COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

CAUSTICS RENDERING AND SYNTHETIC DATA
BACHELOR THESIS

2024
MICHAL KUBIRITA

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

CAUSTICS RENDERING AND SYNTHETIC DATA
BACHELOR THESIS

Study Programme: Applied Computer Science

Field of Study: Computer Science

Department: Department of Applied Informatics
Supervisor: Mgr. Lukéas Gajdosech

Consultant: doc. RNDr. Martin Madaras, PhD.

Bratislava, 2024
Michal Kubirita

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Michal Kubirita

Studijny program: aplikovana informatika (Jednoodborové stidium, bakalarsky
L. st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: bakalarska

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Synthetic Dataset Rendering with Parametric Transparent and Translucent

Anotacia:

Ciel’:

Literatura:

Objects
Generovanie syntetickych dat s parametrickymi priesvitnymi a priehladnymi
objektami

K tréningu robustnej neurénovej siete potrebujeme pristup k trénovacim
datam. Konvolu¢na neurdnova siet’ vie byt’ natrénovand metoédami hlkbokého
ucenia s pouzitim syntetickych, alebo redlnych anotovanych dat, za tcelom
spracovania mracien bodov ako napr. Filtrovanie alebo odhad p6zy objektu.
Pokial’ nie su k dispozicii redlne a anotované data, syntetické¢ datasety mézu
byt’ renderované a pouzité na tréning. Hlavnym cielom prace bude navrhnutie
renderovacieho systému na renderovanie scén zloZzenych z priesvitnych
a priehl'adnych predmetov. Vygenerované data buda neskor pouzité na tréning
neurdnovej siete na spracovanie mracien bodov. Priehl'adné a priesvitné objekty
by mali byt parametrizované za ucelom randomizacie v generovanej scéne.
V optimalnom pripade, renderovanie chceme mat” v realnom case, preto
chceme pouzit’ Unreal Engine. Alternativne sa méze pouzit’ Blender s LuxCore
rendererom.

- Presumat’ moznosti renderovacich a hernych enginov ako Unreal Engine
a LuxCoreRender v Blendery za ucelom renderovania priehladnych
a priesvitnych objektov

- Prioritizujte rychlejSie renderovanie, idedlne v redlnom case, preto sa
zamerajte primarne na Unreal Engine

- Vytvorte parametricky model transparentnych a translucentnych objektov,
ktoré sa mozu parmetrizovat’ cez skript a vkladat’ do scény

- Renderujte scénu s kaustikami, s parametrickymi modelmi, pripadne
s existujucimi priesvitnymi a prichladymi modelmi z UE a porovnajte vysledky
z UE s vysledkami z Blenderu

Rui Wang, Wei Hua, Yuchi Huo, Hujun Bao 2022, Real-time Rendering and
Editing of Scattering Effects for Translucent Objects, https://doi.org/10.48550/
arXiv.2203.12339

Unreal Engine documentation, https://docs.unrealengine.com/4.26/en-US/
RenderingAndGraphics/Materials/HowTo/Transparency/

Unreal Engine forums, https:/forums.unrealengine.com/t/transparent-
materials-render-infront-of-closer-translucent-materials/278592

Unreal Engine RTX branch, https://developer.nvidia.com/game-engines/
unreal-engine/rtx-branch

87332612
Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky
https://forums.unrealengine.com/t/inside-unreal-dlss-and-rtxgi-with-
nvidia/149916
Kruacové synthetické data, priehladné a priesvitné objekty, virtualna scéna, Unreal
slova: Engine
Vediici: Mgr. Lukas Gajdosech
Konzultant: doc. RNDr. Martin Madaras, PhD.
Katedra: FMFIL.KALI - Katedra aplikovanej informatiky
Veduci katedry: doc. RNDr. Tatiana Jajcayova, PhD.
Datum zadania: 04.10.2023
Datum schvalenia: 04.10.2023 doc. RNDr. Damas Gruska, PhD.

garant §tudijného programu

Student veduci prace

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Michal Kubirita
Study programme: Applied Computer Science (Single degree study, bachelor 1.

deg., full time form)

Field of Study: Computer Science

Type of Thesis: Bachelor’s thesis

Language of Thesis: English

Secondary language: Slovak

Title: Synthetic Dataset Rendering with Parametric Transparent and Translucent

Annotation:

Aim:

Literature:

Keywords:

Supervisor:

Objects

Training of robust neural networks is based on access to the training data. A
convolutional neural network can be trained in a deep learning manner using
synthetic or real captured annotated data to perform point cloud processing
tasks, such as filtering the point clouds or pose estimation of an object. If there is
no available real annotated training dataset a synthetic one can be rendered and
used. The main scope of the thesis would be to propose a rendering pipeline for
synthetic scans composed of transparent and translucent objects. The generated
data will be later used to train a neural network for point cloud processing.
The translucent and transparent objects should be parametrized in order to be
randomized in the scene. In an optimal scenario, the rendering of the scene
should be performed in real-time, therefore Unreal Engine should be used.
Alternatively, a Blender with LuxCoreRenderer can be used.

- Explore the possibilities of rendering and game engines such as Unreal Engine
or Blender’s LuxCoreRender for rendering translucent and transparent objects
- Prioritize faster, real-time rendering, therefore focus mainly on Unreal Engine
- Create a parametric model of translucent and transparent objects that can be
parametrized and added to a scene using a script

- Render the scene with all the caustics, with parametric models and assets from
UE and compare the results rendered in UE with results from Blender

Rui Wang, Wei Hua, Yuchi Huo, Hujun Bao 2022, Real-time Rendering and
Editing of Scattering Effects for Translucent Objects, https://doi.org/10.48550/
arXiv.2203.12339

Unreal Engine documentation, https://docs.unrealengine.com/4.26/en-US/
RenderingAndGraphics/Materials/HowTo/Transparency/

Unreal Engine forums, https://forums.unrealengine.com/t/transparent-
materials-render-infront-of-closer-translucent-materials/278592

Unreal Engine RTX branch, https://developer.nvidia.com/game-engines/
unreal-engine/rtx-branch
https://forums.unrealengine.com/t/inside-unreal-dlss-and-rtxgi-with-
nvidia/149916

synthetic dataset, translucent and transparent objects, virtual scene, Unreal
Engine

Mgr. Lukas GajdoSech

87332612
Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics
Consultant: doc. RNDr. Martin Madaras, PhD.
Department: FMFI.KALI - Department of Applied Informatics
Head of doc. RNDr. Tatiana Jajcayova, PhD.
department:
Assigned: 04.10.2023
Approved: 04.10.2023 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme
Student Supervisor

Acknowledgments: I am sincerely grateful for the unwavering moral support from

my friends.

vi

Abstrakt

Slovensky abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt struc¢ne suma-
rizuje vysledky prace. Mal by byt pochopitelny pre bezného informatika. Nemal by
teda vyuzivat skratky, terminy alebo oznacenie zavedené v praci, okrem tych, ktoré su

vSeobecne zname.

Klacové slova: jedno, druhé, tretie (pripadne stvrté, piate)

vii

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

viil

Contents

1 Background

1.1 Rendering Techniques
1.1.1 Rasterization L
1.1.2 Ray Casting
1.1.3 Ray Tracing
1.1.4 Path Tracing
1.1.5 The Rendering Equation
1.1.6 Photon Mapping
1.2 Caustics

2 Existing Tools

2.1 Blender
2.2 Unreal Engine Lo
2.3 Related Work

3 Implementation

3.1 Methods
3.2 Parametric 3D Models
3.3 Parametric Materialso
3.4 Rendering Synthetic Data 0oL
3.5 Automating the Process
4 Results
4.1 Image Quality Evaluation
4.2 Synthetic Dataset
Conclusion

X

O O Ut = N NN =

11
11
11
12

15
15
15
15
15
15

17
17
17

19

List of Figures

1.1 Ray casting diagram
1.2 Ray tracing diagram

1.3 Diagram of Adaptive Anisotropic Photon Scattering.

1.4 Example of caustics beneath drinking glasses.

X1

O 00 = W

xii

List of Tables

xiil

Xiv

Chapter 1
Background

In computer vision and computer graphics, translucent objects are a problematic sub-
ject. Rendering them realistically needs nontrivial algorithms. In case of making 3D
scans of these objects, it is hard to capture them and segmentation is difficult due to
indeterminate boundaries. Results of these operations are often imperfect, which is
caused by reflection and refraction of light shined on transparent surfaces.

To render these objects realistically we need to consider physical interactions of
light. Transparent materials behave differently compared to the opaque ones. Rays of
light coming through them create illuminated effects called caustics. This happens also
inside transparent fluid bodies (e.g. water) but we will only focus on solid objects like
bottles and glasses, which is referred to as mesh caustics [Yang and Ouyang, 2021].

This chapter covers related issues and known solutions. Firstly, we will describe

some rendering techniques and then elaborate on the subject of caustics.

1.1 Rendering Techniques

In 3D graphics, rendering is the process of transforming a virtual 3D scene into a digital
image. Rendering engines (renderers) use various methods to visualize and illuminate
a 3D scene. We outline some basic terms and methods below, gradually moving to

more advanced ones.

Offline vs Online Rendering

Offline rendering is sometimes called pre-rendering, since its result is an already finished
image, a render, that may have taken hours to create. Its main priority is photorealism
with accurate physical lighting. It is used in films and static images demanding high
image quality.

Online rendering is also called real-time or interactive rendering because of its high

performance. Its main goal is performance - online renders take only a few milliseconds

2 CHAPTER 1. BACKGROUND

to make giving programs the ability to be visually interactive. It is used mainly in

games.

1.1.1 Rasterization

A common implementation of online rendering is rasterization, a process of rasterizing
scene objects into pixels. This is done by splitting the geometry of objects into triangles.
Those are sorted and culled with visibility algorithms. Triangles are also divided into
fragments representing at most one pixel. The color of each pixel in the image is
determined by fragment shaders which are applied to the fragments. [Hughes, 2014]
Rasterization is able to generate many frames per second. However, it is not suited
for photo-realism. It requires a lot algorithmic augmentations, tricks and effects to

create realistic images.

1.1.2 Ray Casting

According to Haines and Akenine-Moller [2019], "ray casting is the process of finding
the closest, or sometimes just any, object along a ray.” In computer graphics, ray
casting has many applications.

In the context of rendering, a ray is cast from the camera (also called the eye)
through a pixel in the image plane. This type of ray is called a viewing ray and other
times just a view ray |Glassner, 1989; Shirley et al., 2009; Haines and Akenine-Méoller,
2019]. It travels until it hits the first object occluding the ray’s path. For the purpose
of shading the hit point, another ray can be cast into a light source to find out whether
the object is in a shadow. Figure 1.1 shows a diagram visualizing the ray casting

algorithm.

1.1.3 Ray Tracing

Ray tracing is an implementation of offline rendering. Its history is well-documented
in the book Ray Tracing Gems by [Haines and Akenine-Méller, 2019]. The algorithm
uses ray casting recursively to determine the color of each pixel in the image plane.
The recursion limit is set as a maximum number of light bounces. It is the number of
hit points (intersections) one ray can possibly achieve.

The recursion occurs in the intersections. After hitting a surface, child rays may be
cast to simulate reflection and refraction. The directions of child rays are determined
by the surface’s material. Each of these rays can also be tested for shadow occurrence.
When a ray reaches its limit, the color of the pixel is estimated by accounting the
viewing ray, shadow rays and reflection and refraction rays [Haines and Akenine-Méller,

2019]. For a visualization see Figure 1.2.

1.1. RENDERING TECHNIQUES 3

Shadow Ray

Image
Camﬁera 8 Light Source
//

Figure 1.1: Ray casting. The diagram depicts hit point intersections of view rays. The
hit point is shadowed if a shadow ray intersects an object on its way to a light source.
From Ray Tracing Gems by [Haines and Akenine-Mdller, 2019

A more advanced implementation casts many rays per pixel to make the object edges
smoother, create soft shadows or effects like camera depth of field [Shirley et al., 2009].
This improvement has been proposed by [Cook et al., 1984| and is called distributed
ray tracing.

Spawning just one reflection ray from the hit point on a surface creates a mirrored
reflection. To achieve a glossy look of shiny and polished materials, we must spawn
multiple rays in a conical shape around the hit point and blend their results [Haines
and Akenine-Méller, 2019].

For a comprehensive explanation of the fundamentals see the very first book about
ray tracing [Glassner, 1989] and for more advanced and current topics see [Haines and
Akenine-Moéller, 2019; Marrs et al., 2021].

Forward and Backward Raytracing

We need to realize that the ray tracing process described above is reversed from the
actual physical behaviour of light. In real world, light travels from a light source
through the scene into the eye.

The light source emits photons in many directions. If we traced them forward the
way they travel, we would find out only a few can be caught by our eye. Even then,
some may have taken an overly complex route, arriving weaker from all the bounces.

Thus, it is reasonably more efficient to shoot rays from the eye into the scene, tracing

4 CHAPTER 1. BACKGROUND

Solid Box

Camera

10111

Figure 1.2: Ray tracing. The diagram depicts how a view ray forms child rays. The
glass sphere as a translucent object reflects and refracts the rays, while the mirror only
reflects them. As a result, the solid box affects reflections on the sphere and the mirror
alike. From Ray Tracing Gems by [Haines and Akenine-Mdller, 2019).

them backwards. These are guaranteed to hit the objects visible in our field of view
(FOV). [Glassner, 1989]

1.1.4 Path Tracing

Path tracing is built upon the ray tracing algorithm. It uses Cook’s sampling technique,
each pixel is traced many times to light it more accurately. Furthermore, matte surface
lighting is computed differently, matching real-world behaviour. To compute reflection
of a matte or a diffuse surface, reflections rays scatter in all directions |[Haines and
Akenine-Méller, 2019].

When a ray hits this type of surface, a direction of a reflected child ray is chosen in
a precise way. The child ray may reflect again, spawning a new ray recursively, until it
finally reaches a light source. The more we repeat this process the more accurate the

radiance of a pixel will be.

The sequence of ray intersections from the eye to a light source is called a path,
thus the name path tracing. This style of rendering is credited to Kajiya [1986]. In
the book Ray Tracing Gems Haines and Akenine-Méller [2019] say, ”path tracing can,

with proper care, give an unbiased result, one matching physical reality.”

1.1. RENDERING TECHNIQUES)

Bidirectional Path Tracing

Bidirectional path tracing extends the techniques above, accounting for the complex
transport of light. This method was proposed by Lafortune and Willems [1993] and
independently by Veach and Guibas [1995].

While traditional path tracing shoots rays solely from the camera’s viewpoint, bidi-
rectional path tracing traces paths from both the camera and light sources. In result,
lighting effects like caustics can be achieved. [Hughes, 2014]

Connections are made between hit points of a random view sub-path and those of a
random light sub-path. This gives us additional samplers and the ability to find caustic
paths using connections to camera. This is not possible in regular path tracing. [Haines
and Akenine-Moller, 2019|

1.1.5 The Rendering Equation

The Cook’s and Kajiya’s rendering methods require a way to efficiently choose rays for
sampling. They use Monte Carlo Integration algorithm with probability density func-
tions, stochastically distributing rays of light to solve this issue [Haines and Akenine-
Maller, 2019|. This technique has been called distributed ray tracing |Glassner, 1989).

Below is a transport Equation 1.1 in an energy-balanced form, in computer graphics

commonly referred to as the rendering equation [Haines and Akenine-Maoller, 2019).

Lo(P,wy) = /S F(P,wo,wi) Li(P,wr) | cos] duw, (1.1)

In the Equation 1.1, Ly is the light leaving from surface point P in direction wy.
Function f represents a bidirectional reflectance distribution function which describes
reflection at point P. L; is the incoming light in direction w; calculated recursively. 6;
is an angle between the surface normal and the incoming light direction. [Haines and
Akenine-Moller, 2019] By integrating through all the light sources and surfaces, we get
the resulting ray’s radiance.

Now we can clearly see why is the ray’s color only approximated. The integral could
be hardly solved for each surface. And that is only for one view ray. Solving it using
the Monte Carlo Integration made the advanced rendering techniques like path tracing

possible to implement.

Monte Carlo Integration

Monte Carlo is a probabilistic method for approximating definite integrals. It involves
generating random samples from a probability distribution over the domain of the

integral and using these samples to estimate the integral value. [Shirley et al., 2009

6 CHAPTER 1. BACKGROUND

It is proven to be an effective solution to integration in rendering [Haines and
Akenine-Moéller, 2019|. Using Monte Carlo methods allows us to choose significant
light rays to calculate radiance of a surface point. Equation 1.1 can then be solved as
an estimation.

Equation 1.2 is an example showing how to solve an n-dimensional integral of
function f using Monte Carlo estimator with k& samples [Haines and Akenine-Moller,
2019].

By se| = [s as (12

Inside the expected value is an average of values of f using a set of independent
uniform variables X; on [0, 1]".

This estimator is very simple and ineffective. Haines and Akenine-Méller [2019] have
shown that it is better to sample rays nonuniformly using a distribution p(z) which
matches the function f(x) as closely as possible. The following Equation 1.3 incorpo-

rates the nonuniform distribution, slightly changing from the previous Equation 1.2.

L& fx)]
b [k ; P(Xi)] B /[0,1]n f(x) dr (1-3)

1.1.6 Photon Mapping

Photon mapping is a global illumination method for rendering indirect lighting and
caustics [Haines and Akenine-Moller, 2019]. Tt is similar to bidirectional path tracing,
although instead of connecting an eye path to a light path, it estimates the light arriving
at the point P by collecting information from all the light paths. Since there may not
be any light paths that end exactly at the point P, the method involves estimating the
arriving light by examining neighbouring points and interpolating data [Hughes, 2014].

The incoming light is stored in a photon map, describing radiance at different points
of the scene. The radiance is estimated with scattered indirect light of diffuse surfaces.
Storing a sample of the arriving light allows for representing many outgoing light rays,
so there is no need to trace them all individually [Hughes, 2014].

This sample is what is meant by photon in photon mapping. Following bounces of
the photon are also recorded until it is absorbed or the recursion depth limit is exceeded.
Hughes [2014] describes it as "a bit of power emitted by the light, typically representing
many physical photons [per second|." It is defined with a location in space, a direction

towards the light source or the last light bounce, and an incident power [Hughes, 2014].

Image Space Photon Mapping

McGuire and Luebke [2009] have presented a real time approach to photon mapping,

1.1. RENDERING TECHNIQUES 7

which operates with photons as volumes in image space. The algorithm works only with
points lights and pinhole cameras, bringing a lot of limitations. On the other hand, it
is significantly sped up compared to the original photon mapping approach [Hughes,
2014].

Screen Space Photon Mapping

Traditional photon mapping requires a lot of ray tracing to produce smooth light
images and thus is not suitable for real-time rendering [Haines and Akenine-Méoller,
2019]. However, there have been proposed real time solutions. Haines and Akenine-
Méller [2019] introduced a technique called screen space photon mapping (SSPM),
where photons are stored in screen space texels. This algorithm produces reflected and
refracted caustics, although without global illumination of the whole scene.

Firstly, the photons are emitted and ray traced in the world space. Then, they
are stored in a screen space texture representing the photon map. Secondly, a process
called photon gathering has to be applied to remove noise in the caustics. Its result
is a denoised image which can be used together with direct lighting to render a final
image. This approach uses deferred rendering system. For detailed explanation of
tracing the photons and their gathering, see the book Ray Tracing Gems by Haines
and Akenine-Moller [2019].

Adaptive Anisotropic Photon Scattering

Adaptive Anisotropic Photon Scattering (AAPS) is a novel real time method proposed
by Yang and Ouyang [2021] in the book Ray Tracing Gems II. To make the rendering
interactive, it utilizes hardware ray tracing, similarly as SSPM. AAPS builds upon a
variation of photon mapping, photon splatting and produces high-quality results with
less blurry and noisy caustics than the previous approach, SSPM. Additionally, this
method allows for rendering dispersion and soft caustics.

The algorithm maintains multiple buffers [Marrs et al., 2021].
o Tusk buffers store which photons are to be traced in the current frame.

e A photon buffer contains data of each photon, including its hit position, intensity

and footprint.

o Feedback buffers consist of textures in the light space, managing feedback infor-

mation over a couple of last frames.

e A caustics buffer contains a render target where photons will be splatted in screen

space.

8 CHAPTER 1. BACKGROUND

Task Buffer :

Camera
¥, ‘1
.. / IO

Feedback Buffers

Back Buffer

Caustics Buffer

y
[CTTTTTT1
Photon Buffer

Figure 1.3: Diagram of Adaptive Anisotropic Photon Scattering. Rendering with AAPS
is split into four steps [Marrs et al., 2021].

1. Emit photons from the task buffers. Trace them throughout the scene and for
each hit on an opaque surface add details to the photon buffer and photon foot-
print to the feedback buffers.

2. Execute photon scattering (splatting). From photon buffer draw each photon as

an elliptical footprint.
3. Apply the caustics buffer: carry out deferred lighting.

4. Create task buffers for the next frame by merging feedback buffers of the current

and the previous frame.

From the book Ray Tracing Gems II, chapter 30 by Marrs et al. [2021].

Figure 1.3 shows details of the algorithm including the use of the buffers.
This novel method still operates in the screen-space so there are limitations, e.g.
in caustics reflected by a mirror. It also neglects roughness values and the dispersion

effects are not physically-accurate.

1.2 Caustics

Caustic is a curve of light caused by reflection and refraction of light shined on a
transparent or a translucent object [Yang et al., 2021]. Metallic objects can also cre-
ate this phenomenon. Hughes [2014] elaborates more and states that when the light

photons interact with curved surfaces, they are focused into concentrated light curves.

1.2. CAUSTICS 9

Figure 1.4: Example of caustics beneath drinking glasses. The reflected and refracted
light rays concentrate into patches of light with intense bright edges sometimes forming

cusp singularities. Rendered in LuzCoreRender (path tracing).

Hughes [2014] also adds that caustics are produced by point lights, small area lights
and sunlight. They disappear under diffuse lighting.
Figure 1.4 shows an example of caustic patterns usually seen under drinking glasses.
Physically-accurate simulation of caustics is computationally expensive and simple
rasterization rendering engines are unable to produce them. To simulate these effects
we need to trace light bounces and thus use a path tracing or a raytracing engine.
Caustics can be rendered in a simplistic way using tricks. However, to bridge the
Sim2Real gap we aim to use hardware ray tracing to achieve more accurate illumination

in real time. We have mentioned one such method in Section 1.1, called AAPS.

10

CHAPTER 1.

BACKGROUND

Chapter 2
Existing Tools

In this chapter we name well-known software useful for our tasks and also previous
work concerning similar problems. We shortly describe Blender, Unreal Engine and
its experimental version made by Nvidia. Finally, we list a few plugins and previous

solutions of synthetic data generation.

2.1 Blender

Blender is a free and open-source 3D program featuring tools for the whole 3D content-
creation pipeline. It is licensed under GNU GPL and it is being developed by an online
community and Blender Institute. It has an API for python scripting, making it easily
extendable. Blender is cross-platform - runs on Linux, Windows and Macintosh.

A new tool called Geometry Nodes has been added to the software in recent updates.
It features a node-based visual scripting for procedurally generating 3D objects and
scenes. Using this tool, we can, for example, easily construct and modify geometry of

meshes.

2.2 Unreal Engine

Unreal Engine is a game engine developed by Epic Games and it is popular among
the game development community. The engine receives regular updates oftentimes
introducing state-of-the-art implementations of new features and thus has a role of a
technological leader in the game industry.

Unreal Engine’s vast community consists not only of game developers. With many
years of its existence, the engine has evolved into a large platform for digital content
creation in general, which interests experts from various fields. Apart from making
games it is also used for architectural visualizations, automobile design, product design,

simulations and films.

11

12 CHAPTER 2. EXISTING TOOLS

Nvidia’s NvRTX Branches

Nvidia tightly cooperates with Epic Games to improve rendering capabilities and in-
troduce new features. Nvidia also implements its own technologies into the engine,
such as DLSS, Frame Generation, Reflex and NRD.

Those which are still experimental are developed in their fork of Unreal Engine on
GitHub. There is a specific branch for implementing caustics rendering which we aim
to explore (NVRTXT caustics branch). ' These branches are publicly accessible but

require a registration.

2.3 Related Work

There are multiple existing tools regarding real-time rendering of synthetic data, de-
veloped for use with Unreal Engine. Its powerful rendering capabilities and ability
to extend features through plugins shows why it is a popular choice among computer

vision researchers.

SuperCaustics

This tool extends the NVRTX Caustics 4.26 branch of Unreal Engine and has been
made by Mousavi and Estrada [2021]. Its purpose is to generate synthetic datasets of
translucent objects with caustics. It is fully automated, generating random scenes in
the editor and rendering them using hardware ray tracing.

We could not test the tool, since the particular version of the NvVRTX Unreal Engine
branch cannot be installed properly because it relies on downloading dependencies from
a server with forbidden access. Nonetheless, it possesses a limitation, which we would
like to overcome - the materials cannot be randomized during the scene generation

process.

UnrealGT

UnrealGT is an Unreal Engine 4 plugin which provides a user with the ability to gener-
ate generic image datasets inside the editor. It was develop by Pollok et al. [2019] and
provides some additional features, e.g. segmentation of the scene by configuring object
classification. The user can thus render not only color images but also segmentation
masks and even depth images. Other ground truth data like bounding boxes and pose

data can be obtained too.

!The Unreal Engine version we have used is accesssible here.
https://github.com/NvRTX/UnrealEngine/tree/NvRTX_Caustics-5.2

https://github.com/NvRTX/UnrealEngine/tree/NvRTX_Caustics-5.2

2.3. RELATED WORK 13

It works only in Unreal Engine 4 and is not compatible with Unreal Engine 5 and
later versions. Unreal Engine has received a lot of updates in version 5, including
rewriting its code, in spite of which some classes have been refactored. That makes it

impossible to compile this plugin inside Unreal Engine 5.

UnrealCV

UnrealCV, created by Qiu et al. [2017], is an Unreal Engine plugin which helps com-
puter vision researchers create synthetic data, similarly to UnrealGT above (for exam-
ple object masks; depth and normal images). Compared to the tools above, it runs on
versions of Unreal Engine up to 5.2, so it is still being maintained.

It operates through a set of console commands inside the editor, allowing interac-
tions with the virtual world. With them a user can change the transforms of a camera
or render the current scene. Alternatively, one can use their client API and connect to

the editor from an external program.

EasySynth

EasySynth is an Unreal Engine plugin working up to version 5.2., which helps with
generating images for machine learning. It is a widget inside the Unreal Engine editor,
which helps with export configurations for the rendering process. It allows to export
RGB, depth, normal and optical flow images and also camera poses. There is a tool

for object masking which allows to also generate semantic images.

SynBin

This work by Kravar et al. [2023| has explored possibilites of procedurally generating
meshes inside Blender. They proposed a pipeline for creating cardboard boxes with
Geometry Nodes system. These models served as synthetic data for training neural
network to 6D pose estimation task, which proved to be superior to previous training

attempts.

14

CHAPTER 2. EXISTING TOOLS

Chapter 3

Implementation

3.1 Methods

3.2 Parametric 3D Models
3.3 Parametric Materials

3.4 Rendering Synthetic Data

3.5 Automating the Process

15

16

CHAPTER 3. IMPLEMENTATION

Chapter 4

Results

4.1 Image Quality Evaluation

4.2 Synthetic Dataset

17

18

CHAPTER 4. RESULTS

Conclusion

19

20

Conclusion

Bibliography

Cook, R. L., Porter, T., and Carpenter, L. (1984). Distributed ray tracing. In Proceed-
ings of the 11th annual conference on Computer graphics and interactive techniques,
pages 137-145.

Glassner, A. S. (1989). An introduction to ray tracing. Morgan Kaufmann.

Haines, E. and Akenine-Moller, T., editors (2019). Ray Tracing Gems. Apress. http:

//raytracinggems.com.
Hughes, J. F. (2014). Computer graphics: principles and practice. Pearson Education.

Kajiya, J. T. (1986). The rendering equation. In Proceedings of the 13th annual

conference on Computer graphics and interactive techniques, pages 143-150.

Kravar, P., Gajdoech, L., and Madaras, M. (2023). Novel synthetic data tool for data-
driven cardboard box localization. In International Conference on Artificial Neural

Networks, pages 565-569. Springer.
Lafortune, E. P. and Willems, Y. D. (1993). Bi-directional path tracing.

Marrs, A., Shirley, P., and Wald, 1. (2021). Ray tracing Gems II: next generation
real-time rendering with DXR, Vulkan, and OptiX. Springer Nature.

McGuire, M. and Luebke, D. (2009). Hardware-accelerated global illumination by
image space photon mapping. In Proceedings of the Conference on High Performance
Graphics 2009, pages 77-89.

Mousavi, M. and Estrada, R. (2021). Supercaustics: Real-time, open-source simulation
of transparent objects for deep learning applications. In 2021 20th IEEFE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pages 649-655.
IEEE.

Pollok, T., Junglas, L., Ruf, B., and Schumann, A. (2019). Unrealgt: Using unreal
engine to generate ground truth datasets. In Advances in Visual Computing : 14th
International Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA,
October 7-9, 2019, Proceedings, Part I. Ed.: George Bebis, page 670-682. Springer.

21

http://raytracinggems.com
http://raytracinggems.com

22 BIBLIOGRAPHY

Qiu, W., Zhong, F., Zhang, Y., Qiao, S., Xiao, Z., Kim, T. S., Wang, Y., and Yuille,
A. (2017). Unrealcv: Virtual worlds for computer vision. ACM Multimedia Open

Source Software Competition.

Shirley, P., Ashikhmin, M., and Marschner, S. (2009). Fundamentals of computer
graphics. AK Peters/CRC Press.

Veach, E. and Guibas, L. (1995). Bidirectional estimators for light transport. In
Photorealistic Rendering Techniques, pages 145-167. Springer.

Yang, F., Wiinsche, B. C., and MacDonald, B. (2021). Real-time caustics and disper-
sion on arbitrary surfaces in gpu-accelerated ray tracing. In 2021 36th International

Conference on Image and Vision Computing New Zealand (IVCNZ), pages 1-6.

Yang, X. and Ouyang, Y. (2021). Real-Time Ray Traced Caustics, pages 469-497.

	Background
	Rendering Techniques
	Rasterization
	Ray Casting
	Ray Tracing
	Path Tracing
	The Rendering Equation
	Photon Mapping

	Caustics

	Existing Tools
	Blender
	Unreal Engine
	Related Work

	Implementation
	Methods
	Parametric 3D Models
	Parametric Materials
	Rendering Synthetic Data
	Automating the Process

	Results
	Image Quality Evaluation
	Synthetic Dataset

	Conclusion

