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a b s t r a c t

The Drude model is conventionally used to explain the average motion of electrons in
typical material. In this paper, we analyze the individual terms of the Drude model in
order to uncover their influence on the scattering properties of small particles. Namely, a
query on whether resonance enhancement is due to optical effects or the conductivity
model. This query arose from our earlier theoretical and numerical experiments and still
remains unresolved today. We show that certain resonance features are caused primarily
by the interaction of the electromagnetic wave with the excess electric charge on the
particles. Furthermore, we show that the role of a conductivity model is limited to only
establishing the relative importance of the inertial moment of the carriers and the viscous
drag forces. For frequencies ωrkBT=ℏ, the viscous forces only cause minor damping
effects and the change in the peak resonance (along with its amplitude) are caused by the
electric and inertial forces. These forces dominate because the viscous forces quickly decay
with decreasing temperature.

In order to demonstrate the optical behavior of charged water droplets, we construct a
Mie-series solution with modified boundary conditions that properly account for the
excess electric charge on the droplets. Our solution explains the weak scattering
enhancement for frequencies far beyond the resonance, and it also predicts an absorption
resonance edge in the long-wavelength limit.

Our findings are not only useful to theoreticians who focus on the individual para-
meters such as the viscous term in the Drude model and/or search for better surface
conductivity models, but also to experimentalists who gather as much data as possible in
order to ascertain how the numerically determined optical properties compare with the
experimental measurements.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

An excitation of localized surface plasmons is well-known
in metalic nanosized particles [17,6]. The surface modes in
small spherical particles occur when the denominators of the
Mie scattering coefficients vanish or approach zero [2].
However, it only recently has been proven that the small
electrically charged particles can also resonate in a number of
modes with the incident electromagnetic wave [16,21]. These
surface excitations are closely related to the surface charge
density [3] that is composed of static and oscillatory compo-
nents [13]. Moreover, the excitations are also related to the
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flow of charges because they can change the tangential
electric field on the surface of the particle. Both of these
quantities are related to the surface conductivity and to the
following processes: (i) the movement of the unbounded
charge on the surface of the particle, (ii) the passing of the
surplus electrons into an empty conduction band and/or (iii)
the polarization of the surplus electrons in a surface-bound
state [10,18]. The classical phenomenological model devel-
oped by Paul Drude, namely, the Drude model, [5] was not
intended to describe the conductivity enhancement caused by
the above processes. However, the Drude approach is still
preferred because it accounts for both the inertial and the
viscous drag forces experienced by the transport electrons.

Although the Drude model is quite general, the above-
mentioned forces only roughly approximate the actual
interactions between the electrons and the ions. For
instance, the damping coefficient used in the viscous drag
force formula is modeled to be proportional to kBT=ℏ in
many materials (here kB is the Boltzmann constant, T is the
temperature of the particle, and ℏ is the reduced Planck
constant). However, the proportionality constant is only a
rough estimate and not exact. Previously, we have
demonstrated that the far-field as well as the near-field
optical signatures of the electrically charged particles dif-
fer from the signatures of neutral particles. Furthermore,
we have shown that the parameters such as the surface
conductivity or kBT=ℏ work as modulators of the optical
response (see e.g. [18,14,11]; and also [4,22]). It is only in
the last few years that the effects on the scattering prop-
erties caused by the excess electric charge, the surface
potential, or the temperature were recognized. In elec-
trified particulate systems, the above-mentioned causes
are among the largest sources of uncertainty in predictions
of collective optical effects. Undoubtedly, the role of the
Drude model in the optical resonances has to be uncov-
ered before any reasonable conclusions can be made
regarding the features contained in the optical signature of
the charged particles. In this case, the wavelength λ should
be varied instead of the particle radius a because the
effects of the Drude model will stay hidden when the
optical characteristics are computed as a function of the
size parameter x¼ 2πa=λ. In other words, the frequency-
dependent conductivity is required to demonstrate how
the Drude model influences the optical response of the
small particles.
2. Theoretical formulation of scattering by charged
particles

In the Drude model the time constant τ, which char-
acterizes the average time between collisions, is used to
approximate the interaction between the charge carriers.
In this concept, the probability of collision (attenuation
rate) is proportional to 1=τ. The classical approach to
model the 3D volume charges dictates that a free charge
carrier of mass M and electric charge q is decelerated by a
fictitious (phenomenological) friction force [12,19]. The
motion of the charge carriers is described by

_u¼ q
M
E�1

τ
u; ð1Þ

where u is the velocity, and E is the electric field vector. If
the charge is deposited on the surface of a sphere, then
Eq. (1) becomes

_ut ¼
q
M
Et�γsut ; ð2Þ

where ut denotes the velocity component that is tangen-
tial to the surface of the sphere, and γs is the mass-
normalized damping coefficient. The damping coefficient
γs can be expressed as an inverse of the relaxation time
and is proportional to kBT=ℏ in many materials (e.g. metal).
In this work, we assume the proportionality factor is unity
and thus we have γS ¼ kBT=ℏ.

It is easy to show [11] that σs ¼ iρS0e= ωþ iγS
� �

Me
� �

in a
case of a harmonic incident wave, where Me¼9.109�
10�31 kg, e¼1.602�10�19 C, i is the imaginary unit, ω is the
angular frequency, and ρS0 is the static component of the
surface charge density. After a bit of manipulation, we can
express the surface conductivity as a non-linear function of γs,
namely,

σS ¼
gk

iωμ0
¼ k
ωμ0

x
2

ω2
S

ω2þγ2S

γS
ω
þ i

� �
; ð3Þ

where k is the wavenumber, ωS is the surface plasma fre-
quency (see [3])

ω2
S ¼ 2

e
Me

Φ
a2
; ð4Þ

and Φ is the electrostatic potential on the surface of the
uniformly charged sphere of radius a.

Note that for low frequencies ðωooγSÞ the electric
conductivity is a purely real quantity that is inversely
proportional to γs. In contrast, at high frequencies the
conductivity is purely imaginary quantity that is propor-
tional to the ratio e=Me and is independent of the damping
coefficient γs.

The optical response of a charged particle can be
obtained from Maxwell equations subject to appropriate
boundary conditions and certain constitutive relations
[20]. However, the boundary conditions for an electrically
charged particle and for an electrically neutral particle are
different. In order to derive these boundary conditions, we
will deal with the integral form of the Maxwell equations
as well as the continuity equation.

Let us consider a small cuboid of volume V ¼ S? Δh
and with the surfaces S? ¼ X Y , X Δh, and Y Δh. The bot-
tom base of the cuboid is situated in medium 1 and the top
surface is in medium 2 (Fig. 1). If the surface area S? has
free electric charges with the surface charge density ρS,
then the total electric charge of the small cuboid is

Q ¼
Z
V
ρdV ¼

Z
S?
ρSdS? : ð5Þ

The rate of change of this charge is

�dQ
dt

¼
I
S
jUdS¼

Z
S?

jUdS? þ
I
l?
jS Udl? ; ð6Þ

where jS is the surface current density, dS? is an elementary



Fig. 1. Schematic representation of boundary conditions.
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surface perpendicular to the surface S? , ðdS? ¼ n̂dS? Þ, S is
the total surface of the cuboid depicted in Fig. 1, and l? is
the circumference of the area S? . The above equations can
be written as

�dQ
dt

¼ �∂ρS

∂t
S?

andI
S
jUdS¼ n̂ U j2�j1

� �
S? þ ∇U jS

� �
S? ; ð7Þ

respectively, where j1 and j2 are the volume current den-
sities (measured in A m�2), and jS is the surface current
density (measured in [A m�1]). The second term on the
right-hand side of Eqs. (6) and (7) is identical. To see this, we
write the second term on the right-hand side of Eq. (6) asI
l?
jS Udl? ¼ jS x; yð ÞU �n̂x

� �
YþjS xþX; yð ÞU n̂x

� �
Y

þ jS x; yð ÞU �n̂y
� �

Xþ jS x; yþYð ÞU n̂y
� �

X; ð8Þ

where X and Y are the lengths of the small rectangular
surface S? when measured along the x- and y-axes,
respectively. Using Taylor series expansion, we obtainI
l?
jS Udl? ¼ ∂jS

∂x
U n̂x

� 	
XYþ ∂jS

∂y
U n̂y

� 	
XY ¼ ∇U jS

� �
S? : ð9Þ

Thus, from Eq. (9) we conclude that the two terms are
indeed identical. Moreover, by using Eq. (9), it is easy to show
that the boundary condition for the current density is

∇S U j� n̂U j2� j1
� �¼ �∂ρS

∂t
� ∇U jS
� �

: ð10Þ

where the symbol Div denotes the surface divergence. For an
alternative derivation of Eq. (10) please see [1].

To derive the boundary conditions satisfied by the
H-field, let us consider a closed curve in the form of a
narrow rectangle as shown in Fig. 2. Applying the Stokes
theorem to the first Maxwell equation (Ampere’s law), we
obtainZ
Sjj

∇�Hð ÞUdSjj ¼
I
C
HUdr¼

Z
Sjj
jUdSjj þ

Z
Sjj

∂D
∂t

UdSjj: ð11Þ

In Eq. (11), dSjj is an elementary surface oriented per-
pendicularly to the surface Sjj ¼ X Δh (i.e. dSjj has the
orientation of the local normal n̂0). From the geometry of
the problem we also have thatI
C
HUdr¼ H2�H1ð ÞU n̂0 � n̂

� �
X; ð12Þ

where the unit vector n̂ is normal to the local surface, and
n̂U n̂0 ¼ 0.

Over an infinitesimally small rectangle with the area
S ¼ X Δhjj , the integral

R
Sjj

∂D
∂t UdSjj approaches zero when the

width of the rectangle Δh vanishes. Nevertheless, the
right-hand-side of the integral

R
Sjj
jUdSjj is equal toZ

Sjj
jUdSjj ¼ jU n̂ 0Sjj ¼ jU n̂ 0XΔh¼ jS U n̂

0X; ð13Þ

where jS ¼ jΔh is the surface current density. By compar-
ing Eqs. (12) and (13) we obtain

H2�H1ð ÞU n̂0 � n̂
� �¼ jS Un̂

0
; ð14Þ

and a bit of manipulation yields the desired result, namely,

n̂� H2�H1ð Þ ¼ jS: ð15Þ
For an alternative and more lavish derivation of Eq. (15)

see [1]. In contrast to Eq. (15), the corresponding equation
for an electrically neutral particle is

n̂� H2�H1ð Þ ¼ 0: ð16Þ
The surface current density jS is non-zero if ∂ρS=∂ta0

(also see Eq. (10)). Applying the Stokes theorem to the
third Maxwell equation (Faraday’s law) we immediately
find thatZ
Sjj

∇� Eð ÞUdSjj ¼
I
C
EUdr¼

Z
Sjj
�∂B

∂t
UdSjj; ð17Þ

where the right-hand side equals zero when the width of
the rectangle ðΔhÞ vanishes. Therefore, Eq. (17) transforms
into a simple form, namely,

E2�E1ð ÞU n̂0 � n̂
� �¼ 0; ð18Þ

and similarly we find that

n̂� E2�E1ð Þ ¼ 0: ð19Þ
We use the above derived boundary conditions and the

separation-of-variables method to obtain the modified
formulae for Mie expansion coefficients [11] of a charged
sphere of radius a; namely,

an ¼
μ�1
2 ψn xð Þψ 0

n m xð Þ�mμ�1
1 ψ 0

n xð Þψn m xð Þ� i ω k�1σsψ 0
n xð Þψ 0

n m xð Þ
μ�1
2 ξn xð Þψ 0

n m xð Þ�mμ�1
1 ξ0n xð Þψn m xð Þ� i ω k�1σsξ

0
n xð Þψ 0

n m xð Þ
ð20Þ

and

bn ¼
μ�1
2 ψ 0

n xð Þψn m xð Þ�mμ�1
1 ψn xð Þψ 0

n m xð Þþ i ω k�1σsψn xð Þψn m xð Þ
μ�1
2 ξ0n xð Þψn m xð Þ�mμ�1

1 ξn xð Þψ 0
n m xð Þþ i ω k�1σsξn xð Þψn m xð Þ

;

ð21Þ
where μ1 and μ2 are the permeability of the scatterer and
the permeability of the surrounding media, respectively,
and x¼ 2πa=λ is the size parameter. In Eqs. (20) and (21), λ
is the wavelength of the incident radiation, the prime
denotes differentiation with respect to the argument, and
ψn xð Þ and ξn xð Þ are defined in terms of Bessel and Hankel
functions. In contrast to the electrically neutral sphere,
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Eqs. (20) and (21) contain additional terms that are pro-
portional to the surface conductivity σs.

In the following sections, we will analyze the optical
properties of the electrically charged sphere for a wide range
of size parameters by using the frequency-dependent surface
conductivity formula (3) and Mie expansion coefficients
(Eqs. (20) and (21)) that were derived from the boundary
conditions given by Eqs. (10) and (15).
3. Toward the Drude model constituents, surface con-
ductivity and extinction efficiency

The frequency-dependent conductivity given by Eq. (20)
depends on two parameters, namely, the surface potential Φ
and the mass-normalized damping coefficient γs. For a fixed
particle size, the surface potential is directly proportional to
the plasma frequency ω2

S and thus, the plasma frequency is
determined by the potential. In other words, the surface
potential is a key factor influencing the optical effects; how-
ever, it does not determine how σs depends on frequency. In
contrast, the surface conductivity is a non-trivial function in
both γs and ω. Obviously, the optical properties of charged
particles change with γs because γs characterizes the fictitious
viscous forces experienced by the electrons. For example,
small γs implies a long coherence time, which means that the
viscous forces are relatively weak.

We demonstrate these effects numerically by comput-
ing the extinction cross-section Qext via the method out-
lined in Section 2. For this purpose, we simulate light
scattering from a spherical particle of radius 0.01 μm and
charged to a potential of 5 V (for these parameters, the
plasma frequency is 2.1�1013 Hz). We vary the incident
wavelength from 0.6 to 500 μm, i.e. the corresponding size
parameter varies from 0.0001 to 0.1. The ratio of the effi-
ciency factors for the charged and an identical uncharged
sphere is shown in Fig. 3 as a function of the size para-
meter. To help with the interpretation of Fig. 3, we show
σs xð Þ in Fig. 4 for Φ¼5 V and T¼100 K.

From Fig. 3, we see that the net surface charge causes
the amplification rate to reach its maximum at roughly
xPE2�10�3. Furthermore, from Fig. 4 we also see that
the imaginary part of the surface conductivity is larger
than the real part if x is near the resonance peak. For these
size parameters, the acceleration of the surface electrons is
mainly due to the electric force and the inertial mass of
electrons while the effects caused by the viscous drag
forces are negligible. The amplitude of the viscous forces
Fig. 2. The evaluation of the boundary conditions for the H-field.
quickly decays with decreasing temperature, especially
when the temperature is near zero. On the other hand,
high temperatures imply enhanced viscous forces; there-
fore, the temperature is an important modulator of the
extinction efficiency factor for the size parameters xoxP ,
while the effect of the temperature on Qext disappears for
x4 � 10xP . In general, γs works as a damping coefficient
that efficiently suppresses and smooths the resonant peak
in Qext (see Fig. 3). In fact, ω and γs enter Eq. (20) in a ratio,
thus, ω can be thought of as a “strength” measure of γs.
Thus we conclude that the viscous forces only play a
decisive role when ωrγs, i.e. ωrkBT=ℏ.
4. Explanation and prediction of some anomalous
experimental results

Experiments on the optical behavior of isolated elec-
trically charged particles (that is a problem different from
what we know as surface plasmon polaritons) are still rare.
For example, amplified microwave attenuation in sand-
storms [8] remained unexplained until it was shown that
the Rayleigh theory is an insufficient formulation to
describe electromagnetic scattering by small charged par-
ticles [13,15]. These researchers demonstrated that there
are some physical quantities that cannot be predicted
accurately by the conventional models because these
models do not account for the excess charge. Thus, the
formulation presented in this paper, which uses the
modified boundary conditions, can potentially be used to
explain a number of anomalous experimental results that
have challenged the electromagnetic community. In the
next paragraph, we will describe one such challenge in
some detail.

Heifetz et al. [9] performed laboratory measurements
on charged water droplets, which were theoretically
modeled by dielectric spheres with diffusion-deposited
mobile surface charges. In this experiment, the potential
difference appears in a double-layer structure on the sur-
face of a scattering particle; however, we are using a
model of a negatively charged particle with electrons on
the surface of the droplet. We note that our approach is
similar to the one used by Geldart and Chýlek [7].
Although Heifetz et al. confirmed the optical properties of
the water droplet's response to a time-dependent air-
ionization profile, the changes in the optical characteristics
such as backscatter amplitude were too low. In fact, they
were as low as 1% at 94 GHz. We have theoretically
reproduced the above-mentioned experimental results
and also found very low amplitudes for the scattering
efficiency in the 90–95 GHz frequency interval, see Fig. 5.

Using our formulation, which depends on a phenomen-
ological surface conductivity but is theoretically sound, we
found that the optical effects are marginal at the above
mentioned frequencies. Specifically, the operating frequency
of 94 GHz is beyond the resonance region as evident from
Figs. 5 and 6, which show normalized scattering efficiencies as
a function of wavelength. The theoretical value of the ampli-
fication factor for charged particles Qsca cð Þ is only a few per-
cent higher than that for electrically neutral water droplets
even if the surface potential is close to Rayleigh limit (see



Fig. 3. The ratio of the extinction efficiency factors for the charged and an
identical uncharged particle is shown as a function of the size parameter
x for temperatures 0 K, 100 K, and 1000 K.

Fig. 4. The surface conductivity σs (with T¼100 K) is shown as a function
of the size parameter x.

Fig. 5. Theoretical efficiency factor as a ratio of scattering cross-sections
for the charged and an identical uncharged water droplets is shown as a
function of the wavelength.

Fig. 6. The same as in Fig. 5 but for the extinction cross-section. Notice
that the absorption effects dominate near the resonance edge.
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Fig. 5: for a particle radius of 1 μm and surface potential
100 V, the Rayleigh limit is about 180 V). The far-field optical
resonances are generally low for scattered radiation, but
might be large if absorption is present, as was demonstrated
by Kocifaj et al. [15]. To reach the resonance behavior it would
be necessary to either decrease the operating frequency (by
increasing the wavelength), or greatly reduce the particle size.
However, from Figs. 5 and 6 we see that the main resonance
arises due to absorption and not due to scattering—notice that
the curves shown in Fig. 6 account for both scattering and
absorption, while curves in Fig. 5 only account for scattering.
5. Conclusions

We have analyzed how the parameters of the Drude
model can determine the optical properties of charged par-
ticles, and whether the Drude model causes the resonance
edge in plasmon-related absorption. We found that the Drude
model appears to be applicable in modeling the surface con-
ductivity σS. Moreover, we demonstrated that the imaginary
component of the surface conductivity significantly influences
the scattering properties of small particles, while its real
component only has a damping effect at low frequencies. The
surface potential Φ works exclusively as a scale factor, i.e., a
constant of proportionality in the expression for σS. Essen-
tially,Φ only determines the strength of the effects studied in
this paper. Thus, the absorption (and/or scattering) enhance-
ment at certain wavelengths is caused by optical resonances
and not dictated by a chosen conductivity model because the
conductivity model shows no extrema at these wavelengths.

The maximum amplification of Qext occurs near zero
temperature because the viscous forces are weak and both the
electric and inertial forces dominate. This finding alone can
explain why the optical effects caused by the net surface
charges are also important for insulators such as SiO2 [18]. To
see this, we first note that even in bound surface states, the
excess electrons can polarize due to the electric field. There-
fore, the inertial and elastic forces are the decisive ingredients,
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while the viscous forces have only minor, typically damping,
effects.

For small size parameters and frequencies ωrkBT=ℏ, the
viscous term is responsible for lowering Qext and, generally
speaking, is small near the peak resonance for temperat-
ures 10–100 K. In order to better understand the optical
phenomena due to the excess charges, we show that it is
necessary to consider viscous forces and their effects on the
motion of the electrons confined to the surface of the particle.

We successfully apply the surface conductivity model
to predict and explain the experimental results dealing
with the scattering properties of electrically charged water
droplets. These properties deviate only marginally from
those of uncharged particles because the operating fre-
quency used in the experiment was far beyond the reso-
nance regime. Furthermore, we demonstrate that the
resonant amplification can be reached by modifying the
incident frequency.

There is no doubt that knowledge of the optical prop-
erties of electrically charged particles can be applied in
diverse fields of science, especially in atmospheric science.
For example, characterizing water droplets in ocean
sprays, ice crystals in thunderstorms, atmospheric aero-
sols, aerosolized agents, pollution, or dust. To understand
the electromagnetic interaction with these particles, a
targeted theoretical model must be developed and com-
plemented by actual experiments, where the incident
wavelength, particle size, permittivity, permeability, sur-
face charges, and temperature can be varied. In fact, the
role of temperature in electromagnetic scattering by a
charged particle is still not completely clear. Therefore,
further theoretical, numerical, and experimental studies
are required to provide satisfactory answers to funda-
mental scattering questions dealing with optical sig-
natures of charged particles.
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