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0.1 Overview and methods

0.1.1 Neural Networks

Very first idea of artificial neural networks is based on imitation of real biological neu-
rons. They are able to learn, sometimes incomprehensible, correlations from given data
and then generalize over new unseen inputs. The networks can be made of arbitrary
number of layers or neurons. Artificial neurons, sum up the values from the neurons
from previous layer, which are multiplied by weight. Additionally, the activation func-
tion is evaluated over the sum. This is done, because more complex problems are not
linearly separable, so the non-linear functions has to be used. In fully connected neural
networks, we have weight for every pair of neurons from two subsequent layers. The
learning ofthe network is done by tweaking these weights in specific manner.

0.1.2 Basic model - MLP

In 1986, Rumelhart, Hinton, and Williams published a new perspective on artificial
neurons. They were not considered as logic switches, but rather as analog elements
that contained a continuous input-output function [3].

The Multi-Layer Perceptron (MLP) is capable of learning from examples and then
generalizing new inputs. It can consist of any number of hidden layers, which can
have different numbers of neurons. We compute the values for each layer similarly to a
simple perceptron, but we must always start at the input layer and continue iteratively
to get to the result.

Figure 1: Complete bipartite graph

So far, we have only defined weights for a perceptron that contains only one neuron
on the output layer. If our network consisted of n input neurons and m output neurons,
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the weights could be visualized using a bipartite graph where the sets are the individual
layers. In practice, we will represent them by a matrix of size m.n.

For learning the weights, a back-propagation rule was introduced to efficiently ad-
just the weights, called error back-propagation (often referred to as backprop for short)
[3]. The algorithm is not yet sufficient to learn to solve an arbitrary problem, but the
model can already handle many problems that cannot be solved by linear separation.
However, this method has limitations. It is only applicable to perceptrons that have
three or more layers. Also, these neurons cannot be connected "each to each", but only
forward to the next layer.

Let us define an MLP with n dimensional input and one hidden layer which has m
neurons represented by the vector h = (h1, h2, ..., hm) , an output layer which has 1
neuron. The weights W , consist of a matrix whid between the input and hidden layers
and a vector wout between the hidden and output layers. We will also add bias at the
input layer. We consider that the neurons on the hidden layer have a certain activation
function fhid and the neurons on the output layer have a certain activation function
fout. Then :

hi = fhid(
n∑

j=1

whid
ij · xj) (1)

y = fout(
m∑
i=1

wout
i · hi) (2)

Figure 2: MLP visualisation

0.1.3 Adaptation of weights by gradient descent method

Weight adaptation, or network learning, is the search for weights such that there is the
smallest possible difference between the desired value and the value computed by our
network for a particular input for any training dataset [4].
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Consider that Atrain = (x1, d1), (x2, d2), ..., (xp, dp), ..., (xP , dP ) where xp is the input
vector and dp is the desired output. Let us define an error function for MLP:

E =
1

2

P∑
i=0

(dp − g(w.xp))2, (3)

where g is the activation function.
Next, we continue with stochastic gradient descent (SGD). This method adjusts

the weights so that the error E reaches its minimum.

0.1.4 Activation functions

Sigmoid

Sigmoid function displays any real number on the interval (0, 1). It is used in models
whose output is a probability estimate, or also in binary classification. It is S-shaped,
so it does not contain any jumps or drastic changes in values. Its drawback is that it
is not symmetric with respect to 0, so its derivative takes very small values outside the
interval (−3, 3), which makes it difficult to train the network and makes it unstable.
This phenomenon is called the "vanishing gradient problem" [5] .

f(x) =
1

1 + e−x
(4)

Figure 3: Graph of sigmoid (left) and sigmoid derivation (right). Taken from [5]
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Tanh

Hyperbolic tangent (Tanh) - is a function very similar to sigmoid. The difference is
that its range of values is on the interval (−1, 1), and it is symmetric under 0. We can
use it to tell whether the result is negative, neutral or positive. It is usually used on
hidden neurons because it maps the data around 0, making it easier to learn at the
next layer. The downside is that, like sigmoid, it suffers from the vanishing gradient
problem [5].

f(x) =
(ex − e−x)

(ex + e−x)
(5)

Figure 4: Graph of tanh (left) and graph of tahn derivation(right). Taken from [5].

0.1.5 CNN

Convolutional neural networks (CNNs) are a specific kind of neural network designed
for processing data with a known grid-like topology. This includes time-series data,
which can be considered as a 1-D grid with regular time intervals as samples, and image
data, which can be viewed as a 2-D grid of pixels. CNNs have proven highly effective
in practical applications. The term “convolutional neural network” suggests that the
network utilizes a mathematical operation known as convolution, which is a unique
form of linear operation. In at least one of its layers, convolutional networks are just
neural networks that substitute general matrix multiplication with convolution. This
mathematical operation is performed on two real-valued functions. The first function,
known as the input, will undergo convolution with the second function, referred to as
the kernel/feature detector/filter. To enhance clarity, we will refer to these functions
as the input and kernel throughout this document. The output is commonly known
as the feature map. Convolution employs three essential concepts that can enhance
a machine learning system: sparse interactions, parameter sharing, and equivariant
representations. Furthermore, convolution offers a method of operating with inputs of
varying dimensions.
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Figure 5: An example of 2-D convolution from Goodfellow-et-al-2016

0.1.6 Pooling

Pooling aswell as convolution operates with sliding a two-dimensional filter, but instead
of convolution returns 1 value for the whole window. There are several types of pooling.
For example max pooling return the maximum value from the filter. Pooling layers are
used to reduce the dimensions, which reduces the number of parameters to be learned,
so we need less computational power. Also, it summarizes the features found produced
by a convolution layer. This step is crucial, because we can do further operations on
the summarized features rather at once. By this the model becomes more resilient to
variations in feature position within the input image.

Figure 6: An example of Max Pooling
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0.1.7 Deep learning

Deep learning are powerful model architectures for supervised learning. "Deep" means
that architecture network has multiple hidden layers in the architecture. By adding
layers and units to a network, it can represent increasingly complex functions. Deep
learning models can recognize complex patterns in pictures, text, sounds, and other
data to produce accurate insights and predictions. In deep learning, every layer learns
features that are more and more composite and abstract. For example, if we want
to use deep neural network for facial recognition, the first input would be a matrix
of pixels, the first hidden layer would represent the pixels and encode the edges, the
second layer would encode positioning of edges. In the third hidden layer would encode
the nose and eyes, and the fourth layer would be fourth layer recognising that the image
represents a face.

0.1.8 Transfer Learning

Usually, we need a lot of data to train a neural network from scratch but often it isn’t
available or it is too expensive. Transfer learning is the process where we reususe pre-
existing model with already trained weights to solve a new problem. By this approach
instead of starting the learning process from scratch, we reuse the whole model or tweak
the weights in some layers, and by utilizing the gained knowledge from related task,
we enhance generalization in another. For example if we have model already trained
to recognize dishes, it could be applied when we try to recognize mugs. We cut the
training time, need of large quantity of data while enhancing the performance.

Figure 7: Transfer learning scheme
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0.1.9 Multiplication in neurons

Although MLP can approximate nonlinear functions, the time required to train the
model is much larger compared to a single-layer linear perceptron. Solution could
occur in multiplication. Currently, multiplication is largely theoretically explored, but
in actual practice it does not occur that often. In the past, multiplication has been
popular so-called higher-order neurons [6]. For the most part, this model resembles
the traditional perceptron, it can be said to be an extension of it. The main difference
is in the input neurons. Instead of the traditional vector, which contained the input
values or bias, the the vector is expanded with additional terms, which are calculated
by multiplying and amplifying the original inputs. Each of these inputs was given
its own weight. The model, however, without any constraints, it obtains exponential
values on the polynomial scale.

Sigma-pi

One special model that is theoretically similar to higher-order neurons, are the so-
called sigma-pi neurons. This model uses a weighted sum to calculate the output
of the products of the inputs as well as the back propagation of errors. A suitable
constraint on the maximum polynomial degree as well as selecting the right members,
these networks are able to more quickly and more efficiently generalize and learn,
compared to classical type of networks. A limitation of this approach consists in the
fact that the performance of the model depended largely on the engineer himself [7].

Figure 8: Sigma pi architecture

Generalisation attempt

Attempts to solve this problem have been proposed by models that learn the importance
of individual polynomial terms [8, 9]. Models of this type started on a polynomial of
minimum order, to which terms were gradually added. Throughout the process, the
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current efficiency was evaluated, based on which the model progressed further. The
type of these models were subsequently generalized by Durbin and colleagues [10].
In their model, the classical weights are not used to multiply individual inputs, as
in the classical perceptron, but as their exponents, which are subsequently adjusted.
However, in the calculations we arrive at complex numbers. A proposed solution to this
problem is to neglect the imaginary part and use only the real part. Although this type
of networks are effective in solving parity and symmetry problems, their application
contains yet further complications that have not been explored.

Pi-sigma

A different perspective on the multiplication problem in NS was brought by Ghosh
and Shin [2]. In contrast to previous models, they bring the nonlinearity up to the
output layer. Their main task is to achieve an efficient mapping similar to a higher-
order network, but with the proviso that they are not computationally intensive. This
category of models can be described as feedforward neural networks, which first perform
a linear combination over the inputs, which they multiply without without using any
activation function. Only at the output layer are they then used non-linear activation
function. Since this type of models uses the product of sums, the exact opposite of
sigma-pi, which use the sum of products, are called inverse, or pi-sigma. Their result
can be analyzed using polynomials. Learning is achieved by modifying weights on the
linear layer, using the gradient method. The weights of the multiplicative layer are not
learned and are set to a fixed value of 1. As the models mentioned above, this type of
models also achieves a significant increase in the success rate on a variety of problems,
as well as the aforementioned parity compared to MLP. Fast learning is guaranteed
by the fact that it takes place on only one layer, but this principle has its rawbacks.
By not using an activation function on the linear layer, this model essentially collapses
into a simpler polynomial that has pre-selected terms. There is also the disadvantage
that the authors did not attempt to find a way of learning weights on the multiplicative
layer, which could lead to even greater efficiency of the overall model [2].

Multiplication in biological neurons

Multiplication is also found in biological neural networks. Our body uses multiplication,
for example, in sensations such as vision [11] or hearing [12]. Several experts claim,
that if synapses are too close together, the individual stimuli serve as individual agents
product. Conversely, synapses that are not so close together use the sum excitations,
where excitations play the role of classical adders [13]. B. Mel argues also the occurrence
of splitting in dendritic plexuses [14], as well as other operations that could represent
sigma-pi models [15].
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0.2 State of the art

Testing of several types of multiplicative models was done by M. Schmitt, in which
he also derived constraints for each type [16]. The result of his research suggests that
multiplication is a suitable method that guarantees an increase in computational power
without drastically increase the nonlinear interaction as in other methods. As such,
multiplication has also found application in deep neural networks, where it is used in
a limited at selected locations. [17, 18, 19, 20]

0.3 Aim of the work/Motivation

Our model is inspired by pi-sigma networks. As with pi-sigma networks, multiplication
is performed at the output layer and the model contains only one hidden layer, thus
preserving learning speed. However, it takes the essence of these models one step
further by including, instead of linear or sigmoidal neurons on the hidden layer, the
nowadays more widely used neurons that have a hyperbolic tangent as an activation
function. As described in section ??, this function determines values on the neuron in
the range (−1, 1). The aim of the work is to test this new network on various datasets.
These will include problems as Parity, 2 spirals and more convetional as backpack
dataset, CIFAR10, CIFAR100,(ImageNet if gpus). We will also test transfer learning,
where we will swap traditional some fully connected layers with Quasi in architectures
like VGG.

0.4 QuasiNet

Figure 9: Architecture of our model with 1 hidden layer adapted from [2].
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0.4.1 Fully learning model

The newer model shares a similar structure with the prototype. However, it is different
from it in the approach to multiplicative weights as well as the activation function.
Learning at the multiplicative layer is implemented by replacement of exponentiation
by a polynomial. [21]

The weights no longer act as exponents, but rather as indicators of the extent to
which the factor to which they belong will be used. Also, the compressed weights can
be understood as a percentage of the importance of a given value in multiplication.
This substitution removes the occurrence of complex numbers, and also allows the
model to adjust the importance of individual hidden neurons in calculating the desired
output by itself.

0.4.2 Activation

We compute the values of individual neurons on the hidden layer as for the classical
perceptron, using the activation function tahn.

hi = tanh(
∑
j

whid
ij · xj) (6)

We compress the exponent weights on the resulting layer using sigmoids. The
weights themselves can take values from the real number range, but after the function
is applied, they will be in the range (0, 1).

For activation we use the following polynomial function:

f(h, σ(w)) = 1− σ(w)(1− h) (7)

h1 = f(h, σ(w)) = h (8)

h1 = f(h, σ(w)) = h (9)

This approach preserves the original properties of the exponentiation, but is con-
tinuous and continuously derivable for all zero values, so we can use gradient methods
without any restrictions or appearance of complex numbers. In the extremes, the
function behaves as follows

yi =
∏
j

(
1− σ(wout

ij )(1− hj)
)

(10)
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0.4.3 Learning

Due to the properties described in the sections above, there is no need for constraining
or further limiting the model. We can implement model learning using the gradient
descent method as follows:

∂E

∂wn
ij

= (di − yi)

(∏
k ̸=j

1− σ(wn
ik)(1− hk)

)
(hj − 1)σ(wn

ij)(1− σ(wn
ij))

(11)

spätné šírenie chyby na predošlú vrstvu

∂E

∂hi

=
∑
k

(dk − yk)

(∏
l ̸=i

1− σ(wn
kl)(1− hl)

)
σ(wn

ki) (12)

The multiplicative layer is not constrained by its position, so it can be arbitrarily
employed into network architectures. It is possible to use multiple multiplicative layers
in a row or to alternate between classical and summation layers.

0.5 Methods of research

0.5.1 Convergence

Using convergence, we can measure the effectiveness of the model, whether it can learn
the problem at all, or how many epochs on average it takes to do so. The algorithm for
measuring this is to create n models with the same parameters chosen by us, which we
then learn on the same data. When one instance of the network learns a given problem,
we say it converges. The main result in the case of XOR and parity is to calculate what
percentage of network instances were able to converge. We will be able to determine the
computational power of the model against a given problem based on the percentage of
convergence. In Python, we created a function that receives as parameters the type of
network, its settings, the value of how many networks to test and the input data. After
creating and training a given number of networks, the function returns the number of
networks that managed to converge, the ending epoch number of each network, the
time as the computation test ran. We will use this function in the experiments.

0.5.2 Comparison

Comparison of models is possible based on their convergence. In order to be able to
compare the two models objectively, we will try to have them as similarly implemented
as possible. We will evaluate them on the same problem, in most cases with the same
parameters. The model with the higher percentage of convergence is more efficient.
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We will also compare the average number of terminal epochs of the networks. We also
count failed networks in the average; their terminal epoch count will be the maximum
set by us. In datasets other than parity it will be hard to train bigger models on our
hardware. We will investigate and compare their performance on chosen datasets from
other research papers.

0.6 Research

0.6.1 XOR and parity problems with hidden 1 layer

The parity problem can be even or odd, we will consider the even variant. The problem
is that we have an N-bit string to which we assign one bit. We determine this by
whether the number of ones in the string is even but not so that their final count is
even even even with the assigned bit. Using convergence, we measure the effectiveness
of the model, whether it can learn a given problem at all or how many epochs it needs
on average to do so. The algorithm for measuring this is to build n models with the
same parameters chosen by us, which are then learned on the same data. When one
instance of the network learns a given problem and predict all inputs right for set
number of consecutive epochs, then we say it converges. Simply put we measure how
many networks out of 100 reach a stable solution. For the baseline comparison, we
used a basic multilayer perceptron (MLP) without any regularization. For both types
of networks, we use a uniform learning rate α = 0.9 and a Gaussian initialization of
the weights with distribution N (0; 1.0). These hyperparameters were chosen based on
previous experimentation.

From Fig. 10 we can see the superior performance of our model over all degrees
of parity. Also, we could not find a neural network model, where 100% of nets would
converge on XOR problem with only 2 neurons in hidden layer. In Table 1 we can see
detailed result for parity 2-7. The table does not include results for parity of higher
degree, because we could not find such hyperparameters, where MLP converged under
contrained number of epochs. In parity-7 we even increased the number of epochs to
10 thousand, and enlarged the size of hidden layer significantly, but we still achieved
lower convergence. Quasi net in the best case converges in less then 100 epochs.

Next we wanted to test the optimal size of hidden layer in architecture with Quasi
layer. We chose the parity of number 8 and set number of max epochs to 5000. Then
gradually increasing the number of hidden neurons, we observed that larger size does
not lead to better performance. It seems that the optimal size for Quasi architecture
is close to the number of input features.

Figure 12 shows performance of Quasi nets on parity of 2 ≤ n ≤ 13 degree. For
parity of higher degree we changed the initial weight distribution to N (0; 0.5) and
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Figure 10: Results from XOR experiments with varying hidden layer size (max. 500
epochs). Number of converged nets (left) and average number of training epochs (right,
non-converging runs included)

increased number of epochs to 1 thousand.

QuasiNet MLP baseline

n-parity h convergence h convergence

2 2 100 4 100

3 4 100 9 100

4 6 100 12 91

5 7 100 50 44

6 12 100 45 69

7 15 100 45 33

Table 1: Results from n-parity experiments: minimum size of the hidden layer h for
maximum number of converging networks. For MLP baseline we report results we have
achieved given by the computational limits, very large hidden layer size would lead to
a slightly better performance, but not full convergence.
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Figure 11: Results from parity 8 experiments with varying hidden layer size (100 nets,
max. 5000 epochs). Convergence (left) and average training epochs to converg (right,
including non-converging runs).
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Figure 12: Results from n-parity experiments: minimum size of the hidden layer h for
maximum number of converging networks.

0.6.2 2 hidden layers on parity-7

In this experiment we investigated the performance of Quasi layers in different ar-
chitectures. We also tried net architectures with only classical summation layers for
comparison. We wanted the dataset to be a little bit harder to learn while we still
want the nets to converge in reasonable time, so we chose the number of parity to be 7.
To save the time, architectures were tested only on 20 instances. Alse we constrained
the number of epochs to 350 for Quasi architectures and 1000 for MLP architectures.
After increasing the number of epochs to 5000, we noticed that if the instances did
not converg after reaching previous limits(350 and 1000), also did not converge until
reaching 5000.

In 2 we can see that result for every possible architectures made from Quasi layer
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Act. f. h conv. epochs

T, Q, T [15, 5] 18 100.7

T, T, Q [20,20] 11 332.5

Q, T, T [5,10] 14 148.5

Q, Q, T [10,15] 20 82.5

Q, Q, T [5,10] 19 14

Q, T, Q [5,5] 20 22.15

T, Q, Q [-,-] 0 -

Q, Q, Q [2,2] 20 20.55

S, S, S [100,100] 20 710

T, T, T [-,-] 0 -

Table 2: Results from 7-parity on networks with 2 hidden layers. T = hyperbolic
tangent. S = sigmoid function. Q = our (Quasi) product layer. [-,-] means that no
nets converged to a solution.

and Tanh layer. We can see that the performance between architectures vary. Some
could converge under

0.6.3 Multiple layers and 2 spirals

The famous 2 spiral problem is commonly used for testing new neural network models.
Similarly to parity it poses a problem with mutually exclusive situations, i.e the point
belongs to one spiral or to another. We display the 2 spirals dataset with 2 thousand
points we have used and its distribution into training and testing data in Fig. 13. Note,
that the spiral coordinates are transformed to the interval (−1, 1) similarly to inputs
in parity problem. In our preliminary experiments we have observed that this problem
requires more hidden layers for a satisfying performance level.

In Fig 14 we display training progress of QuasiNet with four hidden layers of neu-
rons, where the hyperbolic tangent and product layers are combined one after another.
Namely, the architecture used was: 2 input neurons, 10 tanh neurons, 80 product neu-
rons, 5 tanh neurons and finally 1 output product neuron. Other hyperparameters
used were learning rate α = 0.01 and a Gaussian initialization of the weights with
distribution N (0; 0.5). The networks were trained for 10 thousand epochs. The mean
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Figure 13: The 2 spirals dataset (2000 pts) split into 80% training and 20% testing
data.

accuracy for the testing data set was 98.275% and 4 out of 10 networks achieved full
convergence, which we deem very successful.
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Figure 14: Results from training of the 2 spirals problem: mean and standard deviation
over 10 nets trained for 10000 epochs, only every 10th epoch is shown.

0.7 Discussion
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