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2.1 d’Alembertov - Lagrangeov prinćıp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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3.7.3 Kinematika vol’ného sférického zotrvačńıka . . . . . . . . . . . . . . . . . . . . . . . . . 110
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4.3.2 Hookov zákon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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4.4.1 Vlny v izotropnom pružnom kontinuu . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.4.2 Vlny v ideálnej kvapaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

iii



Úvod

Napriek tomu, že je celý tento text chápaný ako okrajový doplnkový materiál, bez ktorého sa predmet
teoretická mechanika bez problémov zaob́ıde, som mal celý čas nutkanie naṕısat’ o týchto záležitostiach čo
najviac a čo najzauj́ımaveǰsie. Mnohokrát už počas ṕısania ba aj po naṕısańı a pri následnej kontrole som
sa prichytil ako uvažujem, čo všetko by sa ešte dalo doplnit’, čo všetko tu ešte nie je a kol’ko zauj́ımavých
pŕıkladov a demonštrácii by sa mohlo v tomto texte ešte nachádzat’. Tieto myšlienky treba v istom okamihu
rázne stopnút’, ináč sa zo 100 stranového textu za istý čas stane 150 stranový, následne 200 stranový,
potom 300 stranový a kto ovláda inžiniersku indukciu, dôjde ku divergencii jeho rozsahu s časom idúcim do
nekonečna (ešte že žijeme obmedzený čas). Užitočná fráza, ktorú som si zopakoval, najmä pri kontrole a
diskusii tohto textu s inými l’ud’mi bola, že predsa moj́ım ciel’om nie je ,,spasit’ svet”. V opačnom pŕıpade
by hrozilo, že už i tak dlhý text nadobudne formu zbierky toho, čo považujem za zauj́ımavé, no s časom
(a rozsahom) rastúcim nad všetky medze by sa text nenávratne vzd’aloval od sylabu a myšlienky tohto
predmetu. Napriek ráznym pokusom prǐskrtit’ moje vyč́ıňanie sa stalo, že nie všetky veci tu sṕısané sa
naozaj aj skúšajú, ba dokonca vôbec spomı́najú na prednáške. V takom pŕıpade sú pŕıslušné časti označené
hviezdičkou (daná čast’ je užitočná a vyžaduje sa ako všeobecná vedomost’ ku skúške), popŕıpade dvoma
hviezdičkami (keby tu daná dvojhviezdičková čast’ nebola, vôbec nič by sa nestalo). Po tomto podivnom
úvode k úvodu by sme mohli prejst’ ku serióznemu úvodu, ktorý aj spomenie, o čom predmet vlastne bude.

O čom je vlastne teoretická mechanika? Čitatel’ má možno po absolvovańı predmetu mechanika pocit,
že vie všetko vypoč́ıtat’ a nič v mechanike mu už problém nerob́ı. Opak je pravdou, t́ı pozorneǰśı museli
postrehnút’, že celá mechanika je v podstate t’ažko univerzálne obsiahnutel’ná oblast’ problémov, no tam,
kde existuje istá algoritmizácia riešenia mechanických problémov, je dobré ju nájst’ a naučit’ sa ju použ́ıvat’.
Týmto rozhodne nechceme naznačovat’, že kurzom teoretická mechanika je už vyriešený každý problém a
druh problému v mechanike. Dalo by sa povedat’, že napriek zložitosti a kráse týchto algoritmov, sme pokryli
len istý zlomok toho, čo všetko by sa ešte mohlo dat’ vyriešit’. Šikovnému čitatel’ovi nič nebráni zobrat’ do
ruky pero, d’alej stavat’ na týchto odvodeniach vlastné úvahy a pokúsit’ sa riešit’ d’aľsie mechanické problémy,
ktoré samozrejme nemôžu byt’ všetky zaradené do jediného jednosemestrálneho kurzu.

Od predmetu mechanika sa ĺı̌si hlavne pŕıstupom k jednotlivým mechanickým problémom. Jednou
z hlavných výhod teoretického pŕıstupu k mechanike je samotné ošetrovanie väzieb pohybu. V klasickom
pŕıstupe k mechanike je potrebné pre každú väzbu (napr. kyvadlo viazané paličkou ku stene) uvažovat’ sily,
ktoré dané teleso udržujú na dráhe, ktorú táto väzba určuje. Toto môže byt’ vo všeobecnosti vel’mi obtiažne.
Ukazuje sa, že hl’adat’ tieto sily v skutočnosti nie je potrebné, stač́ı poznat’ väzbové rovnice a tzv. akt́ıvne
sily, ktoré sú v systéme pŕıtomné.

Prvý pŕıstup, v ktorom nepotrebujeme poznat’ priamo sily väzieb je d’Alambertov - Lagrangeov prinćıp,
ktorý sa ale ukáže byt’ nie vel’mi vhodný na riešenie praktických problémov mechaniky. Obsahuje totiž viac
rovńıc, ako je na riešenie nutné. Ako d’aľsie sa využije nájdenie takej parametrizácie, ktorá sṕlňa väzbové
rovnice a hlavným výstupom budú Lagrangeove rovnice.

V d’aľsej časti tohto kurzu sa budeme venovat’ Hamiltonovým rovniciam, ktoré za cenu zdvojnásobenia
počtu rovńıc zńıžia ich rád. Hamiltonián sa objavuje hlavne v kvantovej mechanike, avšak je užitočné sa s
ńım oboznámit’ už teraz.

V nasledujúcej kapitole sa venujeme neinerciálnym vzt’ažným sústavám a problémom týkajúcich sa
tuhých telies.

V poslednej časti pokračujeme témou o kontinuu, kde sa pozrieme na kvapaliny a elastické kontinuum.
Pri kvapalinách opust́ıme známe vody Lagrangeovského opisu systému a využijeme Eulerov opis, čo však
nakoniec prinesie svoj úžitok.

Pri všetkých týchto témach sa nauč́ıme akt́ıvne použ́ıvat’ Einsteinovu sumačnú konvenciu a rôzne
pomôcky skracujúce zápis, čo šetŕı miesto a zdravý rozum v odvodeniach. Tento aparát je vel’mi užitočný
aj ku d’aľśım predmetom (teória relativity, kde sa indexová matematika privedie do úplne inej úrovne,
popŕıpade teória elektromagnetického pol’a a iné) a fyzik sa bez neho určite nezaob́ıde (avšak každý človek
má inú hranicu straty zdravého rozumu). Aj ked’ je možné všetky odvodenia prejst’ kompletne bez použ́ıvania
tohto aparátu, je vel’mi silno odporúčané si ho rýchlo osvojit’, ked’že jeho krása a výhody d’aleko prevyšujú
tých pár hod́ın námahy.
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Tento text je založený na prednáškach doc. Mariána Fecka z predmetu Teoretická mechanika. Kvalita
týchto prednášok je každoročne vyzdvihovaná v študentskej ankete. Samotný text sa opiera o zrozumi-
tel’ný výklad na prednáškach a v niektorých smeroch ho rozširuje o riešenia d’aľśıch zauj́ımavých problémov
mechaniky.

Moja vel’ká vd’aka patŕı Frantǐskovi Hermanovi, ktorý znovu prešiel celé skriptá a naozaj detailne sa
venoval ich obsahu aj forme, čo ho stálo určite vel’a nervov a času. Napriek tomu, kol’ko energie bolo vloženej
do opravy samotných skŕıpt sa určite ešte vel’a chýb nenašlo. Najlepšia spätná väzba však pochádza od
samotných čitatel’ov, preto prośıme priamo Vás: akúkol’vek nezrovnalost’, nejasnost’, nebodaj chybu, nič
nehovoriaci obrázok, alebo čokol’vek, čo by sa Vám nezdalo nám pošlite na mail rabatin.b@gmail.com, určite
sa budeme periodicky snažit’ o nápravu nahromadených chýb1.

1Naṕısat’ môžete aj ked’ nás chcete potešit’, skritizovat’ nás, alebo nám len zapriat’ pekný deň.
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1
Matematický aparát teoretickej mechaniky

V tomto učebnom texte budeme použ́ıvat’ rôzne značky, skratky a konvencie, ktoré majú za ciel’ skrátit’,
zjednodušit’ a zintuit́ıvnit’ zápisy, ktoré budeme použ́ıvat’.

Je dobré pri odvodeńı mnohých vektorových rovńıc pracovat’ len s jednou komponentou naraz. Ak sa
dajú tieto odvodenia robit’ všeobecne pre i-tu komponentu, budeme to tak robit’. Namiesto vektora ~A tak
budeme napr. pre jeho i-tu zložku ṕısat’ Ai. V texte budeme taktiež hojne využ́ıvat’ koncepciu vol’ných a
sč́ıtaćıch indexov, ktorá má názov Einsteinova sumačná konvencia.

1.1 Einsteinova sumačná konvencia

Jednoduchý popis tejto konvencie je, že ak sa vo výraze obajv́ı nejaký index dvakrát, automaticky to
implikuje sumáciu. Takýto index budeme volat’ sč́ıtaćı. Vyvstáva otázka, aké sú hranice sumácie, čo ak
mám vo výraze jeden index len jedenkrát a čo ak mám vo výraze jeden index viac než dva razy? Ak máme
vo výraze index, ktorý sa tam nachádza len jedenkrát, ide o tzv. vol’ný index, teda výsledok výrazu záviśı
od konkrétnej vol’by indexu (čo za neho dosad́ıme). Najlepšie sa na túto otázku odpovedá v pŕıkladoch. Ak
sa vo výraze nachádza niektorý index viac než dvakrát, ide o nezmysel, teda o preklep (aspoň čo sa týka
Einsteinovej sumačnej konvencie, ako taká nepozná, čo je výraz s troma rovnakými indexami). Ak sme si
vedomı́, že tie tri indexy majú opodstatnenie, sumu ručne priṕı̌seme. Čo sa týka hrańıc sumácie, poväčšinou
sa sumuje od 1 po 3, ak sa nachádzame v priestore R3, no hranice závisia od konkrétnej situácie (v pŕıpade
poriadneho značenia sa dajú hranice dobre určit’ a nebýva s tým problém).

1.1.1 Základné operácie s vektormi podl’a Einsteinovej sumačnej konvencie

Symboly δij a εijk

Výraz δij sa nazýva Kroneckerova delta (popr. Kroneckerov delta symbol). Ako na prvý pohl’ad vidno,
sú v ňom práve dva rôzne indexy, každý z nich použitý len jedenkrát, teda oba sú vol’né (teda výsledok záviśı
od ich vol’by, čo za ne konkrétne dosad́ıme). Ked’že sú oba vol’né, očakáva sa, že doplńıme, čo je výsledkom
výrazu δij pre konkrétne i a j. Defińıcia znie jednoducho:

δij =

{
1, i = j

0, i 6= j.
(1.1)

Táto defińıcia naozaj urč́ı hodnotu výrazu δij pre akékol’vek i a j, ktoré si vymysĺıme. Ďaľsiu prácu s
týmto symbolom uvid́ıme na praktických pŕıkladoch, no jeden si môžeme dovolit’ už teraz:

δii = δ11 + δ22 + δ33 = 1 + 1 + 1 = 3 (1.2)

3



1.1. EINSTEINOVA SUMAČNÁ KONVENCIA

Výraz εijk je Levi-Civitov symbol, je to úplne antisymetrický tenzor. Je zd́lhavé definovat’ tento výraz
pre každé i, j a k (1 ≤ i, j, k ≤ 3), ale plat́ı, že ε123 = 1 a navyše pri výmene akýchkol’vek dvoch indexov sa
znamienko zmeńı na opačné:

ε123 = 1

εijk = −εjik = −εkji = −εikj
(1.3)

Z tejto defińıcie je jednoduché odvodit’, že ak sa pri Levi-Civitovom symbole zhodujú aspoň dva indexy,
celý výraz je nulový. Napr.:

ε123 = 1 ε132 = −1
ε131 = 0 ε321 = −1
ε33k = 0

Davis Cup identita

Plat́ı vel’mi dôležitá a často využ́ıvaná identita1:

εijkεmnk = δimδjn − δinδjm (1.4)

Báza R3

V trojrozmernom Euklidovskom priestore existuje pravouhlá pravotočivá báza. Táto báza je tvorená
troma vektormi jednotkovej dĺ̌zky, ktoré sú navzájom kolmé. Zvyčajne sa označujú ~i, ~j a ~k (jednotkový
vektor v smere osi x, v smere osi y a v smere osi z). Pre potreby Einsteinovej sumačnej konvencie je dobré,

ak miesto vektorov ~i, ~j a ~k použ́ıvame označenia ~e1, ~e2 a ~e3. Potom ~e1 bude jednotkový vektor v smere osi
x, ~e2 v smere osi y a ~e3 v smere osi z. Zjavná výhoda je, že tieto označenia majú v sebe index, ak teda
naṕı̌seme vektor ~ei, mysĺı sa tým i-ty bázický vektor (teda vo výraze ostane jediný vol’ný index, ktorý má
takú úlohu, že ak sa chceme už konkrétne spýtat’ ,,ktorý?” tak si za i dosad́ıme konkrétne č́ıslo).

Vektor a jeho vyjadrenie

Majme vektor ~a, ktorý je z R3. Jeho zložky budú:

~a =

a1

a2

a3

 (1.5)

Ak teda budeme chciet’ vyjadrit’ nejakú zložku vektora ~a no bez bližšej špecifikácie, použijeme označenie
ai. Vyjadrenie tohto vektora pomocou bázy ~ei (už použ́ıvame to, čo sme práve zaviedli, teda báza ~ei znamená
pravotočivá pravouhlá báza, z ktorej sa sústred́ıme na jej i-tu komponentu bez bližšieho určenia, čo je to
vlastne i) je suma:

~a = a1~e1 + a2~e2 + a3~e3 =

3∑
i=1

ai~ei

No v zmysle Einsteinovej sumačnej konvencie si okamžite uvedomı́me, že sumu pred výrazom môžeme
zmazat’, čo nám niekedy môže náramne skrátit’ výrazy, s ktorými pracujeme:

~a = ai~ei (1.6)

Je zrejmé, že index i je len sč́ıtaćı - na ňom výsledok nezáviśı (tak ako v pŕıpade určitého integrálu
výsledok nezáviśı na tom, či integračnú premennú pomenujeme x, t, alebo u, výsledok bude závisiet’ len od
hrańıc a tvaru funkcie). Rovnako dobre by sme mohli naṕısat’: ~a = aj~ej , alebo ~a = ak~ek, alebo ~a = ac~ec, ...

1Ktorá dostala názov podl’a konvencie: každý (vol’ný index) s každým (vol’ným indexom).
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1.1. EINSTEINOVA SUMAČNÁ KONVENCIA

Skalárny súčin

Ak teraz máme dva vektory, ~a a ~b (a vektor ~b má zložky označené bi, teda analogicky k prvému pŕıpadu,
ked’ sme označovali vektor ~a), ich skalárny súčin je daný výrazom:

~a ·~b = a1b1 + a2b2 + a3b3 =

3∑
i=1

aibi

teda podl’a Einsteinovej sumačnej konvencie ṕı̌seme:

~a ·~b = aibi (1.7)

Štvorec d́lžky vektora ~a potom vypoč́ıtame ako skalárny súčin s tým istým vektorom:

~a 2 = ~a · ~a = aiai (1.8)

Dobré by bolo zistit’, ako interagujú Kroneckerova delta a výraz, ktorý má v sebe jeden z indexov tohto
symbolu. Skúsme, čo dá súčin ai s δij :

aiδij = a1δ1j + a2δ2j + a3δ3j

Toto zdanlivo nikam neviedlo, avšak je treba si uvedomit’, že pre konkrétne j len jeden z výrazov na
pravej strane je nenulový (pretože Kroneckerova delta je rovná nule, ak sa jej dva indexy nezhodujú a j môže
byt’ rovné len jedinému č́ıslu). Konkrétne ktorý? No predsa ten, ktorý trafil č́ıselne j, teda z troch sčitancov
ostane jediný, a to aj :

aiδij = aj (1.9)

V praxi teraz vid́ıme, že výsledok niečoho, čo má jeden vol’ný index j (lebo i je sčitaćı index) je zas
niečo, čo má v sebe jeden vol’ný index a tým je j. Toto je dobrá intuit́ıvna pomôcka na overenie správnosti
výrazov, ktoré sme poč́ıtali - ak sa nezhodujú vol’né indexy toho, čo poč́ıtame s tým, čo sme dostali, niekde
je chyba.

Skalárny súčin teraz môžeme naṕısat’ ešte trochu inak, pomocou delta symbolu:

~a ·~b = aiδijbj (1.10)

Ked’že symbol delta funguje tak, že ,,skoč́ı” na cudźı index a premeńı ho na dostupný vol’ný (tak, ako
sme videli v pŕıklade aiδij = aj), tak si môže vybrat’, či v tomto pŕıpade delta skoč́ı na ai, alebo na bj ,
výsledok nebude závisiet’ od tejto vol’by (ani nemôže - lebo i a j sú v tomto pŕıpade sč́ıtacie indexy, výsledok
od nich nezáviśı):

aiδijbj = ajbj = aibi = ~a ·~b

Vektorový súčin

Vektorový súčin sa už vyjadruje trochu zložiteǰsie, budeme na to potrebovat’ εijk (tak ako sme na
skalárny súčin potrebovali δij , čo však nebolo úplne nutné). Je zvykom z výrazov, ktoré sú vektory (popŕıpade
viacrozmerné tenzory), vyjadrovat’ len i-tu zložku (popŕıpade ij-tu zložku v pŕıpade matice, ijk-tu zložku, ...

v pŕıpade viacerých rozmerov). Potom i-ta zložka vektorového súčinu vektorov ~a a ~b sa poč́ıta nasledovne:(
~a×~b

)
i

= εijkajbk (1.11)

Tento fakt sa dá overit’ ručne v pŕıpade každej zložky vektorového súčinu. Ešte predtým si treba
uvedomit’, že ked’ za i dosad́ıme konkrétne č́ıslo (napr. 1), tak ohl’adom j a k sa má zmysel zaoberat’ len ak
i 6= j 6= k 6= i, pretože inak εijk aj tak dá nulu (vid’ defińıcia εijk (1.3)).
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1.1. EINSTEINOVA SUMAČNÁ KONVENCIA

Môžeme sa presvedčit’ o správnosti vyjadrenia vektorového súčinu pomoou Levi-Civitovho symbolu:(
~a×~b

)
1

= ε1jkajbk = ε123a2b3 + ε132a3b2 = a2b3 − a3b2(
~a×~b

)
2

= ε2jkajbk = ε213a1b3 + ε231a3b1 = a3b1 − a1b3(
~a×~b

)
3

= ε3jkajbk = ε312a1b2 + ε321a2b1 = a1b2 − a2b1

Ak by sme z nejakého dôvodu chceli poč́ıtat’ celý vektorový súčin ako vektor, teda nie po zložkách, je to
možné - poznáme totiž i-tu zložku vektora, ktorý poč́ıtame, takže k nemu stač́ı priṕısat’ i-ty bázický vektor:

~a×~b = ~ei εijkajbk (1.12)

1.1.2 Diferenciálny operátor ~∇, divergencia, gradient a rotácia

Pomocou indexovej notácie je v kartézskej súradnicovej sústave definovaný operátor ∇i (nabla) ako
výraz ∂

∂xi
, čo sa v nasledujúcich pŕıpadoch ukáže byt’ opodstatnené.

V nasledujúcich častiach považujeme výraz xi za i-tu zložku polohového vektora ~r v kartézskych
súradniciach, teda x1 = x, x2 = y, x3 = z.

Divergencia

Divergencia je operátor, ktorý sa štandardne aplikuje na vektorovú funkciu (vektor) a jej symbolický
zápis je skalárny súčin:

~∇ · ~F =
(
∂
∂x1

, ∂
∂x2

, ∂
∂x3

)F1

F2

F3

 =
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
(1.13)

Tu vidno, že ak sme výraz ∂
∂xi

označili ako ∇i, potom skalárny súčin ~∇ s vektorovou funkciou dá presne
ten výsledok, aký od divergencie očakávame:

~∇ · ~F = ∇iFi =
∂Fi
∂xi

=
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
(1.14)

Gradient

Gradient sa púšt’a na skalárnu funkciu (ale sú pŕıpady, ked’ gradient aplikujeme na vektor), výsledkom
je vektor (v pŕıpade, ak ho aplikujeme na vektor, výsledkom bude tenzor - matica) a jej symbolický zápis je
nasledovný:

~∇ f =
(
∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

)
(1.15)

V tomto pŕıpade pŕısne sledujme indexovú notáciu, k čomu nás dovedie:(
~∇f
)
i

=
∂f

∂xi

Rozṕısané vektorovo:

~∇f =
∂f

∂xi
~ei =

(
∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3

)
(1.16)

čo je to, čo sme od gradientu očakávali.
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1.1. EINSTEINOVA SUMAČNÁ KONVENCIA

Gradient pustený na vektor by sme poč́ıtali nasledovne:(
~∇ ~F

)
ij

=
∂Fj
∂xi

(1.17)

Jeho výsledkom je matica:

~∇ ~F =



∂F1

∂x1

∂F1

∂x2

∂F1

∂x3

∂F2

∂x1

∂F2

∂x2

∂F2

∂x3

∂F3

∂x1

∂F3

∂x2

∂F3

∂x3


(1.18)

Nič nám však nebráni definovat’ gradient vektora opačne:(
~∇ ~F

)
ij

=
∂Fi
∂xj

(1.19)

Jeho výsledkom je iná matica (transponovaná k tej pôvodnej):

~∇ ~F =



∂F1

∂x1

∂F2

∂x1

∂F3

∂x1

∂F1

∂x2

∂F2

∂x2

∂F3

∂x2

∂F1

∂x3

∂F2

∂x3

∂F3

∂x3


(1.20)

Ak v priebehu nejakých odvodeńı naraźıme na gradient vektora, bude vždy zrejmé, o ktorý pŕıpad sa
jedná (popŕıpade dostaneme oba vyššie pŕıpady v súčte, čo je ale necitlivé na zámenu indexov i a j, vd’aka
symetrii).

Rotácia

Rotácia je operátor, ktorý sa aplikuje na vektor a poč́ıta sa ako vektorový súčin:

~∇× ~F (1.21)

Potom i-ta zložka rotácie ~F sa poč́ıta pomocou Levi-Civitovho symbolu εijk:(
~∇× ~F

)
i

= εijk
∂Fk
∂xj

(1.22)

Výsledkom je vektor:

~∇× ~F = εijk
∂Fk
∂xj

~ei =

(
∂F3

∂x2
− ∂F2

∂x3

)
~e1 +

(
∂F1

∂x3
− ∂F3

∂x1

)
~e2 +

(
∂F2

∂x1
− ∂F1

∂x2

)
~e3 (1.23)
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1.2. PŔIKLADY NA VEKTOROVÝ A DIFERENCIÁLNY POČET V EINSTEINOVEJ SUMAČNEJ
KONVENCII

1.2 Pŕıklady na vektorový a diferenciálny počet v Einsteinovej sumačnej
konvencii

1.2.1 Vektorové identity

Začneme dôležitými (a menej dôležitými) identitami, ktoré súvisia so skalárnym a vektorovým súčinom.
Všimneme si, že zakaždým, ked’ chceme naṕısat’ skalárny alebo vektorový súčin, skontrolujeme, či už vo
výraze nemáme indexy, aké sme zamýšl’ali použit’ - ak áno, premeńıme sč́ıtacie indexy za nové, aby sme
predǐsli viac než dvom rovnakým indexom vo výraze.(

~a×~b
)
i

= εijk︸︷︷︸
−εikj

ajbk = −εikjbkaj = −
(
~b× ~a

)
i

=⇒ ~a×~b = −~b× ~a

~a ·
(
~b× ~c

)
= aiεijkbjck = ckεkijaibj = bjεjkickai =⇒ ~a ·

(
~b× ~c

)
= ~c ·

(
~a×~b

)
= ~b ·

(
~c× ~a

)
[
~a×

(
~b× ~c

)]
i

= εijkaj

(
~b× ~c

)
k

= εijkajεklmblcm = εijkεlmkajblcm
(DC)

= (δilδjm − δimδjl) ajblcm =

= ajcjbi − ajbjci =
[(
~a · ~c

)
~b−

(
~a ·~b

)
~c
]
i

=⇒ ~a×
(
~b× ~c

)
=
(
~a · ~c

)
~b−

(
~a ·~b

)
~c

Tu sa pozastav́ıme nad tým, že chv́ıl’u predtým, ako sme chceli naṕısat’ εijkajbkεijkcjdk sa zháčime a
všimneme si, že takto by sme mali niektoré indexy až štyrikrát, preto výraz zmeńıme na εijkajbkεimncmdn.

Samostatne sú oba pravdivé (εijkajbk je i-ta zložka ~a×~b, aj εijkcjdk je i-ta zložka ~c× ~d ), no ked’ ich chceme
zlúčit’ spolu, je nutné indexy premenovat’:(

~a×~b
)
·
(
~c× ~d

)
=
(
~a×~b

)
i︸ ︷︷ ︸

εijkajbk

(
~c× ~d

)
i︸ ︷︷ ︸

εimncmdn

= εijkajbkεimncmdn =

= εjkiεmniajbkcmdn
(DC)

= (δjmδkn − δjnδkm) ajbkcmdn = ajcjbkdk − ajdjbkck

=⇒
(
~a×~b

)
·
(
~c× ~d

)
=
(
~a · ~c

)(
~b · ~d

)
−
(
~a · ~d

)(
~b · ~c

)
Predtým, než sa pust́ıme do kapitoly o diferenciálnych identitách, zavedieme označenie, ktoré mnohokrát

ušetŕı miesto a rovnice sa budú dat’ ṕısat’ do jedného riadku - miesto výrazu derivácie podl’a i-tej súradnice
∂

∂xi
budeme použ́ıvat’ výraz ∂i.
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1.2. PŔIKLADY NA VEKTOROVÝ A DIFERENCIÁLNY POČET V EINSTEINOVEJ SUMAČNEJ
KONVENCII

1.2.2 Diferenciálne operátory

Sem patria všetky lahôdky typu divergencia, gradient a rotácia v rôznych kombináciach násobného
aplikovania, kde možných spôsobov je nekonečne vel’a.

~∇ ·
(
f ~F
)

= ∂i (f Fi) = Fi∂if + f∂iFi =⇒ ~∇ ·
(
f ~F
)

= ~F ·
(
~∇f
)

+ f
(
~∇ · ~F

)
~∇ ·
(
~F × ~G

)
= ∂i (εijkFjGk) = εijkGk∂iFj + εijkFj∂iGk = Gkεkij∂iFj − Fjεjik∂iGk

=⇒ ~∇ ·
(
~F × ~G

)
= ~G ·

(
~∇× ~F

)
− ~F ·

(
~∇× ~G

)
[
~∇ (f g)

]
i

= ∂i (f g) = g∂if + f∂ig =⇒ ~∇ (f g) = g ~∇f + f ~∇g[
~∇
(
~F · ~G

)]
i

= ∂i (FjGj) = Gj∂iFj + Fj∂iGj

~∇
(
~F · ~G

)
=
(
~∇~F
)
· ~G+

(
~∇~G
)
· ~F

Skalárny súčin ,,·” je teraz chápaný ako súčin mat́ıc:

(
~∇~F
)
· ~G+

(
~∇~G
)
· ~F =


∂1F1 ∂1F2 ∂1F3

∂2F1 ∂2F2 ∂2F3

∂3F1 ∂3F2 ∂3F3



G1

G2

G3

+


∂1G1 ∂1G2 ∂1G3

∂2G1 ∂2G2 ∂2G3

∂3G1 ∂3G2 ∂3G3



F1

F2

F3


Gradient skalárneho súčinu má ešte iné, kraǰsie vyjadrenie. Jeho dôkaz pozostáva v rozṕısańı oboch

strán a v manuálnom overeńı pravdivosti tvrdenia (bez dôkazu - odvodenie by obsahovalo isté umelé kroky):

~∇
(
~F · ~G

)
=
(
~F · ~∇

)
~G+

(
~G · ~∇

)
~F + ~F ×

(
~∇× ~G

)
+ ~G×

(
~∇× ~F

)
[
~∇×

(
f ~F
)]

i
= εijk∂j (f Fk) = εijkFk∂jf + εijkf∂jFk = εijkf∂jFk − εikjFk∂jf

=⇒ ~∇×
(
f ~F
)

= f ~∇× ~F − ~F × ~∇f[
~∇×

(
~F × ~G

)]
i

= εijk∂j

(
~F × ~G

)
k

= εijk∂j (εkmnFmGn) = εijkεmnk (Gn∂jFm + Fm∂jGn) =

= (δimδjn − δinδjm) (Gn∂jFm + Fm∂jGn) = Gj∂jFi︸ ︷︷ ︸[(
~G · ~∇

)
~F
]
i

−

[
~G
(
~∇ · ~F

)]
i︷ ︸︸ ︷

Gi∂jFj + Fi∂jGj︸ ︷︷ ︸[
~F
(
~∇ · ~G

)]
i

−

[(
~F · ~∇

)
~G
]
i︷ ︸︸ ︷

Fj∂jGi

=⇒ ~∇×
(
~F × ~G

)
= ~F

(
~∇ · ~G

)
− ~G

(
~∇ · ~F

)
+
(
~G · ~∇

)
~F −

(
~F · ~∇

)
~G

Výraz
(
~G · ~∇

)
~F chápeme nasledovne:

(
~G · ~∇

)
~F = Gj∂jFi ~ei =

(
G1∂1 +G2∂2 +G3∂3

)
~F =


G1∂1F1 +G2∂2F1 +G3∂3F1

G1∂1F2 +G2∂2F2 +G3∂3F2

G1∂1F3 +G2∂2F3 +G3∂3F3


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1.2. PŔIKLADY NA VEKTOROVÝ A DIFERENCIÁLNY POČET V EINSTEINOVEJ SUMAČNEJ
KONVENCII

~∇ ·
(
~∇× ~F

)
= ∂i (εijk∂jFk) = εijk∂i∂jFk =

1

2

(
εijk∂i∂jFk + εijk∂i∂jFk︸ ︷︷ ︸

εjik∂j∂iFk

)
=

=
1

2

(
εijk∂i∂jFk + εjik

∂i∂jFk︷ ︸︸ ︷
∂j∂iFk

)
=

1

2
∂i∂jFk (εijk − εijk) = 0

~∇ ·
(
~∇× ~F

)
= 0[

~∇×
(
~∇f
)]

i
= εijk∂j

(
~∇f
)
k

= εijk∂j∂kf
analogicky

= · · · = 0

~∇×
(
~∇f
)

= 0

~∇ ·
(
~∇f
)

= ∂i (∂if) = ∂i∂if ≡ ~∇2f = ∆f

Operátor ∆ voláme Laplaceov operátor, púšt’a sa na skalárnu funkciu alebo na vektorovú funkciu po
zložkách a v kartézskych súradniciach vyzerá nasledovne:

∆f = ~∇2f =
(
∂1, ∂2, ∂3

)∂1

∂2

∂3

 f = (∂1∂1 + ∂2∂2 + ∂3∂3) f = ∂1∂1f + ∂2∂2f + ∂3∂3f

[
~∇×

(
~∇× ~F

)]
i

= εijk∂j

(
~∇× ~F

)
k

= εijk∂j (εkmn∂mFn) = εijkεmnk∂j∂mFn =

= (δimδjn − δinδjm) ∂j∂mFn = ∂i∂jFj − ∂j∂jFi

=⇒ ~∇×
(
~∇× ~F

)
= ~∇

(
~∇ · ~F

)
−∆~F

∆
(
~∇ · ~F

)
= ∂i∂i∂jFj = ∂j∂i∂iFj =⇒ ∆

(
~∇ · ~F

)
= ~∇ ·

(
∆~F

)
~∇ ·
(
f ~∇g

)
= ∂i (f∂ig) = (∂ig) (∂if) + f∂i∂ig =⇒ ~∇ ·

(
f ~∇g

)
= f∆g + ~∇f · ~∇g

f∆g − g∆f = f∂i∂ig − g∂i∂if = f∂i (∂ig)− g∂i (∂if) =

= ∂i (f∂ig − g∂if)− (∂i) (g∂if) + (∂i) (f∂ig) = ∂i (f∂ig − g∂if)

=⇒ f∆g − g∆f = ~∇ ·
(
f ~∇g − g~∇f

)
∆ (f g) = ∂i∂i (f g) = ∂i [∂i (f g)] = ∂i (g∂if + f∂ig) =

= (∂ig) (∂if) + g∂i∂if + (∂if) (∂ig) + f∂i∂ig

=⇒ ∆ (f g) = f∆g + 2~∇f · ~∇g + g∆f

Táto čast’ sa snažila ukázat’ stručnost’ narábania s Einsteinovou sumačnou konvenciou. Kto by neveril,
môže si skúsit’ dané výrazy rozpisovat’ pre jednotlivé zložky a použ́ıvat’ sumy. Existuje mnoho d’aľśıch ident́ıt,
na niektoré naraźıme pri odvodeniach v mechanike viazaných hmotných bodov, tuhom telese, mechanike
kontinua a hydrodynamike.
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1.2. PŔIKLADY NA VEKTOROVÝ A DIFERENCIÁLNY POČET V EINSTEINOVEJ SUMAČNEJ
KONVENCII

V neskorš́ıch kapitolách budeme hojne využ́ıvat’ dve vety prerábajúce oblast’ integrovania: Gaussovu a
Stokesovu (popr. Greenovu) vetu.

1.2.3 Gauss-Ostrogradského veta*

Nech V ⊂ R3 je uzavretá a ohraničená množina, ktorá má po častiach hladkú hranicu ∂V ≡ S a
vektorové pole ~F je spojite diferencovatel’né. Potom plat́ı veta2:

˚

V

~∇ · ~F dV =

‹

S

~F · d~S (1.24)

Najprv sa pozrime na l’avú stranu; podintegrálna funkcia je skalárna a je výsledkom divergencie vek-
torového pol’a, je teda možné ju naṕısat’ ako ∂iFi. Pravá strana je už plošný integrál II. druhu, teda násob́ıme
vektorové pole v danom bode s diferenciálom plochy, čo však možno naṕısat’ ako:

~F · d~S = ~F · ~ndS

kde ~n je normálový vektor plochy hranice v danom mieste. Celú Gaussovu vetu môžeme preṕısat’ ako:

˚

V

∂iFi dV =

‹

S

FidSi (1.25)

V pŕıpade pol’a vyššieho rádu (tenzorového), alebo v pŕıpade viacerých indexov zmotaných na l’avej
strane (alebo pravej strane, ak zač́ıname od plošného integrálu) je recept nasledovný: pozri sa, na ktorý
index skáče derivácia (napr. i-ty), ked’ ho nájdeš, zmaž deriváciu a diferenciál dV a priṕı̌s pŕıslušnú zložku
diferenciálu plochy dSi (a integrál zmeň z objemového na plošný).

1.2.4 Kelvin-Stokesova veta*

Nech C (= ∂D) je kladne orientovaná, po častiach hladká, jednoduchá uzavretá krivka a nech D je

plocha ohraničená touto krivkou a vektorové pole ~F je spojite diferencovatel’né. Potom plat́ı veta3:

¨

D

(
~∇× ~F

)
· d~S =

˛

C

~F · d~l (1.26)

Podobným postupom možno danú vetu naṕısat’ v indexoch:

¨

D

εijk∂jFkdSi =

˛

C

Fidli (1.27)

2Divergence theorem
3Curl theorem
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2
Mechanika sústavy viazaných hmotných bodov

Pripomı́name, že vo všetkých výrazoch odteraz budeme použ́ıvat’ Einsteinovu sumačnú konvenciu - pre
každý index, ktorý uvid́ıme vo výraze dvakrát (v súčine, napŕıklad aibi) si pred ńım predstav́ıme sumu (čiže

z aibi by vzniklo:
∑N
i=1 aibi = ~a ·~b). V prvých výrazoch tejto kapitoly pripomenieme sumačnú konvenciu

pridańım sumy do zátvorky, neskôr je treba túto konvenciu spoznat’ automaticky.

2.1 d’Alembertov - Lagrangeov prinćıp

2.1.1 Väzby, väzbové rovnice

Každá väzba, ktorú v sebe system má, je obyčajne určená rovnicou:

Φi

(
~r1, ~r2, . . . , ~rn, ~̇r1, ~̇r2, . . . , ~̇rn, t

)
= 0 (2.1)

kde Φi

(
~r1, ~r2, . . . , ~rn, ~̇r1, ~̇r2, . . . , ~̇rn, t

)
je vo všeobecnosti funkcia času, polôh a rýchlost́ı hmotných bodov

v sústave, ktorú skúmame. Množinu bodov, ktoré sṕlňajú väzbové rovnice budeme nazývat’ konfiguračný
priestor M .

Pŕıklad: Majme v rovine xz (y = 0) jeden hmotný bod hmotnosti m a polohou ~r, ktorý je však viazaný
na kružnicu s polomerom R so stredom v bode [0, 0, 0]. Vieme, že rovnica takejto kružnice je:

x2 + z2 = R2

Druhé obmedzenie, ktoré máme je fakt, že pohyb sa koná v rovine xz, teda:

y = 0

Vieme, že väzbové rovnice sú tvaru Φi

(
~r1, . . . , ~rn, ~̇r1, . . . , ~̇rn, t

)
= 0, teda naše väzbové rovnice budú

vyzerat’ nasledovne:

Φ1

(
~r, ~̇r, t

)
= x2 + z2 −R2 (= 0)

Φ2

(
~r, ~̇r, t

)
= y (= 0)

Systém, ktorý sme práve popisovali má aj meno, označuje sa ako rovinné matematické kyvadlo. Vieme,
že na hmotný bod ~r určite pôsob́ı sila ~F = m~g = m~̈r. Avšak takýto opis by viedol ku pohybu po parabole,
ked’že v tejto rovnici nie je zohl’adnená práve sila, ktorá udržuje hmotný bod na danej kružnici (vieme, že
by to v skutočnosti bola dostredivá sila).
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2.1. D’ALEMBERTOV - LAGRANGEOV PRINĆIP

2.1.2 Akt́ıvne sily, reakčné sily väzieb

Zaved’me teraz vo všeobecnosti dve zložky sily, ktoré pôsobia na body v systéme. Jedna zložka budú
akt́ıvne sily ~F (a), teda také sily, ktoré ostanú pŕıtomné aj po tom, čo by sme si odmysleli väzby (teda
pri rovinnom matematickom kyvadle je akt́ıvna sila jedine gravitačná, pretože táto sila ostane, aj ked’ bod
nebude viazaný na kružnicu). Ďalej zavedieme reakciu väzieb ~F (r), čo sú práve sily, ktore udržujú hmotné
body na trajektóriach určených väzbovými rovnicami. Plat́ı:

~F = ~F (a) + ~F (r) (2.2)

Samotné väzbové rovnice by mali byt’ nezávislé. V praxi to znamená, že žiadnu skupinu väzieb
nemôžeme vylúčit’ bez toho, aby sme nestratili informáciu o konfiguračnom priestore (v pŕıklade mate-
matického kyvadla nemôžeme vylúčit’ druhú rovnicu y = 0, pretože takýto pohyb by sa konal na celom valci
a nielen na kružnici). Zároveň pripúšt’ame len ,,slušné” väzby (napŕıklad väzba x2 + y2 + z2 (= 0) nie je
slušná, pretože aj ked’ je len jedna, jej riešeńım je jediný bod x = y = z = 0). Presné definovanie tejto
záležitosti by v tomto momente ničomu neprospelo.

2.1.3 Nezávislé väzby, dimenzia konfiguračného priestoru

Za týchto predpokladov plat́ı, že dimenziu konfiguračného priestoru vypoč́ıtame ako rozdiel dimenzie
priestoru, v ktorom uvažujeme pohyb hmotných bodov (pre N hmotných bodov potrebujeme 3N premenných
na ich opis, teda dimenzia tohto priestoru je 3N) a počtu väzbových rovńıc. Ak máme N hmotných bodov a
počet nezávislých, slušných väzbových rovńıc je k, potom dimenziu konfiguračného priestoru n vypoč́ıtame
ako:

n = 3N − k (2.3)

Odteraz sa budeme zaoberat’ len väzbami, ktoré sú holonómne, teda také, ktoré závisia len od ~r a nie
od ~̇r, popr. vyšš́ıch derivácii, alebo explicitne od času.

Uvažujme teraz všeobecný pŕıpad, kedy máme N hmotných bodov ~r1, ~r2, ... až ~rN . Ich hmotnosti sú
m1, m2, ... až mN . Pre tieto hmotné body plat́ı:

m1~̈r1 = ~F1

m2~̈r2 = ~F2
...

mN ~̈rN = ~FN

Polohy ~r1, ~r2, ..., ~rN chápeme ako N bodov v 3D:

~r1 = (x1, y1, z1)
~r2 = (x2, y2, z2)

...
~rN = (xN , yN , zN )

Definujme jedinú polohu r̄:

r̄ = (~r1, ~r2, . . . , ~rN ) = (x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN ) (2.4)

Túto polohu r̄ chápeme ako jeden hmotný bod v 3ND. Teraz jednoducho definujeme konfiguračný
priestor M :

M = {r̄;∀ i : 1 ≤ i ≤ k : Φi (r̄) = 0} (2.5)

M ⊆ R3N−k

M ⊂ R3N

13



2.1. D’ALEMBERTOV - LAGRANGEOV PRINĆIP

Analogicky ku r̄ definujeme rýchlost’ v̄:

v̄ =
(
~̇r1, ~̇r2, . . . , ~̇rN

)
= (ẋ1, ẏ1, ż1, ẋ2, ẏ2, ż2, . . . , ẋN , ẏN , żN ) (2.6)

Hybnost’ p̄ bude:

p̄ = (~p1, . . . , ~pN ) =
(
m1~̇r1, . . . ,mN ~̇rN

)
= (m1ẋ1,m1ẏ1,m1ż1,m2ẋ2, . . . ,mN ẏN ,mN żN ) (2.7)

Sila F̄ :

F̄ =
(
~F1, ~F2, . . . , ~FN

)
(2.8)

V tejto pruhovanej konvencii plat́ı zákon sily:

F̄ = ˙̄p (2.9)

Pre nezávislé väzby Φ1, Φ2, až Φk plat́ı, že hodnost’ Jacobiho matice Jij (1 ≤ i ≤ k, 1 ≤ j ≤ N):

Jij =
∂Φi
∂xj

je maximálna možná, teda h(J) = min (r (J) , s (J)) = min (k, 3N) a to v každom bode r̄, ktorý sṕlňa tieto
väzbové rovnice. Pripomı́name, ako vyzerá Jacobiho matica J :

J =



∂Φ1

∂x1

∂Φ1

∂y1

∂Φ1

∂z1

∂Φ1

∂x2
· · · ∂Φ1

∂zN
∂Φ2

∂x1

∂Φ2

∂y1

∂Φ2

∂z1

∂Φ2

∂x2
· · · ∂Φ2

∂zN
...

...
...

...
. . .

...

∂Φk
∂x1

∂Φk
∂y1

∂Φk
∂z1

∂Φk
∂x2

· · · ∂Φk
∂zN


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2.1. D’ALEMBERTOV - LAGRANGEOV PRINĆIP

2.1.4 Prinćıp virtuálneho posunutia

Predstavme si teraz, že sa nachádzame v takom bode r̄, ktorý naozaj sṕlňa väzbové rovnice, teda patŕı
do konfiguračného priestoru M . Posuňme sa do bodu r̄+ δr̄, ktorý taktiež sṕlňa väzbové rovnice, teda plat́ı:

∀ i : 1 ≤ i ≤ k : Φi (r̄) = Φi (r̄ + δr̄) = 0 (2.10)

Orientačný obrázok k situácii:

r

r + δr

-

- -

δr-

3N

M

Rozviňme výraz Φi (r̄ + δr̄) do Taylorovho radu v okoĺı bodu r̄ (ked’že hodnotu δr̄ pokladáme za malú):

Φi (r̄ + δr̄) = Φi (r̄) +

 3N∑
j=1

 ∂Φi
∂r̄j

δr̄j +O
(
|δr̄|2

)
kde O

(
|δr̄|2

)
je zvyšok radu, ktorý sa vzhl’adom na malost’ δr̄ meńı len málo (a teda je možné ho zaned-

bat’). Ak operátor ∂
∂(r̄)i

označ́ıme ako ∇̄i (1 ≤ i ≤ 3N), potom druhý vyraz v Taylorovom rozvoji bude(∑3N
j=1

) (
∇̄Φi

)
j
δr̄j , teda skalárny súčin gradientu i-tej väzbovej funkcie s virtuálnym posunut́ım v 3ND

(zároveň už zanedbáme zvyšok radu, ktorý sa nemeńı do prvého rádu zmeny malej hodnoty δr̄):

Φi (r̄ + δr̄) = Φi (r̄) + ∇̄Φi · δr̄

Za predpokladu, že sa naozaj uspokoj́ıme s dvoma členmi Taylorovho rozvoja, potom člen ∇̄Φi ·δr̄ muśı
byt’ rovný nule, pretože oba body (r̄ aj r̄ + δr̄) sṕlňajú väzbové rovnice, teda použit́ım (2.10) muśı platit’:

Φi (r̄) = Φi (r̄ + δr̄) = 0 =⇒ ∇̄Φi · δr̄ = 0 (2.11)
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2.1. D’ALEMBERTOV - LAGRANGEOV PRINĆIP

Tento výsledok bude ešte dôležitý. Rozoberme si teraz samotnú reakčnú silu F̄ (r). Na to, aby udržala
bod na konfiguračnom priestore M , muśı platit’, že táto sila bude kolmá na dotyčnicu ku konfiguračnému
priestoru. V tomto pŕıpade viac napovie obrázok:

r-

δr-

3N

M

F(r)
-

Plat́ı teda, že skalárny súčin virtuálneho posunutia s touto reakčnou silou je nulový:

F̄ (r) · δr̄ = 0, (2.12)

teda že skalárny súčin virtuálneho posunutia s celkovou silou bude rovný skalárnemu súčinu virtuálneho
posunutia s akt́ıvnou silou, čo znamená, že prácu koná len akt́ıvna zložka sily, ktorá na bod pôsob́ı:

F̄ · δr̄ = F̄ (a) · δr̄ (2.13)

Z (2.9) a (2.13) vyplýva:

˙̄p · δr̄ = F̄ · δr̄ = F̄ (a) · δr̄ (2.14)

Čo možno preṕısat’ ako: (
˙̄p− F̄ (a)

)
· δr̄ = 0 (2.15)
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2.1. D’ALEMBERTOV - LAGRANGEOV PRINĆIP

2.1.5 d’Alembertov - Lagrangeov prinćıp

Z práve odvodených výsledkov a z väzbových rovńıc dostávame d’Alembertov - Lagrangeov prinćıp:

(
˙̄p− F̄ (a)

)
· δr̄ = 0

∇̄Φi (r̄) · δr̄ = 0

Φi (r̄) = 0

(2.16)

Vzhl’adom na to, že index i bež́ı od 1 do k, d’Alembertov - Lagrangeov prinćıp zahŕňa 2k + 1 rovńıc. Toto
sa ukazuje byt’ vel’mi neefekt́ıvne, ak narastá počet bodov zároveň s počtom väzbových rovńıc. Pŕıkladom by
bol opis pohybu tuhého telesa, kde na každý nový bod, ktorý v telese uvažujeme, muśıme uvažovat’ aj väzbovú
rovnicu ktorá povie, že v pŕıpade rotácie tento bod rotuje okolo jedinej osi spolu so všetkými ostatnými
bodmi a d’aľsiu väzbovú rovnicu, ktorá udržuje vzdialenosti medzi každými dvoma bodmi. Je jasné, že
d’Alembertov - Lagrangeov prinćıp je v tomto pŕıpade (a v mnohých iných) len t’ažko aplikovatelný - vzniká
vel’ké množstvo d’aľśıch rovńıc, ktoré v konečnom dôsledku dávajú opis niečoho, čo vôbec nepotrebujeme
(virtuálne posunutia). Na nasledujúcom jednoduchom pŕıklade demonštrujeme neefekt́ıvnost’ tohto prinćıpu.

Pŕıklad: rovinné matematické kyvadlo. V systéme je jediný hmotný bod ~r s hmotnost’ou m viazaný na
kružnicu so stredom v bode [0, 0, 0] a polomerom l (d́lžka kyvadla), ktorá leži v rovine xz, pričom y = 0.
Jediná akt́ıvna sila je gravitačná v smere −z. Toto sú všetky potrebné informácie na výpočet nasledujúcich
výrazov potrebných na zostavenie sústavy rovńıc:

~p = m (ẋ, ẏ, ż) =⇒ ~̇p = m (ẍ, ÿ, z̈)

~F (a) = (0, 0,−mg)

Φ1 = x2 + z2 − l2

Φ2 = y

~∇Φ1 = (2x, 0, 2z)

~∇Φ2 = (0, 1, 0)

δ~r = (δx, δy, δz)
T

Samotná sústava rovńıc:

(2.16 I.) =⇒


(
ẍ, ÿ, z̈ + g

)
·

δxδy
δz

 = 0 (a)

(2.16 II.) =⇒



(
x, 0, z

)
·

δxδy
δz

 = 0 (b)

(
0, 1, 0

)
·

δxδy
δz

 = 0 (c)

(2.16 III.) =⇒

{
x2 + z2 − l2 = 0 (d)

y = 0 (e)

(2.17)

17



2.1. D’ALEMBERTOV - LAGRANGEOV PRINĆIP

Z (2.17 c) vyplýva, že δy = 0 (pohyb sa koná len v rovine xz, teda sústava nepripúšt’a virtuálne posunutie
v smere y). Z (2.17 b) vyplýva xδx + zδz = 0. Ak δy = 0, potom z (2.17 a) vyplýva ẍδx + (z̈ + g) δz = 0.
Maticový zápis oboch výsledkov naraz je teraz užitočneǰśı:(

ẍ z̈ + g
x z

)(
δx
δz

)
=

(
0
0

)
Vieme, že táto rovnost’ má byt’ splnená vždy, pre každé δx a δz, ktoré vyhovujú virtuálnym posunutiam

v rámci konfiguračného priestoru M . Potom však muśı platit’, že determinant tejto sústavy je rovný nule:∣∣∣∣ẍ z̈ + g
x z

∣∣∣∣ !
= 0

Spolu s prvou väzbovou rovnicou dostávame takéto rovnice:

ẍz − x (z̈ + g) = 0

x2 + z2 = l2
(2.18)

Jednou z možnost́ı, ako sa dopracovat’ k nejakému výsledku je vhodne zvolit’ súradnicovú sústavu. V
tomto pŕıpade zvoĺıme polárnu sústavu (r, ϕ) takú, že pre ϕ = 0 dostaneme vol’ne visiace kyvadlo. Ked’že

kyvadlo má konštantnú d́lžku, tak r = l a môžeme ṕısat’:xy
z

 =

 l sin(ϕ)
0

−l cos(ϕ)


Vid́ıme, že pri takto zvolených suradniciach sú automaticky splnené obe väzbové rovnice. Vypoč́ıtajme

ẍ a z̈:

x = l sin(ϕ)

ẋ = l cos(ϕ)ϕ̇

ẍ = −l sin(ϕ)ϕ̇2 + l cos(ϕ)ϕ̈

z = −l cos(ϕ)

ż = l sin(ϕ)ϕ̇

z̈ = l cos(ϕ)ϕ̇2 + l sin(ϕ)ϕ̈

Z rovnice (2.18 I.) (rovnica (2.18 II.) je splnená automaticky) teda dostávame:[
−l sin(ϕ)ϕ̇2 + l cos(ϕ)ϕ̈

]
[−l cos(ϕ)]− l sin(ϕ)

[
l cos(ϕ)ϕ̇2 + l sin(ϕ)ϕ̈+ g

]
= 0

−l2ϕ̈
[
cos2(ϕ) + sin2(ϕ)

]
− lg sin(ϕ) = 0

ϕ̈+
g

l
sin(ϕ) = 0

Toto je naozaj správna rovnica rovinného matematického kyvadla. Vid́ıme, že počas jej odvodenia sme
museli použit’ rôzne kroky a postupy, ktoré sa nedajú univerzálne algoritmicky oṕısat’, avšak vo výsledku
dostávame rovnicu pre jedinú premennú ϕ. Intúıcia nám teda vrav́ı, že z piatich rovńıc by stačila jedna (vo
vhodnej kombinácii), aby sme sa dopracovali k rovnakému výsledku. Kl’́učový rozdiel medzi piatimi rovnicami
d’Alembertovho - Lagrangeovho prinćıpu a jedinou výslednou rovnicou je, že zatial’ čo pôvodne sme dovol’ovali
virtuálnym posunutiam ı́st’ v ktoromkol’vek smere a jeho správnost’ určili až samotné rovnice, v priebehu
výpočtu sme zistili, že existujú súradnice (parametrizácia), ktoré sú akoby ,,̌sité na mieru” a poskytujú
práve tol’ko vol’nosti, kol’ko je v systéme treba, teda pre žiaden uhol ϕ sa nedostaneme mimo kružnice,
na ktorej sa deje pohyb, no zároveň rozumným spôsobom oṕı̌se celú kružnicu. Za pomoci zovšeobecnenia
myšlienky súradńıc ušitých na mieru väzbovým rovniciam odvod́ıme Lagrangeove rovnice, ktorých počet je
rovný počtu stupňov vol’nosti systému.
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2.2. LAGRANGEOVE ROVNICE II. DRUHU

2.2 Lagrangeove rovnice II. druhu

2.2.1 Zovšeobecnené súradnice, Lagrangeove rovnice II. druhu

Ako sme už naznačili, často plat́ı, že pre náš systém existujú také súradnice, ktoré sú preň ako šité na
mieru, pre matematické kyvadlo to bol napŕıklad uhol ϕ. Predpokladajme, že taká parametrizácia existuje,
teda existuje n súradńıc q takých, že automaticky plat́ı:

Φi (r̄) = Φi (r̄(q)) = 0,∀i; 1 ≤ i ≤ n,

teda rovnica (2.16 III.) je automaticky splnená (definitoricky). Pomocou Taylorovho rozvoja poč́ıtajme δr̄:

δr̄ = r̄ (q1 + δq1, q2 + δq2, . . . , qn + δqn)− r̄ (q1, q2, . . . , qn) =

= r̄ (q1, q2, . . . , qn) + δq1
∂r̄

∂q1
+ δq2

∂r̄

∂q2
+ · · ·+ δqn

∂r̄

∂qn
− r̄ (q1, q2, . . . , qn) =

(
n∑
i=1

)
δqi

∂r̄

∂qi

Spoč́ıtajme teraz výraz v (2.16 II.) pre a-tu väzbovú funkciu:( 3N∑
i=1

)
∂Φa
∂ri

δri =

( n∑
j,k=1

)
∂Φa
∂qj

( 3N∑
i=1

)
∂qj
∂ri

∂ri
∂qk︸ ︷︷ ︸

=δjk

δqk =

( n∑
j=1

)
∂Φa
∂qj

δqj
!
= 0

Vieme, že pre akékol’vek q je každá väzbová rovnica rovná nule (pretože q parametrizujú kofiguračný
priestor tak, aby to platilo), čo ale znamená, že vzhl’adom na zovšeobecnené súradnice q je každá väzbová

rovnica konštantou (konkrétne rovnou nule), čo sa inak dá naṕısat’ tak, že
∂Φa
∂qj

= 0, teda výraz vyššie je

identicky rovné nule. To ale znamená, že rovnica (2.16 II.) taktiež bez námahy automaticky plat́ı a ostáva
už len rovnica (2.16 I.):

(
˙̄p− F̄ (a)

)
· δr̄ =

 n∑
i=1

3N∑
j=1

( ˙̄pj − F̄ (a)
j

) ∂r̄j
∂qi

δqi = 0

Vieme, že táto rovnost’ plat́ı pre každý vektor δq. Potom neostáva nič iné, len že zvyšok muśı byt’ rovný
nule (ak je skalárny súčin x · y rovný nule pre každé x, potom plat́ı, že y = 0):

∀ δq :
(

˙̄pj − F̄ (a)
j

) ∂r̄j
∂qi

δqi = 0 =⇒ ∀ i; 1 ≤ i ≤ n :
(

˙̄pj − F̄ (a)
j

) ∂r̄j
∂qi

= 0
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Roznásobme zátvorku a výraz s akt́ıvnymi silami presuňme na druhú stranu. Označme tento výraz ako
Qi(q) - zovšeobecnené sily:

∂r̄j
∂qi

˙̄pj =

 3N∑
j=1

 F̄
(a)
j

∂r̄j
∂qi︸ ︷︷ ︸

Qi(q)

(2.19)

Pravá strana je tým vybavená, v l’avej si všimneme, že prvý súčinitel’ je nederivovaný podl’a času,
kým druhý je, čo sa dá preṕısat’ ako časová derivácia súčinu dvoch funkcíı, od ktorej odpoč́ıtame opačnú
kombináciu derivovania podl’a času1:

∂r̄j
∂qi

˙̄pj =
d

dt

(
∂r̄j
∂qi

p̄j

)
− p̄j

d

dt

(
∂r̄j
∂qi

)
Výraz:

∂r̄j
∂qi

p̄j (2.20)

má fyzikálny rozmer: [
∂r̄j
∂qi

p̄j

]
=
Js

[qi]
=

J

[q̇i]
.

Výraz:

d

dt

(
∂r̄j
∂qi

)
p̄j (2.21)

Má rozmer: [
d

dt

(
∂r̄j
∂qi

)
p̄j

]
=

J

[qi]
.

Intúıcia nám vrav́ı, že ak má niečo jednotku Joule na jednotku i-tej zovšeobecnenej súradnice, jedna
z možnost́ı je, že výraz je parciálnou deriváciou energie podl’a zovšeobecnenej súradnice. Ked’že výrazy na
l’avej strane sa skladajú z polôh a aj z hybnost́ı, je pravdepodobné, že pôjde o kinetickú energiu sústavy (k
tomuto tušeniu prispieva aj fakt, že akt́ıvne sily sme presunuli na pravú stranu - potenciálna energia by sa
mohla skrývat’ iba v akt́ıvnych silách). Nájdime teda kinetickú energiu sústavy:

Ekin =
1

2

N∑
k=1

mk~v
2
k =

1

2

N∑
k=1

mk
∂~rk
∂qa
· ∂~rk
∂qb

q̇aq̇b

Nájdime
∂Ekin
∂q̇i

:

∂Ekin
∂q̇i

=
1

2

N∑
k=1

mk
∂~rk
∂qa
· ∂~rk
∂qb

(δiaq̇b + q̇aδib) =
1

2

N∑
k=1

[
mk

∂~rk
∂qi
· ∂~rk
∂qb

q̇b +mk
∂~rk
∂qa
· ∂~rk
∂qi

q̇a

]
=

=

N∑
k=1

mk
∂~rk
∂qi
· ∂~rk
∂qb

q̇b =

N∑
k=1

mk~̇rk ·
∂~rk
∂qi

=

N∑
k=1

~pk ·
∂~rk
∂qi

=

3N∑
j=1

p̄j
∂r̄j
∂qi

=
∂r̄j
∂qi

p̄j

Vid́ıme, že výraz, ktorý sme dostali, zodpovedá výrazu (2.20).

1Odteraz už neuvádzame pomocné sumy, pre správne rozṕısanie výrazov s dvoma zhodnými indexami stač́ı použit’ Ein-
steinovu sumačnú konvenciu (a danú sumu si tam domysliet’). Namiesto parciálnej derivácie podl’a času použijeme výraz ∂tf ,
pre deriváciu podl’a i-tej kartézskej súradnice použijeme ∂if .
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Spoč́ıtajme
∂Ekin
∂qi

:

∂Ek
∂qi

=
1

2

N∑
k=1

mk

(
∂2~rk
∂qa∂qi

· ∂~rk
∂qb

+
∂~rk
∂qa
· ∂

2~rk
∂qb∂qi

)
q̇aq̇b =

=
1

2

N∑
k=1

mk

[
∂

∂qi

(
∂~rk
∂qa

)
q̇a︸ ︷︷ ︸

∂

∂qi

(
∂~rk
∂qa

q̇a

)
∂~rk
∂qb

q̇b︸ ︷︷ ︸
~̇rk

+
∂

∂qi

(
∂~rk
∂qb

)
q̇b︸ ︷︷ ︸

∂

∂qi

(
∂~rk
∂qb

q̇b

)
∂~rk
∂qa

q̇a︸ ︷︷ ︸
~̇rk

]
=

=

N∑
k=1

mk~̇rk ·
∂

∂qi

(
∂~rk
∂qa

q̇a

)
=

N∑
k=1

~pk ·
∂~̇rk
∂qi

=

N∑
k=1

~pk ·
d

dt

(
∂~rk
∂qi

)
=

3N∑
j=1

p̄j
d

dt

(
∂r̄j
∂qi

)
=

d

dt

(
∂r̄j
∂qi

)
p̄j

Dostali sme výraz zhodný s (2.21).
Z (2.19) a predošlých výpočtov vyplýva nasledujúca rovnost’:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi(q) (2.22)

kde T sme označili celkovú kinetickú energiu sústavy.
Vel’mi dôležitá poznámka: tento vzt’ah plat́ı len vtedy, ak použijeme predpoklad, že parciálna derivácia

q podl’a q̇ je nulová, teda tieto veličiny na sebe nezávisia (môžu sa menit’ nezávisle od seba). V odvodeńı

(2.22) sme tento fakt skryto predpokladali (z toho vyplýva, že ani q nezáviśı ~̇r a tak d’alej, všetky kombinácie
výrazov, kde jeden je bodkovaný a druhý nie je). Tento predpoklad sa zdá byt’ vzhl’adom na situáciu trochu
zvláštny, pretože človek sa zamysĺı a povie si - ved’ počkaj, však ked’ meńım funkciu polohy, potom aj funkcia
rýchlosti sa muśı menit’! To je śıce pravda, lenže po prvé fakt, že ∂q

∂q̇ = 0 môžeme brat’ ako postulát, za

ktorého pravdivosti plat́ı aj (2.22) a po druhé, všetky funkcie, v ktorých vystupuje q aj q̇ môžeme chápat’

ako funkciu dvoch okienok (plus d’aľsie okienko za čas): f (q, q̇) ↔ f (�, ◦). Jej derivácia podl’a niektorého
okienka teda nesúviśı s inými okienkami a opačne. Niekoho by mohlo pri závislosti q od q̇ napadnút’ vytvárat’

nezmyselné ret’azce vzájomných parciálnych derivácii:

∂f [q (q̇, t) , q̇ (q, t) , t (q, q̇)]

∂q
=
∂f

∂q
+
∂f

∂q̇

∂q̇

∂q
+
∂f

∂t

∂t

∂q

Tento pŕıstup však pripomı́na skôr totálnu deriváciu, preto sa dohodneme, že v pŕıpade parciálnej
derivácie si budeme vš́ımat’ jedine explicitné závislosti a derivácie budeme vykonávat’ slepo podl’a okienok:

f
[
q��
�HHH(q̇, t) , q̇��

�HHH(q, t) , t��
�H
HH(q, q̇)
]

= f (q, q̇, t)↔ f (�, ◦, ?) · · · ∂f

∂q
=
∂f

∂ �
,

∂f

∂q̇
=
∂f

∂ ◦
,

∂f

∂t
=
∂f

∂ ?

Koniec-koncov, vyžadovat’ od parciálnej derivácie, aby menila len tú svoju premennú nie je až také
zvláštne, na totálne zmeny boli vymyslené totálne derivácie. Na tento prinćıp muśıme pamätat’ aj pri
všetkých nasledujúcich odvodeniach, teda akékol’vek parciálne derivovanie podl’a niektorej z premenných
bude ignorovat’ ostatné premenné, pokial’ nie je pŕıtomná explicitná závislost’. Pŕıklad explicitnej závislosti:

f [q, q̇, t] = sin(q)− q̇2 + qt;
∂f

∂q
= cos(q) + t,

∂f

∂q̇
= −2q̇,

∂f

∂t
= q

Pŕıpad implicitnej závislosti. Pri totálnej derivácii najprv zderivujeme funkciu podl’a okienok (ignoru-
jeme ostatné okienka) a zderivujeme okienko podl’a času (pridáme nad okienko bodku a pamätáme, že ṫ = 1):

f [q, q̇, t] = eq(t) + q̇(t) =⇒ f
[
q, q̇, �Ct

]
=⇒ ∂f

∂t
= 0,

df

dt
=
∂f

∂q

dq

dt
+
∂f

∂q̇

dq̇

dt
+
�
��S
SS

∂f

∂t
=
∂f

∂q
q̇ +

∂f

∂q̇
q̈ = eqq̇ + q̈
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Počas odvodenia sme došli k užitočnému postupu, ako sa dá vypočitat’ kinetická energia sústavy, pokial’

máme zadanú parametrizáciu q:

T =
1

2

N∑
k=1

mk
∂~rk
∂qi
· ∂~rk
∂qj︸ ︷︷ ︸

Tij

q̇iq̇j =
1

2

(
q̇1, q̇2, . . . , q̇n

)

T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tn1 Tn2 · · · Tnn



q̇1

q̇2

...
q̇n



Tij =

N∑
k=1

mk
∂~rk
∂qi
· ∂~rk
∂qj

(2.23)

Podstatnou myšlienkou d’aľśıch odvodeńı je, že častokrát plat́ı, že sila F̄ (a) je potenciálová. Nutnou aj
postačujúcou podmienkou potenciálovosti sily F̄ (a) je2:

∀~r ∈ E3 :
∂ ~Fi
∂xj

=
∂ ~Fj
∂xi
⇔ ∃U : ~F = ~∇U

Potom sa zovšeobecnená sila dá naṕısat’ pomocou gradientu nejakej funkcie U(q) - potenciálnej energie:(
∂F̄

(a)
i

∂xj
=
∂F̄

(a)
j

∂xi

)
⇔
(
F̄ (a) = −∇̄U

)
Detaily tohto výpočtu budeme prezentovat’ v pŕıkladoch, ktoré sa v texte vyskytnú. Pre zovšeobecnené

sily Qi(q) môžeme ṕısat’:

Qi(q) = F̄ (a) · ∂r̄
∂qi

= −∇̄U · ∂r̄
∂qi

= − ∂U
∂r̄j

∂r̄j
∂qi

= −∂U
∂qi

Použit́ım tohto výsledku z (2.22) dostávame:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi(q)

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= −∂U

∂qi

d

dt

(
∂T

∂q̇i

)
− ∂(T − U)

∂qi
= 0

Predpokladáme, že potenciálna energia U nezáviśı od iných parametrov, ako sú zovšeobecnené súradnice.

Potom plat́ı
∂U

∂q̇i
= 0 a môžeme ṕısat’:

d

dt

(
∂(T − U)

∂q̇i

)
− ∂(T − U)

∂qi
= 0

Ak teraz zavedieme funkciu zvanú Lagrangián L = T −U , teda rozdiel kinetickej a potenciálnej energie
sústavy, tak dostávame výsledné Lagrangeove rovnice II. druhu:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.24)

2Toto plat́ı len pre sily a k nim prislúchajúce potenciály, ktoré v sebe obsahujú len súradnice v Euklidovskom priestore, ktorý
označujeme E3. Sily, ktoré v sebe obsahujú aj čas a popŕıpade vyššie derivácie polôh, môžu mat’ zovšeobecnenú potenciálnu
energiu, ale nebude to tak vždy. Ak by sme totiž aj silu závislú od rýchlost́ı poč́ıtali len ako Fi = −∂iU , dostali by sme, že
trecia sila Fi = −kẋi by mala mat’ potenciál U = kẋixi, čo však nie je pravda, ako uvid́ıme neskôr.
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Pŕıklad: dvojné rovinné matematické kyvadlo. Takýto systém sa skladá z dvoch hmotných bodov v
rovine xz (y = 0). Prvý hmotný bod ~r1 hmotnosti m1 je zavesený na nehmotnej paličke (počiatok v [0, 0, 0])

d́lžky l1. Na ňom je zavesená druhá nehmotná palička d́lžky l2, na ktorej konci je umiestnený druhý hmotný
bod ~r2 hmotnosti m2. Na celý systém pôsob́ı homogénne tiažové pole v smere −z. Nákres:

x

y
z

1

2

l1

l2

m ,r1 1

m   2 2

→

→

g
→,r

Na oṕısanie každého stavu tohto systému sú potrebné len dva parametre - uhly ϕ1 a ϕ2. Parametrizácia
prvého hmotného bodu je jednoduchá:

~r1 =

 l1 sin(ϕ1)
0

−l1 cos(ϕ1)


Polohu druhého hmotného bodu oṕı̌seme takmer rovnako, akurát stred druhej kružnice (s polomerom

l2) nebude v [0, 0, 0], ale tam, kde lež́ı polohový vektor ~r1:

~r2 = ~r1 +

 l2 sin(ϕ2)
0

−l2 cos(ϕ2)

 =

 l1 sin(ϕ1) + l2 sin(ϕ2)
0

−l1 cos(ϕ1)− l2 cos(ϕ2)


Na výpočet kinetickej energie potrebujeme poznat’ rýchlosti oboch bodov:

~v1 = ~̇r1 =

l1 cos(ϕ1)ϕ̇1

0
l1 sin(ϕ1)ϕ̇1

 = ϕ̇1l1

cos(ϕ1)
0

sin(ϕ1)


~v2 = ~̇r2 =

l1 cos(ϕ1)ϕ̇1 + l2 cos(ϕ2)ϕ̇2

0
l1 sin(ϕ1)ϕ̇1 + l2 sin(ϕ2)ϕ̇2


Kinetická energia sústavy:

T =
1

2
m1~v

2
1 +

1

2
m2~v

2
2 =

=
1

2
m1ϕ̇

2
1l

2
1 +

1

2
m2ϕ̇

2
1l

2
1 +m2ϕ̇1ϕ̇2l1l2 cos(ϕ2 − ϕ1) +

1

2
m2ϕ̇

2
2l

2
2
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T =
1

2

(
ϕ̇1 ϕ̇2

)( m1l
2
1 +m2l

2
2 m2l1l2 cos (ϕ2 − ϕ1)

m2l1l2 cos (ϕ2 − ϕ1) m2l
2
2

)(
ϕ̇1

ϕ̇2

)
Potenciálnu energiu spoč́ıtame ako súčet jednotlivých potenciálnych energíı oboch bodov, m1gh1 +m2gh2,

kde h1 a h2 sú výšky bodov ~r1 a ~r2 oproti počiatku [0, 0, 0]:

U = m1gh1 +m2gh2 = −m1gl1 cos(ϕ1)−m2g [l1 cos(ϕ1) + l2 cos(ϕ2)]

Lagrangián L tejto sústavy bude:

L = T − U

=
1

2

(
ϕ̇1 ϕ̇2

)( m1l
2
1 +m2l

2
2 m2l1l2 cos (ϕ2 − ϕ1)

m2l1l2 cos (ϕ2 − ϕ1) m2l
2
2

)(
ϕ̇1

ϕ̇2

)
+m1gl1 cos(ϕ1) +m2g [l1 cos(ϕ1) + l2 cos(ϕ2)]

Výsledným produktom budú dve Lagrangeove rovnice, každá za jeden stupeň vol’nosti.

d

dt

(
∂L

∂ϕ̇1

)
− ∂L

∂ϕ1
= 0

d

dt

(
∂L

∂ϕ̇2

)
− ∂L

∂ϕ2
= 0

Ich výsledný tvar nebudeme kvôli ich zložitosti uvádzat’ (nie je však t’ažké ich źıskat’, ak má človek
dostatok miesta). Vo výsledku je to sústava dvoch nelineárnych diferenciálnych rovńıc druhého rádu, ktoré
samozrejme nie je možné riešit’ analyticky a ktoré vykazujú silné chaotické správanie (teda ich časový vývoj
pohybu vel’mi citlivo záviśı od počiatočných podmienok). Môže sa zdat’, že sme si vyjadreńım pohybových
rovńıc tejto sústavy nijako nepomohli, faktom však ostáva, že bez aparátu Lagrangeových rovńıc by bolo
samotné vyjadrenie vel’mi obtiažne. Vo fyzike sa za dôležitý medzivýsledok považuje už len samotné naṕısanie
pohybových rovńıc, ich analytické riešenie častokrát nie je možné. Čo sa týka nejakej časti analytického
riešenia, občas vieme uhádnut’, čo by systém mal robit’ za určitých podmienok - napŕıklad vieme, že dvojné
rovinné matematické kyvadlo vie pokojne stát’, ak ho nebudeme dráždit’, v tom pŕıpade ϕ1 = ϕ2 = 0.
Túto podmienku samozrejme výsledné rovnice určite sṕlňajú, no takýto pohyb je značne triviálny. Podobné
,,tipy”, ktoré chceme preverit’ analytickým výpočtom sa nazývajú ,,ansatz” (an educated guess - kvalifikovaný
odhad), teda uhádneme čast’ riešenia, dosad́ıme ho do pohybových rovńıc, z ktorých nám potencionálne ešte
môže vyjst’ nejaká podmienka na parametre, ktoré si v ansatzi urč́ıme. Ako pŕıklad na tento prinćıp dobre
poslúži sférické matematické kyvadlo.
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Pŕıklad: sférické matematické kyvadlo. Sférické matematické kyvadlo je sústava pozostávajúca z
jediného hmotného bodu ~r hmotnosti m v gravitačnom poli, ktorý je viazaný na sféru s polomerom l
so stredom [0, 0, 0] (zavesený na paličku d́lžky l, ktorá je ukotvená v počiatku súradnicovej sústavy). Ako
zovšeobecnené súradnice tu poslúžia uhly ϕ a θ. Uhol θ bude odklon paličky od osi −z (ked’ kyvadlo vol’ne
viśı, tak θ = 0), uhol ϕ bude uhol, ktorý zviera priemet polohy ~r do roviny xy s kladným zmyslom osi x.
Viac napovedia obrázky:

x

y

z

l

m,r
→

z

θ l

x

y

lsinθ

Bod ~r teda bude v súradniciach ϕ a θ vyzerat’ nasledovne:

~r =

l sin(θ) cos(ϕ)
l sin(θ) sin(ϕ)
−l cos(θ)


Vektor rýchlosti ~v vypoč́ıtame ako ~̇r:

~v = ~̇r =

l cos(θ) cos(ϕ)θ̇ − l sin(θ) sin(ϕ)ϕ̇

l cos(θ) sin(ϕ)θ̇ + l sin(θ) cos(ϕ)ϕ̇

l sin(θ)θ̇


Kinetická energia T :

T =
1

2
m~v 2 =

1

2
m~̇r 2 =

1

2
ml2

(
θ̇2 + sin2(θ)ϕ̇2

)
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Potenciálna energia U :

U = mgh = −mgl cos(θ)

Lagrangián sústavy bude:

L = T − U =
1

2
ml2

(
θ̇2 + sin2(θ)ϕ̇2

)
+mgl cos(θ)

Rovnica pre súradnicu θ:

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

θ̈ − 1

2
sin(2θ)ϕ̇2 +

g

l
sin(θ) = 0

Rovnica pre súradnicu ϕ:

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0

sin(2θ)θ̇ϕ̇+ sin2(θ)ϕ̈ = 0

Tieto rovnice predstavujú znova sústavu nelineárnych diferenciálnych rovńıc druhého rádu, ktoré sa
nedajú riešit’ analyticky, ale môžeme skúmat’ konkrétny ansatz, ktorý nás zauj́ıma. Zauj́ımavé by napŕıklad
bolo zistit’, či existuje riešenie v tvare θ = θ0 = konšt., ϕ = ωt. Ansatz sa overuje dosadeńım do všetkých
rovńıc, ktoré máme k dispoźıcii (nie do Lagrangiánu!). Ďaľsie úpravy ukážu, či je systém schopný konat’

taký druh pohybu, popŕıpade aj dostaneme podmienku, aké musia byt’ parametre, aby taký pohyb sústava
mohla vykonávat’ (pri tomto ansatzi sme bližšie nešpecifikovali, kol’ko presne je ω a θ0, takže očakávame, že
nám tuto informáciu rovnice láskavo podajú). Dosadeńım dostaneme tieto rovnice:

− sin(θ0) cos(θ0)ω2 +
g

l
sin(θ0) = 0

0 = 0

Z druhej rovnice sme sa takto nič nedozvedeli, plat́ı automaticky, čo znamená, že druhá rovnica ani
nepožaduje nejaké špeciálne podmienky ohl’adom ω a θ0 - je splnená automaticky pre každý pohyb, ktorý
má konštantné θ a časovo lineárne premenné ϕ. Predpokladajme, že θ0 nie je ani 0, ani π, zároveň nech m
aj l sú kladné. Potom prvá rovnica hovoŕı nasledovné:

g = l cos(θ0)ω2 =⇒ ω2 =
g

l cos(θ0)

Čo sme to vlastne dostali? Skúmali sme, či dokáže dakéto kyvadlo konat’ ustálený pohyb po kružnici
v istej výške nad rovnovážnou polohou tak, že θ ostáva konštantná a ϕ s časom lineárne narastá (bod sa
otáča dookola rovnomerne). Zistili sme, že takýto pohyb je možný a navyše sme dostali aj podmienku, kedy
je táto rovnováha splnená. Jednak systém môže takýto pohyb konat’ len ak 0 < θ0 <

π
2 (aby ω bola reálna

konštanta), zároveň sme aj dostali presný vzt’ah medzi θ0 a ω (ak l a g sú dané). Navyše sme zistili, že tento
vzt’ah neobsahuje hmotnost’ m, čo znamená, že hmotnost’ bodu na paličke nemá vplyv na takýto rovnomerný
pohyb po kružnici. Ďaľsiu vec, ktorú vid́ıme zo vzt’ahu pre θ0 a ω je, že ked’ sa θ0 bĺıži ku π

2 , ω muśı narastat’

nad všetky medze do nekonečna, aby mohla taká rovnováha nastat’. Toto ale úplne vystihuje našu intuit́ıvnu
predstavu o takomto druhu pohybu - každý, kto sa už snažil roztočit’ guličku na šnúrke si musel všimnút’, že
č́ım rýchleǰsie toč́ı šnúrkou, tým vyššie sa dvihne gulička, no nikdy nedosiahne do takej výšky, aby šnúrka
kmitala v jednej rovine.
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Ďaľśı zauj́ımavý ansatz tohto problému je pŕıpad, kedy ϕ = ϕ0 = konšt., pričom na θ nenakladáme
nijakú podmienku, teda nemôžeme predpokladat’, že by nejaká (a tým pádom aj všetky d’aľsie) časová
derivácia θ bola nulová. Vtedy z pohybových rovńıc dostaneme:

θ̈ +
g

l
sin(θ) = 0

0 = 0

Ako vid́ıme, druhú rovnicu náš ansatz znovu vôbec nezauj́ıma - je pravdivá. Prvá rovnica je vlastne
rovnica rovinného matematického kyvadla. Naozaj, pri konštruovańı tohto ansatzu sme mali na mysli pŕıpad,
kedy sa kyvadlo, napriek tomu, že je sférické, bude kývat’ len v jednej rovine, preto ϕ = ϕ0. Na θ sme
nekládli žiadnu podmienku (t.j. systém si mohol robit’ čo uznal za vhodné v medziach konštantného ϕ) a
systém si povedal, že najvšeobecneǰśı pohyb, aký bude θ robit’, je pohyb rovinného matematického kyvadla.
Túto rovnicu je možné analyticky riešit’ pomocou eliptického integrálu prvého druhu (dostaneme závislost’

t(θ)) a Jacobiho amplitúdnej funkcie am (dostaneme závislost’ θ(t)). Tento systém, narozdiel od lineárneho
harmonického oscilátora má viac možnost́ı ako sa správat’ v závislosti od energie, ktorú mu na začiatku
udeĺıme. Ak má málo energie, bude kmitat’ v okoĺı rovnovážnej polohy (vtedy sa zvykne ṕısat’ sin(θ) ≈ θ)
a jeho časový vývoj bude takmer zhodný s lineárnym harmonickým oscilátorom (aspoň prvých pár periód).
Ak mu udeĺıme presne tol’ko energie, aby vládal vystúpit’ do rovnovážnej polohy navrchu gule (vtedy celková
energia T + U bude rovná potenciálnej energii U v bode navrchu gule), časový vývoj θ bude uhol, ktorý sa
bude exponenciálne pomaly bĺıžit’ k hodnote π, no teoreticky sa do tejto polohy nikdy nedostane. Ďaľsou
možnost’ou je pŕıpad, kedy je energia o niečo (nie ovel’a) vyššia ako energia potrebná na vystúpanie do vratkej
rovnovážnej polohy - vtedy bude bod obiehat’ kružnicu nerovnomernou uhlovou rýchlost’ou, teda θ bude rást’,
ale nie lineárne (pohyb je periodický, avšak θ už nie je periodická funkcia času). Ak bude energia ovel’a väčšia
ako energia potrebná na vystúpanie do vratkej rovnovážnej polohy, potom tento pohyb bude znovu pohyb
po kružnici, avšak θ bude takmer lineárne rastúca funkcia času - kyvadlo si skoro ani nevšimne, že sa mu
nejako meńı potenciálna energia, pretože táto bude zanedbatel’ná oproti kinetickej (vtedy plat́ı, že T � U ,
teda E = T +U ≈ T ). Všetky tieto pŕıpady sú zahrnuté v špeciálnych Jacobiho funkciách, teda pri určitých
hodnotách energie, alebo pri konkrétnych zanedbaniach sa tieto pŕıpady dajú nájst’ vo výslednom časovom
vývoji θ, no ak aj tieto funkcie nepoznáme, tieto pŕıpady sa dajú overit’ ansatzmi.

Jednu z hlavných výhod Lagrangeových rovńıc sme už načrtli - je ňou samotný počet rovńıc, ktorý je
presne taký, aký je počet stupňov vol’nosti v systéme. Ďaľsou nespornou výhodou je, že z Lagrangiánu sa
dajú priamo odč́ıtat’ zákony zachovania (ktoré môžu značne ul’ahčit’ rozbor výsledných rovńıc).
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2.2.2 Zákony zachovania

Zákony zachovania 3 sú nespornou výhodou konštrukcie lagrangiánu a rovńıc, ktoré z neho vyplývajú.
Lagrangián je vo všeobecnosti funkcia zovšeobecnených súradńıc, zovšeobecných rýchlost́ı a času. Takú
súradnicu, ktorá nebude vstupovat’ do Lagrangiánu explicitne (t.j. ked’ naṕı̌seme Lagrangián a jedno
ṕısmenko, ktoré by v ňom mohlo byt’, v ňom nie je) budeme nazývat’ cyklickou. Plat́ı teda:

L (q1, . . . , qn, q̇1, . . . , q̇n, t) = L (q1, . . . ,�qi , . . . , qn, q̇1, . . . , q̇n, t) =⇒ ∂L

∂qi
= 0 =⇒ qi je cyklická súradnica

Odvod’me si, aký to má vlastne význam, naṕı̌sme teda pohybovú rovnicu pre i-tu zovšeobecnenú
súradnicu qi:

d

dt

∂L

∂q̇i
= 0

Výrok, ktorý dostávame tvrd́ı, že totálna časová derivácia výrazu
∂L

∂q̇i
je rovná nule. To ale znamená,

že samotný výraz je časovo nepremenný, teda konštantný:

d

dt

∂L

∂q̇i
= 0 =⇒ ∂L

∂q̇i
= konšt.

Výraz
∂L

∂q̇i
budeme nazývat’ zovšeobecnená hybnost’ pi, ktorej význam pochoṕıme hlbšie až neskôr,

pri Hamiltonových rovniciach - zatial’ nám stač́ı, že ak i-ta zovšeobecnená poloha je cyklická, potom i-ta
zovšeobecnená hybnost’ pi, sa v čase zachováva. Ked’že potenciálna energia nezvykne obsahovat’ rýchlost’,
táto parciálna derivácia sa vzt’ahuje zrejme na kinetickú energiu. Zauj́ıma nás teda výraz:

∂L

∂q̇i

(
∂U
∂q̇i

=0
)

=
∂T

∂q̇i

Z odvodeńı vieme, čomu je rovná kinetická energia, poč́ıtame teda výraz:

∂T

∂q̇i
=

∂

∂q̇i

(
1

2
Tabq̇aq̇b

)
=

1

2
Tab (δiaq̇b + q̇aδib) =

1

2
Tibq̇b +

1

2
Taiq̇a =

1

2
Tbiq̇b +

1

2
Taiq̇a = Taiq̇a

V poslednom kroku sme využili, že matica Tab je symetrická, čo vidno z defińıcie (2.23), teda Tab = Tba.
Ešte sme nespomenuli, čo to znamená, ak náhodou do Lagrangiánu nevstupuje zovšeobecnená rýchlost’

q̇i. Overme si, čo sa v tom pŕıpade stane:

∂L

∂q̇i
= 0

Za tejto podmienky sa z pohybovej rovnice vykl’uje:

�
�
�@
@
@

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

∂L

∂qi
= 0

To ale znamená, že ani zovšeobecnená súradnica qi nesmie vystupovat’ v Lagrangiáne explicitne. Ak sa
teda v lagrangiáne nachádza zovšeobecnená súradnica qi a zovšeobecnená rýchlost’ q̇i sa v ňom nenachádza,
niečo je zle.

3Mimochodom, miesto pojmu ,,zachovávajúca sa veličina” (conserved quantity) sa občas použ́ıva výraz ,,integrál pohybu”
(integral of motion).

28



2.2. LAGRANGEOVE ROVNICE II. DRUHU

2.2.3 Zákon zachovania energie

Nerozobrali sme poslednú možnost’, ktorá nám ostala - cykličnost’ času t, teda fakt, že čas t explicitne
nevystupuje v Lagrangiáne. Tieto odvodenia sú platné len pre potenciálne energie, v ktorých nevystupuje
explicitne žiadna zovšeobecnená rýchlost’. Za týchto predpokladov plat́ı:

∂L

∂t
= 0 ∧ ∂U

∂q̇i
= 0

Pozrieme sa na to, aký to má pre nás dôsledok. Poč́ıtajme totálnu časovú deriváciu:

dL

dt
= L̇ =

∂L

∂q̇i
q̈i +

∂L

∂qi
q̇i +

�
��S
SS

∂L

∂t

Z Lagrangeovej rovnice pre i-tu súradnicu vieme:

∂L

∂qi
=

d

dt

∂L

∂q̇i

Môžeme teda ṕısat’:

L̇ =
∂L

∂q̇i
q̈i +

d

dt

(
∂L

∂q̇i

)
q̇i

Na pravej strane spoznáme totálnu deriváciu:

d

dt

(
∂L

∂q̇i
q̇i

)
=
∂L

∂q̇i
q̈i +

d

dt

(
∂L

∂q̇i

)
q̇i

Teda L̇ bude:

L̇ =
d

dt

(
∂L

∂q̇i
q̇i

)
(2.25)

Rozoberme výraz ∂L
∂q̇i
q̇i:

∂L

∂q̇i
q̇i =

1

2
Tab

∂

∂q̇i
(q̇aq̇b) q̇i =

1

2
Tab (δiaq̇b + q̇aδib) q̇i =

1

2
Tabq̇bq̇a +

1

2
Tabq̇aq̇b = Tabq̇aq̇b = 2T

Potom z (2.25) dostaneme:

L̇ =
d

dt
(2T ) = 2Ṫ =⇒ 2Ṫ − L̇ = 2Ṫ −

(
Ṫ − U̇

)
= Ṫ + U̇ = Ė = 0

∂L

∂t
= 0 =⇒ Ė = 0 =⇒ E = konšt. (2.26)

teda vyšlo nám tvrdenie, že ak čas explicitne nevstupuje do Lagrangiánu, potom sa energia v čase zachováva.
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2.3 Prinćıp najmenšieho účinku

2.3.1 Matematické okienko do variačného počtu

Čokol’vek, čo funkcii f(x) prirad́ı č́ıslo s(f) budeme volat’ funkcionál. Môže ńım byt’ napr. funkcionál
operujúci na funkciách definovaných v bode x = 0 a jeho hodnota bude s(f) = f(0). Týmto každej funkcii
f definovanej v bode 0 prirad́ıme jej funkčnú hodnotu v bode 0. Ďaľśım funkcionálom, ktorý sa nám priam
ponúka, je nejaký určitý integrál - napr. funkcionál operujúci na funkciách integrovatel’ných na množine
(0, 1), ktorý potom každej funkcii f(x) prirad́ı č́ıslo - hodnotu určitého integrálu v hraniciach od 0 po 1:

s(f) =

ˆ 1

0

f(x)dx

Takto máme priam nekonečne vel’a zauj́ımavých funkcionálov, ktoré sú prakticky využitel’né aj vo fyzike,
ako sa uvid́ı neskôr:

s(f) 7→


f(a)´ b
a
f(x)dx
...

Predstavme si napr. l’ubovol’nú funkciu f(x) na intervale (a, b). Dĺžku tejto funkcie vypoč́ıtame pomocou
funkcionálu:

Lba(f) =

ˆ
a

b√
1 +

(
df

dx

)2

dx;
f(a) = A

f(b) = B
(2.27)

Vieme, že najkratšia spojnica dvoch bodov je úsečka. Preto bude l pre danú dvojicu a, b, A a B
minimálne práve vtedy, ked’ je funkcia f lineárna (konštantná, ak A = B). Avšak nájst’ univerzálny spôsob
minimalizácie funkcionálu pre takéto typy problémov je vo všeobecnosti t’ažká úloha. Za povšimnutie stoj́ı
nutnost’ okrajovej podmienky - bez nej by v riešeńı ostali stupne vol’nosti navyše4.

A

B

a b
Obrázok 2.1: Úsečka je najkratšia spojnica dvoch bodov. Lineárna funkcia minimalizuje funkcionál (2.27)
pri daných okrajových podmienkach.

4V tomto pŕıpade by bez definovania okrajovej podmienky bola vyhovujúcou funkciou konštantná funkcia (vtedy f ′ = 0, čo
je najoptimálneǰsia hodnota v danej situácii) a to v l’ubovol’nej výške nad osou x.
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Iný pŕıklad by bola tzv. brachistochróna5. Predstavme si l’ubovol’nú krivku y = f(x), po ktorej sa môže

bez trenia ḱlzat’ korálka. Ak by sme skúšali rôzne tvary kriviek, zistili by sme, že korálky pustené z určitého
bodu x = a dorazia do bodu x = b v rôznych časoch. Brachistochróna je krivka, po ktorej je čas potrebný na
sḱlznutie minimálny. Tento problém sa tiež dá zakódovat’ do reči funkcionálu a jeho minimalizácie. Použijeme
pri tom už známy fakt, že infinitezimálna d́lžka kúsku krivky v bode x je:

ds =

√
1 +

(
dy

dx

)2

dx

Rýchlost’ korálky v bode x bude infinitezimálna trajektória ds, podelená infinitezimálnym časom dt, za
ktorý túto trajektóriu korálka prejde:

v =
ds

dt
=⇒ dt =

1

v
ds

Zadefinujme, že y(0) = 0, teda potenciálna energia mg y(0) bude nulová. Na začiatku korálka stoj́ı,
takže aj kinetická energia bude nulová. Krivka, po ktorej pôjde korálka, bude zrejme záporná, ak y(0) = 0
(aby platil zákon zachovania energie). Nech je teda naša funkcia y(x) kladná a krivka teda bude opisovaná
pomocou funkcie −y(x). Potom potenciálna energia bude −mg y(x).

Použijeme zákon zachovania energie:

Ek + Ep = 0 =
1

2
mv2 −mg y =⇒ v =

√
2g y

Z toho dostávame výraz je dt:

dt =
1

v
ds =

√√√√1 +
(

dy
dx

)2

2g y
dx

Celkový čas, ktorý bude korálka potrebovat’ na sḱlznutie po krivke, bude daný nasledujúcim výrazom:

T x0
0 (y) =

ˆ x0

0

dt =

ˆ
0

x0
√√√√1 +

(
dy
dx

)2

2g y
dx;

y(0) = 0

y(x0) = y0 > 0
(2.28)

Znovu sme dostali integrálny výraz, ktorý obsahuje funkciu y a jej deriváciu. Každej takejto funkcii
prirad́ıme T (čas), ktoré reprezentuje istú vlastnost’ danej krivky.

x

y

0

0-

Obrázok 2.2: Brachistochróna je čast’ nadol obrátenej cykloidy.

5Brachys = krátky, brachistos = najkratš́ı.
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Ďaľśı typický variačný problém je krivka iného druhu, zvaná ret’azovka. Predstavme si, že máme v
priestore dva body, na ktoré zaveśıme tenučký dokonale ohybný drôt s rozložeńım hustoty λ. Plat́ı teda:

dm = λ ds = λ

√
1 +

(
dy

dx

)2

dx

Potenciálna energia daného kúsku drôtu bude:

dU = dmg y = λ g y

√
1 +

(
dy

dx

)2

dx

Tentoraz sa poloha (tvar) drôtu zrejme ustáli v stave, kedy má čo najnižšiu celkovú potenciálnu energiu
danú v tvare:

Ep =

ˆ b

a

dU =

ˆ
a

b

λ g y

√
1 +

(
dy

dx

)2

dx;
f(a) = A

f(b) = B
(2.29)

Vid́ıme, že problém znovu vedie na extremalizáciu takéhoto funkcionálu.

A

B

a b
Obrázok 2.3: Riešeńım tohto problému je krivka zvaná katenoid (catenary).
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Doteraz sme zakaždým došli k výrazu typu:

ˆ b

a

L (y, y′, x) dx (2.30)

kde L je nejaká funkcia premennej x, funkcie y a jej derivácie, ktorá nám prirodzene vyšla pri odvodzovańı
tohto integrálu. Riešenie pre funkciu y sme mohli dostat’ minimalizáciou tohto integrálu. Táto úloha vyzerá
vel’mi obtiažne, hlavne ked’ nevieme, č́ım začat’ (napr. by nám mohlo napadnút’ dosadzovat’ do integrálu
rôzne funkcie a skúšat’, kedy nám vyjde čo najmenšie č́ıslo pre akékol’vek hranice). Teraz odvod́ıme metódu,
akou sa možno dopracovat’ k výslednej funkcii, ktorá minimalizuje daný integrál. Zaved’me teda označenie:

S [y] =

ˆ b

a

L (y, y′, x) dx (2.31)

Predstavme si teraz, že máme nejakú funkciu y(x). Zaved’me maličkú odchýlku od tejto funkcie, δy.
Pre všelijaké možné výchylky teda dostávame rôzne funkcie y + δy, ktoré sa od funkcie y ĺı̌sia len o málo.
Všetky však vychádzajú z toho istého bodu v [a, y(a)] a končia v tom istom bode [b, y(b)], preto teda plat́ı
δy(a) = δy(b) = 0.

Skúmajme hodnotu S pre takúto funkciu trošku zmenenú oproti pôvodnej:

S [y + δy] =

ˆ b

a

L
(
y + δy, y′ + (δy)

′
, x
)

dx

Ked’že δy je vel’mi malé (spomeňme si na virtuálne posunutie v prvej kapitole), podintegrálnu funkciu
môžeme rozvinút’ do prvého rádu Taylorovho radu:

S [y + δy] =

ˆ b

a

{
L (y, y′, x) +

∂L
∂y

δy +
∂L
∂y′

(δy)
′
}

dx

Chceme sa dopátrat’ k tomu, čo muśı platit’, ked’ sme práve našli tú našu správnu funkciu, ktorá
minimalizuje výraz S . To ale znamená, že zmena tohto výrazu S sa nemeńı v ráde δy, ak jeho argument
(čiže funkciu) zmeńıme len o malú hodnotu δy - je to v podstate úplná analógia k extrému hladkej funkcie
reálnej premennej, ktorá má extrém v tých bodoch, v ktorých je funkcia necitlivá na zmenu premennej do jej
prvého rádu - inak povedané, jej prvá derivácia je rovná nule. Tu nemôžeme privel’mi hovorit’ o deriváciách
(pretože y je funkcia), no stále sa môžeme pozriet’ na výraz S [y + δy]−S [y], ktorý v podstate pripomı́na
diferenciál S , ak y berieme ako premennú:

S [y + δy]−S [y] =

ˆ b

a

{
L (y, y′, x) +

∂L
∂y

δy +
∂L
∂y′

(δy)
′
}

dx−
ˆ b

a

L (y, y′, x) dx =

=

ˆ b

a

{
∂L
∂y

δy +
∂L
∂y′

(δy)
′
}

dx

Druhý výraz pod integrálom doplńıme nasledovne:

∂L
∂y′

(δy)
′

=

(
∂L
∂y′

δy

)′
−
(
∂L
∂y′

)′
δy

Z rozdielu S [y + δy]−S [y] tak dostaneme:

S [y + δy]−S [y] =

ˆ b

a

{[
∂L
∂y
−
(
∂L
∂y′

)′]
δy

}
dx+

ˆ b

a

(
∂L
∂y′

δy

)′
dx
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V druhom integráli, ked’že integrujeme deriváciu funkcie, je primit́ıvna funkcia priamo ∂L
∂y′ δy. Výsledok

tohto integrálu teda bude:

ˆ b

a

(
∂L
∂y′

δy

)′
dx =

∂L
∂y′

δy

∣∣∣∣b
a

= 0

Samozrejme, využili sme fakt, že δy(a) = δy(b) = 0.
Prvý integrál naṕı̌seme kraǰsie:

S [y + δy]−S [y] =

ˆ b

a

δy(x)

(
∂L
∂y
− d

dx

∂L
∂y′

)
dx

Muśı samozrejme platit’, že pre také y, ktoré minimalizujú č́ıslo S , je tento výraz nulový. No to má
platit’ pre každé δy(x), čo môže byt’ splnené len ak druhá čast’ (v zátvorke) pod integrálom je nulová6:

∀δy(x)

ˆ b

a

δy(x)

(
∂L
∂y
− d

dx

∂L
∂y′

)
dx = 0 =⇒ ∂L

∂y
− d

dx

∂L
∂y′

= 0 (2.32)

Túto rovnicu nazývame Eulerova rovnica, ktorá je vo všeobecnosti diferenciálna rovnica druhého rádu.
Takéto diferenciálne rovnice na jednoznačné riešenie potrebujú okrajové podmienky, napr.: y(a) = Ya y(b) = Yb,
popŕıpade počiatočné podmienky, určujúce y(a) a y′(a). V priebehu odvodenia sme predpokladali existenciu
y′′ v každom bode intervalu 〈a, b〉, dostávame teda extremály triedy C2.

Ako pŕıklad môžeme skúsit’ vyriešit’ problém pre najkratšiu cestu. Funkcia L definujúca tento problém
bola:

L =

√
1 +

(
dy

dx

)2

Takúto funkciu by sme mali dosadit’ do Eulerovej rovnice a riešt’. Ešte kým sa pust́ıme do bezhlavého
derivovania uvedomı́me si, že v L nevystupuje explicitne y, čo ale znamená, že z Eulerovej rovnice ostane:

− d

dx

(
2y′√

1 + y′ 2

)
= 0 =⇒ 2y′√

1 + y′ 2
= C = konšt.

Túto rovnicu však vieme jednoducho riešit’:

2y′√
1 + y′ 2

= C =⇒ y′ 2 =
C2

1− C2
=⇒ y = kx+ q

Konštanty k a q možno vybrat’ tak, aby boli splnené okrajové, alebo počiatočné podmienky.
Teraz vel’mi sugest́ıvne pod seba naṕı̌seme Eulerovu rovnicu a inú rovnicu, ktorú sme doteraz už vel’akrát

použ́ıvali:

d

dx

∂L
∂y′
− ∂L
∂y

= 0

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

(2.33)

6Vid’ základná léma variačného počtu.
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2.3. PRINĆIP NAJMENŠIEHO ÚČINKU

Pozorný čitatel’ si všimne istú podobnost’, ktorá je v skutočnosti vel’mi významná. Podl’a jednoduchej
schémy zameńıme symboly:

L · · · L

y · · · q

y′ · · · q̇

x · · · t

V skutočnosti sú tieto dve rovnice úplne totožné po zámene symbolov. Pred chv́ıl’ou sme však tvrdili,
že Eulerovu rovnicu rieši taká funkcia y, ktorá extremalizuje pŕıslušný funkcionál a opačne, funkcie, ktoré
extremalizujú funkcionál zároveň riešia Eulerove rovnice. Presne rovnaký prinćıp môžeme aplikovat’ na
Lagrangeove rovnice a pŕıslušný funkcionál budeme označovat’ jeho pravým menom - účinok.

2.3.2 Účinok, prinćıp extremálneho účinku

Úplne analogicky definujme funkcionál pre Lagrangián, ktorý budeme nazývat’ účinok (a označ́ıme ho
sugest́ıvne S, ako analógiu ku S ):

S[q] =

ˆ tb

ta

L (q, q̇, t) dt (2.34)

Posledná skladačka do schémy teda bude:

ˆ b

a

L (y, y′, x) dx · · ·
ˆ tb

ta

L (q, q̇, t) dt

S[y] · · · S[q]

Teraz môžeme sformulovat’ prinćıp extremálneho účinku nasledovne: účinok S[q] je extremálny na
takých trajektóriach q(t), ktoré si pŕıroda sama vybrala. Zároveň plat́ı, že tieto q(t) sú riešeniami La-
grangeových rovńıc. Ak do L(q, q̇, t) dosad́ıme také q, ktoré nám vyjde z riešenia Lagrangeových rovńıc,
potom účinok S[q] bude necitlivý na zmenu v prvom ráde δq. Inak povedané, účinok S[q] má extrém tam,
kde je riešenie Lagrangeových rovńıc v q.

Systém extremalizuje účinok⇔ Systém bež́ı podl’a Lagrangeových rovńıc

Ešte spomenieme, že z hl’adiska účinku sa úlohy delia na variačné, teda také, pre ktoré účinok existuje
a nevariačné, pre ktoré účinok neexistuje.
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2.4 Hamiltonove rovnice

Odvodenie Hamiltonových rovńıc bude vychádzat’ z Lagrangeových rovńıc II. druhu, ešte predtým si
však dovoĺıme uviest’ matematickú poznámku o Legendrovej transformácii.

2.4.1 Legendreova transformácia

Predstavme si, zatial’ bez zjavnej motivácie, že by sme chceli istým zvláštnym spôsobom definovat’

transformáciu súradńıc, ktoré máme k dispoźıcii:

x1, x2, · · · , xn
Zaved’me funkciu L, závislú od súradńıc xi, na ktorú zatial’ nenalož́ıme žiadne predpoklady okrem

možnosti diferencovatel’nosti tejto funkcie podl’a jednotlivých súradńıc. Radi by sme teraz źıskali súradnice
y1, y2, · · · , yn podl’a nasledovnej defińıcie:

yi =
∂L

∂xi
(2.35)

Symbolicky túto transformáciu naznač́ıme nasledovným diagramom:

x
L−→ y(x),

ktorý symbolicky znač́ı transformáciu súradńıc xi pomocou funkcie L.
Radi by sme teraz poznali transformáciu, ktorá by previedla súradnice yi spät’ na xi. Ešte radšej by sme

boli, ak by bola takáto transformácia realizovatel’ná za pomoci nejakej funkcie H premenných y1, y2, · · · , yn,
o ktorej plat́ı:

xi =
∂H

∂yi
(2.36)

Symbolicky:

y
H−→ x(y),

Ukazuje sa, že funkcia, ktorá sṕlňa túto podmienku, je nasledujúceho tvaru:

H(y) = xi(y)yi − L[x(y)] (2.37)

Zderivovańım takto vybranej funkcie H podl’a yi dostaneme:

∂H

∂yi
= yj

∂xj
∂yi

+ xi −
∂L

∂xj︸︷︷︸
=yj

∂xj
∂yi

= yj
∂xj
∂yi
− yj

∂xj
∂yi

+ xi = xi

Vid́ıme, že funkcia H sṕlňa presne to, čo od nej požadujeme.
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2.4. HAMILTONOVE ROVNICE

Majme teraz súradnice x1, x2, · · · , xn a z1, z2, · · · , zn z ktorých chceme transformovat’ len xi na yi.
Máme teda funkciu L(x,y), o ktorej plat́ı:

(x, z)
L−→ (y, z)

Teda stále zdanlivo bezo zmeny (až na pŕıtomnost’ iných premenných vo funkcii L, okrem x) plat́ı:

yi =
∂L

∂xi

Aj k takejto transformácii by sme si priali nájst’ funkciu H, ktorá analogicky zabezpeč́ı transformáciu
opačným smerom, bezo zmeny súradńıc z:

(y, z)
H−→ (x, z)

xi =
∂H

∂yi

Funkcia H má kupodivu rovnaký tvar ako predtým a sṕlňa rovnakú podmienku:

H(y, z) = xi(y, z)yi − L[x(y), z] (2.38)

Presvedč́ıme sa o tom úplne rovnako ako v predošlom pŕıpade.
Skúmajme teraz diferenciál funkcie H podl’a vzt’ahu (2.38):

dH = xidyi +XXXyidxi −
Z
Z
ZZ

∂L

∂xi
dxi︸ ︷︷ ︸

=yidxi

− ∂L
∂zi

dzi = xidyi −
∂L

∂zi
dzi

Zároveň ale môžeme nájst’ diferenciál H podl’a premenných xi a zi:

dH =
∂H

∂yi
dyi +

∂H

∂zi
dzi

Teraz porovnáme, čo stoj́ı pri jednotlivých diferenciáloch a dostaneme dva dôležité výsledky:

xi =
∂H

∂yi
− ∂L

∂zi
=
∂H

∂zi
(2.39)

Ten prvý nás vlastne utvrdil v tom, že funkcia H naozaj rob́ı to, čo má (na to bola skonštruovaná).
Druhý výsledok nám zatial’ nič rozumného nehovoŕı, no bude dôležitý neskôr.
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2.4.2 Hamiltonove rovnice

Vychádzajme z Lagrangeových rovńıc. Za funkciu L si7 zoberme Lagrangián nejakej sústavy L(q, q̇, t).
Ako i-tu zovšeobecnenú hybnost’, pi, označme parciálnu deriváciu Lagrangiánu L podl’a i-tej zovšeobecnenej
rýchlosti q̇i:

pi ≡
∂L

∂q̇i
(2.40)

(q, q̇, t)
L−→ (q,p, t)

Vid́ıme, že úlohu x tu prebrala vlastne zovšeobecnená rýchlost’ q̇, ktorá sa transformuje na zovšeobecnenú
hybnost’ p, pričom zovšeobecnené súradnice q a čas t ostávajú nemenné, prebrali teda úlohu z.

Funkciu, ktorá transformuje hybnost’ spät’ na zovšeobecnenú rýchlost’, a ktorú budeme volat’ Hamiltonián
sústavy, bude podl’a (2.38) definovaná nasledovne:

H ≡ q̇ipi − L (2.41)

Z (2.39) dostávame:

q̇i =
∂H

∂pi

∂H

∂qi
= − ∂L

∂qi
∧ ∂H

∂t
= −∂L

∂t

∂L

∂qi
= ṗi =⇒ ṗi = −∂H

∂qi

Sústava teda sṕlňa Hamiltonove rovnice:

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

(2.42)

Pŕıklad: rovinné matematické kyvadlo v Hamiltonových rovniciach. Ako vieme z predošlých pŕıkladov,
Lagrangián tejto sústavy je:

L(ϕ, ϕ̇, t) =
1

2
ml2ϕ̇2 +mgl cos(ϕ)

Pre Hamiltonián z 2.41 dostávame:

H = ϕ̇ ml2ϕ̇︸ ︷︷ ︸
pϕ

−
[

1

2
ml2ϕ̇2 +mgl cos(ϕ)

]
pϕ = ml2ϕ̇ =⇒ ϕ̇ =

pϕ
ml2

=⇒ H =
p2
ϕ

2ml2
−mgl cos(ϕ)

Hamiltonove rovnice:

ϕ̇ =
pϕ
ml2

ṗϕ = −mgl sin(ϕ)

7Ako sme už sugest́ıvne v matematickej poznámke naznačili označeńım funkcie ṕısmenkom L.
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Ako vid́ıme, tieto rovnice sú očividne dve. Obe spolu, ako sústava diferenciálnych rovńıc sú ekvivalentné
rovnici rovinného matematického kyvadla:

ϕ̈+
g

l
sin(ϕ) = 0

Zároveň však vid́ıme, že derivácie, ktoré sa v Hamiltonových rovniciach objavujú, sú nanajvýš prvého
rádu (narozdiel od Lagrangeových rovńıc). Ich riešeniami sú okrem zovšeobecných súradńıc aj zovšeobecnené
hybnosti.

Všeobecne plat́ı, že Hamiltonových rovńıc je dvojnásobok oproti Lagrangeovým rovniciam, no ich rád
derivácie je zredukovaný na prvý.

V priebehu odvodenia Hamiltoniánu (to je funkcia, v ktorej už nevystupuje žiadna súradnica derivovaná
podl’a času) sme museli upravit’ tvar samotnej funkcie tak, aby sa v ňom neobjavilo ϕ̇. Tento postup sa dá
vyjadrit’ všeobecne. O Lagrangiáne vieme, že sa (pre potenciálnu energiu závislú len od zovšeobecnených
súradńıc) dá zaṕısat’ v tvare:

L =
1

2
Tij q̇iq̇j − U(q)

Z (2.40) vieme, čomu je rovná i-ta zovšeobecnená hybnost’:

pi =
∂L

∂q̇i
= Tij q̇j

Túto hybnost’ dosad́ıme do (2.41):

H = pj q̇j − L = Tij q̇iq̇j − L = 2T − (T − U) = T + U = E

Dostali sme dôležitý výsledok vyjadrujúci, že Hamiltonián je vlastne rovný celkovej energii sústavy.
Vyjadrime si ešte raz Hamiltonián, tentoraz len pomocou zovšeobecnených rýchlost́ı a súradńıc:

H = Tij q̇iq̇j − L = Tij q̇iq̇j −
1

2
Tij q̇iq̇j + U =

1

2
Tij q̇iq̇j + U

Budeme hl’adat’ spôsob, ako vyjadrit’ jednotlivé zovšeobecnené rýchlosti pomocou zovšeobecnených hyb-
nost́ı:

pi = Tij q̇j =⇒ q̇i =
(
T−1

)
ij
pj

Hamiltonián tak prejde na tvar:

H =
1

2
Tij q̇iq̇j + U =

1

2
Tij
(
T−1

)
ik
pk
(
T−1

)
lj
pl + U

Matica Tij je symetrická. Z toho vyplýva, že aj matica
(
T−1

)
ij

je symetrická, teda plat́ı:

Tij = Tji =⇒
(
T−1

)
ij

=
(
T−1

)
ji

Vrát’me sa teda k Hamiltoniánu, kde túto symetriu využijeme:

H =
1

2
Tij
(
T−1

)
ik

(
T−1

)
lj
pkpl + U =

1

2
Tji
(
T−1

)
ik︸ ︷︷ ︸

=(T T−1)jk

(
T−1

)
lj
pkpl + U =

=
1

2

(
T T−1

)
jk︸ ︷︷ ︸

=δjk

(
T−1

)
lj
pkpl + U =

1

2

(
T−1

)
kl
pkpl + U

Dostávame teda tvar Hamiltoniánu, ktorý vieme vyjadrit’ ak poznáme maticu kinetickej energie, T :

H(q,p) =
1

2

(
T−1

)
kl
pkpl + U(q)
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2.4.3 Poissonove zátvorky

Majme danú funkciu f zovšeobecnených súradńıc, zovšeobecnených hybnost́ı a času. Poč́ıtajme jej
časovú deriváciu (totálnu):

ḟ (q,p, t) =
∂f

∂t
+
∂f

∂qi
q̇i︸︷︷︸

=
∂H

∂pi

+
∂f

∂pi
ṗi︸︷︷︸

= −∂H
∂qi

=
∂f

∂t
+

(
∂H

∂pi

∂f

∂qi
− ∂f

∂pi

∂H

∂qi

)

Objekt v gul’atej zátvorke nazveme Poissonovou zátvorkou:

{f,H} ≡ ∂H

∂pi

∂f

∂qi
− ∂f

∂pi

∂H

∂qi
(2.43)

Analogicky Poissonova zátvorka z dvoch l’ubovol’ných funkcíı, f a g, je definovaná nasledovne:

{f, g} ≡ ∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
(2.44)

Je zrejmé, že ak vo funkcíı f nevystupuje explicitne čas t, potom jej časová derivácia je rovná Poissonovej
zátvorke Hamiltoniánu s danou funkciou:

f
(
q,p, �Ct

)
=⇒ ḟ = {f,H}

Poissonova zátvorka dvoch rovnakých funkcíı je nulová:

{f, f} =
∂f

∂pi

∂f

∂qi
− ∂f

∂pi

∂f

∂qi
= 0

Poissonova zátvorka {qi, pj} je rovná δij :

{qi, pj} =
∂qi
∂qk

∂pj
∂pk
− ∂qi
∂pk

∂pj
∂qk

= δij

čo je jedna, ak je sústava oṕısaná len jednou zovšeobecnenou súradnicou a hybnost’ou.
Ak Poissonove zátvorky chápeme ako operátor, ktorý z priestoru funkcíı vyberie dve a prirad́ı im tretiu

funkciu, potom takýto operátor je bilineárny:

{f + λ g, h} = {f, h}+ λ {g, h}

{f, g + λh} = {f, g}+ λ {f, h}

Poissonove zátvorky sú taktiež antisymetrické (zmenia znamienko po výmene argumentov):

{f, g} = −{g, f}

V tomto vidiet’ analógiu s vektorovým súčinom, ktorý po výmene argumentov (vektorov) tiež zmeńı
znamienko. Ďaľsiu analógiu uvid́ıme v takzvanej Jacobiho identite, ktorú poissonove zátvorky, tak ako aj
vektorový súčin, sṕlňajú:

{{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0

Poissonove zátvorky majú svoju analógiu v kvantovej mechanike, kde namiesto nich použ́ıvame ko-
mutátor [Â, B̂] = ÂB̂ − B̂Â, kde Â a B̂ sú operátory. Komutátor tiež sṕlňa Jacobiho identitu a komutátor
operátora polohy a operátora hybnosti je rovný i~, [x̂, p̂x] = i~.

40



3
Ďaľsie aplikácie Lagrangeovského a Hamiltonovského

pŕıstupu v mechanike

3.1 Potenciálna energia a sila*

3.1.1 Zovšeobecnená potenciálna energia*

Doteraz sme sa zaoberali len akt́ıvnymi silami, ktoré závisia explicitne len od polohy a k nim prislúchajúcimi
potenciálmi, ktoré taktiež závisia len od polohy. Ukážeme si, že aj niektoré sily, ktoré závisia od vyššej de-
rivácie polohy, popr. času, je možné oṕısat’ potenciálom a to dokonca aj vtedy, ak nie sú potenciálové1.
Najprv však muśıme poupravit’ výpočet potenciálu, ak má závisiet’ aj od zovšeobecnených rýchlost́ı a času,
nielen od zovšeobecnených súradńıc. Podl’a (2.22) pre Qi závislé aj od času a zovšeobecnených rýchlost́ı
ṕı̌seme:

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi (q, q̇, t)

Nech je teraz dané Qi (q, q̇, t) oṕısatelné jedinou funkciou U (q, q̇, t) tak, že stále plat́ı L = T − U a
zároveň plat́ı pre toto L pohybová rovnica pre qi:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

d

dt

∂ (T − U)

∂q̇i
− ∂ (T − U)

∂qi
= 0

d

dt

∂T

∂q̇i
− d

dt

∂U

∂q̇i
−
(
∂T

∂qi
− ∂U

∂qi

)
= 0

d

dt

∂T

∂q̇i
− ∂T

∂qi
=

d

dt

∂U

∂q̇i
− ∂U

∂qi︸ ︷︷ ︸
=Qi(q,q̇,t)

Qi (q, q̇, t) = −∂U (q, q̇, t)

∂qi
+

d

dt

∂U (q, q̇, t)

∂q̇i
(3.1)

Vhodným pŕıkladom na takúto silu je Lorentzova elektromagnetická sila, daná predpisom:

~F = Q
(
~E + ~v × ~B

)

1Nie sú potenciálové v zmysle, že krivkový integrál II. druhu v ich poli záviśı od výberu krivky.
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3.1. POTENCIÁLNA ENERGIA A SILA*

To, či je táto sila potenciálová v zmysle, že krivkový integrál II. druhu v poli tejto sily nezáviśı od
krivky, po ktorej integrujeme, sa dá l’ahko preverit’. Tento fakt je totiž ekvivalentný tomu, že krivkový
integrál po niektorej uzavretej krivke nevýjde nulový. Poč́ıtajme teda taký krivkový integrál po niektorej
bližšie nešpecifikovanej uzavretej krivke:

˛
C

~F · d~l = Q
˛
C

d~l ·
(
~E + ~v × ~B

)
˛
C

~F · d~l = Q
˛
C

~E · d~l +Q
˛
C

d~l ·
(
~v × ~B

)
Na integrál ~E ·d~l máme jednoduchý liek, je ńım Faradayov zákon elektromagnetickej indukcie. Problém

môže robit’ druhý integrál, preṕı̌sme si výraz d~l ·
(
~v × ~B

)
do indexov a upravujme:

d~l ·
(
~v × ~B

)
= dli

(
~v × ~B

)
i

= dliεijkvjBk = Bkεkijdlivj = ~B ·
(
d~l × ~v

)
Avšak tento výraz je identicky rovný nule, pretože v každom bode krivky je rýchlost’ hmotného bodu,

ktorý sa po nej pohybuje, dotyčnicou k tejto krivke. No rovnaký smer má aj diferenciál tejto krivky, teda
plat́ı:

d~l ‖ ~v =⇒ d~l × ~v = ~0

Druhý integrál je týmto vybavený, je identicky rovný nule. Ostáva nám výraz:

˛
C

~F · d~l = Q
˛
C

~E · d~l

Tu využijeme spomı́naný Faradayov zákon elektromagnetickej indukcie, ktorý vrav́ı: elektromotorické
napätie je dané zápornou časovou zmenou toku magnetického pol’a. Zaṕısané v reči matematiky:

˛
∂S

~E · d~l = − d

dt

¨
S

~B · d~S

V tomto kroku sa zdanlivo vzdialime od práve poč́ıtaného výrazu a pozrieme sa na jednu z maxwellových
rovńıc:

~∇ · ~B = 0

Toto plat́ı vždy, za každých okolnost́ı, teda to nás oprávňuje zaviest’ vektor ~A, magnetický potenciál,
ktorý bude sṕlňat’ rovnicu:

~B = ~∇× ~A (3.2)

Je tomu tak preto, lebo divergencia rotácie je vždy identicky rovná nule:

~∇ ·
(
~∇× ~A

)
≡ 0

Vrát’me sa k poč́ıtanému výrazu, kde využijeme (3.2):

˛
∂S

~E · d~l = − d

dt

¨
S

(
~∇× ~A

)
· d~S
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3.1. POTENCIÁLNA ENERGIA A SILA*

V tejto chv́ıli zač́ına byt’ zrejmé, že časovo premenné magnetické polia už nebudú generovat’ potenciálové
sily. Dokončime odvodenie - na l’avú stranu použijeme Kelvin-Stokesovu vetu:

˛
∂S

~E · d~l =

¨
S

(
~∇× ~E

)
· d~S

Tento výraz dáme do rovnosti s magnetickým indukčným tokom a využijeme vetu o derivovańı para-
metrického integrálu:

¨
S

(
~∇× ~E

)
· d~S = − d

dt

¨
S

(
~∇× ~A

)
· d~S = −

ˆ̂
S

(
~∇× ∂ ~A

∂t

)
· d~S

Všetko presunieme na l’avú stranu a vlož́ıme pod jeden integrál:ˆ̂
S

(
~∇× ~E + ~∇× ∂ ~A

∂t

)
· d~S = 0

(
∀S
)

Toto má ale platit’ pre každú plochu S, čo môže byt’ splnené len vtedy, ak vnútro integrálu je rovné
nule:

~∇× ~E + ~∇× ∂ ~A

∂t
= 0

Ešte výraz uprav́ıme tak, že vlož́ıme ~E aj ∂t ~A pod operátor rotácie:

~∇×

(
~E +

∂ ~A

∂t

)
= 0 (3.3)

Okrem faktu, že Lorentzova sila je vo všeobecnom pŕıpade nekonzervat́ıvna, dostávame vel’mi zauj́ımavý
výsledok. Pre úplne všeobecné polia ~E a ~B už neplat́ı, že rotácia ~E je nulová. Plat́ı však rovnaký vzt’ah, ak
k nej pripoč́ıtame opravný člen - práve časovú zmenu magnetického potenciálu. Preto teraz môžeme zaviest’

potenciál φ tak, aby platilo:

~E +
∂ ~A

∂t
= −~∇φ (3.4)

Potom rovnica (3.3) bude automaticky splnená:

~∇×

(
~E +

∂ ~A

∂t

)
= ~∇×

(
−~∇φ

)
= −~∇×

(
~∇φ
)

= ~0

Podl’a (3.2) a (3.4) môžeme naṕısat’ potenciál Lorentzovej sily, o ktorého platnosti s využit́ım (3.4) sa
presvedč́ıme na pár nasledujúcich riadkoch:

U
(
~r, ~̇r, t

)
= Q

(
φ− ~̇r · ~A

)
Podl’a (3.1) má teda pre tento potenciál (v súradniciach xi, ẋi) platit’:

Fi = Q
[
Ei +

(
~̇r × ~B

)
i

]
?
= − ∂U

∂xi
+

d

dt

∂U

∂ẋi
; kde U = Q

(
φ− ~̇r · ~A

)
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Túto rovnost’ teraz oveŕıme:

− ∂U
∂xi

= −Q ∂

∂xi

(
φ− ~̇r · ~A

)
= −Q ∂

∂xi
(φ− ẋjAj) = −Q ∂φ

∂xi
+Q ẋj

∂Aj
∂xi

−Q ∂φ

∂xi
= −Q

(
~∇φ
)
i

= QEi +Q∂Ai
∂t

d

dt

∂U

∂ẋi
= Q d

dt

[
∂

∂ẋi

(
φ− ~v · ~A

)]
= Q d

dt

[
∂

∂ẋi
(φ− ẋjAj)

]
= −Q d

dt
(δijAj) = −QdAi

dt

−QdAi
dt

= −Q∂Ai
∂t
−Q∂Ai

∂xj
ẋj

− ∂U
∂xi

+
d

dt

∂U

∂ẋi
= Q

(
Ei +

∂Ai
∂t

+ ẋj
∂Aj
∂xi
− ∂Ai

∂t
− ∂Ai
∂xj

ẋj

)
= Q

[
Ei + ẋj

(
∂Aj
∂xi
− ∂Ai
∂xj

)]
Ostáva nám jeden nevyjasnený výraz v zátvorke. Poč́ıtajme ~̇r × ~B = ~̇r ×

(
~∇× ~A

)
:

Bj =
(
~∇× ~A

)
j

= εjab
∂Ab
∂xa(

~̇r × ~B
)
i

= εikj ẋkBj = εikjεjabẋk
∂Ab
∂xa

= (δiaδkb − δibδka) ẋk
∂Ab
∂xa

= ẋk
∂Ak
∂xi

− ẋk
∂Ai
∂xk

=⇒
(
~̇r × ~B

)
i

=
[
~̇r ×

(
~∇× ~A

)]
i

= ẋk

(
∂Ak
∂xi

− ∂Ai
∂xk

)
teda daný nevyjasnený výraz je presne to, čo má na tom mieste stát’, výraz − ∂U

∂xi
+

d

dt

∂U

∂ẋi
dáva i-tu zložku

Lorentzovej sily:

− ∂U
∂xi

+
d

dt

∂U

∂ẋi
= Q

[
Ei +

(
~̇r × ~B

)
i

]
= Fi

č́ım je dôkaz zavŕšený.
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3.1. POTENCIÁLNA ENERGIA A SILA*

Ďaľsia silu, ktorej sa pokúsime nájst’ zovšeobecnenú potenciálnu energiu, bude trecia sila. Jej predpis v
kartézskych súradniciach je:

~F = −k~̇r =⇒ Fi = −kẋi; k > 0 (3.5)

Odvodenie sprav́ıme všeobecneǰsie, a to pre zovšeobecnené súradnice a rýchlosti. Ukazuje sa, že prepis
trecej sily Qi (q̇) bude o trochu zložiteǰśı:

~Q = −


k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

. . .
...

kn1 kn2 · · · knn



q̇1

q̇2

...
q̇n

 =⇒ Qi = −kij q̇j ; kij je kladne definitná a symetrická matica2

(3.6)

Vo všeobecnosti nepredpokladáme, že po zavedeńı parametrizácie konfiguračného priestoru, bude nad’alej
platit’, že pri pohybe v smere niektorej zo súradńıc qi bude trecia sila pôsobit’ presne opačne. Avšak, môžeme
si byt’ ist́ı, že ak plat́ı (3.6), tak najhoršie, čo nás môže z hl’adiska odporu stretnút’, je vo všeobecnosti
nanajvýš lineárny vzt’ah medzi zovšeobecnenými rýchlost’ami q̇ a trecou silou Q.

Pre takúto silu by sme radi naṕısali potenciálnu energiu U , ktorá je vo všeobecnosti závislá na zovšeobecnených
súradniciach, rýchlostiach a čase a podl’a (3.1) preň bude platit’:

−∂U
∂qi

+
d

dt

∂U

∂q̇i
= −kij q̇j

O tomto potenciáli zatial’ nič nevieme, pod’me si teda rozṕısat’ l’avú stranu rovnice:

−∂U
∂qi

+

(
∂

∂t
+ q̇j

∂

∂qj
+ q̈j

∂

∂q̇j

)(
∂U

∂q̇i

)
= −∂U

∂qi
+

∂2U

∂t∂q̇i
+

∂2U

∂qj∂q̇i
q̇j +

∂2U

∂q̇j∂q̇i
q̈j

!
= −kij q̇j = Qi (q̇)

Vid́ıme, že vzhl’adom na to, že Qi má závisiet’ len od q̇, člen, pri ktorom stoj́ı q̈j muśı byt’ nulový:

∂2U

∂q̇j∂q̇i

!
= 0

O čom nám vlastne hovoŕı táto podmienka? Hovoŕı, že druhá parciálna derivácia potenciálnej energie
podl’a zovšeobecnených rýchlost́ı dá nulu. To však znamená, že samotná potenciálna energia muśı závisiet’

od zovšeobecnených rýchlost́ı nanajvýš lineárne:

∂2U

∂q̇j∂q̇i

!
= 0 =⇒ U (q, q̇, t)

!
= ai (q, t) q̇i + b (q, t)

Vd’aka tejto podmienke vypadne neželaný člen, ktorý obsahoval q̈j . Ďaľsie pozorovanie, ktoré urob́ıme,
sa bude týkat’ časových závislost́ı:

−∂U
∂qi

+
∂2U

∂t∂q̇i
+

∂2U

∂qj∂q̇i
q̇j = −∂aj

∂qi
q̇j −

∂b

∂qi
+
∂ai
∂t

+
∂ai
∂qj

q̇j =

(
∂ai
∂qj
− ∂aj
∂qi

)
q̇j +

∂ai
∂t
− ∂b

∂qi

Qi má byt’ funkciou q̇, no dva posledné členy už nemajú šancu byt’ funkciou q̇ (pretože ai aj b sú
funkciami q a t). Muśı teda platit’, že tieto členy sú nulové:

∂ai
∂t

= 0 =⇒ ai (q, t) = ai (q) ; − ∂b

∂qi
= 0 =⇒ b (q, t) = b (t)

2To, že matica kij je kladne definitná môžeme intuit́ıvne nahliadnut’ z analógie s trecou silou v kartézskych súradniciach.
Ak by sa to nepodarilo, ešte existuje argument, ku ktorému dôjdeme neskôr. Jej symetriu tiež pol’ahky ukážeme neskôr.
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V hre ostane jediný člen: (
∂ai
∂qj
− ∂aj
∂qi

)
q̇j

!
= −kij q̇j

Avšak toto je problém. Výraz na l’avej strane:

ãij =
∂ai
∂qj
− ∂aj
∂qi

je totiž antisymetrická matica, pretože plat́ı:

ãij = −ãji,

čo okrem iného znamená, že ã11 = ã22 = ã33 = 0. Avšak pre maticu kij plat́ı:

kij = kji,

čo je v priamom rozpore s ãij .
3

Presvedčili sme sa, že neexistuje potenciálna energia (ani zovšeobecnená), ktorá by vedela v sebe zahrnút’

treciu silu. Tento fakt je nám motiváciou ku d’aľsiemu paragrafu, kde si povieme niečo o tom, ako narábat’

s nepotenciálovými silami v Lagrangeových rovniciach.

3Túto neexistenciu sme ukázali len pre Lagrangián, ktorý má štruktúru L = T − U = 1
2
Tabq̇aq̇b − U (q, q̇, t). Existuje taká

štruktúra Lagrangiánu, že problém hmotného bodu v odporovom prostred́ı zaṕısaný v tomto Lagrangiáne bude mat’ svoju
pohybovú rovnicu (ekvivalentnú s Newtonovou) v tvare:

d

dt

∂L

∂q̇i
−
∂L

∂qi
= 0

L’ahko sa ukáže, že Lagrangián pre jednu časticu v smere x, ktorý vedie na pohybovú rovnicu s odporovým členom, je v tvare:

L = e
γ t
m (T − U) = e

γ t
m

[
1

2
mẋ2 − U(x)

]
Takýto tvar Lagrangiánu vedie na pohybovú rovnicu v tvare:

mẍ = −
∂U

∂x
− γẋ

Tento Lagrangián ale záviśı od času explicitne a nie je tvaru T − U .
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3.1.2 Nepotenciálová zložka sily a jej výkon*

V predošlom paragrafe sme si na pŕıklade o trecej sile ukázali, že neexistuje taká zovšeobecnená po-
tenciálna energia, ktorá by v sebe zahŕňala takúto silu. Na tento problém z hl’adiska Lagrangeových rovńıc
existuje jednoduché riešenie. Predpokladajme, že máme silu, ktorá sa dá naṕısat’ ako súčet potenciálovej
a nepotenciálovej časti. Môžeme rovno rátat’ s tým, že potenciálova čast’ záviśı len od zovšeobecnených
súradńıc a dá sa vyjadrit’ pomocou gradientu nejakého potenciálu:

Qi = −∂U
∂qi

+ Q̃i

Ukážeme si, na aký tvar prejdú pohybové rovnice s takouto silou. Z (2.22) dostávame:

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi = −∂U

∂qi
+ Q̃i

Znovu zaved’me Lagrangián, tentoraz ako rozdiel kinetickej energie a potenciálnej energie potenciálovej
zložky sily, L = T − U . Z tejto rovnice teda dostaneme4:

d

dt

∂T

∂q̇i
− ∂T

∂qi
+

d

dt

∂U

∂q̇i︸ ︷︷ ︸
=0

+
∂U

∂qi
= Q̃i

d

dt

∂(T − U)

∂q̇i
− ∂(T − U)

∂qi
= Q̃i

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Q̃i (3.7)

Budeme situáciu znovu skúmat’ za predpokladu, že čas nevstúpi explicitne do Lagrangiánu. Plat́ı:

∂L

∂t
= 0

Za tejto podmienky skúmajme výraz Q̃iq̇i:

Q̃iq̇i =
d

dt

(
∂L

∂q̇i

)
q̇i −

∂L

∂qi
q̇i (3.8)

Tento výraz je v platný zmysle Einsteinovej sumačnej konvencie - vezmeme Lagrangeovu rovnicu pre
prvú zovšeobecnenú súradnicu, prenásob́ıme ju prvou zovšeobecnenou rýchlost’ou a k nej pripoč́ıtame druhú
rovnicu prenásobenú druhou zovšeobecnenou rýchlost’ou atd’.

Urob́ıme užitočné pozorovanie:

d

dt

(
∂L

∂q̇i
q̇i

)
=

d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i =⇒ d

dt

(
∂L

∂q̇i

)
q̇i =

d

dt

(
∂L

∂q̇i
q̇i

)
− ∂L

∂q̇i
q̈i

Toto využijeme v (3.8):

Q̃iq̇i =
d

dt

(
∂L

∂q̇i
q̇i

)
− ∂L

∂q̇i
q̈i −

∂L

∂qi
q̇i (3.9)

4Pripomı́name, že táto štruktúra nie je povinná. Nikto nediktuje, ktorú konkrétnu čast’ śıl muśı človek zahrnút’ do U - ak je
vyjadrovanie potenciálu danej sily pŕılǐs zložité, nič nebráni v presunut́ı celej sily (teda aj potenciálovej časti) na pravú stranu.
Dôvodom, prečo sa tieto rovnice nenechali v tvare (2.22), je úzky súvis medzi Lagrangeovými rovnicami v tvare:

d

dt

∂L

∂q̇i
−
∂L

∂qi
= 0

a účinkovým integrálom z Lagrangiánu.
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3.1. POTENCIÁLNA ENERGIA A SILA*

Teraz poč́ıtajme totálnu časovú deriváciu L̇:

dL

dt
= L̇ =

�
��S
SS

∂L

∂t
+
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i =

∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

No presne tento výraz sa nachádza so záporným znamienkom v (3.9):

d

dt

(
∂L

∂q̇i
q̇i

)
− ∂L
∂q̇i

q̈i −
∂L

∂qi
q̇i︸ ︷︷ ︸

=−L̇

=
d

dt

(
∂L

∂q̇i
q̇i

)
− L̇ (3.10)

Na výraz
d

dt

(
q̇i
∂L

∂q̇i

)
sme narazili už niekol’kokrát:

d

dt

(
∂L

∂q̇i
q̇i

)
=

d

dt

[
∂

∂q̇i

(
1

2
Tabq̇aq̇b

)
q̇i

]
=

d

dt
(Tibq̇bq̇i) =

d

dt
(2T ) = 2Ṫ

Teda z rovnice (3.10) dostávame:

Q̃iq̇i =
d

dt

(
∂L

∂q̇i
q̇i

)
− L̇ = 2Ṫ −

(
Ṫ − U̇

)
= Ṫ + U̇ = Ė

Ė = Q̃iq̇i (3.11)

Vzt’ah Ė = Q̃iq̇i vlastne udáva výkon nepotenciálovej zložky sily. Ak je sila nepotenciálová, potom sa
pri nevstupovańı času do Lagrangiánu nezachováva energia (to je pŕıpad Ė = 0), ale dostávame vzt’ah pre
výkon.

Vrát’me sa teraz k pŕıkladu o trećıch silách. V podstate empiricky sme došli k tvrdeniu, že trecie sily
možno reprezentovat’ lineárnou formou:

Qi = −kij q̇j
Ak sa pokúsime nájst’ výkon trecej sily pre jednu časticu, podl’a (3.11) dostaneme (celá sila sa v tomto

pŕıpade ukryje do nepotenciálovej časti, preto Qi = Q̃i):

P = Qiq̇i = −kij q̇j q̇i
Lenže tento výkon muśı mat’ logicky vždy zápornú hodnotu až na pŕıpad, ked’ sú všetky zovšeobecnené

rýchlosti nulové (statický pŕıpad). Ak by to tak nebolo, dostali by sme pŕıpad, ked’ sa systém nejakým
spôsobom pohybuje, no výkon je kladný (energia narastá), alebo nulový (nestráca sa), čo neznie pravde-
podobne. Vzhl’adom na to, že výkon P je daný kvadratickou formou −kij q̇j q̇i a plat́ı, že je záporný práve
vtedy, ked’ aspoň jedna zo zovšeobecnených rýchlost́ı q̇ nie je nulová, potom táto kvadratická forma je záporne
definitná. To ale znamená, že matica tejto formy je záporne definitná. Touto maticou je −kij , teda samotná
matica kij muśı byt’ kladne definitná.

Samotné odvodenie symetrie matice kij vyplýva ako priamy dôsledok defińıcie (2.19) zovšeobecnených
śıl:

Qi = F̄ aj
∂r̄j
∂qi

Vieme, že v kartézskych súradniciach je naša trecia sila vyjadrená v tvare (pre nejakých N bodov, vo
všeobecnosti s rôznymi koeficientami trenia):

~Fk = −Kk~̇rk

kde ~Fk je trecia sila k-teho hmotného bodu v sústave, 1 ≤ k ≤ N , Kk je jeho trećı koeficient a ~̇rk jeho
rýchlost’.
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Potom z (2.19) dostávame:

Qi = ~Fk ·
∂~rk
∂qi

= −
N∑
k=1

Kk~̇rk ·
∂~rk
∂qi

= −
N∑
k=1

Kk

(
∂~rk
∂qm

q̇m

)
· ∂~rk
∂qi

= −
N∑
k=1

Kk
∂~rk
∂qm

· ∂~rk
∂qi

q̇m

Označme teraz:

N∑
k=1

Kk
∂~rk
∂qi
· ∂~rk
∂qj
≡ kij

Potom trecia sila v zovšeobecnených súradniciach prejde na tvar:

Qi = −kij q̇j

kde kij sṕlňa symetriu5:

N∑
k=1

Kk
∂~rk
∂qi
· ∂~rk
∂qj

=

N∑
k=1

Kk
∂~rk
∂qj
· ∂~rk
∂qi

=⇒ kij = kji

5Symetria je splnená pre najjednoduchš́ı pŕıpad, kedy sme predpokladali, že trecia sila pre každý hmotný bod v nejakej
sústave hmotných bodov je závislá len lineárne od rýchlosti daného hmotného bodu:

Fi = −Kij ẋj
Ďaľśı predpoklad bol, že Kij = Kδij , teda trecia sila pôsob́ı v smere opačnom voči smeru pohybu hmotného bodu ~r (~F ‖ ~̇r).
Existujú samozrejme aj zložiteǰsie koncepty trenia. Napŕıklad teleso, ktoré sa pohybuje v tekutom prostred́ı, je brzdené

treńım, ktoré pre vysoké hodnoty Reynoldsovho č́ısla záviśı od druhej mocniny rýchlosti pohybu telesa voči prostrediu. Pre
také trenie však linearita nemôže byt’ splnená už len z prinćıpu kvadratického odporu.
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3.2 Fázový priestor

Pokial’ sme pracovali s Lagrangeovými rovnicami, mali sme definovaný konfiguračný priestor, v ktorom
mali súradnice q dovolené sa pohybovat’. Ked’ sme prešli ku Hamiltonovým rovniciam, zdvojnásobil sa počet
premenných, ktoré vstupujú do týchto rovńıc. Pre tieto premenné zavedieme pojem fázového priestoru, čo
je priestor, v ktorom majú dovolené hýbat’ sa práve zovšeobecnené súradnice a zovšeobecnené hybnosti.

3.2.1 Kvalitat́ıvne riešenie Hamiltonových rovńıc*

Predstavme si, kvôli jednoduchosti, že náš systém je oṕısaný práve jednou zovšeobecnenou súradnicou
ϕ. Fázový priestor teda bude rovina, kde na jednej osi bude aktuálna hodnota ϕ a na druhej hodnota pϕ.
Tieto súradnice majú vyhovovat’ Hamiltonovým rovniciam, samozrejme aj s počiatočnými podmienkami. Do
fázového priestoru sa nám počiatočná podmienka premietne existenciou nejakého ϕ0 a pϕ0 - stav systému v
čase t = 0 (alebo inom počiatočnom čase t0). Z tohto bodu môžeme vychádzat’ d’alej. Hamiltonove rovnice
nám totiž jednoznačne hovoria, ktorým smerom (vo fázovom priestore) sa máme pohnút’ d’alej, aby sme tým
sledovali reálny opis systému. Všeobecne, ak sa v čase t nachádzame v bode [ϕ(t), pϕ(t)], potom Hamiltonove
rovnice diktujú, kde budeme v čase t+ dt (o kúsok neskôr):

ϕ̇ =
∂H

∂pϕ
=⇒ dϕ =

∂H

∂pϕ
dt =⇒ ϕ(t+ dt) = ϕ(t) +

∂H

∂pϕ
dt

ṗϕ = −∂H
∂ϕ

=⇒ dpϕ = −∂H
∂ϕ

dt =⇒ pϕ(t+ dt) = pϕ(t)− ∂H

∂ϕ
dt

Rovnakú úvahu môžeme použit’ na pŕıpad, kedy by sme sa pýtali, kde bol systém v čase t−dt, ak v čase
t (teraz) je v bode [ϕ(t), pϕ(t)]? Odpoved’ na túto otázku sa skrýva tiež v Hamiltonových rovniciach a ide
vlastne o obrátenie smeru času, teda dt zameńıme za −dt a pozrieme sa, kde sme boli o kúsok skôr. To ale
znamená, že tvarom Hamiltonových rovńıc a zadanými počiatočnými podmienkami je automaticky určená
trajektória vo fázovom priestore, po ktorej sa bude pohybovat’ súradnica ϕ a jej hybnost’ pϕ, pričom táto
trajektória je parametrizovaná časom6. Pre rôzne počiatočné podmienky tak dostávame rôzne krivky, ktoré
sa navzájom nepret́ınajú7. Každá krivka opisuje možné chovanie systému pri nejakej konkrétnej počiatočnej
podmienke, čo budeme nazývat’ fázový, alebo Hamiltonovský tok8. Ak do jedného fázového priestoru za-
kresĺıme vel’a kriviek pre vel’a rôznych počiatočných podmienok, takýto obrázok sa nazýva fázový portrét.
Uvedieme si dva nateraz zauj́ımavé fázové portréty - jeden pre lineárny harmonický oscilátor, druhý pre
rovinné matematické kyvadlo.

Lagrangián lineárneho harmonického oscilátora kmitajúceho v smere osi z bez pôsobenia iných śıl (napr.
gravitácie) má nasledovný tvar:

L(z) =
1

2
mż2 − 1

2
kz2

Z toho vyplýva, že Hamiltonián tejto sústavy bude:

H(z, p) =
p2

2m
+

1

2
kz2

6Toto nie je t’ažké si uvedomit’ - v každom čase t máme totiž jednoznačne z počiatočnej podmienky určenú hodnotu ϕ(t)
a pϕ(t). To ale znamená, že ked’ sa pohybujeme v čase t, bod [ϕ(t), pϕ(t)] sa vo fázovom priestore pohybuje po istej krivke
(určenej práve Hamiltonovými diferenciálnymi rovnicami) - inak povedané, súradnica a jej hybnost’ sa pohybujú po krivke
parametrizovanej časom.

7Pre dve rôzne počiatočné podmienky možno dostat’ totožné trajektórie vo fázovom priestore. Čo sa nemôže stat’, že by sa
dve krivky pret́ınali, spájali, ani rozdel’ovali - musela by totiž nastat’ situácia, kedy sa bod z daného miesta vo fázovom priestore
pohne do viacerých smerov naraz, čo však nie je možné (pretože tento smer je jednoznačne určený Hamiltonovými rovnicami v
pŕıslušnom čase t).

8Hamiltonian flux
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Hamiltonove rovnice pre ż a ṗ:

ż =
p

m

ṗ = −kz

Tieto rovnice sa dajú našt’astie vyriešit’ analyticky pre p(z), z(p) (popŕıpade implicitne9) nasledovným
postupom:

ż =
p

m
=⇒ dz =

1

m
p dt =⇒ dt =

mdz

p

ṗ = −kz =⇒ dp = −k z dt =⇒ dt = − dp

k z

m dz

p
= − dp

k z

/
k z

m

k z dz = − 1

m
p dp

/ ˆ
1

2
k z2 +

p2

2m
= C

Pokúsme sa interpretovat’ tento výsledok. Na l’avej strane máme vlastne súčet potenciálnej energie a
kinetickej energie (tu má zovšeobecnená hybnost’ naozaj zmysel hybnosti p = m ż). No tento súčet sa ale
rovná celkovej energii, teda integračná konštanta je vlastne celková energia (a teraz vid́ıme, že muśı byt’

nezáporná):

1

2
k z2 +

p2

2m
= E0 ≥ 0

Za týchto podmienok teraz môžeme nakreslit’ fázový portrét vo fázovom priestore - na horizontálnu os
nanesieme hodnoty z, na vertikálnu p. Je jasné, že tento portrét bude tvorený sústrednými elipsami, kde
hlavná a vedl’aǰsia os závisia od tuhosti k, hmotnosti m a celkovej energie oscilátora E0. Toto E0 je nakoniec
len škálovaćı parameter (jeho zväčšeńım/zmenšeńım sa zväčš́ı/zmenš́ı celá elipsa, bezo zmeny pomeru d́lžok
hlavnej a vedl’aǰsej poloosi).

9Implicitným riešeńım nazveme také, v ktorom nemáme k dispoźıcii priamo funkciu y = f(x), alebo x = f−1(y), no máme
k dispoźıcii implicitnú závislost’ x a y určenú nejakou funkciou F (x, y) nasledovne:

F (x, y) = 0

Ak bod (x0, y0) sṕlňa funkčnú závislost’ F (x0, y0) = 0, za daných podmienok, o ktorých hovoŕı veta o implicitne zadanej
funkcii, existuje v okoĺı tohto bodu funkčná závislost’ x(y), alebo y(x). Existencia ešte nehovoŕı nič o tom, že by sme takú
funkciu vedeli naṕısat’ explicitne.
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3.2. FÁZOVÝ PRIESTOR

Nasledujúci graf ilustruje fázový portrét pre lineárny harmonický oscilátor kmitajúci v smere osi z,
pričom jeho hmotnost’ je 1 kg a jeho tuhost’ je 0.5Nm−1:

0

1

2

3

-1

-2

-3

-3 -2 -1 0 1 2 3
Fázový portrét 3.1: Lineárny harmonický oscilátor
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Prvý pŕıklad, znázornenie fázového portrétu pre lineárny harmonický oscilátor, bol vel’mi jednoduchý,
pretože sústavu ktorá ho opisuje, je možné riešit’ analyticky. Mnohokrát sa stáva, že systém, ktorého
správanie by sme radi poznali, nie je riešitel’ný analyticky v elementárnych funkciách, v niektorých pŕıpadoch
dokonca ani v kvadratúrach10.

Druhý pŕıklad, rovinné matematické kyvadlo, vieme riešit’ v kvadratúrach. Problém je však v tom,
že neexistuje elementárna funkcia, ktorá by tento pohyb opisovala. Pre ilustráciu tejto potiaže sa naozaj
pokúsime riešit’ diferenciálnu rovnicu rovinného matematického kyvadla. Lagrangián tejto sústavy je:

L = T − U =
1

2
ml2ϕ̇2 +mgl cos(ϕ)

Vid́ıme, že v ňom explicitne nevystupuje čas, teda plat́ı zákon zachovania energie:

E = T + U =
1

2
ml2ϕ̇2 −mgl cos(ϕ) = konšt.

Rovnaký tvar by sme dostali, ak by sme upravovali rovnicu rovinného matematického kyvadla:

ϕ̈+
g

l
sin(ϕ) = 0

/
ϕ̇ =

dϕ

dt

ϕ̇ϕ̈+
g

l
sin(ϕ)

dϕ

dt
= 0

/ˆ
· · · dt

Poč́ıtame oba integrály:

ˆ
ϕ̇ϕ̈dt

P.P.
= ϕ̇ϕ̇−

ˆ
ϕ̈ϕ̇dt =⇒

ˆ
ϕ̇ϕ̈dt =

1

2
ϕ̇2

ˆ
sin(ϕ)

dϕ

dt
dt =

ˆ
sin(ϕ)dϕ = − cos(ϕ)

ˆ
ϕ̇ϕ̈dt+

g

l

ˆ
sin(ϕ)

dϕ

dt
dt = C

1

2
ϕ̇2 − g

l
cos(ϕ) = C

/
ml2

1

2
ml2ϕ̇2 −mgl cos(ϕ) = Cml2 = konšt.

1

2
ml2ϕ̇2 −mgl cos(ϕ) = E (3.12)

Vid́ıme, že sme dostali rovnaký tvar, ako zo zákona zachovania energie. Pod’me sa pozriet’ na riešenie
tejto rovnice.

10Riešit’ rovnicu v kvadratúrach znamená nájst’ integrálne vyjadrenie pre ϕ(t) zadané implicitne:

ˆ ϕ
ϕ0

f(ϕ′)dϕ′ =

ˆ t
t0

g(τ)dτ,

kde tento tvar (pri možnom nájdeńı primit́ıvnej funkcie ku f ako F (ϕ) =
´
f(ϕ)dϕ a ku g G(t) =

´
g(t)dt) implicitne zadáva

tvar ϕ(t). Niekedy je možné nájst’ aj explicitný tvar:

F (ϕ)− F (ϕ0) = G(t)−G(0) =⇒ ϕ(t) = F−1 [G(t) + F (ϕ0)−G(0)]

Mnohokrát však rovnicu nevieme riešit’ v kvadratúrach, čo môže znamenat’, že napr. nevieme separovat’ premenné. Druhý
problém sa skrýva v samotnej integrácii, no ak už máme riešenie v kvadratúrach, zvyčajne sa to pokladá za úspech. Integrály
totiž možno spol’ahlivými metódami riešit’ numericky, kdežto hl’adat’ riešenie diferenciálnych rovńıc (najmä nelineárnych) je
t’ažšia úloha.
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3.2. FÁZOVÝ PRIESTOR

Vo fyzike býva zvykom, že žiadnu rovnicu neriešime v takom tvare, v akom sme ju naṕısali (aj s
fyzikálnymi konštantami a pŕıslušnými rozmermi). Každú rovnica, ktorú chceme riešit’, je dobré priviest’

do bezrozmerného tvaru - jednak samotné premenné, ktoré sú predmetom riešenia, budú mat’ bezrozmerný
tvar a taktiež rôzne konštanty, ktoré v nej vystupovali, sa všelijako šikovne zakryjú. Budeme demonštrovat’

proces, ktorým privedieme rovnicu (3.12) na jej bezrozmerný tvar. Vychádzame zo zákona zachovania energie
pre rovinné matematické kyvadlo - dôvod je ten, že je to obyčajná diferenciálna rovnica prvého rádu, čo je
ovel’a lepšie, ako mat’ rovnicu druhého rádu (v skutočnosti človek rieši radšej rovnice s č́ım menš́ım rádom,
čo je aj dôvod, prečo sú zákony zachovania tak obl’́ubené a hojne využ́ıvané). Rovnicu naṕı̌seme tak, aby
nulová potenciálna energia bola pre ϕ = 0, teda ked’ vol’ne viśı:

1

2
ml2ϕ̇2 +mgl [1− cos(ϕ)] = E

Vid́ıme, že na pravej strane vystupuje celková energia kyvadla. Prirodzenou snahou pri oddimenzionali-
zovańı rovnice je preṕısat’ dôležito vyzerajúce konštanty pomocou iných konštánt, ktoré v nej tiež vystupujú.
Jeden z nápadov, ktoré môže človek dostat’ ked’ sa pozrie na celkovú energiu E, že ju vyjadŕı pomocou
hmotnosti m, gravitačného zrýchlenia g a d́lžky kyvadla l. Skutočne, výraz mgl má jednotku energie a je
to vel’mi prirodzená konštanta vzhl’adom na situáciu, ktorú riešime. Kvôli tomu, aby neskôr vyšla rovnica v
pŕıjemneǰsom tvare, použijeme hodnotu 2mgl. Celá podstata tejto úvahy teda bude tkviet’ v nasledujúcom
vzt’ahu:

E = 2mglε

V tejto rovnici je zachytená myšlienka, že celková energia sústavy (ktorá je pri zadaných počiatočných
podmienkách už naveky konštantná) sa dá vyjadrit’ ako nejaký reálny (bezrozmerný) kladný násobok po-
tenciálového rozdielu medzi spodnou a vrchnou polohou kyvadla. Dosad’me teda takto vyjadrenú energiu
do rovnice:

1

2
ml2ϕ̇2 +mgl [1− cos(ϕ)] = 2mglε

/
1

2mgl

l

4g
ϕ̇2 +

1

2
[1− cos(ϕ)] = ε

Teraz oceńıme, že sme miesto E vzali 2mglε, plat́ı totiž vzt’ah:

1

2
[1− cos(ϕ)] = sin2

(ϕ
2

)
Člen

ϕ

2
prirodzene nájdeme aj v prvom výraze na l’avej strane:

l

4g
ϕ̇2 =

l

g

(
ϕ̇

2

)2

Preṕı̌seme rovnicu pomocou polovičného uhla ϕ:

l

g

(
ϕ̇

2

)2

+ sin2
(ϕ

2

)
= ε

Nat́ıska sa samozrejme prirodzená substitúcia daného polovičného uhla:

ϕ

2
= Φ =⇒ l

g
Φ̇2 + sin2 (Φ) = ε (3.13)
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V rovnici stále vystupujú konštanty g a l, avšak stále máme k dispoźıcii ešte jeden šikovne skrytý
parameter s rozmerom - čas. Naozaj, prvý člen obsahuje deriváciu podl’a času a teda rozmer času muśı tiež v
prvom člene vyskočit’. Znovu sa ponúka prirodzený argument - môže existovat’ také T0 konštantné, že potom
akýkol’vek časový interval reálneho času t bude bezrozmerným násobkom tohto T0. Inak zaṕısané:

t = T0 τ =⇒ dt = T0 dτ

Potom sa nám mierne uprav́ı pravidlo pre derivovanie funkcíı závislých od t:

ξ̇ =
dξ

dt
=

1

T0

dξ

dτ
=

1

T0
ξ′

Toto pravidlo spolu s danou substitúciou použijeme v rovnici (3.13):

l

g

1

T 2
0

Φ′2 + sin2 (Φ) = ε

Okamžite vid́ıme celkom vhodný výber konštanty T0 (čo je takmer perióda malých kmitov kyvadla):

T0 =

√
l

g
=⇒ Φ′2 + sin2 (Φ) = ε (3.14)

Táto rovnica (po daných spätných substitúciach) opisuje rovinné matematické kyvadlo, no matematicky
sa s ňou pracuje ovel’a lepšie - nemuśıme totiž rozmýšl’at’, kol’ko je g, l, m a E tak, aby sme kreslili pekné
obrázky. Substitúcie tento problém vyriešili za nás. Rovnicu d’alej upravujeme:

Φ′2 = ε− sin2 (Φ)

Φ′2 = ε

[
1− 1

ε
sin2 (Φ)

]

Φ′ =
dΦ

dτ
=
√
ε

√
1− 1

ε
sin2 (Φ)

/
dτ

√
ε
√

1− 1
ε sin2 (Φ)

1√
ε

dΦ√
1− 1

ε sin2 (Φ)
= dτ

/ˆ

1√
ε

ˆ
dΦ√

1− 1
ε sin2 (Φ)

=

ˆ
dτ

Môžeme si gratulovat’ - práve sa nám podarilo vyriešit’ rovnicu v kvadratúrach, čo však vôbec neznamená,
že si jej riešenie vieme predstavit’ (v skutočnosti nám z tohto tvaru nie je známe takmer nič - ku všeobecnému
riešeniu je ešte dlhá cesta). Ukážeme však ešte omnoho viac, závislost’ Φ(τ) vyjadŕıme explicitne, no tiež
nám to vel’a nepovie. Kvôli explicitnému vyjadreniu budeme musiet’ siahnut’ po nejakej matematickej knihe
s eliptickými integrálmi, kde nájdeme nasledovnú defińıciu11:ˆ

0

x

dt√
1− k2 sin2 (t)

≡ F (x, k)

11http://mathworld.wolfram.com/JacobiEllipticFunctions.html
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3.2. FÁZOVÝ PRIESTOR

Pravá strana našej rovnice v kvadratúrach tak bude rovná τ a l’avá bude vyjadritelná pomocou tejto
funkcie F12:

1

ε
= k2

ˆ
dΦ√

1− 1
ε sin2 (Φ)

= F

(
Φ,

1√
ε

)
− F

(
Φ0,

1√
ε

)

F

(
Φ,

1√
ε

)
=
√
ετ + F

(
Φ0,

1√
ε

)
(3.15)

Dostali sme implicitné vyjadrenie Φ(t). Pre explicitné muśıme poznat’ funkciu F−1, ktorou je Jacobiho

amplitúdna funkcia, ktorá sṕlňa (celkom logickú podmienku inverznosti funkcie)13:

u = F(Φ, k) =⇒ F−1(u, k) = Φ = am(u, k)

Naša funkcia Φ(t) teda bude vyjadritel’ná explicitne za pomoci Jacobiho amplitúdnej funkcie v nasle-
dovnom tvare:

u = F(Φ,
1√
ε

) =⇒ Φ(τ) = F−1(u,
1√
ε

)

Φ(τ) = am

[√
ετ + F

(
Φ0,

1√
ε

)
,

1√
ε

]
(3.16)

Ako iste vid́ıme, z tohto tvaru vlastne nič nevid́ıme. Z daného vyjadrenia (aj ked’ explicitného) sme
v skutočnosti źıskali vel’mi málo. Ak máme poruke dobrý plotter grafov s implementovanými eliptickými
integrálmi a ich inverznými funkciami, môžeme si skúsit’ dat’ vykreslit’ danú rovnicu pre rôzne ε (čo vel’mi
zásadne meńı vývoj pohybu kyvadla v čase) a Φ0 (vývoj kyvadla meńı len okrajovo, v podstate vyjadruje
počiatočnú polohu kyvadla). Ak taký plotter poruke nemáme, táto rovnica nám nehovoŕı vôbec nič. Bolo by
teda dobré použit’ inú metódu, pomocou ktorej pohodlne nahliadneme do daného systému bez explicitného
riešenia jeho rovńıc. Tou je práve kreslenie Hamiltonovského toku vo fázovom priestore (čo je teraz celkom
dobre možné, vzhl’adom na to, že jeho rozmer je 2).

12Volanej eliptický integrál prvého druhu. Je vhodné poznamenat’, že zápisov tejto funkcie existuje viac:

F(ϕ, k) = F(ϕ|k2) = F(sinϕ; k) =

ˆ ϕ
0

dt√
1− k2 sin2 t

13V tomto okamihu sa nebudeme zauj́ımat’, či je, ako funkcia F(x, k), tak aj funkcia am prostá - postač́ı nám fakt, že výsledná
funkcia am, napriek tomu, že nie je (pre každé k) injekt́ıvna (prostá), dáva dobré výsledky o priebehu otáčania kyvadla v
čase. Analógiu môžeme vidiet vo funkcii śınus a jej inverznej cyklometrickej funkcie arkus śınus. Śınus nie je prostá funkcia,
napriek tomu sme schopńı riešit’ rovnicu lineárneho harmonického oscilátora implicitne (najprv v kvadratúrach a d’alej pomocou
výpočtu integrálu) v podobe:

arcsin

(
x

x0

)
= ωt =⇒ x(t) = x0 sin(ωt),

teda problémy s tým, že by funkcia am (alebo śınus) nebola prostá, pŕısne vzaté neberieme do úvahy. Koho by zauj́ımali
definičné obory, ohl’adom funkcie F(x, k) rýchlo vid́ıme, že pre k > 1 je výraz nedefinovaný (komplexný) pre niektoré x ∈ R
(vid́ıme analógiu s funkciou arcsin, ktorá nie je definovaná pre |x| > 1). Naopak, funkcia am (bez dôkazu), je pre k > 1
periodická, pre k = 1 neperiodická, nepárna, asymptoticky sa bĺıžiaca k hodnote π

2
a pre 0 < k < 1 neperiodická, rastúca.
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Otázkou teda je: ,,Ako riešit’ pohybové rovnice bez riešenia pohybových rovńıc?”. Mohli by sme sa
vrátit’ ku Hamiltonovým rovniciam pre rovinné matematické kyvadlo a skúsit’ z nich pre rôzne parametre
zostrojit’ fázový portrét, no nat́ıska sa lepšia možnost’. Máme totiž k dispoźıcii bezrozmernú rovnicu (3.14):

Φ′2 + sin2 (Φ) = ε

Ked’že zovšeobecnená hybnost’ pre súradnicu ϕ je úmerná ϕ̇, tak je možné povedat’, že Φ′ rovnako dobre
poslúži namiesto zovšeobecnenej hybnosti a Φ namiesto zovšeobecnenej súradnice ϕ14. Na horizontálnu os
teda budeme značit’ súradnicu Φ, na vertikálnu Φ′. Ešte pripomenieme, že situácia sa v uhle ϕ opakuje
s periódou 2π, v uhle Φ sa teda opakuje s periódou π. Situáciu si teraz rozdeĺıme na tri pŕıpady, po
kvalitat́ıvnom vyšetreńı všetkých troch nakoniec nakresĺıme aj fázový portrét.

Prvý pŕıpad, ε � 1. Č́ım je vlastne tento pŕıpad taký zauj́ımavý? Podmienka ε � 1 vlastne hovoŕı o
tom, že energia oscilátora je vel’mi malá oproti potenciálovému rozdielu medzi najvyšš́ım a najnižš́ım bodom
do ktorého sa kyvadlo môže dostat’ (teraz sa nám škála, ktorú sme zaviedli na začiatku, vel’mi hod́ı). To
ale znamená, že samotné kyvadlo sa pohybuje okolo spodnej hodnoty - ked’že energie má len tol’ko, aby sa
ledva kývalo okolo Φ = 0. Za týchto podmienok môžeme zanedbat’ nelineárnost’ funkcie sin(Φ) a nahradit’ ju
priamo argumentom. Dostaneme:

Φ′2 + Φ2 = ε (� 1)

Tým sme vlastne dostali rovnicu kružnice s malým polomerom
√
ε. A presne taký pohyb bude kyvadlo

opisovat’ vo fázovom priestore. Niečo nám to nápadne pripomı́na - lineárny harmonický oscilátor. Naozaj,
v prvom pribĺıžeńı malých kmitov je kyvadlo lineárny harmonický oscilátor. Tento fakt sa dá ukázat’ ako
z rovnice (3.15), tak aj z (3.16). V rovnici (3.15) použijeme fakt, že Φ � 1, tým pádom aj 0 < α < Φ
je zanedbatel’ná oproti 1 a teda sin(α) môžeme zamenit’ za α a (z pŕıslušného parametrického integrálu)
dostaneme:

1√
ε

ˆ
0

Φ

dα√
1− 1

ε sin2 (α)
≈ 1√

ε

ˆ
0

Φ

dα√
1− 1

εα
2

=

ˆ
0

Φ

dα√
ε− α2

= arcsin

(
Φ√
ε

)
= τ

Φ(τ) =
√
ε sin(τ) =⇒ Φ′(τ) =

√
ε cos(τ) =⇒ Φ′2 + Φ2 = ε

Kto by si dal tú prácu a naozaj vykreslil funkciu am
(√
ετ, 1

ε

)
, dostal by podobný graf (tvarom naozaj

podobný funkcii śınus):
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- 0.10

- 0.05

0.05

0.10
Φ

τ 

Graf funkcie 3.2: Φ(τ) pre ε = 0.01

14Komu by sa táto argumentácia nevidela, môže skúsit’ doviest’ Hamiltonove rovnice do bezrozmerného tvaru a zist́ı, že to,
čo sme tvrdili v tejto argumentácii kvalitat́ıvne, bude zodpovedat’ skutočnosti. Ciel’om kreslenia fázového portrétu nie je presne
aj s jednotkami zaznačit’ škály, na ktorých sa premenné pohybujú v oboch osiach, ale kvalitat́ıvne naznačit’ charakter pohybu
v sústave.
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Druhý pŕıpad, ε = 1. Tento pŕıpad už nemá nič spoločné s lineárnym harmonickým oscilátorom, takýto
pohyb je totiž neperiodický. Podmienka ε = 1 hovoŕı o tom, že kyvadlo má mat’ presne tol’ko celkovej energie,
aby sa akurát vyšplhalo na vrchol kružnice, kde ϕ = π a Φ = π

2 . Nech už tento pohyb zač́ına odkial’kol’vek
(okrem vrcholu), jeho priebeh sa s časom rastúcim do nekonečna asymptoticky bĺıži ku hodnote Φ = π

2 . Toto
riešenie sa skrýva aj v rovnici (3.14):

Φ′2 + sin2 (Φ) = ε = 1

Φ′2 = 1− sin2 (Φ) = cos2 (Φ)

Φ′ = ± cos (Φ) ; |Φ| ≤ π

2

Vo fázovom portréte sa teda bod snaž́ı po takejto čiare dostat’ až do bodu, kde Φ′ = 0 a Φ = π
2 , no

reálne tam dôjde v nekonečnom čase.
Presné riešenie v čase je vyjadritel’né v elementárnych funkciách (bez dôkazu):

Φ(τ) = 2 arctan(eτ )− π

2

Asymptotika tohto riešenia pre τ →∞ je:

Φ(τ) = 2 arctan(eτ )− π

2
=
π

2
− 2e−τ +O

(
e−2τ

)
; τ →∞

Vid́ıme teda, že kyvadlo sa naozaj exponenciálne pomaly bĺıži k vrcholu kružnice (všetky d’aľsie členy
už klesajú k nule rýchleǰsie, ako e−τ ).

Grafom tohto časového vývoja je funkcia podobná arctan(τ), no jej asymptotika je exponenciálna
(arctan(τ) má asymptotiku π/2− 1/τ pre τ →∞):

2 4 6 8

0.5

1.0

1.5

Φ

τ 
Graf funkcie 3.3: Φ(τ) pre ε = 1
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Tret́ı pŕıpad, ε
.
> 1 a ε� 1. Situácia je pre ε� 1 l’ahšie nahliadnut’elná - ak je celková energia kyvadla

ovel’a väčšia, ako potenciálový rozdiel medzi spodnou a vrchnou polohou, možno povedat’, že dominantný
člen bude Φ′. Je tomu tak preto, lebo člen sin2(Φ) sa meńı len v intervale 〈0, 1〉, ak je teda ε vel’ké (napr.
1000), druhý člen zaváži naozaj málo. Č́ım väčšie je teda ε, tým ,,konštantneǰsie” je Φ′. Fyzikálne sa v
tomto pŕıpade deje to, že kyvadlo sa zakaždým pretoči cez vrchol - čim väčšie je ε, tým menej ćıti, že sa mu
vôbec meńı potenciálna energia a tým viac sa tento pohyb podobá na rovnomerný pohyb po kružnici a člen
Φ′ sa bĺıži ku konštante Φ′ ≈

√
ε. Pohyb je v premennej Φ neperiodický. V elementárnych funkciách sa dá

oṕısat’ len pŕıpad ε � 1, vtedy Φ(τ) =
√
ετ . Zauj́ımavý bude zrejme ten, kde ε bude len o trochu viac ako

1 a potom ten, kde ε� 1:
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Graf funkcie 3.4: Φ(τ) pre ε = 1.001. Môžeme si všimnút’, že energia ledva stač́ı na pretočenie kyvadla cez
vrchol, ktoré v tom momente značne spomaĺı - len s t’ažkost’ou sa pretoč́ı.
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Graf funkcie 3.5: Φ(τ) pre ε = 4. Tentoraz je energia kyvadla o dost’ väčšia, ako potenciálový rozdiel medzi
spodným a vrchným bodom. Vid́ıme, že vývoj Φ (a teda aj ϕ) v čase je takmer lineárna funkcia, kyvadlo si
teda ledva ,,všimne”, či je v spodnej, alebo vrchnej polohe.

59



3.2. FÁZOVÝ PRIESTOR

Ešte raz ukážeme postupné zvyšovanie ε z vel’mi malej hodnoty až po 1. Pre porovnanie dokresĺıme aj
kmity lineárneho harmonického oscilátora s rovnakou frekvenciou uvažovaných malých kmitov. Uvedieme
taktiež pŕıpad ε > 1.
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3.2. FÁZOVÝ PRIESTOR

Samotný fázový portrét zostroj́ıme z čiastkových informácii o jednotlivých limitných pŕıpadoch:

ε� 1 =⇒ Φ′2 + Φ2 = ε

ε = 1 =⇒ Φ′ = ± cos2(Φ)

ε� 1 =⇒ Φ′ =
√
ε

Tam, kde nepoznáme presný tvar, v mysli extrapolujeme medzi známymi tvarmi, alebo si dáme vykreslit’

tzv. contour map funkcie Φ′2 + sin2 (Φ) = ε. Táto metóda dáva jednoznačne najlepšiu predstavu o fázovom
toku:

-2

0

-1

1

2

3

-3
-3 -2 -1 0 1 2 3

Fázový portrét 3.6: Rovinné matematické kyvadlo. Energia ε sa meńı od 0 (fialová) po 10 (béžová).
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3.2. FÁZOVÝ PRIESTOR

Do takýchto obrázkov sa zvyknú kreslit’ aj š́ıpky, aby bolo jasné, ktorým smerom sa tok pohne z daného
miesta fázového priestoru (tento smer odpovedá skutočnej snahe kyvadla zväčšit’/zmenšit’ súradnicu Φ, resp.
Φ̇):

-2 -1 0 1 2
-2

0

-1

1

2

Vektorové pole 3.7: Fázový portrét s vektorovým pol’om pre rovinné matematické kyvadlo. V rovnovážnej

polohe (Φ ≈ 0,Φ′ ≈ 0) a v okoĺı vrchnej polohy (Φ ≈ ±π
2
,Φ′ ≈ 0) sú š́ıpky malé, pretože v týchto miestach

je pohyb pomaľśı (zaniká v oboch polohách).
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3.2.2 Liouvilleova veta*

Majme fázový priestor, ktorý budeme symbolicky značit’ v dvoch rozmeroch (no veta plat́ı všeobecne).
V tomto priestore sa pohybujú súradnice q a hybnosti p k nim prislúchajúce, ktorých pohyb v čase sa
riadi Hamiltoniánom H. Na začiatku (t = 0) si vyberieme myslený objem V vo fázovom priestore (teda
zaṕı̌seme množinu všetkých počiatočných stavov, ktoré do tohto objemu v čase t = 0 patria, č́ım daný objem
definujeme). Tento objem označ́ıme D(0) a poč́ıtame ho ako násobný integrál cez tento objem z funkcie 1
(teda ako mieru danej oblasti):

D(0) =

ˆ
D(0)

dq1 · · · dqn︸ ︷︷ ︸
=dnq

dp1 · · · dpn︸ ︷︷ ︸
=dnp

(3.17)

Ked’ sa teraz pohneme v čase do všeobecného momentu t, aj súradnice a hybnosti sa vo všeobecnosti
nejako pohnú, no stále budú vo fázovom priestore tvorit’ objem (ktorý tentoraz definujeme tak, že súradnice,
ktoré si pamätáme už z času t = 0, budeme hl’adat’ po celom priestore a ked’ ich nájdeme, tak priestor,
ktorý budú zaṕlňat’ budeme považovat’ za objem, o ktorom je momentálne reč) D(t). Obdobným spôsobom
poč́ıtame objem D(t):

D(t) =

ˆ
D(t)

dnq dnp (3.18)

Plat́ı veta (Liouvilleova):

D(t) = D(0) (3.19)

Dôkaz: v integráloch, ktoré definujú rovnicu (3.19) integrujeme jednotkovú funkciu, teda dôležitá bude
zrejme len zmena súradńıc v dôsledku posunu v čase. Budeme uvažovat’ infinitesimálny posun v čase.
Súradnice q a p sa transformujú z času t do času t+ dt.

(
q1(t), . . . , qn(t), p1(t), . . . , pn(t)

)
→
(
q1(t+ dt), . . . , qn(t+ dt), p1(t+ dt), . . . , pn(t+ dt)

)
(3.20)

Z Hamiltonových rovńıc dostávame (pre malé dt):

qi → qi + q̇idt = qi +
∂H

∂pi
dt = q′i

pi → pi + ṗidt = pi −
∂H

∂qi
dt = p′i

(3.21)

Celá veta zrejme bude stát’ a padat’ na transformácii objemového elementu za čas dt. Element sa
transformuje podl’a vzt’ahu známeho už z matematickej analýzy:

dV (t+ dt) = JdV (t) (3.22)
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J je determinant Jacobiho matice:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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...

. . .
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. . .
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. . .
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· · · ∂p′n
∂pn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
∂q′i
∂qj

∂q′i
∂pj

∂p′i
∂qj

∂p′i
∂pj

∣∣∣∣∣∣∣∣∣ (3.23)

V našom pŕıpade bude J vyzerat’ nasledovne:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 +
∂2H

∂p1∂q1
dt

∂2H

∂p1∂q2
dt · · · ∂2H

∂p1∂qn
dt

∂2H

∂p2
1

dt · · · ∂2H

∂p1∂pn
dt

∂2H

∂p2∂q1
dt 1 +

∂2H
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dt · · · ∂2H

∂p2∂qn
dt

∂2H

∂p2∂p1
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∂p2∂pn
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. . .
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∂2H

∂pn∂q1
dt

∂2H

∂pn∂q2
dt · · · 1 +

∂2H

∂pn∂qn
dt

∂2H

∂pn∂p1
dt · · · ∂2H

∂p2
n

dt

−∂
2H

∂q2
1

dt − ∂2H

∂q1∂q2
dt · · · − ∂2H

∂q1∂qn
dt 1− ∂2H

∂q1∂p1
dt · · · − ∂2H

∂q1∂pn
dt
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. . .
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...
. . .

...

− ∂2H

∂qn∂q1
dt − ∂2H

∂qn∂q2
dt · · · −∂

2H

∂q2
n

dt − ∂2

∂qn∂p1
dt · · · 1− ∂2H

∂qn∂pn
dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.24)

Vid́ıme, že Jakobián je možno vyjadrit’ ako determinant súčtu jednotkovej matice a dt-násobok nejakej
inej matice. Ked’že je však dt malé, tento determinant možno rozvinút’ do prvého rádu Taylorovho radu v
okoĺı det (I2n) = 1, pričom zvyšok radu bude klesat’ k nule aspoň rovnako rýchlo, ako dt2:

J = det (I2n + dtD) = 1 + tr (D) dt+O
(
dt2
)

(3.25)

Matica D je vlastne zvyšok po pôvodnej matici, ak z diagonál odoberieme jednotky. Táto matica sa dá
vyjadrit’ po blokoch:

D =

∂H 

∂p ∂q

2

i j

_ ∂H 

∂p ∂p
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i j
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∂q ∂p

2

i j
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2n
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64
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Stopa matice je súčet jej diagonálnych prvkov, v tomto pŕıpade zoberieme len diagonálne bloky a z nich
položeńım i = j a vysumovańım cez pŕıslušný sumačný index dostaneme jej stopu:

tr (D) =
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi
≡ 0 (3.26)

Tento výraz je identicky rovný nule, pretože predpokladáme spojitost’ druhej zmiešanej parciálnej de-
rivácie Hamiltoniánu podl’a zovšeobecnenej súradnice a pŕıslušnej zovšeobecnenej hybnosti (a teda tieto
derivácie sa po zámene poradia rovnajú). Pre Jakobián teda dostávame:

J = det (I2n + dtD) = 1 + tr (D) dt+O
(
dt2
)

= 1 +O
(
dt2
)

(3.27)

To pre zmenu Jakobiánu znamená:

δJ = O
(
dt2
)

(3.28)

A pre časovú deriváciu jej nulovost’:

J̇ = lim
dt→0

dJ

dt
= lim

dt→0
O (dt) = 0 (3.29)

Vid́ıme, že ak sa z času t posunieme do času t+ dt, Jakobián transformácie súradńıc sa zmeńı najskôr
až v druhom ráde v dt a to plat́ı v každom čase t. Lenže to znamená, že Jakobián sa v čase nemeńı (J̇ = 0),
teda sa nemeńı ani objem D(t).

Liouvilleovu vetu budeme demonštrovat’ na rovinnom matematickom kyvadle. V jeho fázovom priestore
si na začiatku vyberieme množinu bodov (začiatočných stavov), ktoré budeme d’alej sledovat’ v čase. Tvar
tejto množiny v každom d’aľsom čase určuje výber začiatočných stavov a samozrejme aj tvar potenciálnej
energie. Pre kvadratický potenciál, čo je obyčajný lineárny harmonický oscilátor, nenastáva nič zauj́ımavé.
Frekvencia jeho kmitov totižto nezáviśı od začiatočných podmienok (až na pŕıpad nulovej energie, čo je
oscilátor naveky sediaci v počiatku). Teda nech by sme do jeho fázového priestoru rozhodili akokol’vek súbor
oscilátorov, tento súbor bude krúžit’ dookola a jeho tvar ostane nezmenený.

V pŕıpade kyvadla je situácia ovel’a zauj́ımaveǰsia: pre ε� 1 (teda všetky oscilátory rozhádzané bĺızko
Φ = 0 a Φ′ = 0) by sme očakávali, že bude (aspoň istý čas) ešte dobre splnená lineárnost’ kmitov, t.j., že ich
frekvencia nezáviśı pŕılǐs od výchylky. V časovom vývoji súboru oscilátorov sa táto takmer-linearita prejav́ı
nie pŕılǐsným rozmazávańım súboru, no isté rozmazanie po dostatočne dlhom čase pŕıst’ muśı.

Pokial’ bude náš počiatočný súbor zahŕňat’ aj energie bĺızke, dokonca rovné kritickej energii ε = 1),
budeme pozorovat’ značnú deformáciu tvaru tohto súboru. Perióda kmitu kyvadla totiž rastie do nekonečna s
ε→ 1. Pre ε = 1 dokonca analyticky vieme, že časový vývoj kyvadla sa exponenciálne bĺıži ku vrchnej polohe,
no to znamená, že takýto počiatočný stav skonč́ı limitne v nekonečnom čase v bode (π/2, 0). Očakávame
teda, že kým energie bĺızke nule budú poslušne krúžit’ dookola, energie bĺızke 1 budú značne zaostávat’, čo
už po relat́ıvne krátkom čase spôsob́ı rozmazanie súboru oscilátorov.

Vel’mi zauj́ımavý pŕıpad je, ak súbor na začiatku obsahuje rôzne energie - aj menšie, aj väčšie ako 1.
Vieme, že pre ε > 1 je pohyb neperiodický a vo fázovom priestore uteká donekonečna doprava (popŕıpade
dol’ava pre Φ′ < 0), kým pre ε < 1 ostáva pohyb ohraničený v periodickej oblasti. To ale znamená, že kým
čast’ oscilátorov ostáva krúžit’ okolo stredu, ich druhá čast’ v čase stále uteká preč. Intuit́ıvne by sa zdalo, že
sa takýto súbor (aj ked’ na začiatku tvoriaci spojitú oblast’) muśı nutne roztrhnút’, no nie je tomu tak, ako
uvid́ıme.

Na nasledujúcich stranách demonštrujeme tieto pŕıpady a pripomı́name, že podl’a Liouvilleovej vety sú
všetky oblasti konštantné čo do plochy (bez ohl’adu na exotický vývoj ich tvaru v čase).
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Obrázok 3.8: Vývoj súboru oscilátorov s ńızkou energiou (ε < 0.5).
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3.2. FÁZOVÝ PRIESTOR

-2 -1 0 1 2
-2

0

-1

1

2

(a) τ = 0

-2 -1 0 1 2
-2

0

-1

1

2

(b) τ = 1

-2 -1 0 1 2
-2

0

-1

1

2

(c) τ = 2

-2 -1 0 1 2
-2

0

-1

1

2

(d) τ = 3

-2 -1 0 1 2
-2

0

-1

1

2

(e) τ = 4

-2 -1 0 1 2
-2

0

-1

1

2

(f) τ = 5

-2 -1 0 1 2
-2

0

-1

1

2

(g) τ = 7

-2 -1 0 1 2
-2

0

-1

1

2

(h) τ = 9

-2 -1 0 1 2
-2

0

-1

1

2

(i) τ = 11

Obrázok 3.9: Vývoj súboru oscilátorov s rôznymi energiami (0.2 < ε ≤ 1). Všimnime si, že oscilátor, ktorý
mal na začiatku energiu ε = 1 sa exponenciálne bĺıži k bodu (π/2, 0).
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Obrázok 3.10: Vývoj súboru oscilátorov s energiami menš́ımi aj väčš́ımi ako kritická energia (0.6 < ε ≤ 1.4).
Tie oscilátory, ktoré mali na začiatku energiu väčšiu ako 1, utekajú nenávratne doprava.
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3.3 Škálovanie

Škálovanie velič́ın je proces, pri ktorom zist’ujeme, či a akým spôsobom možno zmenit’ škály daného
procesu (časové, d́lžkové, ...). K výsledku možno dospiet’ z pohybových rovńıc, z Lagrangiánu a samozrejme,
aj z riešenia (no škálovanie častokrát funguje aj bez explicitného vyriešenia daných rovńıc). Vezmime si
napr. pohybovú rovnicu vol’ného pádu v gravitačnom poli:

z̈(t) + g = 0 (3.30)

Tvárme sa, že stoj́ıme na Mesiaci. Chceme dat’ do súvisu časové a d́lžkové škály padajúceho telesa v
teraǰsej situácii s tými, ktoré poznáme z podmienok známych na Zemi. Mysĺıme tým nasledujúce vzt’ahy
medzi fyzikálnymi veličinami na Mesiaci (z, t, g) s tými na Zemi (Z, T , g0).

z = aZ

t = bT

g = cg0

(3.31)

Našim ciel’om bude preṕısat’ rovnicu (3.30) na totožnú rovnicu pre premenné Z a T a parameter g0.
Označme aZ(T ) ≡ z(t). V takom pŕıpade bude pre druhú deriváciu Z podl’a t platit’:

z(t) = aZ(T ) =⇒ d2z(t)

dt2
= a

d2Z(T )

dt
= a

d2Z(T )

dT 2

d2T

dt2
=

a

b2

??

Z(T ) (3.32)

a

b2

??

Z(T ) + cg0 = 0 (3.33)

Pre pád telesa na Zemi muśı platit’ rovnica rovnakého tvaru ako (3.30), ibaže v premenných Z, T a s
konštantou g0. Rovnicu (3.33) teda upravujeme dovtedy, kým nedostaneme podmienku na konštanty a, b a
c:

a

b2

(
??

Z(T ) +
b2c

a
g0

)
= 0 (3.34)

Kým konštanta pred zátvorkou riešeniu rovnice nevad́ı (pretože ju môžeme vykrátit’ z rovnice), konštanta
násobiaca g0 muśı byt’ rovná jednej, z čoho dostaneme podmienku na škálovanie samotného času pádu:

b2c

a
= 1 =⇒ b =

√
a

c
(3.35)

Výsledok zodpovedá intuit́ıvnej predstave: pri pusteńı telesa z a-krát väčšej výšky v c-krát silneǰsom
gravitačnom poli bude čas pádu trvat’

√
a/c dlhšie.

Teraz sa pozrime na Newtonov gravitačný zákon:

m~̈r = −κmM~r

r3
;

m

M
� 1

Vieme, že pre planéty v Slnečnej sústave je riešenie ~r(t) periodické. Podobne ako v predošlom pŕıklade

preškálujme d́lžky a čas:

~r(t)→ a~r

(
t

b

)
= ~R(t)

~̈r =
a

b2
~̈r = −κMa~r

a3r3
=⇒ a3

b2
= 1 =⇒ b = a3/2
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To, čo sme dostali vyzerá, ako Keplerov zákon; ak preškálujeme d́lžky obehu planéty okolo slnka a-krát,
potom doby (teda aj obežná doba) vystupujúce v pohybe sa preškálujú ako a3/2:

L→ aL =⇒ T → a3/2T

Keplerov zákon hovoŕı, že pomer tret́ıch mocńın hlavných poloośı a druhých mocńın obežných dôb
planét je konštanta. Z tejto analýzy by sa mohlo zdat’, že sme práve vel’mi lacno odvodili Keplerov zákon.
Nie je však tomu tak. Keplerov zákon v skutočnosti hovoŕı viac. Vo svojom zákone sa vyjadruje ku všetkým
planétam Slnečnej sústavy, kdežto naša analýza sa vyjadrila len k takým tvarom trajektóŕıi, ktoré sú si
podobné (tj zoberiem lupu a na celý pŕıpad sa pozriem zväčšene). Keplerovo pozorovanie sa týkalo aj
planét, ktoré nemajú podobné dráhy (v zmysle rovnakej výstrednosti), teda je všeobecneǰsie ako to, čo sme
práve ukázali.

Teraz si ukážeme, že aj škálovanie Lagrangiánu sa niekedy ukáže byt’ užitočné. Najprv si uvedomı́me,
že ak nejakým postupom spôsob́ıme, že Lagrangián dostaneme prenásobený nenulovou konštantou, vlastne
sme nič hrozné neurobili - Lagrangeove rovnice sa tým nezmenia (pretože v nich môžeme túto konštantu
vykrátit’. Táto poznámka plat́ı len pre potenciálové sily):

L→ λL =⇒ Lagrangeove rovnice sa nezmenia

Tento prinćıp si demonštrujeme na rovnakom pŕıklade vol’ného pádu, ktorého Lagrangián vyzerá nasle-
dovne:

L (z, ż) =
1

2
mż2 −mgz

z(t) = aZ (T ) , t = bT

1

2
mż2 −mgz =

1

2

(
a

b

?

Z

)2

−mg(aZ)

T = U − L→
(a
b

)2

T − aU =
(a
b

)2

︸ ︷︷ ︸
nevad́ı

(
T − b2

a︸︷︷︸
vad́ı

U

)
= λ(T − U)⇔ b2

a
= 1

Vid́ıme, že sme sa dopracovali k tomu istému výsledku, ako predtým (pre jednoduchost’ sme už gravitačné
zrýchlenie neškálovali).

Pŕıklad: predpokladajme, že doba obehu Mesiaca okolo Zeme je presne jeden mesiac. Ako d’aleko od
Zeme muśı obiehat’ družica s dobou obehu 1 deň, ak Mesiac obieha vo vzdialenosti lm? Podl’a pŕıkladu zo
škálovania Newtonovho gravitačného zákona vieme:

l3m

(30dńı)
2 =

l3d
(1deň)

2 =⇒ l3d = l3m
1

900
≈ l3m

1

1000
=

(
lm
10

)3

Pŕıklad: škálovanie kyvadla. Pracujme s Lagrangiánom kyvadla a pozrime sa, či vieme niečo zistit’

ak budeme škálovat’ vel’ké kmity kyvadla (napr. ako sa zmeńı doba kyvu, ked’ počiatočná výchylka sa
zdvojnásob́ı?):

ϕ̈+
g

l
sin (ϕ) = 0→ 1

b2
fϕ̈+

g

al
sin (fϕ) =

f

b2

[
ϕ̈+

b2

af

g

l
sin
(
fϕ︸︷︷︸
?

)]
= 0

Vid́ıme, že ak f -krát preškálujeme výchylky kyvadla, nič sa o jeho správańı nedozvedáme - neexistuje
totiž možnost’, ako z tejto rovnice dostat’ pôvodnú rovnicu nejakými úpravami pre všeobecné f (pôvodný
tvar nedosiahneme žiadnou netriviálnou vol’bou a a b). Je tomu tak, pretože správanie kyvadla, ako sme už
videli v predošlých častiach, je vel’mi exotické - pokial’ je počiatočná výchylka 90 stupňov, jej zdvojnásobeńım
dostaneme nekonečnú dobu kyvu, ak sú však výchylky malé (tak malé, že budeme so zanedbańım sin(x) = x
spokojńı), doba kyvu nezáviśı od počiatočnej výchylky (malej).
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3.4 Problém dvoch telies

Problém dvoch telies je populárny a zároveň analyticky riešitel’ný v uzavretom tvare, čo ho predurčuje
ako učebnicový pŕıklad rozmanitého využitia prednost́ı Lagrangeovskej mechaniky.

Majme nekonečný, prázdny priestor a v ňom dve bodové telesá hmotnosti m1 a m2, ktoré majú polohu
(voči nejakému nepodstatnému počiatku) ~r1 a ~r2. Predpokladajme, že sila medzi týmito dvoma telesami
sa dá oṕısat’ jedinou funkciou potenciálnej energie U (~r1, ~r2). Skúsenost’ ukazuje, že v takomto nekonečnom
vesmı́re nie je žiaden smer ani bod preferovaný - preto by mohlo platit’, že pri posunut́ı oboch telies o rovnaký
vektor ~a, sa pôsobenie medzi nimi nijako nezmeńı:

U (~r1 + ~a,~r2 + ~a) = U (~r1, ~r2)

Je možné, že týmto obmedzeńım sa nejako zúži počet potencionálne pŕıpustných funkcíı, ktoré by mohli
opisovat’ interakciu týchto dvoch telies. Pod’me nájst’ takú funkciu (najvšeobecneǰsiu možnú), ktorá toto

sṕlňa. Zaved’me nové súradnice ~u a ~v nasledovne:

~u = ~r1 + ~r2 ~v = ~r1 − ~r2

Dostaneme novú funkciu týchto nových súradńıc:

U (~r1, ~r2) = V (~u,~v)

Pozrime sa, čo sa stane s novými súradnicami a s novou funkciou, ked’ sprav́ıme posunutie o vektor ~a:

~r1 → ~r1 + ~a ~r2 → ~r2 + ~a =⇒ ~u→ ~u+ 2~a ~v → ~v

U (~r1, ~r2) = V (~u,~v )→ U (~r1 + ~a,~r2 + ~a) = V (~u+ 2~a,~v )

Ale muśı platit’:

U (~r1, ~r2) = U (~r1 + ~a,~r2 + ~a) =⇒ V (~u,~v ) = V (~u+ 2~a,~v )

To ale znamená, že funkcia V môže závisiet’ len od druhého okienka, premennej ~v, no nie od prvého
okienka, premennej ~u. Pre pôvodnú funkciu U to znamená zúženie zo všetkých možných kombinácii vektorov
~r1 a ~r2 na také, kde daná funkcia záviśı len od kombinácie ~r1 − ~r2:

U (~r1, ~r2) = U (~r1 − ~r2) (3.36)

Rovnaká podmienka by mala platit’ pre otočenia - ak obe telesá otoč́ım okolo toho istého bodu rovnakým
spôsobom, vzájomné pôsobenie telies sa nemôže zmenit’. Rotácie sa dejú pomocou rotačnej matice A:

~r1 → A~r1 ~r2 → A~r2

Pre funkciu U to má zásadný dôsledok:

U (A~r1 −A~r2) = U [A (~r1 − ~r2)] = U
(
~r1 − ~r2︸ ︷︷ ︸

~r

)
=⇒ U (A~r ) = U (~r ) =⇒ U (~r) = U (|~r|) (3.37)

To je vskutku očakávaný výsledok - potenciálna energia U muśı byt’ konštantná na guli s polomerom r,
teda zo všetkých možných kombinácii nakoniec potenciálna energia záviśı len od |~r1 − ~r2|:

=⇒ U (~r1, ~r2 ) = U (|~r1 − ~r2|) = U(r) (3.38)
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Ked’ už sme si ujasnili, od čoho potenciálna energia môže a od čoho nemôže závisiet’, pust’me sa do
riešenia samotného problému s nejakou všeobecnou potenciálnou energiou. Lagrangián tejto sústavy bude:

L
(
~r1, ~r2, ~̇r1, ~̇r2, t

)
=

1

2
m1~̇r

2
1 +

1

2
m2~̇r

2
2 − U (|~r1 − ~r2|) = L

(
~r1, ~r2, ~̇r1, ~̇r2,�Zt

)
Lagrangeove rovnice budú bohužial’ zret’azené (ani jednu nemožno riešit’ bez tej druhej). Zavedieme

teda nové súradnice ~R a ~r, ktorých výhodu spoznáme vel’mi skoro:

(~r1, ~r2)→
(
~R,~r

)
~R =

m1~r1 +m2~r2

m1 +m2
~r = ~r1 − ~r2 (3.39)

Prvá súradnica opisuje polohu hmotného stredu sústavy, druhá súradnica je vlastne spojnica medzi
dvoma telesami. Inverzné transformácie źıskame l’ahko:

~r1 = ~R+
m2

m1 +m2
~r ~r2 = ~R− m1

m1 +m2
~r (3.40)

Lagrangián prejde na tvar:

1

2
m1~̇r

2
1 +

1

2
m2~̇r

2
2 − U (|~r1 − ~r2|) =

1

2
m1

(
~̇R+

m2

m1 +m2
~̇r

)2

+
1

2
m2

(
~̇R− m1

m1 +m2
~̇r

)2

− U(r) =

=
1

2

(
m1 +m2︸ ︷︷ ︸

M

)
~̇R 2 +

1

2

[
m1

(
m2

m1 +m2

)2

+m2

(
m1

m1 +m2

)2
]
~̇r 2 − U(r) =

=
1

2
M ~̇R 2 +

1

2

m1m
2
2 +m2

1m2

(m1 +m2)
2 ~̇r 2 − U(r) =

1

2
M ~̇R 2 +

1

2

m1m2 (m2 +m1)

(m1 +m2)
2 ~̇r 2 − U(r) =

=
1

2
M ~̇R 2 +

1

2

m1m2

m1 +m2︸ ︷︷ ︸
µ

~̇r 2 − U(r)

=⇒ L
(
~R,~r

)
=

1

2
M ~̇R 2 +

1

2
µ~̇r 2 − U(r) ; M = m1 +m2 µ =

m1m2

m1 +m2
(3.41)

Po ceste sme źıskali dve hmotnostné konštanty, prvá vyjadruje celkovú hmotnost’ systému M , druhá je
redukovaná hmotnost’ systému µ15. Pŕıjemným faktom je, že Lagrangián je odseparovaný - rovnice pre ~R sú
samostatné, nezávislé na rovniciach pre ~r:

M ~̈R = 0 −hotovo (3.42)

µ~̈r = ~Fr −treba riešit’ (3.43)

Prvá rovnica jednoznačne vyjadruje, že hmotný stred sústavy nesmie robit’ žiadne psie kusy - maximálne
sa môže pohybovat’ rovnomerne priamočiaro. Druhá rovnica je podstata problému dvoch telies a pri zadanej
sile (potenciáli) a počiatočných podmienkach vieme vypoč́ıtat’ trajektóriu v čase. Druhú rovnicu môžeme
ešte viac zjednodušit’. Vieme, že silové pole je centrálne:

~Fr = −~∇U = −1

r

∂U

∂r
~r = α (~r ) ~r

15Mimochodom, jedná sa o polovicu harmonického priemeru hmotnost́ı m1 a m2.
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Ak je silové pole centrálne16, potom nutne moment sily je nulový:

~M = ~r × ~F = ~r ×
(
−1

r
U ′~r

)
= ~0

To ale znamená, že moment hybnosti je konštanta:

~̇L = ~M = 0 =⇒ ~L = konšt. (3.44)

Na druhej strane plat́ı:

~L = ~r × ~p =⇒ ~r · ~L = ~r · (~r × ~p ) = 0 (3.45)

Z tejto rovnice vyplýva, že celý pohyb sa deje v rovine, ktorá prechádza počiatkom17. To nás oprávňuje
zahodit’ jednu z troch súradńıc a zaviest’ na opis len dve súradnice, x a y, ktoré sa budú pohybovat’ v niektorej
rovine (určenej už počiatočnými podmienkami). Lagrangián prejde na tvar:

L(x, ẋ, y, ẏ) =
1

2
µ
(
ẋ2 + ẏ2

)
− U

(√
x2 + y2

)
Ukazuje sa, že vhodneǰśı opis by bol v polárnych súradniciach (napr. z argumentu funkcie U zmizne

škaredá odmocnina a jej obsahom bude zase len jedna súradnica, r):

(x, y)→ (r, ϕ) =⇒ L (r, ṙ,�Zϕ , ϕ̇) =
1

2
µ
(
ṙ2 + r2ϕ̇2

)
− U(r)

Sústava má podl’a Lagrangiánu dve zachovávajúce sa veličiny:

�Zt =⇒ E =
1

2
µ
(
ṙ2 + r2ϕ̇2

)
+ U(r) = konšt. I. (3.46)

�Zϕ =⇒ ∂L

∂ϕ̇
= µr2ϕ̇ ≡ w = konšt. II. (3.47)

(3.47 I.) je zákon zachovania energie, (3.47 II.) je zákon zachovania z-zložky momentu hybnosti (čo
sme zistili už trochu vyššie). Z druhého zákona zachovania vyplýva druhý Keplerov zákon:

µr2ϕ̇ = µ
dS

dt
= w =⇒ Ṡ = konšt. =⇒ S = S0 +

w

µ
t (3.48)

Ďalej by sme mohli pokračovat’ zákonom zachovania energie:

1

2
µ
(
ṙ2 + r2ϕ̇2

)
+ U(r) = E

µr2ϕ̇ = w

1

2
µ

(
ṙ2 + r2 w2

µ2r4

)
+ U(r) = E

µ

2
ṙ2 +

w2

2µr2
+ U(r) = E

16Centrálne znamená, že v každom bode priestoru je jeho smer totožný so smerom vektora ~r. Jeho vel’kost’ sme vypoč́ıtali
ako U ′.

17Jediná možnost’, ako urobit’ skalárny súčin nulovým je nulovost’ aspoň jedného z vektorov, alebo ich kolmost’. Tým dostávame

priamo aj odpoved’, v akej rovine sa bude diat’ pohyb - takej, ktorej normála je
1

L
~L.
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Pre zadané U(r) postupujeme nasledujúcim spôsobom:

µ

2
ṙ2 +

w2

2µr2
+ U(r) = E

ṙ2 +
w2

µ2r2
=

2

µ
[E − U (r)]

ṙ2 =
2

µ
E − 2

µ
Uef.(r)

kde Uef.(r) je efekt́ıvny potenciál sústavy:

Uef.(r) ≡
[
U (r) +

w2

2µr2

]
(3.49)

V rovniciach sa prirodzene objavila akási efekt́ıvna potenciálna energia, ktorá v sebe samozrejme skrýva
aj skutočnú potenciálnu energiu dvoch telies. Sme v stave, že ak nám niekto dá konkrétnu potenciálnu
energiu, problém máme vyriešený v kvadratúrach18:

dr

dt
=

√
2

µ

√
E − Uef.(r)ˆ

dr√
2
µ

√
E − Uef.(r)

=

ˆ
dt = t− t0 (3.50)

Vid́ıme, že ak by sme poznali U(r) (a vedeli vypoč́ıtat’ daný integrál v elementárnych funkciách), dostali
by sme riešenie t(r). To je takmer to isté, ako r(t), teda úloha je momentálne vyriešená najviac, ako len
môže byt’ vzhl’adom na parametre, ktoré v úlohe poznáme. Pre uhol ϕ by sme riešenie našli už z r(t) znovu
zo zákona zachovania z-zložky momentu hybnosti:

µr2(t)ϕ̇ = w =⇒ dϕ =
w

µr2(t)
dt =⇒ ϕ =

ˆ
w

µr2(t)
dt (3.51)

Už zo zákona zachovania z-zložky momentu hybnosti vidno, že pohyb v uhle ϕ je monotónny - výraz
w/(µr2) totiž nemeńı znamienko.

Doteraz sa úloha volala všeobecne - problém dvoch telies. Ked’že sme v štádiu, že vel’a toho už pre
všeobecnú potenciálnu energiu nezist́ıme, zavedieme gravitačnú (popŕıpade elektrickú pŕıt’ažlivú) potenciálnu
energiu:

U(r) = −α
r

; α > 0 (3.52)

a problém premenujeme na Keplerovu úlohu19.

18Riešenie v kvadratúrach je riešenie, ktoré je vyjadrené ako:

ˆ
R(r)dr =

ˆ
T (t)dt,

teda ku skutočnému explicitnému riešeniu niečo ešte chýba, čo však nie je až tak podstatné (rozhodne je problém v lepšom
štádiu, ako ked’ je vyjadrený pomocou diferenciálnej rovnice, no v horšom štádiu, akokeby sme mali explicitne r(t)).

19Všimneme si absolútne nepodstatnú vec a to že predtým sme riešili úlohu, ktorá mala v názve ‘problém’ a teraz riešime
problém, ktorý má v názve ‘úlohu’.
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Pre náš problém je potrebný tvar efekt́ıvneho potenciálu:

Uef.(r) = −α
r

+
w2

2µr2
; r0 =

w2

µα
(3.53)

Po zavedeńı r0 môžeme v škále tejto d́lžky naznačit’ graf takéhoto potenciálu. Jeho minimum bude v
r0 a hodnota tohto minima bude −α/(2r0):

r

α 
2r

0

0

_-

U (r)
ef.

r

Obrázok 3.11: Efekt́ıvna potenciálna energia Keplerovej úlohy.

1

2
µṙ2 + Uef. = E (3.54)

V závislosti od celkovej energie E sa život systému rozdel’uje na tri pŕıpady, ktoré spolu nekolidujú
(bez vonkaǰsieho podnetu sa nedá docielit’, aby jeden pŕıpad prešiel na druhý, pretože celková energia je
konštantná):

1. Ak je celková energia nulová (E = 0), potom sa jedno oproti druhému pohybuje po parabole (čo
uvid́ıme neskôr), alebo sú od seba nekonečne d’aleko a nehýbu sa (to je pŕıpad paraboly, ked’ t → ±∞).
Niekomu by sa mohlo podl’a grafu vyššie zdat’, že riešenie r = r0/2 (t.j. koreň Uef.(r) = 0 je tiež pŕıpustné,
no nie je to tak. Nižšie vo vzorci pre ϕ(r) je vidno, že pre r = r0/2 je ϕ(r) nedefinované.

2. Ak je celková energia kladná (E > 0), telesá môžu od seba utiect’ do nekonečna. Rovnako riešenie
r = r̂, kde r̂ je koreňom rovnice E − Uef.(r) = 0, nie je riešeńım pre takúto energiu z rovnakého dôvodu
(nedefinované ϕ(r)). V skutočnosti sa systém s touto energiou pohybuje po hyperbole.

E - U (r)
ef.

r

Obrázok 3.12: Celková energia systému je väčšia ako efekt́ıvna potenciálna energia.
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3. Ak je celková energia záporná (E < 0), telesá sú od seba v istom intervale vzdialené a obiehajú okolo
seba (nemôžu sa oslobodit’):

E - U (r)ef.

r

Obrázok 3.13: Celková energia systému je menšia ako efekt́ıvna potenciálna energia.

Na kompletné pochopenie problému netreba vediet’ vyriešit’ časové závislosti r(t) a ϕ(t), stač́ı nám
závislost’ r(ϕ), respekt́ıve ϕ(r), ked’že práve v týchto závislostiach sa skrýva tvar trajektórie. Z rovńıc 3.47
a 3.4 dostávame:

dϕ =
w

µr2
dt dr =

√
2

µ

√
E − Uef.(r)dt =⇒ dϕ

dr
=

w√
2µ

1

r2
√
E − Uef.(r)

ϕ(r) =

ˆ
w r−2√

2µE + 2µαr−1 − w2r−2
dr (3.55)

Tu už celkom jasne vidno, prečo v pŕıpade E > 0 a E = 0 nie je riešeńım r = konšt., hoci aj také, pre
ktoré plat́ı Uef.(r) = 0, rovnica (3.54) by tým śıce bola splnená, no ϕ(r) by bolo nedefinované.

Integrál vyriešime. Prvou substitúciou prevedieme škaredý integrál na trochu kraǰśı:ˆ
w r−2dr√

2µE + 2µαr−1 − w2r−2
=

[
w r−1 = p

w r−2dr = −dp

]
= −

ˆ
dp√

2µE + 2µα
w p− p2

Výraz pod odmocninou prevedieme na štvorec a následne sprav́ıme druhú substitúciu, ktorá integrál
prevedie na cyklometrickú funkciu:

2µE +
2µα

w
p− p2 = 2µE +

(µα
w

)2

−
(
p− µα

w

)2

=

(
2µE +

(µα
w

)2
)(

1− u2
)

; u =
p− µα

w√
2µE +

(
µα
w

)2
ϕ(r) =

 u =
p−µαw√

2µE+(µαw )
2

dp =

√
2µE +

(
µα
w

)2
du

 = −

ˆ
du√

1− u2
= arccos

[
u
[
p (r)

]]
+ C

Dostávame implicitné vyjadrenie:

ϕ(r) = arccos

 w
r −

µα
w√

2µE +
(
µα
w

)2
+ C
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Konštantu C identifikujeme ako počiatočný uhol ϕ0 a rovnicu upravujeme až do výsledného tvaru:

w
r −

µα
w√

2µE +
(
µα
w

)2 = cos (ϕ− ϕ0)

w

r
=
µα

w
+

√
2µE +

(µα
w

)2

cos (ϕ− ϕ0)

r0

r
= 1 + e cos (ϕ− ϕ0) ; r0 =

w2

µα
, e =

√
1 +

2Ew2

µα2
(3.56)

kde e je excentricita elipsy a ϕ0 je nejaký počiatočný uhol (obe sú v podstate reprezentácie nejakých
počiatočných podmienok).

Toto je rovnica kužel’osečiek20, ktorej parameter výstrednost’ je priamo e. Výraz r0 (ktorý je koreňom
Uef.) je len škálovaćı parameter.

Tri pŕıpady, ktoré sme rozobrali predtým vid́ıme aj teraz:
1. Ak je celková energia nulová (E = 0), potom sa jedno oproti druhému pohybuje po parabole, čo

predstavuje výstrednost’ e = 1.

E = 0 =⇒ r =
r0

1 + cos (ϕ− ϕ0)
(3.57)

Tento pŕıpad hovoŕı o tom, že v čase t → ±∞ sú telesá od seba nekonečne vzdialené a stoja, pretože ked’

r →∞, potom Uef.(r) = 0 a teda aj ṙ = −2Uef./µ = 0.
2. Ak je celková energia kladná (E > 0), výstrednost’ kužel’osečky e je väčšia ako 1 a trajektória je

hyperbola. V tomto pŕıpade tiež plat́ı, že v čase t → ±∞ sú od seba telesá nekonečne vzdialené, no ich
vzd’alovanie pokračuje limitne konštantnou vzájomnou rýchlost’ou.

3. Ak je celková energia záporná (E < 0), výstrednost’ e je v intervale 0 ≤ e < 1, čo predstavuje elipsu
alebo kružnicu. V tomto pŕıpade telesá od seba nemôžu utiect’ a riešenie je periodické v čase. Špeciálnym
pŕıpadom je kružnica, ked’ e = 0:

E = −α
2µ

2w2
=⇒ e = 0 (3.58)

t.j. rovnica E − Uef.(r) = 0 má jediné riešenie - trajektória pohybu s takouto energiou bude kružnica. V
(3.56) to vidno tiež, pre l’ubovol’ný uhol ϕ totiž dostávame:

e = 0 =⇒ r

r0
= 1 =⇒ r ≡ r0 (3.59)

20Conic section, alebo len conic. V literatúre možno nájst’ rovnicu kužel’osečky v tvare:

r0

r
= 1− e cos (ϕ− ϕ0)

Tento tvar sa od nášho ĺı̌si nenápadným znamienkom mı́nus pred e. Riešenie to nijako dramaticky nemeńı, jedná sa len
o otočenie celej situácie o 180◦ v rovine pohybu. Ak chceme mat’ aj my v rovnici silou-mocou mı́nus, stač́ı urobit’ zámenu:
ϕ0 7→ π + ϕ0.
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αμ w2
_

αμ w2
_

αμ w2
_

αμ w2
_

e = 0

αμ w2
_

αμ w2
_

αμ w2
__

1+e
1αμ w2

__

1-
1
e

0 < e < 1

Obrázok 3.14: Trajektória je kružnica, ak E = −α
2µ

2w2
=⇒ e = 0 a elipsa, ak −α

2µ
2w2 < E < 0 =⇒ 0 < e < 1.

αμ w2
_

αμ 
w2
_

2 αμ w2
__

1+e
1αμ w2

__

1-
1
e

e = 1 e > 1

Obrázok 3.15: Trajektória je parabola, ak E = 0 =⇒ e = 1 a hyperbola, ak E > 0 =⇒ e > 1.
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3.5 Malé kmity

Malé kmity sa ukazujú byt’ užitočným nástrojom vo všetkých pŕıpadoch, kedy má systém očividne
minimum potenciálnej energie, no jej funkcia nie je kvadratickou formou v danom bode, teda vratná sila
prislúchajúca okoliu tohto rovnovážneho bodu je nelineárna. Rovnice s takouto nelineárnou vratnou silou sú
v drvivej väčšine neriešitel’né v elementárnych funkciách, no nás poväčšinou zauj́ımajú tzv. módy kmitania,
teda akési separované elementárne kmity rôznych čast́ı systému práve v úzkom okoĺı tohto minima (alebo

rôznych mińım, o ktorých vieme) - módy malých kmitov. Ukazuje sa, že pre potenciálne energie sṕlňajúce
isté podmienky sa malé kmity dajú riešit’ úplne algoritmicky.

Ako pŕıklad môže poslúžit’ rovinné matematické kyvadlo, ktorého pohybová rovnica je:

ϕ̈+
g

l
sin (ϕ) = 0 (3.60)

Typická rozprávka o tejto rovnici je, že ak sú výchylky v uhle ϕ malé (kde malé znamená také, že sme
s malost’ou rozdielu medzi ϕ a sin (ϕ) spokojńı), potom sin (ϕ) ≈ ϕ a rovnica prejde na tvar:

ϕ̈+ ω2ϕ = 0 ; ω2 =
g

l
(3.61)

Skryto sa vlastne pri tomto procese odvolávame na malé kmity. Potenciálna energia má tvar:

U = −mgl cos (ϕ) (3.62)

Vieme, že táto potenciálna energia má v okoĺı ϕ = 0 svoje lokálne minimum, teda je možné, aby systém
kmital v tomto okoĺı, ak sa jeho celková energia privel’mi neĺı̌si od energie v tomto minime:

U (ϕ) = −mgl +
1

2
mglϕ2 +O

(
ϕ4
)

=⇒ U (ϕ) ≈ −mgl +
1

2
mglϕ2 (3.63)

Dosad’me túto energiu do Lagrangiánu a vyjadrime pohybovú rovnicu pre súradnicu ϕ:

L = T − U =
1

2
ml2ϕ̇2 +mgl

(
1

2
ϕ2 − 1

)
ml2ϕ̈+mglϕ = 0

ϕ̈+
g

l
ϕ = 0 (3.64)

Vid́ıme, že dostávame rovnicu totožnú s malými kmitmi rovinného matematického kyvadla. Po ceste sme
sa naučili užitočnú vec - pri rozv́ıjańı potenciálnej energie do Taylorovho radu v okoĺı lokálneho minima stač́ı
zobrat’ členy do druhej mocniny (vrátane), pričom na konštantnom člene nezálež́ı (pri derivácii Lagrangiánu
v pohybovej rovnici aj tak zmizne). Uvažovat’ situáciu v bĺızkom okoĺı minima potenciálnej energie, kde sa
môžeme obmedzit’ na prvý člen Taylorovho rozvoja, vedie na lineárne diferenciálne rovnice. Takéto rovnice
majú l’udia (berúc ohl’ad na zložitost’ ich riešenia) väčšinou radšej ako tie nelineárne. Ak by sa stalo, že v
danej súradnici v danom lokálnom minime je koeficient pri druhej mocnine súradnice nulový, je to problém.
Predstavme si napr. potenciálnu energiu:

U(x) =
1

4
kx4

Tento tvar je sám sebe priamo Taylorovým polynómom (pretože je to polynóm a Taylorov rozvoj
polynómu je...polynóm), no nevid́ıme v ňom žiaden člen, pri ktorom by stálo x2, to je však problém. Pohy-
bová rovnica s takýmto potenciálom totiž bude nelineárna:

ẍ+
k

m
x3 = 0

79



3.5. MALÉ KMITY

Časový vývoj takéhoto oscilátora potrebuje Jacobiho eliptickú funkciu sn (s Eliptickými funkciami
sme sa už stretli pri vel’kých kmitoch kyvadla), periódu kyvu možno za predpokladu poznania maximálnej
výchylky vyjadrit’ ako β-funkciu. Vrát’me sa však k pribĺıženiu malých kmitov.

Všeobecný postup predpokladá, že potenciálna energia systému:

U (q1, q2, . . . , qn) = U (q) (3.65)

má v nejakom bode (Q0) lokálne minimum, teda plat́ı:

∃U (Q0) ∀q ∈ U (Q0) \ {Q0} : E = T + U (q) > T + U (Q0) (3.66)

Potenciálnu energiu potom možno rozvinút’ do Taylorovho radu v tomto okoĺı:

U (q) = U (Q0) +
∂U

∂qi

∣∣∣∣
q=Q0︸ ︷︷ ︸

=0

(qi −Q0i) +
1

2

∂2U

∂qi∂qj

∣∣∣∣
q=Q0︸ ︷︷ ︸

=Kij

=xi︷ ︸︸ ︷
(qi −Q0i)

=xj︷ ︸︸ ︷
(qj −Q0j) +O

[
(q−Q)

3
]

Uvažujme potenciálnu energiu v nových súradniciach xi, ktoré sú ako šité na mieru tomuto problému.
Ich stred sa totiž nachádza priamo v minime starej potenciálnej energie. Nová potenciálna energia nebude
obsahovat’ ani konštantný člen U (Q0), pretože tento aj tak vypadne pri derivácii:

V (x) =
1

2
Kijxixj (3.67)

Matica Kij muśı byt’ kladne definitná ak sa jedná o ostré lokálne minimum21.
Systém ešte obsahuje kinetickú energiu:

T (q, q̇) =
1

2
Tij (q) q̇iq̇j =

1

2
Tij (q) ẋiẋj (3.68)

Posledná rovnost’ plat́ı vd’aka defińıcii xi (lineárne posunutie) a tomu, že premenné vystupujú v kinet-
ickej energii len v derivovanej podobe. Aj Tij možno rozvinút’ do radu v okoĺı Q0:

Tij (q) = Tij (Q0)︸ ︷︷ ︸
Mij

+
���

���
��XXXXXXXX

∂Tij
∂qk

(qk −Q0k) +O
[
(q−Q0)

2
]

Prvý člen je vlastne konštantná matica v danom minime, ktorú sme označili ako Mij . Ukazuje sa,
že v pribĺıžeńı malých kmitov stač́ı brat’ len prvý člen v rozvoji kinetickej energie. Pŕıjemný bonus tejto
aproximácie je, že výsledné pohybové rovnice, ktoré źıskame, sú lineárne. Źıskali sme teda približné tvary
kinetickej a potenciálnej energie v okoĺı daného lokálneho minima potenciálnej energie, z ktorých zostav́ıme
Lagrangián:

T (x, ẋ) =
1

2
Mij ẋiẋj

U (x) =
1

2
Kijxixj

L (x, ẋ) =
1

2
Mij ẋiẋj −

1

2
Kijxixj (3.69)

Pohybová rovnica pre i-tu súradnicu bude:

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0

Mij ẍj +Kijxj = 0 (3.70)

21Algebra 2
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3.5. MALÉ KMITY

Vid́ıme, že táto rovnica obsahuje pre všeobecné Mij a Kij naraz rôzne súradnice x, čiže stupňe vol’nosti
v tomto pŕıpade interagujú. Dobrá správa je, že vhodnou transformáciou súradńıc možno docielit’, aby bola
jedna z mat́ıc jednotková a druhá diagonálna, čo si ukážeme čoskoro. Rob́ıme teda vo všeobecnosti lineárnu
transformáciu súradńıc x:

xi = Aijξj =⇒ ξj =
(
A−1

)
ij
xi

Skúmajme Lagrangián po tejto transformácii:

L
(
ξ, ξ̇
)

=
1

2
MijAik ξ̇kAjlξ̇l −

1

2
KijAikξkAjlξl =

1

2

(
AT
)
ki
MijAjl︸ ︷︷ ︸

=(ATMA)kl

ξ̇k ξ̇l −
1

2

(
AT
)
ki
KijAjl︸ ︷︷ ︸

=(ATKA)kl

ξkξl =

=
1

2
Mij ξ̇iξ̇j −

1

2
Kijξiξj (3.71)

M = ATMA K = ATKA (3.72)

Skúsme docielit’, abyM = ATMA bola jednotková matica. Ďaľsie odvodenie bude skôr úvaha. Prejdime
pomocou matice B ku d’aľśım súradniciam, pre ktoré tentoraz plat́ı:

x
A→ ξ

B→ η ; xi = Bijηj (3.73)

Aj pre tieto súradnice požadujeme, aby v nich bola matica M jednotková (v ξ aj v η):

M→ BTMB = BTB = In (3.74)

Maticu K to postihne nasledujúcim spôsobom:

K → BTKB (3.75)

Vieme, že K je kladne definitná (pretože už pôvodná matica K bola kladne definitná). Potom ak pre
B plat́ı BTB = In, tak BTKB je diagonálna a kladne definitná. Dostávame teda záver, že existuje taká
súradnicová sústava, v ktorej bude matica M jednotková a matica K diagonálna, kladne definitná - čo
znamená, že všetky jej prvky budú kladné. Označme ich teda druhými mocninami:

K = (ω1
2

ω
n

2 (00

Potom Lagrangián sústavy bude:

L =
1

2
δij ẋiẋj −

1

2
Kijxixj =

1

2
ẋ2 − 1

2
ω2
i x

2
i (3.76)

Vid́ıme, že Lagrangián je separovaný na n čast́ı, tak ako aj pohybové rovnice. Pre i-tu súradnicu ξ (vo
vhodnej báze, v ktorej je systém separovaný) dostávame:

ξ̈i + ω2
i ξi = 0

Rovnicu chápeme bez sumačnej konvencie
Pre každú súradnicu v danej vhodnej báze sme dostali rovnicu lineárneho harmonického oscilátora.

Pohyb jednotlivých súradńıc ξ sú vlastne módy kmitania celého systému a jednotlivé ω sú frekvencie týchto
módov.
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K súradniciam x sa dostaneme spätnou transformáciou:

xi = Aijξj(t)

Kmitanie k-teho módu sa vyznačuje tým, že súradnica ξk kmitá a ostatné stoja:

k − ty mód : ξ1(t) = 0 , ξ2(t) = 0 , · · · ξk(t) = Sk cos (ωkt) , · · · ξn(t) = 0

Pozrime sa, ako vyzerá i-ta súradnica x v k-tom móde kmitania:

xi(t) =

n∑
j=1

Aijξj(t) = Ai1

=0︷︸︸︷
ξ1(t) + · · ·+Aikξk(t) + · · ·+Ain

=0︷ ︸︸ ︷
ξn(t) =

=
�
�@
@

∑
AikSk cos (ωkt) =

�
�@
@

∑
Cik cos (ωkt)

Vid́ıme, že v danom k-tom móde kmitania všetky súradnice xi kmitajú s frekvenciou k-teho módu
(alebo nekmitajú vôbec, pokial’Aik = 0).

Ak chceme zistit’ frekvencie módov kmitania v pôvodných súradniciach x, o danom móde plat́ı, že celý
kmitá s jednou frekvenciou:

k − ty mód : x = c cos (ωt) =⇒ ẍ = −cω2 cos (ωt)

Tento poznatok dosad́ıme do pôvodnej pohybovej rovnice (3.70) pre súradnice x:

Mij ẍj +Kijxj = 0

M
[
−cω2 cos (ωt)

]
+K c cos (ωt) = 0(

K − ω2M
)
c cos (ωt) = 0

Pre nenulový vektor c plat́ı, že ak má byt’ táto rovnica splnená, potom nutne:

det
(
K − ω2M

)
= 0 (3.77)∣∣∣∣∣∣∣∣∣

K11 − ω2M11 K12 − ω2M12 · · · K1n − ω2M1n

K21 − ω2M21 K22 − ω2M22 · · · K2n − ω2M2n

...
...

. . .
...

Kn1 − ω2Mn1 Kn2 − ω2Mn2 · · · Knn − ω2Mnn

∣∣∣∣∣∣∣∣∣ = 0 (3.78)

Práve zostavenú rovnicu voláme sekulárna, alebo aj charakteristická rovnica. Vo všeobecnosti je to
vlastne polynóm n-tého stupňa v premennej ω2. To ale znamená, že rovnica det

(
K − ω2M

)
= 0 vedie vo

všeobecnosti na n riešeńı v premennej ω2 a na 2n riešeńı v premennej ω (pričom tieto dve súvisia spolu cez
opačné znamienko, no fyzikálne má zmysel len kladná frekvencia). Ked’ už máme pre každý mód zistenú
jeho frekvenciu, ostáva vyriešit’, ako budú kmitat’ pôvodné súradnice x. K tomu nám pomôže rovnica:

(
K − ω2M

)c1...
cn

 = 0 (3.79)

čo je vlastne sústava lineárnych rovńıc.
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3.5.1 Pŕıklady z kmitov

Malé kmity spriahnutých pruž́ın

Majme spriahnuté pružinky, ako na obrázku:

mk

x x

mk k

1 2

Obrázok 3.16: Spriahnuté pružinky.

Predpokladáme, že tuhosti pruž́ın sú rovnaké a hmotnosti teliesok tiež. Súradnicu teliesok budeme
merat’ od ich pokojových hodnôt (t.j. ked’ sa systém nehýbe a všetci sú spokojńı a pokojńı tam, kde sú).
Naṕı̌seme si potenciálnu energiu:

U (x1, x2) =
1

2
kx2

1 +
1

2
k (x1 − x2)

2
+

1

2
kx2

2 =
1

2

(
x1, x2

)(2k −k
−k 2k

)(
x1

x2

)
=⇒ K =

(
2k −k
−k 2k

)
Vid́ıme, že tvar potenciálnej energie už je v tvare malých kmitov. Kinetickú energiu:

T (x1, ẋ1, x2, ẋ2) =
1

2
m
(
ẋ2

1 + ẋ2
2

)
=

1

2

(
ẋ1, ẋ2

)(m 0
0 m

)(
ẋ1

ẋ2

)
=⇒ M =

(
m 0
0 m

)
,

už nemuśıme upravovat’. Riešeńım sekulárnej rovnice źıskame vlastné frekvencie módov kmitania systému:

(
K − ω2M

)
=

(
2k − ω2m −k
−k 2k − ω2m

)
det
(
K − ω2M

)
= 0 =⇒

∣∣∣∣2k − ω2m −k
−k 2k − ω2m

∣∣∣∣ = 0 =⇒
(
2k − ω2m

)2 − k2 = 0

(
2k − ω2m

)2
= k2 =⇒ 2k − ω2m = ±k =⇒ ω2 =

2k ∓ k
m

ω1 =

√
k

m
ω2 =

√
3k

m

Riešeńım sústavy (3.79) pre vlastné vektory (x1, x2) sa presvedč́ıme o tom, že jednotlivé módy zod-
povedajú kmitaniu guličiek vo fáze a v protifáze:

1. mód : x1(t) = A cos (ω1t+ ϕ1) x2(t) = A cos (ω1t+ ϕ1)

2. mód : x1(t) = A cos (ω2t+ ϕ1) x2(t) = −A cos (ω2t+ ϕ1)
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Malé kmity sférického matematického kyvadla

Majme jeho Lagrangián vo sférických súradniciach, d́lžka kyvadla nech je l0 = konšt.:

L
(
θ̇, ϕ̇, θ, ϕ, t

)
=

1

2
ml20

[
θ̇2 + ϕ̇2 sin2 (θ)

]
+mgl0 cos (θ)

Rozviňme potenciálnu energiu do mocninného radu v okoĺı jej minima, ktoré je určite v θ = 0. Ked’že
sa táto potenciálna energia skladá len z jedného členu (v jednej premennej), bude vyzerat’ jednoducho:

U (θ, ϕ, t) = −mgl0 +
1

2
mgl0θ

2

A tu narážame na problém. Problémom je, že aj ked’ má potenciálna energia v θ = 0 minimum (pre
l’ubovol’né ϕ), nemôžeme položit’ ϕ rovné nule (ani inej konštante), pretože toto minimum plat́ı pre všetky ϕ
(čo vidno aj z toho, že ϕ sa explicitne v potenciálnej energii nenachádza). No ak chceme robit’ malé kmity
tejto sústavy len v premennej θ (pretože ϕ v žiadnom pŕıpade nemá prečo byt’ len malé), muśıme sa pozriet’

na kinetickú energiu a hned’ zbadáme problém. Premenné θ a ϕ sú zret’azené, čo znamená, že bud’ obe naraz
vykonávajú malé kmity, alebo malé kmity nevykonáva ani jedna. Obe naraz nemôžu konat’ malé kmity, lebo
takáto podmienka je pre náš systém nefyzikálna22. Ked’ ani jedna súradnica nekoná malé kmity, sme núteńı
riešit’ pôvodnú sústavu, čo nie je ciel’om tejto úlohy 23.

Nastáva čas na zamyslenie, či je tento problém spôsobený súradnicami, alebo systémom ako takým.
Skúsme sa na systém pozriet’ v kartézskych súradniciach. V takýchto súradniciach (x, y, z) máme pre z v
okoĺı rovnovážnej polohy:

z = −
√
l20 − x2 − y2 (3.80)

Potenciálna energia bude:

U = mgz = −mg
√
l20 − x2 − y2

Rozviňme túto potenciálnu energiu do Taylorovho radu so stredom v (x, y) = (0, 0):

U = −mgl0 +
mg

2l0

(
x2 + y2

)
Kinetická energia:

T =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
ż2 bude:

ż2 =

(
∂z

∂x
ẋ+

∂z

∂y
ẏ

)2

=

(
xẋ+ yẏ√
l20 − x2 − y2

)2

=
x2ẋ2 + 2xyẋẏ + y2ẏ2

l20 − x2 − y2

=⇒ T =
1

2
m

(
ẋ2 + ẏ2 +

x2ẋ2 + 2xyẋẏ + y2ẏ2

l20 − x2 − y2

)
V maticovom tvare:

T =
1

2
m
(
ẋ ẏ

)1 +
x2

l20 − x2 − y2

xy

l20 − x2 − y2

xy

l20 − x2 − y2
1 +

y2

l20 − x2 − y2

(ẋẏ
)

22Predstava sférického kyvadla nás vedie k záveru, že ϕ nemá prečo byt’ ohraničené v malom okoĺı nejakého ϕ0.
23A celkom by sme si aj fandili, keby sme sa o to pokúšali vo všeobecnosti.
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3.5. MALÉ KMITY

Zvol’me teraz v kinetickej energii x = 0 a y = 0 (lebo v okoĺı týchto bodov sa konajú malé kmity) a
naṕı̌sme výsledný Lagrangián (bez konštantných členov):

L =
1

2
m
(
ẋ2 + ẏ2

)
− mg

2l0

(
x2 + y2

)
Vid́ıme, že Lagrangián sa nám rozdelil na dva Lagrangiány, pričom každý z nich opisuje len jednu

súradnicu, bud’ x, alebo y. Potom nečudo, že výsledné Lagrangeove rovnice malých kmitov sférického
kyvadla v minime opisujú izotrópny dvojrozmerný lineárny harmonický oscilátor:

ẍ+
g

l0
x = 0 ÿ +

g

l0
y = 0

Tieto rovnice opisujú dvojrozmerný izotrópny oscilátor – to je taký, ktorý nerozpozná, do ktorého
smeru kmitá24. V oboch osiach na neho pôsob́ı rovnaká sila úmerná výchylke, tento systém má teda jednu
frekvenciu jednoznačne určenú výrazom:

ω2
0 =

g

l0

Ak kyvadlo koná malé kmity v okoĺı x = 0, y = 0, pohybuje sa v priemete do roviny x, y po elipse.
Súradnicu z dopoč́ıtame zo vzt’ahu (3.80).

Vrát’me sa k pôvodnej otázke: je problém v samotnom systéme, alebo v sférických súradniciach?
Očividne sa nám práve podarilo vyriešit’ malé kmity uvažovaného systému v kartézskych súradniciach,
problém teda nebude v systéme, ale v sférických súradniciach. Zobrazenie (x, y) do (θ, ϕ) spôsobilo, že
to čo bolo v (x, y) v malých kmitoch separované, je v (θ, ϕ) zret’azené. Kým pre súradnice x a y znamenajú
malé kmity naozaj malý pohyb v ohraničenom priestore, pre súradnicu ϕ nič také neexistuje. Malé kmity
môže sférické kyvadlo vykonávat’ aj tak, že sa toč́ı dookola bĺızko pri rovnovážnej polohe.

24Ak sa nepozrie na cenovku súradnej osi kúpenej v Tescu, na ktorej stoj́ı ,,kartézska os x (resp. y), drevená, d́lžka: nekonečno,
cena: 5 eur”.
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Malé kmity sústavy n rovinných kyvadiel spriahnutých pružinami**

1 2 3 4

k

l l l l

k kk

Obrázok 3.17: Spriahnuté kyvadlá.

Ukazuje sa, že tentoraz budú na opis kinematiky tohto systému uhly ϕ1, ϕ2, ..., ϕn. Budeme predpokla-
dat’ také rozostupy kyvadiel v rovnovážnych polohách, v ktorých všetky kyvadlá visia zvislo nadol. V malých
kmitoch budeme zanedbávat’ prejavy kyvadlovitosti (a to že s uhlom ϕ sa trochu (alebo aj vel’mi) zmeńı výška,
v ktorej je kyvadlo) na deformáciu pruž́ın (že vo všeobecnom stave je pružina nie vždy vodorovne).

Prepoč́ıtajme súradnice i-teho kyvadla v premennej ϕi, ako aj ich derivácie a kvadráty derivácíı.
Definičný vzt’ah25 pre mapovanie (x, z) do (l, ϕ) je:

xi = l sin (ϕi) =⇒ ẋi = l cos (ϕi) ϕ̇i =⇒ ẋ2
i = l2 cos2 (ϕi) ϕ̇

2
i

zi = −l cos (ϕi) =⇒ żi = l sin (ϕi) ϕ̇i =⇒ ż2
i = l2 sin2 (ϕi) ϕ̇

2
i

(3.81)

Dôležitý detail je, že polohy xi sú brané ako zvislý priemet výchylky kyvadla do súradnej osi x. Absolútna
poźıcia kyvadla v priestore je irelevantná. Kinetická energia sústavy bude:

T =
1

2

n∑
i=1

m
(
ẋ2
i + ż2

i

)
=

1

2
l2

n∑
i=1

m ϕ̇2
i (3.82)

Zápis v podobe kvadratickej formy:

T =
1

2

(
ϕ̇1 · · · ϕ̇n

)

m l2 0 · · · 0

0 m l2 · · · 0
...

...
. . .

...
0 0 · · · m l2



ϕ̇1

·
·
·
ϕ̇n

 (3.83)

Maticu tejto kvadratickej formy označme M .
Zaṕı̌sme teraz potenciálnu energiu sústavy. Tá sa bude skladat’ jednak z potenciálnej energie v gravitačnom

poli a aj potenciálnej energie stlačených, respekt́ıve natiahnutých pruž́ın:

U = Ugrav. + Upruž. =

n∑
i=1

(mg zi) +
1

2

n−1∑
i=1

[
k (xi − xi+1)

2
]

V súradniciach uhlov ϕi prejde potenciálna energia na tvar:

U = −mgl
n∑
i=1

cos (ϕi) +
1

2
k l2

n−1∑
i=1

[sin (ϕi)− sin (ϕi+1)]
2

25Po krátkom rozmysleńı je zrejmé, že je to n úplne rovnakých definičných vzt’ahov.
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Spravme teraz rozvoj potenciálnej energie v okoĺı nulových súradńıc ϕi (čo je zauj́ımavé minimum
potenciálnej energie celej sústavy):

U = −nmgl +
1

2
mgl

n∑
i=1

ϕ2
i +

1

2
k l2

n∑
a=1

n∑
b=1

∂
[∑n−1

i=1 [sin (ϕi)− sin (ϕi+1)]
2
]

∂ϕa∂ϕb
ϕaϕb

Konštantný člen z potenciálnej energie odstránime, adit́ıvna konštanta sa totiž nijako neprejav́ı v po-
hybových rovniciach. Samotný výpočet derivácii robit’ nebudeme, uved’me radšej rovno maticový zápis
potenciálnej energie v okoĺı minima. Označme K maticu kvadratickej formy potenciálnej energie:

K =



ml2
(
g
l + k

m

)
−k l2 0 · · · 0 0

−k l2 ml2
(
g
l + 2k

m

)
−k l2 · · · 0 0

0 −k l2 ml2
(
g
l + 2k

m

)
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ml2
(
g
l + 2k

m

)
−k l2

0 0 0 · · · −k l2 ml2
(
g
l + k

m

)


(3.84)

Potom potenciálnu energiu v okoĺı jej minima možno zaṕısat’ ako kvadratickú formu:

U =
1

2
ϕK ϕT (3.85)

Riešime sekulárnu rovnicu v nasledujúcom tvare:

0 = det
(
K − ω2T

)
= ml2

∣∣∣∣∣∣∣∣∣∣∣∣∣

g
l + k

m − ω
2 − k

m 0 · · · 0 0
− k
m

g
l + 2 k

m − ω
2 − k

m · · · 0 0
0 − k

m
g
l + 2 k

m − ω
2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 0 g
l + 2 k

m − k
m

0 0 0 0 − k
m

g
l + k

m − ω
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.86)

Budeme verit’ tvrdeniu, že táto rovnica má pre premennú ω2 a n oscilátorov naozaj n riešeńı - koreňov.
Ďalej budeme verit’, že všetky riešenia sa dajú naṕısat’ v nasledovnom tvare:

ω2
i = αi

k

m
+
g

l
(3.87)

kde αi sú bezrozmerné konštanty. Tomuto tak celkom nemuśıme iba verit’. Člen g/l totiž po dosadeńı tohto

ansatzu spôsob́ı vyhubenie akejkol’vek zmienky o tiažovom zrýchleńı alebo d́lžky kyvadla v sekulárnej rovnici.
Následne v rovnici ostanú len členy, ktoré obsahujú konštanty k a m a žiadne iné, čiže aj výsledok sa muśı
skladat’ len z týchto členov. To, že to bude práve kombinácia k/m urč́ıme rozmerovou analýzou. Toto nie
je tak celkom košér argumentácia, no ukl’udńı nás inžinierska indukcia26. Zist́ıme, že pre n = 2 máme práve
dva korene, α1 a α2. Pre n = 3 nám vyjdú tri korene, pre n = 4 vyjdú štyri korene atd’. Celá podstata
frekvencíı vlastných kmitov sa odteraz teda skrýva v konštantách αi. Vol’ba ω2

i = − (αi − 2) k/m + g/l by
bola azda logickeǰsia, no teraǰsia vol’ba je názorneǰsia (a lepšie čitatel’ná voči výsledku).

26Ktorej matematická rigoróznost’ pokrivkáva (a ani nechod́ı).
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Dosad’me tvar zvolenej ω do sekulárnej rovnice (3.86):∣∣∣∣∣∣∣∣∣∣∣

(1− α) k −k · · · 0 0
−k (2− α) k · · · 0 0
...

...
. . .

...
...

0 0 0 (2− α) k −k
0 0 0 −k (1− α) k

∣∣∣∣∣∣∣∣∣∣∣
= 0

Tu vid́ıme, že všetky konštanty až na k vypadli. Aj to k môže vypadnút’ (za predpokladu, že k 6= 0):

∣∣∣∣∣∣∣∣∣∣∣

(1− α) k −k · · · 0 0
−k (2− α) k · · · 0 0
...

...
. . .

...
...

0 0 0 (2− α) k −k
0 0 0 −k (1− α) k

∣∣∣∣∣∣∣∣∣∣∣
= (−k)n

∣∣∣∣∣∣∣∣∣∣∣

α− 1 1 · · · 0 0
1 α− 2 · · · 0 0
...

...
. . .

...
...

0 0 0 α− 2 1
0 0 0 1 α− 2

∣∣∣∣∣∣∣∣∣∣∣
= 0

=⇒

∣∣∣∣∣∣∣∣∣∣∣

α− 1 1 · · · 0 0
1 α− 2 · · · 0 0
...

...
. . .

...
...

0 0 0 α− 2 1
0 0 0 1 α− 1

∣∣∣∣∣∣∣∣∣∣∣
≡ |E| = 0 (3.88)

Tu jasne vidno, že argumentácia vyššie sa opiera o (nedokázaný) fakt, ktorý od tohto determinantu
požadujeme: pre každé n má rovnica (3.88) n rôznych reálnych koreňov.

Toto je najviac, čo sa dá vo všeobecnosti povedat’ o n spriahnutých kyvadlách. Táto rovnica ani pre
konkrétne vyššie n nemá

”
pekné korene“. Nasledujú pŕıklady pre konkrétne n ≥ 2 (pre n = 1 máme jediné

kyvadlo s vlastnou frekvenciou
√
g/l).

n = 2: Matica E má tvar: (
α− 1 1

1 α− 1

)
Jej determinant je polynóm druhého stupňa:

(α− 1)
2 − 1 = 0

ktorého korene sú:

α1 = 0 α2 = 2 (3.89)

n = 3: E: α− 1 1 0
1 α− 2 1
0 1 α− 1


Jej determinant je polynóm tretieho stupňa:

(α− 1)[(α− 1)(α− 2)− 2] = 0

ktorého korene sú:

α1 = 0 α2 = 1 α3 = 3 (3.90)
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n = 4: E: 
α− 1 1 0 0

1 α− 2 1 0
0 1 α− 2 1
0 0 1 α− 1


Jej determinant je polynóm štvrtého stupňa:

(α− 1)
[
(α− 2)

2
(α− 1)− (α− 1)− (α− 2)

]
− 1 [(α− 1) (α− 2)− 1] = 0

ktorého korene sú:

α1 = 0 α2 = 2−
√

2 α3 = 2 α4 = 2 +
√

2 (3.91)

Všimneme si isté pravidlo. Riešenie α = 0 sa nám doteraz zakaždým objavilo ako koreň. Plat́ı to
naozaj všeobecne? Vskutku áno, predsa sa jedná o základný mód kmitania akéhokol’vek počtu spriahnutých
kyvadiel. Stač́ı, ak sa kývajú spolu (ich výchylky sú rovnaké v čase), potom sa pružiny do tohto pohybu
neangažujú a dostaneme tak vlastnú frekvenciu, ktorá sa rovná vlastnej frekvencii jedného kyvadla.

Ďaľsie menej zrejmé pravidlo je, že riešenie α = 2 sa objavuje pri každom párnom počte kyvadiel. Prečo
to tak je? Tento fakt sa dá ukázat’, ked’ si predstav́ıme párny počet kyvadiel a spárujeme ich po dvojiciach,
vždy susedné k sebe. Potom mód odpovedajúci tejto vlastnej frekvencii je taký, kedy sa každý takýto pár
kyvadiel kýve k sebe a od seba. Každá pružina v sústave je tak súčasne sprava aj zl’ava stláčaná symetricky.
Keby sa takýto pohyb dial bez angažovania gravitačného pol’a, potom vlastná frekvencia by z

√
k/m narástla

na
√

2k/m. Pružiny sa však do vlastnej frekvencie pri spriahnutých kyvadlách angažujú úplne samostatne,
rovnaká dvojka teda pred člen k/m pŕıde aj v tomto pŕıpade. Toto pravidlo sa dá dokázat’ aj priamo z
úprav determinantu po dosadeńı za α = 2. Ked’že determinant matice nemeńı svoju hodnotu pri prič́ıtańı
a-násobku l’ubovol’ného riadku, alebo st́lpca k inému riadku, alebo st́lpcu, potom môžeme prvý riadok odč́ıtat’

od druhého a prvý st́lpec odč́ıtat’ od druhého a na mieste (2, 2) dostaneme −1. Teraz pripoč́ıtame druhý

riadok ku tretiemu a druhý st́lpec k tretiemu a na mieste (3, 3) dostaneme 1. Tento postup opakujeme až

ku poslednému riadku a st́lpcu - hodnota na mieste (n, n) bude 0, ak n je párne, no zároveň nikde inde už

nenulové č́ıslo v tomto riadku alebo st́lpci nebude - máme nulový determinant. V pŕıpade, že n je nepárne,
táto hodnota bude 2 a vieme, že determinant sa bude poč́ıtat’ ako súčin prvkov na diagonále (vzhl’adom na
to, že prvky mimo diagonály budú nuly), čo je isto nenulové č́ıslo.

Teoreticky sa dá bez problémov pokračovat’ až do n = 6, pretože pre n = 5 bezpečne poznáme jeden
koreň a to α = 0, ktorým ked’ rovnicu vydeĺıme tak dostaneme polynóm štvrtého stupňa. Tento, ak sa aj
nedá upravit’ na jednoduchš́ı tvar, určite je riešitel’ný pomocou radikálov. Pre n = 6 bezpečne poznáme dva
korene a to α = 0 a α = 2, ktorými podeĺıme rovnicu a dostaneme znovu polynóm štvrtého stupňa.

Prakticky je možné ı́st’ d’alej, aj pre vyššie n, jednak numericky, no stále existuje šanca, že polynómy,
ktoré dostaneme, sa budú dat’ rozumne upravit’ na tvar, z ktorých budeme vidiet’ d’aľsie korene pre α.

Ako čerešničku na torte, bez rozmazávania zložitých technických detailov (kl’́učový pojem je Laplaceov
rozvoj a vel’a papiera) máme pre n = 5:

α1 = 0 α2 =
1

2

(
3−
√

5
)

α3 =
1

2

(
5−
√

5
)

α4 =
1

2

(
3 +
√

5
)

α5 =
1

2

(
5 +
√

5
)

(3.92)

A pre n = 6:

α1 = 0 α2 = 2−
√

3 α3 = 1 α4 = 2 α5 = 3 α6 = 2 +
√

3 (3.93)
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Perióda kmitov anharmonického oscilátora**

Je daná potenciálna energia anharmonického oscilátora:

U(x) =
1

2
k |x|α (3.94)

Periódu budeme vyjadrovat’ samozrejme z konštánt, ktoré vystupujú v potenciálnej energii, hmotnosti
a maximálnej výchylky Xm, ktorú máme zadanú. Vychádzame zo zákona zachovania energie, kde celková
energia je rovná energii, ktorá je uložená vo väzbe anharmonického oscilátora, ak sa nachádza v maximálnej
výchylke:

1

2
mẋ2 +

1

2
k |x|α = E =

1

2
k |Xm|α

Nájdeme diferenciál dt:

1

2
mẋ2 +

1

2
k |x|α =

1

2
k |Xm|α

ẋ2 =
k

m
(|Xm|α − |x|α)

dt =
dx√

k
m (|Xm|α − |x|α)

Vd’aka symetrii potenciálnej energie môžme ṕısat’, že pre periódu plat́ı:

Tα (Xm) = 4

ˆ
0

Xm

dx√
k

m
(|Xm|α − |x|α)

= 4

√
m

k

ˆ
0

Xm

dx√
|Xm|α − |x|α

1

X
α/2
m

1

X
α/2
m

= 4

√
m

Xα
mk

ˆ
0

Xm

dx√
1−

(
x

Xm

)α =

=

[
x
Xm

= ξ

dx = Xmdξ

]ξ=1

ξ=0

= 4

√
m

Xα
mk

ˆ
0

1

Xmdξ√
1− ξα

= 4

√
m

Xα−2
m k

ˆ
0

1

dξ√
1− ξα

=

=

[
1− ξα = η

dξ = − 1
α (1− η)

1/α−1
dη

]η=0

η=1

= 4

√
m

Xα−2
m k

ˆ
1

0

− (1− η)
1/α−1

dη

α
√
η

=
4

α

√
m

Xα−2
m k

ˆ
0

1

(η)
1/2−1

(1− η)
1/α−1

dη =

=
4

α

√
Xα−2
m

√
m

k
β

(
1

2
,

1

α

)
=

4

α

√
Xα−2
m

√
m

k

=
√
π︷ ︸︸ ︷

Γ

(
1

2

)
Γ
(

1
α

)
Γ

(
1

2
+

1

α
+ 1

)

Tα (Xm) =
4
√
π

α

√
Xα−2
m

√
m

k

Γ

(
1

α

)
Γ

(
1

2
+

1

α
+ 1

) (3.95)

90



3.5. MALÉ KMITY

Vid́ıme zauj́ımavý fenomén: pre α > 2 vidno, že s rastúcou maximálnou výchylkou sa perióda skracuje.
Toto korešponduje s našou predstavou. Ak α > 2, tak vratná sila odpovedajúca tejto potenciálnej energii
je nelineárna a s narastajúcou výchylkou tvrdne, teda t’ahá viac. Ked’že t’ahá viac, teleso viac urýchl’uje a
teleso rýchleǰsie prejde celý cyklus. Takisto vidno, že jedine kvadratický potenciál má tú výsadu, že perióda
kmitov v takomto potenciáli nezáviśı od výchylky. Ak dosad́ıme za α = 2, dostaneme:

T2 (Xm) =
4

2

√
X2−2
m

√
m

k

Γ
(

1
2

)
Γ
(

1
2

)
Γ

(
1

2
+

1

2
+ 1

) = 2π

√
m

k
=

2π

ω0
, (3.96)

čo je štandardná perióda kmitov lineárneho harmonického oscilátora s tuhost’ou k a hmotnost’ou m.
Na nasledujúcom obrázku vid́ıme závislost’ doby kmitu (hnedá farba - malá doba kmitu, biela farba -

vel’ká doba kmitu) od koeficientu α (os x) a maximálnej výchylky Xm (os y). Pre α = 2 doba kmitu nezáviśı
od Xm.

1 2 3 4

1

2

3

4

T  X     m(    )

α 

X   mm

mα
 

0
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3

[  ]

T  X(    )mα
 

4  πm

α 

Γ 
1
α
_(  )_

Γ 
1
2
_(            )
_

1
α

_+ +1 mX
=

[   ]
k

Obrázok 3.18: Perióda kmitu anharmonického oscilátora v závislosti od α a Xm, k = konšt., m = konšt.
Všimnime si, že ked’ α = 2, tak perióda kmitu nezáviśı od maximálnej výchylky.
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3.6 Pohyb v neinerciálnej vzt’ažnej sústave

Na obrázku je naznačená laboratórna sústava L, ktorá je inerciálna. V tejto sústave sa nachádza iná
sústava S, ktorej počiatok ~R sa vzhl’adom k laboratórnej sústave pohybuje. Označme vektor ~r ako polohu
telesa v neinerciálnej sústave:

L

S

R

r

ρ  
→

 

→

→

Obrázok 3.19: Laboratórna a neinerciálna sústava.

V inerciálnej vzt’ažnej sústave pôsob́ı na teleso sila podl’a Newtonovho zákona sily:

m~̈ρ = ~F (3.97)

Ked’že ~ρ = ~R+ ~r, v sústave S plat́ı iný zákon sily:

m~̈r = ~F −m~̈R (3.98)

Veličinu ~̈R označ́ıme ako ~A - jedná sa o zrýchlenie počiatku neinerciálnej sústavy. Vzorček, ktorý sme
odvodili, plat́ı len pre takú sústavu S, ktorá sa neotáča. Pre sústavu otáčajúcu sa uhlovou rýchlost’ou ~ω
odvod́ıme zložiteǰśı vzt’ah.

Na to, aby sme tak urobili, potrebujeme problém uchopit’ za správny koniec (cez lepš́ı aparát ako len

vektory ~r, ~R, ~ρ a ~ω).
Zavedieme pojem repér - bude to báza niekde v priestore, ktorá bude ortonormálna. Rôzne repéry

môžu byt’ rôzne natočené.

→
e
e

e1

2
3 →

→

ε  

εε

1

23

→ →

→

Obrázok 3.20: Rôzne repéry. Niekedy je možné vytvorit’ si k nim citovú väzbu ich pomenúvavańım - repér
Jano, repér Fero, repér e, repér ε.
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Majme teraz dva repéry e a ε, ktoré budú sediet’ na tom istom mieste, ĺı̌sit’ sa budú len natočeńım.
Ked’že každý repér tvoŕı bázu v trojrozmernom priestore, každý vektor z tohto priestoru možno do

takého repéra rozložit’. Nech vektor ~r má zložky Xi vzhl’adom na repér (čiže bázu) e a zložky xi vzhl’adom
na repér ε. Potom plat́ı:

~r = Xi~ei = xi~εi (3.99)

Nech teraz repér e stoj́ı a jeho osi sú zarovno s laboratórnymi osami. Repér ε sa nejako toč́ı (pričom

stále sed́ı na rovnakom mieste, ako e). Rovnica (3.99) ostáva v platnosti 27, ale vyjadrenie ~̇r sa zmeńı:

~̇r = Ẋi~ei = ẋi~εi + xi~̇εi (3.100)

Vyvstáva otázka, čo je to vlastne ~̇εi. Než ju zodpovieme, odboč́ıme k iným rovniciam, zdanlivo bez
súvisu.

Skúmajme takúto rovnicu:

~̇b = ~ω ×~b, (3.101)

kde ω(t) je dané. Pozrime sa najprv na pŕıpad, ked’ ωi(t) = konšt. Táto diferenciálna rovnica má tvar:

~̇b = A~b,

kde maticu A źıskame z:

[
ω ×~b

]
i

= εijkωjbk
!
= Aikbk =⇒ Aik = εijkωj ; A =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Situáciu skúmajme v báze, kde ~ω má smer b3. Rovnice (3.101) potom prejdú na tvar:

ḃ1 = −ωb2
ḃ2 = −ωb1

(3.102)

Toto je sústava, ktorá opisuje pohyb po kružnici s uhlovou frekvenciou |~ω|. V priestore sa bude vektor
~b točit’ okolo vektoru ~ω uhlovou rýchlost’ou |~ω|. Obrázok:

b
→
ω

 

→

Obrázok 3.21: Rotácia vektora ~b okolo vektora ~ω.

27jediná zmena by spoč́ıvala v pridańı časovej závislosti ku ~εi do zátvorky
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Pŕıpad pre naozajstnú časovú závislost’ ~ω(t) už nie je taký l’ahký, no možno nahliadnut’ podobné
správanie v kratučkom čase dt:

~b (t+ dt) = ~b(t) + dt~̇b(t) = ~b(t) + dt ~ω(t)×~b(t)

Tentoraz sa stihne vektor za čas dt otočit’ o kúsok, ako by to urobil v pŕıpade konštantnej ~ω. Ked’že
sa však ~ω(t) s časom meńı, teda aj vektor a rýchlost’, s akou sa bude ~b(t) točit’ okolo ~ω(t) sa bude menit’.

Spoč́ıtame časovú deriváciu kvadrátu vel’kosti ~b:

d

dt

(
~b ·~b

)
= 2~b · ~̇b = 2~b ·

(
~ω(t)×~b

)
= 0

Z toho však plynie, že vel’kost’ ~b sa v čase nemeńı (pretože sa v čase nemeńı ani jej kvadrát), teda vektor

~b sa pre l’ubovol’nú ~ω(t) pohybuje na sfére. Rovnicu ~̇b = ~ω ×~b teda možno chápat’ ako opis vektora ~b, ktorý

rotuje okolo iného vektora, ~ω, ktorého koniec sa v priestore pohybuje. Rýchlost’ rotácie ~b je určená vel’kost’ou
~ω a jeho okamžitú os rotácie určuje okamžitý smer ~ω.

Toto môžeme priamo zužitkovat’ pri repéroch. Menovite repér ε vraj v čase rotuje, teda určite existuje
~ω(t), ktorý sṕlňa:

~̇εi = ~ω × ~εi (3.103)

Zároveň je vel’mi užitočné pozorovanie, že podl’a tejto rovnice sa vel’kost’ ~εi nemeńı. Také čosi od repéru
požadujeme, je to totiž ortonormálna báza (jej bázové vektory sú jednotkové).

Vrát’me sa k rovnici (3.100):

~̇r = Ẋi~ei = ẋi~εi + xi~̇εi (3.104)

~̇r = ẋi~εi + xi~ω × ~εi = ẋi~εi + ~ω × (xi~εi) = ẋi~εi + ~ω × ~r (3.105)

Vyjadŕıme zrýchlenie telesa v sústave S, teda druhú časovú deriváciu ~r:

~̈r =
d

dt
(ẋi~εi + ~ω × ~r) = ẍi~εi + ẋi~̇εi + ~̇ω × ~r + ~ω × ~̇r =

= ẍi~εi + ẋi~ω × ~εi + ~̇ω × ~r + ~ω × (ẋi~εi + ~ω × ~r) =

= ẍi~εi + 2~ω × ~v + ~̇ω × ~r + ~ω × (~ω × ~r) (3.106)

Dostávame zákon sily v neinerciálnej vzt’ažnej sústave:

m~a = ~F −m~A− 2m~ω × ~v −m~̇ω × ~r −m~ω × (~ω × ~r) (3.107)

kde ~a je zrýchlenie telesa v sústave S, ~F je reálna sila, ktorá naň pôsob́ı, ~A je zrýchlenie sústavy S oproti
inerciálnej sústave L. Druhý člen predstavuje zotrvačnú silu, tret́ı člen je Coriolisova sila, štvrtý Eulerova a
piaty Huyghensova (odstredivá) sila.
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3.6.1 Vol’ný pád telesa na rotujúcu zem

Majme Zem ako ideálnu gul’u s polomerom R, ktorá rotuje okolo osi z (os rotácie prechádza jej stredom)
uhlovou rýchlost’ou ~ω = (0, 0, ω). Predpokladajme, že vlastné zrýchlenie Zeme v dôsledku obehu okolo Slnka

môžeme zanedbat’, tak ako aj veličinu ~̇ω (uhlová rýchlost’ sa nemeńı pŕılǐs). Z výšky h nad povrchom
padá teleso k povrchu Zeme. Vieme, že ak uvažujeme Zem ako statické teleso, potom táto dráha bude
podmnožinou priamky a bod dopadu bude ležat’ na spojnici stredu gule a pôvodného miesta, odkial’ teleso
padalo:

z

h

z

ω

 

h

Obrázok 3.22: Vol’ný pád telesa na stojatú Zem vs. pád na roztočenú Zem.

Do obrázku, na ktorom sa Zem toč́ı (3.22), sme naznačili myslenú trajektóriu, po ktorej by malo teleso
padat’ - odstredivé zrýchlenie stáča trajektóriu k rovńıku, Coriolisova sila v smere rovnobežky.

Problém budeme najprv skúmat’ vo sférických súradniciach (r, θ, ϕ). Uhol θ budeme merat’ od osi Z, čo
je os, okolo ktorej Zem rotuje:

e

e

e

Z

r

θ

φ

θ

φ

X

ω  

Obrázok 3.23: Sférická súradnicová sústava. Uhol θ ∈ 〈0, π〉 je meraný od (význačnej) osi Z, okolo ktorej
sa toč́ı celá Zem. Uhol ϕ je zavedený od nejakej nie vel’mi význačnej osi X.
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K dispoźıcii máme pohybovú rovnicu, ktorá vo vektorovom tvare plat́ı v akejkol’vek sústave:

m~̈r = m~g − 2m~ω × ~̇r −m~ω × (~ω × ~r ) (3.108)

Ciel’om je postupne vyjadrit’ všetky vektory a vektorové operácie vo sférických súradniciach. Poloha
hmotného bodu je daná len vektorom ~er:

~r = r ~er (3.109)

Vel’kost’ uhlovej rýchlosti je ω a smeruje v Z, čo je os, od ktorej sme zaviedli sférický uhol θ. Jej súradnice
teda budú:

~ω = ω cos (θ)~er − ω sin (θ)~eθ (3.110)

Gravitačné zrýchlenie pôsob́ı v smere do stredu Zeme, jeho jediná zložka teda bude v smere ~er:

~g = −g ~er (3.111)

Taktiež budemepotrebovat’ vyjadrenie ~̇r a ~̈r:

~̇r = ṙ ~er + r ~̇er = ṙ ~er + r

(
∂~er
∂r

ṙ +
∂~er
∂θ

θ̇ +
∂~er
∂ϕ

ϕ̇

)
=

= ṙ ~er + r
(
θ̇~eθ + sin (θ) ϕ̇~eϕ

)
= ṙ ~er + rθ̇~eθ + r sin (θ) ϕ̇~eϕ (3.112)

Podobne by sme źıskali aj ~̈r, pre skrátenie výrazov len naṕı̌seme výsledok:

~̈r =
(
r̈ − ṙθ̇2 − rϕ̇2 sin2 (θ)

)
~er +

(
rθ̈ + 2ṙθ̇ − rϕ̇2 sin (θ) cos (θ)

)
~eθ+

+
(
rϕ̈ sin (θ) + 2ṙϕ̇ sin (θ) + 2rθ̇ϕ̇ cos (θ)

)
~eϕ (3.113)

Kvôli d’aľśım odvodeniam je dobré vediet’, ako sa vektorovo násobia jednotlivé jednotkové vektory:

~er × ~eθ = ~eϕ ~er × ~eϕ = −~eθ ~eθ × ~eϕ = ~er (3.114)

Ostatné násobenia sú bud’ nulové, ak sa jedná o dva rovnaké jednotkové vektory, alebo s opačným
znamienkom, ak dva vektory vymeńıme. Odvod́ıme vyjadrenie Coriolisovej sily:

−2m~ω × ~̇r =

= 2mω r ϕ̇ sin2 (θ)~er + 2mω r ϕ̇ sin (θ) cos (θ)~eθ − 2m
(
ω r θ̇ cos (θ) + ω ṙ sin (θ)

)
~eϕ (3.115)

Na rade je vyjadrenie nepŕıjemného člena, dvojitého vektorového súčinu, ktorý budeme potrebovat’ kvôli
odstredivej sile:

~ω × ~r = ω r sin (θ)~eϕ (3.116)

−m~ω × (~ω × ~r ) = mω2r sin2 (θ)~er +mω2r sin (θ) cos (θ)~eθ = mω2r sin (θ) (sin (θ)~er + cos (θ)~eθ) (3.117)

Takýto výsledok by sme aj očakávali - takáto odstredivá sila smeruje kolmo na os otáčania a ,,t’ahá”
objekty d’alej od osi. Jej vel’kost’ je:

|−m~ω × (~ω × ~r )| = mω2r sin (θ) (3.118)

teda naozaj plat́ı, že č́ım bližšie je objekt ku pólom (teda θ sa bĺıži 0 alebo π), alebo č́ı bližšie je ku stredu
Zeme, tým menej naň pôsob́ı odstredivá sila.

96



3.6. POHYB V NEINERCIÁLNEJ VZŤAŽNEJ SÚSTAVE

Teraz môžeme po zložkách naṕısat’ pohybové rovnice hmotného bodu:

r̈ − ṙθ̇2 − rϕ̇2 sin2 (θ) = −g + 2ω rϕ̇ sin2 (θ) + ω2r sin2 (θ)

rθ̈ + 2ṙθ̇ − rϕ̇2 sin (θ) cos (θ) = 2ω r ϕ̇ sin (θ) cos (θ) + ω2r sin (θ) cos (θ)

rϕ̈ sin (θ) + 2ṙϕ̇ sin (θ) + 2rθ̇ϕ̇ cos (θ) = −2ω
(
r θ̇ cos (θ) + ṙ sin (θ)

) (3.119)

Táto sústava je samozrejme pŕı̌serne zložitá, nelineárna a pravdepodobne neriešitel’ná vo všeobecnosti
analyticky. Na nasledujúcich riadkoch sa budeme venovat’ tomu, čo možno zanedbat’, čo za zanedbaniami
zvykne byt’, čo je malé, čo je vel’ké a čo tieto pojmy vlastne znamenajú. Ked’ sa logicky a z nadhl’adu
pozrieme na problém, ktorý riešime, zist́ıme, že oproti pôvodnému problému, teda vol’nému pádu, očakávame
len malé korekcie. Napŕıklad typické rýchlosti, ktoré dosahuje objekt pri vol’nom páde z rozumnej výšky
(rádovo do 100m) sú

√
2gh ≈ 50m/s. Typické doby pádu bývajú

√
2h/g ≈ 5s. Ked’ sa pozrieme na

rovnicu (3.108), vid́ıme v nej oproti členu, ktorý celé padanie zapŕıčiňuje aj členy, o ktorých predpokladáme,
že ich efekt nebude pŕılǐs vel’ký. Tak napŕıklad Coriolisova sila nejako záviśı od súčinu rýchlosti a uhlovej
rýchlosti objektu, teda ak sa zameriavame na rádový odhad tohto efektu, stač́ı nám zobrat’ dopadovú rýchlost’

prenásobenú uhlovou rýchlost’ou rotácie Zeme,
√

2ghω. Zem rotuje s uhlovou rýchlost’ou približne 6 ·10−5m,
z čoho dostávame typické zrýchlenia zapŕıčinené Coriolisovou silou 3 · 10−3m/s2. Typické zrýchlenia od
odstredivej sily zase zist́ıme z výrazu ω2R, kde R je rádovo polomer Zeme (pretože to je typická vzdialenost’

od osi rotácie, ak nie sme bĺızko pólov). Vyjde nám 2 · 10−2m/s2. Z týchto charakteristických zrýchleńı
by nám malo byt’ jasné, že riešenie sa nebude pŕılǐs odchyl’ovat’ od vol’ného pádu na statickú Zem. Do
toho nahliadneme napr. tak, že prenásob́ıme typické zrýchlenia typickým časom (a časom na druhú) a

porovnáme ich s typickými rýchlost’ami (a d́lžkami). Typické rýchlosti pádu sme už zistili, typické rýchlosti
v dôsledku neinerciálnych śıl sú na úrovni 10−3 − 10−2m/s, typické vzdialenosti, do ktorých by tieto sily
mohli teleso zaniest’ sú rádovo 10−2 − 10−1m. Aj za takejto idealizácie vid́ıme, že to je stále zanedbatel’né
oproti rýchlostiam pádu resp. výšok, z ktorých teleso padá. Ked’ máme podozrenie tohto typu, ktoré je
navyše podporené nechut’ou riešit’ nelineárnu sústavu, ktorá nám vyšla, je načase uchýlit’ sa ku procesu,
ktorý nazývame linearizácia. Linearizácia je proces, pri ktorom sa riešené rovnice linearizujú. Čo to presne
znamená? Ako už bolo spomenuté, skúmame vol’né pády z výšok, ktoré sú zanedbatel’né oproti polomeru
Zeme. To znamená, že v súradnici r si vieme reálne predstavit’, že hlavnú úlohu hrá polomer Zeme, výška,
z ktorej púšt’ame teleso, bude malá oproti tomuto polomeru. Ak na začiatku teleso spúšt’ame z výšky h,
potom tvrdenie, je, že h � R, inak povedané, h/R � 1. Veličinu h/R teda môžeme brat’ ako bezrozmerný
parameter ε, ktorý charakterizuje, ako dobrá je aproximácia R ≈ r. Ako prvé teda zavedieme súradnicu z,
ktorá meria polohu hmotného bodu vzhl’adom na Zemský povrch. Nech plat́ı:

r = R+ z =⇒ ṙ = ż, r̈ = z̈ (3.120)

Lokálne teraz zaved’me v mieste (r = R, θ, ϕ) súradnicovú sústavu, ktorej z-zložka je už definovaná
vyššie. Zložku x definujeme tak, že bude v smere rovnobežkoy na východ. Zložka y už nemá na výber, aby
toto bola pravotočivá báza, muśı smerovat’ v smere poludńıka na sever.

Pre prvú rovnicu ukážeme, ako vyzerá lineárizácia v praxi. Najprv predpokladáme, že x a y sú korekcie
ku statickosti pohybu v uhloch θ a ϕ28. To, že očakávame malý pohyb v θ a ϕ naznač́ıme priradeńım:

θ → θ − 1

R
y =⇒ dθ = − 1

R
dy =⇒ θ̇ = − 1

R
ẏ, θ̈ = − 1

R
ÿ (3.121)

ϕ→ ϕ+
1

R sin (θ)
x =⇒ dϕ =

1

R sin (θ)
dx =⇒ ϕ̇ =

1

R sin (θ)
ẋ, ϕ̈ =

1

R sin (θ)
ẍ (3.122)

28Vidno, že pri takto zavedených súradniciach x a y je pohyb vlastne lokálne lineárny, no globálne by sa mala pŕıslušne menit’

súradnica θ a ϕ.
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x

y
z

Z

Obrázok 3.24: Súradná sústava e šitá na mieru pádu na Zem. Os x mieri v smere rovnobežky, os y v smere
poludńıka a os z je kolmá na povrch Zeme. Zemská os je Z, uhol, ktorý zviera z a Z je Θ ∈ 〈0, π〉.

Nasleduje proces linearizácie rovńıc. Otázkou je, ktorý efekt považujeme za malý a ktorý za podstatný.
Ak sa dohodneme, že ε je ten rád, ktorého presnost’ nás zauj́ıma, nedá sa vo všeobecnosti povedat’, či ε/10
je už malé, vieme sa bavit’ len v termı́noch mocńın ε. Ak sa v rovniciach objav́ı čokol’vek, pri čom bude stát’

člen ε2, ε3 a vyššie, vieme, že tieto môžeme s kl’udným svedomı́m vyhodit’. Ak je totiž ε rádu 10−5 a toto je
presnost’, ktorá nás zauj́ıma, potom ε2 je oproti nemu desne malé, resp. nemeratel’né. S touto myšlienkou
dosad́ıme výrazy pre r, θ a ϕ do prvej rovnice a upravujeme ju:

r̈ − ṙθ̇2 − rϕ̇2 sin2 (θ) = −g + 2ω rϕ̇ sin2 (θ) + ω2r sin2 (θ)

z̈ − ż
(

1

R
ẏ

)2

− (R+ z)

(
1

R sin (θ)
ẋ

)2

sin2 (θ) =

= −g + 2ω (R+ z)
1

R sin (θ)
ẋ sin2 (θ) + ω2 (R+ z) sin2 (θ)

z̈ − 1

h
ẋ2ε− 1

h2

(
ẏ2ż + ẋ2z

)
ε2 = −g + 2ω sin ẋ (θ) + ω2 (R+ z) sin2 (θ) +

2ω ẋ z sin (θ)

h
ε

z̈ = −g + 2ω sin ẋ (θ) + ω2 (R+ z) sin2 (θ) +
((((

(((
((((hhhhhhhhhhh

1

h

(
2ω ẋ z sin (θ) + ẋ2

)
ε +
��

���
���XXXXXXXX

1

h2

(
ẏ2ż + ẋ2z

)
ε2

Dostávame tak linearizovanú prvú rovnicu:

z̈ = −g + 2ω sin ẋ (θ) + ω2 (R+ z) sin2 (θ) (3.123)

Táto rovnica, aj ked’ už v lineárnej podobe, podstúpi ešte posledné zanedbanie. Všimneme si, že ak ω
je rádu 10−5s a R rádu 106m, potom člen ω2R je vel’mi malého rádu. Trochu to zachraňuje rozmer Zeme,
no druhý člen v zátvorke, z, je rádu 102m, čo je zanedbatel’né oproti R. Aj ked’ je táto rovnica lineárna, člen
z z pravej strany zahod́ıme, č́ım si podstatne zjednoduš́ıme riešenie29.

29Výsledná sústava s pŕıtomným z na pravej strane je tvaru:

~̈r = A~̇r +B~r + ~P (3.124)

kde A a B sú matice a ~P je konštantný vektor. Riešenie takejto sústavy zahŕňa simultánnu diagonalizáciu mat́ıc A a B, čo je
proces, ktorému je lepšie sa vyhnút’. Ak však zahod́ıme člen B~r, stačilo by diagonalizovat’ len jednu maticu (ako uvid́ıme, aj
tomuto sa možno vyhnút’), čo značne zjednodušuje riešenie.

98



3.6. POHYB V NEINERCIÁLNEJ VZŤAŽNEJ SÚSTAVE

Naṕı̌seme celú linearizovanú sústavu aj s počiatočnou podmienkou - na začiatku objekt ,,stoj́ı” vo výške
h nad Zemou:

ẍ = 2ω ẏ cos (θ)− 2ω ż sin (θ)

ÿ = −2ω ẋ cos (θ)− ω2R sin (θ) cos (θ)

z̈ = −g + 2ω ẋ sin (θ) + ω2R sin2 (θ)

~r (0) =
(
0, 0, h

)
~̇r (0) = ~0

(3.125)

Všimnime si, že druhá a tretia rovnica obsahuje na pravej strane z riešených funkcíı len x, l’avé strany
sú druhé derivácie funkcíı, ktoré sa objavujú na pravej strane prvej rovnice. Zintegrujeme teda s ohl’adom
na počiatočné podmienky druhú a tretiu rovnicu v čase:

ẏ = −2ω x cos (θ)− ω2R sin (θ) cos (θ) t

ż = −gt+ 2ω x sin (θ) + ω2R sin2 (θ) t
(3.126)

Tieto výrazy dosad́ıme do (3.125) (I):

ẍ+ 4ω2x = 2ω
(
g − ω2R

)
sin (θ) t (3.127)

Riešenie tejto rovnice aj s ohl’adom na počiatočné podmienky bude:

x (t) =
g − ω2R

2ω
sin (θ)

[
t− 1

2ω
sin (2ωt)

]
(3.128)

Použit́ım (3.126) a okrajových podmienok (3.125) źıskame y a z:

y (t) =
1

4
sin (2θ)

[( g

ω2
−R

)
sin2 (ω t)− g t2

]
z (t) = h− 1

2
g cos2 (θ) t2 − g − ω2R

2ω2
sin2 (θ) sin2 (ωt)

Dostali sme teda kompletné riešenie pádu na rotujúcu zem:

x (t) =
g − ω2R

2ω
sin (θ)

[
t− 1

2ω
sin (2ωt)

]
y (t) =

1

4
sin (2θ)

[( g

ω2
−R

)
sin2 (ω t)− g t2

]
z (t) = h− 1

2
g cos2 (θ) t2 − g − ω2R

2ω2
sin2 (θ) sin2 (ωt)

(3.129)

Pod’me si rozobrat’ jednotlivé zložky. V zložke x vid́ıme, že v prvom ráde ω t sa nič nedeje:

t− 1

2ω
sin (2ωt) = t− 1

2ω

(
2ωt− (2ωt)

2

2!
+ · · ·

)
=

1

ω

{
(ω t)

2
+O

[
(ω t)

3
]}

(3.130)

x (t) =
g − ω2R

2ω2
sin (θ) (ω t)

2
+O

[
(ω t)

3
]

(3.131)

Prvotný pohyb v súradnici x v čase teda bude parabolický, členy vyššieho rádu predstavujú takmer
nepostrehnutel’nú odchýlku. Ako vid́ıme, člen sin (θ) obmedźı pohyb v súradnici x na póloch. Treba však
podotknút’, že odvodené rovnice sú dostatočne presné až v istej vzdialenosti od pólov, pretože nami zvolené
súradnice majú na póloch singularitu30.

30Nedá sa napr. povedat’, kam mieri súradnica y na póloch.
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V súradnici y nastáva podobná situácia:

y (t) =
1

4
sin (2θ)

[( g

ω2
−R

)
sin2 (ω t)− g t2

]
= −1

4
R sin (2θ) (ω t)

2
+O

[
(ω t)

4
]

(3.132)

V tejto súradnici vid́ıme, že na póloch ani na rovńıku sa pád neodchyl’uje od vol’ného pádu na statickú
Zem, čo je spôsobené členom sin (2θ). Treba poznamenat’, ze práve odstredivá sila má za následok takéto
charakteristiky pádu, čo možno koniec-koncov dokladovat’ aj typickým stáčańım vetrov k rovńıku.

Napokon sa pozrieme na pohyb v súradnici z a hned’ zbadáme istú zradu. Čakali by sme v rovnici
člen −g/2 t2, no pri tomto člene ešte nachádzame cos2 (θ), teda akoby teleso prestalo padat’ na rovńıku, kde
θ = π/2 a cos (θ) = 0. V skutočnosti pre malé ω t je v poslednom člene pŕıtomný výraz, ktorý vykompenzuje
toto správanie:

z (t) = h− 1

2
g t2 +

1

2
R sin2 (θ) (ωt)

2
+O

[
(ω t)

4
]

(3.133)

Slovensko je približne na 48◦ zemepisnej š́ırky, čo znamená θ = 7π/30. Púšt’ajme kameň zo 100 metrovej
jedličky (h = 100m) na rotujúcu zem, ω = 6 · 10−5rad s−1. Uvedieme tri grafy; prvý je závislost’ z(t):

z m[  ]

t s[ ]

Obrázok 3.25: Vývoj výšky z(t) s časom. Nakreslených je viac závislost́ı pre rôzne zemepisné š́ırky, od
severného pólu až k južnému. Červenou farbou je vyznačená závislost’ výšky v čase pre θ = 48◦.

Takto od pohl’adu nie je badat’ rozdiel medzi parabolou h − 1/2 gt2 a funkciou z(t). Pre čas približne
4.5s teleso dopadne na zem, pre vol’ný pád by sme dostali čas 4.515s.

Nasledujú grafy x(t) a y(t):

t s[ ]

x m[  ]

θ = 0, π  

θ = 
π
2
_

θ = 48°

 

 

(a) x(t)

θ = 
π
2
_

0, π,
θ = 
π
4
_

θ = 
π
4
_

,
t s[ ]

y m[  ]

(b) y(t)

Obrázok 3.26: Vid́ıme, že v dôsledku neinerciálnosti Zeme ako vzt’ažnej sústavy pozorujeme odchýlku v
smere x (na východ) aj v smere −y (na juh). Naša zemepisná š́ırka je bĺızka 45◦, čo znamená, že červená
závislost’ je takmer na okraji.
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Z

Obrázok 3.27: V každom mieste na Zemi môžeme zaznačit’, ktorým smerom by sa odchýlil objekt padajúci
z istej výšky na rotujúcu Zem oproti miestu dopadu na statickú Zem.
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3.7. TUHÉ TELESO

3.7 Tuhé teleso

Pod tuhým telesom rozumieme dokonale pevné teleso, ktoré nepodlieha deformáciam pri silovom pôsobeńı.
Dôsledok tejto defińıcie je, že vzdialenost’ medzi akýmikol’vek dvoma bodmi telesa sa zachováva aj pri
pôsobeńı vonkaǰśıch śıl.

3.7.1 Kinetická energia, rotačná energia a moment zotrvačnosti tuhého telesa

V tuhom telese je vždy rozumné zvolit’ si nejaký referenčný bod. Majme teda tuhé teleso a v ňom
referenčný bod, ktorý má polohu ~R(t) (teleso sa môže všelijako hýbat’, táto poloha je teda závislá od času).
Od tohto bodu môžeme určovat’ polohy iných bodov v telese.

L R t

r  t

ρ t  
→

 

→

→

k

k

( )

( )

( )

Obrázok 3.28: Tuhé teleso.

Kinetickú energiu tohto telesa v laboratórnej sústave urč́ıme ako:

T =
1

2

∑
k

mk ~̇ρ
2
k (3.134)

Z obrázku (3.28) vid́ıme, čomu je rovný vektor ~ρ:

~ρk = ~R+ ~rk =⇒ ~̇ρ 2
k =

(
~̇R+ ~̇rk

)2

= ~̇R 2 + 2 ~̇R · ~̇rk + ~̇r 2
k (3.135)

T =
1

2

∑
k

mk︸ ︷︷ ︸
=M

~̇R 2 +M ~̇R · 1

M

∑
k

mk~̇rk︸ ︷︷ ︸
~̇rT

+
1

2

∑
k

mk~̇r
2
k (3.136)

Vid́ıme, že druhý člen obsahuje zmenu polohy t’ažiska voči referenčnému bodu. Ak však referenčný bod
~R stotožńıme s t’ažiskom, potom stredný člen v kinetickej energii vypadne:

T =
1

2
M ~̇R 2 +

1

2

∑
k

mk~̇r
2
k (3.137)

Teraz už plati, že ~R je poloha t’ažiska a jednotlivé polohy ~rk sú vzhl’adom na toto t’ažisko. No ked’že
rozoberáme tuhé teleso, polohy ~rk nemôžu robit’ nič viac, ako pohybovat’ sa po sfére okolo ~R. Ak by menili
svoju vzdialenost’ od t’ažiska, už by sa nejednalo o tuhé teleso. Z predošlej časti o neinerciálnych vzt’ažných
sústavách vieme, že ak sa nejaký vektor pohybuje po sfére, jeho pohyb možno oṕısat’ nasledujúcou rovnicou
pre ~ω(t):

~̇rk = ~ω × ~rk (3.138)
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V súlade s touto rovnicou prejde kinetická energia telesa na tvar:

T =
1

2
M ~̇R 2 +

1

2

∑
k

mk (~ω × ~rk)
2

(3.139)

Prvý člen je kinetická energia hmotného bodu s hmotnost’ou celého telesa sústredenej v t’ažisku. Druhý
člen muśı predstavovat’ rotačnú energiu tuhého telesa:

Trot. =
1

2

∑
k

mk (~ω × ~rk)
2

=
Davis cup identity
· · · · · · · · · · · · =

1

2

∑
k

mk

(
~ω 2~r 2

k − (~ω · ~rk)
2
)

=

=
1

2
ωiωj

∑
k

mk

[
δij~r

2
k − (~rk)i (~rk)j

]
Zistili sme, že rotačná energia telesa je rovná:

Trot. =
1

2
ωiωjJij ; Jij =

∑
k

mk

[
δij~r

2
k − (~rk)i (~rk)j

]
(3.140)

Tenzor Jij budeme volat’ tenzor momentu zotrvačnosti. Jeho vyjadrenie v integrálnom tvare bude:

Jij =

˚

V

[
δij~r

2 − xixj
]

dm =

˚

V

ρ (~r )
[
δij~r

2 − xixj
]

dV (3.141)

kde V je objem, ktorý zaberá teleso. Je zjavné, že tenzor momentu zotrvačnosti je symetrický.
Moment hybnosti ~L poč́ıtame ako:

Li =
∑
k

(~rk × ~pk)i =
∑
k

mk [~rk × (~ω × ~rk)]i = · · · = ωj
∑
k

mk

[
δij~r

2
k − (~rk)i (~rk)j

]
= Jijωj (3.142)

Všimnime si istú analógiu medzi hybnost’ou a momentom hybnosti. Hybnost’ je daná súčinom hmotnosti
a rýchlosti telesa, kde hmotnost’ je skalár. Moment hybnosti je daný ako súčin momentu zotrvačnosti a uhlovej
rýchlosti, kde moment zotrvačnosti je tenzor. Teda vo všeobecnosti, kým hybnost’ a rýchlost’ majú rovnaký
smer a orientáciu (pretože hmotnost’ je kladná konštanta), moment hybnosti má vo všeobecnosti iný smer,
ako uhlová rýchlost’. Stále však plat́ı, že vzt’ah medzi momentom hybnosti a uhlovou rýchlost’ou je lineárny.
Moment zotrvačnosti teda môžeme chápat’ ako lineárny operátor operujúci na uhlových rýchlostiach, ktorého
výsledkom sú momenty hybnosti. M-násobok rýchlosti sa tiež istým spôsobom dá chápat’ ako lineárny
operátor, ak tento násobok vhodne zaṕı̌seme:

~p (~v) = m~v ~L (~ω ) = J ~ω

pi = mvi = mδijvj Li = Jijωj
(3.143)

Vid́ıme, že v pŕıpade hybnosti hrá úlohu lineárneho operátora tenzor mδij , v pŕıpade momentu hybnosti
je ńım tenzor Jij .

Podobnú analógiu vieme nájst’ medzi kinetickou a rotačnou energiou. Kým kinetická energia je (1/2)m~v 2,
rotačná energia je (1/2)Jijωiωj , teda má tvar kvadratickej formy. Kinetická energia je tiež kvadratická forma,
môžeme to nahliadnut’ znovu správnym (trochu zbytočným) rozṕısańım:

T (~v) =
1

2
m~v 2 Erot. (~ω) =

1

2
~ωJ~ω

T (~v) =
1

2
vimδijvj Erot. (~ω) =

1

2
ωiJijωj

(3.144)

V pŕıpade kinetickej a rotačnej energie sú pŕıslušné matice kvadratických foriem rovnaké, ako v pŕıpade
hybnosti a momentu hybnosti.
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p
v

→

→

L

ω

 

→

→

Obrázok 3.29: Kým hybnost’ a rýchlost’ majú rovnaký smer aj orientáciu, pri momente hybnosti a uhlovej
rýchlosti to už tak nemuśı byt’.
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Obrázok 3.30: Všeobecný vzt’ah medzi kinetickou energiou a rýchlost’ou je jednoducho (1/2)m~v 2, kdežto
rotačná energia je kvadratická forma, ktorej matica je moment zotrvačnosti.

Tenzor momentu zotrvačnosti, o ktorom bola doteraz reč, je matica, ktorej každá zložka je poč́ıtaná
vzhl’adom na nejakú bázu v telese. Ak už taký tenzor momentu zotrvačnosti máme vypoč́ıtaný, potom
operácie, ktoré sme doteraz opisovali, ako napr. výpočet momentu hybnosti, alebo uhlovej rýchlosti, tiež
rob́ıme v tejto báze. Tento fakt nám dáva možnost’ výberu baźy. Ak sa nám zdajú byt’ integrály, ktoré treba
poč́ıtat’ na źıskanie momentu zotrvačnosti v danej báze t’ažké, máme možnost’ si vybrat’ lepšiu bázu. Navyše
vždy (pre každé teleso akéhokol’vek tvaru) existuje báza, v ktorej je moment zotrvačnosti diagonálna matica,
čo zužuje počet nutných výpočtov na najviac tri.

α

 

β
 

Obrázok 3.31: Obtiažnost’ výpočtu momentu zotrvačnosti záviśı od výberu bázy. V báze β sa bude moment
zotrvačnosti očividne poč́ıtat’ lepšie, ako v báze α.
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Teraz si ukážeme dôkaz tvrdenia, že vo vhodnej báze má moment zotrvačnosti diagonálny tvar. Najprv
dokážeme, že pri štandardnom otočeńı bázy e (t.j. otočeńı každého jeho prvku ~ei) pomocou ortogonálnej
matice A sa matica Jij transformuje podl’a klasického vzt’ahu: J → AJ A−1. Ortogonálna matica A muśı

sṕlňat’ vzt’ah:

ATA = AAT = I3 =⇒ AT = A−1

AikA
T
kj = ATikAkj = δij =⇒ ATij = A−1

ij

(3.145)

kde transpoźıcia v indexoch zamieňa poradie indexov:

ATij = Aji (3.146)

Vychádzame z defińıcie Jij v báze e:

Jij =

˚

V

(
δij~r

2 − xixj
)

d3x (3.147)

Rozmysĺıme si, že po otočeńı bázy e do novej bázy: ~ei → A~ei sa aj každý vektor ~r otoč́ı podl’a rovnakého
vzt’ahu: ~r → A~r. Tento fakt teda využijeme v defińıcii Jij (3.147):

~r → A~r · · · xi → Aijxj =⇒ Jij →
˚

V

(δijAabxbAacxc −AimxmAjnxn) d3x (3.148)

Výraz pod integrálom postupne upravujeme za využitia (3.145) a (3.146):

δijAabxbAacxc −AimxmAjnxn = δij A
T
baAac︸ ︷︷ ︸
=δbc

xbxc −Aimxmxn ATnj︸︷︷︸
=A−1

nj

= δij~r
2 −AimxmxnA−1

nj (3.149)

V druhom člene už vid́ıme žiadaný jav, maticu A zl’ava a inverznú maticu A−1 sprava. Dané matice
však chýbajú v prvom člene. Ako sme mali možnost’ si overit’, na skalár ~r 2 transformácia nemá žiaden
efekt31, teda ani pripisovanie mat́ıc nemá žiaden efekt. Inú vec, ktorú sme diskrétne preskočili, je fakt, že aj
tenzory treba pri zmene bázy obložit’. Vo vyjadreńı Jij je pŕıtomný tenzor δij , na ktorý sme zabudli. No po
obložeńı tenzora δij maticou transformácie by sme rýchlo zistili, že ani s týmto tenzorom transformácia nič
neurob́ı, môžeme teda podl’a l’ubovôle pripisovat’ transformačné matice zl’ava (a pŕıslušnú inverznú sprava)
bez zmeny výrazov. Akokol’vek sa na to teda pozrieme, teda bud’ ako transformácia δij do inej bázy, alebo
umelé priṕısanie A zl’ava a A−1 sprava32, dostaneme:

δij~r
2 −AimxmxnA−1

nj = AimδmnA
−1
nj ~r

2 −AimxmxnA−1
nj = Aim

(
δmn~r

2 − xmxn
)
A−1
nj (3.150)

~r → A~r =⇒ Jij → Aim

˚

V

(
δmn~r

2 − xmxn
)

d3xA−1
nj = AimJmnA

−1
nj (3.151)

31V teórii relativity by sme povedali, že ~r 2 sa transformuje ako skalár, čo znie trochu paradoxne vzhl’adom na to, že ~r 2 už je
skalár (v zmysle že ho tak voláme).

32Schematický názov tejto metódy je znásilnenie jednotkou (v tomto pŕıpade jednotkovou maticou). Nemenej obl’́ubená
metóda v analýze a algebre je znásilnenie nulou, pretože ako všetci vieme, nulu môžeme beztrestne hocikde prič́ıtat’ a odč́ıtat’,
tak ako môžeme jednotkou beztrestne násobit’ a delit’.
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Už sme dokázali, že pri otočeńı súradnicovej sústavy maticou A sa tenzor momentu zotrvačnosti trans-
formuje žiadaným33 spôsobom:

~r → A =⇒ J → AJ A−1 (3.152)

Teraz však máme návod priamo na to, ako hl’adat’ pŕıslušnú ,,dobrú” telesovú bázu, v ktorej bude tenzor
momentu zotrvačnosti diagonálny. V lineárnej algebre totiž plat́ı veta: ku štvorcovej matici J existuje matica
A taká, že:

J = ADA−1 (3.153)

kde A je matica prechodu pozostávajúca z vlastných vektorov J a D je diagonálna matica s vlastnými
hodnotami J na diagonále. V našej situácii plat́ı, že J je diagonalizovatel’ná ortogonálnou maticou34, čo sú
presne tie matice, ktorými sprostredkúvame otáčanie bázy.

Výsledok tejto analýzy je cenný aj v nasledujúcom zmysle: ked’ sa rozhodneme prepoč́ıtat’ tenzor mo-
mentu zotrvačnosti do inej bázy, nemuśıme znovu poč́ıtat’ pŕıslušné integrály, stač́ı poznat’ maticu prechodu
medzi bázami35.

Pozrime sa teraz na to, aké rôzne tvary telies z hl’adiska ich momentu zotrvačnosti môžeme dostat’.
Moment zotrvačnosti je už vypoč́ıtaný vzhl’adom na dobrú telesovú bázu, v ktorej má diagonálny tvar,
J = diag (J1, J2, J3). V skutočnosti teda môžu nastat’ len 4 možnosti:

1. J1 = J2 = J3: ide o telesá napohl’ad pravidelného tvaru, kde pohl’ad z rôznych ośı sa nedá rozoznat’,
napr. gul’a, ale aj kocka, pravidelný štvorsten, osemsten, dvanást’sten, ... Tieto telesá voláme sférický
zotrvačńık.

2. J1 = J2 � J3: je to teleso tvaru vel’mi tenkej paličky, ktoré je uložené na osi z. Voláme ho rotátor.
3. J1 = J2, J3 > 0: ide o telesá, ktoré majú nezanedbatelné rozloženie hmoty aj mimo osi z (narozdiel

od rotátora), no ich tvar je tiež odolný voči zámene prvých dvoch ośı. Jedná sa napr. o kužel’ postavený v
smere osi z, hranol s podstavou tvaru štvorca, valec, ... Tieto telesá voláme symetrický zotrvačńık.

4. J1 6= J2 6= J3 6= J1 je to tak nepravidelné teleso, aby jeho zložky momentu zotrvačnosti neboli
rovnaké, teda napr. stolička, postel’, bicykel, ... Teleso s takýmto momentom zotrvačnosti voláme asymetrický
zotrvačńık.

Tieto 4 možnosti pokrývajú všetky možné tvary telies, čokol’vek iné (napr. J1 � 0, J2 = J3, teda tenká
palička na osi x) možno dostat’ rotáciou niektorého z už oṕısaných telies (teda takú tenkú paličku uloženú
na osi x tiež budeme volat’ rotátor a je to teleso, ktoré spadá do kategórie 2.).

33Lepšie povedané, očakávaným spôsobom. Ono to nie je tak, že by si tenzory mohli vyberat’, ako sa budú transformovat’,
my to od nich čakáme. Ak to nerobia, sú neslušné, je to niečo ako ked’ človek nepozdrav́ı, ked’ pŕıde na návštevu. Našt’astie sa
zdá, že v tomto pŕıpade nám spadol do lona slušný tenzor (ináč by bolo vel’mi bolestivé každé jeho prepoč́ıtanie do inej bázy).

34Tento fakt vyplýva z toho, že J je reálna a symetrická matica.
35Násobenie mat́ıc sa vo všeobecnosti považuje za jednoduchšiu úlohu ako poč́ıtanie integrálov. Ospravedlňujeme sa

extrémistom, ktoŕı obl’ubujú v́ıkendový masochizmus v podobe konzumovania Demidoviča.
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3.7.2 Steinerova veta a veta o kolmých osiach*

Plat́ı nasledujúca veta (Steinerova) o rovnobežných osiach36: Moment zotrvačnosti tuhého telesa podl’a
osi O prechádzajúcej jeho t’ažiskom označ́ıme J , vid’ obrázok (3.32). Pre danú os o rovnobežnú s osou O je
moment zotrvačnosti rovný:

j = J +M ~R 2 (3.154)

kde R je vzdialenost’ medzi osami o a O a M je hmotnost’ uvažovaného telesa.
Dôkaz:
Moment zotrvačnosti podl’a osi o poč́ıtame podl’a vzt’ahu:

j =

˚

V

~r ′2dm

kde r′ je vzdialenost’ elementu hmoty tuhého telesa od osi o a plat́ı preň kośınusová veta:

~r ′2 = ~r 2 + ~R 2 − 2~R · ~r = ~r 2 + ~R 2 − 2
∣∣∣~R∣∣∣ |~r | cos (θ)

j =

˚

V

(
~r + ~R

)2

dm =

˚

V

~r 2dm+ ~R 2

˚

V

dm− 2
∣∣∣~R∣∣∣˚

V

|~r | cos (θ) dm

V prvom člene spoznávame pôvodný moment zotrvačnosti, stredný člen udáva ~R 2 - násobok hmotnosti
telesa. V poslednom si všimneme, že výraz |~r | cos (θ) vlastne udáva priemet vektora ~r do osi spájajúcej O s
o. Tento integrál teda udáva M - násobok priemetu (do osi spájajúcej O a o) vzdialenosti t’ažiska telesa od
osi O, čo je však nula, pretože os O prechádza t’ažiskom.

j = J +M ~R 2

Ako vid́ıme, Steinerova veta vlastne hovoŕı o tom, že moment zotrvačnosti okolo osi rovnobežnej s
osou prechádzajúcou t’ažiskom, je rovný pôvodnému momentu zotrvačnosti zväčšenému o hodnotu momentu
zotrvačnosti hmotného bodu hmotnosti M vzdialenému R od osi otáčania (akoby sme celé teleso skoncen-
trovali na jednu os, alebo do jedného bodu).

36Parallel axis theorem.
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Obrázok 3.32
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Plat́ı nasledujúca veta o kolmých osiach37: t’ažiskom daného planárneho telesa prechádzajú dve navzájom
kolmé osi x a y ležiace v jeho rovine, Pŕıslúšné momenty zotrvačnost́ı vzhl’adom na tieto osi označ́ıme Jx a
Jy. Moment zotrvačnosti Jz podl’a osi z kolmej na x aj y, taktiež prechádzajúcej t’ažiskom telesa je rovný
súčtu momentov zotrvačnosti Jx a Jy:

Jz = Jx + Jy (3.155)

Dôkaz: poč́ıtajme výraz Jx + Jy v báze tvorenej osami x, y a z:

Jx + Jy =

˚

V

(
y2 + z2

)
dm+

˚

V

(
x2 + z2

)
dm

Ked’že hmota telesa je rozložená len v rovine xy, objem V je množina bodov, pre ktoré určite plat́ı
z = 0. Z oboch integrálov teda tento člen vymažeme (pretože integrujeme len cez podmnožinu roviny z = 0)
a dostaneme tak výraz:

Jx + Jy =

˚

V

y2dm+

˚

V

x2dm =

˚

V

(
x2 + y2

)
dm = Jz

x

y

z

Obrázok 3.33

Vetu o kolmých osiach možno jednoducho rozš́ırit’ aj na telesá, ktorých hmotnost’ nie je rozložená v
jednej rovine. V takom pŕıpade sa vrátime ku výrazu Jx + Jy:

Jx + Jy =

˚

V

(
y2 + z2

)
dm+

˚

V

(
x2 + z2

)
dm =

˚

V

(
x2 + y2

)
dm+

˚

V

2z2dm (3.156)

Prvý integrál udáva moment zotrvačnosti okolo osi z, druhý integrál má nezápornú podintegrálnu
funkciu v celej oblasti integrovania. Pre teleso, ktoré je rozložené v priestore dokonca plat́ı, že podintegrálna
funkcia je kladná. Z toho dostávame trojuholńıkovú nerovnost’ pre momenty zotrvačnosti okolo navzájom
kolmých ośı:

Jx + Jy ≥ Jz (3.157)

Rovnost’ nastáva, ak je hmotnost’ telesa rozložená v jednej rovine.

37Perpendicular axis theorem
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3.7.3 Kinematika vol’ného sférického zotrvačńıka

Ako už bolo spomenuté, jedná sa o telesá pravidelného tvaru vo všetkých osiach, napr. gul’u, kocku, ...
Tieto telesá majú zauj́ımavú vlastnost’ a to, že ich moment zotrvačnosti je rovnaký v každej báze, ktorú by
sme si v telese vybrali. Podl’a obrázku (3.31) by sa zdalo, že kocka má iný moment zotrvačnosti v iných
bázach, no nie je tomu tak. Táto vlastnost’ sa dá jednoducho ukázat’ aj všeobecne. Majme tenzor momentu
zotrvačnosti nejakého telesa v niektorej báze, v ktorej má tento tenzor diagonálny tvar. Môžeme pre neho
ṕısat’:

Jij = Jδij (3.158)

Prechod do inej bázy (napr. z bázy ε do bázy e) sa deje pomocou matice rotácie A:

~ei = Aij~εj (3.159)

Rovnakým spôsobom sa transformuje moment zotrvačnosti J na moment zotrvačnosti J ′ v novej báze:

J ′ij = Aai︸︷︷︸
=(AT )ia

AbjJδab =
(
AT
)
ia
JδabAbj = J

(
AT
)
ia
Aaj = Jδij

J ′ = J (3.160)

Pre takéto telesá má moment hybnosti vždy rovnaký smer, ako uhlová rýchlost’:

Li = Jijωj = Jδijωj = Jωi

~L = J~ω ~L ‖ ~ω (3.161)

Nudnost’ sférického zotrvačńıka demonštruje pŕıklad o vol’nom sférickom zotrvačńıku. Ked’že je vol’ný,
nepôsobia naň žiadne momenty śıl a jeho moment hybnosti je konštantný. V laboratórnej báze je moment
zotrvačnosti rovnaký, ako v telesovej a moment hybnosti má rovnaký smer, ako uhlová rýchlost’. Tým pádom
zvonku pozorujeme, že teleso sa maximálne ako celok pohybuje niektorým smerom rovnomerne priamočiaro
a vykonáva pritom rovnomerný otáčavý pohyb okolo niektorej pevnej osi. Ako uvid́ıme, vol’ný symetrický
zotrvačńık bude vykonávat’ precesiu, na jej popis však potrebujeme zaviest’ d’aľsie pojmy na opis rotácie
telesa (Eulerovy uhly) a odvodit’ pŕıslušné rovnice (Eulerove rovnice).

L = jω 

→ →

Obrázok 3.34: Rotácia vol’ného sférického zotrvačńıka. Moment hybnosti ~L má rovnaký smer aj orientáciu,
ako uhlová rýchlost’ ~ω.
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3.7.4 Eulerove rovnice pre rotáciu tuhého telesa, Eulerove uhly

Eulerove dynamické rovnice

Vieme, že vzt’ah medzi momentom hybnosti a momentom sily v laboratórnej sústave e je:

~L = Li~ei =⇒ ~̇L = ~M (3.162)

V telesovej sústave ε (dobre zvolenej a pevne spojenej s rotujúcim telesom) dostávame podl’a už raz
zistených skutočnost́ı:

~L = Li~εi =⇒ ~̇L = L̇i~εi + Li ~̇εi︸︷︷︸
~ω×~εi

= L̇i~εi + εijkLiωj~εk = L̇i~εi + εibj ~εiLbωj =
(
L̇i + εibjLbωj

)
~εi (3.163)

Z toho pre moment sily vyplýva

Mi = L̇i + εijkωjLk (3.164)

Ked’že poznáme vzt’ah medzi momentom hybnosti a momentom zotrvačnosti, Li = Jijωj , môžeme
moment sily ṕısat’ ako:

Mi = Jijω̇j + εijkωjJkmωm (3.165)

Ked’že Jij je vo vhodnej telesovej báze, je to diagonálna matica, J = diag(J1, J2, J3), a pre jednotlivé
zložky momentu sily dostávame jednoduché vzt’ahy:

M1 = J1ω̇1 + ω2ω3 (J3 − J2)

M2 = J2ω̇2 + ω1ω3 (J1 − J3)

M3 = J3ω̇3 + ω1ω2 (J2 − J1)

(3.166)

Tieto vzt’ahy voláme Eulerove dynamické rovnice pre rotačný pohyb. L’avé strany sú známe veličiny,
zložky momentu sily (tak ako v Newtonovej rovnici poznáme samotnú silu) určené vzhl’adom na dané telesové
osi, pravé strany obsahujú neznáme zložky uhlovej rýchlosti, pre ktoré sa tieto rovnice riešia. Tieto uhlové
rýchlosti nie sú vel’mi názorné na predstavu, pretože sú to priemety uhlovej rýchlosti do telesových ośı. Preto
sa ešte dodatočne vymysleli Eulerove uhly, ktorých znalost’ dáva lepšiu predstavu, ako je teleso v priestore
natočené.
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Eulerove uhly

Tuhé teleso má vo všeobecnosti 6 zovšeobecnených súradńıc: tri sa viažu na jeho pohyb v priestore,
d’aľsie tri slúžia na opis jeho natočenia. Práve na opis natočenia telesa v priestore sa použ́ıvajú Eulerove
uhly - ϕ, θ, ψ.

Predstavme si v priestore hranol (s nerovnakou d́lžkou strán), ktorý je zatial’ postavený v smere labo-
ratórnej osi z. Pred akýmkol’vek otáčańım sa jeho telesové osi zhodujú s laboratórnymi osami. Prvý Eulerov
uhol, ϕ, určuje, o kol’ko pootoč́ıme tento hranol podl’a osi z proti smeru hodinových ručičiek. Natočeńım
hranola sa otáčajú aj jeho telesové osi:

x

y

z → z'

x'

y'

z=

φ

 

Obrázok 3.35: Prvý Eulerov uhol ϕ.

Týmto natočeńım sa telesové osi otočia, teraz ich máme označené jednou čiarkou. Os z′ je zatial’ totožná
s osou z.

Eulerov uhol θ je uhol, o ktorý teraz otoč́ıme teleso podl’a osi x′ prroti smeru hodinových ručičiek:

y'

z'

x' → x''

y''

z''

x'=

θ  

Obrázok 3.36: Druhý Eulerov uhol θ.

Môžme si všimnút’, že ak doteraǰsie uhly ϕ a θ sú tie isté uhly ϕ a θ zo sférických súradńıc, teda os z′′

mieri v smere ϕ a θ vo sférických súradniciach, spojených s laboratórnou sústavou (teda uhol ϕ sa meria od
osi x a uhol θ od osi z).
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Tret́ı Eulerov uhol ψ je uhol, o ktorý otoč́ıme teleso podl’a osi z′′ proti smeru hodinových ručičiek:

x''

y''

z'' → z'''

x'''

y'''

z''=

ψ

Obrázok 3.37: Tret́ı Eulerov uhol ψ.

φ 

θ
 

ψ

 

Obrázok 3.38: Eulerove uhly spolu.
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Eulerove kinematické rovnice

Našou úlohou je teraz vyjadrit’ vzt’ah medzi Eulerovými uhlami (ϕ, θ, ψ) a priemetmi uhlovej rýchlosti
do telesových ośı (ω1, ω2, ω3). Najprv nahliadneme štruktúru tohto vzt’ahu. Eulerove uhly chápeme, pŕısne
vzaté, ako zovšeobecnené súradnice αi. Pozrieme sa, čo s nimi sprav́ı infinitesimálna rotácia v smere, ktorý
určuje vektor ~ω (tento smer je daný jednotkovým vektorom ~n). Táto rotácia zrejme docieli, že z pôvodného
Eulerovho uhlu αi urob́ı nový uhol, αi + dαi. Podstatou bude rozvinút’ zmenu v Eulerovom uhle do prvého
rádu zmeny uhlu (a teda aj času):

~nϕ→ ~nϕ+ ~ndϕ =⇒ αi → αi + dαi (α, ~ωdt) (3.167)

ωidt ≡ dϕi (3.168)

dαi (α, ~ωdt) = dαi

(
α,~0

)
︸ ︷︷ ︸

=0

+dϕj
∂αi
∂ϕj

∣∣∣∣
d~ϕ=~0︸ ︷︷ ︸

=Aij

(3.169)

dαi
dt

=
Aijdϕj

dt
=
Aijωjdt

dt
= Aijωj (3.170)

α̇i = Aij (θ, ϕ, ψ)ωj (3.171)

Zovšeobecnené súradnice α̇i sú derivácie Eulerových uhlov a práve sme zistili, že vzt’ah medzi týmito
deriváciami a uhlovou rýchlost’ou je lineárny - matica, ktorá tento vzt’ah sprostredkúva v skutočnosti záviśı
len od samotných Eulerových uhlov, nie od ich derivácii, ani od ~ω (pretože matica Aij vznikla dosadeńım v
deriváciach za ~ωdt = 0): ϕ̇θ̇

ψ̇

 =

 A (θ, ϕ, ψ)

ω1

ω2

ω3

 (3.172)

Ak sú ale Eulerove uhly dané správne (čo sú, pretože ku každej trojici ϕ, θ, ψ existuje ~ω a ku každej ~ω
existuje ϕ, θ, ψ), potom sa tento vzt’ah dá obrátit’ a dostaneme:ω1

ω2

ω3

 =

 A−1 (θ, ϕ, ψ)

ϕ̇θ̇
ψ̇


(
A−1

)
ij
≡ Bijω1

ω2

ω3

 =

 B (θ, ϕ, ψ)

ϕ̇θ̇
ψ̇

 (3.173)

Na riešenie pŕıkladov s rotáciou telies je nutné poznat’ maticu, ktorá sprostredkúva vzt’ah medzi uhlovou
rýchlost’ou a deriváciami Eulerových uhlov. Uhlovú rýchlost’ ~ω môžeme rozložit’ jednak do telesových ośı ~ε,
jednak do inej, presne definovanej bázy. V prvom pŕıpade budú koeficienty pri daných smerových vektoroch
priamo zložky ~ω, v druhom pŕıpade to budú Eulerove uhly ϕ, θ, ψ:

~ω = ω1~ε1 + ω2~ε2 + ω3~ε3 = ϕ̇~e3 + θ̇ ~N + ψ̇~ε3 (3.174)

Je jasné, že ak teleso rotuje v uhle ψ, rotuje vlastne podla tretej telesovej osi (teda ~ε3), kdežto ked’

rotuje v uhle θ, rotuje podl’a zvlášnej osi, ktorá v laboratórnej sústave záviśı od uhlu ϕ a v telesovej sústave
podl’a ψ. Ak rotuje v uhle ϕ, otáča sa vlastne okolo tretej laboratórnej osi. Plán je teraz odvodit’ vzt’ahy
medzi ~e3, ~N , ~ε3 a ~ε1, ~ε2, ~ε3.

114



3.7. TUHÉ TELESO

θ
 

e

e

e

1

2

3

ε

ε

ε

1

2

3

φ 
ψ

Obrázok 3.39: Osi ~e3 a ~ε3. Os ~N smeruje v smere ~e3 × ~ε3.
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Najjednoduchš́ı vzt’ah je medzi ψ̇ a ~ω, pretože tento Eulerov uhol je okolo ~ε3. Pretože θ je uhol odklonu
medzi ~e3 a ~ε3, os ~N smeruje v smere ~e3 × ~ε3. Tým pádom stač́ı poznat’ rozklad ~e3 do bázy ε a budeme mat’

všetko, čo potrebujeme:

~e3 = a~ε1 + b~ε2 + c~ε3 (3.175)

Ked’že ε je ortonormálna báza, pre koeficienty a, b a c rozkladu ~e3 do tejto bázy plat́ı:

a = ~e3 · ~ε1 b = ~e3 · ~ε2 c = ~e3 · ~ε3 (3.176)

Najjednoduchšie bude určit’ koeficient c, pretože priamo uhol θ určuje odklon tretej telesovej osi od
tretej kartézskej osi. Koeficient c zodpovedá priemetu ~e3 na vektor ~ε3, čo je z defińıcie cos (θ).

Vieme, že koeficient a, ani b sa nemeńı s uhlom ϕ, pretože uhol ϕ otáča telesom okolo samotnej osi ~e3.
Vezmime v rovine určenej vektormi ~e3 a ~ε3 vektor, ktorý bude kolmý na ~ε3. Definujme ho tak, že pre uhol
θ z intervalu 〈0, π〉 bude zložka vektora ~e3 v smere tohto vektora rovná sin (θ). Označme ho ~ε ′3. Ked’že je
kolmý na ~ε3, je možné ho úplne rozložit’ do bázy ~ε1, ~ε2, pretože jeho zložka v smere ~ε3 je nulová.

Zmenou uhla ψ sa meńı poloha telesových ośı ~ε1 a ~ε2 voči laboratórnej sústave, no osi ~e3 a ~ε3 pritom
stoja, teda aj vektor ~ε ′3 stoj́ı. Pred akýmkol’vek otáčańım v uhle ψ mieri vektor ~ε ′3 presne v opačnom smere,
ako ~ε1 (až na pŕıpad, ked’ θ = 0, pretože v tomto pŕıpade je ~ε ′3 nedefinovaný). Rozklad ~ε ′3 do vektorov ~ε1 a
~ε2 začne byt’ zauj́ımavý, až po otáčańı v uhle ψ, pretože nezáviśı na θ ani ϕ. Otočme teda teleso do polohy
(0, π/2, ψ) a skúmajme, aký to má dopad na vektor ~ε ′3. Ked’ ψ = 0, tak os ~ε2 mieri v smere ~ε ′3 a zväčšovańım
ψ sa tento priemet zmenšuje až do uhlu ψ = π/2, kedy je ~ε ′3 v smere ~ε2 nula. Naopak, ked’ ψ = 0, priemet
~ε ′3 do ~ε1 je nulový a zväčšovańım ψ sa tiež zväčšuje. Plat́ı teda:

~ε ′3 = sin (ψ) ~ε1 + cos (ψ) ~ε2 (3.177)

Z toho pre ~e3 dostávame:

~e3 = sin (θ) ~ε ′3 + cos (θ) ~ε3 = sin (ψ) sin (θ) ~ε1 + cos (ψ) sin (θ) ~ε2 + cos (θ) ~ε3 (3.178)

Vektor ~N dostaneme ako súčin ~e3 × ~ε3:

~N ∝ ~e3 × ~ε3 = [sin (ψ) sin (θ) ~ε1 + cos (ψ) sin (θ) ~ε2]× ~ε3 = − sin (ψ) sin (θ) ~ε2 + cos (ψ) sin (θ) ~ε1 (3.179)

~e3 × ~ε3 = |~e3| |~ε3| sin (θ) ~N =⇒ ~N = cos (ψ) ~ε1 − sin (ψ) ~ε2 (3.180)

Z tohto celého môžeme určit’ vzt’ah medzi ~ω a Eulerovými uhlami:

~ω = ϕ̇~e3 + θ̇ ~N + ψ̇~ε3 =

= [sin (ψ) sin (θ) ~ε1 + cos (ψ) sin (θ) ~ε2 + cos (θ) ~ε3] ϕ̇+ [cos (ψ) ~ε1 − sin (ψ) ~ε2] θ̇ + ~ε3ψ̇ =

=
[
sin (ψ) sin (θ) ϕ̇+ cos (ψ) θ̇

]
~ε1 +

[
cos (ψ) sin (θ) ϕ̇− sin (ψ) θ̇

]
~ε2 +

[
cos (θ) ϕ̇+ ψ̇

]
~ε3 (3.181)ω1

ω2

ω3

 =

sin (ψ) sin (θ) cos (ψ) 0
cos (ψ) sin (θ) − sin (ψ) 0

cos (θ) 0 1

ϕ̇θ̇
ψ̇

 (3.182)

Práve sme odvodili Eulerove kinematické rovnice:

ω1 = sin (θ) sin (ψ) ϕ̇+ cos (ψ) θ̇

ω2 = sin (θ) cos (ψ) ϕ̇− sin (ψ) θ̇

ω3 = cos (θ) ϕ̇+ ψ̇

(3.183)
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Eulerove dynamické a kinematické rovnice sa v jednoduchých pŕıpadoch, kedy momenty śıl nezávisia od
Eulerových uhlov, dajú riešit’ oddelene. Najskôr riešime dynamické rovnice, ktorých neznáme sú priemety
uhlového zrýchlenia na telesové osi, ωi. Ich riešenie dosad́ıme do Eulerových kinematických rovńıc, ktoré
následne riešime pre Eulerove uhly ϕ, θ, ψ.

Ked’že sme odvodili obe sady rovńıc, môžeme sa vrátit’ ku vol’nému symetrickému zotrvačńıku.

3.7.5 Ďaľsie pŕıklady*

Dynamika a kinematika vol’ného symetrického zotrvačńıka*

Pre takéto teleso máme J = diag (j, j, J), ked’že dve zložky jeho momentu zotrvačnosti v telesovej báze
sa rovnajú. Označme J − j = k > 0. Ked’že teleso má byt’ vol’né, moment sily, ktorý na neho pôsob́ı je
nulový. Eulerove dynamické rovnice sú:

jω̇1 + kω2ω3 = 0

jω̇2 − kω1ω3 = 0

Jω̇3 = 0 =⇒ ω3 = konšt.

(3.184)

Z prvej rovnice vyplýva:

kω3 = −jω̇1

ω2

Dosad́ıme to do druhej rovnice:

jω̇2 +
jω̇1ω1

ω 2
= 0 =⇒ ω̇1ω1 + ω̇2ω2 = 0

Aby sme si uvedomili, čo sme práve naṕısali, spoč́ıtame:

d

dt
f2(t) =

df

dt
f + f

df

dt
= 2ḟf

Naṕısali sme teda:

ω̇1ω1 + ω̇2ω2 = 0 =⇒ 1

2

d

dt
ω2

1 +
1

2

d

dt
ω2

2 =
1

2

d

dt

(
ω2

1 + ω2
2

)
= 0

=⇒ ω2
1 + ω2

2 = konšt. (3.185)

No ked’že aj tretia zložka uhlovej rýchlosti je konštantná, spolu dostávame:

~ω 2 = ω2
1 + ω2

2 + ω2
3 = konšt. (3.186)

Ked’že ~M = 0, tak ~L je konštantný vektor. Užitočné bude teda nechat’ úplne rovnaké defińıcie Eu-
lerových uhlov vzhl’adom na laboratórne osi, aké sme podali už skôr, nech teda tento konštantný vektor
mieri v smere tretej laboratórnej osi. Ako sme už predtým odvodili, priemet ~e3 do ~ε3 je cos (θ), teda priemet
~L do ~ε3 bude L cos (θ). Avšak vzhl’adom na to, že ω3 je priemet ~ω do ~ε3, tak plat́ı:

L cos (θ) = Jω3 =⇒ cos (θ) =
Jω3

L
= konšt. =⇒ θ = θ0 = konšt. (3.187)

117



3.7. TUHÉ TELESO

To je asi tak všetko, čo sme mali a chceli vymlátit’ z dynamických rovńıc, pokračujeme teda kinematic-
kými:

ω1 = sin (θ) sin (ψ) ϕ̇+ cos (ψ) θ̇

ω2 = sin (θ) cos (ψ) ϕ̇− sin (ψ) θ̇

ω3 = cos (θ) ϕ̇+ ψ̇

L’avé strany zatial’ ponecháme na pokoji, do pravých dosad́ıme hlavné zjednodušenie θ = konšt. =⇒
θ̇ = 0:

ω1 = sin (θ0) sin (ψ) ϕ̇

ω2 = sin (θ0) cos (ψ) ϕ̇

ω3 = cos (θ0) ϕ̇+ ψ̇

(3.188)

Vzhl’adom na konštantnost’ výrazu ω2
1 + ω2

2 môžeme umocnit’ prvé dve rovnice a sč́ıtat’ ich - dostaneme
znovu konštantu:

ω2
1 + ω2

2 = sin2 (θ0) ϕ̇2

Jediná zauj́ımavá neznáma v tejto rovnici je ϕ, pre ktorú teda plat́ı:

ϕ̇ =

√
ω2

1 + ω2
2

sin (θ0)
= konšt. =⇒ ϕ(t) = Ωϕt+ ϕ0 (3.189)

Toto zistenie veselo dosad́ıme do poslednej rovnice (3.188):

ω3 = cos (θ0) Ωϕ + ψ̇

Z čoho pre ψ vyplýva:

ψ̇ = ω3 − cos (θ0) Ωϕ = konšt. =⇒ ψ(t) = Ωψt+ ψ0 (3.190)

Ked’že pri zotrvačńıku nám ide hlavne o vzt’ah medzi Ωϕ, Ωψ a θ0, využijeme (3.189), (3.188) v spojeńı
s konštantnost’ou momentu hybnosti:

Ωϕ =

√
ω2

1 + ω2
2

sin (θ0)

~L = jω1~ε1 + jω2~ε2 + Jω3~ε3 =⇒ L2 = j2
(
ω2

1 + ω2
2

)
+ J2ω2

3 =⇒ ω2
1 + ω2

2 =
1

j2
L2 −

(
J

j

)2

ω2
3

cos (θ0) =
Jω3

L
=⇒ sin (θ0) =

√
1−

(
Jω3

L

)2

=⇒ Ωϕ =
1

j

√
L2 − J2ω2

3

1−
(
Jω3

L

)2 =
L

j
(3.191)

Z tretej rovnice máme (3.188):

ω3 = cos (θ0) Ωϕ + Ωψ =⇒ Ωψ = ω3 − cos (θ0) Ωϕ
(3.187)

=
L

J
cos (θ0)− L

j
cos (θ0) =

=

(
1

J
− 1

j

)
L cos (θ0) (3.192)
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Využit́ım (3.191) dostávame finálny vzt’ah precesnú rýchlost’ Ωϕ v závislosti od Ωψ a θ0:

Ωϕ =
Ωψ(

j

J
− 1

)
cos (θ0)

(3.193)

Zopár (dôležitých) poznámok ku Eulerovým uhlom a precesii:
Poznámka č. 1: v priebehu riešenia sme využili, že moment hybnosti vol’ného telesa je konštantný a

preto sme ho zvolili v smere osi z laboratórnej sústavy. Uvedomı́me si, že tým sme priamo zvolili θ = konšt.
Ak by sme to neurobili, neskutočne by sme si st’ažili riešenie kinematických rovńıc a vo všeobecnosti by nám
vyšli nepekné funkcie θ(t), ϕ(t) a ψ(t). Mnohokrát je treba takýmto spôsobom vyberat’ vhodné natočenie,
bázu, ale ako sme už predtým videli, tak aj zovšeobecnené súradnice. Nemuśı totiž platit’ že to, čo je pekné
v jednej báze, je pekné aj v inej báze.

Poznámka č. 2: Po vyriešeńı dynamických rovńıc vidno, že pre symetrický zotrvačńık už neplat́ı ~ω ‖ ~L.
Miesto toho vidno, že vektor uhlovej rýchlosti ~ω sa sám otáča okolo vektora momentu hybnosti. Mnoh́ı l’udia
tento vzt’ah prezentujú ako precesiu, pričom kinematické rovnice v podstate odignorujú a výsledok pre θ0,
Ωϕ a Ωψ nepovažujú za dôležitý. Pre mňa osobne je precesia (aspoň čo sa týka zotrvačńıkov) to, čo môžem
pozorovat’ vol’ným okom, teda to, čo je zaṕısané v Eulerových uhloch.

Poznámka č. 3: V niektorých knižkách sa Eulerove uhly pomenujú vel’mi sugest́ıvne - uhol θ nazývame
nutačný uhol, ϕ precesný uhol a ψ rotačný uhol. Toto názvoslovie je šité na mieru precesii t’ažkého symet-
rického zotrvačńıka, čo je vlastne zotrvačńık, ktorý sa toč́ı na stole. Zotrvačńık je teda podopretý - jedna sila
na neho pôsob́ı v mieste podopretia priamo nahor, druhá sila pôsob́ı v t’ažisku smerom nadol a ich vel’kosti sú
rovnaké. Tento zotrvačńık vykonáva v uhloch ϕ a ψ podobný pohyb, no v uhle θ pozorujeme ešte kmitanie,
ktoré dostalo názov nutácia. Všetko je absolútne v poriadku, pretože to, čo pozorujeme sa dá pekne od seba
oddelit’ - vid́ıme, že zotrvačńık sa toč́ı okolo vlastnej osi (nazvali by sme to rotáciou), d’alej sa tento pohyb
stáča okolo inej osi (toto nazveme precesiou) a ešte odklon týchto dvoch ośı kmitá v čase (nutácia). Vezmime
si ale znovu symetrický vol’ný zotrvačńık a skúmajme, čo sa deje, ked’ jeho tvar je stále sféricky symetrickeǰśı
(napr. brali by sme elipsoidy, ktoré sa tvarom bĺıžia ku guli). Je zjavné, že pre tieto telesá muśı postupne
ustat’ precesia, očakávame teda, že precesný uhol pôjde do nuly a rotačný uhol ostane v čase lineárne rastúci
(ostane určený v podstate počiatočnými podmienkami, ktoré mu udeĺıme). Na naše obrovské prekvapenie
sa tak nestane. Ako vidno z (3.193), ked’ sa j bĺıži ku J , teda výraz (j/J − 1) sa bĺıži k nule, aj Ωψ sa
muśı bĺıžit’ k nule, ináč by výraz na l’avej strane divergoval. Toto je zrejme t’ažká rana pre všetkých, ktoŕı
považovali Eulerove uhly za nádherne opisné a jasné v každej situácii - nie je tomu tak. Sféricky symetrické
vol’né teleso naozaj rotuje iba v uhle ϕ, muśıme sa teda zmierit’ s tým, že názvoslovie šité na mieru precesii
jednoducho nebude inde fungovat’.

Poznámka č. 4: v skutočnosti sa Eulerove uhly nepovažujú za vel’mi vhodný nástroj pri riešeńı dy-
namických problémov (to sú tie, kde na sústavu pôsobia sily a my zist’ujeme, ako sústava reaguje), zato sú
vel’mi názorné pri určovańı polohy telesa (ak máme dané Eulerove uhly, vel’mi rýchlo si vieme predstavit’,
ako je teleso v priestore natočené). Použ́ıvajú sa rôzne uhly, podl’a rôznych schém natáčania, ktoré označujú
poradie ośı, podl’a ktorých sme teleso natáčali. Eulerove uhly definované v tomto texte sú zavedené podl’a
schémy z − x− z, pretože v takom porad́ı sme otáčali teleso podl’a ośı. Je možné použit’ takmer l’ubovol’nú
schému, jediné obmedzenie je, že dve po sebe nasledujúce rotácie sa musia konat’ podl’a rôznych ośı. Iné,
analogické uhly ku Eulerovým sú Tait-Bryanove uhly. V letectve sa použ́ıvajú iné názvy a to heading (smer,
teda v prinćıpe uhol ϕ), elevation (zdvih, teda uhol θ merańı od vodorovnej polohy), bank (otočenie lietadla

podl’a pozd́lžnej osi, ψ), popŕıpade yaw, pitch, roll (analogicky). V praxi vzniká často problém s tzv. gimbal
lock, teda strata stupňa vol’nosti. Ak dve osi, podl’a ktorých sme vykonali rotácie o Eulerove uhly splývajú
(napr. ak θ = 0), potom takúto rotáciu možno reprezentovat’ ako pohybom v jednom uhle, tak aj pohybom
v druhom uhle, respekt́ıve kombináciou týchto pohybov. My, ako ,,zadávači” Eulerových uhlov vždy vieme,
čo sme spravili, no pri spätnom odč́ıtańı uhlov takto vzniká istá mnohoznačnost’. V praxi sa teda využ́ıvajú
na opis rotácie quaternióny, čo je ale d’aleko za rámcom tohto textu.
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Namiesto riešenia t’ažkého symetrického zotrvačńıka (možno nájst’ v Landau - Lif̌sic) budeme riešit’ tiež
vel’mi zauj́ımavý problém: predstavme si gul’u s polomerom r a momentom zotrvačnosti J , na ktorej povrchu
je pripevnený reakt́ıvny motor. Výsledkom je konštantný vektor sily, ktorý je permanentne prilepený k
povrchu gule. Zauj́ıma nás natočenie telesa v čase a poloha jeho t’ažiska v čase. Ked’že gul’a je málo
názorná (t’ažko rozoznat’ ako je natočená), budeme použ́ıvat’ kocku s hranou d́lžky 2a (je to rovnako sféricky
symetrický zotrvačńık, na riešeńı sa teda nič nezmeńı):

F
→

F
→

Obrázok 3.40: Gul’a resp. kocka s reakt́ıvnym pohonom.

Pŕıklad si značne zjednoduš́ıme predpokladom, že počiatočný vektor momentu hybnosti je nulový (t.j.

na začiatku teleso stoj́ı): ~L(t = 0) = ~0.

Táto sila ~F je samozrejme konštantná v telesových osiach, pretože reakt́ıvny motor je napevno pripev-
nený ku telesu. ~F však nie je konštantná v inerciálnej (laboratórnej) sústave! je tomu tak preto, lebo

pôsobeńım sily sa teleso v čase natáča, čo však natoč́ı aj daný vektor ~F . Na vyriešenie pohybu t’ažiska
budeme musiet’ najprv vyriešit’ rotáciu telesa. Následne pohyb t’ažiska bude daný Newtonovou rovnicou.

Nech telesové osi mieria nasledovne: pri polohe kocky ako na obrázku nech os x mieri dol’ava, os y
smerom z obrázku a os z v smere sily ~F . Nech táto sila má vel’kost’ F , potom jej zložky v telesových osiach
budú: ~F = (0, 0, F ). Každá zložka momentu sily sa určuje vzhl’adom na pŕıslušnú telesovú os a my vid́ıme,
že nenulová bude jedine zložka y. Môžeme teda ṕısat’ dynamické rovnice:

0 = Jω̇1 =⇒ ω1 = C1

aF = Jω̇2 =⇒ ω2 =
aF

J
t+ C2

0 = Jω̇3 =⇒ ω3 = C3

(3.194)

Ked’že však ~L(t = 0) = 0, potom C1 = C2 = C3 = 0. Znovu si zjednoduš́ıme situáciu, tentoraz tak, že
postav́ıme laboratórnu os z do smeru, v ktorom je (konštantný) vektor momentu sily (teda telesová os y bude
zhodná s laboratórnou osou z). Ako vieme, že je konštantný? No pretože počiatočný moment hybnosti je

nulový a teda sila ~F spôsobuje len rotáciu v jedinej rovine (rovine určenej vektorom ~F a t’ažiskom kocky). Pri
takto zvolenej situácii však plat́ı, že θ = 0. Muśıme si dat’ pozor, tentoraz budú platit’ Eulerove kinematické
rovnice, no ω2 bude prislúchat’ tretej rovnici (pretože sme na začiatku určili osi laboratórnu z a telesovú y
ako zhodné). Naṕı̌seme rovnice:

0 = 0

aF

J
t = ϕ̇+ ψ̇

0 = 0

(3.195)
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3.7. TUHÉ TELESO

Máme gimbal lock v praxi - realizácia rotácie tuhého telesa je určená len súčtom dvoch eulerových
uhlov. Dohodnime sa teda, že ψ = 0. Ostane nám tak rovnica:

ϕ̇ =
aF

J
t =⇒ ϕ(t) =

aF

2J
t2 (3.196)

Vyšlo nám to, čo sme aj očakávali - pri pôsobeńı konštantného momentu sily (napr. roztáčam koleso, na
ktoré je namotané lano so závaž́ım) sa objekt otáča tak, že jeho uhol kvadraticky rastie v čase. Samozrejme
využili sme pri tom všetky počiatočné podmienky - keby napr. teleso na začiatku rotovalo v inej osi, pohyb
by bol vel’mi škaredý a nekonal by sa v jedinej rovine, ako v tomto pŕıpade.

Týmto máme vyriešenú rotáciu telesa v čase, ostáva vyriešit’ pohyb t’ažiska v priestore (v čase). Na to
využijeme Newtonovu rovnicu:

~F = m~a (3.197)

Smer vektora sily vzhl’adom na laboratórne osi je jasný, ak máme k dispoźıcii uhol ϕ:

~F = [0, cos(ϕ), sin(ϕ)] (3.198)

Takto môžeme źıskat’ trajektóriu telesa v rovine yz nasledovne:

ẍ = 0 =⇒ x = nezauj́ımavé

ÿ =
F

m
cos

(
aF

2J
t2
)

z̈ =
F

m
sin

(
aF

2J
t2
) (3.199)

Pri takejto sile samotná rýchlost’ (ẏ a ż) vedie na Fresnelove integrály, teda
´

cos(u2)du a
´

sin(u2)du.
Zdalo by sa, že d’aľśı integrál z takej škaredej funkcie už nebude žiadna známa funkcia, no nie je tomu tak
(a keby aj bolo, stále sa dá problém vyriešit’ numericky). Zauj́ımavé je, že v čase idúcom k nekonečnu sa
obe zložky rýchlosti bĺıžia ku rovnakej konštante. Tento fakt vyplýva z hodnoty Fresnelových integrálov v
hraniciach od 0 do nekonečna:

ˆ ∞
0

cos
(
u2
)

du =

ˆ ∞
0

sin
(
u2
)

du =
1

2

√
π

2
(3.200)

vy (t→∞) = vz (t→∞) =
F

m

ˆ ∞
0

cos

(
aF

2J
t2
)

dt =
F

m

√
2J

aF

ˆ ∞
0

cos

(
aF

2J
t2
)

d

(√
aF

2J
t

)
=

=

√
π

2

√
FJ

a

1

m
(3.201)

Vid́ıme teda, že v tomto pŕıpade sa rýchlost’ vo vel’kom čase akoby ,,vystreduje” do konkrétneho smeru
(ktorý záviśı od počiatočných podmienok). Na teleso v jeho báze śıce pôsob́ı konštantná sila, no vd’aka
rotácii, ktorú táto sila spôsob́ı, bude sila striedavo pôsobit’ všetkými smermi, čo má za následok ustálenie
rýchlosti v jednom smere (akoby sila prestala pôsobit’ vo vel’kých časoch).
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Za pomoci plottera si môžeme nakreslit’ graf trajektórie v čase aj s postupným natáčańım kocky. Na
obrázku vidno pohyb t’ažiska (čierna trajektória) a pohyb jedného vybraného vrcholu kocky (červená tra-
jektória):

Obrázok 3.41: Pohyb kocky v rovine yz.
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4
Úvod do mechaniky kontinua a hydrodynamiky

Kým doteraz sme skúmali hmotné body, respekt́ıve sústavy hmotných bodov, v tejto kapitole budeme
vyšetrovat’ pohyb hmotných telies, ktoré vyṕlňajú istý objem spojito. Narozdiel od tuhých telies, ktoré
nemenia svoj tvar pri pôsobeńı vonkaǰśıch śıl, v kvapalnom a pružnom kontinuu môžu jednotlivé body menit’

svoju vzájomnú vzdialenost’. Postupovat’ budeme spočiatku tak všeobecne, ako sa len dá. Neskôr sa budeme
konkretizovat’ na pohyb pružného kontinua a kvapaliny, spolu s riešeńım jednoduchš́ıch úloh, ktoré k týmto
kategóriám patria.

Pri vytvárańı modelu spojitého prostredia muśıme v istom zmysle vychádzat’ zo skutočnosti, no v niečom
sa muśıme dopustit’ nutnej abstrakcie. Ako už bolo spomenuté, jednotlivé body kontinua sa môžu vzájomne
pohybovat’ tak, že pritom menia vzdialenosti medzi sebou, no nekonkretizovali sme, čo sú to vlastne tie body
kontinua. Nemyslia sa tým ani atómy, ani molekuly, vždy sa tým mysĺı kúsok kontinua (s malými rozmermi),
ktorý má spojite rozloženú hmotnost’ (je možné ju opisovat’ spojitou funkciou hustoty). Vyvstáva otázka,
ako vel’mi malé rozmery sú tu pŕıpustné. Odpoved’, ktorá sa ponúka je: len tak malé, aby sme boli spokojńı
s rozdielom medzi skutočnost’ou a týmto modelom, ktorý vytvárame zanedbańım atomárnej a molekulárnej
štruktúry a nahradeńım spojitou hmotou. Opis spojitými veličinami je vel’mi pŕıjemný z hl’adiska použ́ıvania
aparátu diferenciálneho a integrálneho počtu. V odvodeniach budeme predpokladat’, že čas je absolútny a
môže slúžit’ ako nezávislá premenná na opis akýchkol’vek spomı́naných dejov. To je samozrejme dostatočne
pravdivý opis, ak efekty, ktoré opisujeme sú dostatočne nerelativistické.
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4.1. VŠEOBECNÁ POHYBOVÁ ROVNICA KONTINUA

4.1 Všeobecná pohybová rovnica kontinua

Pri opise kontinua budeme rozoznávat’ dva druhy śıl a to sily objemové a plošné. Objemové sily si
predstavujeme pomocou objemovej hustoty śıl, ~f . Potom pre objemovú silu d~Fobj. (maličkú), ktorá pôsob́ı
na malý objemček dV plat́ı:

d~Fobj. = ~f dV (4.1)

Objemovú silu pôsobiacu na väčšiu čast’ kontinua, ako infinitezimálne malú, vypoč́ıtame pomocou ob-
jemového integrálu:

~Fobj. =

˚

V

d~Fobj. =

˚

V

~f dV (4.2)

O pŕıtomnosti plošných śıl sa môžeme presvedčit’ jednoducho. Napriek odstráneniu objemových śıl sa
kúsky kontinua môžu pohybovat’ so zrýchleńım, čo môže znamenat’ jedine d’aľsie silové pôsobenie. Koncept
plošnej sily zavádzame, aby sme mohli skúmat’, ako pôsob́ı jedna čast’ kontinua na inú. Toto pôsobenie sa
realizuje cez vybranú plôšku, spoločnú pre obe časti kontinua. Nech teda táto plocha má vel’kost’ dS a smer
~n, ktorý je kolmý na plôšku a jeho orientácia smeruje z objemu (ktorého hranica obsahuje túto plôšku).
Silove pôsobenie teda skúmame smerom do objemu (ktorého hranica tiež obsahuje danú plôšku, je pre nich

teda spoločná), na ktorého pôsobenie sa pýtame. Jej vektor teda bude d~S = ~ndS. Koncept plošnej sily teraz

predpokladá, že každej takejto plôške zodpovedá pŕıslušná malá plošná sila, d~Fploš., ktorá vo všeobecnosti
záviśı od výberu danej plôšky, ale aj od polohy v kontinuu a od času.

dS

dF
→
ploš.

→

Obrázok 4.1: Vybraný objem dV v kontinuu, ktorý pôsob́ı cez kúsok svojej hranice d~S na susedný objem
malou plošnou silou d~Fploš..

Plošná sila cez väčšiu plochu sa bude poč́ıtat’ plošným integrálom I. druhu (po zložkách):

~Fploš. =

¨

S

d~Fploš. (4.3)
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Tento vzt’ah môže byt’ vo všeobecnosti dost’ zložitý, no výraz plôšky v argumente d~Fploš.

(
~r, t, d~S

)
je

čo do absolútnej hodnoty malý. Fyzik, čo vid́ı v argumente funkcie malú vec, okamžite rozv́ıja funkciu do
Taylorovho rozvoja v tejto malej veci. Presuňme sa teda do indexov a urobme tak pre i-tu zložku d~Fploš.:

dFi

(
~r, t, d~S

)
= dFi

(
~r, t,~0

)
︸ ︷︷ ︸

= 0

+
∂Fi
∂Sj

∣∣∣∣
d~S=~0︸ ︷︷ ︸

= σij

d~Sj +O
(∣∣∣d~S ∣∣∣2)︸ ︷︷ ︸
malé

Prvý výraz na pravej strane je nulový, pretože cez nulovú plochu kontinuum pôsob́ı nulovou silou. Druhý
člen má v sebe akúsi dvojindexovú vec, ktorej presneǰśı tvar nevieme, tak si ju aspoň označ́ıme úsporneǰsie,
ako σij . Napokon tret́ı člen v sebe skrýva zvyšných nekonečne vel’a členov Taylorovho radu, ktoré sme sa
kvôli ich malosti rozhodli zanedbat’. Ostalo nám:

dFi = σijdSj (4.4)

Výraz σij nazývame tenzor napätia. Je to vlastne tenzorové pole, pretože je definované v každom bode

~r a každom čase t a nezáviśı už od d~S, pretože toho sme sa vzdali dosadeńım d~S = ~0 v derivácii.
Ked’ už máme definované, čo všetko na koho/čo kde akým spôsobom pôsob́ı, vyjadŕıme celkovú silu,

aká pôsob́ı na daný objem:

Fi =
(
~Fobj

)
i
+
(
~Fploš.

)
i

=

˚

V

fi dV +

‹

∂V

σijdSj (4.5)

Výraz ∂V určuje hranicu daného objemu V . Využitie Gauss-Ostrogradského vety (1.25)1 spomenutej
v kapitole 1 (matematický úvod) vedie na:

Fi =

˚

V

fi dV +

˚

V

∂jσijdV =

˚

V

(fi + ∂jσij) dV (4.6)

Vyberme teraz infinitezimálny objem dV , cez ktorý budeme integrovat’:

˚

dV

(fi + ∂jσij) dV = (fi + ∂jσij) dV (4.7)

kde dV je práve miera oblasti dV . Toto tvrdenie si môžeme zdôvodnit’ rôzne. Napŕıklad tak, že vo vel’mi
malej oblasti (čo do rozmerov v každom smere) sa každá slušná funkcia chová tak, že sa meńı len máličko.
Pri integrovańı cez takúto malú oblast’ si môžeme dovolit’ nahradit’ integrál prenásobeńım podintegrálnej
funkcie mierou tejto oblasti, čo je samotné dV . Ak dV pošleme do nuly, tento vzt’ah plat́ı stále presneǰsie a
do prvého rádu dV sa výrazy oproti skutočnému výpočtu neĺı̌sia.

Vieme teraz, že výraz dV v sebe akosi skrýva hustotu a hmotnost’. Aby sme do toho nahliadli bližšie,
skúmajme deriváciu hybnosti kúsku objemu:

dṗi =
d

dt

(
dmvi

)
= dmv̇i (4.8)

1Gaussova-Ostrogradského veta má samozrejme aj (otravné) predpoklady, spomenuté už v matematickom úvode. Ich splnenie
predpokladané automaticky; diskutovaný objem V muśı byt’ jednoducho súvislá množina, jeho hranica muśı byt’ po častiach
hladká a ~F muśı byt’ spojite diferencovatel’né vektorové pole na okoĺı V .
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Prečo sme aplikovali deriváciu len na rýchlost’? Pretože vo všeobecnosti sa meńı hustota, meńı sa aj
objemček dV , no sú v takom vzt’ahu, že ρdV sa nemeńı, no ρdV = dm. Zároveň plat́ı, že časová derivácia
hybnosti pi je sila Fi, čo je obsahom prvej vety impulzovej. Finálne teda ṕı̌seme:

Fi = dmv̇i = ρdV v̇i = (fi + ∂jσij) dV (4.9)

Ak si teraz uvedomı́me, že časová derivácia rýchlosti je vlastne zrýchlenie a vykrátime dV z oboch
strán, dostaneme konečne všeobecnú pohybovú rovnicu kontinua:

ρai = ∂jσij + fi (4.10)

O tenzore σij si odvod́ıme jednu dôležitú vlastnost’. Poč́ıtajme moment sily (vzhl’adom na počiatok

súradnicovej sústavy), ktorý pôsob́ı na nejaký vybraný objem kontinua V . Moment sily sa poč́ıta ako ~r× ~F ,
pre daný kúsok bude tento moment daný:

Mi =

˚
V

~r × ~f dV


i

+

‹
∂V

~r × d~Fploš.


i

=

˚

V

εijkxjfkdV +

‹

∂V

εijkxjσkldSl =

=

˚

V

εijkxjfkdV +

˚

V

∂l (εijkxjσkl) dV =

˚

V

εijk (xjfk + σkj + xj∂lσkl) dV =

=

˚

V

εijk [xj (fk + ∂lσkl) + σkj ] dV (4.11)

Toto bol priamy výpočet Mi. Zároveň vieme, že ~M = ~̇L, kde ~L = ~r × ~p. Pre Mi teda zároveň plat́ı:

Mi =
d

dt

(˚
~r × d~p

)
i

=
d

dt

˚

V

εijkxjvkdm = εijk

˚

V

ρ (ẋjvk + xj v̇k) dV

Tu sme zase použili, že d
dt (dm) = 0. Pokračujeme:

Mi =

˚

V

ρ εijkẋjvk︸ ︷︷ ︸
=(~v×~v)i=0

+ εijkxj v̇k︸ ︷︷ ︸
=(~r×~a)i

dV = εijk

ˆ

V

ρxjakdV (4.12)

Teraz spoj́ıme výsledky (4.11) a (4.12):

Mi = Mi˚

V

εijk [xj (fk + ∂lσkl) + σkj ] dV =

˚

V

εijkρxjakdV

˚

V

εijk [xj (fk + ∂lσkl) + σkj − ρxjak] dV = 0

Nulovost’ integrálu pre každý objem V je možné splnit’ len vtedy, ak je podintegrálna funkcia nulová:

εijkxj (fk + ∂lσkl)︸ ︷︷ ︸
ρak

+εijkσkj − εijkρxjak = 0

εijkxjρak + εijkσkj = εijkρxjak

εijkσkj = 0 =⇒ σkj = σjk (4.13)

Dostali sme užitočný výsledok - tenzor σij je symetrický.

126



4.2. KVAPALINY

4.2 Kvapaliny

4.2.1 Tok ideálnej kvapaliny, Eulerova rovnica

Na odvodenie nejakých rovńıc potrebujeme vyriešit’ všetky členy nachádzajúce sa vo všeobecnej rovnici
kontinua:

ρai = ∂jσij + fi (4.14)

Člen ai záviśı od opisu samotného kontinua. Na opis kvapaĺın je výhodné použ́ıvat’ Eulerove rýchlostné
pole. Nebudeme tak sledovat’ život každej častice individuálne, skôr budeme v každom mieste priestoru
sledovat’, ako cez neho kvapalina preteká. Tento formalizmus však nebráni ani sledovaniu jednej častice po
jej dráhe. Člen ~a v dôsledku toho dostane netriviálny tvar. Skúmajme teda zmenu rýchlosti v čase. Na to
potrebujeme rýchlost’ v čase t a mieste ~r: vi (~r, t).

Ak sa presunieme v čase o dt dopredu, dostaneme:

t→ t+ dt · · · ~r → ~r + ~v (~r, t) dt, vi (~r, t)→ vi (~r + ~v (~r, t) dt, t+ dt) (4.15)

Zmenu rýchlosti dostaneme ich odč́ıtańım:

dvi (~r, t) = vi (~r + dt~v (~r, t) , t+ dt)− vi (~r, t) (4.16)

Zmena v čase je malá, teda prvý člen na l’avej strane si môžeme dovolit’ rozvinút’ do prvého rádu Taylora
so zanedbańım ostatných členov:

vi (~r + dt~v (~r, t) , t+ dt) = vi (~r, t) +
∂vi
∂t

∣∣∣∣
(~r,t)

dt+
∂vi
∂xj

∣∣∣∣
(~r,t)

dt vj (4.17)

Pre dvi tak dostaneme:

dvi =
∂vi
∂t

dt+ vj
∂vi
∂xj

dt (4.18)

Člen ai bude daný podielom dvi a dt:

ai =
dvi
dt

=
∂vi
∂t

+ vj
∂vi
∂xj

(4.19)

Prvý člen je štandardná časová derivácia vektorového pol’a, druhý člen pribudol práve v dôsledku
Eulerovského opisu. Tento sa zvykne ṕısat’ v tvare:

vj
∂vi
∂xj

=
[(
~v · ~∇

)
~v
]
i

=⇒ ~a =
∂~v

∂t
+
(
~v · ~∇

)
~v (4.20)

Aby sme boli naozaj na čistom, čo to je za výraz, jediný krát to rozṕı̌seme (lebo je to naozaj vel’ký
výraz):

(
~v · ~∇

)
(~v ) =


vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

 (4.21)
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Druhý problém, ktorý treba vyriešit’, je tenzor σij . Pripomenieme, že tento tenzor vystupuje v defińıcii

plošnej sily súvisiacej s malou plôškou v kontinuu, d~S:

dFi = σijdSj (4.22)

Pre ideálnu kvapalinu je zložka sily, ktorá je rovnobežná s plôškou nulová. Je to tak, pretože v ideálnej
kvapaline sa jednotlivé vrstvy o seba nešúchajú, nećıtia sa navzájom, no iba na seba tlačia. Táto zložka
sily je však kolmá na vektor plochy, teda pre ideálnu kvapalinu ostáva len zložka sily, ktorá je rovnobežná s
vektorom plôšky. Táto zložka sa aj celkom rozumne ponúka, ak si premysĺıme, ako je definovaný tlak. Tlak
je definovaný, ako sila pôsobiaca kolmo na danú plochu. Lepš́ı zápis by bol práve:

dF⊥ = pdS (4.23)

Teda tlak je tá veličina, ktorá dáva úmernost’ medzi vel’kost’ou plochy a vel’kost’ou sily, akou jednotlivé
kúsky cez túto plochu na seba pôsobia. Zaved’me dS+ ako stranu prislúchajúcu kúsku kontinua do ktorého

mieri d~S a dS− ako plochu z opačnej strany2. Z hl’adiska tejto konvencie bude vektorová forma vzt’ahu
(4.23):

d~F = −pd~S (4.24)

V indexoch źıskavame vzt’ah pre σij :

dFi = −pdSi = −pδijdSj (4.25)

Vid́ıme, že tenzor σij bude:

σij = −p δij (4.26)

Práve sme odvodili tenzor napätia pre ideálnu kvapalinu.
Ako zauj́ımavá objemová sila môže byt’ všeličo, no tentoraz do rovnice zahrnieme gravitačnú silu zod-

povedajúcu homogénnemu gravitačnému pol’u. Má platit’:

˚

V

~fdV
!
= ~Fg = m~g =

˚

V

ρ~g dV =⇒
˚

V

(
~f − ρ~g

)
dV = 0 (4.27)

Znovu plat́ı, že nulovost’ integrálu pre každý objem implikuje nulovost’ podintegrálnej funkcie:

~f − ρ~g = 0 =⇒ ~f = ρ~g (4.28)

Našli sme teda všetky členy vo všeobecnej rovnici kontinua pre ideálnu kvapalinu:

~a =
∂~v

∂t
+
(
~v · ~∇

)
~v

σij = −p δij
~f = ρ~g

(4.29)

Po dosadeńı do všeobecnej rovnice kontinua (4.10) dostávame Eulerovu rovnicu:

∂~v

∂t
+
(
~v · ~∇

)
~v = −1

ρ
~∇p+ ~g (4.30)

2Táto zvláštna konvencia je motivovaná orientáciou uzavretej plochy pri poč́ıtańı integrálov. V matematike je zvykom značit’

ako prirodzenú (kladnú) orientáciu vektora d~S takú, aby d~S smeroval von z objemu uzavretého danou plochou.
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4.2.2 Rovnica kontinuity

Samotná Eulerova rovnica má jeden problém, sú to vlastne zabalené len tri rovnice. Ale pri správnom
rátańı je počet premenných až 5. Tri za rýchlostné pole, jedna za tlak a jedna za hustotu. Ku každej
pohybovej rovnici kontinua patŕı aj rovnica kontinuity. Tá je mikroskopickým analógom zákona zachovania
hmotnosti3. Ten vrav́ı, že hmotnost’ kvapaliny daného objemu V sa śıce môže menit’, ale len tak, že nejaká
čast’ kvapaliny doň pritečie, alebo z neho odtečie. Zaṕısané matematicky:

d

dt

˚

V

ρdV = −
‹

∂V

ρ~v · d~S (4.31)

L’avá strana hovoŕı o tom, kol’ko hmotnosti pribudlo (ubudlo) v danom objeme V . Pravá strana vy-
jadruje, kol’ko jej pritieklo (odtieklo) hranicou objemu. Ked’že plošný integrál II. druhu predpokladá, že difer-
enciál plochy mieri smerom von z objemu, znamienko mı́nus pred integrálom tento smer obracia dovnútra
objemu. Ak je l’avá strana kladná, to znamená nárast hmoty v objeme, muśı byt’ aj pravá strana kladná,
teda muśı platit’, že hranicou niečo priteká dnu.

Na l’avú stranu použijeme vetu o derivovańı parametrického integrálu a na pravú Gaussovu-Ostrogradského
vetu podl’a (1.25):

˚

V

∂ρ

∂t
dV = −

˚

V

~∇ · (ρ~v ) dV

˚

V

(
∂ρ

∂t
+ ~∇ · (ρ~v )

)
dV = 0

Ak má táto rovnost’ platit’ pre každý objem V , potom podintegrálna funkcia má byt’ nulová. Tým
dostávame rovnicu kontinuity :

∂ρ

∂t
+ ~∇ · (ρ~v ) (4.32)

Zistili sme teda, že rýchlost’ a hustota sa nemôžu menit’ úplne l’ubovol’ne, ale tak, aby sṕlňali rovnicu
kontinuity.

4.2.3 Tok ideálnej nestlačitel’nej kvapaliny

Napriek tomu, že sme odvodili d’aľsiu rovnicu, počet neznámych funkcíı stále prevyšuje počet rovńıc.
Miesto odvádzania d’aľśıch rovńıc skúsime jednu funkciu zredukovat’ na konštantu4. Bude ňou hustota,
požadujeme, aby platilo:

ρ = konšt. (4.33)

Za tohto predpokladu hovoŕı rovnica kontinuity:

~∇ · ~v = 0 (4.34)

3Zákon zachovania hmotnosti v kontinuu plat́ı len ak látka s nič́ım chemicky nereaguje.
4Koho by privel’mi trápilo, že umelo redukujeme počet neznámych funkcíı, dá sa to aj bez toho. Pre plyny je nestlačitel’nost’

zlý predpoklad no máme niečo ako stavovú rovnicu. Tým nám do sústavy prǐsla d’aľsia rovnica, bohužial’ spolu s ňou prǐsla
nová neznáma - teplota. Ale pre teplotu ešte plat́ı rovnica vedenia tepla. Lenže toto je pŕı̌serne zložitá sústava diferenciálnych
rovńıc, ktorá sa horko-t’ažko dá riešit’ numericky.
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Spolu dostávame 4 rovnice pre tok ideálnej nestlačitel’nej kvapaliny :

∂~v

∂t
+
(
~v · ~∇

)
~v = −1

ρ
~∇p+ ~g

~∇ · ~v = 0

(4.35)

pre 4 neznáme - tri zložky rýchlosti v1, v2, v3 a tlak p.

4.2.4 Hydrostatika

V hydrostatike predpokladáme, že rýchlostné pole je statické - celá kvapalina má byt’ v pokoji:

~v = ~0 (4.36)

Dostávame rovnicu opisujúcu statické rozloženie tlaku p (~r ) pre nejakú zauj́ımavú objemovú silu:

~∇p = ~f (4.37)

Pŕıklad: akvárium tvaru kvádra v homogénnom gravitačnom poli. Také pole je zadané objemovou
silou:

~f = ρ (0, 0,−g) (4.38)

Z (4.37) dostaneme 3 rovnice:

∂p

∂x
= 0

∂p

∂y
= 0

∂p

∂z
= −g ρ

(4.39)

Prvé dve hovoria, že tlak p je konštanta vzhl’adom na premenné x a y, tretia hovoŕı:

p (x, y, z) = p0 − ρ g z (4.40)
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4.2.5 Stacionárne tečenie nev́ırového pol’a, Bernoulliho rovnica

Staciónárne tečenie je také tečenie, ktoré sa v čase nemeńı, teda plat́ı:

d~v

dt
= ~0 (4.41)

Definujme teraz vektorové pole v́ıru 5:

~ω = ~∇× ~v (4.42)

Motiváciu k tejto vol’be uvedieme nižšie. Nev́ırové pole bude pole s nulovou v́ırivost’ou:

~ω = ~∇× ~v = ~0 (4.43)

Aké dôsledky budú mat’ (4.41) a (4.43) pre Eulerovu rovnicu? Prvý je zjavný - na l’avej strane zmizne

člen
d~v

dt
. Dôsledok (4.43) je trochu skrytý. Zdanlivo bez súvisu spoč́ıtajme:

(~v × ~ω)i =
[
~v ×

(
~∇× ~v

)]
i

= εijkvj

(
~∇× ~v

)
k

= εijkvjεklm∂lvm = εijkεlmkvj∂lvm =

DC
= (δilδjm − δimδjl) vj∂lvm = vj∂ivj − vj∂jvi =

1

2
∂i (vjvj)−

(
~v · ~∇

)
vi =

=

[
~∇
(
~v 2

2

)]
i

−
[(
~v · ~∇

)
~v
]
i

=⇒ ~v × ω = ~∇
(
~v 2

2

)
−
(
~v · ~∇

)
~v (4.44)

Druhý člen na pravej strane sa zhodou okolnost́ı nachádza v Eulerovej rovnici, vyjadrime ho:(
~v · ~∇

)
~v = ~∇

(
~v 2

2

)
− ~v × ω︸︷︷︸

=~0

= ~∇
(
~v 2

2

)
(
~v · ~∇

)
~v = ~∇

(
~v 2

2

)
(4.45)

Preṕı̌sme Eulerovu rovnicu za predpokladu stacionárnosti (4.41) a nev́ırovosti (4.43):

~∇
(
~v 2

2

)
= −1

ρ
~∇p+ ~g

Rovnicu môžeme prenásobit’ konštantou ρ, ktorú môžeme zahrnút’ do gradientu:

~∇
(

1

2
ρ~v 2

)
= −~∇p+ ρ~g

Ak by sme ešte vedeli vyjadrit’ člen ~g ako gradient nejakej funkcie, celá rovnica by prešla na tvar
~∇ (niečo) = 0. Tento člen tak naozaj môžeme naṕısat’, pretože plat́ı:

~∇ (~g · ~r ) = ~g (4.46)

Ṕı̌seme teda:

~∇
(

1

2
ρ~v 2

)
= −~∇p+ ρ~∇ (~g · ~r )

~∇
(

1

2
ρ~v 2 + p− ρ~g · ~r

)
= ~0

5Vorticity
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Ak však plat́ı, že ~∇f(x, y, z) = 0, potom nutne funkcia f je konštantou vzhl’adom na x, y, aj z, teda
f = konšt. Ešte plat́ı ~g = (0, 0,−g), teda ~g · ~r = −g z:

1

2
ρ~v 2 + p+ ρ g z = konšt. (4.47)

To, čo sme práve odvodili, sa nazýva Bernoulliho rovnica - rovnica stacionárneho tečenia ideálnej
nestlačitelnej kvapaliny.

Typický pŕıklad na stacionárne tečenie ideálnej nestlačitelnej kvapaliny je kvapalina v nádobe výšky
h, ktorá má naboku dole dierku, ktorou môže kvapalina vytekat’. Zauj́ımalo by nás, akou rýchlost’ou bude
vytekat’:

A B
h

Obrázok 4.2: Voda v akváriu s malou dierkou.

Na obrázku sú vyznačené dva body - A a B. Bod A je niekde pri dne nádoby, bod B je priamo za
dierkou (oba body sú v rovnakej výške), z ktorej vyteká voda. Pŕıslušné tlaky a rýchlosti označ́ıme pA,
pB , vA a v. Rýchlost’ kvapaliny v bode A bude s istým pribĺıžeńım nulová, pretože dierka je malá oproti
ploche hladiny - odtok vody je zanedbatel’ný pri hladine, teda vA ≈ 0, v je neznáma, ktorú hl’adáme. Plat́ı
Bernoulliho rovnica:

1

2
ρv2
A + pA + ρ g h =

1

2
ρv2 + pB + ρ g h

Tlak v bode B bude atmosferický, pB = pa, pretože bod B sa nachádza už v mieste mimo nádoby. Tlak
v bode A bude mat’ hodnotu ρ g h+ pa. Potom dostaneme:

0 + ρ g h+ pa =
1

2
ρv2 + pa

v =
√

2g h (4.48)
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4.2.6 Fyzikálna interpretácia v́ırivosti

V čitatel’ovi s vel’kou pravdepodobnost’ou skrsla podozrievavá otázka, k čomu je veličina ~ω = ~∇× ~v
užitočná a z akého titulu dostala meno v́ırivost’. V tomto odseku čitatel’ovi s radost’ou odpovieme a motivu-
jeme zavedenú fyzikálnu veličinu.

Ako už samotný názov veličiny napovedá, jej význam tkvie v lokálnej rotácii kvapalných elementov.
Experimentálne by sme mohli tento jav pozorovat’ umiestneńım l’ahkej lopatky na oske do samotnej kva-
paliny, z matematického hl’adiska môžeme postupovat’ nasledovne. Situáciu budeme skúmat’ v 2D toku,
zovšeobecnenie na 3D tok je priamočiare. V kvapaline si vyberieme dva navzájom kolmé čiarové kvapalné
elementy s jedným spoločným bodom. Ich polohy sú naznačené na obrázku:

(x,y) (x    x,y)δ+

(x,y    y)δ+

δϕ 

(x',y')

(x',y')

1

2

1

2

(x',y')
a b

c

Obrázok 4.3: Dva kolmé čiarové kvapalné elementy.

Preskúmame pohyb kvapalných elementov vplyvom rýchlostného pol’a. Zauj́ıma nás prvotný pohyb
oboch elementov v bezprostrednej chv́ıli po momente, v ktorom dané elementy v poli zvýrazńıme. Modrý
element je vystavený rýchlostnému pol’u na oboch svojich koncoch, v dôsledku čoho môže potencionálne
vykonávat’ rotačný pohyb, ktorý označ́ıme ωm.

Najprv sa však pozrime, o aký uhol δϕ sa element otoč́ı v dôsledku rýchlostného pol’a za čas δt. Element
je samozrejme rýchlostným pol’om unášaný z pôvodnej polohy do novej, no my si pomôžeme a bez otočenia
ho presunieme tak, aby jeho jeden bod bol zhodný s jeho pôvodnou polohou (vid’ obrázok). Predovšetkým
muśıme vyjadrit’ súradnice (x′, y′):

x′ = x′2 − (x′1 − x)

y′ = y′2 − (y′1 − y)
(4.49)

Tieto súradnice závisia na rýchlostnom poli:

x′1 = x+ vx (x, y) δt, x′2 = x+ δx+ vx (x+ δx, y) δt

y′1 = y + vy (x, y) δt, y′2 = y + vy (x+ δx, y) δt

x′ = x+ δx+ vx (x+ δx, y) δt− vx (x, y) δt ≈ x+ δx+ ∂xvxδxδt

y′ = y + vy (x+ δx, y) δt− vy (x, y) δt ≈ y + ∂xvyδxδt
(4.50)
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Našim ciel’om je vyjadrenie δϕ, na čo budeme potrebovat’ kośınusovú vetu. K tomu potrebujeme vyjadrit’

d́lžky a, b a c. Je zjavné, že c = δx. Ďaľsie dve vyjadŕıme:

a =

√
(x′ − x)

2
+ (y′ − y)

2
=

√
(1 + ∂xvxδt)

2
+ (∂xvyδt)

2
δx

b =

√
(x′ − (x+ δx))

2
+ (y′ − y)

2
=

√
(∂xvxδt)

2
+ (∂xvyδt)

2
δx

c = δx

(4.51)

Plat́ı kośınusová veta:

b2 = a2 + c2 − 2ac cos (δϕ) (4.52)

(∂xvxδt)
2

+ (∂xvyδt)
2

= (1 + ∂xvxδt)
2

+ (∂xvyδt)
2

+ 1− 2

√
(1 + ∂xvxδt)

2
+ (∂xvyδt)

2
cos (δϕ)

0 = 2 + 2∂xvxδt− 2

√
(1 + ∂xvxδt)

2
+ (∂xvyδt)

2
cos (δϕ)

cos (δϕ) =
1 + ∂xvxδt√

(1 + ∂xvxδt)
2

+ (∂xvyδt)
2

=
1√

1 +
(

∂xvyδt
1+∂xvxδt

)2

1− 1

2
δϕ2 = 1− 1

2

(
∂xvyδt

1 + ∂xvxδt

)2

δϕ = ∂xvyδt+O
(
δt2
)

Vo výraze identifikujeme uhlovú rýchlost’ modrého kvapalného elementu:

δϕ = ωmδt+O
(
δt2
)
· · · ωm =

∂vy
∂x

(4.53)

Obdobnou analýzou by nám vyšlo, že uhlová rýchlost’ (v tom istom smere!)6 je daná výrazom:

ωč = −∂vx
∂y

(4.54)

Sč́ıtańım týchto dvoch velič́ın dostaneme dvojnásobok priemernej uhlovej rýchlosti kvapalných elemen-
tov v danom geometrickom bode rýchlostného pol’a:

ωz = ωm + ωč = 2
ωm + ωč

2
= 2ω̄ =

∂vy
∂x
− ∂vx

∂y
= ε3ij∂ivj · · · ~ω = ~ekεkij∂ivk = ~∇× ~v (4.55)

6Kladná uhlová rýchlost’ znač́ı otáčania proti smeru hodinových ručičiek.
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Pŕıklad na Eulerovu rovnicu; Newtonovo vedro. Je to valcová nádoba naplnená vodou, ktorá sa toč́ı
okolo osi symetrie konštantnou uhlovou rýchlost’ou Ω. Našou úlohou je zistit’ čo najviac o tvare vody, ak je
situácia ustálená, t.j. vedro sa takto toč́ı už dlho a voda sa toč́ı spolu s ńım a nemeńı tvar. Potom je možné
tento problém riešit’ Eulerovou rovnicou.

Ω 

Obrázok 4.4: Newtonovo vedro.

Vieme, že rýchlost’ v tomto pŕıpade bude závisiet’ od ~r nasledovne:

~v (~r ) = ~Ω× ~r (4.56)

kde ~Ω = (0, 0,Ω). Zložky rýchlosti teda budú:

~v (~r ) =

−Ω y
Ωx
0

 (4.57)

Ked’že rýchlostné pole je už známe, rovnicu budeme riešit’ pre tlak p (~r ). Vieme, že hladina vody bude

určená miestami, kde p = pa, teda tlak bude rovný atmosferickému. Člen
(
~v · ~∇

)
~v bude:

~v · ~∇ = −Ω y
∂

∂x
+ Ωx

∂

∂y
=⇒

(
~v · ~∇

)
~v =

−Ω2x
−Ω2y

0

 (4.58)

Môžeme ṕısat’ Eulerovu rovnicu po zložkách:

−ρΩ2x = −∂p
∂x

−ρΩ2y = −∂p
∂y

0 = −∂p
∂z
− ρ g =⇒ p (x, y, z) = −ρ g z + Cz (x, y)

(4.59)
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Už vieme závislost’ p na súradnici z, túto dosad́ıme do prvej rovnice:

∂p

∂x
=
∂Cz
∂x

= ρΩ2x =⇒ Cz (x, y) =
1

2
ρΩ2x2 + Cxz (y) (4.60)

Teda máme:

p (x, y, z) = −ρ g z + Cz (x, y) = −ρ g z +
1

2
ρΩ2x2 + Cxz (y) (4.61)

Dosad́ıme to do druhej rovnice:

∂p

∂y
=
∂Cxz
∂y

= ρΩ2y =⇒ Cxz (y) =
1

2
ρΩ2y2 + konšt. (4.62)

p (x, y, z) = −ρ g z + Cz (x, y) = −ρ g z +
1

2
ρΩ2x2 + Cxz (y) = −ρ g z +

1

2
ρΩ2x2 +

1

2
ρΩ2y2 + konšt. (4.63)

Vid́ıme, že konštanta bude p (0, 0, 0) = p0:

p (x, y, z) = −ρ g z +
1

2
ρΩ2

(
x2 + y2

)
+ p0 (4.64)

Môžeme požadovat’, aby p0 = pa. Potom riešme rovnicu:

pa = p (x, y, z) =⇒ pa = −ρ g z +
1

2
ρΩ2

(
x2 + y2

)
+ pa =⇒ z =

Ω2

2g

(
x2 + y2

)
(4.65)

Vyšiel nám rotačný paraboloid. V skutočnosti vol’ba p0 nebola nijako dôležitá - pre rotačný paraboloid
by iba znamenala posunutie jeho začiatku o nejakú konštantu nahor, alebo nadol, tvar paraboloidu by sa
tak nezmenil, len by sa zmenila jeho poloha voči počiatku súradnej sústavy.

r

z

z = _2g r
2

2Ω  

r =  x y+2 2

r

Obrázok 4.5: Tvar vodnej hladiny v roztočenom Newtonovom vedre.
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4.2.7 Tok viskóznej kvapaliny, Navier-Stokesova rovnica

Našou amb́ıciou je odvodit’ rovnicu pre tečenie viskóznej kvapaliny. Vychádzame z (4.10), všeobecnej
rovnice kontinua:

ρ ai = ∂jσij + fi (4.66)

Zmena kvapaliny z ideálnej na viskóznu sa prejav́ı jedine v tenzore napätia, σij , všetky ostatné veličiny
ostanú nezmenené. Pripomeňme, aký tvar mal tenzor napätia v ideálnej kvapaline:

σij = −pδij (4.67)

Priamy dôsledok tohto tvaru zaručuje, že ku každej plôške bude prislúchat’ len kolmá zložka plošnej sily,
teda takéto sily identifikujeme len ako tlakové. Ked’že sa nevieme nikam d’alej pohnút’, zabudnime chv́ıl’u
na tlak a vezmime si takýto primit́ıvny pŕıpad tečenia kvapaliny:

dS
→

v (z)x

Obrázok 4.6: Tok kvapaliny s plôškou rovnobežnou so smerom rýchlosti.

Zvol’me si plôšku v kontinuu tak, aby jej normála bola kolmá na tok kvapaliny (ako na obrázku). Ak by

sme zistili, kam bude smerovat’ plošná sila d~F v tomto pŕıpade, možno sa posunieme o kúsok d’alej. Ked’že
neuvažujeme tlak, ostáva nám iba už len smer kolmý na normálu d~S (v smere rovnobežnom v ideálnej
kvapaline pôsobil tlak). Je intuit́ıvne jasné, že vrstvy kvapaliny sa o seba budú šúchat’ jedine v pŕıpade,
ked’ v kvapaline nastane nejaký spád rýchlosti. Je šanca, že takéto správanie vyvolá plošnú silu, ktorá bude
mat’ nenulovú zložku kolmú na normálu plochy. Označme si smery v našom pŕıpade; smer d~S bude ~e3, smer
do obrázka bude ~e2, smer rýchlosti bude ~e1. Ked’že horná vrstva kvapaliny sa podl’a obrázka hýbe trošku
rýchleǰsie ako spodná, má platit’, že táto horná vrstva pôsob́ı na spodnú silou, ktorá smeruje doprava:

dF1 = σ13dS3 (4.68)

kde sa už predpokladá, že σ13 je nenulové č́ıslo. Naše úvahy šli tým smerom, že vel’kost’ tejto sily bude úmerná
práve spádu rýchlosti v smere rovnobežnom s d~S (teda v smere, v ktorom sa meńı rýchlost’ s polohou). Nech
teda plat́ı zúfalý predpoklad, že táto závislost’ bude priamo úmerná:

dF1 ∝
∂v1

∂x3
(4.69)

Táto úmera vyjadruje presne to, čo sme chceli – nech zložka plošnej sily v smere ~e1 je priamo úmerná
spádu rýchlosti v smere ~e3, no jediná zložka, ktorú rýchlost’ v našom pŕıpade má, je práve zložka ~v1. Pre σ13

by táto úvaha mohla mat’ nasledujúci dôsledok:

(dF1 ∝ ∂3v1) ∧ (df1 ∝ σ13) · · · σ13
!
= η∂3v1 (4.70)
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Táto vol’ba má taktiež výhodu v indexoch – dF1 požaduje od pravej strany, aby jej nechala vol’ný index
1, čo naozaj plat́ı, ak σ13 zvoĺıme práve tak, ako sme ju zvolili:

dF1 = σ13dS3 = η∂3v1dS3 (4.71)

Zatial’ sme vyriešili tenzor σij pre naozaj vel’mi jednoduchý a konkrétny pŕıpad tečenia kvapaliny. Teraz
pŕıde isté vel’mi trúfalé zovšeobecnenie pre l’ubovol’ný smer a spôsob toku kvapaliny. Čo keby to analogicky
platilo pre l’ubovol’né dva indexy a dokonca v zmysle Einsteinovej sumačnej konvencie? Nech teda plat́ı
zovšeobecnenie:

σ13 = η∂3v1 . . . σij = η∂jvi (4.72)

Teda pre d~F by (bez tlaku) platilo:

dFi = σijdSj = η∂jvi dSj (4.73)

Zdržme sa zatial’ ovácii a otvárania šampusu, zabudli sme totiž, že tenzor napätia má byt’ symetrický,
teda má platit’ σij = σji, ako sme ukázali už v úvode. Bohužial’, tento výraz pre σij nie je symetrický, no to
sa dá l’ahko napravit’. Tenzor σij môžeme zosymetrizovat’:

σij = η (∂jvi + ∂ivj) (4.74)

Otázne je, či sme si týmto nepokazili to jednoduché tečenie, bude ešte stále platit’, že dF1 = η∂3v1dS3?
Ukazuje sa, že bude, pretože ∂1v3 = 0 (vzhl’adom na fakt, že tečenie sa koná iba v smere ~e1).

Finálny a správny tenzor σij je daný práve odvodeným tenzorom po zahrnut́ı tlaku:

σij = −pδij + η (∂jvi + ∂ivj) (4.75)

O tomto vyjadreńı si mysĺıme, že by mohlo byt’ správne, ak prejde prudké zovšeobecnenie (13)→ (ij)7.
Dosad’me takýto tenzor napätia do všeobecnej rovnice kontinua. Dôležité bude vediet’, čo je za výraz ∂jσij
pri takomto tvare σij :

∂jσij = −∂ip+ η
(
∂j∂jvi + ∂j∂ivj︸ ︷︷ ︸

∂i(~∇·~v)

)
= −

(
~∇p
)
i
+ η

[
∆~v + ~∇

(
~∇ · ~v

)]
i

(4.76)

Výsledná rovnica teda bude mat’ tvar:

ρ

[
∂~v

∂t
+
(
~v · ~∇

)
~v

]
= −~∇p+ ρ~g︸ ︷︷ ︸

Eulerova rovnica

+η∆~v + η~∇
(
~∇ · ~v

)
(4.77)

Práve sme odvodili Navier-Stokesovu rovnicu. Za povšimnutie stoj́ı, že až do členov, ktoré obsahujú
konštantu η, je rovnica totožná s Eulerovou. Taktiež vidno, že ked’ pribudla viskozita, rovnica je až druhého
rádu (menovite v člene ∆~v, kde sú až druhé derivácie rýchlostného pol’a).

Pre nestlačitel’né kvapaliny zanedbávame člen η~∇
(
~∇ · ~v

)
, divergencia nestlačitel’nej kvapaliny totiž

muśı byt’ nulová.
Okrajové podmienky pri Eulerovej a Navier-Stokesovej rovnici určujú správanie rýchlostného pol’a na

okraji uvažovaného objemu (napr. v pŕıklade s Newtonovym vedrom to boli body, kde sa kvapalina stýkala
s vedrom). Pri neviskóznej kvapaline uvažujeme, že rýchlost’ kvapaliny pri pevnej hranici bude rovnobežná
s touto hranicou, pri viskóznej kvapaline dokonca nulová.

7O jeho správnosti sa presvedč́ıme po naṕısańı rovńıc, ktoré z tohto zovšeobecnenia vyplývajú, ich riešeńım pre vel’a rôznych
problémov a overeńım, či tieto riešenia dobre opisujú skutočnost’. Ak nie, celé to treba premysliet’ znova, ak áno, môžeme
konečne otvorit’ tú fl’ašu šampusu. Ukazuje sa, že takéto zovšeobecnenie bolo správne, no tú fl’ašu šampusu by sme radšej
nemali otvárat’ - alkohol nič́ı mozgové bunky.
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4.2.8 Ďaľsie pŕıklady z hydrodynamiky riešitel’né analyticky*

Tečenie v potrub́ı*

Toto je klasický priklad pre Navier-Stokesovu rovnicu. Jedná sa o stacionárne, laminárne tečenie
viskóznej kvapaliny vo zvislej, nekonečne dlhej rúre s polomerom R v gravitačnom poli.

Riadiaca rovnica pre stacionárny tok nestlačitel’nej kvapaliny vychádza z Navier-Stokesovej rovnice so

zanedbańım členu η~∇
(
~∇ · ~v

)
v dôsledku nestlačitel’nosti a zanedbańım členu ∂t~v v dôsledku stacionárnosti

toku:

ρ
(
~v · ~∇

)
~v = −~∇p+ ρ~g + η∆~v

Nech os súmernosti valca, v ktorom kvapalina tečie je totožná s osou z. Gravitačné pole bude mierit’ v
smere −z: ~g = (0, 0,−g).

Okrajová podmieka diktuje, že kedykol’vek x2 + y2 = R2, tak ~v (x, y, z) = ~0 (nezávisle na z). Z rovnice
kontinuity a nestlačitel’nosti kvapaliny dostávame:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 ; ρ (x, y, z, t) = konšt. =⇒ ~∇ · ~v = 0 =⇒ ~v = ~∇× ~A

t.j. najvšeobecneǰśı tvar, aký dokážeme dosiahnut’ pre rýchlost’ ~v je taký, že táto sa dá naṕısat’ ako rotácia
iného vektorového pol’a, ~A.

Dosad́ıme do riadiacej rovnice:

ρ
[(
~∇× ~A

)
· ~∇
] (

~∇× ~A
)

= −~∇p+ ρ~g + η∆
(
~∇× ~A

)
Po zložkách:

ρεabc∂bAc∂a (εijk∂jAk) = −∂ip+ ρgi + η∂l∂l (εijk∂jAk)

ρεijkεabc
∂Ac
∂xb

∂Ak
∂xa∂xj

= − ∂p

∂xi
+ ρgi + ηεijk

∂Ak
∂xl∂xl∂xj

Toto je zjavne slepá ulička pre akékol’vek amb́ıcie vypoč́ıtat’ niečo analyticky - rovnica, ktorú sme dostali
je nelineárna a škaredá 8.

Navier-Stokesova rovnica, aj v takomto zdecimovanom tvare (nestlačitel’ná kvapalina, stacionárne riešenie)
je bohužial’ stále nelineárna parciálna diferenciálna rovnica druhého rádu, teda takmer hocičo, čo vieme z
riešeńı lineárnych parciálnych diferenciálnych rovńıc (napr. Poissonova rovnica, vlnová rovnica, rovnica
vedenia tepla, ...), môžeme zahodit’ spolu aj s nejakou vetou o jednoznačnosti riešenia. Jediná zbraň, čo
nám ostala, je zdravý rozum a ten nám našepkáva, aké tečenie by táto rovnica logicky podl’a situácie mohla
sṕlňat’. Je ńım tečenie, ktoré má len tretiu zložku rýchlosti nenulovú (v smere osi z). K tomuto úsudku nás
viedla myšlienka, že predsa voda v zvislej rúre tečie smerom dole9 (teda v smere osi z), prečo teda takýto

nápad neskúsit’ na rovnicu? Našu predstavu by sṕlňalo takéto rýchlostné pole:

~v =

 0
0

v (x, y, z)


Z rovnice kontinuity dostávame:

∂zv (x, y, z) = 0 =⇒ v (x, y, z) = v (x, y)

8Škaredá - skúste si napr. vyṕısat’ prvú zložku, t.j. i = 1.
9To nie je celkom pravda - pomocou perturbácii sa dá nazriet’ do tohto problému aj inak a zistili by sme, že aj taká zdanlivo

jednoduchá vec ako tok v zvislej rúre je v skutočnosti zložitý. No my hl’adáme jednoduché a nie zložité riešenie.
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Teda rýchlostné pole záviśı už len od x a y. L’avá strana Navier-Stokesovej rovnice bude nulová (časovú
deriváciu sme vylúčili už na začiatku - stacionárnost’ toku), pretože pre jedinú nenulovú tretiu zložku ~v
dostávame: (

~v · ~∇
)
v = v

∂v

∂z
= 0

Preṕı̌seme si, čo z Navier-Stokesovej rovnice ostalo pre prvé dve zložky:

∂p

∂x
= 0 ∧ ∂p

∂y
= 0 =⇒ p(x, y, z) = p(z)

Pre tretiu zložku dostávame:

−∂p(z)
∂z

+ η∆v(x, y)− ρg = 0

∂p(z)

∂z
+ ρg = η∆v(x, y)

F (z) = G(x, y)

Dospeli sme ku celkom pŕıjemnému faktu, rovnica sa sama odseparovala. Vid́ıme, že l’avá strana je
závislá len od premennej z a pravá strana len od premenných x a y. To však znamená, že ak by l’avá strana
nebola konštantná v premennej z, potom by sa menila s touto premennou, no na pravej strane by nemalo
čo udržat’ túto rovnost’, ked’že sa v nej premenná z nenachádza. Z toho jednoducho vyplýva, že obe strany
sú konštantné a rovné tej istej konštante K:

∂p(z)

∂z
+ ρg = K = η∆v(x, y)

Skúmajme prvú rovnost’ - jednoduchú diferenciálnu rovnicu s jednoduchým riešeńım:

∂p(z)

∂z
+ ρg = K =⇒ p(z) = p0 + (K − ρg) z

Druhá rovnost’ predstavuje o trochu väčš́ı problém:

∆v =
K

η

Jedná sa o Poissonovu rovnicu, čo je parciálna lineárna diferenciálna rovnica, ktorá má jednoznačné
riešenie pre jednoznačne zadané okrajové podmienky v. Tu vstupuje do úlohy ako okrajová podmienka
nulovost’ rýchlosti kvapaliny tam, kde sa kvapalina stýka s rúrou, teda kedykol’vek x2 +y2 = R2. Je namieste
začat’ uvažovat’ polárne súradnice. Laplace v týchto súradniciach je možné nájst’ napr. na wikipédii (alebo
si ho odvodit’):

v(x, y)→ v(r, ϕ) ∆ =
∂2

∂x2
+

∂2

∂y2
→ ∆ =

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2

1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2

∂2v

∂ϕ2
=
K

η

V týchto súradniciach je možné ovel’a pohodlneǰsie sformulovat’ okrajovú podmienku, a to práve vd’aka
tomu, že sme sa presunuli do súradnej sústavy šitej na mieru tvaru rúry:

v(r = R,ϕ) = 0
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Takto definovaný problém (Poissonova rovnica + okrajová podmienka) sa nazýva Dirichletova úloha a
je dokázané10, že pre Dirichletovu úlohu existuje jednoznačné riešenie. Ak toto riešenie teraz akýmkol’vek
spôsobom uhádneme, bude to ONO hl’adané riešenie. Inak povedané, veta o jednoznačnosti riešenia Dirich-
letovej úlohy povyšuje hádanie na úplne rigoróznu metódu hl’adania riešenia tejto úlohy. Ked’že hádanie
riešenia je úplne košér spôsob riešenia tejto rovnice, skúsme si tipnút’, čo ak riešenie v (r, ϕ) v skutočnosti
bude závisiet’ len od r (teda v uhle ϕ sa nebude diat’ nič zauj́ımavé):

1

r

d

dr

(
r

dv

dr

)
=
K

η

Ked’že rýchlost’ záviśı už iba od r, budeme derivácie značit’ čiarkou. Rovnicu riešime štandardne, je to
totiž už len obyčajná diferenciálna rovnica:

1

r
(rv′)

′
=
K

η

(rv′)
′

=
K

η
r

rv′ =
K

2η
r2 + C1

v′ =
K

2η
r + C1

1

r

v(r) =
K

4η
r2 + C1 ln(r) + C2

Ďalej sa riadime sedliackym rozumom a okrajovou podmienkou. Vid́ıme, že ak konštanta C1 je rôzna
od 0, potom pre r → 0 plat́ı v(r) → −∞ (alebo +∞). Toto zrejme nebude úplne najfyzikálneǰsie chovanie
rýchlostného toku (minimálne by to porušovalo prinćıpy teórie relativity, ktorá však v Navier-Stokesových
rovniciach nie je pŕıtomná, no hlavne by to vyrušovalo zdravý rozum). Z tohto chovania súdime, že C1 = 0.
Zároveň muśı platit’ okrajová podmienka, z ktorej dostávame výslednú hodnotu konštanty C2:

v(R) =
K

4η
R2 + C2 = 0 =⇒ C2 = −K

4η
R2 =⇒ v(r) =

K

4η

(
r2 −R2

)
Jediná vec, ktorá ostala nedoriešená, je konštanta K. Znovu sa pozrieme, kde daná konštanta vystupo-

vala. Vystupovala v rozložeńı tlaku v kvapaline:

p(z) = (K − ρ g) z + p0

Predstavme si, že by koeficient pri z nebol nulový. To ale znamená, že v takej nekonečne vysokej rúre by
po chv́ıli tlak začal narastat’ nad všetky medze a niekde by musel byt’ aj záporný. To tiež neznie bohvieako
realisticky, preto požadujeme:

p(z) = p0 = p0 =⇒ K = ρ g

Dostávame výsledný tvar rýchlostného profilu:

v(r) =
ρ g

4η

(
r2 −R2

)
(4.78)

Tento výsledok očividne sed́ı s našou intuit́ıvnou predstavou, ako také jednoduché laminárne tečenie v
rúre môže vyzerat’. Jednak vid́ıme, že pre vnútro rúry dostávame zápornú zložku rýchlosti, čo je v poriadku,
pretože kvapalina tečie smerom dole (v zápornom smere osi z). Zároveň dostávame parabolický profil tohto
tečenia, čo sa určite ako klebeta spomı́nalo už všelikde, no názorný náhl’ad dáva tento jednoduchý pŕıklad.
Samozrejme, vel’ké zanedbanie prǐslo už na začiatku, kedy sme predpokladali len zvislú zložku rýchlostného
pol’a. Také jednoduché to vo všeobecnosti nie je.

10Dôkaz bude na Teorii elektromagnetického pol’a
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Maximálnu rýchlost’ dostávame po dosadeńı r = 0:

vmax =
ρ g R2

4η
(4.79)

Celkový prietok daným miestom (metre kubické za jednotku času) spoč́ıtame nasledovným integrálom:

J =

¨

r<R

|v|dS =

ˆ 2π

0

dϕ

ˆ R

0

dr
ρ g

4η

(
R2 − r2

)
= −πρg

η

ˆ 0

R2

udu =
πρgR4

2η
(4.80)

Pokusne by sme mohli vyhl’adat’ nejaké hodnoty dynamických viskoźıt η pre rôzne kvapaliny a skúšat’

rôzne polomery, napŕıklad:

vmax ≈ 101m · s−1 voda v slamke

vmax ≈ 10−2m · s−1 olej v slamke

vmax ≈ 10−3m · s−1 med v slamke

vmax ≈ 105m · s−1 voda v odpadovej rúre

(4.81)

Ako slamku sme brali rúrku s priemerom 6mm, odpadová rúra má priemer 15cm.
Oba výsledky pre vodu vyzerajú podozrivo (prvý prinajmenšom podozrivo, druhý priam smiešne),

pre vodu v odpadovej rúre sme dostali rýchlost’ takmer 100 000 km/h. Problém je v našom pŕıstupe
k pŕıkladu. Už na začiatku sme predpokladali laminárne prúdenie, ktoré zabezpečuje pekný stacionárny
profil prúdenia vody v rúre. Do hry však vstupuje ovel’a smutneǰsia skutočnost’ a to turbulencia, ktorá
je v Navier-Stokesových rovniciach ticho skrytá. Jedna značne zložitá oblast’ v matematike sa snaž́ı k
tomuto problému pristupovat’ pomocou perturbácii - na začiatku zavedieme do toku kvapaliny malú poruchu
(ktorá tam aj reálne takmer vždy je) a sledujeme, ako sa porucha vyv́ıja priestorovo a s časom. Pri vode,
ktorá má vel’mi malý koeficient dynamickej viskozity a pri laminárnom (to je ten pekný, usporiadaný)
toku očakávame nereálny prietok 2000 km/h, dostaneme vel’mi vel’ké Reynoldsovo č́ıslo, ktoré vypovedá
o dominancii zotrvačných śıl nad viskóznymi silami, teda očakávame vel’mi silnú turbulenciu. V praxi
to znamená, že ak do kvapaliny zavedieme malú poruchu, táto sa skôr či neskôr rozvinie do šialeného
toku, ktorý, okrem iného, celkový prietok kvapaliny potrub́ım, značne brzd́ı. Čo ale znač́ı to, že napriek
týmto jednak myšlienkam a jednak experimentom, ktoré potvrdzujú, že voda v potrub́ı málokedy prúdi
rýchlost’ou 100 000 km/h, sme dané riešenie dostali z Navier-Stokesovej rovnice? Nič, okrem toho, že za
istých zidealizovaných podmienok (dokonale čistá voda bez odpadu, dokonale rovné a hladké potrubie, aby
sa nemali o čo čiastočky vody zachytit’, dokonalý zdroj, ktorý bude zhora vodu hnat’ v presnom valci s
presným rýchlostným profilom) je teoreticky možné dosiahnut’ laminárne prúdenie, ktoré bude mat’ peak
velocity 100 000 km/h. Znie to asi rovnako pravdepodobne, ako to, že sa gul’a udrž́ı na hrote pera, napriek
tomu, že podl’a newtonovej rovnice existuje poloha, v ktorej je výslednica śıl na ňu pôsobiaca nulová.

Na druhej strane, rýchlost’ medu v slamke je dost’ pomalá. Ako by sa dala zvýšit’? Mohli by sme skúsit’

pustit’ stredom slámky prúd medu s polomerom R1 v okoĺı ktorého by tiekla voda. Tentoraz vstupom a
výstupom budú dva rýchlostné profily, ~v1 a ~v2. Každý z nich bude musiet’ sṕlňat’ vlastnú Navier-Stokesovu
rovnicu a navyše budú musiet’ sṕlňat’ okrajové podmienky jednak na rozhrańı med-voda a aj na rozhrańı
voda-potrubie.

Použijeme rovnaký ansatz pre každú rovnicu a dostaneme dve sady rovńıc, ktorých úpravy sú vzhl’adom
na predchádzajúcu čast’ zjavné (pretože sú analogické):

∂p1

∂x
= 0 ∧ ∂p1

∂y
= 0 =⇒ p1(x, y, z) = p1(z)
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−∂p1(z)

∂z
+ η1∆v1(x, y)− g = 0

∂p1(z)

∂z
+ ρ1g = η1∆v1(x, y)

F1(z) = G1(x, y) =⇒ ∂p1(z)

∂z
+ ρ1g = K1 = η1∆v1(x, y)

∂p2

∂x
= 0 ∧ ∂p2

∂y
= 0 =⇒ p2(x, y, z) = p2(z)

−∂p2(z)

∂z
+ η2∆v2(x, y)− g = 0

∂p2(z)

∂z
+ ρ2g = η2∆v2(x, y)

F2(z) = G2(x, y) =⇒ ∂p2(z)

∂z
+ ρ2g = K2 = η1∆v2(x, y)

Každá z rovńıc vedie k nasledujúcim výsledkom:

p1(z) = p10 + (K1 − ρ1g) z

p2(z) = p20 + (K2 − ρ2g) z

v1(r) =
K1

4η1
r2 + C11ln(r) + C12

v2(r) =
K2

4η1
r2 + C21ln(r) + C22

++
Pre konštantu C11 plat́ı rovnaký argument ako v predošlom pŕıpade - tok v1 sa koná vo vnútornej časti

trubice (okolo stredu), teda aby rýchlost’ nedivergovala, C11 = 0. Ďalej muśı platit’:

v1(R1) = v2(R1) =⇒ K1

4η1
R2

1 + C12 =
K2

4η2
R2

1 + C21ln(R1) + C22

t.j. spojitost’ rýchlostného pol’a na rozhrańı med-voda a d’alej:

v2(R) = 0 =⇒ K2

4η2
R2 + C21 ln(R) + C22 = 0

Toto je očividný a dost’ nepŕıjemný problém. Pre tri neznáme konštanty C máme len dve rovnice, ktoré
sa ich pokúšajú určit’, čo znie tak trochu ako problém. Pod’me sa pozriet’ na to, ako vyzerá rozloženie śıl
viskozity v kvapaline. Je zjavné, že pri toku, ktorý sme jej ansatzom nanútili, sa sily rozložia v smere toku
kvapaliny, resp. proti nemu tak, že ak si vezmeme jedno infinitezimálne medzivalcie, teda kúsok kvapaliny
uzavretý medzi r a r + dr, vieme nahliadnút’, že z vonkaǰsej strany na neho pôsob́ı iný takýto kúsok a
rovnako tak aj z vnútornej strany. To ako presne naň pôsobia vlastne určuje podrobneǰsie rýchlostný profil.
Je intuit́ıvne jasné, že aj sila muśı byt’ v kvapaline spojitá, a teda aj tenzor napätia by mal byt’ spojitý (ak
by na naše medzivalcie pôsobila z jednej strany sila značne iná, ako na druhej strane, bolo by to zvlášne a
trochu by to odporovalo tomu, aby bolo rýchlostné pole spojité). To vieme zaručit’ dodatočnou okrajovou
podmienkou:

η1
∂v1(r)

∂r

∣∣∣∣
r=R1

= η2
∂v2(r)

∂r

∣∣∣∣
r=R1
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A teda dostávame sústavu rovńıc:

K1

4η1
R2

1 + C12 =
K2

4η2
R2

1 + C21ln(R1) + C22

K2

4η2
R2 + C21ln(R) + C22 = 0

1

2
K1R1 =

1

2
K2R1 + η2C21

1

R1

Z tejto vyjadŕıme konštanty C12, C21 a C22:

C21 =
R2

1

2η2
(K1 −K2)

C22 = −K2

4η2
R2 − R2

1

2η2
(K1 −K2) ln(R)

C12 =
R2

1

4

(
K2

η2
− K1

η1

)
− K2

4η2
R2 +

R2
1

2η2
(K1 −K2) ln

(
R1

R

)
Analogicky ku postupu predtým urč́ıme konštanty K1 a K2:

K1 = ρ1g

K2 = ρ2g

Výsledný profil rýchlosti medu bude:

v1(r) =
ρ1g

4η1

(
r2 −R2

1

)
− ρ2g

4η2

(
R2 −R2

1

)
+
R2

1g

2η2
(ρ1 − ρ2) ln

(
R1

R

)
(4.82)

Urč́ıme jeho prietok:

J =

¨

r<R

|v|dS =
πρ1gR

4
1

2η1
− πρ2gR

2
1

4η2

(
R2 −R2

1

)
+
πR4

1g

2η2
(ρ1 − ρ2) ln

(
R1

R

)
Zmaximalizovat’ prietok možno posúvańım R1 - ak bude R1 dostatočne bĺızko stredu, bude prúžok medu

dost’ rýchly, no vel’a nepotečie, pretože jeho rozmer bude malý. Ak budeme posúvat’ R1 ku R, prúžok medu
bude širš́ı, no bude pomaľśı. Preto deriváciou J podl’a R1 źıskame funkciu, ktorej nulové body budú určovat’

extrémy prietoku medu:

∂J

∂R1
= πgR3

1

(
2ρ1

η1
+

ρ2

2η2

)
− πρ2gR1

2η2

(
R2 −R2

1

)
+

2πgR3
1

η2
(ρ1 − ρ2) ln

(
R1

R

)
+
πR3

1g

2η2
(ρ1 − ρ2) (4.83)

Rovnica ∂J
∂R1

= 0 nie je riešitel’ná analyticky explicitne, no je možné si dat’ vykreslit’ tento prietok pre
konkrétne hodnoty g, ρ1, η1, ρ2, η2 a R, ktoré sme už použ́ıvali. Graf nie je nijako zauj́ımavý, jeden koreň sa
nachádza v R1 = 0, i ked’ no funkcia v tomto bode nie je spojitá, no dá sa spojite dodefinovat’. Podl’a grafu
by sme však odhadli, že sa jedná len o inflexný bod (navyše vieme, že pre R1 = 0 je prietok medu identicky
nulový). Jediný kladný reálny koreň je v tomto pŕıpade približne 1.25 · 10−3m a to je práve hodnota medzi
0 a polomerom celej slamky.

R1 ≈ 1.25 mm Ideálny vnútorný polomer st́lpčeku medu pre maximalizáciu jeho prietoku (4.84)
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Nestacionárne tečenie v potrub́ı**

V predošlom pŕıklade sme v istom bode došli ku rovnici:

−∂p(z)
∂z

+ η∆ v(x, y)− ρg = 0 (4.85)

Uvažujme teraz, že prúdenie nebude stacionárne, ale bude závisiet’ aj od času. Rovnica prejde na tvar:

∂v(x, y, t)

∂t
= −∂p(z, t)

∂z
+ η∆ v(x, y, t)− ρg (4.86)

Hned’ vid́ıme, že tak ako aj v predošlom pŕıpade, p môže byt’ nanajvýš lineárnou funkciou z:

∂v(x, y, t)

∂t
− η∆ v(x, y, t) + ρg = −∂p(z, t)

∂z
=⇒ p(z, t) = a(t)z + b(t) (4.87)

S odvolávkou na predošlý pŕıklad znovu polož́ıme a(t) rovné nule11 a dostávame:

∂v

∂t
− η∆ v = −ρg (4.90)

Jedná sa o nehomogénnu rovnicu difúzie pre veličinu v(x, y, t) s konštantnou pravou stranou. Znovu
prejdeme do polárnej sústavy:

v (x, y, t)→ (r, ϕ, t) ∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
(4.91)

Rovnica difúzie na svoje úspešné vyriešenie konzumuje nasledovné okrajové a počiatočné podmienky:

v (R,ϕ, t) = Vo (ϕ, t) ≡ 0

v (r, ϕ, 0) = v0 (r, ϕ)
(4.92)

kde na okraji sme identicky zadali nulový tok, ked’že tak diktuje podmienka nulového sklzu viskóznej kva-
paliny na pevnej hranici.

Máme teda parciálnu diferenciálnu rovnicu12, spolu s okrajovou a počiatočnou podmienkou:

∂v

∂t
− η∆ v = −ρg v (R,ϕ, t) = 0

v (r, ϕ, 0) = v0 (r, ϕ)
(4.93)

Toto je lineárna diferenciálna rovnica a dá sa dokázat’ existencia a jednoznačnost’ jej riešenia, čo sa nám
hod́ı, pretože to riešenie v skutočnosti (rafinovane) uhádneme. V skutočnosti sa jedná o nehomogénnu rovnicu
difúzie, respekt́ıve rovnicu vedenia tepla, kde nehomogenitu spôsobuje nenulová pravá strana. Pozit́ıvum je,
že jej nehomogenita je najnevinneǰsia aká len môže byt’ a to konštantná.

11Stač́ı si rozmysliet’ niečo takéto:

a(t) 6= 0⇔ ∀a(t) ∀P0 > 0 ∃z, t0 : a(t0)z + b(t) > P0 − neohraničenost’ tlaku (4.88)

Popŕıpade nasledovné:

a(t) 6= 0⇔ ∀a(t) 6= 0 ∃z, t0 : a(t0)z + b(t) < 0 − nutná zápornost’ tlaku niekde pozd́lž potrubia (4.89)

12Druhého rádu v priestorovej časti a prvého rádu v časovej. Potrebujeme teda jednu okrajovú podmienku a jednu počiatočnú
podmienku.
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Riešenie hl’adajme v tvare:

v (r, ϕ, t) =
∑
n,k

Tnk(t)Ψnk (r, ϕ) (4.94)

kde Tnk je nejaká časová zložka, ktorej tvar zist́ıme v priebehu riešenia a Ψnk (r, ϕ) je n, k-ta13 vlastná
funkcia Laplaciánu v kruhu s polomerom R, ktorej prislúchajúca vlastná hodnota je −λnk. Motiváciu k
tomuto kroku uvid́ıme o pár riadkov nižšie. Predpokladáme, že aj pravá strana je vo všeobecnosti funkciou
času a polohy, teda vo všeobecnosti plat́ı:

−ρg =
∑
n,k

Fnk(t)Ψnk (r, ϕ) (4.95)

To je možné len ak Ψnk (r, ϕ) tvoria úplný ortogonálny systém funkcíı na intervale 〈0, R〉 × 〈0, 2π).
Potom takýto rozklad existuje a koeficienty rozkladu, Fnk(t) budú dané vzt’ahom:

Fnk(t) = A2
nk

¨

r≤R

r (−ρg) Ψnk (r, ϕ) drdϕ, Ank ≡

¨
r≤R

r |Ψnk (r, ϕ)|2 drdϕ

−1/2

(4.96)

Toto je všeobecný vzt’ah pre akýkol’vek systém ortogonálnych funkcíı. Integrál obsahujúci ρg predstavuje
samotný rozklad do vlastných funkcíı, konštanta Ank zabezpečuje normalizáciu14. Podintegrálny člen r
prichádza z Jakobiánu dS = r dr dϕ. Vid́ıme, že funkcie Fnk(t) sú vd’aka konštantnosti pravej strany tiež
len konštanty Fnk. Samotná okrajová podmienka má tiež svoj rozklad:

v0 (r, ϕ) =
∑
n,k

CnkΨnk (r, ϕ) (4.97)

Cnk = A2
nk

¨

r≤R

r v0 (r, ϕ) Ψnk (r, ϕ) drdϕ (4.98)

Dosad’me teraz (4.94) a (4.95) do (4.93):

∂v

∂t
− η∆ v = −ρg∑

n,k

ṪnkΨnk − η
∑
n,k

Tnk∆ Ψnk =
∑
n,k

FnkΨnk

V tomto kroku by nám vel’mi vyhovovalo, aby sme všetky výrazy mohli obriadit’ jednou sumou, v ktorej
by sa navyše dala odseparovat’ časová závislost’. To však môžeme, pretože sme sa dohodli, že Ψnk sú vlastné
funkcie Laplaciánu s vlastnými hodnotami −λnk. Plat́ı teda:

∆ Ψnk = −λnkΨnk
15 (4.99)

Vieme teda odseparovat’ časovú závislost’:∑
n,k

(
Ṫnk(t) + ηλnkTnk(t)− Fnk

)
Ψnk = 0 (4.100)

13To, že na výsledný rad treba 2 indexy, nahliadneme v priebehu riešenia. Počet indexov priamo súviśı s rozmerom oblasti,
na ktorej rovnicu riešime.

14Ak by systém bol ortonormálny a nielen ortogonálny, konštanty Ank by sme nemuseli ṕısat’, pretože integrál, ktorým ich
poč́ıtame by bol identicky rovný jednej.

15Bez sumačnej konvencie.
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Znovu prekvapivo využijeme ortogonalitu systému funkcíı Ψnk, z ktorej vyplýva, že táto rovnost’ môže
byt’ splnená jedine ak:

∀n, k : Ṫnk(t) + ηλnkTnk(t)− Fnk = 0

Ṫnk(t) + ηλnkTnk(t) = Fnk (4.101)

Rovnica (4.101) je obyčajná lineárna diferenciálna rovnica, pre ktorú máme dokonca aj počiatočnú
podmienku. Vskutku, z (4.94) a (4.97) vyplýa, že:

Tnk(0) = Cnk (4.102)

Navyše vieme, že Fnk sú konštanty (pretože pravá strana je konštantná v čase). Rovnicu (4.101) s
počiatočnou podmienkou (4.102) tak môžeme riešit’ aj s tým, čo už vieme:

Ṫnk(t) + ηλnkTnk(t) = Fnk

/
· eηλnkt, t→ τ

Ṫnk(τ)eηλnkτ + ηλnkTnk(τ)eηλnkτ︸ ︷︷ ︸
=

d

dτ

(
Tnk(τ)eηλnkτ

) = Fnke
ηλnkτ

/ ˆ t

0

dτ

Tnk(t)eηλnkt − Tnk(0)︸ ︷︷ ︸
=Cnk

=
1

ηλnk
Fnk

(
eηλnkt − 1

)

Tnk(t) =
Fnk
ηλnk

+

(
Cnk −

Fnk
ηλnk

)
e−ηλnkt (4.103)

Aby sme dokončili riešenie, muśıme poznat’ vlastné funkcie Laplaciánu v kruhu. Menovite pre vlastnú
funkciu Ψ muśı platit’:

∆ Ψ (r, ϕ) = −λΨ (r, ϕ) , Ψ (R,ϕ) ≡ 0, λ ∈ R+
0 (4.104)

Nulovost’ na okraji je všeobecná vlastnost’ vlastných funkcíı akéhokol’vek lineárneho operátora, táto
podmienka navyše výrazne zjednodušuje riešenie (4.94). Pre takto definovaný problém sa dá dokázat’, že
samotné vlastné hodnoty −λ prislúchajúce jednotlivým vlastným funkciám sú nekladné, preto λ ∈ R+

0 .
Použijeme klasickú separáciu premenných:

Ψ (r, ϕ) = R(r)Φ(ϕ), R′ ≡ dR

dr
, Φ′ ≡ dΦ

dϕ
(4.105)

Tento tvar dosad́ıme do (4.104) a využijeme (4.91):

R′′Φ +
1

r
R′Φ +

1

r2
RΦ′′ = −λRΦ

/
r2

Ψ

r2R
′′

R
+ r

R′

R
+

Φ′′

Φ
= −λ r2

/
− Φ′′

Φ
+ λ r2

r2R
′′

R
+ r

R′

R
+ λ r2 = −Φ′′

Φ
(4.106)

L’avá strana poslednej rovnice záviśı len od r, pravá strana len od ϕ. Z toho usudzujeme, že obe musia
byt’ rovné nejakej konštante, menovite k > 016.

16Schválne danú konštantu nútime do toho, aby bola nezáporná. Dôvodom je periodicita Ψ (r, ϕ) v premennej ϕ, ktorá by
inak nemala šancu na splnenie.
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Separátne riešime konštantnost’ oboch strán rovnice (4.106), najprv pre Φ (ϕ):

−Φ′′

Φ
= k =⇒ Φ′′ = kΦ =⇒ Φ (ϕ) = A cos

(√
kϕ
)

+B sin
(√

kϕ
)

(4.107)

Po zohl’adneńı podmienky Ψ (r, ϕ+ 2π) = Ψ (r, ϕ) dostávame podmienku na k:

√
k = n ∈ N =⇒ k = n2, Φ (ϕ) = A cos (nϕ) +B sin (nϕ) (4.108)

Riešime rovnicu pre R(r):

r2R
′′

R
+ r

R′

R
+ λ r2 = n2

/
R (4.109)

r2R′′ + rR′ + λ r2R = n2R

/
− n2R (4.110)

r2R′′ + rR′ +
(
λ r2 − n2

)
R = 0 (4.111)

Transformujeme premennú r nasledovne:

r =
ξ√
λ

(4.112)

Rovnica (4.111) prejde na tvar:

ξ2 d2R

dξ2
+ ξ

dR

dξ
+
(
ξ2 − n2

)
R = 0 (4.113)

Nejakým spôsobom v tejto rovnici spoznáme Besselovu diferenciálnu rovnicu, ktorej riešeńım je, ako
inak, Besselova funkcia.

Rovnica (4.113) je obyčajná lineárna diferenciálna rovnica druhého rádu so singularitou v bode ξ = 017.
To, že je to rovnica druhého rádu znamená, že ako fundamentálny systém riešeńı poslúžia práve dve lineárne
nezávislé funkcie. Fakt, že rovnica má singularitu v bode 0 zase spôsob́ı, že jedna z nich bude v danom bode
neohraničená. Keby sme sa teda aj pokúšali nájst’ obe funkcie pomocou Taylorovho rozvoja v okoĺı ξ = 0,
nájdeme nanajvýš len jednu, pretože Taylorov rad neohraničenej funkcie v bode nespojitosti neexistuje.

Dve riešenia tvoriace fundamentálny systém riešeńı teda budú Besselova funkcia prvého a druhého
druhu, z ktorej prvá je ohraničená v okoĺı 0, druhá nie je. Ked’že my hl’adáme len fyzikálne riešenie (a
neohraničený tok v 0 neznie fyzikálne), berieme len tú prvú, ktorá sa bežne označuje ako Jn:

R (ξ) = AJn (ξ) =⇒ Rn (r) = AJn

(√
λr
)

(4.114)

Každá z funkcíı Jn(x) má nekonečne mnoho koreňov. Ako Z(n; j) označ́ıme j-ty nenulový koreň n-tej
Besselovej funkcie prvého druhu. Podmienka Ψ (R,ϕ) = 0 kladie teraz podmienku na λ:

0 = Rn (R) = AJn

(√
λR
)

=⇒
√
λR

!
= Z(n; j) =⇒ λnj =

(
Z(n; j)

R

)2

(4.115)

17To spoznáme napr. z toho, že nekonštantný koeficient pri najvyššej derivácii nadobúda hodnotu 0 pri ξ = 0, čo spôsobuje
redukciu diferenciálneho rádu rovnice v danom bode. Takýto úkaz voláme singularita a vždy vedie aj na funkcie, ktoré nie sú
ohraničené v danom singulárnom bode.
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J( )ξ  
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Obrázok 4.7: Prvých 6 Besselových funkcíı J a ich netriviálne korene.

Dostávame teda vlastné funkcie a vlastné hodnoty v tvare:

Ψnk (r, ϕ) = K1
nkJn

(
Z(n; k)

R
r

)
cos (nϕ) +K2

nkJn

(
Z(n; k)

R
r

)
sin (nϕ) (4.116)

λnk =

(
Z(n; k)

R

)2

(4.117)

Vrátime sa k nášmu riešeniu:

v (r, ϕ, t) =
∑
n,k

Tnk(t)Ψnk (r, ϕ) (4.118)

Tnk(t) =
Fnk
ηλnk

+

(
Cnk −

Fnk
ηλnk

)
e−ηλnkt (4.119)

Fnk = A2
nk

¨

r≤R

r (−ρg) Ψnk (r, ϕ) drdϕ (4.120)

Cnk = A2
nk

¨

r≤R

r v0 (r, ϕ) Ψnk (r, ϕ) drdϕ (4.121)

Ank ≡

¨
r≤R

r |Ψnk (r, ϕ)|2 drdϕ

−1/2

(4.122)
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Aj ked’ by to bolo vel’mi zauj́ımavé, nič nejdeme poč́ıtat’, len si ukážeme zauj́ımavú vlastnost’ týchto
riešeńı. Dosad́ıme Tnk(t) do všeobecného riešenia:

v (r, ϕ, t) =
∑
n,k

Fnk
ηλnk

Ψnk (r, ϕ)︸ ︷︷ ︸
= v∞ (r, ϕ)

+
∑
n,k

(
Cnk −

Fnk
ηλnk

)
e−ηλnktΨnk (r, ϕ) (4.123)

Skúmajme funkciu v∞ (r, ϕ):

v∞ (r, ϕ) ≡
∑
n,k

Fnk
ηλnk

Ψnk (r, ϕ) (4.124)

Budeme predpokladat’, že funkcia v∞ je hladká (vo všetkých premenných) a rad z druhých derivácii
podl’a r a ϕ rovnomerne konverguje. Aplikujme teda Laplaceov operátor na obe strany:

∆ v∞ (r, ϕ) =
∑
n,k

Fnk
ηλnk

∆ Ψnk (r, ϕ) (4.125)

Nebudeme rozpisovat’ výrazy, miesto toho si uvedomı́me, že ∆ Ψnk = −λnkΨnk =⇒ ∆ Ψnk/λnk = −Ψnk:

∆ v∞ (r, ϕ) = −1

η

∑
n,k

FnkΨnk (r, ϕ) =
ρg

η
(4.126)

Toto je však rovnica zhodná s rovnicou pre ustálené laminárne tečenie vo valci. Riešenie pre v∞ (r, ϕ)

takisto sṕlňa nulovost’ na okraji, to ale znamená, že riešenie v∞ (r, ϕ) je zhodné s riešeńım, ktoré sme našli
v (4.78). Sú zhodné vd’aka vete o jednoznačnosti riešenia Poissonovej rovnice18.

Ako už iste tuš́ıte, druhý člen v (4.123) bude pre t→∞ nulový. Dá sa ukázat’, že pre hladké počiatočné
podmienky v0 (r, ϕ) plat́ı, že druhý člen v (4.123) je rovnomerne konvergentný rad na t ∈ 〈ε,∞) , ε > 0,
teda možno zamenit’ poradie limity a sumy a dostaneme želaný výsledok:

lim
t→∞

v (r, ϕ, t) = v∞ (r, ϕ) =
ρg

4η

(
r2 −R2

)
(4.127)

18V tomto pŕıpade pravá strana rovnice je rovnaká a aj okrajové podmienky sú rovnaké, teda podl’a vety o jednoznačnosti
riešenia aj riešenie je len jedno - to, ktoré sme už našli predtým.
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Potenciálové obtekanie nekonečného zvislého valca**

Potenciálové tečenie je stacionárne nev́ırové tečenie nestlačitel’nej neviskóznej kvapaliny. Táto bude
obtekat’ okolo nekonečného valca polomeru R položeného do cesty toku tak, aby jeho os symetrie bola kolmá
na ~v. Obrázok:

?

Obrázok 4.8: Aké bude stacionárne nev́ırové tečenie nestlačitel’nej neviskóznej kvapaliny okolo nekonečného
valca?

Pri riešeńı využijeme dvojrozmernost’ toku a jeho nev́ırovost’:

~∇× ~v = ~0 =⇒ ∃U (x, y) ; ~∇U = ~v

teda existencia skalárneho potenciálu toku kvapaliny.
Z rovnice kontinuity máme pre nestlačitel’nú kvapalinu podmienku:

~∇ · ~v = 0 =⇒ ∆U = 0

čo je Laplaceova rovnica.
Na to, aby bolo jej riešenie jednoznačné, potrebujeme okrajovú podmienku. Jedna z podmienok je, že

tečenie v nekonečne je len v smere zl’ava doprava, teda pre polohy d’aleko od valca plat́ı:

~v = v0 ~e1

Jedná sa o neviskóznu kvapalinu, teda pri valci nebude tok nulový, ale stále plat́ı, že muśı byt’ rovnobežný
s povrchom valca, teda jeho kolmá zložka muśı byt’ nulová:

x2 + y2 = R2 =⇒ ~v · ~n = 0

Bolo by výhodné prejst’ k polárnym súradniciam (čisto formálne do cylindrických, no zložka z odvšadial’

vypadne). Laplace v týchto súradniciach má tvar:

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2

Okrajové podmienky pre ~v sme vyriešili, teraz ich treba pretavit’ do funkcie U . Jej tvar d’aleko od valca
muśı byt’:

U = v0x+ konšt. = v0r cos (ϕ) + konšt.
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Druhá okrajová podmienka je trochu zložiteǰsia. Naṕı̌sme si, čo je vlastne gradient v polárnych
súradniciach:

~∇U =
∂U

∂r
~er +

1

r

∂U

∂ϕ
~eϕ

Má platit’:

r = R =⇒
(
~∇U

)
· ~n = 0

Lenže ~n je práve jednotkový vektor v smere kolmom na povrch valca. No to je práve vektor ~er v
polárnych súradniciach (ak os valca je v nule), preto môžeme ṕısat’:

∂U

∂r

∣∣∣∣∣
r=R

= 0

Nájdime teda riešenie Laplaceovej rovnice s takýmito okrajovými podmienkami:

∆U (r, ϕ) = 0 ;
∂U

∂r

∣∣∣∣∣
r=R

= 0 ∧ U = v0r cos (ϕ) + konšt. ;
r

R
� 1

Skúsenost’ ukazuje, že Laplaceova rovnica sa dá separovat’, ak U je v tvare súčinu zložky, ktorá záviśı
len od r a zložky, ktorá záviśı len od ϕ:

U (r, ϕ) = R (r) Φ (ϕ)

Kvôli šetreniu miesta nebudeme vypisovat’ ani derivácie (miesto nich dáme čiarku), ani argumenty - je
jasné, že čiarka pri R je derivácia podl’a r. Separujme teda Laplaceovu rovnicu:

∆U = 0

1

r

∂

∂r
(rR′Φ) +

1

r2
RΦ′′ = 0

R′′Φ +
1

r
R′Φ +

1

r2
RΦ′′ = 0

/
r2

RΦ

r2R′′

R
+
r R′

R
= −Φ′′

Φ

Dostali sme separovanú rovnicu - obe strany závisia od inej premennej, čo ale nutne znamená, že obe
strany sú konštanty - a to rovnaké. Označme ju K 19:

r2R′′

R
+
r R′

R
= −Φ′′

Φ
= K

Pre Φ tak dostávame:

−Φ′′

Φ
= K =⇒ Φ (ϕ) = A cos

(√
Kϕ
)

+B sin
(√

Kϕ
)

Úplne prirozdená požiadavka na funkciu Φ je, aby bola 2π− periodická. Ak by totiž nebola, funkcia R
by mohla robit’ hocičo, už nikdy by nezošila funkciu U na rozhrańı ϕ = 0 a ϕ = 2π (čo je to isté) tak, aby
bola spojitá. Dostávame teda podmienku na konštantu K:

√
K = n ∈ N =⇒ Kn = n2

19Ak by sme ju označili opačným znamienkom, došli by sme ku riešeniam v podobe sinh a cosh, ktoré ale pre ϕ čast’ riešenia
nevyhovujú.
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Pre R zložku sme dostali rovnicu:

r2R′′

R
+
r R′

R
= Kn

r2R′′ + r R′ −KnR = 0

Toto je homogénna diferenciálna rovnica, ktorej riešenie hl’adáme v tvare:

R(r) = rα

α (α− 1) rα + α rα −Knr
α = 0

α2 = Kn =⇒ αn = ±n

Výsledná funkcia U bude superpoźıcia všetkých pŕıpustných funkcíı s pŕıslušnými koeficientami:

U (r, ϕ) =

∞∑
n=0

(
anr

n + bnr
−n) (An cos (nϕ) +Bn sin (nϕ))

Pripomı́name, že ak nájdeme akékol’vek riešenie, ktoré bude sṕlňat’ okrajové podmienky, bude jediné
vd’aka vete o jednoznačnosti riešenia. Skúsme konečným počtom členov časti R splnit’, aby U (R,ϕ) = 0 a
zároveň, aby fungovala podmienka v nekonečne. To sa dá, ale len vtedy, ak zahod́ıme všetky časti rn okrem
tej, kde n = 1 - ak by sme to neurobili, riešenie v nekonečne by nebolo úmerné r cos (ϕ). Vid́ıme, že v riešeńı
muśı byt’ pŕıtomný člen v0r cos (ϕ):

U (r, ϕ) = v0r cos (ϕ) +

∞∑
n=0

r−n (An cos (nϕ) +Bn sin (nϕ))

Podl’a okrajovej podmienky pri valci máme:

∂U

∂r

∣∣∣∣∣
r=R

= 0 =⇒ v0 cos (ϕ)−
∞∑
n=1

nR−n+1 (An cos (nϕ) +Bn sin (nϕ)) =

v0cos (ϕ) =

∞∑
n=0

nR−n+1 (An cos (nϕ) +Bn sin (nϕ))

Z matematickej analýzy, konkrétne z časti o Fourierovych radoch a o trigonometrickom polynóme vieme,
že funkciu cos (ϕ) nemáme ako inak rozložit’ do ostatných trigonometrických funkcíı (t.j. do iných funkcíı
sin (nϕ) a cos (nϕ)), ako len tak, že zoberieme práve cos (ϕ) 20. Teda potom nutne An = 0 pre n 6= 1 a
Bn = 0 a dostávame:

v0cos (ϕ) = A1cos (ϕ)

Zo všetkých zložiek nám ostali jediné dve - tá, ktorá je úmerná r cos (ϕ) a tá, ktorá je úmerná 1
r cos (ϕ):

U (r, ϕ) = v0r cos (ϕ) +A1
1

r
cos (ϕ)

Vid́ıme, že okrajová podmienka v nekonečne je splnená - to sme od nej aj žiadali. Taktiež okrajová
podmienka pri valci bude splnená, Ak:

∂U

∂r

∣∣∣∣∣
r=R

= v0cos (ϕ)−A1
1

R2
cos (ϕ) = 0 =⇒ A1 = R2

20Tento fakt v sebe obnáša ortogonalita a úplnost’ systému trigonometrických funkcíı na intervale 〈0, 2π).
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Dostali sme teda kompletné riešenie Laplaceovej rovnice s istotou, že je jediné:

U (r, ϕ) = v0

(
r +

R2

r

)
cos (ϕ)

Výsledok preṕı̌seme do kartézskej sústavy a vrátime sa k rýchlostnému pol’u:

U (x, y) = v0

(
r +

R2

r

)
cos (ϕ) = v0

(
1 +

R2

r2

)
rcos (ϕ)︸ ︷︷ ︸

=x

= v0x

(
1 +

R2

x2 + y2

)

vx = v0

(
1−

R2
(
x2 − y2

)
(x2 + y2)

2

)

vy = −v0
2R2xy

(x2 + y2)
2

Z Bernoulliho rovnice źıskame vyjadrenie pre tlak:

1

2
ρ~v 2 + p =

1

2
ρv2

0 + p∞ =⇒ p =
1

2
ρ
(
v2

0 − v2
)

+ p∞

V tejto rovnici sme si zvolili dva body - jeden niekde bĺızko valca, v tom bode je rýchlost’ v a skúmaný
tlak je p. V druhom bode, d’aleko od valca je rýchlost’ toku smerom doprava stabilnou vel’kost’ou v0 a tlak v
nekonečne sme označili p∞.

Na vyjadrenie tlaku sa hod́ı polárna sústava. Vd’aka kolmosti ~er a ~eϕ plat́ı:

v2 = v2
r + v2

ϕ = U ′ 2r +
1

r2
U ′ 2ϕ = v2

0

(
1− R2

r2

)2

cos2 (ϕ) + v2
0

(
1 +

R2

r2

)2

sin2 (ϕ) =

= v2
0

(
1 +

R4

r4

)
− v2

0

2R2

r2

(
cos2 (ϕ)− sin2 (ϕ)

)
= v2

0

(
1 +

R4

r4
− 2R2

r2
cos (2ϕ)

)
Teraz môžeme vyjadrit’ tlak v polárnej sústave:

p (r, ϕ) =
1

2
ρv2

0

(
2R2

r2
cos (2ϕ)− R4

r4

)
+ p∞

V kartézskej sústave bude mat’ trochu škaredš́ı tvar:

p (x, y) =
1

2
ρv2

0

2R2
(
x2 − y2

)
−R4

(x2 + y2)
2 + p∞

Vid́ıme, že v okoĺı valca, teda r & R je najväčš́ı tlak pri ϕ = 0 a ϕ = π, naopak, najmenš́ı tlak nastáva
pri ϕ = π/2 a ϕ = 3π/2.

154



4.2. KVAPALINY

1

2

3

0

-1

-2

-3

0 1 2 3-1-2-3
Obrázok 4.9: Prúdnice spolu s vektorovým pol’om stacionárneho nev́ırivého prúdenia nestlačitel’nej
neviskóznej kvapaliny okolo zvislého nekonečne dlhého valca, ktorý predstavuje tmavomodrý kruh.
Naznačené je aj farebné pole tlaku, maximálny tlak predstavuje červená farba, minimálny modrá.

Z uvedeného pŕıkladu by sa mohlo zdat’, že téma obtekania objektov je vlastne jednoduchá a algoritmická
- ved’ uznajte, jediné, čo sme potrebovali je riešenie Laplaceovej rovnice. Podobný postup by sa dal zopakovat’

pre rôzne objekty21, jediný problém by bol s nekonečným radom - všeobecným riešeńım Laplaceovej rovnice.
Je treba zakaždým poskladat’ takú funkciu, ktorá sṕlňa požadovaný tok d’aleko od objektu a zároveň sṕlňa
obtekanie okolo objektu rovnobežné s jeho hranicou, no to je už iný problém a čisto teoreticky sa to dá22.

Vel’ký problém však nastáva už v tom, že obtekanie okolo objektov vôbec nie je potenciálové23. Pri
reálnych tokoch pozorujeme za objektom turbulentné prúdenie a v́ıry. Takéto riešenie by sme źıskali jedine
numericky.

21Napŕıklad elipsy, štvorce, machul’ky, ...
22Kde ,,čisto teoreticky” znamená, že existuje veta o jednoznačnosti riešenia Laplaceovej rovnice pre mix Dirichletovej a

Neumannovej okrajovej podmienky.
23Pripomı́name, že výraz ,,potenciálové” vychádza z faktu: ~∇× ~v = ~0 =⇒ ~v = ~∇U
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4.3 Pružné kontinuum

Základná veličina, ktorá nám dávala predstavu o tom, čo rob́ı kvapalina, bolo jej rýchlostné pole ~v.
V pružnom kontinuu bude jeho hlavný predstavitel’ pole posunut́ı, ~u. Nepredstavujeme si, že by sa pružné
kontinuum niekam d’aleko samo hýbalo, navyše si budeme predstavovat’, že pri vystaveńı pružného kontinua
nejakej sile, sú tieto posunutia ~u malé.

4.3.1 Tenzor deformácie

Pre takéto pole by bolo vhodné zaviest’ kritérium, kedy sa dá povedat’, že došlo k deformácii - je jasné,
že ak zoberieme naše kontinuum a presunieme ho o 10m dol’ava, k žiadnej deformácii nedošlo. Takisto, ak ho
otoč́ıme hore nohami, tiež nedošlo k deformácii. Bolo by teda dobré si ujasnit’, čo to je vlastne tá deformácia.
To zatial’ nevieme, tak si aspoň ujasnime, čo to deformácia nie je. Už sme zistili, že posunutia a otočenie
nie je deformácia, teda deformácia nie je izometria. Izometria sú také transformácie, ktoré zachovávajú
vzdialenosti. Črtá sa možnost’, ako spoznat’, že sa dva body od seba oddialili. Ak vezmeme výraz ∂iuj ,
tento bude zjavne nulový pri všetkých posunutiach, no na rozt’ahovanie zareaguje nenulovost’ou. Otázne je,
či je možné takýto výraz oklamat’ otočeńım (t.j. že bude nenulový pri otáčańı, čo je zlé). Preto skúmajme
otočenie celého kontinua o uhol δϕ okolo osi určenej vektorom ~n. Poloha l’ubovol’ného bodu sa tak zmeńı:

~r → ~r + δϕ~n× ~r

Vypoč́ıtajme ∂iuj pre takúto rotáciu:

ui = ε~n× ~r =⇒ ∂iuj = δϕεjkl∂inkxl = δϕεjklnkδil = δϕεijknk 6= 0

Bohužial’, zistili sme, že výraz ∂iuj je nenulový aj pri rotácii, čo nie je vlastnost’, ktorá nám vyhovuje. Na
druhej strane, dostali sme, že ∂iuj pre rotáciu je antisymetrický výraz. Už máme skúsenost’, že kombinácia
symetrického a antisymetrického výrazu je nulová. Preto ak by sme ako kritérium deformácie použili výraz:

∂iuj + ∂jui

pre rotáciu o δϕ okolo ~n dostaneme 0:

∂iuj + ∂jui = δϕ

=0︷ ︸︸ ︷
(εijk + εjik)nk = 0

Dostali sme sa tak k výrazu, ktorý by mohol byt’ vhodným kritériom deformácie kontinua a nazveme
ho tenzor deformácie:

εij =
1

2
(∂iuj + ∂jui) (4.128)

Jeho štatút dobrého kritéria deformácie ešte stoj́ı na vratkých nohách - vieme, že je nulový pri akomkol’vek
posunut́ı a akejkol’vek rotácii, no nevieme, či náhodou nie je nulový aj pri nejakej skutočnej deformácii. Na
to skúmajme kontinuum pred a po deformácii - majme dva body, bod ~r a druhý, ktorý je od neho vzdialený
o ~δ, teda jeho poloha bude ~r + ~δ. Po deformácii sa tieto dva body dostanú do novej polohy a ich vzájomná
poloha bude ~∆:

r

r + δ δ 
→ 

→→→

r + u(r)

r + δ + u(r + δ)

 
→ 

→→→

→ → 

→
→
Δ

 

→ 

Obrázok 4.10: Stav dvoch bodov pred a po deformácii.
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Pre ~∆ plat́ı:

~∆ = ~r + ~δ + ~u
(
~r + ~δ

)
−
(
~r + ~u (~r )

)
Vieme, že k deformácii dochádza práve vtedy, ak

∣∣∣~∆∣∣∣ 6= ∣∣∣~δ ∣∣∣. Mali by sme preto vyjadrit’
∣∣∣~∆∣∣∣, no to je

obtiažne, jednoduchšie bude vyjadrit’ ∆2:

∆2 = ∆i∆i =
[
δi + ui

(
~r + ~δ

)
− ui (~r )

] [
δi + ui

(
~r + ~δ

)
− ui (~r )

]
Výraz ui

(
~r + ~δ

)
rozlož́ıme do Taylorovho radu do prvého rádu a budeme predpokladat’, že ~δ je malé:

ui

(
~r + ~δ

)
= ui (~r ) + δj

∂ui
∂xj

∆2 =

[
δi + δj

∂ui
∂xj

] [
δi + δk

∂ui
∂xk

]
24

Pri roznásobovańı tohto výrazu budeme navyše predpokladat’, že výraz ∂ui
∂xj

je malý, teda súčin takýchto

dvoch výrazov dá oproti zvyšku zanedbatel’nú nulu:

∆2 = δ2 + δiδk
∂ui
∂xk

+ δiδj
∂ui
∂xj

+ δjδk
∂ui
∂xj

∂ui
∂xk︸ ︷︷ ︸

malé

= δ2 + δiδj

(
∂ui
∂xj

+
∂uj
∂xi

)
︸ ︷︷ ︸

=2εij

∆2 = δ2 + 2δiδjεij

Vid́ıme, že jednoznačne plat́ı:

∆2 6= δ2 ⇔ εij 6= 0

čo je presne to, čo má εij sṕlňat’. Po ceste sme použili, že ∂iuj je malý výraz. Ak k tomu navyše plat́ı, že
aj ui je malý výraz, jedná sa o lineárnu pružnost’.

4.3.2 Hookov zákon

Vieme teda, čomu je rovný tenzor deformácie:

εij =
1

2
(∂iuj + ∂jui)

Vo všeobecnej rovnici kontinua však vystupuje tenzor napätia, σij . Ešte nevieme, ako spolu súvisia
tenzor napätia a tenzor deformácie, no dá sa predpokladat’ nasledujúca závislost’:

σij (εkl, ~r, t)

My však vieme, že εkl je malý výraz (dôvodom je malost’ výrazu ∂kul), rozviňme teda σij do Tayolorvho
radu v okoĺı εkl = 0:

σij (εkl, ~r, t) =

=0︷ ︸︸ ︷
σij (0, ~r, t) +

=Cijkl︷ ︸︸ ︷
∂σij
∂εkl

∣∣∣∣
ε=0

εkl + O
(
|ε|2
)

24Aby nekolidovali indexy, v druhej zátvorke sme index j premenovali na k.
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4.3. PRUŽNÉ KONTINUUM

Výraz σij (0, ~r, t) je nulový, pretože pri nulovom tenzore deformácie sa nekoná deformácia a teda aj
plošné sily budú nulové. Druhý výraz je súčin Cijklεkl, my už vieme, že Cijkl nezáviśı od εkl, pretože v
derivácii sme zvolili ε = 0, teda Cijkl záviśı len od ~r a t. Zvyšok radu sme kvôli malosti (a linearite) ε
zanedbali. Dostávame tak vzt’ah:

σij = Cijklεkl (4.129)

To, čo sme práve odvodili, sa nazýva Hookov zákon25. Tento vzt’ah je lineárny, pretože zachováva
lineárne kombinácie - sprostredkovatel’om tejto závislosti je tenzor štvrtého rádu, Cijkl, ktorý budeme nazývat’

tenzor elastických koeficientov26. Napriek lineárnosti vzt’ahu medzi tenzorom napätia a tenzorom deformácie,
je trochu desivé, že tenzor, ktorý tento vzt’ah sprostredkúva, teda tenzor elastických koeficientov, je tenzor
štvrtého rádu, teda na kompletné určenie správania sa pružného kontinua s najvšeobecneǰsou anizotropiou
by malo byt’ potrebných 81 elastických koeficientov, čo je naozaj vel’a. Ukážeme si, že vd’aka symetriám
tenzorov napätia a deformácie je možné tento počet značne zredukovat’. Dve symetrie vidno priamo:

∂σij
∂εkl

∣∣∣∣
ε=0

=
∂σji
∂εkl

∣∣∣∣
ε=0

=⇒ Cijkl = Cjikl (4.130)

∂σij
∂εkl

∣∣∣∣
ε=0

=
∂σij
∂εlk

∣∣∣∣
ε=0

=⇒ Cijkl = Cijlk (4.131)

Tretia symetria je trochu skrytá a bez dôkazu27 uvedieme, že:

Cijkl = Cklij (4.132)

Prvé dve symetrie (tiež volané vedl’aǰsie symetrie) sú spôsobené symetriami tenzorov napätia a de-
formácie a redukujú počet neznámych koeficientov Cijkl postupne z 81 na 54 a z 54 na 36. Tretia symetria
(hlavná) je spôsobená istou záležitost’ou, ktorú nebudeme hlbšie pitvat’, no s radost’ou konštatujeme, že táto
symetria redukuje počet neznámych koeficientov z 36 na 21. Je tomu tak preto, lebo tenzor Cijkl môžeme
efekt́ıvne kvôli hlavnej symetrii ṕısat’ ako CAB , kde A a B bež́ı od 1 do 9, pretože samotné tenzory napätia
a deformácie sú matice 3x3. Ďalej tieto tenzory sú symetrické, teda A a B efekt́ıvne bežia od 1 do 6. Lenže
CAB = CBA, teda táto akoby matica 6x6 je symetrická, čo z 36 nezávislých koeficientov necháva len 21
nezávislých koeficientov28.

Zistili sme, že pre úplne najvšeobecneǰsie anizotropné a nehomogénne prostredie treba 21 nezávislých
koeficientov, ktoré sa menia v priestore (nehomogenita). To je ešte stále celkom dost’, ale čo čakat’, reč je
o naǰskaredšom možnom kontinuu. Namiesto plakania si uvedomı́me, že svet sa miestami skladá aj z kusov
toho najkraǰsieho kontinua - izotropného a homogénneho, ktorý potrebuje len dve konštanty na kompletné
určenie správania sa tohto kontinua, práve také kontinuum ideme skúmat’.

25Robert Hooke.
26Čitatel’ možno zač́ına mat’ zmätok v tenzoroch. Hlavný tenzor, ktorý sa vyskytuje vo všeobecnej pohybovej rovnici kontinua

sa nazýva tenzor napätia (stress tensor) a znač́ı sa σij . Špeciálne pre pružné kontinuum sme museli zaviest’ d’aľśı tenzor, ktorý
sa nazýva tenzor deformácie (strain tensor) a znač́ıme ho εij . Nakoniec tret́ı tenzor, tenzor elastických koeficientov (stiffness
tensor) Cijkl sprostredkúva lineárny vzt’ah medzi tenzorom napätia a tenzorom deformácie σij = Cijklεkl.

27Mimochodom, tento fakt sa nahliada z toho, že pre funkciu hustoty energie napätia U plat́ı:

σij =
∂U

∂εij

z čoho však vyplýva:

Cijkl =
∂2U

∂εij∂σkl

Dotyčná skrytá symetria tenzoru elastických koeficientov je teraz zjavná z rovnosti druhých zmiešaných derivácii pri zámene
poradia derivovania (predpokladom je spojitost’ týchto druhých derivácii).

28
6∑
i=1

i = 21
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4.3.3 Hookov zákon pre homogénne a izotrópne kontinuum

Ak by tenzory napätia a deformácie neboli tenzory, ale len vektory, v izotropnom kontinuu by platilo
σi = Cδijεj = Cεi, teda vektor ε by mieril v smere σ (v izotropnom kontinuu nemá dôvod uprednostnit’

niektorý smer, všetky sú rovnocenné a teda pri zadanom smere σ už len z tohto smeru a izotropie prostredia
iný smer neposkladá, ako smer σ).

Pre vzt’ah medzi σij a εij bude platit’, že tenzor, ktorý ich sprostredkúva, je izotrópny - inak povedané,
jeho komponenty sú rovnaké vo všetkých vzt’ažných systémoch, ktoré sú voči sebe len otočené. Vo všeobecnosti,
pre dané n 6= 1 môže existovat’ niekol’ko jedinečných tenzorov n-tého rádu, pre tenzory rádu 1 (t.j. vektory)
takýto tenzor (vektor) neexistuje. Jedinečný tenzor druhého rádu, ktorý je izotrópny, je tenzor δij , jedinečný
izotrópny tenzor rádu tri je Levi-Civitov symbol εijk.

Existuje niekol’ko (tri) jedinečných tenzorov rádu štyri, ktoré sú izotrópne, no nemuśıme ich poznat’,
pretože plat́ı jedna vel’mi užitočná veta (bez mena): všeobecný izotrópny tenzor možno vyskladat’ jedine z
Kroneckerových delt a Levi-Civitových symbolov. Izotrópny tenzor rádu štyri sa teda ale muśı skladat’ jedine
z Kroneckerových delt, pretože Levi-Civitov symbol tam jednoducho nenatlač́ıme29:

Cijkl = a δijδkl + b δikδjl + c δilδjk (4.133)

Vd’aka (4.130), (4.131) a (4.132) máme:

Cijkl = Cjikl =⇒ a δijδkl + b δikδjl + c δilδjk = a δjiδkl + b δjkδil + c δjlδik =⇒ b = c

Cijkl = Cijlk =⇒ a δijδkl + b δikδjl + c δilδjk = a δijδlk + b δilδjk + c δikδjl =⇒ b = c

Cijkl = Cklij =⇒ a δijδkl + b δikδjl + c δilδjk = a δklδij + b δkiδlj + c δkjδli =⇒ nič

Vid́ıme, že prvé dve symetrie priniesli novú informáciu, b = c, tretia symetria nepriniesla nič. Plat́ı
teda:

Cijkl = a δijδkl + b
(
δikδjl + δilδjk

)
Teda naozaj vid́ıme, že pre izotrópne a homogénne kontinuum stačia dve konštanty (pre nehomogénne

dve funkcie), a a b, ktoré odteraz budeme značit’ λ a µ a volat’ Lamého elastické koeficienty. Pre tenzor
napätia teda plat́ı:

σij = Cijklεkl = λ δij δklεkl︸ ︷︷ ︸
=εkk

+µ
(
δikδjl + δilδjk

)
εkl = λ δijεkk + µ (εij + εji)︸ ︷︷ ︸

=2εij

Vid́ıme, že sa nám vo vzt’ahu objavil výraz pre stopu matice εij :

Trε = δklεkl = εkk = ~∇ · ~u ≡ ϑ (4.134)

Túto konštantu ϑ budeme volat’ objemová dilatácia. Dostali sme Hookov zákon pre homogénne a
izotrópne prostredie:

σij = λϑ δij + 2µ εij (4.135)

29Niekto by sa mohol snažit’ vyrábat’ kombinácie súčinu Levi-Civitovho symbolu s Kroneckerovou deltou, no také čosi by
vždy viedlo na nulový výraz a súčin dvoch Levi-Civitových symbolov je len niečo čo už máme zastúpené - napr. εijmεklm sa
dá pomocou Davis-Cup identity vyjadrit’ pomocou Kroneckerových delt.
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4.3.4 Objemová dilatácia

Majme nejaký objem dV , ktorý sa vplyvom deformácie zdeformuje na objem dV ′:

dV dV'→ 

Obrázok 4.11: Zmena objemu po deformácii.

Plat́ı dV = dx dy dz. Vplyvom deformácie sa zmeńı súradnicový systém:

~r ′ = ~r + ~u (~r ) (4.136)

x′i = xi + ui (~r ) (4.137)

Vieme, že nový objem vypoč́ıtame ako:

dV ′ = |J |dV (4.138)

kde J je jakobián transformácie:

Jij =
∂x′i
∂xj

= δij +
∂ui
∂xj

=

1 + ∂u1

∂x
∂u1

∂y
∂u3

∂z
∂u2

∂x 1 + ∂u2

∂y
∂u2

∂z
∂u3

∂x
∂u3

∂y 1 + ∂u3

∂z

 (4.139)

Vieme, že v determinante sa prvky matice medzi sebou všelijako násobia, my však vieme, že ∂iuj je
malé, z determinantu teda ostane:

|J | = 1 + ~∇ · ~u = 1 + ϑ (4.140)

Pre objemový element dV ′ tak plat́ı:

dV ′ = |J |dV = (1 + ϑ) dV =⇒ ϑ =
dV ′ − dV

dV
(4.141)

Výraz ϑ teda vyjadruje relat́ıvnu zmenu objemového elementu pri deformácii, preto sa nazýva objemová
dilatácia.

4.3.5 Homogénne a izotrópne pružné kontinuum, Lamého rovnica

Vychádzame zo všeobecnej pohybovej rovnice kontinua a vzt’ahmi, ktoré sme odvodili doteraz:

ρai = ∂jσij + fi σij = λ ~∇ · ~u δij + 2µ εij εij =
1

2
(∂iuj + ∂jui) (4.142)

Vzhl’adom na malost’ ui je člen ai rovný druhej časovej derivácii pol’a posunut́ı. Ṕı̌seme teda:

ρ
∂2ui
∂t2

= ∂j

[
λ ~∇ · ~u δij + µ (∂iuj + ∂jui)

]
+ fi = λ∂i

(
~∇ · ~u

)
+ µ

[
∂i

(
~∇ · ~u

)
+ ∆ui

]
+ fi

ρ
∂2~u

∂t2
= (λ+ µ) ~∇

(
~∇ · ~u

)
+ µ∆~u+ ~f (4.143)

Rovnica, ktorú sme práve odvodili, sa nazýva Lamého rovnica. Potešujúca správa je, že táto rovnica je
lineárna.
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4.4 Vlny v pružnom kontinuu a v kvapalinách

V tejto časti si vel’mi stručne rozoberieme vlny v pružnom kontinuu a vlny v kvapaline. Nebudeme sa
zaoberat’ detailami, ako rozdelenie v́ln na objemové a povrchové, popŕıpadne na ich d’aľsie delenie, pretože
to nie je ciel’om tohto predmetu30. Začneme jednoduchš́ımi vlnami v pružnom kontinuu.

4.4.1 Vlny v izotropnom pružnom kontinuu

Tak, ako aj v predošlých častiach, nebudeme riešit’ Lamého rovnicu (4.143) v jej plnej paráde (aj ked’

nás úprimne teš́ı svojou linearitou), použijeme ansatz rovinnej vlny. Zauj́ıma nás predsa, či sa v pružnom
kontinuu môže š́ırit’ rovinná, lineárne polarizovaná vlna a ak áno, za akých predpokladov. Tento ansatz
dosad́ıme v nasledujúcom tvare:

~u (~r, t) = ~u0f (~n · ~r, t) ; ~u0 - konšt.

Takýto ansatz nazývame rovinnou vlnou, pretože ξ = ~n · ~r určuje rovnicu roviny (teda ~u záviśı od ~r,
ale len v nejakej špeciálnej kombinácii ~n · ~r) a lineárne polarizovanou, pretože ~u0 je konštanta nemeniaca sa
s časom ani v priestore. Dosad’me tento ansatz do (4.143) bez pôsobenia objemových śıl:

ρ
∂2~u

∂t2
= (λ+ µ) ~∇

(
~∇ · ~u

)
+ µ∆~u+~0

∂2~u

∂t2
= ~u0f̈

~∇ · ~u = ∂iui = u0i∂if (~n · ~r, t) = u0i
∂f (ξ, t)

∂ξ

∂ξ

∂xi
= u0if

′ni = ~u0 · ~n f ′[
~∇
(
~∇ · ~u

)]
i

= ∂i~u0 · ~n f ′ = ~u0 · ~nni f ′′ =⇒ ~∇
(
~∇ · ~u

)
= ~u0 · ~n f ′′ ~n

∆~u = ~u0f
′′ ~n 2︸︷︷︸

=1

ρf̈~u0 = (λ+ µ) (~u0 · ~n) f ′′~n+ µ f ′′~u0(
ρf̈ − µ f ′′

)
︸ ︷︷ ︸

=Q1

~u0− (λ+ µ) (~u0 · ~n) f ′′︸ ︷︷ ︸
=Q2

~n = 0

Dospeli sme k rovnici typu:

Q1~u0 +Q2~n = 0

V závislosti na polohe ~u0 a ~n máme dve možnosti. Pokial’ ~u0 ‖ ~n, potom určite existuje č́ıslo c také, že

~u0 = c~n. Ak ~u0��‖~k, potom ~u0 a ~n sú lineárne nezávislé, teda rovnica môže byt’ splnená iba ak Q1 = Q2 = 0.

30Ďaľśı záujem treba smerovat’ na oblast’ ako je fyzika Zeme, ku ktorej neodmyslitel’ne patria vlny v kontinuu, popŕıpade
špeciálne štúdium mechaniky kontinua a hydrodynamiky.
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1. ~u0 ‖ ~n

Pre tento pŕıpad plat́ı ~u0 = c~n, teda môžeme ṕısat’:(
ρf̈ − µ f ′′

)
c~n− (λ+ µ) c (~n · ~n) f ′′~n = 0[(

ρf̈ − µ f ′′
)
− (λ+ µ) f ′′

]
~n = 0

Q~n = 0

Pre nenulový vektor ~k je táto rovnica splnená iba ak Q = 0:(
ρf̈ − µ f ′′

)
− (λ+ µ) f ′′ = 0

f̈ − 2µ+ λ

ρ
f ′′ = 0

Dostali sme vlnovú rovnicu pre funkciu f . Rýchlost’ š́ırenia v́ln, ked’ ~u0 ‖ ~n je:

cl =

√
2µ+ λ

ρ
rýchlost’ š́ırenia pozdĺ̌znych (longitudinálnych, p) vĺn

2. ~u0 ��‖ ~n

Ak vektor ~u0 je lineárne nezávislý od ~n, potom muśı platit’:

ρf̈ − µ f ′′ = 0

(λ+ µ) (~u0 · ~n) f ′′ = 0
(4.144)

Prvá rovnica je znovu vlnová rovnica pre funkciu f , tentoraz s rýchlost’ou š́ırenia:

ct =

√
µ

ρ
rýchlost’ š́ırenia priečnych (transverzálnych, s) vĺn

Tieto vlny sme nazvali priečne, aj ked’ plat́ı len ~u0 ��‖ ~n, teda nie nutne ~u0 ⊥ ~n (vtedy by by malo zmysel
volat’ tieto vlny priečne). Ukážeme, že nutne ~u0 ⊥ ~n. Ak by platilo ~u0�⊥ ~n, z druhej rovnice (4.144) vyplýva:

(λ+ µ) (~u0 · ~n) f ′′ = 0 ∧ λ > 0 ∧ µ > 0 ∧ ~u0�⊥ ~n =⇒ f ′′ = 0 =⇒ f (~n · ~r, t) = a(t)~n · ~r + b(t) (4.145)

No ak by sme mali takéto riešenie pre f , to by znamenalo, že pre nenulové a(t) by ~u rástlo nad všetky
medze - nebolo by už malé. Ak by platilo, že a(t) = 0, potom by ~u bola konštanta v priestore a nejaká funkcia
v čase, čo však len znamená, že by sa celé kontinuum nejako posúvalo v čase, to ale nie sú vlny (kontinuum
sa pri takomto pohybe nedeformuje). Z toho vyplýva, že nulovost’ druhej rovnice (4.144) je nutné splnit’ tak,
že ~u0 ⊥ ~n.

Zistili sme teda dva druhy riešeńı - také, ktorých smer š́ırenia je rovnobežný so smerom kmitania, tieto

vlny sme nazvali pozd́lžne a ich rýchlost’ je cl =
√

2µ+λ
ρ . Druhý druh v́ln, priečny, kmitá kolmo na smer

š́ırenia, preto sme tieto vlny nazvali priečne a ich rýchlost’ je ct =
√

µ
ρ . Vid́ıme, že rýchlost’ pozd́lžnych

v́ln je väčšia ako rýchlost’ priečnych v́ln, preto pozd́lžne dostali názov p vlny, teda primárne a priečne s
vlny, sekundárne - pri kmitavom pohybe zeme sa z daného miesta š́ıria rôzne typy v́ln, no do iného miesta,
vzdialeného od zdroja, najprv dorazia pozd́lžne vlny, až potom priečne, čo sa deje vd’aka rozdielnej rýchlosti
širenia týchto v́ln.

Vd’aka tomu, že Lamého rovnica je lineárna, všeobecné riešenie vlny možno zložit’ ako lineárnu kom-
bináciu pozd́lžneho a priečneho kmitania, ktorá bude tiež sṕlňat’ Lamého rovnicu.
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4.4. VLNY V PRUŽNOM KONTINUU A V KVAPALINÁCH

Pri priečnych vlnách nedochádza ku objemovej dilatácii ϑ = ~∇· ~u = ~n · ~u0f
′ = 0, pri pozd́lžnych vlnách

k nej dochádza (vtedy ~n ‖ ~u0 =⇒ ϑ = ~∇ · ~u = ~n · ~u0f
′ 6= 0).

4.4.2 Vlny v ideálnej kvapaline

Pre ideálnu kvapalinu31 zoberieme Eulerovu rovnicu bez objemových śıl spolu s rovnicou kontinuity:

∂~v

∂t
+
(
~v · ~∇

)
~v = −1

ρ
~∇p

∂ρ

∂t
+ ~∇ · (ρ~v ) = 0

(4.146)

Rovnako by sme mohli skúsit’ dosadit’ ansatz pre rovinnú vlnu, no d’aleko by sme nedošli - aj s ansatzom
je riešenie tejto rovnice t’ažké. Skúsme však dosadit’ takýto smiešny konštantný ansatz:

ρ = ρ0

p = p0

~v = ~0

(4.147)

Tento ansatz samozrejme sṕlňa obe rovnice (4.146). Teraz vezmime taký ansatz, ktorý sa bude nepatrne
ĺı̌sit’ od smiešneho ansatzu, bude to len jeho malé vyrušenie:

ρ = ρ0 + ρ̂

p = p0 + p̂

~v = ~0 + ~̂v

(4.148)

teda plat́ı, že veličiny ρ̂, p̂ a ~̂v a ich derivácie podl’a času a priestorových súradńıc sú malé (v zmysle, že
akýkol’vek ich vzájomný súčin možno zanedbat’ oproti týmto veličinám a ostatným členom). Z prvej rovnice
(4.146) tak dostaneme:

(ρ0 + ρ̂)
∂~̂v

∂t
+ (ρ0 + ρ̂)

(
~̂v · ~∇

)
~̂v = −~∇p0 − ~∇p̂

ρ0
∂~̂v

∂t
= −~∇p̂ (4.149)

Z rovnice kontinuity dostávame:

∂ (ρ0 + ρ̂)

∂t
+ ~∇ ·

[
(ρ0 + ρ̂) ~̂v

]
= 0

∂ρ̂

∂t
+ ρ0

~∇ · ~̂v = 0 (4.150)

Tento výsledok zderivujme podl’a času:

∂2ρ̂

∂t2
+ ρ0

∂

∂t
~∇ · ~̂v = 0

∂2ρ̂

∂t2
+ ~∇ ·

(
ρ0
∂~̂v

∂t

)
= 0

31Názov kvapalina je zavádzajúci. Patŕı sem napŕıklad aj vzduch.
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Za ρ0∂t~̂v dosad́ıme (4.149):

∂2ρ̂

∂t2
+ ~∇ ·

(
−~∇p̂

)
= 0

∂2ρ̂

∂t2
−∆p̂ = 0 (4.151)

Toto je takmer vlnová rovnica, problém je, že miesto rovnakej premennej (bud’ hustota, alebo tlak),
je to rovnica pre obe veličiny zmiešané spolu. Predpokladajme teda, že tlak a hustota závisia iba na sebe
navzájom a už na ničom inom32. Ked’že sa však obe veličiny menia iba málo, je možné tlak rozvinút’ v okoĺı
ρ0 do prvého rádu Taylorovho radu, pričom zanedbanie bude malé:

p (ρ) = p (ρ0)︸ ︷︷ ︸
=p0

+
dp

dρ

∣∣∣∣
ρ=ρ0

(ρ− ρ0)︸ ︷︷ ︸
=ρ̂

p̂ = p (ρ)− p0 =
dp

dρ

∣∣∣∣
ρ=ρ0︸ ︷︷ ︸

=k

ρ̂ = k ρ̂

p̂ = k ρ̂ (4.152)

Dostali sme pribĺıženie závislosti tlaku p od hustoty ρ (resp. malého vyrušenia tlaku p̂ od malého
vyrušenia hustoty ρ̂). Túto závislost’ dosad́ıme do (4.151):

∂2ρ̂

∂t2
− k∆ρ̂ = 0 (4.153)

Vid́ıme, že ρ̂ má sṕlňat’ vlnovú rovnicu, rýchlost’ š́ırenia bude v tomto pŕıpade c0 =
√
k. Pre tlak p̂ plat́ı

rovnaká rovnica:

∂2p̂

∂t2
− k∆p̂ = 0 (4.154)

Rýchlost’ š́ırenia takejto skalárnej tlakovej vlny bude tiež c0 =
√
k. Z prvej rovnice (4.149) máme:

ρ0
∂~̂v

∂t
= −~∇p̂

Túto rovnicu zderivujeme podl’a času:

ρ0
∂2~̂v

∂t2
= −~∇

(
∂p̂

∂t

)
Pre výraz ∂tp máme z (4.152) a (4.150):

p̂ = k ρ̂ =⇒ ∂p̂

∂t
= k

∂ρ̂

∂t
= −k ρ0

~∇ · ~̂v (4.155)

ρ0
∂2~̂v

∂t2
= k ρ0

~∇
(
~∇ · ~̂v

)
∂2~̂v

∂t2
= k ~∇

(
~∇ · ~̂v

)
(4.156)

32Ak tlak nezáviśı na entropii S, tento pŕıpad sa nazýva barotrópny.
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My by sme na pravej strane potrebovali ∆~̂v, čo je ~∇ ·
(
~∇ ~̂v
)

, avšak vid́ıme tam miesto toho ~∇
(
~∇ · ~̂v

)
.

Prehltneme slzy zúfalstva a poč́ıtajme výraz dvojitej rotácie rýchlostného pol’a, ~∇×
(
~∇× ~̂v

)
:

[
~∇×

(
~∇× ~̂v

)]
i

= εijk∂jεkab∂av̂b = εkijεkab∂j∂av̂b = (δiaδjb − δibδja) ∂j∂av̂b = ∂i∂j v̂j︸ ︷︷ ︸
=[~∇(~∇·~̂v )]

i

− ∂j∂j v̂i︸ ︷︷ ︸
=∆v̂i

=⇒ ~∇×
(
~∇× ~̂v

)
= ~∇

(
~∇ · ~̂v

)
−∆~̂v

Lenže výraz ~∇
(
~∇ · ~̂v

)
je presne to, čo sa nachádza v rovnici (4.156), a chýba v nej ∆~̂v, čo je ten výraz,

ktorý by sme v nej potrebovali:

~∇
(
~∇ · ~̂v

)
= ∆~̂v + ~∇×

(
~∇× ~̂v

)
Tento výraz dosad́ıme do (4.156):

∂2~̂v

∂t2
= k ~∇

(
~∇ · ~̂v

)
∂2~̂v

∂t2
= k∆~̂v + k ~∇×

(
~∇× ~̂v

)
∂2~̂v

∂t2
− k∆~̂v︸ ︷︷ ︸

vlny?

= k ~∇×
(
~∇× ~̂v

)

Vid́ıme, že l’avá strana je vlastne vlnová rovnica pre vektorové vlny ~̂v, no to by platilo, keby bola
na pravej strane nula. Lenže miesto toho je tam akási podivná dvojitá rotácia. Ked’že však l’avá strana
vyzerá vel’mi sl’ubne, skúsme na ňu ansatz rovinnej lineárne polarizovanej vlny a pracujme s rovnicou, kde
bol gradient divergencie (prevedenie na tvar s pŕıtomným laplaciánom bola len motivácia):

~̂v = ~V0 f (~n · ~r, t)

∂2~̂v

∂t2
= ~V0 f̈[

~∇
(
~∇ · ~̂v

)]
i

= ∂i∂j ~V0j f = ∂inj ~V0j f
′ = ni nj ~V0jf

′′ =⇒ ~∇
(
~∇ · ~̂v

)
= ~n · ~V0 f

′′ ~n

~V0 f̈ = k
(
~n · ~V0

)
f ′′ ~n

Q1
~V0 = Q2~n (4.157)

Znovu sme rovnicu doviedli do tvaru, ked’ zač́ına byt’ dôležitý vzt’ah medzi ~V0 a ~n, teda smer kmitania
a smer š́ırenia sa v́ln v tekutine. Budeme rozlǐsovat’ dva pŕıpady, bud’ ~V0 ‖ ~n, alebo ~V0 ��‖ ~n.
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1. ~V0 ‖ ~n

Pokial’ plat́ı ~V0 ‖ ~n, potom existuje skalár c taký, že ~V0 = c ~n a rovnica prejde na tvar:

~V0 f̈ = k
(
~n · ~V0

)
f ′′ ~n

c~n f̈ = k c (~n · ~n ) f ′′ ~n(
f̈ − k f ′′

)
~n = ~0

Ked’že všetky zložky vektora ~n nebudú nikdy naraz nulové (ak áno, nič nekmitá), potom muśı platit’:

f̈ − k f ′′ = 0

Pre funkciu f tak dostávame štandardnú vlnovú rovnicu. Rýchlost’ š́ırenia vlny v tomto pŕıpade je
totožný s rýchlost’ou š́ırenia v́ln v pŕıpade hustoty a tlaku, teda c0 =

√
k.

2. ~V0 ��‖ ~n

Pokial’ nie sú vektory ~V0 a ~n rovnobežné, potom sú nutne lineárne nezávislé, čo znamená:

f̈ = 0

k
(
~n · ~V0

)
f ′′ = 0

Druhú rovnicu môžeme splnit’ jednoducho, ak ~V0 ⊥ ~n, no prvá rovnica vlastne hovoŕı:

f = a (~r ) t+ b (~r )

Ak by platilo, že a 6= 0, potom by už ~̂v nebolo malé vyrušenie rýchlostného pol’a, pretože f by rástlo s
časom nad všetky medze. Ak však a = 0, potom f , a teda ani ~̂v nezáviśı od času, čo ale znač́ı stacionárny
tok. Stacionárny tok však neznamená žiadne vlnenie a preto je tento pŕıpad nevyhovujúci. Z toho plynie
záver, že v ideálnej kvapaline sa pri pŕıslušných zanedbaniach neš́ıria priečne rovinné vlny.

Dospeli sme teda k záveru, že v kvapaline sa pri istých zanedbaniach š́ıria rovinné, no iba pozd́lžne vlny,
pričom sa vlńı tlak, hustota aj rýchlostné pole s rovnakou rýchlost’ou c0 =

√
k. Túto rýchlost’ nepoznáme,

no vieme, že:

k =
dp

dρ

∣∣∣∣
ρ=ρ0

Vychádzajme teda zo stavovej rovnice ideálneho plynu, ktorá obsahuje obe tieto veličiny (tlak aj hus-
totu):

pV = NkT V =
m

ρ
=⇒ p

ρ
=
NkT

m
(4.158)

Z tohto tvaru sa môžeme pokúsit’ využit’ tri deje ideálneho plynu - izochorický, izobarický a izotermický.
Pre fixnú jednotkovú hmotnost’ m = ρ V nemá zmysel izochorický dej, pretože potom ρ = konšt. a to nie je
niečo, čo by sme vedeli využit’. Podobne izobarický dej predpokladá p = konšt., za tohto predpokladu by
však bola rýchlost’ š́ırenia v́ln v tekutinách nulová (a to nie je pravda). Ostáva teda izotermický dej, pre
ktorý ṕı̌seme:

pV = konšt. =⇒ p

ρ
= konšt.

p

ρ
=
p0

ρ0
=⇒ p = p0

ρ

ρ0
=⇒ k =

dp

dρ

∣∣∣∣
ρ=ρ0

=
p0

ρ0
=⇒ cizoterm =

√
p0

ρ0
(4.159)
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Inou alternat́ıvou je adiabatický dej, pre ktorý plat́ı:

pV κ = konšt. =⇒ p

ρκ
= konšt.

p

ρκ
=
p0

ρκ0
=⇒ p = p0

ρκ

ρκ0
=⇒ k =

dp

dρ

∣∣∣∣
ρ=ρ0

= κ
p0

ρ0
=⇒ cadiabat =

√
κ

√
p0

ρ0
=
√
κ cizoterm (4.160)

Môžeme porovnat’ cizoterm a cadiabat pre vzduch, kde p0 = 101 325Pa, ρ0 = 1.2 kgm−3 a κ = 1.4:

cizoterm = 290.6ms−1 izotermický model

cadiabat = 343.8ms−1 adiabatický model
(4.161)

Experiment vie ukázat’, ktorá z rýchlost́ı je bližšie k pravde - vieme merat’ rýchlost’ zvuku vo vzduchu
a ukazuje sa, že hodnota 343.8ms−1 je správna, teda takéto vlnenie je adiabatické.
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