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Abstract

The growing demand for intelligent and adaptive robots has led to significant ad-
vances in simulation, control, and learning algorithms. However, transferring behaviors
learned in simulation to the real world remains a major challenge due to discrepan-
cies between simulated and physical dynamics, a phenomenon known as the reality
gap. This thesis focuses on improving the sim-to-real transfer in the humanoid robot
NICO, with an emphasis on reaching and grasping tasks. A two-dimensional cali-
bration method based on haptic feedback was developed to align the simulated and
real end-effector positions. The approach provides a low-cost and easily reproducible
alternative to vision-based calibration systems. Subsequently, the study explores 2D
grasping optimization using visual feedback and applies the calibrated model to extend

grasping to 3D environments.

Keywords: reality gap, sim-to-real, humanoid robot NICO, grasping
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Abstrakt

Rastuci dopyt po inteligentnych a adaptivnych robotoch viedol k vyznamnému pokroku
v oblasti simulécie, riadenia a algoritmov strojového uc¢enia. Prenos spravania nau¢eného
v simulacii do redlneho sveta vSak nadalej predstavuje velkd vyzvu kvoli rozdielom
medzi simulovanou a fyzickou dynamikou, ¢o je jav znamy ako ,reality gap“. Této préaca
sa zameriava na zlepSenie prenosu zo simulacie do reality v humanoidnom robotovi
NICO, s doérazom na tlohy dosahovania (reach) a uchopovania (grasping). Bola vyvin-
uta dvojdimenzionalna kalibracna metoda zaloZenéa na haptickej spatnej viazbe s cielom
zarovnat simulované a realne polohy koncovych efektorov. Tento pristup poskytuje
nakladovo nenaroénu a Iahko reprodukovatelnu alternativu ku kalibra¢nym systémom
zaloZzenym na videni. Nésledne sa $tuidia zaobera optimalizaciou uchopovania v 2D po-
mocou vizualnej spatnej vizby a aplikuje kalibrovany model na rozsirenie uchopovania
do 3D prostredi.

Kracové slova: reality gap, sim-to-real, humanoidny robot NICO, grasping
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Introduction

With each passing year, the demand for robots of various kinds continues to grow.
Robots are increasingly capable of performing complex manipulation and interaction
tasks that require precision, adaptability, and autonomous decision-making. From
industrial manipulators working with objects to humanoid robots that perceive and re-
spond to their surroundings, the field of robotics has expanded rapidly due to advances
in perception, control, and learning algorithms. Modern robots integrate multiple sen-
sory modalities like vision, touch and proprioception, allowing them to interact with
the environment in increasingly sophisticated ways.

Before any robot can successfully perform its assigned task, it must undergo a
learning or calibration phase. This process ensures that its actions in the real world
are accurate and reproducible. A commonly used method for training robots is rein-
forcement learning, which allows agents to develop control policies through trial and
error by interacting with their environment. However, training directly in the physical
world can be costly, time-consuming, and may even cause mechanical damage due to
repeated or unsafe actions. Consequently, simulation has become an essential part of
robotics research and development [12].

Simulators enable faster, cheaper, and safer experimentation. They make it possible
to generate vast amounts of training data, perform experiments in parallel, and easily
test algorithms under controlled conditions [17|. Yet, despite their benefits, simulations
can never perfectly replicate the physical world. Simplifications of dynamics, imperfect
sensor models, and differences in hardware specifications lead to discrepancies between
simulated and real-world behavior. This mismatch, known as the reality gap, poses a
significant obstacle to transferring learned models or controllers from virtual environ-
ments to physical robots [3].

Bridging this gap, often referred to as sim-to-real transfer, has become one of the
most important challenges in robotics. Even small deviations in the robot’s actuators
or sensors can cause noticeable differences in the end-effector position, which directly
affects the performance of manipulation and interaction tasks. For instance, when
inverse kinematics solvers are used to control robotic arms, inaccuracies in the robot’s
model or physical setup can lead to errors in reaching the desired target position. The

more precise the task, the more evident the discrepancy becomes.



To address these challenges, recent research has focused on developing calibration
methods that minimize the difference between simulated and real-world robot behav-
ior. Many traditional approaches rely on vision-based systems [11], external motion
capture devices [8], or complex sensor fusion frameworks [14] to measure the robot’s
end-effector position. Although effective, these solutions can be expensive, sensitive to
environmental conditions, or require specialized equipment.

The complexity of transferring robotic behavior from simulation to reality has al-
ways fascinated me, particularly in the context of grasping and object interaction.
Understanding how a robot can reliably reproduce delicate, coordinated movements
learned in a virtual environment is both a scientific and an engineering challenge. This
curiosity motivated me to explore the topic further and gain firsthand experience with
the transition between simulated and real settings.

Working directly with a humanoid robot such as NICO offers a unique opportunity
to connect theoretical principles of motion control with their tangible outcomes. Ob-
serving how a robot learns to reach and grasp objects, and how small adjustments in
calibration can lead to noticeably smoother and more natural movements, provides a
strong sense of purpose and inspiration for this research.

Therefore, the goals of our work were to improve the accuracy of NICO robot in
a 2D world using reach movement, in other words, to design a cheap and simple 2D
calibration based on haptic feedback. Furthermore, to look at the challenges coming
with grasping objects, also in 2D, and optimize this function using the calibration
created in the first step and help of visual feedback. Finally, to try to transfer grasping

from a 2D to a 3D system and quantify the reality gap in this sim-to-real transfer.



Chapter 1

Related work

1.1 Reality gap quantification

1.1.1 Identification

Before the reality gap can be quantified, it first needs to be identified. In other words,
we must determine whether a discrepancy between simulation and the real world ac-
tually exists. To illustrate this, consider the typical learning process of a robot trained
in simulation. At first, a controller is developed and trained using a chosen learning
method, and its performance is tested in a virtual environment. If the robot fails to
complete the task, the controller continues to train. If it succeeds, the same task is
then repeated on the physical robot. Any observable differences between the robot’s
simulated performance and its behavior in the real world indicate that a problem oc-
curred during the transfer from simulation to reality [17]. In other words, the presence
of the reality gap. Once this gap has been identified, the next step is to find an effective

way to measure and analyze it.

1.1.2 Quantification

The first experiment involved a simple rotation of a single joint by 100 degrees over
six seconds, with all other joints fixed. This task examined basic kinematic accuracy
and timing. The most consistent trajectories were produced by PyBullet and V-Rep
running the Newton and Vortex engines, though these lacked the oscillatory motion
seen in the real arm. Conversely, the Bullet engine simulated realistic oscillations but
completed the movement about one second faster than the physical robot, while ODE
was unstable and produced unreliable results.

The second test required two joints to rotate alternately, introducing gravitational
effects and coordination challenges. Here, V-Rep with the Newton and Vortex engines

again delivered the most realistic trajectories, closely followed by PyBullet. Still, none
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Figure 1.1: Results of the final test containing an interaction of a robotic arm with a
cube in the paper from Collins et al. [3]

of the tested engines perfectly reproduced the smooth motion observed in the real arm,
especially when moving against gravity.

The final and most complex scenario evaluated interaction with a cube, where the
robot’s arm approached the cube, made contact, and applied a gentle push. This task
involved multiple joints and tested both kinematics and contact physics. As illustrated
in Figure 1.1, none of the simulators were able to replicate the cube’s movement with
full accuracy. PyBullet showed the smallest positional error but failed to register
contact, causing the arm to pass through the object. MuJoCo and V-Rep with Bullet
simulated contact more realistically, yet exaggerated the cube’s rotation compared to
the minimal displacement recorded in the physical test.

The results clearly demonstrate that there are notable differences between the tested
simulators and their physics engines. Some performed better in simple kinematic sce-
narios, while others handled multi-joint movements or dynamic effects more accurately.
Ideally, one could imagine combining the strengths of different engines to achieve op-
timal performance across various tasks. However, the experiments also highlight that
simulating the physical interaction between solid objects remains a major challenge

and requires substantial improvement in future simulation frameworks.

1.2 Solving the reality gap

The gap between simulation and physical reality, commonly referred to as the reality
gap, remains one of the central challenges in modern robotics. Numerous approaches
have been developed to reduce this discrepancy, each focusing on a different source of

error, such as imperfect dynamics, sensor noise, or inaccurate kinematic models. While
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early work aimed primarily at identifying and quantifying the magnitude of the gap,
current research is increasingly focused on developing systematic methods to minimize
it.

1.2.1 Domain randomization

One of the most established and frequently used techniques is domain randomization,
which exposes the controller to random variations during training to improve its ro-
bustness. By randomizing elements such as lighting, textures, mass, friction, or camera
position, the robot learns to handle diverse conditions rather than overfitting to the
simulated ones. This method has shown promising results, especially in robotic vision
tasks, where randomized inputs lead to better generalization to real-world images. An
extension of this idea is the randomised-to-canonical adaptation network, which maps
both simulated and real-world observations into a shared canonical domain, improving
consistency between them [17]. Related methods, such as domain adaptation and gen-
erative adversarial networks, operate on a similar principle, transforming the simulated

and real data distributions to make them indistinguishable [3].

1.2.2 Adversarial reinforcement learning

Another effective method for narrowing the reality gap is adversarial reinforcement
learning. In this framework, two agents are trained simultaneously: a protagonist,
which learns to complete the desired task, and an antagonist, which introduces pertur-
bations or environmental changes to challenge the protagonist. This setup encourages
the learned policy to become more resilient to variations that may occur in the real
world. A more advanced variant, robust adversarial reinforcement learning, further
enhances reliability by letting the antagonist explicitly generate destabilizing distur-

bances in the environment, forcing the protagonist to adapt dynamically [17].

1.2.3 Transfer learning

A conceptually different approach is transfer learning, which aims not only to reduce
the gap but to avoid its occurrence by gradually transitioning between simulation
and reality. Training typically proceeds in two phases: first in simulation, then on
the physical robot. The knowledge acquired during simulated training is reused in the
real-world phase, significantly reducing the amount of real-world data needed. Transfer
learning can be unidirectional, transferring information from simulation to reality, or
bidirectional, where real-world feedback is also used to improve the simulator. In
the latter case, the simulation becomes progressively more accurate, thus minimizing

discrepancies between virtual and physical environments [17].



1.2.4 Simulation optimization and multi-simulator approaches

In contrast to randomization, simulation optimization focuses on refining the simu-
lator itself to better reproduce physical reality. By adjusting the parameters of the
physics model based on real-world data, such as joint velocities, friction coefficients,
and time steps, the simulation can more accurately emulate actual robot dynamics.
This approach, however, is often robot-specific and requires data collection from phys-
ical experiments [3].

Some researchers have also explored using multiple simulators or physics engines
simultaneously. Since each simulator models physical phenomena differently, combining
them can reduce the bias inherent in any single one. For instance, one simulator might
handle rigid body dynamics more accurately, while another better captures frictional
or compliant interactions. Using both allows for improved robustness across different

motion types [3].

1.2.5 Simulation tuning

Closely related to optimization, simulation tuning involves the systematic adjustment
of simulation parameters to match real-world behavior. Collins et al. [1] demonstrated
that tuning key parameters, such as simulation time step, lateral friction, and joint
velocity, using evolutionary optimization algorithms like differential evolution can sig-
nificantly reduce the reality gap. Their experiments with PyBullet and V-Rep showed
that properly tuned simulators could reproduce real-world object interactions with

much higher accuracy, especially for contact-rich tasks.

1.2.6 Differentiable physics

With the advent of automatic differentiation libraries, differentiable physics has be-
come a powerful new paradigm in robotic simulation. Differentiable physics engines
allow gradients to propagate through the physics computations, enabling optimization
via backpropagation. Collins et al. [2] introduced RealityGrad, a method that itera-
tively improves simulator accuracy through gradient-based optimization. The process
includes collecting optimal trajectories in simulation, training control strategies, de-
ploying them on the real robot, and using the collected real-world data to refine the
simulator. By repeating this loop multiple times, the simulation model gradually con-
verges toward physical reality, greatly reducing the gap between simulated and real

behavior.



Chapter 2
Humanoid robot

A robot designed to resemble the human body is referred to as a humanoid robot.
Its construction is typically inspired by human anatomy to enable interaction with
tools created for human use and to promote a sense of comfort and familiarity during
human-robot collaboration. Some humanoid robots replicate only certain parts of the
body, such as the upper torso, while others include facial features like eyes or a mouth
to facilitate natural communication. In many experimental and social contexts, the
lower body is unnecessary, as interaction is focused primarily on gestures, gaze, and
speech [15].

The development of humanoid robots has evolved over several decades. One of the
earliest examples of a dynamically balanced humanoid robot dates back to the 1960s,
when Ichiro Kato from Japan introduced the robot WABOT. It could communicate
in Japanese, measure distances using external sensors, walk using its lower limbs, and
manipulate objects through tactile feedback in its hands. This achievement was closely
linked to the zero-moment point stability theory proposed by the Serbian engineer
Miomir Vukobratovi¢ during the same period [7].

Today, humanoid robots are applied in a wide range of fields. In healthcare, they
assist in surgeries, pain management, rehabilitation, and physical therapy. In educa-
tion, they support learning processes through logical reasoning and situational analysis.
Social and assistive robots are especially valuable for elderly and disabled individuals,
serving as companions, entertainers, or household helpers. Interestingly, children with
autism often find humanoid robots more approachable than humans, as their behavior

is predictable and easier to interpret [15].

2.1 Robot NICO

To accomplish the objectives of this research, we selected the humanoid robot NICO

as the experimental platform. The name NICO stands for Neuro-Inspired COmpanion,
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reflecting its design as a medium-sized developmental robot intended for natural inter-
action with humans. NICO is capable of learning from both experience and instruc-
tion and is frequently used in studies of neurocognitive development and human-robot
interaction [13]. The robot’s software framework was developed by the Knowledge
Technology Group at the University of Hamburg, and its complete source code and
documentation are openly available to the research community [10].

NICO features a highly expressive face, with LED matrices positioned at the mouth
and eyebrows that enable the display of a wide range of emotions. New facial expres-
sions can easily be designed and added to its repertoire. The robot is equipped with
two high-resolution cameras functioning as eyes, capable of capturing 4K video at 60
frames per second, and with two microphones, one in each ear, providing stereo audio
input directly to the computer. Its RH4D manipulators allow for advanced grasping
and object manipulation, while the body provides 10 degrees of freedom in the torso
and 22 degrees of freedom in the arms [9].

The version of NICO used in this study is equipped with a touchscreen display
(1920% 1080 pixels) positioned in front of the robot 2.1. For the purpose of this work,
the robot’s index finger, serving as the end effector, was adapted to interact with the
touchscreen. The fingertip was wrapped in aluminum foil connected to a conductive
wire running along the forearm and covered with a piece of touchscreen-compatible
glove material. This setup ensures the presence of an electric charge while maintaining
the softness and conductivity necessary for reliable touchscreen recognition, effectively
mimicking the touch of a human finger.

Furthermore, each of NICO’s modules is connected via a dedicated USB interface,
providing high modularity and flexibility. These features make NICO an ideal choice for
experiments aimed at quantifying and optimizing the sim-to-real transfer in humanoid

robots.

2.2 Simulator PyBullet

When selecting a suitable simulator for our experiment, we aimed for one that provided
support for the NICO robot and allowed an easy transition from simulation to reality.
Our initial choice was the Unity simulator, which offered access to a reasonably well-
developed simulated version of NICO. However, the source code for this simulator was
not publicly available, which limited the flexibility of modifications. Moreover, Unity
did not provide a straightforward way to transfer control policies from the virtual
environment to the physical robot, a crucial requirement for our experiments.

For the purposes of this work, we selected the PyBullet simulator as the main envi-

ronment for our experiments. PyBullet is an open-source physics simulation platform
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Figure 2.1: The real NICO robot at the Faculty of Mathematics, Physics and Informat-
ics in Bratislava, equipped with a touchscreen and a fingertip (end effector) extension
that enables interaction with the tablet.

built on the Bullet Physics Engine, which is widely used in both academic and indus-
trial research. It provides accurate and efficient simulation of rigid-body dynamics,
collision detection, contact modeling, and joint control, making it highly suitable for
robotic applications involving manipulation and grasping [4].

Unlike some commercial simulators, PyBullet offers full access to its source code and
a Python API that allows seamless integration with machine learning frameworks such
as TensorFlow and PyTorch. This makes it extremely flexible for experimentation
and parameter tuning. Another major advantage of PyBullet is its straightforward
transition from simulation to the real world, as control policies and kinematic structures
can be directly reused on physical robots.

The simulator also supports the import of custom robot models in standard formats
such as URDF, which made it easy to load and configure the humanoid robot NICO
for our setup 2.2. After importing the NICO model, we tested the basic functionalities,
including arm movements and end-effector control relevant to our experiments. The
environment proved to be very stable and responsive, and its simplicity allowed us to
make modifications quickly and intuitively.

Thanks to its open architecture, realistic physics engine, and flexible control inter-
face, PyBullet met all the requirements necessary for conducting our experiments on

optimizing the sim-to-real transfer for the humanoid robot NICO.



Figure 2.2: Simulated robot NICO with preconfigured setup using the PyBullet simu-
lator.
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Chapter 3
Kinematics

In classical mechanics, kinematics is the study of motion without considering the forces
that cause it. It focuses on describing how the positions of bodies change over time and
space within a continuous, three-dimensional Euclidean space. The main quantities of
interest include position, velocity, acceleration, and trajectory.

Since movement is one of the fundamental aspects of any robotic mechanism, kine-
matics represents a cornerstone of robot design, analysis, control, and simulation. In
robotics, kinematics deals with the motion of interconnected rigid bodies, describing
how the position and orientation of each component change as the robot moves. Re-
searchers in this field focus on finding efficient mathematical representations of spatial
transformations and their time derivatives, which are essential for modeling and con-
trolling robotic motion [20].

Two of the key problems studied in this context are forward kinematics, deter-
mining the end-effector’s position and orientation from given joint angles, and inverse
kinematics, which calculates the required joint configurations for a desired end-effector
pose. Both are central to the movement and control of robotic arms and were directly

applied in this work.

3.1 Robotic arm

A robotic arm is one of the most common types of manipulators, a mechanical device
designed to handle objects without direct physical contact from a human operator.
It is typically composed of several rigid links connected by joints. When arranged in
series, these links and joints form a kinematic chain, which is usually attached to a
fixed base or to the body of a humanoid robot.

At the opposite end of the chain is the end effector, the component responsible for
interacting with objects in the environment. Each joint of the robotic arm contributes

a certain degree of freedom, defining how the arm can move or rotate. In a three-
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dimensional space, there are three translational and three rotational degrees of freedom,
one for movement along each axis and one for rotation about it. To maintain simplicity
and control stability, it is standard practice to assign only one degree of freedom per
joint [5].

3.2 Forward kinematics

The forward kinematics problem describes the process of determining the position and
orientation of a robot’s end effector relative to its base, given the joint positions and
the geometric parameters of the mechanism. The number of degrees of freedom of the
manipulator corresponds to the number of joints in the kinematic chain.

Each joint is typically equipped with sensors that measure its current configuration.
However, in many cases it is necessary to compute the absolute position and orientation
of the joints with respect to a fixed reference frame. For this reason, forward kinematics
is a critical component in robotic control and simulation.

In practice, this problem is solved by calculating a transformation matrix between
the end effector and the fixed base. The end effector’s pose is obtained by multiplying
the homogeneous transformations of consecutive links in the kinematic chain. This
effectively converts the manipulator’s configuration from joint space into Cartesian

space, representing the spatial position and orientation of the end effector [19].

3.3 Inverse kinematics

The inverse kinematics problem is the counterpart of forward kinematics. For a serial
robotic manipulator, it involves determining the joint parameters required to achieve
a desired position and orientation of the end effector relative to the base, given the
geometric structure of the kinematic chain. Unlike forward kinematics, the inverse
problem is non-deterministic, a single end-effector pose often corresponds to multiple
joint configurations. As a result, its computation is typically more complex and time-
consuming. The task represents a conversion from Cartesian space, defined by the end
effector’s position and orientation, to joint space, the set of joint variables that realize
that pose [22].

Over several decades of research, many methods for solving the inverse kinematics
problem have been developed. These approaches can generally be divided into two
main categories: analytical and numerical methods. Analytical solutions use closed-
form equations that take the end effector’s position as input and return a vector of joint
angles as output. However, such solutions are only applicable to certain manipulator

structures, since the problem often has an infinite number of valid configurations. In

12
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Figure 3.1: Visualisation of forward and inverse kinematics in the work of Yonezawa
et al. [21].

these cases, numerical or iterative approaches are employed, which gradually optimize
the result through successive approximations. Among the most widely used numerical
methods are the Jacobian-based methods and the Levenberg-Marquardt algorithm,
both of which iteratively minimize the error between the current and desired end-
effector positions [22].

Figure 3.1 illustrates the relationship between joint space and effector (Cartesian)
space: the vector ¢ represents the joint configuration of the manipulator from the base
to the end effector, while r denotes the end effector’s position in Cartesian coordinates.
The function f(q) defines forward kinematics, mapping joint angles to the end-effector

pose, whereas f~!(r) represents its inverse counterpart.
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Chapter 4

Thesis objectives
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Chapter 5

Proposed methods
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Chapter 6

Implementation
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Chapter 7

Results

First, we looked at the results of the first objective, two-dimensional calibration using
haptic feedback. In our case, the touchscreen provides haptic feedback while robot

performs the reach movement finishing with end effector touching the tablet.

The model M1 serves as the baseline for our research. We applied M1 with a 1-sec.
movement to grid-based points, and plotted the contact points on the screen relative to
the intended targets. The results in the upper half of Fig. 7.1 reveal that the direction
of each deviation rotates depending on the target position relative to the arm base. In
addition, the magnitude of the deviation increases considerably with the target distance

from the base (i.e. for more stretched arm).

A similar relationship can be observed in lower half of Fig. 7.1, showing 2-sec
movements. By comparison, we see that the average deviation decreased from 2.16
cm (for 1-sec) to 1.17 cm (for 2-sec), demonstrating that slower movements of NICO
produce smaller errors. Further, we can see that the rotation trend is not as visible
here at a 1-sec duration. Despite the slower and more precise movements, the direction
of deviation from the target is less regular. 3-sec movements had very similar results

to 2-sec movements.

Next, we measured 2D deviations from the target on the touchscreen at three
different movement durations for each quadrant, as shown in Fig. 7.2. We can see
that 1-sec movements are on average twice as inaccurate as slower movements, which
may be due to overshooting the target. Movements of 2 and 3 seconds reveal similar
behavior. We can also see that targets in Q1 and Q2, being closer to the robot base,

yield a smaller error compared to more distant Q3 and Q4.
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Figure 7.1: Plot of deviations of hits (blue) from grid-based targets (red) in the physical
space (on the touchscreen). We used the model M1 and NICO arm movement of 1-sec
(top) and 2-sec (bottom) duration. The box "NICO Arm" denotes the base position.
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Figure 7.2: Comparison of 2D deviations of hits from random targets within four
quadrants for three durations of movement. Targets were calculated using M1. Small
inset image top left shows the NICO reach limit (red line) and partitioning of the

testing area.
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Figure 7.3: Comparison of joint angle deviations for three different durations of move-
ment. Joint deviation is calculated as a difference of joint angles returned from inverse
kinematics (angles sent to robot) and joint angles read from the robot after the end of
movement (using M1).
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Figure 7.4: Comparison of 2D deviations (Euclidean distances) of individual model
predictions for random targets.
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Figure 7.5: Accuracy of NICO robot after the neural network based correction, trained
to predict 3D points in the simulator space from target 2D points on the touchscreen.
Accuracy is calculated as a deviation in 2D space.

20



Conclusion

21



Bibliography

[1] Jack Collins, Ross Brown, Jurgen Leitner, and David Howard. Traversing the

reality gap via simulator tuning, 2020.

[2] Jack Collins, Ross Brown, Jiirgen Leitner, and David Howard. Follow the gradient:
Crossing the reality gap using differentiable physics (realitygrad), 2021.

[3] Jack Collins, David Howard, and Jirgen Leitner. Quantifying the reality gap in

robotic manipulation tasks, 2018.

[4] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation

for games, robotics and machine learning. http://pybullet.org, 2016-2021.

[5] John J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Prentice
Hall, Upper Saddle River, NJ, 3 edition, 2005.

[6] Connor Géade, Jan-Gerrit Habekost, and Stefan Wermter. Domain adaption as
auxiliary task for sim-to-real transfer in vision-based neuro-robotic control. In

[JCNN. IEEE, 2024.

[7] Waseda University Humanoid Robotics Institute. Wabot - waseda robot-. Avail-
able 10.12.2025.

[8] Ramil Khusainov, Alexandr Klimchik, and Evgeni Magid. Humanoid robot kine-
matic calibration using industrial manipulator. In 2017 International Conference
on Mechanical, System and Control Engineering (ICMSC), pages 184-189, 2017.

[9] University of Hamburg Knowledge Technology Group. Nico neuro-inspired com-
panion — seed robotics. Available 10.12.2025.

[10] Knowledgetechnologyuhh. Github - knowledgetechnologyuhh /nico-software: Soft-

ware to run the nico (neuro inspired companion) robot. Available 10.12.2025.

[11] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data
collection, 2016.

22


http://pybullet.org

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

Quentin Le Lidec, Wilson Jallet, Louis Montaut, Ivan Laptev, Cordelia Schmid,

and Justin Carpentier. Contact models in robotics: a comparative analysis, 2024.

Hwei Geok Ng, Paul Anton, Marc Briigger, Nikhil Churamani, Erik Fliekwasser,
Thomas Hummel, Julius Mayer, Waleed Mustafa, Nguyn Linh Chi, Nguyen Quan,
Marcus Soll, Sebastian Springenberg, Sascha Griffiths, Stefan Heinrich, Nicolas
Navarro-Guerrero, Erik Strahl, Johannes Twiefel, Cornelius Weber, and Stefan
Wermter. Hey robot, why don’t you talk to me? 08 2017.

Vicente Pedro. Real time graphical simulation for visual based pose estimation
and self-calibrating of a humanoid robotic arm. Master’s thesis, Instituto Superior
Técnico, Lisbon, 2014.

Prasanna Rasal. Humanoid robotics. 9:128-130, 06 2021.

Alessandro Roncone, Matej Hoffmann, Ugo Pattacini, and Giorgio Metta. Au-
tomatic kinematic chain calibration using artificial skin: self-touch in the iCub
humanoid robot. In ICRA, pages 2305-2312. IEEE, 2014.

Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. Cross-
ing the reality gap: A survey on sim-to-real transferability of robot controllers in
reinforcement learning. IEFE Access, 9:153171-153187, 2021.

Karla Stepanova, Tomas Pajdla, and Matej Hoffmann. Robot self-calibration using
multiple kinematic chains—a simulation study on the icub humanoid robot. /EEFE
Robotics and Automation Letters, 4(2):1900-1907, 2019.

Tony Punnoose Valayil and Rose Shaji Augustine. Methods to solve forward
kinematics of parallel and serial manipulators. AIP Conference Proceedings,
2670(1):030003, 12 2022.

Kenneth J. Waldron and James Schmiedeler. Kinematics, pages 11-36. Springer
International Publishing, Cham, 2016.

Ansei Yonezawa, Heisei Yonezawa, and Itsuro Kajiwara. Simple inverse kinematics
computation considering joint motion efficiency. IEEE Transactions on Cybernet-
ics, pages 1-12, 2024.

Chengyi Zhao, Yimin Wei, Junfeng Xiao, Yong Sun, Dongxing Zhang, Qiuquan
Guo, and Jun Yang. Inverse kinematics solution and control method of 6-degree-

of-freedom manipulator based on deep reinforcement learning. Scientific Reports,
14(1):12467, 2024.

23



	Introduction
	Related work
	Reality gap quantification
	Identification
	Quantification

	Solving the reality gap
	Domain randomization
	Adversarial reinforcement learning
	Transfer learning
	Simulation optimization and multi-simulator approaches
	Simulation tuning
	Differentiable physics


	Humanoid robot
	Robot NICO
	Simulator PyBullet

	Kinematics
	Robotic arm
	Forward kinematics
	Inverse kinematics

	Thesis objectives
	Proposed methods
	Implementation
	Results
	Conclusion

