisok, ako by to urobil v pripade konstantnej . Ked'ze
sa vak @(t) s casom meni, teda aj vektor a rychlost, s akou sa bude b(t) tocit okolo ¢(t) sa bude menit.
Spocitame ¢asovii derivaciu kvadratu velkosti b:

d /- - - 5 - /. -
—(Ub):2bb:2h<M0xb>:0
dt

7Z toho vsak plynie, Ze velkost b sa v ¢ase nemeni (pretoze sa v ¢ase nemeni ani jej kvadrét), teda vektor
b sa pre lubovolnu &(t) pohybuje na sfére. Rovnicu b= x b teda mozno chépat ako opis vektora Z;, ktory
rotuje okolo iného vektora, &, ktorého koniec sa v priestore pohybuje. Rychlost rotacie b je uréend velkostou
W a jeho okamzitu os rotécie urcuje okamzity smer .

Toto mézeme priamo zuzitkovat pri repéroch. Menovite repér € vraj v éase rotuje, teda urcite existuje
@(t), ktory splna:

& =G xE (3.103)

Zaroven je velmi uzitoéné pozorovanie, ze podla tejto rovnice sa velkost & nemeni. Také ¢osi od repéru
pozadujeme, je to totiz ortonormdina baza (jej bdzové vektory si jednotkové).
Vratme sa k rovnici (3.100):

F= X8 = i, + 18 (3.104)
F =28 + 2@ X & = 48 + & X (2:6)) = 048 + & X T (3.105)

Vyjadrime zrychlenie telesa v sustave S, teda druhu ¢asovi derivaciu 7

=y

z&(@amxf):jia+¢ia+wxf+wxfz
=08+ 50 X E DX T+ X (8 +d X7F) =
=38 +20XT+TXF+E X (I XF) (3.106)

Dostédvame zdkon sily v neinercidlnej vztaznej ststave:

mi=F—mA—2ma& xT—m&dx7—max (& x7) (3.107)

kde @ je zrychlenie telesa v sustave S, F je redlna sila, ktord nan posobi, A je zrychlenie sustavy S oproti
inercidlnej sustave L. Druhy ¢len predstavuje zotrvacnu silu, treti ¢len je Coriolisova sila, stvrty Eulerova a
piaty Huyghensova (odstredivd) sila.
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3.6.1 VolIny pad telesa na rotujiicu zem

Majme Zem ako idedlnu gulu s polomerom R, ktord rotuje okolo osi z (os rotécie prechddza jej stredom)
uhlovou rychlostou & = (0,0, w). Predpokladajme, Ze vlastné zrychlenie Zeme v dosledku obehu okolo Slnka
modzeme zanedbat, tak ako aj veli¢inu & (uhlovd rychlost sa nemeni prilis). Z vysky h nad povrchom
pada teleso k povrchu Zeme. Vieme, ze ak uvazujeme Zem ako statické teleso, potom tato draha bude
podmnozinou priamky a bod dopadu bude lezat na spojnici stredu gule a pévodného miesta, odkial teleso
padalo:

Obrazok 3.22: Volny péad telesa na stojati Zem vs. pad na roztocend Zem.

Do obrézku, na ktorom sa Zem to¢i (3.22), sme naznacili myslenu trajektériu, po ktorej by malo teleso
padat - odstredivé zrychlenie staca trajektoriu k rovniku, Coriolisova sila v smere rovnobezky.

Problém budeme najprv skimat vo sférickych siradniciach (r, 8, ¢). Uhol 6 budeme merat od osi Z, &o
je os, okolo ktorej Zem rotuje:

Z

Obrazok 3.23: Sférickd suradnicovd sistava. Uhol § € (0,7) je merany od (vyznacnej) osi Z, okolo ktorej
sa to¢f celd Zem. Uhol ¢ je zavedeny od nejakej nie velmi vyznaénej osi X.
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K dispozicii mdme pohybovii rovnicu, ktord vo vektorovom tvare plati v akejkolvek stistave:

mr=mj—2madxF—mdad x (& x 7) (3.108)

Cielom je postupne vyjadrit vietky vektory a vektorové opericie vo sférickych siradniciach. Poloha
hmotného bodu je dand len vektorom €.

F=re, (3.109)

Velkost uhlovej rychlosti je w a smeruje v Z, ¢o je os, od ktorej sme zaviedli sféricky uhol §. Jej stiradnice
teda budu:

& =wcos ()€ —wsin(f) €y (3.110)
Gravitacné zrychlenie posobi v smere do stredu Zeme, jeho jedind zlozka teda bude v smere é€.:
Jg=—ge, (3.111)

Taktiez budemepotrebovaf vyjadrenie 7 a 7

o T T oy

F=ré& +ré.=ré +r (ag’” g g aé’kp) =
=841 (08 +sin (0) 62, ) =7 + 108 + 7 sin (0) 7, (3.112)
Podobne by sme ziskali aj %, pre skratenie vyrazov len napiseme vysledok:
F= (r — 70% — r¢? sin® (9)) ér + (7"0 + 270 — rp? sin (0) cos (9)) €o+
+ (r¢ sin (6) + 27 sin () + 2r cos (9)) é, (3.113)
Kvoli dalsim odvodeniam je dobré vediet, ako sa vektorovo ndsobia jednotlivé jednotkové vektory:
€r X €9 = €, ér X €, = —€p €p X €, = €y (3.114)

Ostatné nasobenia si bud nulové, ak sa jednid o dva rovnaké jednotkové vektory, alebo s opaénym
znamienkom, ak dva vektory vymenime. Odvodime vyjadrenie Coriolisovej sily:

—2m@ X 7=
= 2mwr ¢ sin® () & + 2mwr ¢ sin () cos () € — 2m (wrécos (0) + w7 sin (9)) €y (3.115)

Na rade je vyjadrenie neprijemného ¢lena, dvojitého vektorového si¢inu, ktory budeme potrebovat kvoli
odstredivej sile:

&l

X 7= wr sin (0) €, (3.116)

2 rsin (0) cos () & = mw?r sin () (sin () &, + cos (0) &) (3.117)

n

—m& x (& x 7) = mw?r sin® () &, + mw

Takyto vysledok by sme aj oéakdvali - takdto odstrediva sila smeruje kolmo na os otd¢ania a ,,tahd”
objekty d'alej od osi. Jej velkost je:
|-m&@ x (& x 7)| = mw?r sin () (3.118)

teda naozaj plati, ze ¢im blizsie je objekt ku pélom (teda 6 sa blizi 0 alebo ), alebo ¢&f blizsie je ku stredu
Zeme, tym menej nan poésobi odstrediva sila.

96



3.6. POHYB V NEINERCIALNEJ VZTAZNEJ SUSTAVE

Teraz mozeme po zlozkach napisat pohybové rovnice hmotného bodu:
i — 0% — r?sin? () = —g + 2wrgsin? (A) + w?r sin? (0)
70 + 270 — r¢? sin (0) cos (0) = 2w r ¢ sin () cos (0) + w?rsin () cos (0) (3.119)
rsin () + 27 sin () + 2rp cos (6) = —2uw (7‘ 6 cos (0) + 7 sin (9))

Té4to ststava je samozrejme priSerne zlozitd, nelinedrna a pravdepodobne neriesitena vo vSeobecnosti
analyticky. Na nasledujicich riadkoch sa budeme venovat tomu, éo mozno zanedbat, ¢o za zanedbaniami
zvykne byt, o je malé, o je velké a ¢o tieto pojmy vlastne znamenaji. Ked sa logicky a z nadhladu
pozrieme na problém, ktory riesime, zistime, Ze oproti pévodnému problému, teda volnému padu, ocakavame
len malé korekcie. Napriklad typické rychlosti, ktoré dosahuje objekt pri volnom pade z rozumnej vysky
(rddovo do 100m) st v/2gh ~ 50m/s. Typické doby padu byvaji /2h/g =~ 5s. Ked sa pozrieme na
rovnicu (3.108), vidime v nej oproti ¢lenu, ktory celé padanie zapric¢inuje aj ¢leny, o ktorych predpokladame,
7e ich efekt nebude prili§ velky. Tak napriklad Coriolisova sila nejako zdvisi od siiéinu rychlosti a uhlove;
rychlosti objektu, teda ak sa zameriavame na radovy odhad tohto efektu, sta¢i ndm zobrat dopadovi rychlost
prendsobent uhlovou rychlostou rotacie Zeme, v/2ghw. Zem rotuje s uhlovou rychlostou priblizne 6-10~°m,
z ¢oho dostdvame typické zrychlenia zapric¢inené Coriolisovou silou 3 - 1073m/s2. Typické zrychlenia od
odstredivej sily zase zistime z vyrazu w?R, kde R je rddovo polomer Zeme (pretoze to je typicka vzdialenost
od osi rotacie, ak nie sme blizko pélov). Vyjde ndm 2 - 1072m/s?. Z tychto charakteristickych zrychlen{
by ndm malo byf jasné, Ze riesenie sa nebude prili§ odchylovat od volného padu na staticki Zem. Do
toho nahliadneme napr. tak, Ze prendsobime typické zrychlenia typickym ¢asom (a ¢asom na druhd) a
porovndme ich s typickymi rychlostami (a dekami). Typické rychlosti padu sme uz zistili, typické rychlosti
v dosledku neinercialnych sil st na trovni 1072 — 1072m/s, typické vzdialenosti, do ktorych by tieto sily
mohli teleso zaniest si rddovo 1072 — 10~ 'm. Aj za takejto idealizdcie vidime, Ze to je stale zanedbatelné
oproti rychlostiam padu resp. vySok, z ktorych teleso padd. Ked mame podozrenie tohto typu, ktoré je
navyse podporené nechufou riesit nelinedrnu ststavu, ktord nam vysla, je nac¢ase uchylit sa ku procesu,
ktory nazyvame linearizicia. Linearizécia je proces, pri ktorom sa riesené rovnice linearizuji. Co to presne
znamend? Ako uZ bolo spomenuté, skiimame volné pady z vySok, ktoré si zanedbatelné oproti polomeru
Zeme. To znamend, Ze v stradnici r si vieme redlne predstavit, ze hlavni tlohu hré polomer Zeme, vyska,
z ktorej pustame teleso, bude malé oproti tomuto polomeru. Ak na zaéiatku teleso sptustame z vysky h,
potom tvrdenie, je, Ze h < R, inak povedané, h/R < 1. Veli¢cinu h/R teda mozeme braf ako bezrozmerny
parameter ¢, ktory charakterizuje, ako dobra je aproximécia R = r. Ako prvé teda zavedieme sturadnicu z,
ktord meria polohu hmotného bodu vzhladom na Zemsky povrch. Nech plati:

r=R+z — r=%, +=2 (3.120)

Lokéalne teraz zavedme v mieste (r = R, 0, ) stradnicovii sistavu, ktorej z-zlozka je uz definovani
vysSie. Zlozku x definujeme tak, ze bude v smere rovnobezkoy na vychod. Zlozka y uz nemé na vyber, aby
toto bola pravotoéiva biza, musi smerovat v smere poludnika na sever.

Pre prvi rovnicu ukazeme, ako vyzerd linedrizécia v praxi. Najprv predpokladame, Zze x a y si korekcie
ku statickosti pohybu v uhloch @ a ¢?8. To, Ze ocakdvame maly pohyb v 6 a ¢ naznaéime priradenim:

1 1 . .. 1

_ L 1 g =ty 121

0— 0 7Y = do Rdy = 0 ik 0 7l (3 )

. ! SRR SO SRS (3.122)
P T Rein(0)” YT Rsin(0)" T Rsin®)” Y7 Rsmn(0)" '

28Vidno, Ze pri takto zavedenych stradniciach z a y je pohyb vlastne lokalne linedrny, no globalne by sa mala prislusne menit
suradnica 6 a .
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3.6. POHYB V NEINERCIALNEJ VZTAZNEJ SUSTAVE

Z

Obrazok 3.24: Suradnd sustava e §itd na mieru padu na Zem. Os x mieri v smere rovnobezky, os y v smere
poludnika a os z je kolmd na povrch Zeme. Zemskd os je Z, uhol, ktory zviera z a Z je © € (0, 7).

Nasleduje proces linearizéicie rovnic. Otézkou je, ktory efekt povazujeme za maly a ktory za podstatny.
Ak sa dohodneme, 7e ¢ je ten rdd, ktorého presnost nds zaujima, nedd sa vo vieobecnosti povedat, ¢i /10
je uz malé, vieme sa bavit len v termfnoch mocnin e. Ak sa v rovniciach objav{ ¢okolvek, pri ¢om bude st4t
¢len €2, €3 a vyssie, vieme, Ze tieto mozeme s kIudnym svedomim vyhodit. Ak je totiz e radu 10° a toto je
presnost, ktord nds zaujima, potom 2 je oproti nemu desne malé, resp. nemeratelné. S touto myslienkou
dosadime vyrazy pre 7, 6 a ¢ do prvej rovnice a upravujeme ju:

i — 0% — rp?sin? (0) = —g + 2wr@sin? (0) + w?r sin? (6)

=—g+2w(R+2) #sin? (0) + w? (R + z) sin” (0)

1
Rsin (6)
1 1
Z— ﬁx25 5 (2 +4%2) e = —g+ 2w sin# (0) + w® (R + 2) sin® (0) +

5= —g+2wsing (0) +w? (R + 2)sin? +M M

Dostavame tak linearizovani prvi rovnicu:

2w & z sin (9)

5= —g+2wsin (0) +w? (R + 2)sin? () (3.123)
Té4to rovnica, aj ked uz v linedrnej podobe, podstipi este posledné zanedbanie. Vsimneme si, Ze ak w
je radu 107°s a R rddu 10°m, potom ¢len w?R je velmi malého rddu. Trochu to zachraiuje rozmer Zeme,

no druhy ¢len v zatvorke, z, je rddu 10%m, ¢o je zanedbatelné oproti R. Aj ked je tato rovnica linedrna, clen
z z pravej strany zahodime, ¢im si podstatne zjednodusime riesenie?®.

29Vyslednd ststava s pritomnym z na pravej strane je tvaru:

7= AF+ BF + P (3.124)
kde A a B st matice a P je konstantny vektor. RieSenie takejto sustavy zahfnia simultdnnu diagonalizdciu matic A a B, ¢o je

proces, ktorému je lepsie sa vyhnitf. Ak vsak zahodime ¢élen B7, stagilo by diagonalizovat len jednu maticu (ako uvidime, aj
tomuto sa mozno vyhnit), ¢o znaéne zjednodusuje rieenie.
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Napiseme celi linearizovani stistavu aj s poc¢iatocnou podmienkou - na zaciatku objekt ,,stoji” vo vyske
h nad Zemou:
& =2wycos(0) — 2wz sin (9)
jj = —2wi cos (A) — w?R sin () cos (6)
= —g+2wisin(0) +w’R sin? (9)

(3.125)

Vsimnime si, Ze druh4 a tretia rovnica obsahuje na pravej strane z rieSenych funkcii len z, Tavé strany
st druhé derivacie funkcii, ktoré sa objavuji na pravej strane prvej rovnice. Zintegrujeme teda s ohladom
na pociatoéné podmienky druht a tretiu rovnicu v ¢ase:

= —2wz cos () —w?R sin (0) cos (0)

s (3.126)
Z=—gt+2wx sin(0) + w R sin” (0) ¢
Tieto vyrazy dosadime do (3.125) (I):
i+ 4w’z = 2w (g — w?R) sin (0) t (3.127)
Riesenie tejto rovnice aj s ohladom na pociatoéné podmienky bude:
—w?R 1
z(t) = % sin () [t — 5_sin (2wt)} (3.128)
Pouzitim (3.126) a okrajovych podmienok (3.125) ziskame y a z:
1. g .9 2
y(t) = 75 (20) [(E - R) sin® (wt) — gt ]
1 - w?R
z(t)=h— 59 cos? (0) t* — % sin? (6) sin? (wt)
Dostali sme teda kompletné rieSenie padu na rotujicu zem:
2
_g—w'R 1
z(t) = g, sin (0) [t 5 Sii (th)}
1
y(t) = 1 sin (26) [(% . R) sin? (wt) — th] (3.129)
w
1 2 2 g-wR .2
z(t)=h-— 59 cos (0)t* — 5z sin (0) sin® (wt)
Pod'me si rozobrat jednotlivé zlozky. V zlozke x vidime, Ze v prvom rdde wt sa ni¢ nedeje:
1 1 (2wt)® 1 2 3
t— oo sin (ut) =t — 5— (m = +> == {(wt) +O [(wt) }} (3.130)
R ,
z(t) = % sin (6) (wt)® + O [(w t)d} (3.131)

Prvotny pohyb v sdradnici x v ¢ase teda bude parabolicky, ¢leny vyssieho radu predstavuja takmer
nepostrehnutelnt odchylku. Ako vidime, ¢len sin (6) obmedzi pohyb v siradnici # na pdloch. Treba vsak
podotkniit, Ze odvodené rovnice sii dostatoéne presné az v istej vzdialenosti od pélov, pretoze nami zvolené
stradnice maji na péloch singularitu3°.

30Ned4 sa napr. povedat, kam mieri siradnica y na péloch.
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V stdradnici y nastdva podobna situdcia:

y(t) = isin (20) [(% - R) sin? (wt) — gt?| = —%R sin (20) (wt)® + O {(w t)ﬂ (3.132)

V tejto stradnici vidime, Ze na péloch ani na rovniku sa pad neodchyluje od volného padu na staticki
Zem, ¢o je sposobené Elenom sin (20). Treba poznamenat, ze prave odstredivé sila m4 za ndsledok takéto
charakteristiky padu, ¢o mozno koniec-koncov dokladovat aj typickym std¢anim vetrov k rovniku.

Napokon sa pozrieme na pohyb v stradnici z a hned zbaddme istd zradu. Cakali by sme v rovnici
¢len —g/2t2, no pri tomto ¢lene este nachddzame cos? (#), teda akoby teleso prestalo padaf na rovniku, kde
0 =m/2 acos () = 0. V skuto¢nosti pre malé wt je v poslednom ¢lene pritomny vyraz, ktory vykompenzuje
toto spravanie:

2(t)=h— %th + %R sin? (0) (wt)? + O [(w t)4] (3.133)

Slovensko je priblizne na 48° zemepisnej §irky, ¢o znamend 6 = 77 /30. Pustajme kamen zo 100 metrovej
jedlicky (h = 100m) na rotujicu zem, w = 6 - 10~°rad s~1. Uvedieme tri grafy; prvy je zavislost z(t):

100
z[mj
80
60

401

201

| > 3 P 1[s]

Obrézok 3.25: Vyvoj vysky z(t) s ¢asom. Nakreslenych je viac zdvislosti pre rézne zemepisné sirky, od
severného pélu az k juznému. Cervenou farbou je vyznacena zavislost vysky v case pre 0 = 48°.

Takto od pohladu nie je badat rozdiel medzi parabolou h — 1/2 gt? a funkciou z(t). Pre ¢as priblizne
4.5s teleso dopadne na zem, pre volny pad by sme dostali ¢as 4.515s.
Nasleduju grafy x(t) a y(t):

0.02 X [m]

0.10

0.05

-0.051

-0.10

Obrazok 3.26: Vidime, Ze v dosledku neinercidlnosti Zeme ako vzfaznej ststavy pozorujeme odchylku v
smere z (na vychod) aj v smere —y (na juh). NaSa zemepisnd sirka je blizka 45°, ¢o znamend, Ze Cervend
zévislost je takmer na okraji.
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Obrazok 3.27: V kazdom mieste na Zemi mozeme zaznagit, ktorym smerom by sa odchylil objekt padajici
z istej vysky na rotujicu Zem oproti miestu dopadu na staticki Zem.
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3.7 Tuhé teleso

Pod tuhym telesom rozumieme dokonale pevné teleso, ktoré nepodlieha deformaciam pri silovom posobeni.
Désledok tejto definicie je, Ze vzdialenost medzi akymikolvek dvoma bodmi telesa sa zachovéva aj pri
posobeni vonkajsich sil.

3.7.1 Kineticka energia, rotacna energia a moment zotrvacnosti tuhého telesa

V tuhom telese je vidy rozumné zvolif si nejaky referenény bod. Majme teda tuhé teleso a v iiom
referenény bod, ktory m4 polohu R(t) (teleso sa moZe vielijako hybat, tdto poloha je teda zdvisla od ¢asu).
Od tohto bodu mézeme uréovat polohy inych bodov v telese.

Obrazok 3.28: Tuhé teleso.

Kinetickt energiu tohto telesa v laboratérnej sistave uréime ako:
T= lzmkﬁ2 (3.134)
2 4 k '

Z obrézku (3.28) vidime, ¢omu je rovny vektor p:

N . N .\ 2 5 L .
pi= Rt = 52 = (B+i) = B2+ 28 i + 77 (3.135)
T= LS B2 ME =S 42 3 i (3.136)
9 - k M - kTk 9 - kTL .
—— ~———
=M P

Vidime, Ze druhy élen obsahuje zmenu polohy faziska voéi referenénému bodu. Ak vsak referenény bod
R stotoznime s taziskom, potom stredny ¢len v kinetickej energii vypadne:

1=, 1 -y
T=_ ME +§zk:mkrk (3.137)

Teraz uz plati, ze R je poloha taziska a jednotlivé polohy 7, st vzhladom na toto fazisko. No ked'ze
rozoberdme tuhé teleso, polohy 7, nemozu robit ni¢ viac, ako pohybovat sa po sfére okolo R. Ak by menili
svoju vzdialenost od taZiska, uz by sa nejednalo o tuhé teleso. Z predoslej ¢asti o neinercialnych vzfaznych
ststavach vieme, Ze ak sa nejaky vektor pohybuje po sfére, jeho pohyb mozno opisat nasledujicou rovnicou
pre @(t):

1
Il
&1
X

ot

(3.138)
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V stilade s touto rovnicou prejde kineticka energia telesa na tvar:
T:1M§2+12m (@ x ) (3.139)
3 5 . k k .

Prvy ¢len je kinetickd energia hmotného bodu s hmotnostou celého telesa ststredenej v fazisku. Druhy
¢len musi predstavovat rotaént energiu tuhého telesa:

1 - SN2 Davis cup identity L L5 \2
T’r‘ot.:§§ mk(wx’rk) S *E mk;((/.) Tk—(w-’]"k)>:

= %Wiwj ka {(52'ij2 - (Fk)1 (Fk)]]
k

Zistili sme, Ze rota¢na energia telesa je rovna:

1
Trot. = 2w2wj i ka {(5”7“,c — (%), (T k)J (3.140)

Tenzor J;; budeme volat tenzor momentu zotrvacnosti. Jeho vyjadrenie v integrdlnom tvare bude:

Jij = // (672 — wiz;] dm = ///,0 (7) [6:57% — wyz;] AV (3.141)

kde V je objem, ktory zabera teleso. Je zjavné, ze tenzor momentu zotrva¢nosti je symetricky.
Moment hybnosti L pocitame ako:

L; = Z ('Fk X ﬁk)z = ka [Fk X ((3 X Tk) i = = Wy ka |:(51ka — (’l”k) ( k)]:| = Jijwj (3142)

k k

Vsimnime si istd analégiu medzi hybnostou a momentom hybnosti. Hybnost je dand sti¢éinom hmotnosti
a rychlosti telesa, kde hmotnost je skaldr. Moment hybnosti je dany ako stiéin momentu zotrvaénosti a uhlovej
rychlosti, kde moment zotrvacnosti je tenzor. Teda vo vieobecnosti, kym hybnost a rychlost maji rovnaky
smer a orientdciu (pretoze hmotnost je kladnd konstanta), moment hybnosti mé vo vSeobecnosti iny smer,
ako uhlov4 rychlost. Stale viak plati, Ze vzfah medzi momentom hybnosti a uhlovou rychlostou je linedrny.
Moment zotrva¢nosti teda mozeme chapat ako linedrny operdtor operujtici na uhlovych rychlostiach, ktorého
vysledkom st momenty hybnosti. M-ndsobok rychlosti sa tiez istym spoésobom dé chdpaf ako linedrny
operator, ak tento nasobok vhodne zapiseme:

p(@) =m7 L@)=J&

pPi = mMv; = méijvj LZ = J,L'j(.L)j

(3.143)

Vidime, ze v pripade hybnosti hra tdlohu linedrneho operatora tenzor md;;, v pripade momentu hybnosti
je nim tenzor J;;.

Podobnti analégiu vieme néjst medzi kinetickou a rotacnou energiou. Kym kinetickd energia je (1/2) m ¢
rotacnd energia je (1/2)J;w;w;, teda ma tvar kvadratickej formy. Kinetickd energia je tiez kvadraticka forma,
moéZeme to nahliadnuf znovu spravnym (trochu zbytoénym) rozpisanim:

2

1 1
T (@) =-mv? Eror (&) = =3J&

: : (3.144)
T(¥) = 2vlm§wvj E.p (&) = EwiJijwj

V pripade kinetickej a rota¢nej energie su prislusné matice kvadratickych foriem rovnaké, ako v pripade
hybnosti a momentu hybnosti.
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C
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@

Obrazok 3.29: Kym hybnost a rychlost maji rovnaky smer aj orientdciu, pri momente hybnosti a uhlovej
rychlosti to uz tak nemusi byt.

VooV G o
R S — R A S —
Imv* JwJw
" "

T E..

Obrazok 3.30: Vseobecny vzfah medzi kinetickou energiou a rychlostou je jednoducho (1/2)m @ 2, kdezto
rotacnd energia je kvadraticka forma, ktorej matica je moment zotrvacnosti.

Tenzor momentu zotrvacnosti, o ktorom bola doteraz re¢, je matica, ktorej kazdéa zlozka je pocitana
vzhladom na nejakd bazu v telese. Ak uZ taky tenzor momentu zotrvaénosti mame vypoéitany, potom
operacie, ktoré sme doteraz opisovali, ako napr. vypocet momentu hybnosti, alebo uhlovej rychlosti, tiez
robime v tejto baze. Tento fakt ndm déva moznost vyberu bazy. Ak sa ndm zdaji byt integraly, ktoré treba
pocitat na ziskanie momentu zotrvaénosti v danej baze fazké, mame moznost si vybrat lepsiu bazu. Navyse
vZdy (pre kazdé teleso akéhokolvek tvaru) ewistuje bdza, v ktorej je moment zotrvaénosti diagondlna matica,
¢o zuzuje pocet nutnych vypoctov na najviac tri.

Obrazok 3.31: Obtiaznost vypoétu momentu zotrva¢énosti zavisi od vyberu bazy. V béaze 8 sa bude moment
zotrvaénosti o¢ividne poéitat lepsie, ako v baze a.
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Teraz si ukdzeme dokaz tvrdenia, ze vo vhodnej baze ma moment zotrvacnosti diagondlny tvar. Najprv
dokézeme, ze pri Standardnom otoceni bdzy e (t.j. otoCeni kazdého jeho prvku €;) pomocou ortogondlnej
matice A sa matica J;; transformuje podla klasického vzfahu: J — AJ A~!. Ortogondlna matica A musi
splnat vzfah:

ATA=AAT =T; — AT =471

B (3.145)
AzkAgj = Ag;Akj = 6ij - A;l; = Aijl
kde transpozicia v indexoch zamiena poradie indexov:
AL = A (3.146)

Vychédzame z definicie J;; v baze e:

Jij = /// (6572 — myz;) P (3.147)
14

Rozmyslime si, Ze po otoéeni bazy e do novej bazy: & — A¢; sa aj kazdy vektor 7 otoéi podla rovnakého
vztahu: 7 — A7. Tento fakt teda vyuzijeme v definicii J;; (3.147):

7= AT .- XT; — Al’jCEj — Jij — W (6ijAabbeacxc — AzmxmAJn:cn) d3.’£ (3148)
\%4

Vyraz pod integralom postupne upravujeme za vyuzitia (3.145) a (3.146):

= 07% — AimTmand,]  (3.149)

T T
5ijAabbeacxc - AimxmAjnzn = 57] AbaAac TpTe — AimTmTn Anj
——

=0 —A-1!
nj

V druhom élene uz vidime ziadany jav, maticu A zlava a inverzni maticu A~! sprava. Dané matice
vak chybaji v prvom élene. Ako sme mali moznost si overit, na skaldr 72 transformécia nemd ziaden
efekt?!, teda ani pripisovanie matic nem4 ziaden efekt. Inu vec, ktord sme diskrétne preskoéili, je fakt, ze aj
tenzory treba pri zmene bazy oblozit. Vo vyjadreni .J;; je pritomny tenzor ;;, na ktory sme zabudli. No po
oblozeni tenzora §;; maticou transformacie by sme rychlo zistili, ze ani s tymto tenzorom transformaécia ni¢
neurobi, mdézeme teda podla Tubovole pripisovat transforma¢né matice zlava (a prislusni inverzni sprava)
bez zmeny vyrazov. Akokolvek sa na to teda pozrieme, teda bud ako transformécia d;; do inej bézy, alebo
umelé pripisanie A zlava a A~! sprava®?, dostaneme:

05577 = AimTmTn Ayl = AimOmn A, 172 = A @man AL = Aim (6mnt™> — 2man) A (3.150)
P AT = Jij = Aim /// (B — Tz A% A} = Ay Ty A (3.151)
14

31V tedrii relativity by sme povedali, ze 72 sa transformuje ako skaldr, ¢o znie trochu paradoxne vzhladom na to, ze 72

skaldr (v zmysle Ze ho tak voldme).

323chematicky néazov tejto metédy je zndsilnenie jednotkou (v tomto pripade jednotkovou maticou). Nemenej oblibend
metéda v analyze a algebre je zndsilnenie nulou, pretoze ako véetci vieme, nulu mézeme beztrestne hocikde pricitat a odéitat,
tak ako mdzeme jednotkou beztrestne nasobit a delit.

uz je
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Uz sme dokézali, ze pri otoceni siradnicovej sistavy maticou A sa tenzor momentu zotrvacnosti trans-
formuje ziadanym?? spésobom:

Fa A= J>AJA! (3.152)

Teraz viak méme ndvod priamo na to, ako hladat prislusnt ,,dobri” telesovi bazu, v ktorej bude tenzor
momentu zotrvacnosti diagondlny. V linearnej algebre totiz plati veta: ku Stvorcovej matici J existuje matica
A taka, ze:

J=ADA™! (3.153)

kde A je matica prechodu pozostdvajica z vlastnych vektorov J a D je diagondlna matica s vlastnymi
hodnotami J na diagondle. V nasej situdcii plati, ze J je diagonalizovatelna ortogondlnou maticou®?, ¢o st
presne tie matice, ktorymi sprostredkiivame otacanie bazy.

Vysledok tejto analyzy je cenny aj v nasledujicom zmysle: ked sa rozhodneme prepoéitat tenzor mo-
mentu zotrvaénosti do inej bazy, nemusime znovu poéitat prislusné integrély, staéi poznaf maticu prechodu
medzi bazami®®.

Pozrime sa teraz na to, aké rézne tvary telies z hladiska ich momentu zotrvaénosti moézeme dostat.
Moment zotrva¢nosti je uz vypoéitany vzhladom na dobru telesovi bazu, v ktorej mé diagonalny tvar,
J = diag (J1, J2, J3). V skutoénosti teda moézu nastat len 4 moznosti:

1. J; = Jo = J3: ide o telesd napohlad pravidelného tvaru, kde pohlad z roznych osi sa ned4 rozoznat,
napr. gula, ale aj kocka, pravidelny Stvorsten, osemsten, dvandsfsten, ... Tieto telesd voldme sféricky
zotrvacnik.

2. J1 = Ja > J3: je to teleso tvaru velmi tenkej palicky, ktoré je ulozené na osi z. Voldme ho rotator.

3. J1 = Ja,J3 > 0: ide o telesd, ktoré maji nezanedbatelné rozlozenie hmoty aj mimo osi z (narozdiel
od rotdtora), no ich tvar je tiez odolny voéi zamene prvych dvoch osi. Jednd sa napr. o kuzel postaveny v
smere osi z, hranol s podstavou tvaru stvorca, valec, ... Tieto telesa volame symetricky zotrvacnik.

4. J1 # Jy # J3 # Ji je to tak nepravidelné teleso, aby jeho zlozky momentu zotrvacnosti neboli
rovnaké, teda napr. stolicka, postel, bicykel, ... Teleso s takymto momentom zotrva¢nosti voldme asymetricky
zotrvacnik.

Tieto 4 moznosti pokryvaji vietky mozné tvary telies, ¢okolvek iné (napr. J; < 0, Jo = J3, teda tenk4
palicka na osi z) moZno dostat rotdciou niektorého z uz opisanych telies (teda taku tenku palicku uloZent
na osi x tiez budeme volat rotdtor a je to teleso, ktoré spadd do kategérie 2.).

33Lepsie povedané, ocakdvanym spésobom. Ono to nie je tak, ze by si tenzory mohli vyberat, ako sa budi transformovat,
my to od nich éakdme. Ak to nerobia, st neslusné, je to nie¢o ako ked &lovek nepozdravi, ked pride na névstevu. Nagtastie sa
zd4, ze v tomto pripade ndm spadol do lona slugny tenzor (ind¢ by bolo velmi bolestivé kazdé jeho prepoéitanie do inej béazy).

34Tento fakt vyplyva z toho, ze J je redlna a symetrickd matica.

35N4sobenie matic sa vo vieobecnosti povazuje za jednoduchsiu tlohu ako poéitanie integralov. Ospravedliujeme sa
extrémistom, ktorf oblubuji vikendovy masochizmus v podobe konzumovania Demidovi¢a.
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3.7.2 Steinerova veta a veta o kolmych osiach*

Plat{ nasledujtica veta (Steinerova) o rovnobeznych osiach36: Moment zotrvaénosti tuhého telesa podla
osi O prechddzajicej jeho taziskom oznaéime J, vid obrdzok (3.32). Pre dani os o rovnobeznt s osou O je
moment zotrvacnosti rovny:

j=J+MR? (3.154)

kde R je vzdialenost medzi osami 0 a O a M je hmotnost uvazovaného telesa.
Dokaz:
Moment zotrvaénosti podla osi o poéitame podla vztahu:

i~ [ o

kde 7’ je vzdialenost elementu hmoty tuhého telesa od osi o a plat{ prefi kosinusové veta:

F’2:F2+ﬁ2—2ﬁ-F:F2+ﬁ2—2’ﬁ‘ || cos (0)

jzé//<F+E)2dm:/v//7?2dm+ﬁ2/v//dm—2’ﬁ‘/v/ || cos (6) dm

V prvom ¢lene spoznavame povodny moment zotrvacnosti, stredny clen udéva R?2 - nésobok hmotnosti
telesa. V poslednom si viimneme, ze vyraz || cos (0) vlastne uddva priemet vektora 7 do osi spdjajicej O s
o. Tento integral teda uddva M - nasobok priemetu (do osi spajajicej O a o) vzdialenosti faziska telesa od
osi O, ¢o je vsak nula, pretoze os O prechiadza taziskom.

j=J+MR?

Ako vidime, Steinerova veta vlastne hovori o tom, ze moment zotrvacnosti okolo osi rovnobeznej s
osou prechadzajicou taziskom, je rovny povodnému momentu zotrvaénosti zviéSenému o hodnotu momentu
zotrvacénosti hmotného bodu hmotnosti M vzdialenému R od osi otdcania (akoby sme celé teleso skoncen-
trovali na jednu os, alebo do jedného bodu).

36Parallel axis theorem.
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Plati nasledujica veta o kolmych osiach3”: faziskom daného plandrneho telesa prechiadzaji dve navzéjom
kolmé osi z a y leziace v jeho rovine, Prisliné momenty zotrvaénost{ vzhladom na tieto osi oznaéime J, a
Jy. Moment zotrvaénosti J, podla osi z kolmej na z aj y, taktiez prechddzajuce]j faziskom telesa je rovny
suctu momentov zotrvacnosti J, a Jy:

J.=Jp + Jy (3.155)

Dokaz: pocitajme vyraz J, + J, v baze tvorenej osami x, y a 2:

Jz+Jy:///(y2+z2)dm+///(x2+z2)dm

Ked'7ze hmota telesa je rozlozena len v rovine xy, objem V je mnozina bodov, pre ktoré urécite plati
z = 0. Z oboch integrélov teda tento ¢len vymazeme (pretoze integrujeme len cez podmnozinu roviny z = 0)
a dostaneme tak vyraz:

o+ J, :///dem+///:r2dm:///(m2+y2)dm:Jz

z

Obréazok 3.33

Vetu o kolmych osiach mozno jednoducho rozsirif aj na telesa, ktorych hmotnost nie je rozlozend v
jednej rovine. V takom pripade sa vratime ku vyrazu J, + Jy:

Jo +Jy :///(y2+22)dm+///(x2+z2) dm:///(x2+y2)dm+///2z2dm (3.156)

Prvy integral uddva moment zotrvac¢nosti okolo osi z, druhy integral ma nezdporni podintegralnu
funkciu v celej oblasti integrovania. Pre teleso, ktoré je rozlozené v priestore dokonca plati, ze podintegrédlna
funkcia je kladnd. Z toho dostdvame trojuholnikovii nerovnost pre momenty zotrvaénosti okolo navzijom

kolmych osi:
Jo+Jy = J, (3.157)

Rovnost nastdva, ak je hmotnost telesa rozlozend v jednej rovine.

3TPerpendicular axis theorem
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3.7.3 Kinematika voIného sférického zotrvaénika

Ako uz bolo spomenuté, jedna sa o telesa pravidelného tvaru vo vietkych osiach, napr. gulu, kocku, ...
Tieto telesd maji zaujimavi vlastnost a to, Ze ich moment zotrvaénosti je rovnaky v kazdej baze, ktort by
sme si v telese vybrali. Podla obrdzku (3.31) by sa zdalo, Ze kocka mé iny moment zotrvaénosti v inych
bézach, no nie je tomu tak. Tato vlastnost sa d4 jednoducho ukézat aj vieobecne. Majme tenzor momentu
zotrvacnosti nejakého telesa v niektorej béze, v ktorej mé tento tenzor diagondlny tvar. Mdzeme pre neho
pisat:

Jij = Joi (3.158)

Prechod do inej bdzy (napr. z bazy ¢ do bazy e) sa deje pomocou matice rotécie A:

€ = A;;E; (3.159)
Rovnakym sposobom sa transformuje moment zotrvaénosti J na moment zotrvacnosti J’ v novej baze:
T T
Ji’j = Au ApjJoa = (A )m JOapAp; = J (A )ia Agj = Jbij
:(AT)ia

J =7 (3.160)

Pre takéto telesd m4 moment hybnosti vzdy rovnaky smer, ako uhlova rychlost:

Li = Jijwj = J6ijwj = JUJi
L=Js L[| (3.161)

Nudnost sférického zotrvaénika demonstruje priklad o volnom sférickom zotrvaéniku. Ked'ze je volny,
nepdsobia nan ziadne momenty sil a jeho moment hybnosti je konstantny. V laboratornej béze je moment
zotrvaénosti rovnaky, ako v telesovej a moment hybnosti mé4 rovnaky smer, ako uhlové rychlost. Tym padom
zvonku pozorujeme, ze teleso sa maximalne ako celok pohybuje niektorym smerom rovnomerne priamociaro
a vykondva pritom rovnomerny otd¢avy pohyb okolo niektorej pevnej osi. Ako uvidime, volny symetricky
zotrvaénik bude vykondvatf precesiu, na jej popis viak potrebujeme zaviest d'alsie pojmy na opis rotécie
telesa (Eulerovy uhly) a odvodit prislusné rovnice (Eulerove rovnice).

L=jo

Obrazok 3.34: Rotécia volného sférického zotrvaénika. Moment hybnosti L mé rovnaky smer aj orientéciu,
ako uhlové rychlost &.
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3.7.4 Eulerove rovnice pre rotaciu tuhého telesa, Eulerove uhly
Eulerove dynamické rovnice
Vieme, Ze vzfah medzi momentom hybnosti a momentom sily v laboratérnej stistave e je:
L=1ILi& — L=M (3.162)

V telesovej stistave & (dobre zvolenej a pevne spojenej s rotujicim telesom) dostdvame podla uz raz
zistenych skutocnosti:

I_: = L,LE_; — E = Lza + Ll\i‘f}'/ = ngz + sijkLiwjé’k = LZE_; + Eibjf‘:_;waj = (Lz + sibijwj> é; (3163)

QXgi

7 toho pre moment sily vyplyva

M; = Li + eijpwiLy (3.164)

Kedze poznédme vzfah medzi momentom hybnosti a momentom zotrvacnosti, L; = J;;w;, mozeme
moment sily pisat ako:

M; = JijU:)j + EiijJijmwm (3165)

Kedze J;; je vo vhodnej telesovej béze, je to diagondlna matica, J = diag(Ji, J2, J3), a pre jednotlivé
zlozky momentu sily dostdvame jednoduché vzfahy:

My = J1w1 + waws (J3 — Jz)
My = Jows + wiws (Jl - Jg) (3166)
M3 = ngg + w12 (J2 — Jl)

Tieto vzfahy voldme Eulerove dynamické rovnice pre rotaény pohyb. Lavé strany st zname veliéiny,
zlozky momentu sily (tak ako v Newtonovej rovnici pozndme samotnii silu) uréené vzhladom na dané telesové
osi, pravé strany obsahuji nezname zlozky uhlovej rychlosti, pre ktoré sa tieto rovnice riesia. Tieto uhlové
rychlosti nie st velmi ndzorné na predstavu, pretoze st to priemety uhlovej rychlosti do telesovych osi. Preto
sa este dodatoéne vymysleli Eulerove uhly, ktorych znalost ddva lep§iu predstavu, ako je teleso v priestore
natocené.
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Eulerove uhly

Tuhé teleso ma vo vseobecnosti 6 zovseobecnenych suradnic: tri sa viazu na jeho pohyb v priestore,
dalsie tri slizia na opis jeho nato¢enia. Prave na opis natoéenia telesa v priestore sa pouzivaju Eulerove
uhly - ¢, 6, 9.

Predstavme si v priestore hranol (s nerovnakou dlzkou strdn), ktory je zatial postaveny v smere labo-
ratérnej osi z. Pred akymkolvek otdéanim sa jeho telesové osi zhoduji s laboratérnymi osami. Prvy Eulerov
uhol, ¢, uréuje, o kolko pootoéime tento hranol podla osi z proti smeru hodinovych ruéiciek. Natocenim
hranola sa otac¢aju aj jeho telesové osi:

y N2

Obrazok 3.35: Prvy Eulerov uhol .

Tymto natocenim sa telesové osi otocia, teraz ich mame oznaéené jednou éiarkou. Os 2’ je zatial totoznd
S osou z.
Eulerov uhol 6 je uhol, o ktory teraz otocime teleso podla osi 2’ prroti smeru hodinovych ruéiciek:

[

z \ Zn
o
/\ Y
- y
Xr P ///
y, ) ////Q E?\X”:X'
—
—
— ///

Obréazok 3.36: Druhy Eulerov uhol 6.

Mozme si véimntt, Ze ak doterajsie uhly ¢ a @ st tie isté uhly ¢ a 6 zo sférickych siradnic, teda os z”
mieri v smere @ a 6 vo sférickych stradniciach, spojenych s laboratérnou sistavou (teda uhol ¢ sa meria od
osi z a uhol 6 od osi z).
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Treti Eulerov uhol 1) je uhol, o ktory oto¢ime teleso podla osi z” proti smeru hodinovych ruéiéiek:

y ynr

Obrazok 3.37: Treti Eulerov uhol .

Obrézok 3.38: Eulerove uhly spolu.
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Eulerove kinematické rovnice

Nasou tlohou je teraz vyjadrif vztah medzi Eulerovymi uhlami (¢, 6, ¥) a priemetmi uhlovej rychlosti
do telesovych osf (w1, wa, w3). Najprv nahliadneme struktiru tohto vztahu. Eulerove uhly chdpeme, prisne
vzaté, ako zovSeobecnené suradnice «;. Pozrieme sa, ¢o s nimi spravi infinitesimalna rotécia v smere, ktory
urcuje vektor & (tento smer je dany jednotkovym vektorom 7). Tdto rotécia zrejme docieli, ze z pdvodného
Eulerovho uhlu «; urobi novy uhol, a; + da;. Podstatou bude rozviniif zmenu v Eulerovom uhle do prvého
radu zmeny uhlu (a teda aj ¢asu):

ip — e + nde = a; — «; + do; (o, ddt) (3.167)
. Oa;
do (o, @dt) = doy (a,O) +dy; a (3.169)
N 9¢j lag—g
-0 o

dOéi Aijdg@j Aijwjdt
dt dt dt Kt (3.170)
a; = Aij (0,0,%) w; (3.171)

Zovseobecnené stiradnice ¢; su derivacie Eulerovych uhlov a prave sme zistili, Ze vzfah medzi tymito
derivdciami a uhlovou rychlostou je linedrny - matica, ktora tento vztah sprostredkiva v skutoénosti zdvisi
len od samotnych Eulerovych uhlov, nie od ich derivécii, ani od & (pretoze matica A;; vznikla dosadenim v
derivéciach za Jdt = 0):

v wi
01 =1 A0, 97) wa (3.172)
Y w3

Ak s1 ale Eulerove uhly dané spravne (¢o st, pretoze ku kazdej trojici ¢, 0, v existuje & a ku kazdej &
existuje ¢, 0, 1)), potom sa tento vzfah d4 obrétit a dostaneme:

w1 90
w2 | = At (9, ®, '(/J) 0
ws P
(Ail)i_j = By
w1 4,0
w | = Bo.ew) | |0 (3173)
ws P

Na riesenie prikladov s rotaciou telies je nutné poznat maticu, ktord sprostredkiva vztah medzi uhlovou
rychlostou a derivaciami Eulerovych uhlov. Uhlovi rychlost & moézeme rozlozit jednak do telesovych osi &,
jednak do inej, presne definovanej bazy. V prvom pripade budu koeficienty pri danych smerovych vektoroch
priamo zlozky &, v druhom pripade to budid Eulerove uhly ¢, 0, 9:

W = w1€] + wafh + w3fs = Pes + ON + ’l/Jf-_::g (3.174)

Je jasné, Ze ak teleso rotuje v uhle 1, rotuje vlastne podla tretej telesovej osi (teda £3), kdezto ked
rotuje v uhle 8, rotuje podla zvlasnej osi, ktora v laboratérnej ststave zdvisi od uhlu ¢ a v telesovej stistave
podla v. Ak rotuje v uhle ¢, otdca sa vlastne okolo tretej laboratérnej osi. Plan je teraz odvodif vztfahy
medzi 53, ]\7, 53 a 51, 52, 53.
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Obrézok 3.39: Osi €3 a £€3. Os N smeruje v smere €3 X £3.
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Najjednoduchsi vztah je medzi 1/1 a W, pretoze tento Eulerov uhol je okolo &5. Pretoze 6 je uhol odklonu
medzi &5 a &3, os N smeruje v smere €3 X £3. Tym padom staéi poznat rozklad & do bazy € a budeme mat
vSetko, ¢o potrebujeme:

€3 = a1 + béh + ¢ (3.175)

KedZe € je ortonormalna baza, pre koeficienty a, b a c rozkladu €3 do tejto bazy plati:

(1253'51 bzgg'gg ngg'gg (3176)

Najjednoduchsie bude uréit koeficient c, pretoze priamo uhol 6 uréuje odklon tretej telesovej osi od
tretej kartézskej osi. Koeficient ¢ zodpovedd priemetu €5 na vektor &3, ¢o je z definicie cos ().

Vieme, ze koeficient a, ani b sa nemeni s uhlom ¢, pretoze uhol ¢ otac¢a telesom okolo samotnej osi €.
Vezmime v rovine urcenej vektormi €3 a &3 vektor, ktory bude kolmy na &5. Definujme ho tak, ze pre uhol
6 z intervalu (0,7) bude zlozka vektora €3 v smere tohto vektora rovnd sin (6). Oznaéme ho &5. Kedze je
kolmy na &3, je mozné ho tplne rozlozit do bazy £}, &, pretoze jeho zlozka v smere €3 je nulova.

Zmenou uhla 1 sa meni poloha telesovych osi &) a &5 voci laboratérnej sustave, no osi €3 a €3 pritom
stoja, teda aj vektor €% stoji. Pred akymkolvek otd¢anim v uhle 1) mieri vektor £ presne v opaénom smere,
ako &1 (az na pripad, ked 6 = 0, pretoze v tomto pripade je % nedefinovany). Rozklad &% do vektorov €] a
&5 zacne byt zaujimavy, aZ po otdcani v uhle 1), pretoze nezdvisi na @ ani ¢. Oto¢me teda teleso do polohy
(0,7/2,7) a skiimajme, aky to ma dopad na vektor £5. Ked 1 = 0, tak os & mieri v smere &} a zviéSovanim
1 sa tento priemet zmensuje a7 do uhlu ¢ = 7/2, kedy je &% v smere & nula. Naopak, ked 1) = 0, priemet
g4 do &) je nulovy a zvicSovanim 1) sa tiez zvacsuje. Plati teda:

€4 = sin (¥) &1 + cos () & (3.177)
7 toho pre €3 dostavame:
€3 = sin (0) €% + cos (0) &5 = sin (¢) sin () &1 + cos () sin (0) & + cos (0) &3 (3.178)

Vektor N dostaneme ako siéin €3 X £3:

N o @ x & = [sin (¢) sin (0) & + cos (1) sin (0) &3] x & = — sin (1) sin (0) & + cos (¢)sin (0) & (3.179)
& X & = || |&5]sin ()) N = N = cos (¢) & — sin (1) & (3.180)
7 tohto celého moézeme uréit vzfah medzi & a Eulerovymi uhlami:
@ = @ + ON + & =
= [sin (1) sin (A) & + cos (¥) sin () & + cos (0) ] ¢ + [cos () &1 — sin (1) &3]  + Eyep =

= [Sin (v) sin (0) ¢ + cos (V) 9} & + [cos (1) sin (0) ¢ — sin () 9} £5 + [cos @)+ w} €3 (3.181)
w1 sin (1) sin ()  cos(yp) 0O @
we | = | cos(y)sin(d) —sin(yp) O 0 (3.182)
w3 cos (0) 0 1 1

Préave sme odvodili FEulerove kinematické rovnice:

w1 = sin (A) sin (1) ¢ + cos () 6
wy = sin (8) cos (1) ¢ — sin () 0 (3.183)
ws = cos (0) ¢ + 1)
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Eulerove dynamické a kinematické rovnice sa v jednoduchych pripadoch, kedy momenty sil nezavisia od
Eulerovych uhlov, daji rie§if oddelene. Najskor riesime dynamické rovnice, ktorych nezndme si priemety
uhlového zrychlenia na telesové osi, w;. Ich rieSenie dosadime do Eulerovych kinematickych rovnic, ktoré
nésledne riesime pre Eulerove uhly ¢, 8, .

Ked'7ze sme odvodili obe sady rovnic, mézeme sa vratif ku volnému symetrickému zotrvaéniku.

3.7.5 Dalsie priklady*
Dynamika a kinematika volného symetrického zotrvaénika*

Pre takéto teleso mame J = diag (j, 4, J), ked'Ze dve zlozky jeho momentu zotrvagnosti v telesovej baze
sa rovnaji. Oznaéme J — j = k > 0. Ked'ze teleso ma byt volné, moment sily, ktory na neho posobi je
nulovy. Eulerove dynamické rovnice si:

jwi + kwows =0
jd)g — kw1W3 =0 (3184)
Jws =0 = w3 = konst.

7 prvej rovnice vyplyva:

Dosadime to do druhej rovnice:

Jwiw

Jws + =0 = wiwy +wowg =0
w 2

Aby sme si uvedomili, o sme prave napisali, spoc¢itame:

d o _df df
gl W= f+fq =21
Napisali sme teda:
) . B 1d , 1d , 1d,, 2
w1 + Wows = 0 —> 5 ! + ST = 5 (wi +w3) =0
— w? +w? = konst. (3.185)

No ked'ze aj tretia zlozka uhlovej rychlosti je konstantnd, spolu dostdvame:

G2 = w? + Wi+ w? = konst. (3.186)

Kedze M = 0, tak L je konstantny vektor. Uzitoéné bude teda nechaf tplne rovnaké definicie Eu-

lerovych uhlov vzhladom na laboratérne osi, aké sme podali uz skoér, nech teda tento konstantny vektor

mieri v smere tretej laboratérnej osi. Ako sme uz predtym odvodili, priemet €5 do &5 je cos (6), teda priemet
L do &; bude L cos (0). Avsak vzhladom na to, Ze w3 je priemet & do &3, tak plati:

Lcos(0) = Jws = cos (0) = % = konst. = 6 = 0y = konst. (3.187)
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To je asi tak vietko, o sme mali a checeli vymlatif z dynamickych rovnic, pokra¢ujeme teda kinematic-
kymi:
wy = sin (0) sin (1) ¢ + cos (1) 0
wo = sin (6) cos (1) ¢ — sin (1) §
ws = cos (0) ¢ + 1)

. Lavé strany zatial ponechdme na pokoji, do pravych dosadime hlavné zjednodusenie 0 = konst. —>
0=0:

w1 = sin (Op) sin (Y) @
we = sin (Ap) cos (Y) & (3.188)
wsz = cos (0g) ¢ + W

Vzhladom na konstantnost vyrazu w} + w3 modzeme umocnit prvé dve rovnice a séitat ich - dostaneme
znovu konstantu:
2 2 _ o2 :2
wi +w; =sin” (6p) ¢

Jedind zaujimava neznama v tejto rovnici je ¢, pre ktord teda plati:

2 2
. VWi +w; .
=YL 2 _ ponst. = o(t) = Qut 3.189
2 Sin (90) ons SO() ¥ +<)00 ( )

Toto zistenie veselo dosadime do poslednej rovnice (3.188):

w3 = cos (Ag) Ry + ¥
7 ¢oho pre ¥ vyplyva:

¥ = w3 — cos (0) Qp = kondt. = P(t) = Qut + g (3.190)

Ked'ze pri zotrvaéniku ndm ide hlavne o vztah medzi Q,, Qy a 6y, vyuzijeme (3.189), (3.188) v spojent
s konstantnostou momentu hybnosti:

Vw? + w3

¥ sin(fg)
Pm o - 2_ 202, 2 2 2 o, 2 Lo AP
L = juw€1 + jwaés + Jwsés = L* = (wl —|—w2) + Jws = wi +wy = j—zL 7 w3
J Jws\”
cos (6p) = % = sin(fy) = /1 — (?)
1 [L2—J%w3 L
— Q= [ (3.191)
=)
Z tretej rovnice mame (3.188):
(3.187)
w3 =cos (0) Ly + Qy = Qy =wz —cos(6p) N, =~ —cos(By) — —cos(6y) =
1 1
= (J - j) L cos (o) (3.192)




3.7. TUHE TELESO

Vyuzitim (3.191) dostdvame findlny vztah precesni rychlost Q, v zdvislosti od Qy a 6:

B 0
e

Zopér (dolezitych) pozndmok ku Eulerovym uhlom a precesii:

Pozndmka ¢. 1: v priebehu riesenia sme vyuzili, Ze moment hybnosti volného telesa je konstantny a
preto sme ho zvolili v smere osi z laboratérnej sustavy. Uvedomime si, ze tym sme priamo zvolili 6 = konst.
Ak by sme to neurobili, neskutoéne by sme si stazili rieSenie kinematickych rovnic a vo vSeobecnosti by ndm
vy$li nepekné funkcie 0(t), ¢(t) a 1 (t). Mnohokrét je treba takymto sposobom vyberat vhodné natocenie,
bazu, ale ako sme uZz predtym videli, tak aj zovSeobecnené stradnice. Nemusi totiz platit Ze to, ¢o je pekné
v jednej béaze, je pekné aj v inej baze.

Pozndmka ¢. 2: Po vyrieseni dynamickych rovnic vidno, ze pre symetricky zotrvaénik uz neplat{ & || L.
Miesto toho vidno, Ze vektor uhlovej rychlosti & sa sém oté¢a okolo vektora momentu hybnosti. Mnohi Iudia
tento vztah prezentuji ako precesiu, pricom kinematické rovnice v podstate odignoruju a vysledok pre 6y,
Q, a Qy nepovazuji za dolezity. Pre mila osobne je precesia (aspon ¢o sa tyka zotrvacnikov) to, ¢o mozem
pozorovat volnym okom, teda to, ¢o je zapisané v Eulerovych uhloch.

Poznamka &. 3: V niektorych knizkéch sa Eulerove uhly pomenuji velmi sugestivne - uhol 6 nazyvame
nutaény uhol, ¢ precesny uhol a 1) rota¢ny uhol. Toto nizvoslovie je $ité na mieru precesii tazkého symet-
rického zotrvaénika, ¢o je vlastne zotrvacnik, ktory sa toc¢i na stole. Zotrvacnik je teda podoprety - jedna sila
na neho poésobi v mieste podopretia priamo nahor, druh4 sila pésobi v fazisku smerom nadol a ich velkosti st
rovnaké. Tento zotrvaénik vykondava v uhloch ¢ a ¢ podobny pohyb, no v uhle 8 pozorujeme este kmitanie,
ktoré dostalo nazov nutdcia. Vsetko je absolutne v poriadku, pretoze to, ¢o pozorujeme sa da pekne od seba
oddelif - vidime, 7e zotrvaénik sa to¢f okolo vlastnej osi (nazvali by sme to rotdciou), dalej sa tento pohyb
staca okolo inej osi (toto nazveme precesiou) a este odklon tychto dvoch osi kmita v ¢ase (nutécia). Vezmime
si ale znovu symetricky volny zotrvaénik a skiimajme, ¢o sa deje, ked jeho tvar je stale sféricky symetrickejsi
(napr. brali by sme elipsoidy, ktoré sa tvarom blizia ku guli). Je zjavné, ze pre tieto telesd musi postupne
ustaf precesia, ocakdvame teda, Ze precesny uhol pdjde do nuly a rotaény uhol ostane v ase linedrne rastuci
(ostane uréeny v podstate pociatoénymi podmienkami, ktoré mu udelime). Na naSe obrovské prekvapenie
sa tak nestane. Ako vidno z (3.193), ked sa j blizi ku J, teda vyraz (j/J — 1) sa blizi k nule, aj Q, sa
musi blizif k nule, ind¢ by vyraz na lavej strane divergoval. Toto je zrejme fazks rana pre vsetkych, ktori
povazovali Eulerove uhly za naddherne opisné a jasné v kazdej situdcii - nie je tomu tak. Sféricky symetrické
volné teleso naozaj rotuje iba v uhle ¢, musime sa teda zmierit s tym, Ze nazvoslovie ité na mieru precesii
jednoducho nebude inde fungovat.

Pozndmka &. 4: v skutoénosti sa Eulerove uhly nepovazuji za velmi vhodny ndstroj pri rieSeni dy-
namickych problémov (to s tie, kde na sistavu posobia sily a my zistujeme, ako ststava reaguje), zato st
velmi ndzorné pri urCovani polohy telesa (ak mame dané Eulerove uhly, velmi rychlo si vieme predstavit,
ako je teleso v priestore natocené). Pouzivaji sa rozne uhly, podla roznych schém natdcania, ktoré oznacuji
poradie osi, podla ktorych sme teleso natécali. Eulerove uhly definované v tomto texte st zavedené podla
schémy z — z — z, pretoZe v takom poradi sme ot4cali teleso podla osi. Je mozné pouzit takmer Iubovolnd
schému, jediné obmedzenie je, Ze dve po sebe nasledujice rotdcie sa musia konat podla réznych osi. Iné,
analogické uhly ku Eulerovym si Tait-Bryanove uhly. V letectve sa pouzivajd iné nazvy a to heading (smer,
teda v principe uhol ), elevation (zdvih, teda uhol  merani od vodorovnej polohy), bank (otocenie lietadla
podla pozdiZnej osi, ¥), popripade yaw, pitch, roll (analogicky). V praxi vznikd ¢asto problém s tzv. gimbal
lock, teda strata stupiia volnosti. Ak dve osi, podla ktorych sme vykonali rotdcie o Eulerove uhly splyvaji
(napr. ak 6 = 0), potom taktito rotdciu mozno reprezentovat ako pohybom v jednom uhle, tak aj pohybom
v druhom uhle, respektive kombinaciou tychto pohybov. My, ako ,,zadavaci” Eulerovych uhlov vzdy vieme,
¢o sme spravili, no pri spatnom odétani uhlov takto vzniks istd4 mnohoznaénost. V praxi sa teda vyuzivaji
na opis rotacie quaterniény, ¢o je ale d’aleko za rdmcom tohto textu.

Q (3.193)
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Namiesto rieSenia tazkého symetrického zotrvaénika (mozno nijst v Landau - Lifsic) budeme riesit tieZ
velmi zaujimavy problém: predstavme si gulu s polomerom r a momentom zotrva¢nosti J, na ktorej povrchu
je pripevneny reaktivny motor. Vysledkom je konstantny vektor sily, ktory je permanentne prilepeny k
povrchu gule. Zaujima nés natocenie telesa v ¢ase a poloha jeho faziska v case. KedzZe gula je mélo
nézorné (faizko rozoznaf ako je natocens), budeme pouizivat kocku s hranou dizky 2a (je to rovnako sféricky
symetricky zotrvacnik, na rieSenf sa teda ni¢ nezmeni):

F F

Obrazok 3.40: Gula resp. kocka s reaktivnym pohonom.

Priklad si zna¢ne zjednodusime predpokladom, Ze poc¢iatoény vektor momentu hybnosti je nulovy (t.j.
na zadiatku teleso stoji): L(t = 0) = 0.

Této sila F je samozrejme konStantna v telesovych osiach, pretoze reaktivny motor je napevno pripev-
neny ku telesu. F vsak nie je konStantnd v inercidlnej (laboratérnej) sustave! je tomu tak preto, lebo
posobenim sily sa teleso v Case nataca, ¢o vSak nato¢i aj dany vektor F. Na vyriesenie pohybu tfaziska
budeme musiet najprv vyriesit rotdciu telesa. Nédsledne pohyb tfaziska bude dany Newtonovou rovnicou.

Nech telesové osi mieria nasledovne: pri polohe kocky ako na obrazku nech os = mieri dolava, os y
smerom z obrazku a os z v smere sily F. Nech tato sila ma velkost F, potom jej zlozky v telesovych osiach
budid: F = (0,0, F). Kazd4 zlozka momentu sily sa uréuje vzhladom na prislusni telesovii os a my vidime,
7e nenulova bude jedine zlozka y. Mézeme teda pisat dynamické rovnice:

0=Jw — w =0}

F
aF = Jiy = wy = “7t + Oy (3.194)

0=Jws =— w3 =0C3y

Ked'ze viak I_:(t =0) =0, potom C; = Cy = C3 = 0. Znovu si zjednodusime situéciu, tentoraz tak, ze
postavime laboratérnu os z do smeru, v ktorom je (konstantny) vektor momentu sily (teda telesova os y bude
zhodnd s laboratérnou osou z). Ako vieme, ze je konstantny? No pretoze pociatoény moment hybnosti je
nulovy a teda sila F sposobuje len rotaciu v jedinej rovine (rovine urcenej vektorom F a faziskom kocky). Pri
takto zvolenej situdcii viak plati, Zze § = 0. Musime si daf pozor, tentoraz budt platit Eulerove kinematické
rovnice, no wy bude prislichat tretej rovnici (pretoZe sme na zaiatku uréili osi laboratérnu z a telesovii y
ako zhodné). NapiSeme rovnice:

0=0
F )
a7t —p+ (3.195)
0=
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Méame gimbal lock v praxi - realizacia rotacie tuhého telesa je urcend len suctom dvoch eulerovych
uhlov. Dohodnime sa teda, ze 1» = 0. Ostane ndm tak rovnica:

. _aF 2
= t = ot) = 2Jt (3.196)

Vyslo ndm to, ¢o sme aj ocakavali - pri pésobeni konstantného momentu sily (napr. roztd¢am koleso, na
ktoré je namotané lano so zdvazim) sa objekt otdca tak, ze jeho uhol kvadraticky rastie v ¢ase. Samozrejme
vyuzili sme pri tom vsetky pociatotné podmienky - keby napr. teleso na zaciatku rotovalo v inej osi, pohyb
by bol velmi &karedy a nekonal by sa v jedinej rovine, ako v tomto pripade.

Tymto mame vyrieSenti rotdciu telesa v Case, ostdva vyriesif pohyb faziska v priestore (v ¢ase). Na to
vyuzijeme Newtonovu rovnicu:

—

F=ma (3.197)

Smer vektora sily vzhladom na laboratérne osi je jasny, ak mame k dispozicii uhol ¢:

F = [0, cos(¢p), sin(p)] (3.198)

Takto moézeme ziskat trajektériu telesa v rovine yz nasledovne:

=0 = x = nezaujimavé

NS

Il

| =
o

@]

)]
N
w‘@
<

~
()
~__

(3.199)

Pri takejto sile samotnd rychlost (3 a ) vedie na Fresnelove integraly, teda [ cos(u?)du a [ sin(u?)du.
Zdalo by sa, 7e d'alsf integral z takej Skaredej funkcie uz nebude Ziadna zndma funkcia, no nie je tomu tak
(a keby aj bolo, stdle sa d4 problém vyriesif numericky). Zaujimavé je, Ze v ¢ase idiicom k nekone¢nu sa
obe zlozky rychlosti blizia ku rovnakej konstante. Tento fakt vyplyva z hodnoty Fresnelovych integralov v

hraniciach od 0 do nekonecna.:
oo 2 oo . 2 1 T
cos (u?) du = sin (u?) du= =4/ = (3.200)

F [~ F F [2J [~ F F
vy(t—>oo):vz(t—>oo):E/o cos(zjtg)dt:m\/aF/O cos<;(]t2)d<\/c2l<]t>:

_ R [FT1

201
2 a m (30)

Vidime teda, Ze v tomto pripade sa rychlost vo velkom ¢ase akoby ,,vystreduje” do konkrétneho smeru
(ktory zdvisi od pociatoénych podmienok). Na teleso v jeho béze sice posobi konstantnd sila, no vdaka
rotacii, ktoru tato sila sposobi, bude sila striedavo posobit vietkymi smermi, o mé za nasledok ustalenie
rychlosti v jednom smere (akoby sila prestala posobit vo velkych éasoch).
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Za pomoci plottera si mézeme nakreslit graf trajektérie v ¢ase aj s postupnym natd¢anim kocky. Na
obrazku vidno pohyb faziska (¢ierna trajektéria) a pohyb jedného vybraného vrcholu kocky (éervend tra-
jektoria):

Obrazok 3.41: Pohyb kocky v rovine yz.
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Uvod do mechaniky kontinua a hydrodynamiky

Kym doteraz sme skiimali hmotné body, respektive sustavy hmotnych bodov, v tejto kapitole budeme
vySetrovat pohyb hmotnych telies, ktoré Vypfﬁajli isty objem spojito. Narozdiel od tuhych telies, ktoré
nemenia svoj tvar pri pésobeni vonkajsich sil, v kvapalnom a pruznom kontinuu mézu jednotlivé body menit
svoju vzdjomni vzdialenost. Postupovat budeme spoéiatku tak veobecne, ako sa len d4. Neskér sa budeme
konkretizovat na pohyb pruzného kontinua a kvapaliny, spolu s riesenim jednoduchsich tloh, ktoré k tymto
kategdriam patria.

Pri vytvarani modelu spojitého prostredia musime v istom zmysle vychidzat zo skutoénosti, no v niecom
sa musime dopustif nutnej abstrakcie. Ako uz bolo spomenuté, jednotlivé body kontinua sa mézu vzdjomne
pohybovaf tak, Ze pritom menia vzdialenosti medzi sebou, no nekonkretizovali sme, ¢o sti to vlastne tie body
kontinua. Nemyslia sa tym ani atémy, ani molekuly, vzdy sa tym mysli kisok kontinua (s malymi rozmermi),
ktory ma spojite rozloZzentit hmotnost (je mozné ju opisovat spojitou funkciou hustoty). Vyvstdva otdzka,
ako velmi malé rozmery st tu pripustné. Odpoved’, ktora sa pontika je: len tak malé, aby sme boli spokojni
s rozdielom medzi skutoénostou a tymto modelom, ktory vytvirame zanedbanim atomdrnej a molekuldrne;
struktiry a nahradenim spojitou hmotou. Opis spojitymi veli¢inami je velmi prijemny z hladiska pouzivania
aparatu diferencidlneho a integralneho poé¢tu. V odvodeniach budeme predpokladat, Ze ¢as je absolitny a
moze slizit ako nezavisld premennd na opis akychkolvek spominanych dejov. To je samozrejme dostatoéne
pravdivy opis, ak efekty, ktoré opisujeme si dostato¢ne nerelativistické.
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4.1 VsSeobecna pohybova rovnica kontinua

Pri opise kontinua budeme rozoznavat dva druhy sil a to sily objemové a plogné. Objemové sily si
predstavujeme pomocou objemovej hustoty sil, f. Potom pre objemovi silu dFpp;. (malickd), ktord posobi
na maly objemcek dV plati:

dF,y; = fdV (4.1)

Objemovt silu posobiacu na vicsiu cast kontinua, ako infinitezimalne mald, vypocitame pomocou ob-

jemového integralu:
Fopj. = /// dFy = // fav (4.2)
14 14

O pritomnosti plognych sil sa moézeme presvedéit jednoducho. Napriek odstraneniu objemovych sil sa
kisky kontinua mozu pohybovat so zrychlenim, ¢o méze znamenat jedine d'alie silové posobenie. Koncept
plosnej sily zavddzame, aby sme mohli skiimat, ako pdsobi jedna ¢ast kontinua na ind. Toto pdsobenie sa
realizuje cez vybrant plogku, spoloéni pre obe ¢asti kontinua. Nech teda tato plocha ma velkost dS a smer
7, ktory je kolmy na plogku a jeho orientdcia smeruje z objemu (ktorého hranica obsahuje tdito plosku).
Silove pdsobenie teda skiimame smerom do objemu (ktorého hranica tiez obsahuje dand plosku, je pre nich
teda spoloénd), na ktorého posobenie sa pytame. Jej vektor teda bude ds = ids. Koncept plosne;j sily teraz
predpokladé, ze kazdej takejto ploske zodpovedd prislusnd mala plosna sila, dﬁplogd ktord vo v8eobecnosti
zavisi od vyberu danej plosky, ale aj od polohy v kontinuu a od ¢asu.

Obrézok 4.1:  Vybrany objem dV' v kontinuu, ktory posobi cez kisok svojej hranice dS na susedny objem
malou plosnou silou dFp;s..

Plosn4 sila cez viésiu plochu sa bude poéitat plosnym integrdlom I. druhu (po zlozkéch):

ﬁploé. = //dﬁplo§. (43)

S
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Tento vzfah méze byt vo vieobecnosti dost zlozity, no vyraz plosky v argumente dFyoq (F, t,dS ) je
¢o do absolitnej hodnoty maly. Fyzik, ¢o vidi v argumente funkcie mali vec, okamzite rozvija funkciu do
Taylorovho rozvoja v tejto malej veci. Presuiime sa teda do indexov a urobme tak pre i-tu zlozku dFj.s.:

dF, (F,t,d§> —dF, (F,t,ﬁ) g?’ dS +O(‘d$’ >
=0 = 05 malé

Prvy vyraz na pravej strane je nulovy, pretoze cez nulovi plochu kontinuum pésobi nulovou silou. Druhy
¢len ma v sebe akusi dvojindexovu vec, ktorej presnejsi tvar nevieme, tak si ju aspon oznacime tspornejsie,
ako o;;. Napokon treti ¢len v sebe skryva zvysnych nekonecne vela ¢lenov Taylorovho radu, ktoré sme sa
kvoli ich malosti rozhodli zanedbat. Ostalo ndm:

J J

Vyraz 0;; nazyvame tenzor napatia. Je to vlastne tenzorové pole, pretoze je definované v kazdom bode
o P,
7 a kazdom Case t a nezavisi uz od d.S, pretoze toho sme sa vzdali dosadenim dS = 0 v derivacii.
Ked uz mdme definované, ¢o vetko na koho/¢o kde akym sposobom posobi, vyjadrime celkovii silu,

aka posobi na dany objem:
F = (Fobj) ,,los | // fidV + # o;dS; (4.5)

Vyraz dV uréuje hranicu daného objemu V. Vyuzitie Gauss-Ostrogradského vety (1.25)! spomenute;
v kapitole 1 (matematicky tvod) vedie na:

// deVJr// 0;04;dV = // (fi + 0j04;)d (4.6)

Vyberme teraz infinitezimalny objem dV, cez ktory budeme integrovat:
ﬂ (fi + 0j045)dV = (fi + 0j04;) dV (4.7)
dv

kde dV je prave miera oblasti dV. Toto tvrdenie si moézeme zdovodnit rozne. Napriklad tak, Ze vo velmi
malej oblasti (¢o do rozmerov v kazdom smere) sa kazda slusnd funkcia chové tak, ze sa meni len mélicko.
Pri integrovani cez takito mald oblast si moézeme dovolif nahraditf integral prendsobenim podintegralnej
funkcie mierou tejto oblasti, ¢o je samotné dV. Ak dV posleme do nuly, tento vzfah plat{ stdle presnejsie a
do prvého radu dV sa vyrazy oproti skutotnému vypoctu nelisia.

Vieme teraz, ze vyraz dV v sebe akosi skryva hustotu a hmotnost. Aby sme do toho nahliadli bliZsie,
skimajme derivaciu hybnosti kisku objemu:

dp; = %(dm vi) =dm1v; (4.8)

L Gaussova-Ostrogradského veta mé samozrejme aj (otravné) predpoklady, spomenuté uz v matematickom tivode. Ich splnenie
predpokladané automaticky; diskutovany objem V musi byt jednoducho sivisld4 mnozina, jeho hranica musi byt po astiach
hladk4 a F' musi byt spojite diferencovatelné vektorové pole na okoli V.
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Preco sme aplikovali derivéciu len na rychlost? Pretoze vo vSeobecnosti sa meni hustota, meni sa aj
objeméek dV, no si v takom vzfahu, Zze pdV sa nemeni, no pdV = dm. Zéroven plati, ze ¢asovd derivacia
hybnosti p; je sila F;, ¢o je obsahom prvej vety impulzovej. Findlne teda piSeme:

F,=dmuv; = pdVo; = (f, + 8j0'ij) dv (49)

Ak si teraz uvedomime, ze ¢asova derivéacia rychlosti je vlastne zrychlenie a vykratime dV z oboch
stran, dostaneme kone¢ne vSeobecnti pohybovi rovnicu kontinua:

pai = djoi; + [i (4.10)
O tenzore oy; si odvodime jednu doleziti vlastnost. Pocitajme moment sily (vzhladom na pociatok

suradnicovej sustavy), ktory pésobi na nejaky vybrany objem kontinua V. Moment sily sa pocita ako 7 x ﬁ,
pre dany kusok bude tento moment dany:

/// Px fdv | + # 7 x dFpjos. /// iy frdV + # €kt jopdS) =

oV

oV
///smkx]fkd‘/—k// 81 E”kxjdkl dV Wéljk .%'jfk-i-dkj —‘r.%'jal(fkl)dV—
:///5ijk [CCj (fk+aldkl)+0kj]dv (4.11)
1%

- -

Toto bol priamy vypocet M;. Zaroven vieme, ze M = L, kde L =7 x p. Pre M; teda zaroven plati:

d
M,; = % (///FX dﬁ) =3 ///Ewkxjvkdm = 6”;6/// p (&, + zj08) dV

Tu sme zase pouzili, ze < (dm) = 0. Pokracujeme:

M, = ///,0 EijkTjUk +EijaT UL dV = Eljk/px]ade (4.12)
—_—
=(Txv),=0 =(xa); \4

Teraz spojime vysledky (4.11) a (4.12):

M; = M,
///Eijk [xj (fk + alO'kl) + Ukj] dV = ///sijkpmjade
14 14
///Eijk [IE]' (fk + alUkl) + Ok — pxjak] dV =0
\%4

Nulovost integralu pre kazdy objem V je mozné splnit len vtedy, ak je podintegrdlna funkcia nulova:

€ijk®i (fr + O10w) +€ijior; — €ijkprjar =0
—_——
pPag
€ijkTj POk + EijkOkj = EijkPT;0k
€ijkOkj = = Okj = Ojk (4.13)

Dostali sme uzitoény vysledok - tenzor o;; je symetricky.
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4.2 Kvapaliny

4.2.1 Tok idealnej kvapaliny, Eulerova rovnica

Na odvodenie nejakych rovnic potrebujeme vyriesit vietky éleny nachadzajiice sa vo vieobecnej rovnici
kontinua:

pa; = ajUij + fi (4'14)

Clen a; zavisi od opisu samotného kontinua. Na opis kvapalin je vihodné pouzivat Eulerove rychlostné
pole. Nebudeme tak sledovat zZivot kazdej éastice individualne, skor budeme v kaZdom mieste priestoru
sledovat, ako cez neho kvapalina pretekd. Tento formalizmus vSak nebréni ani sledovaniu jednej ¢astice po
jej drahe. Clen @ v désledku toho dostane netrividlny tvar. Skimajme teda zmenu rychlosti v ¢ase. Na to
potrebujeme rychlost v ¢ase ¢ a mieste 7 v; (7, t).

Ak sa presunieme v ¢ase o dt dopredu, dostaneme:

t—=t+dt - For4+0@FY)dt, v (Ft) = v (F+ U (Ft) de, ¢ + di) (4.15)
Zmenu rychlosti dostaneme ich odé¢itanim:
dv; (7 t) = v; (F+ &t T (7, t) , t + dt) — v; (7, 1) (4.16)

Zmena v ¢ase je mald, teda prvy ¢len na lavej strane si mézeme dovolit rozvinit do prvého rddu Taylora
so zanedbanim ostatnych ¢lenov:

ov; v;

v (FHdtT(F )+ dE) = v (Fot) + 2| dt+ =] dt (4.17)

ot |, 0x;|, =

(7,t) JI(7t)
Pre dv; tak dostaneme:
8% 8vi

dv; = —dt ; dt 4.18
v 8t + ,UJ 8xj ( )

Clen a; bude dany podielom dv; a dt:

dvi 8Ui aﬂi
i = = — ; —_— 4' ]-
A N Tk T (4.19)

Prvy élen je Standardnd €asova derivdcia vektorového pola, druhy &len pribudol prave v dosledku
Eulerovského opisu. Tento sa zvykne pisat v tvare:

ng;);: [(a-ﬁ)a]i — a:%+(aﬁ)a (4.20)

Aby sme boli naozaj na &istom, ¢o to je za vyraz, jediny krit to rozpiSeme (lebo je to naozaj velky
vyraz):

Oy Oy vy

7% (@) = | 0, 2% 1y, 2y, O

(v V)(v)— Vo g + vy ay—l—vz P (4.21)
0, 2y OV, 00
T ox Y oy 70z

127



4.2. KVAPALINY

Druhy problém, ktory treba vyriesit, je tenzor o;;. Pripomenieme, Ze tento tenzor vystupuje v definicii
plosnej sily suvisiacej s malou pléskou v kontinuu, ds:

Pre idealnu kvapalinu je zlozka sily, ktora je rovnobezna s pléskou nulova. Je to tak, pretoze v idealnej
kvapaline sa jednotlivé vrstvy o seba nesuchaju, necitia sa navzdjom, no iba na seba tlacia. Tato zlozka
sily je v8ak kolméa na vektor plochy, teda pre idedlnu kvapalinu ostdva len zlozka sily, ktord je rovnobezna s
vektorom plogky. Tato zlozka sa aj celkom rozumne pontka, ak si premyslime, ako je definovany tlak. Tlak
je definovany, ako sila pdsobiaca kolmo na dant plochu. Lepsi zépis by bol prave:

dF, = pdS (4.23)

Teda tlak je t4 veli¢ina, ktord déva timernost medzi velkostou plochy a velkostou sily, akou jednotlivé
kisky cez tito plochu na seba posobia. Zavedme dS, ako stranu prislichajicu kisku kontinua do ktorého
mieri dS a dS_ ako plochu z opa¢nej strany?. Z hladiska tejto konvencie bude vektorova forma vztahu
(4.23):

dF = —pdS (4.24)
V indexoch ziskavame vztah pre o;;:
dFZ = —pdSi = —péidej (425)
Vidime, Ze tenzor o;; bude:
oij = —pdij (4.26)

Prave sme odvodili tenzor napatia pre idedlnu kvapalinu.
Ako zaujimavi objemové sila moZe byt vselico, no tentoraz do rovnice zahrnieme gravitaéni silu zod-
povedajicu homogénnemu gravitaénému polu. M4 platit:

// f’dvéﬁg:mg:///pgdv — ///(f—pg)dvzo (4.27)
|4 14 |4

Znovu plati, Ze nulovost integrdlu pre kazdy objem implikuje nulovost podintegralnej funkcie:

f—pi=0 = f=pg (4.28)

Nagli sme teda vsetky ¢leny vo vSeobecnej rovnici kontinua pre idedlnu kvapalinu:

ov o
= “+(a-v)a

ot
O35 = —P Jij (429)
f=ri
Po dosadeni do vSeobecnej rovnice kontinua (4.10) dostavame Eulerovu rovnicu:
ov - 1=
S (7V) 7= ——Vp+3 4.30
5 (V) i=—Vn+g (4.30)

2T4to zvldstna konvencia je motivovand orientdciou uzavretej plochy pri pocitan{ integrdlov. V matematike je zvykom znagit
ako prirodzenu (kladni) orientdciu vektora dS taku, aby dS smeroval von z objemu uzavretého danou plochou.
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4.2.2 Rovnica kontinuity

Samotnéd Eulerova rovnica ma jeden problém, si to vlastne zabalené len tri rovnice. Ale pri spravnom
ratani je poCet premennych az 5. Tri za rychlostné pole, jedna za tlak a jedna za hustotu. Ku kazdej
pohybovej rovnici kontinua patri aj rovnica kontinuity. T4 je mikroskopickym analégom zakona zachovania
hmotnosti®. Ten vravi, Ze hmotnost kvapaliny daného objemu V sa sice méze menit, ale len tak, ze nejaks
¢ast kvapaliny doii pritecie, alebo z neho odteéie. Zapisané matematicky:

%///pdV:—#pﬁ-dg (4.31)
14

ov

Lav4 strana hovori o tom, kolko hmotnosti pribudlo (ubudlo) v danom objeme V. Pravd strana vy-
jadruje, kolko jej pritieklo (odtieklo) hranicou objemu. Ked'Ze plosny integral I1. druhu predpokladd, ze difer-
encial plochy mieri smerom von z objemu, znamienko minus pred integralom tento smer obracia dovnitra
objemu. Ak je lava strana kladnd, to znamend ndrast hmoty v objeme, musi byt aj pravd strana kladnd,
teda musi platit, Ze hranicou nie¢o pritekd dnu.

Na lavii stranu pouzijeme vetu o derivovani parametrického integralu a na pravi Gaussovu-Ostrogradského

vetu podla (1.25):
///%dV:—// V. (p7)dV
14 14
// (Zj+6~(pa))dvzo

\%4

Ak ma tato rovnost platif pre kazdy objem V, potom podintegrdlna funkcia ma byt nulovd. Tym
dostavame rovnicu kontinuity:

I = -
En +V.-(p?) (4.32)

Zistili sme teda, ze rychlost a hustota sa nemoézu menif tplne Iubovolne, ale tak, aby spliiali rovnicu
kontinuity.
4.2.3 Tok idedlnej nestlacitelnej kvapaliny

Napriek tomu, ze sme odvodili d'alsiu rovnicu, poéet nezndmych funkcif stdle prevysuje pocet rovnic.
Miesto odvadzania d'alsich rovnic skisime jednu funkciu zredukovat na konstantu?. Bude fiou hustota,
pozadujeme, aby platilo:

p = konst. (4.33)

Za tohto predpokladu hovori rovnica kontinuity:

V-7=0 (4.34)

3Zakon zachovania hmotnosti v kontinuu plati len ak latka s ni¢im chemicky nereaguje.

4Koho by privelmi trépilo, Ze umelo redukujeme pocet neznadmych funkcii, d4 sa to aj bez toho. Pre plyny je nestlacitelnost
zly predpoklad no médme nie¢o ako stavovii rovnicu. Tym nam do ststavy prisla d'alsia rovnica, bohuzial spolu s fiou prisla
nova neznama - teplota. Ale pre teplotu eSte plati rovnica vedenia tepla. Lenze toto je priSerne zlozitd sistava diferencidlnych
rovnic, ktord sa horko-fazko d4 riesit numericky.
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Spolu dostévame 4 rovnice pre tok idedlnej nestlacitelnej kvapaliny:

ov - 1=
o+ (7-9)i=—-Vp+7
ot P (4.35)
V-3=0
pre 4 nezndme - tri zlozky rychlosti vy, ve, vs a tlak p.
4.2.4 Hydrostatika
V hydrostatike predpokladame, Ze rychlostné pole je statické - celd kvapalina ma byt v pokoji:
7=0 (4.36)

Dostdvame rovnicu opisujicu statické rozlozenie tlaku p (7) pre nejaki zaujimavi objemovi silu:

Vp=17f (4.37)

Priklad: akvarium tvaru kvadra v homogénnom gravitacnom poli. Také pole je zadané objemovou
silou:

—

f=pr (07 0, _g) (438)

Z (4.37) dostaneme 3 rovnice:

dp
oz
Op
Ay
dp
92 =—gp

=0 (4.39)

Prvé dve hovoria, ze tlak p je konstanta vzhladom na premenné x a y, tretia hovori:

p(2,y,2) =po—pgz (4.40)
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4.2.5 Staciondarne teéenie nevirového pola, Bernoulliho rovnica

Staciénarne tecenie je také tecenie, ktoré sa v Case nemeni, teda plati:

dv -
d—z =0 (4.41)
Definujme teraz vektorové pole viru °:

S=Vx7u (4.42)

Motivéciu k tejto volbe uvedieme nizsie. Nevirové pole bude pole s nulovou virivostou:

<l

G=Vx7=0 (4.43)

Aké dosledky budi maf (4.41) a (4.43) pre Eulerovu rovnicu? Prvy je zjavny - na lavej strane zmizne
a7
clen d—qtj Désledok (4.43) je trochu skryty. Zdanlivo bez sivisu spocitajme:
(17 X (ﬁ)l = {17 X (6 X ﬁ)L = €ijkVj (6 X ﬁ)k = EijkvjeSklmal’Um = €ijk€lmkvjalvm =
DC 1 e
= (5i15jm - 5im5jl) vjﬁlvm = vj(?ivj - vjﬁjvi = 561 (’Uj’()j) - (’U . V) v =

:[ﬁ(ﬁjﬂi_[(ﬁﬁ)ﬁh — ﬁxw:ﬁ(f)—(ﬁﬁ)ﬁ (4.44)

Druhy ¢len na pravej strane sa zhodou okolnosti nachadza v Eulerovej rovnici, vyjadrime ho:
~2 =2
(7:V) o=V (5 ) -ixw =V (5
2 ~~ 2

(ﬁ-ﬁ)ﬁ:ﬁ(i (4.45)

Prepisme Eulerovu rovnicu za predpokladu staciondrnosti (4.41) a nevirovosti (4.43):

S (72 1=
V() =——Vp+g
2 p

Rovnicu moéZeme prendsobit konstantou p, ktord mézeme zahrnit do gradientu:
(1 ., . .
\Y SPUT ) = —Vp+pg

Ak by sme eSte vedeli vyjadrit ¢len § ako gradient nejakej funkcie, celd rovnica by presla na tvar
V (nieéo) = 0. Tento ¢len tak naozaj mozeme napisat, pretoze plati:

V(G-7)=§ (4.46)

Piseme teda:

5Vorticity
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Ak v8ak plati, ze ﬁf(:v,y, 2) = 0, potom nutne funkcia f je konstantou vzhladom na z, y, aj z, teda
f = konst. Este plati § = (0,0, —g), teda §- 7= —g z:

1
EpUQ +p+ pgz = konst. (4.47)

To, ¢o sme prave odvodili, sa nazyva Bernoulliho rovnica - rovnica staciondrneho tecenia idedinej
nestlacitelnej kvapaliny.

Typicky priklad na staciondrne teCenie idedlnej nestlacitelnej kvapaliny je kvapalina v nadobe vysky
h, ktora ma naboku dole dierku, ktorou moze kvapalina vytekat. Zaujimalo by nés, akou rychlostou bude
vytekat:

Obrazok 4.2: Voda v akvéariu s malou dierkou.

Na obrazku st vyznacené dva body - A a B. Bod A je niekde pri dne nddoby, bod B je priamo za
dierkou (oba body si v rovnakej vyske), z ktorej vytekd voda. Prislusné tlaky a rychlosti oznacime pa,
pB, va a v. Rychlost kvapaliny v bode A bude s istym pribliZzenim nulovd, pretoze dierka je mala oproti
ploche hladiny - odtok vody je zanedbatelny pri hladine, teda v4 ~ 0, v je nezndma, ktord hladdme. Plati
Bernoulliho rovnica:

1 1
§PUZ+PA+PQ’1: §p112+p3+pgh

Tlak v bode B bude atmosfericky, pg = p,, pretoze bod B sa nachddza uz v mieste mimo nadoby. Tlak
v bode A bude mat hodnotu pgh + p,. Potom dostaneme:

1
0+ pgh+pa=5pv*+pa

v=1/2gh (4.48)
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4.2.6 Fyzikalna interpretacia virivosti

V éitatelovi s velkou pravdepodobnostou skrsla podozrievava otdzka, k ¢omu je veli¢ina & = V x ¥
uzitoénd a z akého titulu dostala meno virivost. V tomto odseku éitatelovi s radostou odpovieme a motivu-
jeme zavedenu fyzikalnu veli¢inu.

Ako uz samotny nézov veli¢iny napoveda, jej vyznam tkvie v lokdlnej rotédcii kvapalnych elementov.
Experimentalne by sme mohli tento jav pozorovat umiestnenim lahkej lopatky na oske do samotnej kva-
paliny, z matematického hladiska moZeme postupovat nasledovne. Situdciu budeme skimat v 2D toku,
zovSeobecnenie na 3D tok je priamociare. V kvapaline si vyberieme dva navzdjom kolmé ciarové kvapalné
elementy s jednym spolo¢nym bodom. Ich polohy st naznacené na obrazku:

(x,y+3y)

(X5 Y5)
(X5y1)
(x,y")

a b
59|

(xy) ¢ (x+6x,y)

Obrézok 4.3: Dva kolmé ¢iarové kvapalné elementy.

Preskiimame pohyb kvapalnych elementov vplyvom rychlostného pola. Zaujima nds prvotny pohyb
oboch elementov v bezprostrednej chvili po momente, v ktorom dané elementy v poli zvyraznime. Modry
element je vystaveny rychlostnému polu na oboch svojich koncoch, v désledku ¢oho modze potenciondlne
vykonavat rotaény pohyb, ktory oznaéime wy,.

Najprv sa viak pozrime, o aky uhol §p sa element otoéi v dosledku rychlostného pola za €as 6t. Element
je samozrejme rychlostnym polom undsany z pévodnej polohy do novej, no my si pomézeme a bez otoc¢enia
ho presunieme tak, aby jeho jeden bod bol zhodny s jeho pévodnou polohou (vid obrdzok). Predovsetkym
musime vyjadrif stradnice (z/,y'):

¥ = — (2] — )

(4.49)
v =vr— Wi —v)
Tieto siuradnice zavisia na rychlostnom poli:
) =x+vg (z,y)0t, x5 =1x+0x+ v, (x+dx,y)dt
yi=y+uy(@,y)0t, yh=y+v,(z+0z,y)dt
' =z + 0z + v, (x + 0z,y) 6t — v, (,y) 5t = T + 02 + Opv,0xdt (4.50)

Y =y +uvy, (z+0x,y)dt — vy, (z,y) 0t =y + Oyv, 0zt
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Nasim cielom je vyjadrenie d¢, na ¢o budeme potrebovat kosinusovi vetu. K tomu potrebujeme vyjadrit
dlzky a, b a c. Je zjavné, ze ¢ = dx. Dalsie dve vyjadrime:

a= \/(x’ —2)’ +(y —y)’ = \/(1 + 0,026t)% + Dy, 0t)* 62

b= /(@ — (@4 62) + (¢ — 1)° = \[ (000 + (Dp0,5)%60 (4.51)
c=dx
Plati kosinusova veta:
b? = a® 4 ¢* — 2accos (6y) (4.52)
2 2 _ 2 2 2 2
(02050t)" 4+ (0z0y0t)” = (1 4+ 0,v50t)” + (Ozvy0t)" +1 — 2\/(1 + 0,050t)" + (O5vy0t)” cos (0¢)
0= 2+ 20,0,6t — 20/ (1 + 0,0,00)° + (By0,61)° cos (6p)
cos (0p) = L+ 9vs0t = ! -
2 2 R
VU 0,0,60? + (0,0,61) \/1 + (s2s)
1 1 Oyt \°
1—Z8p2=1-2 (24~
207 2 <1+3zvz5t>
0 = Opvy6t + O ((5t2)
Vo vyraze identifikujeme uhlovii rychlost modrého kvapalného elementu:
2 dvy
b = wpbt + O (5t°) -+ W = 5° (4.53)
Obdobnou analyzou by ndm vyslo, ze uhlova rychlost (v tom istom smere!)® je dana vyrazom:
Oy,
I 4.54
e == (1.54)

Sé¢itanim tychto dvoch veli¢in dostaneme dvojnésobok priemernej uhlovej rijchlosti kvapalnych elemen-
tov v danom geometrickom bode rychlostného pola:

5 0 0
w4 2P e g Oy Ova

2 o ay = 631‘3‘(91'1}]' s W= ngkijaivk = 6 X U (455)

6Kladng uhlové rychlost znaéi otacania proti smeru hodinovych ruciciek.
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Priklad na Eulerovu rovnicu; Newtonovo vedro. Je to valcovd nddoba naplnend vodou, ktora sa to¢i
okolo osi symetrie konstantnou uhlovou rychlostou €2. Nagou tlohou je zistit ¢o najviac o tvare vody, ak je
situdcia ustdlend, t.j. vedro sa takto toc¢i uz dlho a voda sa toci spolu s nim a nemeni tvar. Potom je mozné
tento problém riesit Eulerovou rovnicou.

S Q>

Obrézok 4.4: Newtonovo vedro.

Vieme, 7e rychlost v tomto pripade bude zavisief od 7 nasledovne:

T(F)=Qx7 (4.56)
kde = (0,0,9). Zlozky rychlosti teda bud:
—Qy
7)) = Q= (4.57)
0
Ked'Ze rychlostné pole je uz zndme, rovnicu budeme riesit pre tlak p (7). Vieme, Ze hladina vody bude
uréend miestami, kde p = p,, teda tlak bude rovny atmosferickému. Clen (17 ﬁ ¥ bude:
7-V=-0 3+Qx§:>(66 7= |- (4.58)
N & Oy N ’
Mbézeme pisat Eulerovu rovnicu po zlozkéch:
dp
o2y =22
pre ox
dp
02y = 22 4.59
y=—5, (4.59)

0:_&_/)9 - p(x’y,z):—ng‘FCz(x;y)
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Uz vieme zévislost p na stradnici z, ttito dosadime do prvej rovnice:

0 oC, 1

8_1; === PPz = C, (z,y) = 5/)9%2 +Co- (y) (4.60)
Teda méame:

1
p(z,y,2) = —pgz+Ce(z,y) = —pgz + 5p 02" + Caz (y) (4.61)

Dosadime to do druhej rovnice:

9] 0Cy, 1 .

a—Z = oy =pQ%y = C,.(y) = inZyQ + konst. (4.62)

1 1 1
p(@,y,2) = —pgz+Ca(v,y) = —pgz + 5pQ%® + Coz (y) = —pg 2+ 5p V2" + 5p QY + konst. (4.63)

Vidime, ze konstanta bude p (0,0,0) = po:

1
p(r,y,2) = —pgz+ §p92 (2% + %) + po (4.64)
Mobzeme pozadovat, aby py = p,. Potom rieSme rovnicu:
2

1 Q
Pa=p(x,y,2) = paz—p92+§p92 (2® +9%) +pa = z:g(w2+y2) (4.65)

Vysiel ndm rotaény paraboloid. V skutoénosti volba py nebola nijako dolezité - pre rotaény paraboloid
by iba znamenala posunutie jeho zaciatku o nejakt konstantu nahor, alebo nadol, tvar paraboloidu by sa
tak nezmenil, len by sa zmenila jeho poloha voé¢i pociatku stradnej ststavy.

y-o

Obrazok 4.5: Tvar vodnej hladiny v roztocenom Newtonovom vedre.
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4.2.7 Tok viskdznej kvapaliny, Navier-Stokesova rovnica

Nagou ambiciou je odvodif rovnicu pre tecenie viskéznej kvapaliny. Vychadzame z (4.10), vSeobecnej
rovnice kontinua:

pa; = 0joi; + fi (4.66)

Zmena kvapaliny z idedlnej na viskéznu sa prejavi jedine v tenzore napétia, o;;, vietky ostatné veliciny
ostanu nezmenené. Pripomenme, aky tvar mal tenzor napatia v idedlnej kvapaline:

0i5 = *péij (467)

Priamy dosledok tohto tvaru zarucuje, e ku kazdej plogke bude prisliichat len kolm4 zlozka plosne;j sily,
teda takéto sily identifikujeme len ako tlakové. Ked'ze sa nevieme nikam d’alej pohnit, zabudnime chvilu
na tlak a vezmime si takyto primitivny pripad tecenia kvapaliny:

vi(2)

Obrazok 4.6: Tok kvapaliny s ploskou rovnobeznou so smerom rychlosti.

Zvolme si plogku v kontinuu tak, aby jej norméla bola kolm4 na tok kvapaliny (ako na obrazku). Ak by

sme zistili, kam bude smerovat plo$n4 sila dF v tomto pripade, mozno sa posunieme o kisok d’alej. Ked'ze
neuvazujeme tlak, ostdva nam iba uz len smer kolmy na normaélu ds (v smere rovnobeznom v idedlnej
kvapaline posobil tlak). Je intuitivne jasné, Ze vrstvy kvapaliny sa o seba budi &ichat jedine v pripade,
ked’ v kvapaline nastane nejaky spad rychlosti. Je Sanca, Ze takéto spravanie vyvold plosni silu, ktord bude
mat nenulovi zlozku kolmt na normélu plochy. Ozna¢me si smery v naom pripade; smer dS bude €3, smer
do obrizka bude €5, smer rychlosti bude &,. KedZe hornd vrstva kvapaliny sa podla obrazka hybe trogku

rychlejsie ako spodné, ma platit, Ze tdto horna vrstva pdsobi na spodnd silou, ktord smeruje doprava:

dF1 = O'13d53 (468)

kde sa uz predpoklad, ze 013 je nenulové &islo. Nage tivahy &li tym smerom, Ze velkost tejto sily bude imern4
préave spadu rychlosti v smere rovnobeznom s dS (teda v smere, v ktorom sa menf rychlost s polohou). Nech
teda plati zifaly predpoklad, Ze tato zdvislost bude priamo timerna:
8’[}1
dF} o« — 4.69
! 81'3 ( )
Téato tmera vyjadruje presne to, ¢o sme chceli — nech zlozka plosnej sily v smere € je priamo tmerna
spadu rychlosti v smere €3, no jedind zlozka, ktort rychlost v nasom pripade m4, je prave zlozka #;. Pre 013
by této dvaha mohla mat nasledujitici dosledok:

(dF1 X 83’01) A\ (dfl X 0'13) s+ 013 ; ’/]83’01 (470)
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T4to volba m4 taktiez vyhodu v indexoch — dF; pozaduje od pravej strany, aby jej nechala volny index
1, ¢o naozaj plati, ak o135 zvolime prave tak, ako sme ju zvolili:
dF1 = 0'13dS3 = 7783’()1(153 (471)

Zatial sme vyriesili tenzor o;; pre naozaj velmi jednoduchy a konkrétny pripad tecenia kvapaliny. Teraz
pride isté velmi triifalé zovseobecnenie pre Tubovolny smer a sposob toku kvapaliny. Co keby to analogicky
platilo pre fubovolné dva indexy a dokonca v zmysle Einsteinovej sumacnej konvencie? Nech teda plati
zovSeobecnenie:

o13 =nd3v1 ... 045 =nd;v; (4.72)
Teda pre dF by (bez tlaku) platilo:

dFZ = Uidej = najvi dSJ (473)

Zdrzme sa zatial ovécii a otvarania sampusu, zabudli sme totiz, Ze tenzor napéitia ma byt symetricky,

teda m4 platit o;; = 0;;, ako sme ukdzali uz v ivode. Bohuzial, tento vyraz pre o;; nie je symetricky, no to
sa dd Tahko napravit. Tenzor o;; mdézeme zosymetrizovat:

O35 = n (iji + 81'Uj) (474)

Otézne je, ¢ sme si tymto nepokazili to jednoduché tecenie, bude este stale platit, ze dF; = nds3v1dS3?
Ukazuje sa, ze bude, pretoze d1v3 = 0 (vzhladom na fakt, Ze teGenie sa kon iba v smere &} ).
Findlny a sprdvny tenzor o;; je dany prave odvodenym tenzorom po zahrnuti tlaku:

oij = —pdi; + 1 (9;v; + 0;v;) (4.75)

O tomto vyjadren{ si myslime, Ze by mohlo byt spravne, ak prejde prudké zovieobecnenie (13) — (ij)".
Dosad'me takyto tenzor napétia do vieobecnej rovnice kontinua. Dolezité bude vediet, ¢o je za vyraz 9;0;
pri takomto tvare o;;:

0713 = 0 + 10,0501 + w) =~ (V). +n[a7+ (v7)]. (4.76)
8;(V-7)
Vysledné rovnica teda bude mat tvar:
p [gf+ (5-6) 17] = —Vp+ pG+nAT+nV (6-5) (4.77)

FEulerova rovnica

Prave sme odvodili Navier-Stokesovu rovnicu. Za povSimnutie stoji, ze az do ¢lenov, ktoré obsahuja
konstantu 7, je rovnica totozna s Eulerovou. TaktieZ vidno, Ze ked’ pribudla viskozita, rovnica je az druhého
rddu (menovite v ¢lene A¥, kde st az druhé derivacie rychlostného pola).

Pre nestlacitelné kvapaliny zanedbdvame élen nV (6 -7 ), divergencia nestla¢itelnej kvapaliny totiz
musi byt nulova.

Okrajové podmienky pri Eulerovej a Navier-Stokesovej rovnici uréuji spravanie rychlostného pola na
okraji uvazovaného objemu (napr. v priklade s Newtonovym vedrom to boli body, kde sa kvapalina stykala

s vedrom). Pri neviskéznej kvapaline uvazujeme, 7e rychlost kvapaliny pri pevnej hranici bude rovnobezn4
s touto hranicou, pri viskéznej kvapaline dokonca nulova.

70 jeho spravnosti sa presvedéime po napisani rovnic, ktoré z tohto zovéeobecnenia vyplyvaji, ich riesenim pre vela réznych
problémov a overenim, &i tieto rieSenia dobre opisuji skutoénost. Ak nie, celé to treba premyslief znova, ak dno, mozeme
konec¢ne otvorit ti flasu sampusu. Ukazuje sa, ze takéto zovseobecnenie bolo spravne, no ti flagu sampusu by sme radsej
nemali otvérat - alkohol ni¢{ mozgové bunky.
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4.2.8 Dalsie priklady z hydrodynamiky riesitelné analyticky*
Teéenie v potrubi*

Toto je klasicky priklad pre Navier-Stokesovu rovnicu. Jednd sa o staciondrne, laminarne tecenie
viskéznej kvapaliny vo zvislej, nekone¢ne dlhej rire s polomerom R v gravita¢nom poli.

Riadiaca rovnica pre stacionarny tok nestlacitelnej kvapaliny vychiadza z Navier-Stokesovej rovnice so
zanedbanim ¢lenu 776 (ﬁ ) ) v dosledku nestlagitelnosti a zanedbanfm élenu 0,7 v dosledku staciondrnosti
toku:

p(ﬁv) 7= —Vp+ pj+nAi

Nech os stimernosti valca, v ktorom kvapalina teéie je totoznd s osou z. Gravitaéné pole bude mierit v
smere —z: § = (0,0, —g).

Okrajovéa podmieka diktuje, ze kedykolvek x2 + y? = R?, tak @ (x,,2) = 0 (nezdvisle na z). Z rovnice
kontinuity a nestlacitelnosti kvapaliny dostavame:

Jp = . 5 > L= -

a—i—V-(pv):O; p(z,y,z,t) =konst. = V- 9=0 = =V x4
t.j. najvseobecnejsi tvar, aky dokdzeme dosiahnut pre rychlost 7 je taky, Ze tdto sa d4 napisat ako rotacia
iného vektorového pola, A.

Dosadime do riadiacej rovnice:

p{(ﬁ xff) 6} (ﬁ xff) = —Vp+pg+nA (6 ></T>
Po zlozkach:

peancdsAcda (24jx0;Ax) = —0ip -+ pgi + 1D (e4j0;Ar)
S L P S
PEijkEabe oy axaazj - 0x; PG ”ka:clal'lal'j

Toto je zjavne slepé uli¢ka pre akékolvek ambicie vypoéitat nie¢o analyticky - rovnica, ktord sme dostali
je nelinedrna a skaredd 8.

Navier-Stokesova rovnica, aj v takomto zdecimovanom tvare (nestlacitena kvapalina, staciondrne riesenie)
je bohuzial stale nelinedrna parcialna diferencialna rovnica druhého radu, teda takmer hocico, ¢o vieme z
rieSeni linedrnych parcidlnych diferencidlnych rovnic (napr. Poissonova rovnica, vlnova rovnica, rovnica
vedenia tepla, ...), moZeme zahodif spolu aj s nejakou vetou o jednoznaénosti riesenia. Jedind zbran, ¢o
nam ostala, je zdravy rozum a ten ndm naSepkdva, aké tecenie by tato rovnica logicky podla situdcie mohla
spiiiat. Je nfm teGenie, ktoré mé len tretiu zlozku rychlosti nenulovi (v smere osi z). K tomuto usudku nds
viedla myslienka, ze predsa voda v zvislej riire tecie smerom dole” (teda v smere osi z), preco teda takyto
napad neskisit na rovnicu? Nagu predstavu by spfﬁalo takéto rychlostné pole:

Z rovnice kontinuity dostdvame:

0.v(z,y,2) =0 = v(z,y,2) = v(z,y)

8Skared4, - skiiste si napr. vypisat prvi zlozku, t.j. i = 1.
9To nie je celkom pravda - pomocou perturbécii sa d4 nazriet do tohto problému aj inak a zistili by sme, ze aj taka zdanlivo
jednoduché vec ako tok v zvislej riire je v skutoénosti zlozity. No my hladdme jednoduché a nie zloZité riesenie.
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Teda rychlostné pole zavis{ uz len od = a y. Lav4 strana Navier-Stokesovej rovnice bude nulov4 (Easovi
derivaciu sme vylacili uz na zaciatku - staciondrnost toku), pretoze pre jedini nenulovi tretiu zlozku @
dostavame:

(17-6)11:11@20

0

Prepiseme si, ¢o z Navier-Stokesovej rovnice ostalo pre prvé dve zlozky:

Ip Ip

— =0 AN —=0 =

5 9y = p(z,y,2) =p(2)
Pre tretiu zlozku dostavame:

0
B ];(ZZ) +nAv(z,y) —pg =0
8];7(;) + pg = nAv(z,y)
F(z) = G(z,y)

Dospeli sme ku celkom prijemnému faktu, rovnica sa sama odseparovala. Vidime, Ze lavd strana je
z4visla len od premennej z a prava strana len od premennych z a y. To viak znamend, Ze ak by lavé strana
nebola konstantnd v premennej z, potom by sa menila s touto premennou, no na pravej strane by nemalo
¢o udrzat tito rovnost, ked'ze sa v nej premenné z nenachidza. Z toho jednoducho vyplyva, Ze obe strany
su konstantné a rovné tej istej konstante K:

Op(z
a( )y pg = K =nAuv(z,y)
z
Skidmajme prvii rovnost - jednoducht diferencidlnu rovnicu s jednoduchym rieSenfm:
Ip(z
3(2) +p9=K = p(z) =po+ (K —pg) 2
Druh4 rovnost predstavuje o trochu vi&si problém:
K
Av=—
n

Jednd sa o Poissonovu rovnicu, ¢o je parcidlna linedrna diferencidlna rovnica, ktord ma jednoznaéné
rieSenie pre jednoznacne zadané okrajové podmienky v. Tu vstupuje do ulohy ako okrajova podmienka
nulovost rychlosti kvapaliny tam, kde sa kvapalina styka s rirou, teda kedykolvek 2% +4? = R?. Je namieste
zacat uvazovaf polarne stradnice. Laplace v tychto stradniciach je mozné néjst napr. na wikipédii (alebo
si ho odvodit):

0?  9? 10 ([ o 1 92

v(@,y) = o(r, @) Azagc?+3y2_>A:r8r<rar> 2 0p?
Lo (o), 10 K
r Or rar 2092 p

V tychto siradniciach je mozné ovela pohodlnejsie sformulovat okrajovi podmienku, a to prave vdaka
tomu, ze sme sa presunuli do suradnej stustavy Sitej na mieru tvaru rury:

vir=R,p)=0

140



4.2. KVAPALINY

Takto definovany problém (Poissonova rovnica + okrajovd podmienka) sa nazyva Dirichletova tiloha a
je dokézané'®, ze pre Dirichletovu tlohu existuje jednoznacné riesenie. Ak toto riesenie teraz akymkolvek
sposobom uhddneme, bude to ONO hladané rieSenie. Inak povedané, veta o jednoznacénosti riesenia Dirich-
letovej tlohy povySuje hddanie na tplne rigoréznu metédu hladania rieSenia tejto dlohy. KedZe hddanie
rieSenia je Uplne koSér sposob rieSenia tejto rovnice, skisme si tipnit, ¢o ak riegenie v (r, ) v skutoénosti
bude zévisiet len od r (teda v uhle ¢ sa nebude diat ni¢ zaujimavé):

1d ((dv) _K
rdr rdr _n

Ked'Ze rychlost zavisi uz iba od r, budeme derivacie znagit ¢iarkou. Rovnicu rieSime standardne, je to
totiz uz len obycajnd diferencidlna rovnica:

K
v(r) = —r2 4 CyIn(r) + Cs

Dalej sa riadime sedliackym rozumom a okrajovou podmienkou. Vidime, Ze ak konstanta C; je rozna
od 0, potom pre r — 0 plat{ v(r) — —oo (alebo +00). Toto zrejme nebude tplne najfyzikdlnejsie chovanie
rychlostného toku (minimélne by to porusovalo principy tedrie relativity, ktord vsak v Navier-Stokesovych
rovniciach nie je pritomné, no hlavne by to vyrusovalo zdravy rozum). Z tohto chovania stidime, ze C; = 0.
Zaroveni musi platif okrajovd podmienka, z ktorej dostdvame vyslednii hodnotu konstanty Cs:

K K K
R:7R2 C:O:}C:_7R2:> [ 2_R2
v(R) 1 + Co 5 1 v(r) p (7“ )
Jedind vec, ktora ostala nedoriesend, je konstanta K. Znovu sa pozrieme, kde dané konstanta vystupo-
vala. Vystupovala v rozlozeni tlaku v kvapaline:

p(z) = (K —pg)z+po
Predstavme si, ze by koeficient pri z nebol nulovy. To ale znamena, ze v takej nekonecéne vysokej riare by

po chvili tlak zacal narastat nad vSetky medze a niekde by musel byt aj zdporny. To tieZ neznie bohvieako
realisticky, preto pozadujeme:

p(z) =po=po = K =pg
Dostavame vysledny tvar rychlostného profilu:

v(r) = % (r? — R?) (4.78)

Tento vysledok oc¢ividne sedi s nasou intuitivnou predstavou, ako také jednoduché lamindrne tecenie v
rire moze vyzerat. Jednak vidime, Ze pre vnitro riry dostdvame zéporni zlozku rychlosti, ¢o je v poriadku,
pretoze kvapalina tecie smerom dole (v zdpornom smere osi z). Zaroven dostdvame parabolicky profil tohto
te¢enia, ¢o sa urcite ako klebeta spomfnalo uz vielikde, no ndzorny nahlad ddva tento jednoduchy priklad.
Samozrejme, velké zanedbanie prislo uz na zaciatku, kedy sme predpokladali len zvisli zlozku rychlostného
pola. Také jednoduché to vo vieobecnosti nie je.

10Dgskaz bude na Teorii elektromagnetického pola
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Maximalnu rychlost dostdvame po dosadeni r = 0:

R2
Vmaz = Py (4.79)
4n

Celkovy prietok danym miestom (metre kubické za jednotku ¢asu) spocitame nasledovnym integrdlom:

27 R 0 4

R
J= //|v|dS:/ dg@/ ar 29 (R —?) = -T2 [y qu = T (4.80)

0 0 4n n Jr2 2n

r<R

Pokusne by sme mohli vyhladat nejaké hodnoty dynamickych viskozit 7 pre rézne kvapaliny a skusat
rozne polomery, napriklad:

1

Umax = 10t m - s~ voda v slamke

1

VUmaw = 1072m - s~ olej v slamke

. (4.81)

Umaz =~ 1073 m-s- med v slamke

1

Vmaz = 10°m - s~ voda v odpadovej rire

Ako slamku sme brali rirku s priemerom 6mm, odpadova rira ma priemer 15cm.

Oba vysledky pre vodu vyzeraji podozrivo (prvy prinajmensom podozrivo, druhy priam smiesne),
pre vodu v odpadovej rire sme dostali rychlost takmer 100 000 km/h. Problém je v nasom pristupe
k prikladu. Uz na zaciatku sme predpokladali laminadrne pridenie, ktoré zabezpecuje pekny stacionarny
profil pridenia vody v rire. Do hry vsak vstupuje ovela smutnejSia skutocnost a to turbulencia, ktora
je v Navier-Stokesovych rovniciach ticho skrytd. Jedna zna¢ne zloZitd oblast v matematike sa snazi k
tomuto problému pristupovat pomocou perturbécii - na zaéiatku zavedieme do toku kvapaliny mald poruchu
(ktord tam aj redlne takmer vzdy je) a sledujeme, ako sa porucha vyvija priestorovo a s ¢asom. Pri vode,
ktord md velmi maly koeficient dynamicke]j viskozity a pri lamindrnom (to je ten pekny, usporiadany)
toku ocakévame neredlny prietok 2000 km/h, dostaneme velmi velké Reymnoldsovo éislo, ktoré vypoveda
o dominancii zotrvaénych sil nad viskéznymi silami, teda o¢akdvame velmi silnd turbulenciu. V praxi
to znamend, ze ak do kvapaliny zavedieme mali poruchu, tdto sa skor ¢i neskor rozvinie do Sialeného
toku, ktory, okrem iného, celkovy prietok kvapaliny potrubim, znacne brzdi. Co ale zna&i to, ze napriek
tymto jednak myslienkam a jednak experimentom, ktoré potvrdzujd, ze voda v potrubi malokedy prudi
rychlostou 100 000 km/h, sme dané riesenie dostali z Navier-Stokesovej rovnice? Ni¢, okrem toho, Ze za
istych zidealizovanych podmienok (dokonale ¢istd voda bez odpadu, dokonale rovné a hladké potrubie, aby
sa nemali o ¢o Ciastotky vody zachytit, dokonaly zdroj, ktory bude zhora vodu hnat v presnom valci s
presnym rychlostnym profilom) je teoreticky mozné dosiahnut lamindrne pridenie, ktoré bude mat peak
velocity 100 000 km/h. Znie to asi rovnako pravdepodobne, ako to, Ze sa gula udrzi na hrote pera, napriek
tomu, Ze podla newtonovej rovnice existuje poloha, v ktorej je vyslednica sil na fu poésobiaca nulova.

Na druhej strane, rychlost medu v slamke je dost pomald. Ako by sa dala zvysit? Mohli by sme skusit
pustit stredom sldmky prid medu s polomerom R; v okoli ktorého by tiekla voda. Tentoraz vstupom a
vystupom budd dva rychlostné profily, 71 a @. Kazdy z nich bude musief spliiaf vlastni Navier-Stokesovu
rovnicu a navyse budi musiet spfﬁat’ okrajové podmienky jednak na rozhrani med-voda a aj na rozhrani
voda-potrubie.

PouZijeme rovnaky ansatz pre kazdu rovnicu a dostaneme dve sady rovnic, ktorych tupravy si vzhladom
na predchadzajicu ¢ast zjavné (pretoze st analogické):

o _, , 9

o 9y =0 = pi(z,y,2) = p1(2)
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0
B pé,iZ) +mAvy(z,y) —g=0
0
paliz) + p19 = mAvi(z,y)
_ Ip1(2) o
Fi(z) = Gi(z,y) = ER +p1g = K1 = mAvi(z,y)
Op2 _ Op2 _ _
5 — 0 A oy =0 = pa(z,9,2) = p2(2)
0
*%(Z) +mAve(z,y) —g=0
0
p;iZ) + p2g = n2Avz(z,y)

Op2(2)
0z

Kazda z rovnic vedie k nasledujicim vysledkom:

Fy(2) = Ga(z,y) = + p2g = Ky = mAva(x,y)

p1(2) = pro+ (K1 — p19) 2

p2(2) = pao + (K2 — p2g) 2

K

’01(7") = 717’2 + Cllln(r) + 012
4m
K

’UQ(’I") = 72’/’2 + C’glln(r) + Coq
4m

++

Pre konstantu C7; plati rovnaky argument ako v predoslom pripade - tok vy sa kond vo vnitornej ¢asti

trubice (okolo stredu), teda aby rychlost nedivergovala, Cq; = 0. Dalej musi platit:

K

’Ul(Rl) = ’UQ(Rl) = 4771

K
R% + 012 = 477722}2% + Czlln(Rl) + CQQ

t.j. spojitost rychlostného pola na rozhrani med-voda a dalej:

K.
UQ(R) =0 = ﬁR2 + (o IH(R) + Co =0
2

Toto je o¢ividny a dost neprijemny problém. Pre tri nezndme konstanty C' mame len dve rovnice, ktoré
sa ich pokusaju urcit, éo znie tak trochu ako problém. Podme sa pozriet na to, ako vyzerd rozlozenie sil
viskozity v kvapaline. Je zjavné, ze pri toku, ktory sme jej ansatzom nanttili, sa sily rozlozia v smere toku
kvapaliny, resp. proti nemu tak, ze ak si vezmeme jedno infinitezimdlne medzivalcie, teda kusok kvapaliny
uzavrety medzi r a r + dr, vieme nahliadnit, ze z vonkajSej strany na neho posobi iny takyto kiisok a
rovnako tak aj z vnitornej strany. To ako presne nan posobia vlastne urcuje podrobnejsie rychlostny profil.
Je intuitivne jasné, Ze aj sila musi byt v kvapaline spojitd, a teda aj tenzor napétia by mal byt spojity (ak
by na nase medzivalcie posobila z jednej strany sila zna¢ne ind, ako na druhej strane, bolo by to zvldsne a
trochu by to odporovalo tomu, aby bolo rychlostné pole spojité). To vieme zaruéif dodatoénou okrajovou

podmienkou:

Oy (r) _Ova(n)
K T

T:Rl T’:Rl
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A teda dostdvame sistavu rovnic:

47] R2 + Cia = 7R2 + Cgll’n,(R1) + Coo
1

JRz + Czlln(R) 4+ Cy% =0
413

1 1
—KiR fKR C
o ik = 211 + 12 21R1

7 tejto vyjadrime konstanty Cha, Co1 a Cao:

R2
C(21 =1L (Kl - KQ)

2m2
K5 R2
Cypp=——"=R2- L (K Ks)In(R
22 P 2772( 1 — K2)in(R)
R2 KQ Kl R2 Rl
Crp=—L(=2-2L) - 2R+ Ky — Ky)ln | —
2Ty (772 u ) 41 212 (B = Ka)In < R

Analogicky ku postupu predtym uréime konstanty K; a Kos:

Ky =pg
K3 = p2g
Vysledny profil rychlosti medu bude:

vi(r) = ) (r* = R}) — P29 (R* = R}) +

Ay L (pr— p2)In (%) (4.82)

Uréime jeho prietok:

morgRY  wpagRY Lo Loy, TRIig (R1 >
= [ lds = - R?— RY) + —pa)in (=2
] vlas = TR TR (12 — )+ T (51— )

r<R

Zmaximalizovat prietok mozno postvanim R; - ak bude R; dostatoéne blizko stredu, bude prizok medu
dost rychly, no vela nepoteéie, pretoze jeho rozmer bude maly. Ak budeme postvat Ry ku R, prizok medu
bude §irsi, no bude pomalsi. Preto derivaciou J podla R; ziskame funkciu, ktorej nulové body budu uréovat
extrémy prietoku medu:

aJ 201 p2 Tpag Ry 2ngR3 Ry TR3g
TgR} —= | - R? — R} L(p1 — p2)l ! —~ 4.83
s = ot (2 g2 ) - TR (1 gy 4 TR oy gy (D) 4 T (- ) (459
Rovnica 881%] = 0 nie je rieSitelnd analyticky explicitne, no je mozné si dat vykreslif tento prietok pre

konkrétne hodnoty g, p1, 71, p2, 12 a R, ktoré sme uz pouzivali. Graf nie je nijako zaujimavy, jeden koren sa
nachddza v R; = 0, i ked no funkcia v tomto bode nie je spojitd, no da sa spojite dodefinovat. Podla grafu
by sme vsak odhadli, Ze sa jedn& len o inflexny bod (navyse vieme, ze pre R; = 0 je prietok medu identicky
nulovy). Jediny kladny redlny koreii je v tomto pripade priblizne 1.25 - 1073m a to je prave hodnota medzi
0 a polomerom celej slamky.

Ry = 1.25 mm Idedlny vnitorny polomer stipéeku medu pre maximalizdciu jeho prietoku (4.84)
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Nestaciondarne teéenie v potrubi**

V predoglom priklade sme v istom bode dosli ku rovnici:

—6‘27(;) +nAv(z,y) —pg =0 (4.85)

UvaZzujme teraz, ze pridenie nebude stacionarne, ale bude zdvisiet aj od ¢asu. Rovnica prejde na tvar:

do(a,y.t)  Op(=t)

= A t) — 4.86
5 5, TnAv(,y,t) =~ pg (4.86)
Hned vidime, Ze tak ako aj v predoslom pripade, p moéze byt nanajvys linedrnou funkciou z:
ov(z,y,t Op(z,t
DY) ynvta,y, ) +pg = ~2ED — (e, 0) = ale)z + bi1) (4.8)
S odvolévkou na predosly priklad znovu polozime a(t) rovné nule'! a dostédvame:
v
— —nAv=— 4.90
5~ 1Av=—ry (4.90)

Jednd sa o nehomogénnu rovnicu diftzie pre veli¢inu v(z,y,t) s konstantnou pravou stranou. Znovu
prejdeme do polarnej sustavy:

2 10 1 92
vEyt) = (ned) A=gat oot ahs

Rovnica difizie na svoje uspesné vyrieSenie konzumuje nasledovné okrajové a pociatocné podmienky:

(4.91)

v(R,p,t) =Vo(p,t) =0

v (r,,0) = vo (1, ) (4.92)

kde na okraji sme identicky zadali nulovy tok, ked'Ze tak diktuje podmienka nulového sklzu viskéznej kva-
paliny na pevnej hranici.
Méme teda parcidlnu diferencidlnu rovnicu'?, spolu s okrajovou a pociatoénou podmienkou:

v - _ v(R,p,t) =0

v (Tv 2 0) = Vo (Tv 90)
Toto je linedrna diferencidlna rovnica a dé sa dokézaf existencia a jednoznacénost jej rieSenia, ¢o sa ndm

hodi, pretoze to riesenie v skutoc¢nosti (rafinovane) uhddneme. V skutocénosti sa jedna o nehomogénnu rovnicu

diftzie, respektive rovnicu vedenia tepla, kde nehomogenitu spésobuje nenulové prava strana. Pozitivum je,
7e jej nehomogenita je najnevinnejsia akd len méze byt a to konstantna.

(4.93)

11Stagi si rozmysliet nieco takéto:

a(t) #0 < Va(t)VPy > 03z,t0: a(to)z+b(t) > Py — neohranicenost tlaku (4.88)

Popripade nasledovné:

a(t) #£ 0 < Va(t) #03z,t0: a(to)z+b(t) <0 — nutna zapornost tlaku niekde pozdlz potrubia (4.89)

12Druhého radu v priestorovej asti a prvého radu v éasovej. Potrebujeme teda jednu okrajovii podmienku a jednu poéiatoént
podmienku.
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Riegenie hladajme v tvare:
v(r,p,t) = Z Tk (£) Ui (7, 0) (4.94)
n,k

kde T, je nejaka casovd zlozka, ktorej tvar zistime v priebehu rieSenia a W, (r, @) je n, k-ta'® vlastna
funkcia Laplacidnu v kruhu s polomerom R, ktorej prislichajica vlastna hodnota je —\,x. Motivaciu k
tomuto kroku uvidime o par riadkov nizsie. Predpokladame, Ze aj prava strana je vo vSeobecnosti funkciou
casu a polohy, teda vo vSeobecnosti plati:

—pg =Y Fur(t) W (r, ) (4.95)
n,k

To je mozné len ak U, (r,¢) tvoria uplny ortogondlny systém funkcii na intervale (0, R) x (0, 2).
Potom takyto rozklad existuje a koeficienty rozkladu, Fj,,(t) budi dané vzfahom:

—1/2

// P [ W (1, 0)[2 drd (4.96)
<R

Foe(t) = A2, //7"(—/)9) U,k (1, 0) drde,  Apg
r<R

Toto je vieobecny vzfah pre akykolvek systém ortogondlnych funkcii. Integral obsahujtci pg predstavuje
samotny rozklad do vlastnych funkcif, konstanta A, zabezpeéuje normalizdciu'®. Podintegralny ¢len r
prichddza z Jakobidnu dS = rdrde. Vidime, ze funkcie F,j(t) si vd'aka konStantnosti pravej strany tiez

len konstanty F;. Samotna okrajova podmienka ma tiez svoj rozklad:

v (r,0) = Co Wi (7,0) (4.97)
n,k
Coe = A2, // r o (e 0) U (1, ) drdip (4.98)
r<R

Dosad'me teraz (4.94) a (4.95) do (4.93):

ZTnk\Ilnk: - nZTnkA Vo = ZFnk\I/nk
n,k n,k n,k

V tomto kroku by ndm velmi vyhovovalo, aby sme vSetky vyrazy mohli obriadit jednou sumou, v ktorej
by sa navyse dala odseparovat asovd zavislost. To viak moZeme, pretoze sme sa dohodli, Ze ¥, st vlastné
funkcie Laplacianu s vlastnymi hodnotami —\, . Plati teda:

A \Ilnk = _Ank\I/nk 15 (499)
Vieme teda odseparovat ¢asovi zavislost:
n,k

13To, ze na vysledny rad treba 2 indexy, nahliadneme v priebehu riesenia. Pocet indexov priamo sivisi s rozmerom oblasti,
na ktorej rovnicu riesime.

14 Ak by systém bol ortonormélny a nielen ortogonalny, konstanty A,; by sme nemuseli pisat, pretoze integral, ktorym ich
pocitame by bol identicky rovny jednej.

15Bez sumacnej konvencie.
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Znovu prekvapivo vyuzijeme ortogonalitu systému funkcii ¥,,;., z ktorej vyplyva, Ze tdto rovnost moze
byt splnen jedine ak:

Vn,k: Tnk(t) + Ak Thk(t) — Frp =0

Rovnica (4.101) je oby¢ajnd linedrna diferencidlna rovnica, pre ktord mame dokonca aj pociatoénu
podmienku. Vskutku, z (4.94) a (4.97) vyplya, ze:

Tk (0) = Chg (4.102)

NavySe vieme, ze F,j st konstanty (pretoze pravd strana je konstantnd v ¢ase). Rovnicu (4.101) s
pociatotnou podmienkou (4.102) tak mozeme riesit aj s tym, o uz vieme:

Tnk(t) +77)\nank(t) = Fnk / . enAnkt’ t— T

t
Tnk’ (7-)677)‘71167- + nAnank (T)en)\nkT = Fnken/\nkT// dr
0

d
=7 (Tnk(T)en)\nkT>
dr
1
T () ekt —T(0) = ——F, (en)‘"kt - 1)
N—— 77)‘nk
:an
Fnk Fnk )\t
Tor(t) = Cpp — —= | e~ "17\nk 4.103

Aby sme dokonéili rieSenie, musime poznat vlastné funkcie Laplacianu v kruhu. Menovite pre vlastni
funkciu ¥ musi platit:

AV (r,p) = =AU (r,9), U(R,¢)=0, NeR} (4.104)

Nulovost na okraji je vSeobecns vlastnost vlastnych funkcii akéhokolvek linedrneho operdtora, tato
podmienka navyse vyrazne zjednodusuje riesenie (4.94). Pre takto definovany problém sa d4 dokdzaf, Ze
samotné vlastné hodnoty —A\ prislichajiice jednotlivym vlastnym funkcidm st nekladné, preto A € R{.
Pouzijeme klasicku separdciu premennych:

dR do
U = ) =, 9= 4.1
) = ROJB(p), R=G @ =T (4105)
Tento tvar dosadime do (4.104) a vyuzijeme (4.91):
/! 1 / 1 " T2
R'®+-R®+ S RP = —-ARD —
r T v
R// R/ (b// (I)//
bR L S S B A 2
s +r 7 + T AT / T +Ar
2R// / 9 1
= - = 4.1
Tty +Ar 3 (4.106)

Lavé strana poslednej rovnice zavisi len od r, prava strana len od ¢. Z toho usudzujeme, Ze obe musia
byt rovné nejakej konstante, menovite k > 016.

16Schvalne danti konstantu nitime do toho, aby bola nezdporni. Dévodom je periodicita W (r, ) v premennej ¢, ktord by
inak nemala Sancu na splnenie.
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Separdtne riesime kongtantnost oboch stran rovnice (4.106), najprv pre ® (p):

"
_% -k = &' =kd — (I)(QO) = Acos (\/E(p) + Bsin (\/E(p) (4.107)

Po zohladnen{ podmienky W (r, ¢ + 27) = ¥ (r, ¢) dostdvame podmienku na k:

Vk=neN = k=n% & (p) = Acos(ng) + Bsin (ny) (4.108)

Riesime rovnicu pre R(r):

/! /
7“2];4—7“};4—/\7"2:712/1% (4.109)
R’ +rR + A\r’R = nQR/ - n*R (4.110)
R+ rR + (Ar? —=n*) R=0 (4.111)

Transformujeme premenni r nasledovne:

€
r=— 4.112
VA ( )
Rovnica (4.111) prejde na tvar:
AR dR
S+ =+ (8 -n’)R= 4.11
§d§2+§d£+(§ n*)R=0 (4.113)

Nejakym sposobom v tejto rovnici spozname Besselovu diferencidlnu rovnicu, ktorej rieSenim je, ako
inak, Besselova funkcia.

Rovnica (4.113) je oby¢ajn4 linedrna diferencidlna rovnica druhého rddu so singularitou v bode £ = 0'7.
To, Ze je to rovnica druhého radu znamend, ze ako fundamentalny systém rieSeni posluzia prave dve linedrne
nezavislé funkcie. Fakt, Ze rovnica ma singularitu v bode 0 zase sposobi, Ze jedna z nich bude v danom bode
neohrani¢ens. Keby sme sa teda aj pokudsali ndjst obe funkcie pomocou Taylorovho rozvoja v okoli £ = 0,
néjdeme nanajvys len jednu, pretoze Taylorov rad neohranicenej funkcie v bode nespojitosti neexistuje.

Dve riesenia tvoriace fundamentdlny systém rieSeni teda budu Besselova funkcia prvého a druhého
druhu, z ktorej prva je ohranicend v okoli 0, druhd nie je. KedZe my hladdme len fyzikalne riesenie (a
neohrani¢eny tok v 0 neznie fyzikdlne), berieme len tu prvi, ktord sa bezne oznacuje ako J,:

R(€)=AJ, (€) = R, (r)=AlJ, (ﬁr) (4.114)

Kazd4 z funkcif J, (x) mé nekoneéne mnoho korefiov. Ako Z(n;j) oznaéime j-ty nenulovy koren n-tej
Besselovej funkcie prvého druhu. Podmienka ¥ (R, ¢) = 0 kladie teraz podmienku na A:

0=R,(R)=AJ, (ﬁR) — VAR = Z(n;j) = An,; = (Z(zj)f (4.115)

17To spozndme napr. z toho, ze nekonstantny koeficient pri najvyssej derivécii nadobida hodnotu 0 pri £ = 0, ¢o sposobuje
redukciu diferencidlneho rddu rovnice v danom bode. Takyto tikaz voldme singularita a vzdy vedie aj na funkcie, ktoré nie su
ohrani¢ené v danom singuldrnom bode.
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0.5

0.5

1!

Obréazok 4.7: Prvych 6 Besselovych funkcii J a ich netrividlne korene.

Dostdvame teda vlastné funkcie a vlastné hodnoty v tvare:

Z(n; k) Z(n;k

U, (1, 0) = K}lkJn ( 7'> cos (ny) + KZkJn (

) 7'> sin (ny)

Vratime sa k ndSmu rieSeniu:

v(r o t) =Y Tuk(t) Wk (1, )
n,k

Fog Fop )\t
Ton(t) = Coop — L7} =1k
n() 77)\nk+( nk n)\nk €

Fop = A7), // 7 (—pg) Wni (r, @) drde

r<R

Cri = A2, // 700 (7, ¢) Yk (1, ) drdp

r<R

—1/2
Apk = [// 7 [ Wo (7 <,0)|2 drdg@]
<R

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)
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Aj ked by to bolo velmi zaujimavé, ni¢ nejdeme poéitat, len si ukdZeme zaujimavi vlastnost tychto
rieSeni. Dosadime T, (t) do vSeobecného riesenia:

Fok
v(ret) =) v +Z ( ks — k> e Mkt () (4.123)
n,k n "
= Voo (T 90)
Skumajme funkciu v (7, 9):
F,
Voo (1,0) = Y W (1, ) (4.124)

L n)‘nk

Budeme predpokladat, Ze funkcia v, je hladkd (vo vSetkych premennych) a rad z druhych derivacii
podla r a ¢ rovnomerne konverguje. Aplikujme teda Laplaceov operdtor na obe strany:

Avg (1, ELLIN v, 4.125

o9 = 22 A e () (1.125)

Nebudeme rozpisovat vyrazy, miesto toho si uvedomime, ze A W, = =X\ Wk = AU,/ Ak = =V,
Avg (r,p) = —= Z Fur Uy (1,) = pj (4.126)

Toto je vsak rovnica zhodnd s rovnicou pre ustélené laminédrne tecenie vo valci. RieSenie pre v (7, )
takisto spfﬁa nulovost na okraji, to ale znamen4, Ze rieSenie vo (7, ) je zhodné s riesenfm, ktoré sme nasli
v (4.78). St zhodné vd'aka vete o jednoznacnosti rieSenia Poissonovej rovnice!®

Ako uz iste tusite, druhy ¢len v (4.123) bude pre ¢ — oo nulovy. D4 sa ukézat, Ze pre hladké pociatoéné
podmienky vg (r, @) plati, ze druhy ¢len v (4.123) je rovnomerne konvergentny rad na t € (g,00), € > 0,
teda mozno zamenit poradie limity a sumy a dostaneme Zelany vysledok:

pg(

I - R?) (4.127)

Jm v (r,¢,8) = voo (1, 0) =

18V tomto pripade pravé strana rovnice je rovnaké a aj okrajové podmienky st rovnaké, teda podla vety o jednoznacnosti
rieSenia aj rieSenie je len jedno - to, ktoré sme uz nasli predtym.

150



4.2. KVAPALINY

Potenciidlové obtekanie nekoneéného zvislého valca**

Potencialové tecenie je staciondrne nevirové tecenie nestlacitelnej neviskdéznej kvapaliny. Této bude
obtekat okolo nekoneéného valca polomeru R polozeného do cesty toku tak, aby jeho os symetrie bola kolm4
na 9. Obréazok:

—_—
—_—

—
—

Obrazok 4.8: Aké bude stacionarne nevirové tecenie nestlacitelnej neviskéznej kvapaliny okolo nekone¢ného
valca?

Pri rieSeni vyuzijeme dvojrozmernost toku a jeho nevirovost:

Vxi=0= W (x,y); VU=7

teda existencia skalarneho potencialu toku kvapaliny.
Z rovnice kontinuity mame pre nestlaéitelnt kvapalinu podmienku:

-

V- i=0 = AU=0

¢o je Laplaceova rovnica.
Na to, aby bolo jej riesenie jednoznaéné, potrebujeme okrajovii podmienku. Jedna z podmienok je, ze
te€enie v nekoneéne je len v smere zlava doprava, teda pre polohy d’aleko od valca plati:

—

U =g €1
Jednd sa o neviskéznu kvapalinu, teda pri valci nebude tok nulovy, ale stale plati, Ze musi byt rovnobezny
s povrchom valca, teda jeho kolm4 zlozka musi byt nulova:
4+’ =R’ = v-7i=0

Bolo by vyhodné prejst k poldrnym stiradniciam (¢isto formélne do cylindrickych, no zlozka z odvsadial
vypadne). Laplace v tychto siradniciach mé tvar:

A 10 0 n 1 02
= - — T— — =
ror \  Or r2 Jp?
Okrajové podmienky pre ¥ sme vyriesili, teraz ich treba pretavit do funkcie U. Jej tvar daleko od valca
musi byt:

U = vox + konst. = vgr cos () + kondgt.
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Druhé okrajova podmienka je trochu zlozitejsia. NapiSme si, ¢o je vlastne gradient v polarnych
sturadniciach:
- ou 10U
VU = —e¢, +-——=¢,
ar " * r Op Ce
M4 platit:
r=R — (VU)-i=0

Lenze 7 je prave jednotkovy vektor v smere kolmom na povrch valca. No to je prave vektor é,. v
poldrnych stradniciach (ak os valca je v nule), preto mozeme pisaf:

ou

o =0

r=R
N4jdime teda riesenie Laplaceovej rovnice s takymito okrajovymi podmienkami:

AU (r,¢) =0; a@% =0 A U=uvorcos(p)+ konst. ; %>>1

r=R

Sktsenost ukazuje, Ze Laplaceova rovnica sa d4 separovaf, ak U je v tvare stcinu zlozky, ktord zdvisi
len od r a zlozky, ktora zavisi len od ¢:

Ul(r,o) =R(r)® ()
Kvoli Setreniu miesta nebudeme vypisovat ani derivdcie (miesto nich dame ¢iarku), ani argumenty - je
jasné, ze ¢iarka pri R je derivéacia podla r. Separujme teda Laplaceovu rovnicu:

AU =0
10 / |
-9 d) + — RP' —
rar(TR )+T2R 0
1 1 r2
7 L - " _
R<I>+TR<I>+T2R<I> 0 73

,’,,2 R// r R/ (I)”
R "R @
Dostali sme separovant rovnicu - obe strany zavisia od inej premennej, ¢o ale nutne znamena, ze obe
strany s konstanty - a to rovnaké. Oznacme ju K '°:

TQR// TR/ (b//
= —— :K
R "R @

Pre ® tak dostdvame:

_% =K = ®(p) = Acos (@gﬁ) + Bsin (\/Eso)

Uplne prirozdend poziadavka na funkciu @ je, aby bola 27— periodicka. Ak by totiz nebola, funkcia R
by mohla robitf hoci¢o, uz nikdy by nezogila funkciu U na rozhrani ¢ = 0 a ¢ = 27 (¢o je to isté) tak, aby
bola spojitd. Dostavame teda podmienku na konstantu K:

VK =neN = K, =n?

19 Ak by sme ju oznagili opaénym znamienkom, dodli by sme ku rieseniam v podobe sinh a cosh, ktoré ale pre ¢ cast riesenia
nevyhovuja.
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Pre R zlozku sme dostali rovnicu:
R rR
R + R
PR '+rR —K,R=0

:Kn

Toto je homogénna diferencidlna rovnica, ktorej rieSenie hladédme v tvare:
R(r) =r®
ala—1D)r*+ar*—K,r*=0

o’ =K, = a,==n

Vyslednd funkcia U bude superpozicia vsetkych pripustnych funkcii s prislusnymi koeficientami:

(oo}

Ulr,e) = Z (an™ + bpr™") (A;, cos (np) + By, sin (ng))

n=0

Pripominame, Ze ak najdeme akékolvek riesenie, ktoré bude spiﬁat’ okrajové podmienky, bude jediné

vdaka vete o jednoznacnosti riesenia. Skisme koneénym poctom ¢lenov €asti R splnit, aby U (R,

p)=0a

zaroven, aby fungovala podmienka v nekonecne. To sa da, ale len vtedy, ak zahodime vSetky Casti r™ okrem
tej, kde n = 1 - ak by sme to neurobili, rieSenie v nekonecne by nebolo timerné r cos (¢). Vidime, Ze v riesen{

musi byt pritomny &len vor cos (p):

U (r,¢) = vor cos (@) + Z r~" (A, cos (ng) + By, sin (ng))
n=0
Podla okrajovej podmienky pri valci mame:

ou

_ —n+1 . o
I =0 = wvgcos(p) — Z n R (A, cos (np) + By, sin (np)) =

r=R n=1

vcos (p) = Z n R~ (A, cos (np) + B, sin (ny))

n=0

7 matematickej analyzy, konkrétne z ¢asti o Fourierovych radoch a o trigonometrickom polynéme vieme,
7e funkciu cos (¢) neméame ako inak rozlozit do ostatnych trigonometrickych funkcif (t.j. do inych funkcif

sin (ng) a cos (ny)), ako len tak, ze zoberieme prave cos (¢) 2°

B,, = 0 a dostavame:

vocos (p) = Ajcos ()

Zo vsetkych zloziek ndm ostali jediné dve - t4, ktord je imernd r cos (¢) a té, ktord je imerna

1
U (r, ) = vor cos (p) + As .cos (p)

Lcos (p):

. Teda potom nutne A, = 0O pren # 1 a

Vidime, ze okrajovéd podmienka v nekonecne je splnend - to sme od nej aj ziadali. Taktiez okrajova

podmienka pri valci bude splnend, Ak:

ou

1 2
o = vpcos (p) — Alﬁcos (p)=0 = A1 =R

r=

20Tento fakt v sebe obnasa ortogonalita a tplnost systému trigonometrickych funkcif na intervale (0, 27).
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4.2. KVAPALINY

Dostali sme teda kompletné riesenie Laplaceovej rovnice s istotou, ze je jediné:

R2

U (r,) =g <r + r) cos ()

Vysledok prepiseme do kartézskej ststavy a vratime sa k rychlostnému polu:

R? R? R?
U(z,y) = o <r + r) cos (p) = vo <1 + 7"2) recos (p) = vox <1 + M)

=T

R2 (22 — 42
Vg = Up 1—7@ V)
(2 + %)

2R?zy
(2 +y2)*
7 Bernoulliho rovnice ziskame vyjadrenie pre tlak:

vy:—v

1 1 1
307+ = 5P+ P = p=5p (05— v?) +Peo

V tejto rovnici sme si zvolili dva body - jeden niekde blizko valca, v tom bode je rychlost v a skimany

tlak je p. V druhom bode, d'aleko od valca je rychlost toku smerom doprava stabilnou velkostou vg a tlak v
nekoneéne sme oznacili po.

Na vyjadrenie tlaku sa hod{ poldrna ststava. Vd'aka kolmosti €, a €, plati:
1 R2\* R2\*
2.2, .2 172 12 _ 2 2 2 .2 _
vt =, oy =Up" + 7’2U<'0 = (1— r2> cos” () + vg (1+ r2> sin® (¢) =

4 2 4 2
— v(z) (1 + i) — fug% (cos2 (¢) — sin? (90)) = vg (1 + % — iﬂi;cos (2@))

Teraz moézeme vyjadrit tlak v poldrnej sistave:
1 2R? R
p(r,p) = 50”3 (7,2003 (2¢) — r4> + Poo
V kartézskej stistave bude mat trochu skareds{ tvar:

1 22R2(m2—y2)—R4
T,Y) = =pv
p(z,y) = 5pv (22 1 )

-----

*+ Poo

pri o =7/2 a ¢ =37/2.
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4.2. KVAPALINY

o} 1 I I I I 1 I I I I 1 I
Obrazok 4.9:  Pridnice spolu s vektorovym polom staciondrneho nevirivého pridenia nestlagitelnej

neviskéznej kvapaliny okolo zvislého nekoneéne dlhého valca, ktory predstavuje tmavomodry kruh.
Naznacené je aj farebné pole tlaku, maximélny tlak predstavuje ¢ervena farba, minimélny modra.

Z uvedeného prikladu by sa mohlo zdat, ze téma obtekania objektov je vlastne jednoduch4 a algoritmickd
- ved uznajte, jediné, ¢o sme potrebovali je riesenie Laplaceovej rovnice. Podobny postup by sa dal zopakovat
pre rozne objekty?!, jediny problém by bol s nekoneénym radom - véeobecnym rieenim Laplaceovej rovnice.
Je treba zakazdym poskladat taki funkciu, ktord spiﬁa pozadovany tok d'aleko od objektu a zdroven spfﬁa
obtekanie okolo objektu rovnobezné s jeho hranicou, no to je uz iny problém a ¢isto teoreticky sa to da?2.

Velky problém vsak nastdva uz v tom, ze obtekanie okolo objektov vébec nie je potencidlové®. Pri
realnych tokoch pozorujeme za objektom turbulentné pridenie a viry. Takéto rieSenie by sme ziskali jedine
numericky.

2INapriklad elipsy, stvorce, machulky, ...

22Kde ,,cisto teoreticky” znamend, Ze existuje veta o jednoznacnosti rieSenia Laplaceovej rovnice pre mix Dirichletovej a
Neumannovej okrajovej podmienky.

23Pripominame, e vyraz ,,potencidlové” vychadza z faktu: Vxo=0= 5=VU
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4.3. PRUZNE KONTINUUM

4.3 Pruzné kontinuum

Zakladné veli¢ina, ktorda nam davala predstavu o tom, ¢o robi kvapalina, bolo jej rychlostné pole 7.
V pruznom kontinuu bude jeho hlavny predstavitel pole posunuti, #. Nepredstavujeme si, Ze by sa pruzné
kontinuum niekam d’aleko samo hybalo, navyse si budeme predstavovat, Ze pri vystaveni pruzného kontinua
nejakej sile, st tieto posunutia @ malé.

4.3.1 Tenzor deformacie

Pre takéto pole by bolo vhodné zaviest kritérium, kedy sa d4 povedat, Ze doslo k deformdcii - je jasné,
7e ak zoberieme naSe kontinuum a presunieme ho o 10m dolava, k ziadnej deformdcii nedoslo. Takisto, ak ho
otoéime hore nohami, tiez nedoslo k deformécii. Bolo by teda dobré si ujasnit, ¢o to je vlastne t& deformécia.
To zatial nevieme, tak si aspoil ujasnime, ¢o to deformdcia nie je. Uz sme zistili, Ze posunutia a otocenie
nie je deformicia, teda deformécia nie je izometria. Izometria si také transformacie, ktoré zachovavaji
vzdialenosti. Crtd sa moznost, ako spoznaf, ze sa dva body od seba oddialili. Ak vezmeme vyraz i,
tento bude zjavne nulovy pri vietkych posunutiach, no na rozfahovanie zareaguje nenulovostou. Otézne je,
¢i je mozné takyto vyraz oklamat otocenim (t.j. Ze bude nenulovy pri otd¢ani, ¢o je zlé). Preto skiimajme
otoéenie celého kontinua o uhol ¢ okolo osi uréenej vektorom 7. Poloha Iubovolného bodu sa tak zmenf:

F—=7+0pi X7
Vypocitajme O;u; pre takito rotaciu:

U = €M XT = Ojuj = 0P jr0inkx; = 0P jrnikds = 0pe;jpny 7 0

Bohuzial, zistili sme, ze vyraz d;u; je nenulovy aj pri rotdcii, ¢o nie je vlastnost, ktord ndm vyhovuje. Na
druhej strane, dostali sme, ze ;u; pre rotdciu je antisymetricky vyraz. Uz médme skusenost, ze kombindcia
symetrického a antisymetrického vyrazu je nulova. Preto ak by sme ako kritérium deformaécie pouzili vyraz:

(’)iuj + 8jui

pre rotaciu o dp okolo 72 dostaneme O:
=0

—_—
Oiuj + Oju; = 6 (ijk + €jik) i = 0

Dostali sme sa tak k vyrazu, ktory by mohol byt vhodnym kritériom deformécie kontinua a nazveme
ho tenzor deformécie:

Eij = % (Osu; + Ojui) (4.128)

Jeho stattit dobrého kritéria deformdcie este stoji na vratkych nohdch - vieme, Ze je nulovy pri akomkolvek
posunuti a akejkolvek rotdcii, no nevieme, & nahodou nie je nulovy aj pri nejakej skutoénej deformécii. Na
to skiimajme kontinuum pred a po deformdcii - majme dva body, bod 7 a druhy, ktory je od neho vzdialeny
o) 5 teda jeho poloha bude 7+ §. Po deformécii sa tieto dva body dostant do novej polohy a ich vzajomné
poloha bude A:

< = T+0+u(®+9d) .

r
- é r T+ ()

Obrazok 4.10: Stav dvoch bodov pred a po deformaécii.
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4.3. PRUZNE KONTINUUM

Pre A plati:

K=rtd+ <r+5) —(Fw(m)

Vieme, ze k deformécii dochadza prdve vtedy, ak ‘5‘ #+ ’5’ Mali by sme preto vyjadrit ’&‘, no to je
obtiazne, jednoduchsie bude vyjadrit AZ:

A = A, = {@- o (F+ 5) o (7 )] [5 T+ (F+ 5) — (F)}
Vyraz u; (F +4 ) rozlozime do Taylorovho radu do prvého rddu a budeme predpokladat, ze 5 je malé:

u; (F+ 5) = u, (7) +6jg;‘f

ou; ou;
= [5i+5j&j} {5 + 0k UJ 2
J

Pri rozndsobovani tohto vyrazu budeme navyse predpokladat, ze vyraz 3 8“1
dvoch vyrazov d4 oproti zvysku zanedbatelnd nulu:

Je maly, teda sticin takychto

A2 = 5 45,5, 24 4 55,00 +55k‘9“’8“’_52+5i5»(8“i+6“j)

8 3 813 (9Ik J 8Ij Bxi
—— | ——
malé =2¢e4j

A? =62 + 25i5j5ij
Vidime, ze jednozna¢ne plati:
A? #* R €ij #0

¢o je presne to, ¢o md ;; spliat. Po ceste sme pouzili, ze d;u; je maly vyraz. Ak k tomu navyse plati, ze
aj u; je maly vyraz, jednd sa o linedrnu pruznost.

4.3.2 Hookov zakon

Vieme teda, ¢omu je rovny tenzor deformécie:

1
gij = 5 (O + 9jus)

Vo vSeobecnej rovnici kontinua vSak vystupuje tenzor napatia, o;;. ESte nevieme, ako spolu suvisia
tenzor napétia a tenzor deformécie, no d4 sa predpokladat nasledujica zdvislost:

0ij (€kt, T, 1)

My vsak vieme, ze £i; je maly vyraz (dovodom je malost vyrazu dyu;), rozviime teda o;; do Tayolorvho
radu v okoli e;; = O:

=Clijki
=0
. —"= 0o
Oij (Ekl,T‘7t) = 045 (0,7’715)4-662 €kl+0(|€|2)
e=0

24 Aby nekolidovali indexy, v druhej zétvorke sme index j premenovali na k.
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4.3. PRUZNE KONTINUUM

Vyraz o;; (0,7,t) je nulovy, pretoze pri nulovom tenzore deformdcie sa nekond deformécia a teda aj
plosné sily budid nulové. Druhy vyraz je sucin Cyjpier, my uz vieme, ze Cjji nezdvisi od €y, pretoze v
derivécii sme zvolili ¢ = 0, teda Cjji zavisi len od 7 a t. ZvySok radu sme kvoli malosti (a linearite) €
zanedbali. Dostdvame tak vztah:

oij = Cijkirl (4.129)

To, ¢o sme prave odvodili, sa nazyva Hookov zdkon2®. Tento vzfah je linedrny, pretoze zachoviva

linedrne kombinédcie - sprostredkovatelom tejto zdvislosti je tenzor sturtého rédu, Cyjx, ktory budeme nazyvat
tenzor elastickych koeficientov2®. Napriek linedrnosti vztahu medzi tenzorom napiétia a tenzorom deformaécie,
je trochu desivé, Ze tenzor, ktory tento vzfah sprostredkiva, teda tenzor elastickych koeficientov, je tenzor
stvrtého radu, teda na kompletné urcenie spravania sa pruzného kontinua s najvseobecnejSou anizotropiou
by malo byt potrebnych 81 elastickych koeficientov, ¢o je naozaj vela. UkdZeme si, Ze vdaka symetridm
tenzorov napitia a deformécie je mozné tento pocet znacne zredukovat. Dve symetrie vidno priamo:

a(fij (%ji
85kl e=0 65kl e=0 Jkl Jikl ( )
80’ij anj

= — Cyip = O 4.131
agkl - aglk 0 Jkl Jlk ( )

Tretia symetria je trochu skrytd a bez dokazu?” uvedieme, ze:

Cijki = Chuij (4.132)

Prvé dve symetrie (tie7z volané vedlajsie symetrie) st sposobené symetriami tenzorov napétia a de-
formécie a redukuji pocet nezndmych koeficientov C;;i; postupne z 81 na 54 a z 54 na 36. Tretia symetria
(hlavnd) je sposobend istou zdlezitostou, ktorti nebudeme hlbsie pitvat, no s radostou konstatujeme, Ze tto
symetria redukuje pocet neznamych koeficientov z 36 na 21. Je tomu tak preto, lebo tenzor Cjji; mozeme
efektivne kvoli hlavnej symetrii pisat ako Cap, kde A a B bezi od 1 do 9, pretoZe samotné tenzory napitia
a deformécie si matice 3x3. Dalej tieto tenzory si symetrické, teda A a B efektivne bezia od 1 do 6. Lenze
Cap = Cpa, teda tato akoby matica 6x6 je symetrickd, ¢o z 36 nezavislych koeficientov nechava len 21
nezévislych koeficientov?®,

Zistili sme, ze pre uplne najvSeobecnejsie anizotropné a nehomogénne prostredie treba 21 nezavislych
koeficientov, ktoré sa menia v priestore (nehomogenita). To je este stale celkom dost, ale ¢o ¢akat, re¢ je
o najskaredSsom moznom kontinuu. Namiesto plakania si uvedomime, ze svet sa miestami sklada aj z kusov
toho najkrajsieho kontinua - izotropného a homogénneho, ktory potrebuje len dve konstanty na kompletné
uréenie spravania sa tohto kontinua, prave také kontinuum ideme skimat.

25Robert Hooke.

26 Citatel mozno za¢ina mat zmétok v tenzoroch. Hlavny tenzor, ktory sa vyskytuje vo vieobecnej pohybovej rovnici kontinua
sa nazyva tenzor napdtia (stress tensor) a znaci sa oy;. Specidlne pre pruzné kontinuum sme museli zaviest d’alsf tenzor, ktory
sa nazyva tenzor deformdcie (strain tensor) a znacime ho €;;. Nakoniec treti tenzor, tenzor elastickijch koeficientov (stiffness
tensor) Cjj; sprostredkiva linedrny vztah medzi tenzorom napitia a tenzorom deformdcie 0ij = Cijki€ni-

27Mimochodom, tento fakt sa nahliada z toho, Ze pre funkciu hustoty energie napdtia U plati:

oU
P
" 861']'
z coho v8ak vyplyva:
92U
Coiy = —0—
ikl 861']'80'“

Dotycnd skrytd symetria tenzoru elastickych koeficientov je teraz zjavnd z rovnosti druhych zmiesanych derivacii pri zdmene
poradia derivovania (predpokladom je spojitost tychto druhych derivécii).

6
28Zi =21
1=1
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4.3.3 Hookov zakon pre homogénne a izotropne kontinuum

Ak by tenzory napétia a deformécie neboli tenzory, ale len vektory, v izotropnom kontinuu by platilo
o; = Cd;;e; = Cég;, teda vektor £ by mieril v smere ¢ (v izotropnom kontinuu neméd dévod uprednostnit
niektory smer, vSetky si rovnocenné a teda pri zadanom smere ¢ uz len z tohto smeru a izotropie prostredia
iny smer neposkladd, ako smer o).

Pre vztah medzi o;; a €;; bude platit, Ze tenzor, ktory ich sprostredkiva, je izotrépny - inak povedané,
jeho komponenty st rovnaké vo vietkych vztaznych systémoch, ktoré si voéi sebe len otoéené. Vo vieobecnosti,
pre dané n # 1 moze existovat niekolko jedineénych tenzorov n-tého rddu, pre tenzory radu 1 (t.j. vektory)
takyto tenzor (vektor) neexistuje. Jedineény tenzor druhého rédu, ktory je izotrépny, je tenzor d;;, jedineény
izotrépny tenzor rddu tri je Levi-Civitov symbol &;;.

Existuje niekolko (tri) jedineénych tenzorov rddu $tyri, ktoré si izotrépne, no nemusime ich poznat,
pretoze plati jedna velmi uZitoénd veta (bez mena): vSeobecny izotrépny tenzor mozno vyskladaf jedine z
Kroneckerovych delt a Levi-Civitovych symbolov. Izotrépny tenzor radu Styri sa teda ale musi skladat jedine

z Kroneckerovych delt, pretoze Levi-Civitov symbol tam jednoducho nenatlaéime??:

Cijkl = aéijékl + bél—kéﬂ + cdﬂ§jk (4.133)
Vdaka (4.130), (4.131) a (4.132) mame:

Cijrr = Cjike = adij0p +boidj + c0udjr = adjidp + bojrdu + cdjdi = b=c
Cijii = Cijik => @00k + b0ir0j1 + c6udjr = adijoig +bdudjr + coidjy = b=c
Cijkl = Cklij — aéijékl + b5ik5jl + C(Sil(Sjk = aékl(;ij + béki(slj + c6kj61i = nic
Vidime, ze prvé dve symetrie priniesli novi informéciu, b = ¢, tretia symetria nepriniesla ni¢. Plati
teda:
Cijii = 6050k + b <5ik5jz + 5iz5jk)

Teda naozaj vidime, Ze pre izotrépne a homogénne kontinuum stacia dve konstanty (pre nehomogénne
dve funkcie), a a b, ktoré odteraz budeme znacit A a p a volat Lamého elastické koeficienty. Pre tenzor
napétia teda plati:

0ij = Cijkicrt = A 0ij Opi€rl +1 (5ik5jl + 5il5jk)5kl = Adjjerk + 1 (45 + €54)
N——" S——
=€kk :251'3'

Vidime, ze sa ndm vo vztahu objavil vyraz pre stopu matice &;;:

Tre = dp1€p = €k =V.-i=9 (4.134)

Tuto konstantu ¥ budeme volat objemovd dilatdcia. Dostali sme Hookov zdkon pre homogénne a
izotrépne prostredie:

Oij = )\195” + 2# Eij (4135)

29Niekto by sa mohol snazitf vyrdbat kombindcie suéinu Levi-Civitovho symbolu s Kroneckerovou deltou, no také ¢osi by
vzdy viedlo na nulovy vyraz a stcin dvoch Levi-Civitovych symbolov je len nie¢o ¢o uz mame zastipené - napr. £;jméegim Sa
d4 pomocou Davis-Cup identity vyjadrit pomocou Kroneckerovych delt.
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4.3.4 Objemova dilatacia

Majme nejaky objem dV, ktory sa vplyvom deformédcie zdeformuje na objem dV':

Obrazok 4.11: Zmena objemu po deformécii.

Plati dV = dz dydz. Vplyvom deformécie sa zmen{ siradnicovy systém:

7l =744 (F) (4.136)
Vieme, ze novy objem vypocitame ako:
dv’' = |J|dV (4.138)
kde J je jakobidn transformacie:
1+ 9w duy duz
oz’ b i ox oy 0z
Jij = Yi _ 0ij + i _ % 1+ %7;2 aauzz (4.139)
Oz Oz dus  ow q 4 Ou
ox oy 0z

Vieme, Ze v determinante sa prvky matice medzi sebou vselijako nédsobia, my vsak vieme, ze J;u; je
malé, z determinantu teda ostane:

T =1+V-d=1+9 (4.140)
Pre objemovy element dV’ tak plati:

dVv’' —dv
dVv
Vyraz ¥ teda vyjadruje relativnu zmenu objemového elementu pri deformécii, preto sa nazyva objemova
dilatéacia.

dV' =|J[dV = (14+9)dV = I = (4.141)

4.3.5 Homogénne a izotrépne pruzné kontinuum, Lamého rovnica
Vychddzame zo vieobecnej pohybovej rovnice kontinua a vztahmi, ktoré sme odvodili doteraz:

- 1
pa; = 8jaij + fi i = AV - u5ij + 2,uaij €ij = 5 (aiuj + 8jui) (4142)

Vzhladom na malost u; je Elen a; rovny druhej casovej derivicii pola posunuti. PiSeme teda:

pa;? = 9; [V - @8y + p (O +ajui)} Y= (6-@') Yy [ai (6-@) +Aui] +
pgz(/\—k,u)ﬁ(ﬁ-ﬁ)—k,uAﬁ—kf (4.143)

Rovnica, ktord sme prave odvodili, sa nazyva Lamého rovnica. PoteSujuca sprava je, ze tato rovnica je
linedrna.

160



4.4. VLNY V PRUZNOM KONTINUU A V KVAPALINACH

4.4 VIny v pruZznom kontinuu a v kvapalinach

V tejto Easti si velmi struéne rozoberieme viny v pruznom kontinuu a vlny v kvapaline. Nebudeme sa
) . . . 7 . 7 7 ’ . 9 1 . ~
zaoberat detailami, ako rozdelenie vln na objemové a povrchové, popripadne na ich d'alsie delenie, pretoze
to nie je ciefom tohto predmetu’. Zaéneme jednoduchsimi vinami v pruznom kontinuu.

4.4.1 Vlny v izotropnom pruznom kontinuu

Tak, ako aj v predoslych €astiach, nebudeme riesit Lamého rovnicu (4.143) v jej plnej pardde (aj ked
nés uprimne tesi svojou linearitou), pouzijeme ansatz rovinnej viny. Zaujima nés predsa, ¢i sa v pruznom
kontinuu méze $irif rovinng, linedrne polarizovand vlna a ak ano, za akych predpokladov. Tento ansatz
dosadime v nasledujicom tvare:

u(rt) =dof (n-7,t) ; U - konst.

Takyto ansatz nazyvame rovinnou vlnou, pretoze £ = 7 - ¥ urcuje rovnicu roviny (teda @ zdvisi od 7,
ale len v nejakej Specidlnej kombindcii 77 - 7) a linedrne polarizovanou, pretoze iy je konStanta nemeniaca sa
s ¢asom ani v priestore. Dosadme tento ansatz do (4.143) bez posobenia objemovych sil:

Qﬁ Lo .
pw:(/\Jr,LL)V(V-u)Jr,LLAquO
o?a
oz — "/
2 " oy Of (&) 9¢

=g f'n; =t -7 f’

T O

pfiio = A+ p) (i - @) f'7i+ p il
(pf =1 f") o= A+ ) (@0 ) "7 =0

—_—— 7
O =Q2

Dospeli sme k rovnici typu:

Qi + Q21 =0

V z4vislosti na polohe %y a 7@ mame dve moZnosti. Pokial i@ || 77, potom uréite existuje ¢islo ¢ také, ze
iy = cn. Ak ﬁo}fk:, potom iy a 7 st linedrne nezavislé, teda rovnica moze byt splnend iba ak @Q; = Q2 = 0.

30Dalsf zdujem treba smerovaf na oblast ako je fyzika Zeme, ku ktorej neodmyslitelne patria viny v kontinuu, popripade
Specialne stidium mechaniky kontinua a hydrodynamiky.
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1. g || 7
Pre tento pripad plati @iy = cii, teda mozeme pisat:
(pf = f") e = (o) (@i -7) 17 =0
[(pF=ns") = 4w f7] =0
QI=0
Pre nenulovy vektor k je tato rovnica splnend iba ak @ = 0:
(pf = f") =+ m) 1" =0
2+ A

p

Dostali sme vinovi rovnicu pre funkciu f. Rychlost &frenia vin, ked g || 7 je:

f- fr=0

20+ A

c = rijchlost §irenia pozdl/zvnych (longitudindlnych, p) vin

2. o ff 7
Ak vektor @y je linedrne nezavisly od 7, potom musi platit:
pf—nf’ =0
(A+p) (to - 71) f7 =0

Prvé rovnica je znovu vlnové rovnica pre funkciu f, tentoraz s rychlostou sirenia:

(4.144)

c = \/ﬁ rijchlost Sirenia priecnych (transverzdlnych, s) vin
p

Tieto vilny sme nazvali prie¢ne, aj ked plati len )(( 7i, teda nie nutne 4y L 7 (vtedy by by malo zmysel
volat tieto viny priecne). Ukézeme, ze nutne iy L 7. Ak by platilo @y & 7, z druhej rovnice (4.144) vyplyva:

A+ ) (g 7) f" =0AX>O0Ap>O0NGy L7t = f'=0 => f(il-7t)=a(t)i-7+bt) (4.145)

No ak by sme mali takéto riesenie pre f, to by znamenalo, Ze pre nenulové a(t) by @ rdstlo nad vsetky
medze - nebolo by uz malé. Ak by platilo, ze a(t) = 0, potom by @ bola konstanta v priestore a nejakd funkcia
v Case, ¢o v8ak len znamend, ze by sa celé kontinuum nejako postivalo v Case, to ale nie si viny (kontinuum
sa pri takomto pohybe nedeformuje). Z toho vyplyva, Ze nulovost druhej rovnice (4.144) je nutné splnit tak,
ze ’170 1 7.

Zistili sme teda dva druhy rieseni - také, ktorych smer Sirenia je rovnobezny so smerom kmitania, tieto
viny sme nazvali pozdfine a ich rychlost je ¢; = @. Druhy druh vl’n7 prie¢ny, kmitd kolmo na smer
Sfrenia, preto sme tieto vlny nazvali prie¢ne a ich rychlost je ¢; = \/% . Vidime, Ze rychlost pozdfinych

vin je vigsia ako rychlost prieénych Vin, preto pozdiZne dostali ndzov p vlny, teda primarne a priecne s
vlny, sekundarne - pri kmitavom pohybe zeme sa z daného miesta §iria rozne typy vin, no do iného miesta,
vzdialeného od zdroja, najprv dorazia pozdiine vlny, aZ potom prie¢ne, ¢o sa deje vdaka rozdielnej rychlosti
Sirenia tychto vin.

Vd'aka tomu, Ze Lamého rovnica je linedrna, vSeobecné riesenie viny mozno zlozit ako linedrnu kom-
bindciu pozdeneho a prie¢neho kmitania, ktora bude tiez spiﬁat’ Lamého rovnicu.

162



4.4. VLNY V PRUZNOM KONTINUU A V KVAPALINACH

—

Pri priecnych vInach nedochadza ku objemovej dilatacii V=V -q=i-i f'=0, pri pozdfinych vlnach
k nej dochddza (vtedy 7 || g = 9=V -u =7 dpf #0).

4.4.2 Vlny v idealnej kvapaline

Pre idealnu kvapalinu®' zoberieme Eulerovu rovnicu bez objemovych sil spolu s rovnicou kontinuity:

o [, =\ -

o (v V)U:_;Vp 4.146
o (4.146)
E-ﬁ-v-(pv):o

Rovnako by sme mohli skisit dosadif ansatz pre rovinnt vlnu, no d’aleko by sme nedogli - aj s ansatzom
je rieSenie tejto rovnice tazké. Skisme viak dosadif takyto smiesny konstantny ansatz:

I
=
S

(4.147)

ST~ Bl

[

ol g
o

Tento ansatz samozrejme spiﬁa obe rovnice (4.146). Teraz vezmime taky ansatz, ktory sa bude nepatrne
1isif od smiesneho ansatzu, bude to len jeho malé vyrusenie:

p=po+p
p=po+p (4.148)
T=0+7

teda plati, ze veliciny p, p a ¥ a ich derivécie podla €asu a priestorovych stradnic st malé (v zmysle, 7Ze
akykolvek ich vzijomny stc¢in mozno zanedbat oproti tymto veli¢indm a ostatnym ¢lenom). Z prvej rovnice
(4.146) tak dostaneme:

. 0 (A e s
(ﬂo+P)a+(Po+p) (U'V>U= —Vpo — Vp
-

= _Vp 4.149
pogy = VP (4.149)
7 rovnice kontinuity dostavame:
0 +p = o~ S
ot
+poV-T=0 (4.150)
Tento vysledok zderivujme podla ¢asu:

0?0
ot?

9%p = o
oz TV (Mn) =0

31N4ézov kvapalina je zavddzajici. Patri sem napriklad aj vzduch.

163



4.4. VLNY V PRUZNOM KONTINUU A V KVAPALINACH

Za pody ¥ dosadime (4.149):

?p = -
o5+ V- (V) =0
12 P

0%p

— —Ap=0

oz~ 7P

Toto je takmer vinové rovnica, problém je, Ze miesto rovnakej premennej (bud hustota, alebo tlak),

je to rovnica pre obe veli¢iny zmieSané spolu. Predpokladajme teda, Ze tlak a hustota zavisia iba na sebe
navzajom a uz na nicom inom32. Ked'Ze sa v8ak obe veli¢iny menia iba malo, je mozné tlak rozvintt v okolf
po do prvého radu Taylorovho radu, pricom zanedbanie bude malé:

(4.151)

d
p(p)=ppo)+ (p— po)
e oul P lo=po -
=po =p
. d . .
pZP(P)—pozdfp p=kp
P=Po
=k
p=kp (4.152)

Dostali sme priblizenie zévislosti tlaku p od hustoty p (resp. malého vyrusenia tlaku p od malého
vyruSenia hustoty p). Tito zévislost dosadime do (4.151):

0%
P kap=
oz ~ar=0

Vidime, ze p m4 splitaf vlnovi rovnicu, rychlost irenia bude v tomto pripade co = vk. Pre tlak p plati
rovnakd rovnica:

(4.153)

0%p
2P pap= 4.154
ot? p=0 (4.154)

Rychlost sirenia takejto skaldrnej tlakovej vlny bude tiez ¢y = v/k. Z prvej rovnice (4.149) méame:

ov -

POE =-Vp

Trto rovnicu zderivujeme podla ¢asu:

9*v )
PgE =V <8t>

Pre vyraz O0;p méme z (4.152) a (4.150):

p=kp = % _ @z—kpoﬁ-ﬁ (4.155)
ot t
e Lo -
pogg = k¥ (V-7)
T = (e o
5 _kV(V v) (4.156)

32 Ak tlak nezévisi na entropii S, tento pripad sa nazyva barotrépny.
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N

My by sme na pravej strane potrebovali A{T, o je V- (6 {7), avsak vidime tam miesto toho V (6 U

Prehltneme slzy ztfalstva a pocitajme vyraz dvojitej rotacie rychlostného pola, V x (ﬁ X ):
[ (V X 17)} = €ijk0jkab0ay = EijEkabDj0a0b = (8ialjo — divdja) 0j0ay =  0;0;0; — 0;0;;

V x
—[o(v),  An

i

== ﬁx(ﬁxff):ﬁ(ﬁff)—Aﬁ'

Lenze vyraz vV (Vv je presne to, ¢o sa nachddza v rovnici (4.156), a chyba v nej Af}', ¢o je ten vyraz,

)

ktory by sme v nej potrebovali:

—

):Aff—&—Vx(ﬁx

(SR
(SR

9 (3
Tento vyraz dosadime do (4.156):

ot?

<
~—

— kY (ﬁ :
v
o1
o1

vlny?

<
<l
X
[STRY
N———

+k

<P

=kA

kAT =kV x

<
(9 x4)

Vidime, Ze Tava strana je vlastne vlnova rovnica pre vektorové viny ¥, no to by platilo, keby bola
na pravej strane nula. LenzZe miesto toho je tam akési podivna dvojitd rotacia. Kedze vSak l'ava strana
vyzerd velmi slubne, skisme na iu ansatz rovinnej linedrne polarizovanej vlny a pracujme s rovnicou, kde

bol gradient divergencie (prevedenie na tvar s pritomnym laplacidnom bola len motivacia):

{7:‘70]0(73'7?,15)
0% o .

[ﬁ (6 : 5)} = 0:0,Vo; f = 0in;Vo, [/ =nin;Vo, I = V (ﬁ , 5) T
Vof=k (ﬁVO) i
Qi = Qo (4.157)

Znovu sme rovnicu doviedli do tvaru, ked zaéina byt dolezity vztah medzi Vy a i, teda smer kmitania
a smer §irenia sa vin v tekutine. Budeme rozlisovat dva pripady, bud V; || 7, alebo Vo ff 7.
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1.V, || 7
Pokial plati VO || 7@, potom existuje skaldr ¢ taky, ze ‘70 = ¢ a rovnica prejde na tvar:
Vof =k (7-%) 1
cif=ke(i-i) f"
(f=rsr)i=0

Ked'7e vietky zlozky vektora 7i nebudi nikdy naraz nulové (ak dno, ni¢ nekmit4), potom musi platit:

i
il

f=kf"=0
Pre funkciu f tak dostdvame Standardni vlnovi rovnicu. Rychlost &irenia viny v tomto pripade je
totozny s rychlostou &irenia vin v pripade hustoty a tlaku, teda ¢y = Vk.

2. Vo ff#i

Pokial nie st vektory Vj a 7 rovnobezné, potom st nutne linedrne nezavislé, o znamend:

f=0
k (ﬁ : 170) =0
Druhti rovnicu moézeme splnit jednoducho, ak ‘70 L 72, no prvé rovnica vlastne hovori:

f=a(@t+b()

Ak by platilo, ze a # 0, potom by uz ¥ nebolo malé vyrusenie rychlostného pola, pretoze f by réstlo s
casom nad vsetky medze. Ak vsak a = 0, potom f, a teda ani ¥ nezdvisi od Casu, ¢o ale znaé¢i staciondrny
tok. Staciondrny tok vSak neznamend ziadne vlnenie a preto je tento pripad nevyhovujuci. Z toho plynie
zaver, ze v idealnej kvapaline sa pri prislusnych zanedbaniach nesiria prie¢ne rovinné viny.

Dospeli sme teda k zaveru, ze v kvapaline sa pri istych zanedbaniach $iria rovinné, no iba pozdfine viny,
pricom sa vIni tlak, hustota aj rychlostné pole s rovnakou rychlostou ¢y = vk. Tito rychlost nepoznime,
no vieme, ze:

d
k=<l

dp P=po

Vychéddzajme teda zo stavovej rovnice idedlneho plynu, ktord obsahuje obe tieto veli¢iny (tlak aj hus-
totu):

pV =Nk v =T PN (4.158)
P P m
Z tohto tvaru sa mozeme pokdsit vyuzit tri deje idedlneho plynu - izochoricky, izobaricky a izotermicky.
Pre fixnii jednotkovi hmotnost m = pV nemd zmysel izochoricky dej, pretoze potom p = konst. a to nie je
nieco, ¢o by sme vedeli vyuzit. Podobne izobaricky dej predpokladé p = konst., za tohto predpokladu by
viak bola rychlost sirenia vin v tekutindch nulova (a to nie je pravda). Ostdva teda izotermicky dej, pre
ktory piseme:

pV = konst. — b_ konst.
p

p dp Po Po
7:f:>p:p0—:>k:f = — == Cizoterm = —

4.159
P Po Po dplpmpy PO Po (4159)
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Inou alternativou je adiabaticky dej, pre ktory plati:

pV"® = konst. — P _ konst.
pl{
~ d
% = p% — p= popj = k= 7p = H@ = Cadiabat = \/E @ = \/Ecizoterm (4160)
T 6 dpl,—,, PO V o

Mbézeme porovnat Cizoterm & Cadiabat Pre vzduch, kde py = 101325 Pa, pg = 1.2kgm ™3 a k = 1.4

Cizoterm = 290.6m s~ izotermicky model

) (4.161)

Cadiabat = 343.8m s~ adiabaticky model

Experiment vie ukézat, ktora z rychlosti je blizsie k pravde - vieme merat rychlost zvuku vo vzduchu
a ukazuje sa, ze hodnota 343.8m s~! je sprévna, teda takéto vinenie je adiabatické.
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