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Chapter 1

Preliminaries

In our work we will use various terms and methods, therefore in this chapter

we introduce all the necessary preliminaries and current state of the prob-

lematic. Most of the bioinformatics terms and de�nitions we use are from

book Understanding Bioinformatics [6].

1.1 Bioinformatics preliminaries

De�ne sequences as words over an alphabet Σ. Based on the chosen alphabet

the sequence represents di�erent structure. Probably the most important al-

phabet is Σ = {A,C, T,G}, sequences built from those letters describeDNA-

Deoxyribonucleic acid . If we use U instead of T then Σ = {A,C, U,G} and

sequences represent RNA-Ribonucleic acid. In some problems we work with

protein sequences, to represent those we need a larger alphabet consisting of

20 elements.

1
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1.1.1 DNA - Deoxyribonucleic acid

DNA stores all the genetic information, that is required to create and main-

tain an organism. DNA is build from building blocks called nucleotides also

called bases. There are only 4 di�erent nucleotides: A - adenine, C - cytosine,

T - thymine, G - guanine. Those building blocks link together and create a

strand, our word over Σ. DNA have a three dimensional structure of double

helix, where two strands are linked. Nucleotides from one strand form a pair

with speci�c nucleotides from other strand. A creates pair only with T and

C with G, therefore a sequence of a strand is complementary to the base

sequence of its partner strand. All the genetic information is encoded by

order of those base pairs.

For example human genome contains about 3 billions of those base pairs.

Since those sequences determine biological features of all organisms we are

quite interested in understanding which parts encode which feature, how

changes in those sequences in�uence organism, how it can be used, etc.

1.1.2 RNA - Ribonucleic acid

For the purposes of this thesis we can look at RNA quite similarly. In RNA

T-thymine is replaced by U- uracil so Σ = {A,C, U,G}. RNA molecules are

also quite shorter than DNA.

1.1.3 Sequencing

Sequencing is a process for determining order of bases of DNA or RNA

molecule. Currently technology is not capable to sequence whole genome.

Current generation sequencing tools have reads of length up to hundred kilo

base pairs. However those reads can have up to 10% error rate. Whole
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genome then needs to be reconstructed from those short reads.

1.1.4 Alignment

Usually we want to compare sequences with other sequences, that are already

known and stored in databases or samples we have collected before. To do

this we have to align those sequences. First possible task is global alignment,

in this case we want to align sequences from beginning to end. This approach

is used in case we want to know to which organism belongs our sample or we

want to see how the sample is changed compared to original sequence. There

are three types of changes that can occur in sequences. First is insertion in

this case a new base is inserted into original sequence. Contrary deletion is

when base from original sequence is missing in sample. Last is mutation, it

means that a base from original sequence has changed to a di�erent base.

Little bit di�erent task is local alignment, by usage of local alignment we

want to �nd one or more similar contiguous regions within sequences. Often

similar sequences have similar function, so this can help us predict function

of the gene from sample.

In order to tell which alignments are good and which are bad we need a

scoring scheme. Simplest scheme would be +1 for match, -1 for mismatch

and -1 for space. In reality more complex scoring schemes are used to better

capture biological aspects of the problem.

1.1.5 Global alignment - Needleman-Wunsch algorithm

Problem of global alignment can be solved by using dynamic programming

and Needleman-Wunsch algorithm.

We have two sequences X and Y of lengths m and n. We create a matrix

A of size m*n. Cell A[i,j] represents a sub-problem of global alignment of



CHAPTER 1. PRELIMINARIES 4

sequences x1, x2...xi and y1, y2...yj. First row and �rst column represents that

one of the sequences has length zero and is aligned with spaces. So it look

like this A[i, 0] = −i and A[0, j] = −j.

Now general case for i > 0 and j > 0 will be:

A[i, j] = max


A[i− 1, j − 1] + s(xi, yi)

A[i− 1, j]− 1

A[i, j − 1]− 1

Where s(xi, yi) is score of match or mismatch and is de�ned as:

s(xi, yi) =

1, if xi = yi

−1, if xi ̸= yi

Diagonal case A[i−1, j−1]+s(xi, yi) means that sequences are aligned with

match or mismatch, up case A[i−1, j]−1 means that xi is aligned with space

and left case A[i, j − j]− 1 means that yj is aligned with space.

When whole table is �lled the score of global alignment is in right bottom

corner. If we want the whole alignment we take the last cell and go back up

to �rst cell A[0,0]. Often exist more than one path with same score.

This was the simplest version, some improvements as a�ne gap scoring

or scoring matrix are often introduced to better capture biological nature of

the problem. In a�ne gap scoring we have greater penalty for opening a gap

and then lower penalty for extending an existing gap.Some base mutations

are more probable than others, to accommodate this we can use substitution

matrix and give some mutations lower penalty.
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A C G T
A 2 -2 -1 -2
C -2 1 -2 -1
G -1 -2 1 -2
T -2 -1 -2 2

Table 1.1: Example of substitution matrix

G A A G G C C T A C
0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

A -1 -1 0 -1 -2 -3 -4 -5 -6 -7 -8
A -2 -2 0 1 0 -1 -2 -3 -4 -5 -6
G -3 -1 -1 0 2 1 0 -1 -2 -3 -4
G -4 -2 -2 -1 1 3 2 1 0 -1 -2
C -5 -3 -3 -2 0 2 4 3 2 1 0
C -6 -4 -4 -3 -1 1 3 5 4 3 2
A -7 -5 -3 -3 -2 0 2 4 4 5 4
T -8 -6 -4 -4 -3 -1 1 3 5 4 4
A -9 -7 -5 -3 -4 -2 0 2 4 6 5
A -10 -8 -6 -4 -4 -3 -1 1 3 5 5

Table 1.2: Example of dynamic programming table for global alignment.
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1.1.6 Local alignment - Smith-Waterman algorithm

In local alignment we want to �nd contiguous similar regions between two

sequences not necessary from beginning to end. For this we use Smith-

Waterman algorithm, it is quite similar to Needleman-Wunsch algorithm.

Most important change is that we accept empty alignment with score 0,

therefore the lowest value that can be in a cell is 0.

Algorithm then looks like this. Again we start with matrix A of size m*n,

baut �rst row and column are �lled with zeros A[i, 0] = 0 and A[0, j] = 0. Cell

A[i,j] represents a sub-problem of highest score of local alignment between

sequences x1, x2...xi and y1, y2...yj.

General case have a little change we choose maximum from four options.

Three are the same as before and fourth option is zero.

A[i, j] = max



0

A[i− 1, j − 1] + s(xi, yi)

A[i− 1, j]− 1

A[i, j − 1]− 1

Where s(xi, yi) is score of match or mismatch and is de�ned as:

s(xi, yi) =

1, if xi = yi

−1, if xi ̸= yi

Score of best local alignment is then maximum from A. There may be

more then one equally good alignments. If we want to construct the align-

ment we start in the cell with highest value and we go backward until we reach

a cell with 0 in it. Again this is the simplest version and same improvements
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G A A G G C C T A C
0 0 0 0 0 0 0 0 0 0 0

A 0 0 1 1 0 0 0 0 0 1 0
A 0 0 1 2 1 0 0 0 0 1 0
G 0 1 0 1 3 2 1 0 0 0 0
G 0 1 0 0 2 4 3 2 1 0 0
C 0 0 0 0 1 3 5 4 3 2 1
C 0 0 0 0 0 2 4 6 5 4 3
A 0 0 1 1 0 1 3 5 5 6 5
T 0 0 0 0 0 0 2 4 6 5 5
A 0 0 1 1 0 0 1 3 5 7 6
A 0 0 1 2 1 0 0 2 4 6 6

Table 1.3: Example of dynamic programming table for local alignment.

can be used to better express biological nature of the problem.

1.2 Neural networks

1.2.1 Overview

Neural networks are computational models that have been inspired by human

brain. In biology neuron is a cell, that receive electro-chemical signals from

other neurons. If the received signal is strong enough to surpass a certain

threshold neuron spikes and sends the signal further. After a spike neuron

recovers and for short amount of time does not spike again.

Simplest neural network model is a perceptron, it is a model that imitates

biological neuron. It has inputs x1, x2, ...xn. For each input xi it contains

a weight wi. Inputs are multiplied by their weights and summed together,

the summation is then used as input for an activation function, if an output

from the activation function exceeds set threshold output of the perceptron

is 1 otherwise it is 0. This model is used for binary classi�cation and can
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only separate classes that are linearly separable.

Activation functions are used to bring non-linearity to neural network

models. There are activation functions that are quite common, because of

their properties. First property is di�erentiability, since gradient is used to

train neural networks it is important to have activation functions that are

easily di�erentiable. One of the �rst activation function was sigmoid.

S(x) =
1

1− ex

Nowadays many di�erent are more common:

� Hyperbolic tangent

� Recti�ed linear - relu(x) =

x, if x > 0

0, otherwise

� Leaky ReLU - LeakyReLU(x) =

x, if x > 0

0.01x, otherwise

� Softmax

1.2.2 Fully Connected Networks

Those networks consist of one input layer, one or more hidden layers and

one output layer. Each layer contains one or more arti�cial neurons like the

perceptron, however each layer can have di�erent activation function. Each

neuron has it own set of weights for inputs. Neuron takes all the inputs,

multiply it with weights and apply activation function. After all neurons

from one layer compute their outputs, those outputs serve as inputs for next
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layer. Outputs from the last layer are considered to be outputs from whole

model.

Those type of networks have the most general usage and produce state

of the art results in mathematical and statistical problems, however in task

as image processing or natural language recognition they have been outper-

formed by di�erent types of architectures.

1.2.3 Convolutional Networks

This type of architecture became quite popular since 2012 when neural net-

work called AlexNet from author Alex Krizhevsky, achieved state of the art

results in image recognition competition on ImageNet dataset. One of the

important steps in his approach was using GPU to speed up training pro-

cess. Since then computational capacity of computers have quite increased

and it is quite simple to build own models that can be trained on large image

datasets in short time.

Convolutional networks perform great on 2-dimensional inputs as images

and 3-dimensional inputs such as medical scans. Typical convolutional net-

work architecture consist of input layer, few convolutional layers followed by

pooling layers and it ends with one or more fully connected layers.

Most interesting part are convolutional and pooling layers. Convolutional

layer contains kernels often called �lters. Those are windows of �xed size,for

example size 3*3 is quite common, those kernels are moved through the input

and at each position it is applied. Applications usually means matrix multi-

plication followed by activation function. By applying those �lters we receive

output with little bit smaller width and height and possibly more channels,

depending on number of applied �lters. After convolutional layer pooling

layer is often used. Pooling layers reduce dimensions of the input. Pooling
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layer takes window usually of size 2*2 and moves through the input and

reduces each window to one value. Max-pooling is most frequent, however

average pooling can be also used. When input is reduced by convolutional

and pooling layers it is �attened and standard fully connected layers are used

to produce output.

1.2.4 Recurrent Networks

Reccurent models are used in cases when data are time or context dependent,

for example time series prediction, speech recognition, music composition or

language translation.

Reccurent networks have similar architecture to standard fully connected

feed forward networks, however they use output from all previous inputs

to compute actual output. The most simple recurrent network use simple

vector to represent state. They perform the computation in same way as fully

connected network, however they concat this state vector with input vector

and from this new vector output is computed. After output is computed

state vector is updated from output values and it is prepared to be used in

next step.

Most used recurrent network is Long Term Short Memory network -

LSTM. Problem of simple recurrent network is that it can not retain the

information for many steps, because it is continuously overrode. LSTM over-

comes this by introducing memory cell. Memory cell contains input gate and

forget gate. Those gates decides when value of the cell is updated, therefore

the cell can retain information for many steps without overriding it. Those

cells also overcome vanishing gradient problem and help to train network

faster.
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1.2.5 Usage of Neural Networks for comparing biologi-

cal sequences

Shortcoming of dynamic programming is that it can not fully represent non-

linearity, that come from biological nature of the problem. Modern neural

networks perform very well in �elds like text processing and language trans-

lation. Those tasks are somewhat similar to sequence alignment in a manner

that both problems are heavily context dependent and both are special kind

of mapping o� original sequence to an output sequence. There have already

been some approaches to use neural networks in alignment tasks, now we will

mention some of them.

NEPAL In paper "Optimizing scoring function of dynamic programming

of pairwise pro�le alignment using derivative free neural network" [5] authors

proposed a way to improve alignment of pro�le sequences, for our purposes

those are words over alphabet of size 20.

They used classic dynamic programming, however instead of using stan-

dard scoring function they used small fully connected neural network to com-

pute similarity score that was used as score for match or mismatch in each

cell of dynamic programming table. Input of the network consisted of 10

elements from one pro�le and 10 from the other. Architecture of the network

can be seen in �gure 1.1.

Most interesting part of this paper is the approach that authors used to

train the network. They used derivative free approach particularly they used

evolutionary strategies to train the network.

In paper "Deep learning-based tool for alignment and single nucleotide

variant identi�cation" [2] three di�erent types of networks were used to per-
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Figure 1.1: Neural network from [5]

form alignment. First model was using convolution. First both reads and

reference were broken into smaller parts called k-mers. Then the best match

for each k-mer was found with convolutional neural network. Another two

models are vanilla recurrent network and LSTM network. Those models take

query string and reference string and classify them into two classes matched

or unmatched. Then from all matched cases based on best matching score, a

reference string is picked for alignment. Architecture of RNN/LSTM is in the

�gure 1.2. From �gure 1.3 it can be seen, that vanilla RNN has higher accu-

racy up to 40 base-pairs but LSTM was able to perform with relatively good

accuracy up to 80 base-pairs, at about 90 base-pairs both models stopped

learning. Those models required many di�erent parameters to be set for �ne

tuning. Authors used genetic approach to �nd out the best combination of

those parameters. They created an initial population with di�erent param-

eters and let them evolve, in 10 generations they found appropriate set of
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parameters. Evolution of accuracy of those population can be seen in �g-

ure 1.4. Authors concluded that one of limitations of those models is that

maximum length of a read is 40 base pairs.

Figure 1.2: Deep recurrent network from [2]

Figure 1.3: Accuracy compare of RNN and LSTM from [2]

Last work that we would like to mention is from paper "Attention Is All

You Need" [4]. Authors introduced new model called transformer. This
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Figure 1.4: Accuracy of Population after each generation from [2]

model uses only attention layers to perform sequence modelling tasks. Au-

thors demonstrated it on the language translation however it looks like promis-

ing approach for more sequence related tasks that are context dependent.

Attention layer helps model to choose only parts of the input that are impor-

tant for prediction. In standard RNN or convolutional networks the problem

is that the important part of the input can have variable length. It leads to

that some parts can be missing when they are needed and some unnecessary

parts of the input are used in computation. This is where attention comes

very useful, since it choose the important inputs. Whole architecture of the

transformer model is in �gure 1.5.
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Figure 1.5: The transformer model from [4]
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Chapter 6

Research results

In this chapter we present results from implemented models and discuss about

their possibilities.

6.1 Results from models

Fully convolutional model First model we implemented was conolu-

tional network, that used 1-dimensional convolution. We take two sequences,

embed those sequences as numbers and then join them. This is the input

for this model. Desired output of this model was global alignment score of

those two sequences. However this model have not performed very well and

accuracy of deciding if sequences are close according to the output score was

about 54%. Just slightly better than random guess.

Recurrent modem LSTM network-

Recurent model with convolution. This model achieved best results.

It is a reccurent network that uses 2-dimensional matrix to represent state.

This matrix is recurrently �lled in same manner as dynamic programming

21
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matrix. At each step we take a look at neighbourhood of the cell that is

going to be �lled. Neighbourhood for convolution is window from matrix

up and left of �xed size and in sequences we also take into consideration

window of �xed size. Output of this network is whole table which in bottom

right corner contains value between 0 and 1 that represents overall quality of

potential alignment.

Figure 6.1: Output table from combined model compared to needleman-
wunsch.
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6.2 Comparison of models

6.3 Comparison on di�erent data
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