
1. Introduction 

2. Problem Overview 

2.1. Used Techologies 

2.1.1. Python 

Python is an interpreted, high-level, object oriented, open-source programming language 

created by Guido van Rossum in 1980s [15, 16]. Python is widely used programming 

language mainly because it is easy to learn, read and extend, therefore there are many 3rd 

party libraries designed for variety of tasks. Since python is written in C, performance 

heavy operations can be implemented in C or C++ [17]. 

2.1.2. NumPy 

NumPy is an open source python library used for scientific computing. The fundamental 

block of NumPy is ndarray which facilitate many mathematical, statistical and logical 

operations. Since python was not designed for numerical computing most of NumPy code 

is optimised and precompiled in C [18]. 

2.1.3. PyTorch 

PyTorch is an open source machine learning library. PyTorch defines multidimensional 

arrays called tensors which unlike NumPy arrays can be operated on by CUDA capable 

GPU. PyTorch library also contain modules for optimisation, building computational 

graphs and backpropagation [19]. 

2.1.4. Kinoptic Dataset 

Kinoptic Dataset is a shared dataset of point clouds dedicated for research purposes. The 

dataset consist of human body point clouds, captured by 10 synchronised Kinects installed 

in Panoptic Studio. The dataset also contains RGB videos and 3D skeletons. Currently 

there are footages of 54 sequences together 6 hours long [20]. 

2.2. Machine Learning 

Machine learning is a study of computer algorithms which compute specific tasks and 

demonstrate the ability to improve their performance automatically from experience [25]. 

The most common type is supervised learning, in which the program learns mapping: 

𝑓: 𝑥 → 𝑦 



Where x are the features and y are the labels [26]. In order for the machine to learn the 

mapping f it needs examples and desired outputs which substitute the teacher. In optimal 

scenario the algorithm learns to generalise the mapping f to correctly label unseen features.  

 

2.2.1. Multi-layer Perceptron (MLP) 

Fully connected layer is a type of layer in neural networks where each component of 

input signal contributes to each component/neuron of output signal, where contribution 

of each input signal is defined by weights of neuron [10]. 

3.  

The strength of i-th component of output signal is [8]: 

𝑦𝑖 = 𝜑 (∑ 𝑤𝑖𝑥𝑗

𝑚

𝑗=1

+ 𝑏) 

Where xj is j-th element of input signal x, wi is weight of i-th neuron, b is bias and φ is 

non-linearity function. Using non-linearity enhances the expressiveness of layer. 

 

Goal of MLP is to approximate some function y = f(x), which is achieved by learning 

parameters W in mapping y = g(x, W) [9]. 

Mlp is simply a neural network consisting of multiple fully-connected layers stacked 

together [10, 11]: 



 

MLP consisting of one input layer, one hidden layer and one output layer (2-layer neural 

network) 

If output y of single fully connected layer can be described as: 

𝑦 = 𝜑1(𝑊1𝑥 + 𝑏1) 

Then output of n-layer Neural Network is: 

𝑦 = 𝑊𝑛𝜑𝑛(𝑊𝑛−1𝜑𝑛−1(… ) + 𝑏𝑛−1) + 𝑏𝑛 

Where Wn is weight matrix of layer n, φn is the non-linearity function of layer n and bn is 

bias of layer n. 

Without the non-liner functions mlp would simply express linear function which is not 

desired when the approximated function is nonlinear, therefore activation/non-linear 

functions are used between layers. 

 

3.1.1. Convolutional Neural Networks 

Since regular mlps do not scale well in image classification due to large number of 

parameters a different approach has to be taken. This problem is tackled by Convolutional 

Neural Networks. Three types of layers are used in convnets, namely: Convolutional, 

Pooling and Fully-Connected. 

Convolutional layer consists of multiple filters of size m x n which are convolved across 

the width and height of input volume producing activation map [13]. The operation of 

convolution can be summarised as [14]: 



𝑔(𝑥, 𝑦) = 𝑤 × 𝑓(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑑𝑥, 𝑑𝑦)𝑓(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦)

𝑏

𝑑𝑦=−𝑏

𝑎

𝑑𝑥=−𝑎

 

Where f(x,y) is the function of input signal w is the kernel of dimensions 2a x 2b. 

Therefore the element in i-th row and j-th column of activation map y can be computed as 

[11]: 

𝑦𝑖𝑗 = 𝜑 (𝑏 + ∑ ∑ 𝑤𝑘𝑙𝑥𝑖+𝑘,𝑘+𝑙

𝑛

𝑙=0

𝑚

𝑘=0

) 

Oftentimes to reduce the size of activation maps pooling layers are used, most commonly 

max pooling, which outputs maximum activation in specified region [13]. 

Generally for input size of H1 × W1 × D1 and stride S and spatial extent F the output is of 

dimensions H2 × W2 × D2 where[13]: 

𝐻2 =
(𝐻1 − 𝐹)

𝑆
+ 1 

𝑊2 =
(𝑊1 − 𝐹)

𝑆
+ 1 

𝐷2 = 𝐷1 

After pooling layer the activation map is processed by fully connected layer, where each 

activation of map is passed into neuron, producing new feature vector. 

 

3.1.2. Softmax Function 

Softmax function is generalisation of sigmoid function and is often used to normalise each 

element of vector z of n scores into probability distribution over n classes [5]. The i-th 

element of vector z can be normalised as: 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑛
𝑗=1

 

Then each element of vector z is in range from 0 to 1 included. 

 



3.1.3. Cross Entropy Loss 

Cross entropy of probability distribution pj and qj over n classes is defined as [6]: 

ℍ(𝑝, 𝑞) = − ∑ 𝑝𝑗 log(𝑞𝑗)

𝑛

𝑗=1

 

Since pj is mostly zero, except for some k, where pk = 1 (because each object can belong 

only to single class, class k), the formula can be simplified as: 

ℍ(𝑝, 𝑞) = −𝑝𝑘 log(𝑞𝑘) = − log(𝑞𝑘) 

Where qk can be derived from softmax function, hence: 

ℍ(𝑝, 𝑞) = − log (
𝑒𝑞𝑘

∑ 𝑒𝑞𝑗𝑛
𝑗=1

) 

Therefore cross entropy loss is: 

𝐿 = 𝐶𝐸 + 𝑅(𝑤) = − log (
𝑒𝑠𝑝

∑ 𝑒𝑠𝑗𝐶
𝑗

) + 𝑅(𝑤) 

Where R(w) is the regularisation loss 

 

3.1.4. Back Propagation 

Back Propagation is type of algorithm used in feedforward neural network, its purpose is to 

compute the gradient of loss function with regard to weights and intermediate results. 

Backprop is simply application of chain rule on computational graph starting with the 

output layer and progressing towards the input layer. The calculated gradients are then 

used to readjust the weights/parameters of network to minimise the loss function and 

therefore improve its predictive capabilities [21, 22]. 

 

3.1.5. Adam Optimiser 

After backpropagation, computed gradients are used to update the weights of network. The 

way those parameters are updated depends on optimiser. One such optimiser is Adam 

optimiser which is based on RMSporp using momentum [23]. The algorithm is described 

in [24]: 



𝑚𝑡 = 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡 

𝑣𝑡 = 𝛽2 ∙ 𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2 

𝑚�̂� =
𝑚𝑡

(1 − 𝛽1
𝑡)

 

𝑣�̂� =
𝑣𝑡

(1 − 𝛽2
𝑡)

 

𝑥𝑡 =  𝑥𝑡−1 − 𝛼 ∙
𝑚�̂�

√𝑣�̂� + 𝜀
 

Where t is the current iteration starting at 0, xt is the weights updated during iteration t, gt 

is the gradient during t and α is the learning rate, the rest are hyperparameters.  

 

3.2. Image Segmentation 

Image segmentation is the practice of partitioning image into meaningful regions be it 

group of pixels, points or polygons. The two objectives of segmentation are to decompose 

images into parts for further processing and to change the representation of images where 

the parts are more meaningful or efficient for processing [27]. 

 

3.3. Point Cloud 

A point cloud is a set of points defining shape of objects or space. Each point is defined by 

x, y and z coordinates in captured space, other information such as colour can also be 

stored in each point. Point clouds are structures created by 3D scanners such as Lidar or 

3D laser scanners [28]. 

 

4. Related Work 

5. Solution 

5.1. Dataset Pre-processing 

5.2. PointNet 

For the task of segmentation on 3D human body point clouds the Deep Neural Network 

PointNet proposed by Charles R. Qi et al. was used. Their approach was one of the first 



one to process raw point clouds without pre-processing (Voxelization) showing strong 

performance in both classification and segmentation.  

Since point clouds are sets of points the order of points does not matter. The points are not 

isolated and form meaningful subsets. Point set represent the same information without 

regard to some transformations [29]. 

• Segmentation Network Architecture: 

 

The input layer is parametrised and can process point clouds consisting of various 

amount of points each possessing 3 channels (x, y, z coordinate). The model uses two 

T-Net networks, both based on PointNet which predict feature transformation matrices. 

These matrices are used to align input features to a canonical space before feature 

extraction. After computing the 3 × 3affine transformation matrix, it is directly applied 

on each point. The transformed point cloud is then processed by shared multilayer 

perceptron of size 3 × 64, 64 × 64 which produce tensor of dimension n × 64. These 

shared multi-layer perceptrons are effectively implemented via one dimensional 

convolutions which convolve across each point of point cloud. Later a second feature 

transformation matrix of size 64 × 64 is computed from tensor of size n × 64, this 

tensor is again aligned by the transformation matrix and processed by shared mlps of 

size 64 × 64, 64 × 128, 128 × 1024. Using max pooling layer across each column on 

tensor of size n × 1024 produces tensor of size 1 × 1024 called global feature, which 

generalises the shape of point cloud. Since global feature is insufficient for semantic 

segmentation global feature is copied and concatenated to intermediate result of feature 

transformation (local features). This new tensor of size n × (64 + 1024) is then passed 

through shared mlps of sizes 1088 × 512, 512 × 256, 256 × 128 and then 128 × 128, 



128 × m, where m is the number of classes. Since each layer uses shared mlps the order 

of input features does not matter moreover the max pooling layer aggregates 

information from each point into global feature which is invariant to input order. This 

is an important property of point net since point clouds are sets of points and therefore 

each point cloud represents the same structure no matter the order.  

• Part Segmentation Network Architecture: 

 

The architecture is very similar to regular PointNet for semantic segmentation, it 

consists of input layer of size n × 3, transformation matrix 3 × 3 from T-Net is gained 

and applied to input tensor, then shared multilayer perceptron are applied 3 × 64, 64 

× 128, 128 × 128 then another T-Net is used to gain transformation matrix of size 128 

× 128 which is used on to align tensor, which is the processed by shared mlps of sizes 

128 × 512, 512 × 2048. Similarly max-pooling is used to gain global feature this time 

of higher dimensionality. Each intermediate result of shared mlp is concatenated with n 

copies of global feature to produce tensor of size n × 3008 processed by mlps of sizes 

3008 × 256, 256 × 128, 128 × m to produce scores n × m. One-hot was not used. 

 

• T-Net Architecture: 

T-Net is similar to PointNet for classification tasks. It consists of shared mlps of sizes 

m × 64, 64 × 128, 128 × 1024 where m is the second dimension of the input tensor of 

size n × m. After the last convolution max-pooling is used to obtain  tensor of size 1 × 

1024 which is processed via fully connected layers of sizes 1024 × 512, 512 × 256, 256 

× (m × m). The one dimensional feature vector is then transformed to transformation 



matrix of sizes m × m. All layers except the last one use ReLU activation function and 

batch normalisation. Dropout is used on the last fully connected layer with probability 

0.3.  

 

6. Testing Evaluation 

6.1. Mean Intersection over Union (mIoU) 

IoU is metric proposed by Jaccard [2, 1] for measuring similarity of two attributes 

associated with finite set of objects. Nowadays IoU is commonly used in segmentation 

tasks as evaluation metric [3, 7]. 

The general formula of IoU also known as Jaccard index is: 

𝜎𝑖𝑘 =
𝑁(𝐴𝑖 ∩ 𝐴𝑘)

𝑁(𝐴𝑖 ∪ 𝐴𝑘)
 

Where 𝑁(𝐴𝑖 ∩ 𝐴𝑘) is the number of times an object possesses both attributes i and k, while 

𝑁(𝐴𝑖 ∪ 𝐴𝑘) is the number of times an object possesses one or both of attributes i and k. In 

segmentation tasks Jaccard index has the form: 

𝐼𝑜𝑈𝑗 =
|𝐴𝑗 ∩ 𝐵𝑗|

|𝐴𝑗 ∪ 𝐵𝑗|
 

Where IoUj is the intersection over union of class j, with prediction Aj and ground truth Bj. 

Then mIoU of n classes can be calculated as: 

𝑚𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈𝑖

𝑛
𝑖=1

𝑛
 

6.2. Accuracy 

Accuracy was measured as the number of points correctly predicted out of all points in 

point cloud. Then overall accuracy was calculated as the mean of all accuracies during 

testing. 

6.3. PointNet Testing 

In this thesis we reimplemented and trained both of their proposed segmentation models.  

Dropout with probability 0.3 was used on the last two fully connected layers of both 

architectures. As the loss function cross entropy loss was used with regularisation term: 



𝐿𝑟𝑒𝑔 = 0.001 ∙ ‖𝐼 − 𝐴𝐴𝑇‖𝐹
2  

As an optimiser was used Adam optimiser with learning rate α = 0.001, β1 = 0.9, β2 = 

0.999. The learning rate was multiplied by 0.5 every 20 epochs. Size of batches was 32. 

The change of validation and training loss during training of PointNet for semantic 

segmentation: 

The model stopped improving after epoch number 1 (second training iteration). The 

validation loss starts slowly increasing therefore the model trained after epoch 1 was used 

for testing.  



Overall testing accuracy was approximately 44.432%, overall mIoU was approximately 

24.742%.  

Left - network prediction, right - ground truth. 



The change of validation and training loss during training of PointNet for part 

segmentation: 

The network stopped improving after 2nd epoch (3rd iteration), therefore the model trained 

during 2 epoch was used for testing. 

Overall testing accuracy was approximately 53,39%, overall mIoU was approximately 

32,909%. Which is significant improvement compared to model for semantic segmentation 

Left - network prediction, right - ground truth. 



The shape of validation loss should be to some extent similar to training loss, or ideally 

should be approaching zero loss similarly to training loss. The sudden rise of validation 

loss is caused by overfitting an phenomenon which occurs when the trained model starts to 

“memorise” correct labels for training data. If overfitting happens the model no longer 

generalises the function for problem stated, such model is undesired.  

The proposed solutions (model, optimiser, hyperparameters) for point cloud segmentation 

needs to be readjusted for human body segmentation since the performance is relatively 

poor. 

 

7. Conclusion 
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