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The best that most of us can hope to achieve
in physics 1s stmply to misunderstand
at a deeper level.

(Wolfgang Pauli)



Uvod

Fyzika pouziva na opis Prirody jazyk matematiky, teda ,yvtlac¢a“ Prirode matematicka struktaru. Ak
sa takyto opis zhoduje s pozorovaniami, konstatujeme, ze Priroda md takiato matematicka struktaru.
Pritom nie je dostato¢ne (alebo moZno vobec) jasné, preco to tak dobre funguje.

Fyzikdlny svet by nam nedaval zmysel, keby sme nedokazali reprodukovat vysledky pozorovani a
overovat tak jeho zékonitosti v roznom c¢ase alebo na roznych miestch, ¢i za inak zmenenych okolnosti.
Priroda nam tym odhaluje isté symetrie, ktoré premietame aj do matematickych struktiar, ktorymi
ju opisujeme. Moderny pristup k fyzike sa opiera prave o tieto symetrie. Neznamena to, Ze Priroda
sa musi riadit symetriami. Priroda je taka akd je, a my ju spoznavame jej pozorovanim. Ak vsak
spozname (a uverime), 7e md svoje symetrie, sme opravneni vyuZif matematiku symetrii na jej
hlbsie pochopenie. Neznamené to teda, ze fundamentalne zdkony fyziky st désledkami: symetrii, ale
7e tieto symetrie respektuju.

Spojité casopriestorové symetrie klasickej fyziky stvisia so znamymi zakonmi zachovania. Kvantova
mechanika prinasa nové symetrie v siivislosti s principom superpozicie ako aj s vymenou identickych
Castic. Symetrie teorie relativity stuvisia s novymi vlastnostami, akymi s spin ¢i helicita. Casto st
vSak symetrie Prirody ,zamaskované®, a to nielen ndhodnymi okrajovymi podmienkami, ale ich spon-
tannym narusenim, ktoré tvori podstatu existencie krystalickej struktiry pevnych latok, ¢i podstatu
javov ako feromagnetizmus ¢i supravodivost. Osobitné miesto vo svete symetrif zaujimaja kalibracné
symetrie - symetrie matematického opisu. Tento druh symetrii je v8ak podstatou fundamentéalnych
sil (interakeii) Prirody.

Tento text chce byt sprievodcom po fundamentalnych zakonitostiach fyziky a ich suvise so symet-
riami Prirody. Jeho ambiciou je ukazat, Ze na otazky typu ,,Odkial sa vzali principy neurcitosti?, Co
je spin a odkial sa vzal?, Preco maju operdtory zndmych veli¢in prdve taky tvar? Ako si mdme pred-
stavil elementdrne castice a aké siu ich pohybové rovnice? Odkial sa vzal Pauliho vylucovact princip?
Co je podstatou fundamentdlnych sil? Co si vlastne elektrické a iné ndboje? Co je to hmotnost? Co
znamend zakriveny casopriestor?, a podobné, pozname odpovede vyplyvajice z viery v symetrie
Prirody. Text predpoklada vedomosti na trovni bakalarskej fyziky, jeho cieflom nie je zahltit ¢ita-
tela matematickymi technikaliami, ale upriamit pozornost na klucové fyzikalne suvislosti. Pouzity
matematicky formalizmus ma sluzit len ako voditko pre matematicky zaloZenych Citatelov.

Inymi slovami, text je orientovany na véetkijch Studentov fyziky. Ako pri kazdom takomto texte, jeho
aroven je limitovana nielen poznatkami stucasnej fyziky, ale predovsetkym hlbkou ich pochopenia jeho
autorom.
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Symetrie

Snaha o adekvatny opis §truktiry Prirody na elementdrnej irovni (t.j. na trovni elementdrnych ,cas-
tic“ ako excitacii prislusnych poli) v jazyku beznych pojmov zlyhéva kvoli ich vagnosti v kontexte
mikrosveta. Kvantova fyzika preto reviduje klasicki newtonovsku fyziku v tom zmysle, ze za zdkladny
princip si kladie neredukovatelny vplyv kaZdého merania na merany objekt. Kym pre makroskopické
objekty modZe byt tento vplyv celkom zanedbatelny, v mikrosvete s nim musime vZdy pocitat. Pozo-
rovatelné veli¢iny, ako vysledky merania, st teda vzdy produktami urcitej (hoci aj zanedbatelnej)
transformacie stavu skimaného objektu. Vo formalizme kvantovej fyziky preto nahradzame dyna-
mické premenné (reprezentované c¢islami ako hodnotami pozorovatelnych veli¢in) operatormi, vo
vyzname generatorov odpovedajicich transformécii. Takyto pristup pritom nie je cudzi ani klasickej
fyzike - naopak, je plne rozvinuty v jej lagrangeovsko-hamiltonovskom formalizme. V tejto ivodne;j
¢asti sumarizujeme jeho zékladné ¢rty, a to v klasickej i kvantovanej podobe.

Zakladnym predpokladom, ktory celému naSmu tsiliu dava zmysel, s symetrie Prirody. Symetriami
nazyvame také transformdcie (¢iZe aj merania, otazky kladené Prirode), pri ktorych sa ur¢ita vlast-
nost (vyjadrena hodnotou prislusnej premennej) zachovdva.! Takito vlastnost/veli¢inu nazyvame
invariantnou vzhladom na danu transformaciu. Vlastnostami zachovavajicimi sa pri symetridch
mozu vSak byt aj pravidld - dynamika systému, tvar pohybovych rovnic (samotné veli¢iny sa pri-
tom modzZu transformaciou menit). Vtedy hovorime o kovariantnosti systému (vzhladom na dant
transformaciu).

Tak ako kazdé meranie, aj kazda transformacia mé svojho pozorovatela, ktorym resp. vo¢i ktorému sa
uskuto¢nuje. Z pohladu ,nezavislej” laboratdrne;j ststavy moze ist o transformaciu meraného objektu
- tzv. aktivnu, alebo (opacni) transforméaciu pozorovatela - pasivnu. Obe su ekvivalentné (Dodatok
A), a v pokovovej sustave pozorovatela splynu.?

Ukazuje sa, Ze najvystiznejsim spdsobom charakterizovania elementarnych ,stavebnych prvkov® Pri-
rody je urcenie pravidiel, akymi sa tieto objekty spravaji pri urcitych transformaciach, a aké cha-
rakteristiky sa pritom zachovévaji.?> Rovnako dynamika tychto entit - ich pohybové rovnice musia
byt rovnaké pre vSetkych pozorovatelov. Hladame ich teda v kovariantnom tvare - nezavislom na
posunuti pozorovatela v priestore ¢ ¢ase, jeho pootoceni, zmene jeho rychlosti ¢ pohlade do zrkadla.
Musime pritom reSpektovat relativistické ,prelievanie® priestorovych siaradnic do ¢asu a naopak, ¢o
nas od (nerelativistickej) klasickej aj kvantovaj mechaniky privedie k relativistickej teorii poli.

LAk by bezprostredne opakované merania produkovali zdsadne rozdielne vysledky, nemali by pre nis cenu.

2Napr. transformécia vektora v danej bdze (sustave stradnic) je aktivnou, kym transformacia vektorovej bdzy na
ini (fyzicky nemenime vektor, iba jeho opis) je pasivnou. Prikladom tohto rozdielu v kvantovej mechanike je aj
Schrédingerov vs. Heisenbergov obraz: V prvom z nich posobime operatormi na stavy meniace sa v case - to je aktivna
transformacia. V druhom z nich st stavy nemenné, operatory sa vak v ¢ase menia podla Heisenbergovej rovnice, Gize
menia sa ich bdzové stavy, do ktorych skimany stav rozkladame - to je pasivna transformacia. (viac v kap. 1.2.3).

3To, ¢o robi napr. elektron elektrénom, musi byt rovnaké pre vietkych pozorovatelov - inak nejde o fundamentdlnu
vlastnost.



I.1 Symetrie v klasickej mechanike.

Téato tvodna kapitola je zhrnutim tych zakladnych postulatov klasickej mechaniky, ktoré sa v tej ¢i
onej podobe premietaju do moderného kvantového opisu Prirody. Latka je usporiadana tak, aby po-
skytovala ¢o najprirodzenejsi prechod od klasickych pojmov a zdkonitosti ku kvantovomechanickym.

I[.1.1 Lagrangian a Gcinok.

Systém (teleso, Castica) v klasickej lagrangeovskej mechanike ,7Zije“ vo svojom v konfiguraénom
priestore - kazdy rozmer tohto abstraktného priestoru odpovedd urc¢itému stupriu volnosti, a kazdy
bod tohto priestoru, urceny zovseobecnenymi siradnicami q;(t), odpoveda stavu systému. Vyvoj
(pohyb) systému reprezentuje ,draha“ v tomto priestore. Tuto drahu parametrizuje lagrangian
Z(q;(t),q;(t),t) - veli¢ina (spravidla) o rozmere energie, ktora v sebe koduje celtt dynamiku sys-
tému. Ak je systém izolovany (Co nateraz pre jednoduchost predpokladame), jeho lagrangian zavisi
od ¢asu len implicitne, teda prostrednictvom ¢asového vyvoja zovSeobecnenych stiradnic a rychlosti,
Z(q;(t),q;(t)). Na rozdiel od energie systému, ktora sa pre izolovany systém vidy zachovdva, lagran-
gian sa zachovavat nemusi.

Pomocou lagrangianu definujeme ti¢inok* vyvoja systému v danom ¢asovom intervale ako funkciondl

to
S:/ ZLdt
t1

Hodnota a¢inku (ako ¢islo) zdvisi od vgberu drdhy v konfiguracnom priestore medzi fixnymi hranic-
nymi bodmi g;(¢1), ¢;(t2). Priroda sa pritom ,riadi“ principom extremalneho ta¢inku - zo vetkych
moznych priebehov vyvoja systému, ¢ize drah medzi zac¢iato¢nym a kone¢nym stavom, si,zvoli“ prave
ti s extreméalnym (zvi¢sa minimalnym) G¢inkom.® Tato drahu v ¢asoch ¢; < t < t5 teda hladame
varia¢nou metdédou medzi fizngmi koncovymi bodmi, dq;(t1) = dg;(t2) = 0, tak aby Z(q;(t), ¢;(t))
spliial podmienku 6.5 = 0. Diferencial lagrangianu je®

0Z 0z .. 02 d (&Z) d (&Z ) . dgj

8qj qj + 8qj qJ 8(]]' qJ dt qj + dt aqj qJ qJ dt

0L (q5,4d;) = -

J1H4) aqj
V (ur¢itom) integrali u¢inku posledny ¢len vypadne, kedze (ako totalna derivicia) bude rozdielom
hrani¢nych hodnot, pre ktoré dg; = 0.7 Podmienka extremalneho @¢inku §S = 0 vedie na 6. = 0,
odkial dostavame (bez ohladu na vyber zovseobecnych stiradnic) Eulerovu-Lagrangeovu rovnicu

(ELR)
02(¢j,4;) d (0L04;.4) _,

RieSenim tejto rovnice s danym lagrangidnom dostaneme odpovedajicu pohybovi rovnicu systému.

4Prave neredukovatelnost wcinku kazdého pozorovania, vyjadrend hodnotou Planckovej konstanty £, je klt¢om ku
kvantovému opisu Prirody. Aj preto je lagrangeovsky formalizmus spravnou stratégiou budovania jej fundamentalneho
fyzikalneho obrazu.

5T4to obrazng formulacia je oslavou geniality tvorcov lagrangeovského formalizmu.

6V celom texte pouzivame Einsteinovu konvenciu - sumovanie cez opakujtici sa index.

"Tento ¢len teda predstavuje len aditivnu konstantu k energii, ktort moZzeme pridat/ubrat bez vplyvu na pohy-
bovu rovnicu. V dalsom texte ho preto nebudeme uvaZovat. Vo vSeobecnosti mézeme lagrangian rozsirit o totdlnu
Casovt derivaciu Tubovolnej funkcie G(g;,t). Koncové body drahy v konfiguracnom priestore st totoz fizované a po
zintegrovani pridaja k a¢inku konstantny clen G(g;(t2),t2) — G(g;(t1),t1), ktory pri jeho variacii vypadne. Pridanie
¢lena idG(d‘i"’t) k lagrangidnu teda nem4 vplyv na drdhu s extremélnym tucinkom. Taktiez vynédsobenie lagrangianu
Tubovolnou konstantou nemé vplyv na drahu s extremalnym tuc¢inkom ani na ELR.




V' nerelativistickej fyzike je lagrangian rozdielom kinetickej a potencidlnej energie systému,
Lnereiat = K — V. Kinetickd energia je akousi mierou ,akénosti“ systému - pohybu. Naopak, po-
tencidlna energia je mierou eSte ,nerealizovanej akcie - energie, ktori ma systém ,v rezerve“ (t.].
k dispozicii ako potencialitu). Minimalny lagrangian je teda prirodzenou mierou 4spornosti Prirody.
Povysenie extremalneho uc¢inku na princip vsak vyzaduje jeho tnvariantnost voci roznym transfor-
maciam. Lagrangian preto musi obsahovat vsetky symetrie systému. £, et takym celkom urcite nie
je, ved staci zmenit pohybovy stav pozorovatela - roézni pozorovatelia sa nezhodnia na rychlostiach
ani na ¢asomiere. Napr. pre volng (V' = 0) relativisticky objekt (¢asticu) o hmotnosti m a rychlosti v
mé spravny lagrangian tvar & = —mc?/v, kde v = (1 — Z—z)*l/z. Vo v§eobecnosti preto definujeme
lagrangian ako funkciu, pre ktord extremdlny wcinok odpovedd drdhe zvolenej Prirodou.

Ak predpokladame Z(q;,q;) = K(q¢;) — V(g;), potom prvy ¢len v ELR, %{é’qj) = _59\(/9'_((5]')7 repre-
zentuje zovseobecnent silu. Druhy ¢len v ELR musi preto byt (v silade s Newtonovou pohybovou
rovnicou) ¢asovou zmenou zovSeobecnenej - kAnonickej hybnosti

D= 02 (g5, 4;)
V tomto Specidlnom pripade p; = mgé‘_jj), ¢o je ,bezna“ kinematickd hybnost. Vo vSeobecnosti sa
J

v8ak kanonickd hybnost od ,beznej“ newtonovskej hybnosti hmotného telesa/Castice moze 1isit, ako
je uvedené v Dodatku B.

Od lagrangeovského formalizmu prejdeme k hamiltonovskému definovanim hamiltonianu

H:p]q]—g

Porovnanim dvoch vyrazov pre varidciu hamiltonianu,

0L 0L OH OH
H = ¢;0p; 0q; — ——0q; — ——0q; H=—6p; + —0q,
0 qjopj + pjoq; B4 4, Ba; 0q; 0 ap; op;j + ,5%

~~
0

dostavame pomocou ELR Hamiltonove rovnice (HR)

dt — Op; dt g
Vo vSeobecnosti pre ucinok plati
to to
S = / 2L (g, G, t)dt = / [pi¢; — H(pj, q;,t)]dt q; = (1), p; = p;(t)
t1 t1

KedZe ¢;dt = dg;, mozeme uvedeny vztah zapisat ako

q;(t2) ta
Sw®) = [ pdy— [ Hat
t1

q;(t1)

Tento vyraz mozeme vnimat ako drahovy integral medzi bodmi (g;(t1),t1) a (g;(t2),t2) v rovinach
¢; — t (pre kazdy stupeii volnosti j), a preil musi tiez platit
/qj(tz) oS t2 99

dC]j + —dt

(QJ( )) (1‘;1) aq] " at

9
Porovnanim podintegralnych vyrazov dostavame

oS oS 08
p] aq] —at (aqj>QJ>t)



Prva z rovnic ma v kartézskej stustave tvar p = V.S, a znamena pohyb v smere narastu ucinku,
kolmo na plochy S = konst. Druhé z rovnic je Hamiltonova-Jacobiho rovnica (HJR), a je al-
ternativnou formulaciou klasickej mechaniky (popri newtonovskej, lagrangeovskej a hamiltonovskej),
ktor4, ako hned uvidime, zbliZuje ¢asticové a vlnové hladisko. Navyse, obe pripominajt predpisy pre
kvantovomechanické operatory (v stradnicovej reprezentécii, ak S — %)

. hd P

b= o, - o
Pre nerelativistickt casticu je H = % +V, a HJIR mé v kartézskych siradniciach tvar

o5 _ (v
ot 2m

+V

ktory zas pripomina Schrddingerovu rovnicu (SCHR)

2
A% _ <h_v> vy Vip

i Ot 7 2m
Skor nez tito podobnost preskimame hlbsie, uvazujme este $pecidlny pripad izolovanej Castice v kon-
Stantnom potenciali, pre ktoru plati —%—f = H = E = konst, a teda S = —FEt + f(r). Potom
p = |VS| = |Vf(7)|, a uvazenim nerelativistickej hybnosti p = \/2m(E — V) = konst = |V f(7)|
uc¢inok nadobudne tvar
S=p-r—Et

Tento vyraz pripomina fazu vinovej funkcie kvantovomechanickej cCastice v tvare rowvinnej viny
V(7 t) ~ /" s vInovym vektorom k= p/h a frekvenciou w = E/h. Klasickd ¢asticova mechanika
v hamiltonovsko-jacobiovskom formalizme teda naznacuje prechod ku schrodingerovskej kvantovej
mechanike!

V geometrickej optike pozname Fermatov princip, podla ktorého svetelny li¢ ,yvoli“ medzi bodmi A
a B drahu odpovedajicu minimdlnemu ¢asu T,,;,. V zmysle uvedenej vSeobecnej definicie lagrangianu
mozeme opticky tcinok - veli¢inu, ktora sa minimalizuje - a lagrangian konstruovat pomocou optickej

drahy?® ., ., ., .
5:/ jdt:cT:/ cdt:/ n(F)fdt:/ n(7)dl
A A A A

kde n(r) = £ je index lomu prostredia (pre jednoduchost predpokladajme izotropné prostredie), a
dl = rdt = /12 + 9?2 + 22dt je infinitezimalny drahovy usek. Mozeme vSak vyuzit volnost v kon-
Strukcii lagrangidnu - pripoc¢itajme k 2 konStantu a a vynasobme ho rozmerovou kongtantou f.
Lagrangian (so ,spravnym® fyzikidlnym rozmerom) potom bude

L(7,7) = B (n(PVE+ 57 + 2+ a)

Odpovedajica kanonicka optickd hybnost méa potom zlozky

0L ) d
D R Bn(r) Dy, P» analogicky P’ =p2+p.+p:=(Bn)
0 \JiZ 4 P + 22 ! T

¢ize n = %. Opticky acinok je potom

B

B B
S = / Z(r,r)dt = / (po® + pyy + 022 + Ba) dt = / (pedz + pydy + p.dz + Padt)
A A A

8Takto definované veli¢iny viak nemajt ,spravny” fyzikilny rozmer, ¢o je vyjadrené symbolom ~.
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Odtial dostavame

oS . S &
5y =P Py, D analogicky & VS =p (resp. |VS|=n(r))

T I s BN
Téato rovnica® hovori, Ze svetelny li¢ sa §iri kolmo na plochy S = konst., vo formalnej zhode s Sirenim
castice v klasickej mechanike. Z definicie v8ak plati £ = p;@; — H (kde sme formalne definovali
opticky hamiltonian). Porovnanim s predchadzajicim vyrazom pre S dostavame

08

— =—-H = pa

ot p

Oba tieto vysledky pre luc svetla st formalne zhodné s rovnicami hamiltonovsko-jacobiovského for-
malizmu pre ¢asticu. NavySe, ak uvazime, Ze index lomu dava do suvisu frekvenciu svetla s vlnovym
¢islom, n = %c, potom opticka hybnost je

c
p=pn=p—k
w
Ak konStanty 8 a « zvolime rozmerovo ,spravne* ako [ = %“’ a a = —c, dostaneme zname vztahy
p=hk a H = hw, pricom rozmerovd konstanta h je (nie ndhodou) zhodné s Planckovou konstantou.
Opticky uc¢inok nadobudne tvar

B B

S:h/ (k - dr — wdt) :/ (p- dr — Hdt)
A A

a plochy S =konst. fyzikilne odpovedaju vlnoplochdm (plocham konstantnej fdzy) rovinnej viny

Y ~ e (resp. €9/% kde X =2 =1 je tzv. redukovand vlnova dlzka).

V HIJR, s uc¢inkom S ako tstrednym pojmom, sa teda stretdva kvantovd mechanika s klasickou
¢asticovou i vinovou mechanikou. Ak dosadime kvantovomechanicka komplezni vinova funkciu volnej
castice v tvare 1) = ¢*¥/" (|¢)| = 1) do SCHR, dostaneme (po predeleni 1)

9S  ih _, (VS)?
ot 2mVS+ 2m

+V

V limite A — 0, ¢o je klasickd limita kvantovej mechaniky, dostavame HJR pre voInua casticu.
Klasickd aj kvantova (pravdepodobnostnd) vlna v tvare e”/?, resp. /" predstavuju rovinné vilny
(s konstantnou amplitidou), mézeme im teda priradit vinové dlzky, odpovedajice zmene fazy o 27

. \ -1

J ~ 1 _

05 _ 27 ol = 95 IS=-A=\, (vlnova dlzka v prostredi s n > 1)

A ol n

) - 1 ,

; =27 dl = (%—f) 0S=-h=)X\, (de Broglieova vlnova dlzka)
p

Klasicka vlna e*/* §iriaca sa priestorom v kazdom jeho bode interferuje sama so sebou. Jednotlivé po-
myselné drahy sa liSia fazou ¢ize hodnotou #cinku, a interferenciu konstruktivne ,preziju“ len drahy,
ktorych ucinky sa ligia o menej nez = \/4. V geometrickej limite A — 0 sa smer Sirenia viny redukuje
na drdhu hica kolmi na vlnoplochy (v izotropnom prostredi), splhajicu rovnaké pohybové zakony
ako klasicka trajektoria castice (HJR). V kvantovej mechanike sa pomyselnd ,fastica® (v zmysle prav-
depodobnosti detekcie) $iri priestorom ako vina /" v superpozicii vietkijch dostupnijch a navzajom
interferujucich ,drah®. Interferenciu ,prezija“ len dréhy, ktorych u¢inky sa liSia o menej nez ~ h/4,

9V alternativnom tvare je tito rovnica znama ako rovnica eikonalu.



¢o v8ak vzhladom na malost p moze na mikroskopickych $kalach znamenat znacéne velky ,koridor”.
V klasickej limite h — 0 sa tento ,koridor* redukuje na trajektoriu castice.

Konstruktivna interferencia (rovinnych an) je teda klIicom k pochopeniu principu extremalneho
u¢inku. Relevantny prispevok k integralu cez v8etky myslitelné drahy pochéadza len z drah, ktorych
priestorova variacia (vzhladom na odpovedajicu vlnovi dizku) vedie k zanedbatelnej zmene fdzy.
Kedze faza tychto rovinnych vin je dand prave udinkom S, podmienka 6S = 0 urcuje ,realnu®
trajektoriu Castice/laca.

I.1.2 Noetherovej teoréma a zakony zachovania.

Lagrangeovsko-hamiltonovsky formalizmus je vhodny aj na opis spojitijch symetrii, teda transforma-
cif, pri ktorych zmena transformacnej premennej ma spojiti limitu v nule (a vieme teda definovat
jej infinitezimdlnu varidciu). Podmienkou kovariantnosti dynamiky daného systému, t.j. zachovania
tvaru jeho pohybovej rovnice pri urcitej spojitej transformacii (alebo mnozine transformacii), je in-
variantnost Géinku S = [ .Zdt vzhladom na tato transformaciu, ¢ize §S = 6 [ Zdt = 0, ¢o je
prirodzene zaistené podmienkou 9.2 = 0.

Pre drdhovi variaciu lagrangianu izolovaného systému (t.j. takého, v ktorom lagrangian zavisi od

Casu len implicitne prostrednictvom g;(t), ¢;(t), ¢ize %f =0)
0L 0L d [ 0% d
0. = —0q;+—--90¢ = — | 9¢ | =— = 0
Gq] 9 * 8(_[] 9 ELR dt 6(]] 9 dt\%’ symetria
——

kde Q je veli¢ina zachovdvajica sa v case - tzv. noetherovsky naboj.!? Uvedme priklady noethe-
rovskych nabojov zékladnych casopriestorovijch symetrii:

Lagranglan volnej nerelativistickej Castice o hmotnosti m je £ = m(c]) /2. Pri priestorovej transld-
, (= 7+ Ag, je quJ = mg;Aq;. Kedze Aq je Tubovolné, noetherovskym nébojom je mq = p,

¢ize hybnost Castice v smere translacie.
Ak transldcia vo fyzickom priestore je symetriou lagrangidnu (icinku), zachovdva sa hybnost.

Ak je transforméaciou rotdcia polohového vektora volnej ¢astice ¢’ v rovine danej normélovym vek-
torom 7, potom infinitezimalna zmena je A¢ = 7 x ¢ pre n — 0, a teda ¢; — ¢; + €uniq
(€jx - Leviho-Civitov symbol). Potom %AQJ = pj€jmnieq — (¢ % p) - 11, a noetherovskym nabojom

—

je moment hybnosti ¢ X p = L.
Ak rotdcia vo fyzickom priestore je symetriou, zachovdva sa moment hybnosti.

Casovy Vyvoj - transldcia v case - lagrangidnu izolovaného systému (pre ktory % 83 =0) je

L0200 0200 s (402) 0y DL _ 1 (02,)
- Er dt

it~ dq; Ot = g ot it 9g; ) ot " g, ot g;
a odtial i /6. 83
¢o pre volni Casticu vedie na Q = p;¢; — ¢ = H, ¢izZe spravny (relat1v1st1cky) vztah pre hamiltonian.
Ak do tohto vztahu dosadime relativisticky vyraz . = —mc?/ pre wvolni ¢asticu, rozvojom do

19Pomenovanie podla Emmy Noetherovej.



Taylorovho radu pre ¢ < ¢ dostaneme nerelativisticky hamiltonian H = mc® + &, v ktorom &
obsahuje len kinetickt energiu, a konstanini pokojovi energiu ¢astice mc? mozeme (ale nemusime)
zahrnat do (inak nulovej) potencidlnej energie ako aditivnu konstantu.

Ak transldcia v case je symetriou, zachovdva sa energia.
Vsetky tieto zavery st prejavmi Noetherovej teorémy:
KaZdd spojitda symetria stuvisi so zachovdvajicou sa velicinou.
Prechod od lagrangeovského k hamiltonovskému formalizmu je prechodom od mapovania skiima-

ného systému v konfiguracénom priestore (zovseobecnenych sturadnic) k jeho mapovaniu vo fazovom
priestore (zovSeobecnenych suradnic a hybnosti). Casova zmena [ubovolnej funkcie F(q;,p;,t), defi-

novanej na fazovom priestore, je % = g—;jq'j + g_;:_pj + %—f , z ¢oho pomocou HR (kap. I.1.1) dostavame
Hamiltonovu evoluént rovnicu IF aF

= F7 H + —

dt { ; ot

kde {F,G} =3, (g—f% - %g—f) st Poissonove zatvorky (PZ), pre ktoré plati
J J J J

{FvG}:_{G7F} {%7pk}:5jk {QJ'v(Ik}:O {pj7pk}:()

kde posledné tri vyrazy st tzv. fundamentilne PZ. Ak funkcia F' nezévisi od Casu explicitne,

9 — 0 (tize zavisi od ¢asu len implicitne, prostredunictvom g;(t), p;(t)), a sadasne {F, H} = 0 - vtedy

hovorime, %e F' a H poissonovsky komutuja'! - funkcia F' sa zachovdva v case.

V izolovanom systéme sa veli¢ina poissonovsky komutujica s hamiltonidnom zachovdva v case.

Pomocou PZ mozeme HR z kap. 1.1.1 vyjadrit v tvare

oH on

{quH}:% {pj7H}:_aqj

Dvojice stiradnic fazového priestoru (g;, p;) tvoria kdnonicky konjugované pary.

[lustrujme tieto zavery na priklade fazového priestoru x — p,: Stav hmotného &
bodu v kazdom okamihu odpoveda bodu (x(t), p,(t)) vo fazovom priestore. Casovy
vyvoj stavu - tzv. tok na fazovom priestore - je dany evolu¢nymi rovnicami

O g m
g = = H} dt

¢o vo v8eobecnosti odpoveda klukatej trajektorii na obr. Hovorime, Ze

= {p.. H} ¥

hamiltonidn generuje (prostrednictvom PZ) tok (v case) na fézovom priestore.

Ak {p., H} = 0, potom %z = 0 - hybnost sa zachovava v case. Je zrejmé, 7e ¢asovému vyvoju
s pr = konst. odpoveda vodorovnd trajektoéria vo fazovom priestore na obr. - transldcia polohy «x.
Obdobne, ak {z, H} = 0, potom = = konst. (zvisld trajektoria) - ¢asovy vyvoj odpoveda translacii

v hybnostnom priestore p,.

Hamiltonidn H(q;,p;) je vSak len jednou (aj ked najvyznamnejSou) z moznych funkcii na fazovom
priestore. V skuto¢nosti akdkolvek funkcia G(g;,p;), definovana na fazovom priestore, generuje na

1 Presnejsia formulacia znie ,,komutuji v zmysle PZ“.



fiom prostrednictvom PZ tok stavu (g;, p;) pozdlz odpovedajicej - konjugovanej premennej 6 tak, ze
plati
* dp;
—{a. - = Ip:. G
Sturadnice fazového priestoru moézeme vyjadrit ako funkcie tejto premennej, ¢;(0),p;(0), ¢ize plati
L=, (Cg’g o T g5 & 3 > odkial dostévame
dg;  0G dp; 0G

Ocividne, ak G = H, potom 6 =t. Ak G = p,, potom

dx dp,
ag = mpat =1 0

= {pz,p:} =0 = 0=z

Znamena to, Ze p, generuje tok pozdlz x, teda
hybnost generuje (prostrednictvom PZ) priestorovi transldciu.
Obdobue, ak G =z, potom %2 = {p,, 2} = —1 a teda § = —
priestorovd suradnica generuje (prostrednictvom PZ) transliciu v hybnostnom priestore.

Kanonickym parom zovseobecnengch stiradnic fazového priestoru (g;,p;) je aj (v, L;), ¢ize par uhol
oto¢enia-moment hybnosti (kolmy na rovinu otocenia), a plati teda, ze

zlozky momentu hybnosti generuju (prostrednictvom PZ) priestorové rotdcie okolo prislusngch osi.

Lubovolnd funkcia na fazovom priestore teda generuje (prostrednictvom PZ) ur€ita transforméciu
stavu. Z hladiska symetrii ma vSak vysadné postavenie hamiltonian, generujici translaciu v case -
¢asovy vyvoj: Napr. pre zovSeobecneni hybnost zachovdvajicu sa v case plati

OH

8(]j
~

dp;
. , = j_{pﬁH}_ {vaj}:_

¢o je podmienka translacnej/rotacnej (ak p; — L;) invariancie hamiltonianu.'? Plati preto, ze ak je
priestorova translacia/rotacia symetriou hamiltonidnu, veli¢ina, ktora ju generuje - hybnost/moment
hybnosti - sa zachovdva. Vo vSeobecnosti,

ak je spojitd transformdcia symetriou hamiltonidnu, zachovdva sa jej generujica velicina.

Toto je Noetherovej teoréma v hamiltonovskom formalizme. Ak je transformacia-symetria generovana
samotnym hamiltoniAnom, G = H, dostneme HR.

I.1.3 Operatory a generatory transformaécii.

Podla predchadzajucej kapitoly pre TubovoIna funkciu F(g;,p;), definovani na fazovom priestore,
plati

dF dF
Fopl=— FH} =
2Rovnost {H,p;} = f interpretujeme ako priestorova translaciu hamiltonidnu generovand hybnostou.

8



Vyznam PZ mozeme teda zovSeobecnit pre Tubovolny konjugovany par G, 6 (posobiaci na funkciu
F) ako

dF
{F(g.p5), Glag. pi)} = —5
¢ize PZ urtuju vyvoj/tok funkcie F(g;,p;) vo fazovom priestore pri transformécii premennej 6, ge-

nerovanej funkciou G(g;, p;). Definiciu PZ mozeme prepisat do tvaru

OF 0G  OF 0G oG 0 0G 0
i

(. J/

kde Oc¢=1{,G} = —

mé vyznam operdtora - generatora transformaécie generovanej funkciou G, posobiaceho'® na fun-
kein F'. Ak G = p; a teda 0 = g;, resp. ak G = ¢; a teda § = —p;, potom

0 0

= — resp. 0, =
j aqj p q

Op j - a_p]

¢o odpoveda generatorom translacii suradnice resp. hybnosti. Ak G = H a teda 6 = t, potom (z HR)

o .0 0 oF _ |
H_m_q]aqj pj@pj N dt 815 N

Plati teda, Ze lubovolnd funkcia G, definovand na fdzovom priestore, vytvdra prostrednictvom PZ
generdtor Og odpovedagici derivdcii podla jej prislusnej (konjugovanej) premennej 6. Uvazujme te-
raz ind funkciu F tejto premennej 6 (konjugovanej ku G), a definujme v8eobecnt spojiti linedrnu
transforméaciu

F(0) — AgF(0) = F(6 + 60)

Cize translaciu funkcie'® F(0) pozdlz premennej 6, kde Ay je operator transformacie. Potom

AF(0) _ . FO+80)=F(O) . Ay—

1
df 660—0 00 660—0 F(Q) - OGF(G)

¢ize Oq je generdtorom transformacie Ay. Pre infinitezimdlnu transformaciu o 660 — 0 plati

Ay =214 600g =1+ 66{-,G}

Koneénd transformacia o Af je (N — oo)-ndsobnym opakovanim infiniteziméalnej transforméacie 6,

N
Ag(AG) = [Ag(60))N = {1+%OG} L, MOG _ 800 G)

N—oo

(A6)? d (AG)? [ d?
=1+ A6{- . L=1+A0| — — | —=
+ A0{- G} + o {{,G},G} + + ). + 5 &) ., +

¢o je operator Taylorovho rozvoja transformovanej funkcie F'(6 + Af) = AyF(0).

Kazdej funkcii G(g;,p;) definovanej na fazovom priestore mézeme teda priradit operator Og, ktory
je generdtorom urcitej spojitej transformacie Ay (pozdlz konjugovanej premennej 6).

3Hovorime, Ze G posobi na F prostrednictvom PZ, ¢iZze operatora {-,G}.
H1Rozlisujme translaciu funkcie definovanej na fazovom priestore od translacie bodu fazového priestoru.



Stoji za povsimnutie, ze ak dve rozne funkcie Gy, Gy poissonovsky nekomutugi, {G1,G2} = G5 # 0,
potom pre operator priradeny ich PZ plati'®

OGB = O{GLGQ} = OG10G2 - OG20G1 = [OGU OGQ] {Gl' GQ} = Gs

¢o je komutator vychodiskovych generatorov. [Oc,. Oc,] = Oc,

Ak napr. G; = p, a Gy = z, potom Og,,Og, st generdtormi posunuti

siradnice x a hybnosti p, vo fazovom priestore, pricom plati P &
X
{z,p.} =1 a teda Og, =01 =...=0
¢
¢ize posunutia suradnice a odpovedajicej hybnosti v klasickey fyzike komu-
X

tuju! Z vlastnosti PZ v8ak tiez vo vSeobecnosti vyplyva (Dodatok C)

{F.G) = {IF.)

kde X je konstanta (¢islo) rozmeru déinku. Kedze tato rovnica obsahuje funkcie (nie operatory), ich
komutator na pravej strane musi byt nulovyj, a to aj v pripade nenulovych PZ. Znamena to, ze kla-
dieme X\ = 0. Uvedeny vztah (hoci trividlny v klasickej mechanike) je vychodiskom pre prechod ku
kvantovej mechanike. Veli¢inu A interpretujeme ako u¢inok (vplyv) ,merania“ (stanovenia hodnoty)
F na hodnotu G, resp. merania G na hodnotu F'. V klasickej mechanike takyto ¢inok neuvazujeme,
A — 0 (priptastame idedlne meranie), ¢o nas opraviiuje reprezentovat dynamické premenné v danom
stave prostrednictvom ¢7sel - hodnot funkceii. Veli¢iny ako energia, poloha, hybnost ¢i moment hyb-
nosti uréuju (pohybovy) stav telesa, a priradujeme im sicasne v kazdom okamihu konkrétne hodnoty,
bez ohladu na to ¢i je dand veli¢ina predmetom merania. V kvantovej mechanike vSak takyto pristup
zlyhava - hodnoty tychto veli¢in s (Casto nekomutujucimi) produktmi merania, pricom kaZdé me-
ranie ovplyvnuje stav kvantového objektu. Priradenie konkrétnej hodnoty niektorej z velicin je teda
transformdciou stavu, v kvantovom formalizme vyjadrenou diferencidlnym operdtorom tejto veli¢iny,
G~ £ (v O-reprezentacii).'® (Prechod od klasickych generdtorov Og ku kvantovomechanickym ope-
ratorom a od PZ ku komutatorom je predmetom nasledujticej kapitoly.) Z uvedeného vsak vidime,
7e hoci v klasickej limite takato transforméciu zanedbavame, v jej formalizme je pritomna prave
v podobe generatorov Og (PZ) prislichajucich jednotlivym veli¢inam. Kvoli spravnemu chapaniu
vztahu klasickej a kvantovej mechaniky je vhodné vnimat tieto klasické ,stavové® velifiny (ur¢ujice
klasicky pohybovy stav) vieobecnejsie ako veli¢iny generujiice spojité transformdcie stavu (pozdlz
konjugovanych premennych ), a to prostrednictvom PZ.*"

Na zaver eSte analyzujme vyznam dolezitych (netrividlnych) PZ. Uvazujme pritom pasivnu transfor-
méaciu (Dodatok A), pri ktorej generator Og = { -, G} netransformuje funkciu F' (na ktora posobi),
ale fazovy priestor (pozdlz odpovedajicej premennej 6):

0 0
{Qj,pk} = {',pk}% = a—% = 5jk resp. {Qj>pk} = _{pkv%} = —{ '7Qj}pkz = - (_8_> Pk = 5jk
dk Pj

Tato PZ nam hovori, ako sa meni dané zlozka polohy/hybnosti, ak postivame fazovy priestor v jej

smere. Kartézske zlozky momentu hybnosti Ly generuji prostrednictvom Op, = {-, Ly} rotaciu
'“Pre PZ totiz plati Jacobiho identita {f, {f1,f2}} ={{f, ik oy +{{fo. f} iy ={{f, A}, f3 = U o} i}
$Napr. p, = ;’a% v x-reprezenticii, & = _ZW v pp-reprezenticii, a pod.

"Pojem energia je tstrednym pojmom fyziky. Modern4, fyzika vnima elementarne ¢astice (elektrény, foténys,...) ako
ybaliky“ energie prislusného pola (ako uvidime v dalSom texte). Vyvstava teda otézka, ako fyzikalne definovat pojem
energia (ako zékladnd substanciu hmoty). Tradi¢na definicia - schopnost konat prdcu - vystihuje len ur€ity aspekt
energie. Kontext symetrii pontka iny pohlad: Energia = schopnost existovat (zachovdvat sa) v case - premiestiioval
sa pozdlZ casovej osi. (Foton, ktory strati svoju energiu, prestane existovat. Vdaka ekvivalencii E = ymc? to plati aj
pre Castice s nenulovou pokojovou hmotnostou m.) Analogicky, hybnost/moment hybnosti je schopnost priestorovej
translacie/rotacie.
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roviny jl (fazového priestoru) okolo osi k. Plati
{L;, Ly} ={-Li}L; = O, Lj = ... = €july
¢o mozeme interpretovat ako pootoCenie osi rotéacie j generatorom Oy, (okolo osi k) do smeru [,
L; — Aso, Lj = (14 00,{ -, Li}) L; = L; + 00k{Lj, Ly} = L; + 00 €Ly

Kedze Or, = Oy, 1,y = [Or,;,0L,] # 0, rotdcie okolo roznych osi v klasickej fyzike nekomutuji!*®
Plati tiez

{pj, L} ={-, Li}p; = €jup {gj, L.} = { -, Lk }qj = €jnq

¢o znamena, ze povodné smery j (potencidlnych) translacii polohy/hybnosti si pootoené v rovine
jl (okrem pripadov translacii v smere osi otocenia, k = j).

[CROReRoR
Doélezité zavery:

e Princip extremalneho tc¢inku je nosnym principom modernej fyziky. ZaloZeny je na konstruktivne;j
interferencii v8etkych pomyselnych priestorovych ,trajektorii“ objektov ako rovinnych vln, ktorych
fazy st urcené ucinkom.

e Zo znalosti lagrangianu systému dokdzeme pomocou ELR zostavit pohybovii rovnicu systému.
V praxi vSak prave lagrangian zostavujeme tak, aby jeho ELR viedla k ,spravnej* pohybovej rovnici.

e Kazda spojita ¢asopriestorova transformacia-symetria suvisi so zachovavajicou sa veli¢inou, ktora
tato transforméciu generuje.

e Funkcie definované na fazovom priestore generuju transformécie na tomto priestore prostrednictvom

PZ.

e Veli¢iny, ktorych PZ s hamiltonidnom je nulové, sa zachovavaji v Case (v izolovanej stistave).
Transformacie nimi generované st symetriami hamiltonianu.

e Posunutia suradnic a hybnosti v klasickej mechanike komutuji, kym rotécie s inymi rotaciami ¢i
posunutiami vo vSeobecnosti nie.

I[.2 Symetrie v kvantovej mechanike.

Podla predchadzajuceho textu symetrie vzhladom na spojité transformécie s spéaté so zachovava-
jlicimi sa veli¢inami G, ktoré generuju tieto transformacie. V kvantovej mechanike vSak dynamické

18Pootocenia okolo réznych osi nekomutuja.

.‘Z—}b_,,j__f ' Z.I y Z} Z‘][ ‘ 57‘ ; IZ

o P P by 2] P / |
X
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premenné nemaji fyzikdlny zmysel mimo kontext merania,'’® a nahradzame ich hermitovskymi

operatormi GG so spektrami redlnych vlastnych hodnot ako mnozinami realizovatelnijch vysledkov
merani. Stav skimaného objektu (Gastice ¢i systému ¢astic) je reprezentovany stavovym vektorom
|4) ,zijacim“ v abstraktnom kompleznom priestore vSetkych realizovatelnych stavov.?”

Kazdy operdtor transformuje stav, na ktory posobi.

Pre wrcité stavy je v8ak tato transformacia symetriou (vzhladom na generujucu veli¢inu, prisli-
chajicu operatoru) - takéto stavy st vlastnymi stavmi daného operatora, a zachovdvajicou sa
veli¢inou (v zmysle Noetherovej teorémy) je vlastna hodnota tohto operatora, prislusna k danému
vlastnému stavu,?!

é|¢n> = Gn|¢n>

V tejto kapitole preskimame vztah stavovych vektorov a na nich poésobiacich operatorov ku caso-
priestorovym transformacidm-symetriam.

I.2.1 Spojité priestorové symetrie.

RozloZenie (normovanej) pravdepodobnosti namerania®? ¢astic pozdlZ osi z je

P(z) = [v()]* = [{z]¥)]”

kde |z) a (z| = |z)* st navzajom komplexne zdruzené stavy s ostrou hodnotou polohy. Nech U, je
operator priestorovej transldcie systému v smere x. Ak mé byt tato transformécia symetriou, nesmie
sa rozlozenie pravdepodobnosti zmenit,

) = |[U') = Us|ab) P(x) = P(z') = P(x)
Ak |2) — U,|z), potom? (x| — (x|U], a teda (z|¢) = (z|UU ) = UU, =1=U"U,.

Takuto transforméciu nazyvame unitarnou.

V kvantovej mechanike symetrie reprezentujeme unitdrnymi transformdciami.

\Y prlpade spojitej infinitezimdlnej translacie 0z — 0 musi byt operator U, blizky jednotkovému, ¢ize
U, 2 1+62G, |, kde G, je generdtor tejto spojitej translacie. Translécia ststavy o koneéné Az potom
pre stav [¢) znamena (podobne ako v kap. 1.3, Og — G)

[9) = 1) = Uel) = e2C ) = (14 AcG,) [v)

Pre Tubovolnt meratelni veli¢inu®* reprezentovant operdtorom F' je pri translaénej symetrii inva-
riantnou jej strednd hodnota

(WIFI) = (V] (ugluz)ﬁ(uglux) ) = (ol (U U ) Uali) = 0/
1 1 (¥l |4")

N—

19V standardnej interpretacii kvantova mechanika poskytuje len predpovede tijkajiice sa mozngjch vijsledkov experi-
menov, akékol'vek iné otazky lezia za hranicami fyziky. Inymi slovami, kvantovad mechanika neopisuje aky Vesmir je,
ale ¢o sa o hom mozeme dozvediet prostrednictvom nasich merani (t.j. experimentov nami navrhovanych ,y nasom
jazyku®).

20Gtav je jednozna¢ne charakterizovany smerom stavového vektora v tomto (Hilbertovom) priestore, bez ohladu
na velkost vektora. Hovorime, Ze stav je licom v Hilbertovom priestore. KaZdy stav pritom mozeme vyjadrit ako
superpoziciu inych stavov. Pocet nezdvislijch bazovijch stavov urcuje dimenzionalitu tohto priestoru.

21 Takyto stav je moznym vysledkom merania. Bezprostredne opakovanymi meraniami sa hodnota veliciny nemend, ¢o
vSak neznamend nulovy G¢inok merani na tento stav - znamend len, 7e transformécia spdsobend meranim je symetriou.

22V $tandardnej interpreticii meranie polohy Castice tito polohu neodhaluje ale vytvdra.

B UT je operator hermitovsky zdruzeny ku U,.

24angl. observable
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Znamena to, ze dany operator sa transformuje ako

F— F =UFU*

Potom pre infinitezimdlne posunutie dostavame (s ohladom na poradie operatorov a zanedbanim
¢lena ~ (6x)?)

Fr=UFU' = (14 62G)F(1 — 62Gy) = ... = F — 6z[F, G,

Pasivna transforméacia stistavy v smere z o dx znamend pre transformovany operator F' = F|,_s,,
a preto

oF | F— [ .
e
Ox ox
dz—0
V analogii s klasickou mechanikou, kde priestorova translacia je generovand hybnostou, kladieme
G, = %ﬁx, kde h je univerzdlna rozmerovd (Planckova) konstanta, a imaginarna jednotka ¢ zabez-

pecuje hermitovost operatora hybnosti.2> Potom

oF 1 . OF
e %[F,ﬁx] (éo odpoveda klasickému e {F, px}>
Prechod od klasickej ku kvantovej mechanike je prechodom od funkcii k operatorom, ¢ize
OF 1 OF 1 .
— = Fpe} = < |F s - — = —=|Fp. A —ih
o = (et = S p] 5 — pL Dl A= il

Ak napr. polozime F =7 =z (stradnicovd reprezentacia, kap. 1.2.2), dostavame % = 1 (jednotkovy
operéator). Nenulova PZ teda prejde na {z,p,} = 1 — 1, a fundamentalny kanonicky komutacny
vztah bude [Z,p,] = ihl, resp. vo vieobecnom tvare®®

(G, Pr] = ihdj1

Priradenie A — ih (v klasickej mechanike A — 0) znamend, Ze vplyv merania (ur¢enia hodnoty)
dynamickej veli¢iny na stav objektu uz nemozeme ignorovat, pricom jeho minimdlny uc¢inok je = h.

Generator posunutia p teda posobi na operitor F prostrednictvom komutdtora (namiesto PZ v kla-
sickej mechanike), kym na stavovy vektor posobi priamo®’

F' = U FUY = B2l pr = (1 — jAzfp,, - ]/h)E

25Pre generator G unitarnej transformacie plati hermitovost

U, = (1-62GH)(1+62G) 2 1+6a(G-G)21 = G=GT

26Napriek tomu, Ze ide o operatorovi rovnost, jednotkovy operator 1 na pravej strane obvykle vynechavame.

" Klasickym analégom kvantovomechanického stavu st zovieobecnené siradnice fdzového priestoru gj,p; - jedno-
znatne urcujd stav objektu. Infiniteziméalna transformacia klasického stavu je teda transforméciou jeho sdradnic vo
fazovom priestore,

94k Op

=0, qr = i} = Okj o5 = Up;be = iy =
94, Op; @k = {ak:pj} = Ok; 94, Op, ok = {Pk,pi} =0
ap; Ogar = —{ar, 3} =0 ap; Oq;pk = —{Pk: 45} = Ok,

Nenulové PZ znamenajt, Ze kanonicky zdruzené pary q;, p; nie su nezavislé. Znamend to tiez, ze vztah [O,;,0p.] =0
(kap. I.1.3) je len klasickym priblizenim (A — 0) v8eobecnejsieho vztahu [Gx, p;] = iidy;, Cize transformécie kvantovo-
mechanického stavu v siradnici a konjugovanej hybnosti uz nekomutuja.

Klasickym analégom kvantovomechanického operdtora je funkcia zovseobecnenych stradnic (a hybnosti) fazového
priestoru. Na rozdiel od stavu, operatory generujice prislusna transforméciu posobia na iné funkcie/operatory pro-
strednictvom PZ/komutétorov.
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[0') = Usltp) = e3P0 |) = (1 — iAap,/h) o)

[.2.2 Princip neurcitosti.

Kanonicky komutaény vztah z predchadzajicej kapitoly nezdvisi od reprezentdcie - vyberu bézy,
v ktorej konStruujeme stavové vektory. Stiradnicova reprezentéacia je taki, v ktorej stavové vek-
tory [¢) st superpoziciami ortogonalnych vlastnych stavov |¢) operatora ¢, teda operatora urcenia
suradnice, s amplitidami (komplexnymi ¢islami) ¢, = (¢g|¢). Plati

(d'ldla) = q0(q — ') qla) = dlq) Cize i=q

Prostredna rovnica (veta o vlastnom stave operatora a jemu prislusnej vlastnej hodnote) predstavuje
transformaciu-symetriu. Stav po transformécii operatorom ¢ je v tejto reprezentacii identicky?® s po-
vodnym stavom |q), a v zmysle Noetherovej teorémy sa zachovéava veli¢ina generujiica transformaciu,
vyjadrené vlastnou hodnotou ¢. Treba vSak mat na paméti, Ze v kvantovom svete kaZdd interakcia
znamend zmenu stavu - tato transformécia je teda symetriou len vzhladom na premenni ¢, ¢o sa
prejavi prave v tejto reprezentacii. Zmena stavu v tomto pripade nastava v konjugovanej premennej
p, ako znazoriuji zvislé trajektorie (zachovavajice polohu) na obr. v kap. 1.1.2.%

V tejto reprezentacii uvazujme operator posunutia suradnice 0, = a%' Jeho komutacny vztah s ope-
ratorom ¢ = q je

(040 — G0y) Yy = 04 (q1by) — q(Og1by) = ... = 1Y, pre kazdé 1), ¢ize [0g4,q] =1

¢o je (az na faktor ih) zhodné s kdnonickym komuta¢nym vztahom. To nés opraviiuje definovat
kanonicky zdruzeny operéator (zovseobecnenej) hybnosti, ktory je generatorom priestorovej translacie,
v stiradnicovej reprezentacii prostrednictvom operatora posunutia siradnice ako

p = —ihd,

Rovnaky vztah ziskame aj Taylorovym rozvojom transformovanej vlnovej funkcie (s operatorom p
v tlohe generatora infinitezimalneho posunutia, pri¢om stale uvazujeme pasivnu transformaciu)

Yy — Vysg = Uythy = (1 - i5qﬁ/h+...) " Vysg = (1 — 540, +> Y,
—— ~—~—
Generatorom posunutia v smere x (¢ = x) je z-ova zlozka hybnosti s operatorom p, = —ihd,, genera-

torom rotéacie v smere ¢ (¢ = ¢) okolo danej osi je prislusna zlozka momentu hybnosti s operatorom
L = —ihd,.

V hybnostnej reprezenticii diagonalizujeme operator hybnosti, t.j. stavové vektory konstruujeme
ako superpozicie ortogonalnych vlastnych stavov |p) operatora p s amplitudami 1, = (p|¢). Plati

('|plp) = po(p —p) plp) = plp) p=p

Opét ide o symetriu, tentokrat vzhladom na ,meranie hybnosti. Takého transformacie odpovedaji
vodorovnygm trajektoridm (zachovavajiucim hybnost) na obr. v kap. 1.1.2, ¢ize ide o priestorovi sy-
metriu hybnostnijch stavov.

28Vynasobenie redlnym ¢slom nemeni stav v Hilbertovom priestore.
29Transformécia operatorom § odpoveda meraniu polohy. Kazdé meranie polohy vyzaduje ,dotyk” meraného objektu
(trebars len svetlom - foténmi), a kazdy dotyk je transférom hybnosti.
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Analogickym sposobom sa da ukézat, Zze v tejto reprezentacii kdnonickym komuta¢nym vztahom
vyhovuje operator kanonicky zdruzenej siradnice ako generator posunutia v hybnostnom priestore,
v tvare

¢ = tho,
V oboch tychto reprezentaciach je nekomutativnost kdnonicky zdruzenych péarov siradnica-hybnost

fyzikalne zrejma: Vzdy jeden z operatorov manipuluje tou istou dynamickou premennou, ktort druhy
operétor fizuje - na poradi tychto tkonov teda zdleZi.

Vzajomny stuvis oboch tychto reprezentacii vyjadruje aj amplitida ich  prekryvu* (q|p) (skaldrny
sucin, ¢ize priemet jedného vektora do druhého). Plati

plp) = plp) = plqlp) = —ihd,(q|p)

¢o je diferencialna rovnica s riefenim (q|p) = Ce®?/" (C' je normovacia konstanta). Vlnové funkcie
v oboch reprezentaciach sa®’

o0

b = (al) = / ()P )y = C / eIy,

by = (plt) = / wld)(d 1W)dd = C / ey df

Vidime, Zze vztahmi medzi tymito kdnonicky konjugovanymi reprezentaciami s Fourierove transfor-
mdcie.?! Potreba vijberu konkrétnej reprezentacie (pri konfrontovani s vysledkami merani) v kvantove;j
mechanike znamena vyber ,otézky, ktort kladieme Prirode”, a odzrkadluje neredukovatelnu alohu
pozorovatela. Naproti tomu, klasickd mechanika ulohu pozorovatela neuvazuje, merania siradnice
a odpovedajicej hybnosti preto komutuju, ¢o umoznuje jednotni reprezentdciu prostrednictvom cisel
g, p namiesto operatorov.

Prechod od klasickej ku kvantovej mechanike je teda prechodom od dynamickych premennych a ich
PZ k ich operatorom a ich komutatorom, s multiplika¢nym faktorom ih. Tejto procedire hovorime
kanonické kvantovanie. Fundamentalne kanonické komutac¢né vztahy tzko stvisia so symetriami
matematickej struktary klasickej aj kvantovej mechaniky. V klasickej hamiltonovskej mechanike po-
zname tzv. kAnonické transformacie stradnic fazového priestoru, (¢;,p;) — (g}, p}), pri ktorych sa
zachovava tvar HR (teda PZ). Konjugované pary suradnica-hybnost s nenulovymi PZ sa pri tychto
transformaciach netransformuji nezdvislo na sebe (¢omu odpovedaju kdnonické komutaéné vzfahy
medzi ich kvantovomechanickymi operatormi).

,Recept” na kanonické kvantovanie mozeme aplikovat aj na klasické PZ medzi zlozkami momentu
hybnosti (kap. I.1.3), ¢o vedie na komuta¢né vztahy pre operdtory>?

[Eja Ek] = ihfjklil

Majme pritom na pamdti, Ze operatory L; st generatormi rotacii.

30Prvé z integralov znamenaji, ze amplitida ,preklopenia“ stavu i) do stavu |g) resp. |p) je dana superpoziciou
prechodov cez vietky dostupné ,medzistavy“ |p’) resp. |¢’).

31 Fourierova transformdcia dava do stvisu priestorovi (Ar) a vinoctovii (Ak) Sirku vinového baliku, ¢o v kvan-
tovomechanickom kontexte urcuje limit pre sic¢in neurcitosti polohy a hybnosti de Broglieovej viny-castice. Takyto
vlnovo-Casticovy pohlad na princip neurcitosti je ekvivalentnou alternativou k naSmu pristupu z pohladu symetrii,
vychéadza v§ak z netrividlneho vinovo-¢asticového dualizmu. Postup zalozeny na transformaciach-symetriach klasickej
aj kvantovej mechaniky Ziaden takyto predpoklad nevyzaduje (a je teda vieobecnejsi).

32Tieto vzfahy dostaneme aj dosadenim operatorov polohy a hybnosti (v konkrétnej reprezentacii) do klasického
vztahu L = 7 x .
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1.2.3 Casovy vyvoj.
Nech U, je operator transformécie stavu v ¢ase, |¢) = Uy|1)), pri ktorej sa nemeni norma stavu (1[1)).

Znamené to opif, ze U, je unitdrna, U; U, = 1. Potom3?
)

W) =) U -1
At At ) A0 O

Pre infinitezimalnu ¢asova translaciu 0t — 0 opét definujeme unitdrny generator ¢asového posuvu G
prostrednictvom vztahu U; = 1+ 6tG. V analogii s klasickou mechanikou, kde generatorom ¢asového
vyvoja je hamiltonian, volime G = %H, a teda
T N .0
Uy =1—15tH/h = H =ih—
ot
v ¢om po aplikovani na |¢)) spozname Schrédingerovu rovnicu (SCHR) s ¢asovym vyvojom stavu
(¢ize unitarnou transforméaciou v ¢ase)

e T AT resp. W' = (wlu

Pre operatory meratelnych veli¢in vSak ocakdvame (vo vSeobecnosti) casovy viyvoj ich stredngjch
hodnot, (Y|F[Y). V tzv. Schrédingerovom obraze (kvantovej mechaniky) je tento ¢asovy vyvoj
sposobeny casovym vijvojom stavov, s operdtormi nezdvislymi na case. Pre stredni hodnotu veli¢iny
F pritom plati

R R — —
(WIF) = W F[Y) = @1 U FU U ') = (W1 U FUy [)
t —— N——

Takéto presunutie ¢asovej zavislosti zo stavu na operdtor, ' = U; ' FU, , sa nazyva Heisenbergovym
obrazom. Dosadenim linearizovaného tvaru U; (pre dt — 0) dostavame

B (1 4+ i6tH R F(1 — istH h) = F + %&[ﬁ, fa

Hamiltonian opét generuje casovy posuv operdtora dynamickej premennej F (Zj,p;) (nezéavisiacej
explicitne od ¢asu) prostrednictvom komutdtora, a tento vyvoj je (analogicky ako v kap. 1.1.2) dany
Heisenbergovou evolué¢nu rovnicou®!

~

F—F N dF 2[ A
ot sts0 dt h

H,F} +

Na druhej strane, ak tento operator F je generatorom unitarnej transformacie Uy (napr. priestorového

posuvu), potom
H — UpHU, ™

Ak tato transformacia je symetriou hamiltomidnu, ¢ize H= ugffu; ! potom
[H,Uy) = 0 = [H,F]=0

KedZe hamiltonian definuje ¢asovy vyvoj systému, symetria systému vzhladom na danu transforma-
ciu Uy s generatorom F' je symetriou hamiltonidnu, a jej generdtor I je veli¢inou zachovdvajicou sa
v Case (v izolovanom systéme).

33Tu prirodzene uvazujeme casovyj vijvoj systému, Cize aktivnu transformaciu.
34T4to rovnica je zdkladnym zakonom kvantovej mechaniky, ekvivalentnym SCHR. Formélne ide o kdnonicky kvan-
tovani Hamiltonovu evolu¢nu rovnicu (pre operatory) z kap. 1.1.2.
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Podmienka, % = 0 v8ak neznamena, Ze existuje jedind zachovavajica sa vlastna hodnota F'!' V skutoc-

nosti sa zachovava celé spektrum vlastnych hodnot operatora F aj s rozdelenim ich pravdepodobnosti,
t.j. neurcitostou, a strednou hodnotou s ¢asovym vyvojom

A A

0- 48 - )

éasovy vyvoj napr. operatora hybnosti v tomto obraze je
dp i -
bt AL § &
Opét (v analogii so zavermi kap. 1.1.2), ak priestorova translacia je symetriou hamiltonianu, ¢ize
[p, H] = 0, tak sa zachovéva jej generator p. Takymi st aj operatory momentu hybnosti®
(L%, H] =0 [L.,H] =0

Samotny Cas v nerelativistickej klasickej ani kvantovej mechanike nie je dynamickou premennou ale
parametrom, nepriradujeme mu preto operator, a netvori s hamiltonidnom kanonicky konjugovany par
ani komutétor.?® Nerelativistické teorie nesplitaju zakladnt podmienku, kladent na fundamentalne
teorie - invariantnost voci zmene (pohybového stavu) pozorovatela, a vyzaduju si teda zovSeobecne-
nie.

1.2.4 Princip kauzalnosti.

Jednym z pilierov kazdej fundamentalnej teorie musi byt princip kauzalnosti: Ziadna forma hmoty
-energie (ani vyuZitelnej informdcie) sa nesmie Sirit priestorom vacsou rijchlostou nez c. éasovy
vyvoj polohy wvolného objektu v Standardnej (t.j. nerelativistickej) kvantovej mechanike vSak je
(v Schrédingerovom obraze, kap. 1.2.3)

N R 2
7)) = e ) 7y = 7(0) =g

Amplitada pravdepodobnosti jeho namerania v okamihu ¢ na konkrétnom mieste 7 je
S| _—iHt/h|= 1 —i(p)2t/2mh| = g —i(p)2t/2mh = =
A(t) = (Fle” ™M) = (Fle” W2 7)) = (7| /6 |5y (|7 d*p

kde sme pouzili rozklad do tplnej bazy operatora p (v ktorej plati [|p)(p'|d®p = 1). S vyuzitim
vztahov3’

R 1 i
2, _ = N _ — * ip-7/h
p ’@ p ’@ <7’ ’@ ((p ‘ﬂ) (2%71)3/2 €
dostaneme
Alt) = .. = P g o (T g e
(21h)3 / 2miht

¢o je vyraz menulovy pre Tubovolné i a t! Nerelativistickd kvantova mechanika teda (podla oca-
kévania) nespliia princip kauzalnosti. Ani samotné dosadenie relativistického vyrazu pre energiu,

351de o veli¢iny, ktorych PZ s hamiltonianom st nulové.

36Vztah neurcitosti energia-c¢as méa iné postavenie nez vzfahy pre zovieobecnené hybnosti-siradnice.

3"Pripominame, 7e symetrické/asymetrické fourierovské normovanie je vecou konvencie. V kone¢nom vyraze vSak
vystupuju skalarne saciny (7|p) aj (P|F), a teda od vyberu konvencie nezavisi.
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E? = (p)?c +m?c*, problém celkom nevyriesi, lebo povedie k vyrazu A(t) ~ e eV 702 =()*/h [yre
|77 — 7| > ct, o je sice malé ale principidlne narusenie kauzality (viac v kap. I11.1.6). RieSenim je az
dosledna rozluka s jednocasticovou fyzikou. Relativistické pohybové rovnice, vybudované na principe
kauzalnosti (predstavime ich v ¢asti III), nebudi mat jednocasticové riesenia.

1.2.5 Priestorova a ¢asova inverzia.

Popri vyssSie uvedenych spojitijch Casopriestorovych symetriach, ktorych generatormi st hermitovské
operatory zovseobecnenej hybnosti a energie, dolezitymi z pohladu fundamentalnych symetrii Prirody

st aj diskrétne transforméacie - parita a prevratenie ¢asu (priestorova a asova inverzia)?®
F?F’:PF:—F t?tlthZ—t

RozliSujeme posobenie operatora P na stavy a na operdtory dynamickych premennych
) = Plv) 7= PrP = —F P PP =—p
P P P
Fundamentalne komutacéné vztahy [Z;, p;] = ih ostant zachované len ak PiP~! = i, ¢o znamena, ze

operéator P musi byt unitdrny. Pre tzv. azidlne vektorové operatory orbitalneho a spinového momentu
hybnosti platia transformac¢né vztahy3’

L=Fxp— PLP'=L S— 3
P P
Pre operator T v8ak plati*’
P TrT T =7 P ToT " =—p
T T
a fundamentalne komuta¢né vztahy ostant zachované len ak 7i7 ! = —i, operator 7 musi preto
byt antiunitdrny, ¢o znamena
Tap(r,t) =™ (F, —1) (To|TY) = (o4)"
Pre operdtory momentov hybnosti plati
L ——L S— -8
T T

COOOO
Doélezité zavery:

e Generatormi transformécii v kvantovej mechanike st operétory, prislichajice dynamickym pre-
mennym (napr. generatorom priestorovej translacie je operator hybnosti). Alebo naopak, operatory
dynamickych premennych definujeme*! ako generatory prislugnych transformacii: Kazdy takijto ope-
rdtor je ndstrojom (generdtorom) na urcitd transformdciu stavov.

38Na rozdiel od spojitych symetrii, na diskrétne symetrie sa Noetherovej teoréma nevztahuje.

39Priestorova inverzia ota¢a znamienka zloziek vektorov 7 aj p, nezmeni teda zlozky ich vektorového sicinu.

400tocenie ¢asu zmeni smer hybnosti, nie viak polohu.

41V Kklasickej mechanike majii dynamické premenné (ako poloha alebo hybnost) dvojjedini tilohu: Definujt stav
systému (bod vo fazovom priestore), a sti¢asne generuju transformdcie (prostrednictvom PZ). V kvantovej mechanike
stav nie je bodom vo fazovom priestore (nemozno mu jednoznac¢ne priradit polohu a hybnost - mimo aktu merania tieto
pojmy stracaju zmysel). Ostéva teda len moznost definovat operéatory prostrednictvom transformaécii, ktoré generuju.
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e Operatory/generatory transformacii posobia na stavy priamo, na iné operatory prostrednictvom
komutéatorov.

e Ak je urcita spojitd transforméacia (generovana danym diferencidlnym operatorom) symetriou stavu,
na ktory posobi (t.j. tento stav sa pri transformécii nezment), nazyvame tento stav vlastnym sta-
vom tohto operéatora-generatora. Dosledkom spojitej symetrie je zachovdvajica sa veli¢ina (noethe-
rovsky naboj) - vlastna hodnota operatora prislusna k vlastnému stavu.

e Ak urcita transformdcia nie je symetriou stavu - stav sa transformaciou meni, operator-generator
tejto transformacie nemd vlastni hodnotu prislichajicu pévodnému stavu. V kontexte merania to
znamena, ze zmerana hodnota prislicha novému stavu.

e Nenulovym PZ klasickych dynamickych premennych prislichaji nenulové komutatory prislusnych
operatorov.

e Fundamentalny kanonicky komuta¢ny vztah (kvantovej mechaniky) poloha-hybnost tizko stvisi
s translacnou symetriou: Operdtor hybnosti je generdtorom posunutia - jeho aplikovanim menime
polohu.

e Vyvoj stavu v kvantovej mechanike je uréeny hamiltonidnom, a symetrie st opisané unitarnymi
operatormi, komutujicimi s hamiltonidnom. Kvantovomechanické operatory veli¢in komutujicich
s hamiltonianom sa zachovavaju v ¢ase (v izolovanej sustave). Nerelativistickd kvantovad mechanika
vSak nie je v sulade s principom kauzélnosti.

e Unitarny operator parity meni znamienko stradnic aj hybnosti, ale nemeni znamienko momentu
hybnosti. Antiunitarny operator prevratenia ¢asu nemeni stradnice, ale meni znamienko hybnosti aj
momentu hybnosti.

I.3 Symetrie v teoérii poli.

Pri rychlostiach nezanedbatelnych voci rychlosti svetla vo vakuu ¢ dochadza k relativistickému ,mie-
Saniu® priestorovych stradnic a ¢asu pri prechode medzi navzdjom sa pohybujtcimi ststavami, ako
dosledku zakladnych postulatov Specidlnej teorie relativity. Cas teda straca svoje ,vysadné* postave-
nie, a stava sa sturadnicou rovnocennou s priestorovymi v jednotnom Minkowského ¢asopriestore,
na opis ktorého pouzivame stvorvektorovy formalizmus, ktorého zaklady na tvod stru¢ne zhrnieme.
Hlavnou naplhou tejto kapitoly vSak je relativisticky opis fyzikalnych poli a ich zakladnych symetrii.

1.3.1 Minkowského casopriestor.

Klasické trajektorie objektov 7(t) mapujeme do ¢asopriestoru v podobe tzv. a

svetoc€iar (angl. world lines). Strmost sveto¢iary (v dvojrozmernom grafe na
obr.) je dé;t) = =, Cize zvisly usek svetoCiary odpoveda pripadu v, = 0, kym

sklon 45° znamena v, = ¢, ¢o je limit pre fyzikalne objekty.

X

Pre vzdialenost dvoch bodov A(74,t4) a B(7'g, tg) v Minkowského ¢asopriestore plati (na rozdiel od
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euklidovského priestoru)*?

(As)? = P(tp —ta)? — (x5 —x4)” — (yp —ya)? — (28 — 24)°

Casopriestorové vzdialenosti bodov, pre ktoré (cAt)* < (A7)?, nazyvame priestoru-podobné (angl.
spacelike) - medzi udalostami odpovedajicimi tymto bodom nemdéze byt pricinnd sivislost. Nemo-
Zeme ani jednozna¢ne urcit ich ¢asovi néaslednost - pre roznych pozorovatelov méze byt rozna. Ak sa
medzi takymito udalostami §iri ¢astica, smer jej Sirenia nie je jednozna¢ny (moze byt emitovana v A
a absorbovana v B, alebo naopak).*? Svetociara hmotného objektu musi byt ¢asu-podobnéa (angl.
timelike), t.j. (cAt)? > (AF)?, pre nehmotné objekty plati (cAt)? = (A7)? (svetlu-podobné, angl.
lightlike).

Cel4 specialna teoria relativity je postavena na dvoch principoch/postulatoch - (1) symetrii zdkonov
fyziky vzhladom na transformdciu medzi inercidlnymi sustavami,** a (2) invariantnosti rjchlosti svetla
vo vdkuu, c, pre vSetky takéto sustavy. Podmienka inercialnosti vedie na [inedrnost transformacnych
vztahov, a poziadavka invariantnosti ¢ v sustavach S a S’ znamena pre Sirenie svetla dxr = cdt
a dr’ = cdt’. Tomu odpovedaju transformacné vztahy ¢asopriestorovych stradnic z laboratérnej
stastavy S do stustavy S’ pohybujicej sa vo¢i S konstantnou rychlostou v v smere x - tzv. lorentzovsky
boost*®

r' = ~y(x — vt) t/:’y(t—E> Yy =y 2=z v = !
c? 2
c2
(resp. v — —v pri opac¢nej transformacii S’—S), a vedd na javy ct : .
kontrakcie dlzky a dilatacie ¢asu v S’ ,z pohladu“ S. Lorent- ' ¥
zovsky boost je neeuklidovskou analdgiou rotdcie siradnicovej S
ststavy v 3D, tentokrat vSak v rovine ct-x;, x; = x,y,z (viac g
v kap. 11.4.1). Ekvivalentnost inercialnych ststav znamena, ze R
transformované stiradnicové osi 2; a ct’ zostavaji v Minkowského
Casopriestore ortogondlne (o sa neda zobrazit v euklidovskej
geometrii na obr.), rovnako ako osi z; a ct.
£ 3
Udalosti A a B, ktoré st stcasné ale nestimiestne v ststave S ct o
(Cervenej na obr.), nie si sticasnymi v ststave S’ (modrej), a ¢ _t / '
naopak. ' / e - @
” .
s

Zaroven vsak pre ¢asopriestorové vzdialenosti udalosti plati ' .I /
(AS)? = (Al — (AP = Aty — 1) — (ay — 24)* = >

c=C(tg —ta)? — (v —14)* = (As)? X

Znamena to, ze

casopriestorovd vzdialenost dvoch udalosti nezdvisi od volby inercialnej sistavy.*s

V sustave (¢iarkovanej) spojenej s (relativne) pohybujicim sa objektom prirodzene plati dr’ = 0 a
teda (ds')? = (cdt’)? pre kazdy tsek jeho sveto¢iary. To nAm umoziiuje stotoznit ¢’ s tzv. vlastnym

42V alternativnej konvencii sti znamienka vietkych ¢lenov na pravej strane opacné.

“3Hovorime o relativite stucasnosti.

4 Inercidlnou nazyvame ststavu, v ktorej plati 1. Newtonov zdkon (zdkon zotrvacénosti).

45Slovenska terminolégia pouziva pre boost termin Lorentzova transformdcia, ¢o je viak vieobecnejsi pojem, zahriiu-
jaci aj priestorové rotécie. Kvoli absencii samostatného slovenského terminu pre boost bude v tomto texte pouzivany
bezny anglicky termin.

46Vzdialenostou medzi udalostami tu rozumieme ich priamociaru ¢asopriestorovi spojnicu. Naproti tomu ¢asopries-
torové trajektoria objektu medzi tymito udalostami je vo vSeobecnosti krivociarou.
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&asom objektu,*” 7, ako mierou dizky jeho svetociary,*® I, = ff ds'

ds d 4\ 2 B B i)\ B at
dT:_‘S:_S: (dt)2_<_r) AB:C/ dT:c/ 1—(w) dtzc/ —
c c c A A & A

(ds je infinitezimalny tsek svetoiary pohybujiceho sa objektu z pohladu sustavy S.) Vidime, ze

@ —yar = % < a
B!

teda Ze v pohybujicej sa sustave plynie cas pomalsie (prirodzene len relativne, z pohladu S).

Vidime tiez, ze ¢as prejdeny medzi udalostami A a B prirodzene zavisi od tvaru svetociary spajajucej
tieto udalosti, a to aj v pripade 74 = 7" (Co je rozuzlenim tzv. paradozu dvojciat):
Cas medzi sumiestnymi udalostami A a B na obr., uplynuvsi v nehybnej (labo-
ratornej) ststave S, je At = tg — ta, a odpoveda vlastnému ¢asu tejto sustavy.
Naproti tomu vlastny ¢as v pohybujicej sa ststave S’ (kozmonauta odlietajiceho

a vracajuceho sa na to isté miesto) je At’ < At (znamienko - vo vyraze pod od-
mocninou). Vlastné ¢asy s mierami dlzok svetociar, a teda st prirodzene rozne.
Neobycajné vsak je, ze

9

priama spojnica lubovolnijch dvoch udalosti v Minkowského casopriestore je tou najdlhsou.*

Tak ako sa pri euklidovskej rotacii zachovava velkost vektorov a ich skaldrny sucin, zachovava sa
pri rotécii ¢ booste v Minkowského ¢asopriestore velkost a skalarny sudin tzv. $tvorvektorov.
Suradnice udalosti v ¢asopriestore definuju jej polohovy Stvorvektor v tzv. kontravariantnom, resp.
kovariantnom zapise®

= (ct,7) resp. x, = (ct, =) w=0,1,2.3

Kombinécia oboch tvarov zabezpecuje lorentzovska invariantnost velkosti $tvorvektora definovanim
skalarneho stcinu (uréujiiceho kvadrat jeho velkosti)®!

—

z,2t =alx, = (ct)> — 7 F

(pri¢om sumujeme cez opakujuci sa index p). Vztah medzi kontra- a kovariantnym tvarom Stvorvek-
tora je

1 0 0 0
0 -1 0 0

[TR—"" _ v [T 1. -1.-1) =
=", Ty = N " =mn,, =diag(l,—1,—-1,-1) 0 0 -1 0
0 0 0 -1

kde n* je tzv. Minkowského metrika,® nahradzajica euklidovskid metriku, §,, = diag(1,1,1,1),
meniaca jeden tvar Stvorvektora na druhy.

4"Napr. pre ziva hmotu vlastny ¢as odpoveda biologickému ¢asu.

48Dl7ka svetociary objektu medzi bodmi A, B je dana trajektoriou v Easopriestore.

49V uvedenej tivahe nejde o relativnost pohybu medzi dvomi inercidlnymi ststavami. Ststava S’ je nevyhnutne
neinercidlnou - navrat nie je mozny bez jej zrychlenia. Pozorovatel v tejto sustave teda pocituje zotrvacné pseudosily.

50Existuje viacero konvencii v relativistickom Stvorvektorovom zapise, ¢o je potrebné zohladnif pri porovnavani
roznych textov. Obvykle sa kontravariantny vektor zapisuje ako stipcovy a kovariantny ako riadkovy.

51Kvoli nazornosti pripomenime, ze a? —b? = (a+b)(a —b), ¢o nAm moze slazit ako ,motivacia“ pre zapis skaldrneho
sucinu stvorvektorov ako kombinécie ich kontra- a kovariantného tvaru.

52V nagej konvencii je kladnym ¢asovy diagonélny ¢len, v alterntivnej konvencii (—1,1,1,1) st kladnymi priestorové
diagonalne ¢leny.
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Pri lorentzovskom booste sa vzajomne ,mieSaju“ aj iné dvojice veli¢in (skalar + vektor) a vytvaraju
Stvorvektory so zachovavajucou sa velkostou a rovnakymi transformac¢nymi vztahmi ako polohovy
Stvorvektor. Dolezité stvorvektory ziskame pomocou derivacie polohového Stvorvektora podla wvlast-
ného casu T.

étvorry’chlost’ definujeme ako

daxt daxt
ut = i:v(c,ﬁ) ', =y - 0) =

dr dt

Moézeme to interpretovat tak, ze
kazZdy objekt putuje casopriestorom konstantnou rijchlostou c,

pricom relativna zmena rychlosti putovania priestorom je kompenzovand zmenou rychlosti putovania
¢asom.”® Okamzity ,smer* stvorrychlosti v ¢asopriestorovych diagramoch je dotycnicou k svetociare
objektu.

Newtonov pohybovy zakon v §pecidlnej relativite prejde na tvar’

027 B, 2 .
md—t;a:mJ:F — md—xQ:ma“:F“ Ft=~(U-F/c, F)
T

Kla¢ovym Stvorvektorom je Stvorhybnost (Stvorvektor energia-hybnost)

P =mut =my(e,0) = (Eje,p)  F=ymi  E=me ' = 5 — = mic

Posledna rovnica je relativisticky vztah pre energiu ¢astice o (invariantnej) hmotnosti m. Vyplyva
z neho tiez, ze Castica s nulovou hmotnostou nesmie byt v pokoji v Ziadnej siustave: Pre p = 0 by
totiz platilo £ = 0, ¢o v kvantovej fyzike znamené absenciu Castice.

Obdobnym sposobom definujeme dolezité stvorvektory frekvencie-vlnoctu (vinového vektora), ndbo-
jovej-pridovej hustoty, a elektromagnetického skaldrneho-vektorového potencidlu - velkosti vSetkych
st lorentzovskymi invariantmi (ako sa patri na skalarne su¢iny v Minkowského metrike)

-, —,

k= (W/Q E) = (Cp,j) At = ((p/c, A)

Kombinacia kontravariantného a kovariantného zapisu je elegantnym prostriedkom na zapis lorent-
zovsky invariantného skaldrneho siucinu réznych stvorvektorov

a,b" = a,n"'b, = a'n,b” = a"b, = apby — a- b

Potrebujeme eSte definovat Stvorvektorova derivdciu

0 0 0 0
o= — — [ — _— 0 =— = —
oz, (c@t’ V) H Ok (c@t’ V)
Stvorgradient (skalara ¢), Stvordivergenciu (Stvorvektora a*) a §tvorlaplacian (= vlnovy operétor)
¢ 0¢ da*  0a . 0? 9
Mp=-—=|—F,— at = — = — : 0ot = —— —
¢ ox, (c@t’ V(b) N T v-a a c20t? v

>3Pre objekt v kl'ude plynie ¢as (pohyb na ¢asovej osi) rychlostou ¢, pre objekt pohybujici sa priestorom (pre
pozorovatela v laboratérnej sustave) rychlostou ¢ ¢as stoji. Pre v — ¢ v8ak v — oo, ¢o je nefyzikilne - neexistuje
inercidlna sustava spojena s nehmotnym objektom. To tiez znamené, Ze svetoCiaru objektu s nulovou hmotnostou
nemozeme parametrizovat vlastnym casom.

54§tvorvektorova rovnica predstavuje §tyri rovnice pre jednotlivé zlozky. Lahko viak ukazeme, 7e F*u, = 0, a teda
len tri z nich st nezavislé, rovnako ako v newtonovskej mechanike.
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Fdza rovinnej viny, rovnica kontinuity a lorenzovskd kalibrdcia® nadobudni tvar

dp 0o

bk =k ot
w Tt ot 20t

+V-j=0,"=0 4V A=0,A" =

V lorenzovskej kalibracii nadobudaja nehomogénne Mazxwellove rovnice kompaktny stvorvektorovy
tvar

0,0" A = poj”

Napokon este vyjadrime relativisticky uc¢inok volnej ¢astice. Pomocou vlastného ¢asu ¢astice mozeme
ucinok vyjadrit ako

S = / Lrydr (dt = ~dr)

Poziadavka relativistickej invariantnosti c¢inku znamena v tomto pripade invariantnost vyrazu £,
¢o je splnené pre £~y = konst. Volbou £~ = —mc? dostavame

T2 b
S = —mCQ/ dr = —mc/ ds’ (v ststave Castice ds’ = Vc2dr? — 0)
et a

¢o vedie na spravny relativisticky hamiltonian

2
Hegio-2-2Z 6@ —qpa+™ 2~ e
ov 0
a spravne nerelativistické (v < ¢) priblizenie H = mv?/2. Minimalizacia i¢inku znamené (paradoxne,
kvoli znamienku -) mazimalizaciu casopriestorového drdhového integralu v Minkowského metrike.
Mézeme to tieZ interpretovat tak, Ze Castica mazimalizuje trvanie vlastného casu.>® Ako uz vieme,
maximalnemu ¢asu odpoveda priama svetociara.

V nerelativistickej limite (cdt)? > (dr)? plati —me/(cdt)? — (dif)? = (Gl mc?dt, ¢o pre ucinok
) 2dt
znamena

dF 2 )
S =—mc \/ (cdt)? — (dr)? = —mc* + ... |dt
7

Pokojova energia mc? v nerelativistickom lagrangidne hra tlohu akejsi potenciilnej energie, a pri
hladani extermalneho u¢inku predstavuje len aditivnu konStantu.

Stvorvektorovy zapis uc¢inku v Minkowského metrike je

tp
S = —mc/ vV N dztdz?
ta

1.3.2 Lagrangian v teorii poli.

V teorii poli predmetom zaujmu nie st hmotné objekty v priestore, ale priestor samotny - polia.
Zakladnou myslienkou je, ze priestor je tvoreny energiou poli, fluktuujicou okolo strednych hodnot,
ktoré lokalne moézu byt aj nulové - iplne prazdny priestor viak neezistuje. O charaktere tychto poli sa
dozvieme v dalsich ¢astiach. Nateraz predpokladajme, Ze v kazdom okamihu v kaZdom bode realneho
priestoru tieto polia nadobiidaju urcité hodnoty hladkych funkcii, tvoriacich konfigurdcie tychto poli

55Pomenovanie na podest L.V.Lorenza, nie H.A .Lorentza - autora transformaénych vzfahov.
56Preto sa principu najmengieho G¢inku hovori aj princip lenivosti Prirody - Priroda sa o¢ividne nikam neponahla.
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v priestore a case, ¢(t,7). Ako nositelovi energie a dynamiky mozeme kazdému polu ¢(t,7) priradit
lagrangian £ (¢, ¢) ako funkciu jeho konfigurdcie a jej casopriestorovgch derivacii, v analogii s drdhou
v konfiguracnom priestore q(t) a jej éasovou derivaciou ¢ (pre mechaniku telies v priestore),

a(t) = (¢, 7) = p(a") () = Bu(a") 5= / 2(6,0,0)di

Kedze pole je priestorovo rozlozeny objekt, definujeme objemovi hustotu lagrangianu £(¢, 0,¢)
prostrednictvom vztahu

Z = /L’(gb, 0,0)d’*x

Ucinok potom definujeme ako

S = / Zdt = / L($,0,¢)d"z dz = dtdz = dV*

pricom casova a priestorové sturadnice v poslednom integrali sq uz rovnocenné parametre, definujice
bod ¢asopriestoru, v ktorom pole nadobiida ur¢iti hodnotu.’” Hladanie extremalneho u¢inku spo-
¢iva vo variovani konfigurdcie pola, 0¢(z*) a §(0,¢(x*)), medzi firngmi hranicnymi konfiguraciami
J¢(zt)|s = 0, kde X je hranica obopinajica dant casopriestorovi oblast V*. Potom

oL oL .
0:55:/ {aﬂ“ 565 (8,ng5)]dv =

=) 115~ (o) y o -2 (aar®) |

Pre posledny ¢len ako totdlnu derivaciu, s uvazenim Gaussove] vety pre Stvordivergenciu, plati

/. ( <af¢>5¢> - ( <au¢>5¢) = =0 kedze  dols =0

Podmienka extremalneho tc¢inku potom vedie na

0¢ "\ 9(0u9)
¢o je ELR pre pole ¢. RieSenim takejto rovnice (s danym £) dostaneme pohybovi rovnicu uréujicu

dynamiku prislugného pol'a.”® V analogii s ¢asticovou mechanikou definujeme kdnonickt hybnost
pola

0z 0 3
) = 5o = o | £Ow), 90 )iy
a jej objemouvi hustotu
_oc . 09 . 09
m(z*) = S (¢ = 5 o hie — !!!)

Nasledne mozeme definovat objemovu hustotu hamiltonidnu pola
H(o,m) = m(a")p(a") — L(z")

¢ a  tvoria kdnonicky zdruZeny par, splhajuci HR (kap. 1.1.1) pre pole. Fyzikilny vyznam kdnonickej
hybnosti pola ozrejmime v dalsom texte.?”

5TTakato formuldcia je v zhode s tedriou relativity, a teda predstavuje zaklad realistickej teorle

®8Nech napr. pre volné pole (bez interakcii) je hustota lagrangianu £ = %@@8”@5, Cize 87> = 0. ELR povedie na
homogénnu vlnova rovnicu 0,,0"¢ = 0.

59 Ako uvidime v nasledujtcich kapitolach, zachovanie kinematickej ¢ kénonickej hybnosti odpoveda odlisngm sy-
metriam poli.
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1.3.3 Noetherovej teoréma pre polia.

Rovnako ako v casticovej mechanike, aj pre spojité transforméacie konfigurdcii poli plati Noethero-
vej teoréma (kap. I.1.2) Predpokladajme Tubovolnu infinitezimdlnu transformaciu konfiguracie pola
o(z) — o(a*) + d¢ a odpovedajiucu zmenu (hustoty) lagrangianu £ — £+ 6L . Ak ma byt takato

transformécia symetriou, musi platit
55:5(/@%) =0

Integral v zatvorke musi byt teda kons$tantou, ¢o plati nielen ak 6L = 0, ale aj splnenim slabsej
podmienky (pri fixovanej konfiguracii pola na ¢asopriestorovych hraniciach integralu)

0L(¢) = 0,K"(¢)
¢o je totdlna derivacia Tubovolnej funkcie K"(¢). Kedze (podla kap. 1.3.2)

oL oL oL
o,K" =) 6L =—9 0(0, = 0, )
0K =) 5= Goto+ 5 000) 7, 0 (5)
definujeme nova veli¢inu - hustotu noetherovského §tvorpruadu,
1 0L
jl/ = 6 _ ICV
50,6
pre ktorta zjavne plati
a0,J" =0

¢o je rovnica kontinuity, C¢ize zdkon zachovania noetherovského ndboja. Fyzikdlny vyznam noethe-
rovského Stvorpridu a nédboja bude zavisiet od charakteru transformécie konfiguracie pola d¢, ako
uvidime v nasledujicich kapitolach.

1.3.4 Transla¢na symetria poli.

O spojitej transla¢nej symetrii pola ¢(z") hovorime vtedy ked sa nemeni hustota lagrangianu
pri infinitezimdlnej casopriestorovej translicii z# — x* + dox* (v niektorych zo 4 ¢asopriestorovych
smerov u). Predpokladajme pre jednoduchost redlne skaldrne pole® (bez vnitornej struktiry), ktoré
sa v tomto pripade transformuje ako

¢(2") = ¢(2") + 06 = ¢(a") + I (a”)da"
Odpovedajica transformécia lagrangianu je
L—L+0L=LA+O,Loz"

¢ize 0L = 0,L0zx" pre dany smer translacie p, pricom z podmienky symetrie plati 0L = 0,K"
(kap. .3.3, so sumdciou cez vSetky v). Porovnanim oboch vyrazov dostévame 0,K" = 0,(0;,L)dz",
kde &7 = n,,m" = n; je Kroneckerov symbol v tenzorovom/maticovom zapise. Pre hustoty noet-
herovskych stvorpridov v kazdom zo 4 ortogonalnych smeroch ¢asopriestorovych translacii u teda
plati

v oL v v v
&,ju = 81, m@m — E(S# oxt| = ay[TM 5.1)#} =0 = 8VTN =0

N

-~

60Vyznam tohto obmedzenia ozrejmime v kap. I1.2.5.
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(sumécia prebieha cez opakujici sa index v), kde T . je Stvortenzor napétia-energie-hybnosti.
Rovnica kontinuity pre smer pu,
0

v 0 7 aT
6,,Tu = GOTM -+ ajTM = W ‘l— V

je zdkonom zachovania noetherovského naboja s objemovou hustotou TB , pricom plosnd hustota
jeho toku - noetherovského pridu - je Tu = (T;,T;,T7). Noetherovskym nabojom pre u = 0 je
energia, lebo

/ TOd3y = / ( (aaf 55000 = /:50) &y = / (m ,c &y = / Hdz = E

hustota tok
Podobne, pre 1 = 57 = 1,2,3 st noetherovskymi nabojmi zlozky energie energie
kinematickej hybnosti @08 701 702 703
TlO i
napitie
oL 720 2
Todsx:/ ——0;¢0 — LK d?’x:/mra d*r = cp; T30 33 | ok
/7 7@~ R o dw = cp;
hustota tok
hybnosti hybnosti

(poznamenajme, ze plati 0;¢ = qﬁ/x]) Podl'a ocakavania, zachovavajucimi sa veli¢inami pri ¢aso-
priestorovych translaénych symetridch pola st jeho energia a (kinematickd) hybnost. Symetricks
tvar Stvortenzora je T = T* = nPT7. Jeho 0-ty stlpec predstavuje hustotu Stvorvektora hybnosti-
energie, a ostatné stipce toky tohto §tvorvektora v jednotlivych smeroch. Smer zlozky dtvorhybnosti
a jej toku st vo vieobecnosti rozne. T7% pre j, k = 1,2, 3 st zlozkami tenzora napéitia. Nulové diver-
gencie riadkov Stvortenzora tvoria Stvoricu zakonov zachovania pre jednotlivé zlozky Stvorhybnosti
(Dodatok D).

I.3.5 Rota¢na symetria poli.

Rota¢na symetria pola znamena invariantnost jeho lagrangianu vodi (Caso)priestorovym roté-
ciam.%! Uvazujme opit pre jednoduchost skaldrne pole. Pre rotaciu priestorovych sturadnic plati
dat = wha¥, kde wy, = nu,wt je antisymetrickd matica infinitezimdlnych rotacii.®® Podmienka sy-
metrie je%

aﬁ 14 14 1 v v
0=20, (WQ@ — Eéu) wha? =0, Ty wha? = ... = 58,, Ex”T“ — TP ) w,, = 5

Znamen4 to, Ze pre kazdé zo 6 nenulovych w,, existuje noetherovsky stvorprid (J¥)°*, spliajici
rovnicu kontinuity so zachovavajicim sa noetherovskym nabojom (v = 0)

O, (TP =0 OPH = /(jo)p“d3x = / (xpT“O — x“T”O) d3x

Oy (T*)* wop
——

'

Pre priestorové rotacie (v — j = 1,2, 3) sa v tomto pripade zachovavaju veli¢iny
1 1
L' = —GJMQ = _Ejkl/ (ZBleO — [ElTkO) d3ZL‘ = —Ejkl/’ﬂ' (xkﬁl — xlﬁk) gbdgx
2 N——

Prechodom ku kvantovému formalizmu v tomto vyraze spozname zlozky operatora (orbitdlneho)
momentu hybnosti. Zachovdvajicou sa velicinou pri priestorovych rotaciach je teda zlozka momentu
hybnosti pola L;.

61T orentzovsky boost - transformaciu ststavy o konstantni rychlost - mozeme vnimat tiez ako rotaciu v ¢asopriestore.
62 9w _ _ wvev . - , ~ , . ”, . .
KedZe w,, = —wyp, wu, = 0, CiZe existuje 6 nenulovych zloZiek w,, - 3 pre roticie a 3 pre boosty. Inymi slovami,
existuje 6 navzajom kolmych ¢asopriestorovych rovin, zy, xz, xt, ...2t, a w,, st infinitezimalne rotécie v kazdej z nich.

63 .« . P N L _ 4 vl . . ) 1 . . . .
Pri Gprave sme do vyrazu vlozili n*1,, = 1 a nésledne vyuzili antisymetrickost w,,, (w;J antisymetrickou nie je!).
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1.3.6 Vniitorné symetrie poli.

O wvnttornej symetrii hovorime v pripade invariancie vo¢i vmitornym transformdciam poli,
o(a*) — ¢(at) + ¢, nevztahujicim sa na Casopriestorové transformacie (0¢ # 0,¢dz*). Kym
¢asopriestorova symetria vedie na 0L = 0,K*, kde Kt = Liz* (kap. 1.3.4), pri absencii takejto
transformacie, dz# = 0 a teda K* = 0, je podmienkou symetrie priamo (kap. 1.3.3)

oL oL
0(9,9 0(9,9)

Veli¢inou zachovavajicou sa v ¢ase (noetherovskym nabojom) je Q ~ [ J°d3z, ¢ize

Q= / d?’x—/wd?’xzﬂ

¢o je prave kdnonickd hybnost pola s objemovou hustotou 7 (konjugovanou s ¢, kap. 1.3.2). Tato
veli¢ina nie je totozna s kinematickou hybnostou pola s hustotou T3 /c = 7 0;¢, zachovavajicou sa
pri priestorovej translacii (kap. 1.3.4)!

o:a,c:ay( 5

)¢):auju jV:

V pripade komplezného polab je dolezitou vntitornou transformaciou fdzovy posuv (rotacia v kom-
plexnej rovine), ¢ — ¢’ = e “¢, a teda ¢* — e“gzﬁ* V pripade spojitej infinitezimdlnej zmeny mozeme
pouzit priblizenie d¢ = ¢’ — ¢ = —iep, I¢* = iep*. Kedze v tomto pripade £ = L(¢, 0,0, ¢*, 0,0"),
Standardnym postupom dostaneme rovnicu kontinuity a noetherovsky naboj (po odstraneni ie # 0)

- oL . 9L N _ oL
OnT “9“(a<8u¢*>¢ a(@mgb) =0 o- | <a¢* aﬁ)d‘”

Tento vysledok budeme neskor interpretovat, v zavislosti od kontextu, ako zdkon zachovania poctu
castic, resp. ich pravdepodobnosti, alebo ako zakon zachovania elektrického ndboja.

Napokon uvazme ¢asopriestorovi transformaciu, ktora sposobi aj vnutorni transforméciu pola,
o(zt) — ¢ (™) = ¢(x#) + d¢. Zmena pola sa da vyjadrit (rozsirenim o 0) ako

A

5 = [¢/(2") — B(a™)] + [b(x™) —d(a)] = G4 + Db

Ak je takato transforméacia symetriou, rovnica kontinuity nadobtda tvar

A

T/ oc , oL 1
o Kaw) Oud— L 5“) " 80,9 5‘4 !

1.3.7 Kvantovanie poli.

V predchadzajucich kapitolach sme predstavili koncepciu klasického pola ako nositela energie, hyb-
nosti aj momentu hybnosti, teda vlastnosti, ktoré obvykle priradujeme hmotnym objektom ¢ casti-
ciam.% Kvantova mechanika zblizuje tieto dva kl'i¢ové pojmy (pole a castica) este viac, prostrednic-
tvom komplexného skaldrneho pola - vinovej funkcie (7, t) - uréujiceho amplitidu pravdepodob-
nosti namerania castice v.danom mieste a c¢ase. Zasadny problém vSak spociva v tom, ze SCHR ako

64Komplexnym je napr. tzv. Schrédingerovo pole (kap. 1.3.8), reprezentované komplexnou vlnovou funkciou.
653 touto koncepciou sme sa uz stretli v elektromagnetizme, kde sme pol'u priradili energiu, hybnost aj moment
hybnosti, a spoznali sme zdkony ich zachovania.
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pohybova rovnica pre vinova funkciu nie je lorentzovsky kovariantna. Kym priestorovym stradni-
ciam su priradené operétory, Z;, ¢as vystupuje v tejto rovnici ako ,klasicky parameter. SCHR teda
nesplria relativisticki poziadavku na adekvatny opis fyzikalneho sveta.5

Relativistickym vychodiskom je zrieknutie sa operdtora polohy castice v prospech polohy ako su-
radnice pola, teda parametra rovnocenného s ¢asom. Tym vSak stracaju zmysel aj fundamentélne
kdnonické komutacné vztahy Standardnej kvantovej mechaniky, [Z;, px] = ihd i, kde operatory z;, p;
posobiace na Casticu jej ,priraduju“ polohu a hybnost, teda atribity, bez ktorych pojem castica
straca svoj tradi¢ny zmysel. Namiesto toho sa samotna vlnova funkcia stava operatorom casti-
cového pol'a parametrizovanym ¢asopriestorovymi sturadnicami, zﬂ(x”), posobiacim na stav tohto
pola, a generujicim alebo anihilujacim jeho ezcitdcie - Castice.

Zakladnym nastrojom na opis ¢asopriestorovych konfiguracii volngch poli je ich fourierovsky rozklad
do spektra navzdjom nezdvislyjch harmonickgjch rovinnych vIn8”

o 1 o efik#m/‘ 4
V) = o [ alk)e e atk

kde integrovanie prebieha cez vsetky styri (kladné aj zaporné) zlozky k-priestoru (teda cez zlozky
vlnového vektora aj frekvenciu). Obvyklejsim je v8ak tvar

77/}(7—,» 2 /f —i(wgt— kf')dSk:
7T

ktory vznikne preintegrovanim cez ,Casovi“ zlozku Stvorvektora k", pricom wy a k st viazané prislus-
nym disperznym vztahom. S uvazenim znamych vztahov, spajajicich relativisticka ¢asticu s vinou,

E = hw 7= hk E? =(p-p) + (mc?)?

dostavame relativisticky disperzny vztah

w,;:ic\/lg-lngﬁlz m:%:/\al

kde X¢ je redukovand Comptonova vinova dizka. V nerelativistickej kvantovej mechanike, t.j.
pre £ = mc* (> pc) sa podintegralny faktor f(wy) stava ,nepodstatnou” konstantou zahrnutelnou
do normovania (ktoré je obvykle vecou pragmatickej volby). V relativistickej teorii v8ak tento faktor
zabezpecuje lorentzovski kovariantnost celého integralu, ked'ze samotny integral [ d®k takym nie je!
Dosledky uvidime v ¢asti II1.

Prvym krokom ku kvantovému opisu je prechod od pola ¥ (7, t) k operdtoru pola, @(F t). Ak mé byt
hermitovskym, da sa rozpisat ako superpozicia suc¢tu hermitivsky zdruzZenijch operdtorov a(k:) dT(k),

%&(F 2 /f (wEt_E”_"){—dT(E) ei(wgt—l;i') dSk
7T

Obdobne definujeme operdtor (hustoty) kdnonickej hybnosti pola (kap. 1.3.2)

oL
0 (a)

66_Utebnicova” nerelativistickd kvantovd mechanika priptsta nenulova pravdepodobnost najdenia ¢astice, priprave-
nej v danom mieste a ¢ase, Tubovolne daleko po T'ubovolne kratkom ¢ase, ¢o je v rozpore s tedriou relativity.

67Lagrangiany volnych poli (t.j. bez interakcii) st spravidla kvadratické v ¢ a 0,1, ich pohybové rovnice (zis-
kané z ELR) st preto linedrne. Linearita pohybovej rovnice ndim umoziuje zapisat jej v8eobecné rieSenie v podobe
superpozicie - fourierovského rozkladu do spektralnych zloziek.

m(at) =

— 7t(zt)
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Druhym krokom je kdnonické kvantovanie poli, resp. (nie celkom vystizne) druhé kvantovanie
- formulovanie (definovanie) kdnonickych komutaénych vztahov pre operatory @,fr. Motivaciu
najdeme v analogii s klasickou aj nerelativistickou kvantovou mechanikou: Kéanonicka hybnost pola
je generdtorom spojitej (unitarnej) transformécie v — ¢ + € (kap. 1.3.6), ktori mozeme vyjadrit ako

b= o = R 2 (1 4 ie%/ﬁ)w ale aj Y=Y = (1+ 682,)1/) (e = 0)

¢o znamend priradenie 7(z#) = —ihd,. Kedze ide o analdgiu suradnicovej reprezentacie, kladieme
prirodzene (z#) = (x*). a pre komutator £[¢(t,7), 7 (t,7)] potom plati®®

o1 g gl (B2 ) s

kde §(7 —7") je 3-rozmerné -funkcia. Fundamentdlnymi komuta¢nymi vztahmi st teda
[0t 7, 7t 7)) = (7 — i) [t 7, (¢, )] = 0 [ (t,7), & (t,7)] = 0

Interpretujeme ich tak, Zze nemozno presne ur¢it v danom bode v tom istom okamihu amplitadu pola
aj rychlost jeho zmeny. Z tychto vztahov sa dajt odvodit komuta¢né vztahy pre operatory a(k), a' (k)
v tvare (pri spravnom normovani)5

[a(k), a(k")] = [a'(k), ' (K')] = 0 [a(k),a' (k)] = (2m)*3(k — k)

Tieto komutatory manifestuji vzajomni nezavislost spektrélnych zloziek.

Kanonické komutacné vztahy v tejto podobe platia pre skaldrne polia. Pre polia s vntitornou Struk-
tarou su 1&, 7 viackomponentné, a komutacné vztahy musime definovat pre jednotlivé ich zloZky (ako
uvidime v ¢asti I11.). VSimnime si tiez, ze operatory 1&, 7 s v tomto formalizme funkciami casu -
pracujeme teda v tzv. Heisenbergovom obraze (kap. 1.2.3).

1.3.8 Schrodingerovo pole.

Na demonstraciu vyssie uvedenych zaverov pouzijeme tzv. Schrédingerovo pole - nerelativistické
volné komplexné skaldrne pole s hustotou lagrangianu™

h h2
c=" 5 W0 = wO") — S0 Oy

Polia 1 a * mozeme vnimat ako dva nezavislé stupne volnosti. Dosadenim £ do ELR pre ¢ aj ¢*
dostaneme dve komplexne zdruzené SCHR, pre volni bezspinov (t.j. skaldrnu) ¢asticu”™ o hmotnosti
m7

h? h?
i = —5 0} — ihO* =

e/l by mal byt exponent bezrozmerny. Ked7e e ma rozmer v, z rozmerovej analyzy zistime, Ze tato

3

58Vo vyraze e
poziadavka nie je splnené. Tento nedostatok vSak odstrafiuje 3-rozmernd d-funkcia, ktorej rozmer je m™
89Vyuzivame tu vlastnosti (3-rozmernych) J-funkcii

1 - (Rt k K ik (77 1 T (= =
P / e frm et BRI S (E — B dK = ) =) = oy / ) i

"Tento vyraz odvodime v kap. III.1.7.

"1V zakladnych kurzoch kvantovej mechaniky sa SCHR obvykle spaja predovietkym s elektronom - ¢asticou s ne-
nulovym spinom. Samotnéd SCHR, (bez modifikicii) vSak spinové stupne volnosti ignoruje. Pre wolni Casticu je aj
elektricky naboj irelevantny.
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s rieseniami (fourierovsky) rozloziteInymi do rovinngch vin™

1
[

¢(77 t) / (E) —i(wpt— k:f")d?)k w*(,';; t) _ - /a*(E)GZ(wEt_EF)dSk wp = —

pricom hustoty konjugovanych hybnosti a hamiltonianu su

oL ih oL th
" o) 2 T dwn - 2" ooy
Po dosadeni dostavame hamiltonian™
h L
H = /Hd3r =..= 3 /w,; a*(k)a(k) d*k
( ﬂ-) N——
Vniitornou symetriou Schrodingerovho pola je transformécia
(7, 1) = (7, 1) U (7 1) — e PP (7 L)
opisana v kap. 1.3.6, s hustotou noetherovského ndboja a pradu
— * /= — o h * [ = — — * (=
P(Ta t) = hdj (T’, t)¢(T7 t) ](T7 t) = % W (Ta t)ajw(ra t) - ?/J(T, t)aquzj (’f’, t)]

a zachovavajucim sa (bezrozmernym) noetherovskym nabojom

%/ = . 3 _L a* _’a N 73
0~ [w e = o [ Byt

Translaénej symetrii zas odpoveda zachovavajuca sa kinematickd (nie kdnonicka!) hybnost (kap.
1.3.4)
h — - -

p=..=—— [ ka*(k)a(k) Pk

i = o [ B Bal)
Vsimnime si, Zze v integraloch pre H,p aj Q rovnako ﬁguruje (pre kazda spektralnu zlozku) stucin
Jkvanta“ danej Vehcmy (hw, hk a 1) s vyrazom a (k)a(k) = N(k) Odtial je zrejmy fyzikalny vy-
znam vyrazu N (k ) ako poctu kvdnt v k-tom mode. Takéto kvanta asociujeme s pojmom castica.”™
Prechodom k operatorom (kap. 1.3.7) sa vyrazy

A =

N = / N @) NF) = &t (Ba(F) (), AR = 0

(27)?

stavaja operatorom poctu castic a operatorom spekirdlnej hustoty castic v takychto priestorovo uplne
delokalizovangch ,fasticovych® stavoch.” Formalna podobnost s kvantovgm harmonickym oscildto-
rom (Dodatok E) Vyplyva z kvadratického charakteru lagrangianu/hamiltonianu, a vztahuje sa aj na
funkciu operatorov a(k),al (k) - znizuji resp. zvySujii energiu daného moédu o elementarne kvantum,
ktoré vSak v naSom kontexte vnimame ako casticu - su anihilaénym /kreaénym operatorom (ta-
kejto) castice (v k-tom mode). Kvantovanie Schrodingerovho pola je teda (nerelativistickym, ¢ize nie
celkom korektnym) formalizmom opisu (bezspinovych) mnohocasticovych stavov.

"Vsimnime si, Ze v tomto nerelativistickom pripade ignorujeme podintegralny faktor f(w;) z kap. 1.3.7.

"3Pri integrovani vyuzivame ortogonalnost rovinnych vin, [ e 7d3r = (27)3§ (k).

"Pojem castica ma v kvantovej fyzike viacero vyznamov. Najcastejsie ide o diskrétny objekt-udalost detegovani
experimentalnym zariadenim. V teorii v8ak pod tymto pojmom rozumieme kvantum energie v danom mode pola,
a v tomto zmysle ho pouzivame aj v tomto texte.

"5Zdoraznime, ze predstava ostrej priestorovej lokalizdcie castice mimo merania (ako miniattrnej gulocky potu-
lujtcej sa priestorom v ,opare“ neurcitosti) nemé oporu vo fyzike! Jej lokalizacia makroskopickym meracim pristro-
jom (priestorovym detektorom, hmlovou komorou,...) je len doésledkom nedelitelnosti kvanta energie pri interakcii
s makrosvetom - lokalizovanou energetickou odozvou meracieho systému (makroskopické priestorové rozloZenie by
znamenalo delitelnost energie kvanta).
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00000
Dolezité zavery:
e Priestorova (translaéné a rotacnd) invariancia suvisi so zachovavajicou sa hybnostou a momentom

hybnosti pola. Casové invariancia suvisi so zachovanim energie pola.

e Vnitorna symetria vzhladom na posunutie hodnoty pola suvisi so zachovanim kdnonickej hybnosti
pola.

e Vnitornd symetria vzhladom na zmenu fazy komplexného nabitého pola suvisi so zachovanim
¢asticového naboja (v pripade Schrodingerovho pola vo vyzname poctu castic).

e V kvantovej tedrii poli je ssamotnému polu priradeny operator generujici jeho energetickt excitaciu
- ,Casticu®. Fundamentalnymi st komutéatory operatora pola a jeho kdnonickej hybnosti.
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Doélezité grupy symetrii

Skor nez sformulujeme fundamentdlne rovnice fyziky a identifikujeme ich elementarnych ,aktérov®,
musime sa oboznamit s ,jazykom* symetrii. Tato ¢ast bude preto o matematike symetrii - teorii
grap. Grupou symetrie nazyvame mnozinu vsetkych transformécii, ktoré ponechaji urcity objekt
resp. jeho urcitt charakteristiku invariantnou. V ¢asti I boli objektami transformécii najprv (kap. 1.1)
funkcie definované na fazovom priestore, neuvazovali sme pritom ich vnatorné stupne volnosti
(implicitne sme predpokladali skaldrne a nie napr. vektorové funkcie). Potom (kap. 1.2) sme trans-
formovali stavové vektory definované na Hilbertovych priestoroch, opét bez ohladu na ich vntutorna
Struktiru. A napokon (kap. 1.3) sme analyzovali symetrie poli pri ich ¢asopriestorovych i vntatornych
transforméciach, opét implicitne predpokladajic skaldrne polia. Teoéria grip je tym vhodnym né-
strojom na zovSeobeciujici pristup k symetriam. V jej jazyku transformujeme objekty nasho zaujmu
ako abstraktné matematické objekty, pricom transformac¢né pravidla kazdej grupy st sformulované
v jej algebre. Vnitorné stupne volnosti transformujuicich sa objektov rovnako podliehaju transfor-
méciam, a ich Specifickost je zohTadnena v odlisnych reprezentacidch danej algebry (i samotnej

grupy).

V kap. 1.3.7 sme uZ naznacili, ze predstava elementarnych ¢&astic Prirody ako ,yelmi malych*
& ,bodovych guldcok” do dnesnej fyziky na fundamentdlnej urovni nepatri. Nahradza ju predstava
fundamentdlnych poli, ktorych excitacie (zo zékladného stavu - vaikua) stotoziiujeme s elementarnymi
¢asticami.! Tieto polia sa navzajom prelinaju a interaguji. (Fyzikdlnému opisu zakladnych typov poli
a ich interakcii st venované ¢asti IIT az V.)

Jednotlivé polia sa lisia poc¢tom vnitornych stupiiov vol-
nosti. Z klasickej fyziky pozname skaldrne (jeden stu-
pen volnosti) a wvektorové polia (iri stupne volnosti).
V' kvantovej mechanike pribudlo komplexné skaldrne
pole - vlnova funkcia (dva redlne = jeden komplexny
stupen volnosti). Zavedme jednotny opis, v ktorom kaz-
dému ¢asopriestorovému bodu z* daného pola s d vnu-
tornymi stupiiami volnosti priradime stipcovii maticu
- ,vektor® s d redlnymi alebo komplexnymi komponen-
tami (obr.). Takyto vektor tvori akysi d-rozmerny re-
alny resp. komplexny vnitorny priestor ,vztyceny” nad
kazdym bodom fyzického Casopriestoru. Aktivna aj pa-
sivna casopriestorovd transformécia (skimaného pola,
resp. pozorovatela & stradnicovej stistavy) znamena aj
transformaciu tohto vnitorného priestoru, a to v zavis-
losti od jeho dimenzie.

L Kvantovanost energie pri vzajomnych interakcidch poli, a najmé pri interakcidch s meracimi zariadeniami, nas
nad’alej motivuje tieto kvantd stotozhovat s ¢asticami (ako ich vnimame v klasickom svete), inak v3ak takato new-

tonovska predstava nemd oporu v matematickom formalizme modernej fyziky. Od samého zrodu kvantovej fyziky
existuje definicia elementéarnej Castice ako objektu, ktory vznikd pri merand.
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Transformujeme teda ¢asopriestorové polia, reprezentované spojitymi funkciami, aj ich vnitorni
d-rozmerni Struktaru, reprezentovant d-rozmernymi vektormi. Dolezitou spolo¢nou vlastnostou spo-
Jitych transformacii-symetrii su zachovavajice sa veli¢iny - generatory transformécii (Noetherovej
teoréma). V Casti I sme identifikovali suvis ¢asopriestorovych translacii s pojmami hybnost a energia,
ako aj suvis priestorovych rotacii s pojmom moment hybnosti. V tejto Casti sa sustredime najma
na rotacie wvnitorngch priestorov (vnitornej Struktiry - stupiov volnosti) objektov/poli a s tym
savisiacim vndtorngm momentom hybnosti - spinom - jednym z kvantovych é&isel, pomocou kto-
rych charakterizujeme jednotlivé druhy elementarnych ¢astic.? Takéto kvantové ¢isla preto musia byt
invariantmi pri transformécidch. V ramci jednotlivych grip transforméacii odhalime stuvis medzi ich
generatormi a kvantovymi ¢islami.

II.1 Lieove grupy transformacii.

V tejto kapitole definujeme zakladné pojmy (len v miere nevyhnutnej pre potreby dalsieho textu)
a stvislosti medzi nimi na vSeobecnej urovni. Nasledne (v kap. I1.2 - 11.4) ich aplikujeme na fyzikalne
relevantné druhy transformécii v redlnych a komplexngch priestoroch, a pomocou nich vybudujeme
reprezentacie vyhovujice poziadavkam $pecialnej relativity.

I1.1.1 Definicia Lieovej grupy a algebry.

O spojitej transformacii hovorime vtedy ak existuje infinitezimdlna transformacia blizka identite 1,
vyjadrena operdtorom A(e;) =1 + Eij, kde® €; — 0 je infinitezimalne ,posunutie v j-tom ,smere"
d-rozmerného priestoru,* a Xj je generdtor prislugnej transforméacie.” Linearita tohto vztahu zaru¢i
aj pre kombinaciu takychto infinitezimalnych transformécii A(e})A(e2) = 1 + (e} + €2)X;. Mnozina
takychto spojitych transformacii tvori Lieovu grupu®.

Binarnou operaciou Lieovej grupy je ndsobenie.” N-nasobnym opakovanim infinitezimdinej transfor-

mécie dosiahneme konecnd zmenu transformacného parametra 6, = Ne; (N — 00)

0; 1" A 5
Al) = @)Y = [14 5] o S =10k

2Niektoré zakladné charakteristiky, ako st hmotnosti, stale nedokdZeme kvantovat, a zostavaji nevyriesenymi otéz-
nikmi tedrie.

3V zmysle Einsteinovej sumacnej konvencie ¢;X; = P e X;.

4Pojmy ,posunutie” a ,smer* nemusia mat vyznam casopriestorovy, moze ist o zmenu hodnoty vnitorného stupia
volnosti.

5Pojmy operdtor a generdtor transformdcie sme vysvetlili v kap. 1.1.3.

5Grupa G je mnozina prvkov a, b, c..., medzi ktorymi je definovana bindrna operacia o, vysledkom ktorej je opét
prvok tejto mnoziny, ¢ize a,b € G, aob € G. Okrem tejto uzatvorenosti musi byt téato operacia asociativna, musi
existovat neutralny prvok grupy e € G a inverzny prvok a~! € G ku kaZdému prvku grupy,

(aob)oc=ao(boc) aoce=eoa=a aoca'=a"loa=c¢e

Operécia o pritom nemust byt komutativna.
"Dve po sebe nasledujtice transformécie, napr. roticie R1(6) a Ra(¢), st ekvivalentné jedinej transformécii, v tomto
pripade R3(9) = R1(0)R2(¢) (vo vieobecnosti okolo roznych osi). Stin operédtorov je vo vieobecnosti nekomutativny!

33



V pripade spojityich transforméacii je teda vztah medzi transforméaciou a jej generatorom?®

wopoot - ()
J 0;=0

=

Generatory tejto grupy su formalne derivaciami jej prvkov (operatorov transformécii) v okoli identity
(6, — 0), a tvoria tiez vlastni grupu - tzv. Lieovu algebru g. Pre kombinaciu konecngch (nie
infinitezimélnych) transformacii vSak plati

ABDAG?) =1+ (6 + 62)X; + ... # A0 +6%)

Binarnou operaciou tejto grupy - Lieovej algebry - teda nie je prosté nasobenie - jeho vysledok totiz
nemus? byt tiez prvkom tejto mnoZiny! D4 sa viak ukazat, e jej prvkom® bude komutator

~ ~ ~A ~oA C% RIS IR N 1% 1% ¥ 1% 1%, ¥
[Xh XQ] = X1 X5 — X0 X eX1eX2 — €X1+X2+§[X1,X2]*ﬁ[Xl,[Xl,Xz}]*ﬁ[XQ,[X1,X2]]+...
Inymi slovami, eXte®2 = eX17%2 len ak generatory X, X, komutuji, ¢o vo vieobecnosti neplati.
Lieove algebry teda tvoria uzatvorené grupy vzhladom na binarnu operaciu komutdtor.'®

Kazda Lieova grupa definuje urcity pocet p linedrne nezdvislych bazovijch generdtorov svojej Lie-
ovej algebry, Xj, pomocou ktorych vieme skonstruovat Tubovolny iny prvok algebry, X = Z? chj
(¢; mozu byt realne alebo komplexné). V tomto zmysle generéatory algebry tvoria vlastny p-rozmerny
abstraktny priestor algebry. KedZe komutéator Tubovolnych dvoch bazovych prvkov algebry (t.j. ge-
neratorov) musi byt tiez prvkom tejto algebry (poziadavka uzavretosti grupy), plati (v Einsteinovej
konvencii)

[Xjan:] - _[Xkan] = Cjlel = —ijzXz

kde Cji; je tzv. Struktiarna konstanta, ktord definuje dant Lieovu algebru.

7Z predchéadzajucich kapitol vieme, Ze generatormi transforméacii (t.j. generatormi Lieovej algebry) st
meratelné veli¢iny.!* V kvantovej fyzike vSak operatory meratelnsjch veli¢in musia byt hermitovské,
¢o zabezpec¢ime ,predefinovanim® Lieovej algebry na

do

ik A0) = e — 14 i0% + . X:—i(dA(9)>
6=0

V maticovyjch reprezentéciach operatorov to znamena'? Xt = (XT)* = X, pricom prvky matic X
budu z oboru komplexngjch ¢isel. Znamienko + pred ¢ zavisi od volby konvencie.

8Vo vieobecnosti Taylorov rozvoj funkcie v okoli referen¢nej hodnoty premennej je

F(60+6) = £(60) + (jﬁ)e ;.

V nagom pripade je touto funkciou transformaény predpis, f(6o +6) — A(6;) a f(6p) — A(0) = 1.

9)21,)22 cg, [Xl,XQ] €y ale Xl . XQ §é g

0U% v kap. 1.1.3 a 1.2.1 sme ukazali, Ze generdtory transformdcii pésobia prostrednictvom komutatorov, resp.
PZ v klasickej mechanike, kym operdtory transformacii posobia priamo, t.j. nasobenim zlava. Doporu¢ujeme preto
yhezasvatenému® Citatelovi konfrontovat tieto abstraktne znejice tvrdenia s obsahom spominanych predchadzajicich
kapitol.

11V skuto¢nosti stubor vetkych kvantovomechanickych operatorov pozorovatelngjch velicin tvori Lieovu algebru.

124 _ hermitovsky zdruzeny, T - transponovany, * - komplexne zdruZeny operator.
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I1.1.2 Reprezentacie Lieovej grupy a algebry.

Reprezentaciou Lieovej grupy spojitych transformacii G bude pre nas konkrétne vyjadrenie prvkov
danej grupy,’> A € G, a generdtorov jej algebry, X e g. VoIba reprezentéacie zavisi od charakteru
a dimenzionality priestoru, v ktorom ,ziju“ transformujice sa objekty. Ak tymito objektami su spojité
funkcie ¢asopriestoru, bdza tohto priestoru je oo-rozmernd.'* V tomto pripade generdtory X repre-
zentujeme prostrednictvom diferencidlnych operatorov (ako ich pozname z kvantovej mechaniky,
napr. p, = —ihd,). Takéto reprezentacie nazyvame spojitymi. Samotné operatory transformacii A
st v tejto reprezentacii exponencidlami s diferencidlnymi operdtormi v exponente (kap. 1.2.1 alebo
1.2.3).

Pri transformécii objektu s d stupiami volnosti (napr. pri rotacii 3D vektora okolo svojho po-
¢iatku je d = 3) je tento objekt reprezentovany d-rozmernym vektorom (linearnou kombinaciou
d bazovych vektorov).'® Generatory transformaci X st v tomto pripade reprezentované maticams
d x d, posobiacimi prostrednictvom nasobenia na d-rozmerné vektory. Takéto reprezentacie nazyvame
d-rozmernymi. Samotné operatory transformacii A su v takychto reprezentacidch exponencidlami
s maticamsi v exponente.

V kontexte fundamentalnych fyzikdlnych poli (spojite rozlozenych v ¢asopriestore) s vnitorngmi
stuptiami volnosti (vndtorngmi abstraktnymi d-rozmernymi vektorovymi priestormi Zijicimi nad
Casopriestorovymi bodmi) to znamena, Ze Casopriestorové (aktivne ¢ pasivne) transformécie poli
budu pozostavat z casopriestorovej casti v spojitej reprezentdcii a transforméacie vnitorngch priestorov
v d-rozmernej reprezentdcii.*®

Pri d-rozmernych reprezentaciach konkrétny tvar transformacnych operatorov a generatorov zdvisi
od volby bdzy vektorového priestoru. (Zmenou bazy sa zmeni ich tvar, ako uvidime v nasledujucich
kapitolach.) Nezavislou na tejto volbe je v8ak §truktira algebry - komutaéné vztahy medzi genera-
tormi.

Vizba medzi konkrétnou reprezentaciou Lieovej grupy a jej algebry v8ak nie je jedno-jednoznacnéa:
7 danej reprezentacie grupy vieme derivovanim jednoznacne urcit odpovedajicu reprezentaciu jej
algebry. Opa¢ny proces - dosadenie reprezentécie algebry do exponenciadly - uz jednoznac¢nym byt
nemusi - dand reprezentacia algebry moze prislichat, ako uvidime, viacerym grupam.

O neredukovatel'nej (ireducibilnej) reprezentacii hovorime vtedy, ak posobenie lubovolného
prvku grupy na lubovolng vektor daného priestoru vedie opat na vektor celého tohto priestoru. Na-
opak, ak v danej reprezentacii existuju podpriestory, v ktorych je posobenie grupy uzavreté (t.j. tieto
podpriestory sa navzajom ,nemieSaju”), reprezenticia je redukovatelnd. Znamena to vtedy, ze kazdy
generator algebry X]- sa da rozdelit na generatory )A(}, )A(f, ... posobiace oddelene v podpriestoroch,

13Gamotnéd grupa je len mnoZinou abstraktnijch objektov s definovanymi vzdjomnymi vztahmi - Struktirou. Jed-
notlivé reprezentacie priraduju tymto abstraktnym objektom konkrétnu formu (&isla, vektory, matice, jablka...) pri
zachovani Struktiry grupy.

14 Bdzou rozumieme mnozinu ortogondlnych funkcii, prostrednictvom ktorych vieme ,skomponovat“ kazda funkciu
daného priestoru. Napr. pomocou Fourierovej transformécie dokdzeme lubovolni spojitti funkciu ¢asopriestoru vytvorit
z nekoneéného poctu bdzovych funkcii - sinusov a kosinusov vsetkyjch frekvencii a vlnovych ¢isel.

15V tejto casti textu pouzivame pojem vektor v zovieobecnenom vyzname, ako 'ubovolnu stipcovi maticu d x 1,
s d redlnymi alebo komplexnymi komponentami. V inych ¢astiach textu je tento pojem vyhradeny pre ,bezné“ 2D /3D
objekty s redlnymi komponentami, resp. pre 4D relativistické §tvorvektory. RozliSenie vyznamu by malo byt zrejmé
z kontextu.

16V kap. 1.3.4 a 1.3.5 sme transformovali (postvali a otacali) skaldrne polia bez vnitornej Strukttry (jeding stupei
vol'nosti), vystacili sme teda so spojitou reprezentéciou. Veobecnejsie pripady rozoberieme v dalSom texte.
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v maticovej podobe

X oo
X = 0 ij

kde X}, X?, ... st matice rozmerov podpriestorov.

Pojem ireducibilnd reprezentdcia je kIic¢ovy pri kategorizacii elementdrnych Castic. Je zrejmé, ze pri-
vlastok elementarny sa viaze invariantnost fundamentdlnych vlastnosti voci transforméciam pri ich
pozorovani. V zavere tejto ¢asti definujeme grupu takychto transformacii.'” Roéznorodost vlastnosti
elementarnych ¢astic/poli sa manifestuje prave v rozdielnom sposobe ich transformovania, vyjad-
renom konkrétnou ireducibilnou reprezenticiou tejto grupy. Nasledujice kapitoly s preto venované
hTadaniu ireducibilnych reprezentécii dolezitych grip ako nastrojov na definicie elementérnych ¢astic.

I1.2 Ortogonalne transformacie.

I1.2.1 Ortogonalne grupy O(D), SO(D).

Ortogonalna grupa O(D) je grupou priestorovych transforméacii v D-rozmernom redlnom priestore,
pri ktorych sa zachovdva velkost vektora (skalarny sucin). Je tvorena mnozinou ortogonalnych matic!®

1 0 ... 0
AA gaT =g = | O L 0 Al AT
00 .. 1

kde A~ a AT st inverznd a transponovand matica k matici A, a 1 je jednotkovd matica (identita).
V d-rozmernej reprezentacii maji matice rozmer d X d a poésobia na d-rozmerné vektory. Pre za-
kladnt (defini¢nii) reprezentaciu grupy plati d = D. Z tychto defini¢nych vztahov grap O(D)
tiez vyplyva podmienka det(A) = +1.

V 2D (D = 2) su takymito transforméciami odraz a rotacia. Ak zvolime  kartézsku“ reprezentaciu
transformujucich sa 2D vektorov (s bazou €, €,),

U = Vyp€p + Vy€y = v 1 + v 0 _( v

potom odraz (zrkadlenie) zloziek vektora ¥ vzhladom na os z, resp. y je
v, =—1-v,+0-v, v, =0-v, +1-v, resp. v, =1-v,4+0-v, v, =0-v, —1-v,

Matice odrazu v takejto reprezentacii su

-1 0 1 0
Px_(o 1) 7)y_(o—1)

1"Bude tiou Poincarého grupa.
18Kazdy stlpec/riadok ortogonalnej matice je vektorom ortogonalnym voci ostatnym stipcom /riadkom.
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Rotacia vektora v Tavotocivo'® o uhol 6 (> 0) znamena transformaciu jeho zloziek

/ . . I .
v, = Uy cos O + v, sin 0 vy——vmﬁn@—i—vycosﬁ

Matica l'avotoCivej rotécie vektora ¢ v 2D v tejto reprezentécii je teda

—sinf@ cosf

R(Q)z( cos 6 51119) .,

Samotné matice rotdcie tvoria podgrupu SO(D), splitajicu dodatoéni $pecidlnu?® podmienku
det(A) =1

ktora zabezpetuje zachovanie Tavej/pravej ,ruky“. (Pre matice odrazu plati det(A) = —1, pri odraze
sa meni prava ,ruka“ na lavt a naopak.)

Matice rotacii okolo ortogonalnych osi x,y, z v 3D, tvoriace v ,kartézskej* reprezentacii bdzu grupy
SO(3), su

1 0 0 cost, 0 —sind,
R.(0,)=1| 0 cosf, sinb, R, (0,) = 0 1 0
0 —sinf, cosf, sinf, 0 cosb,

cosf, sinf, O
R.(0,) = —sinf, cosf, 0
0 0 1

Rozsirenim SO(3) aj na pripady det(.A) = —1 dostavame grupu O(3), ktora popri rota¢nych maticiach
obsahuje aj matice odrazov (zrkadleni podla jednej z osi) 3 X 3 a maticu priestorovej inverzie, ¢ize
zmeny parity, P = —1(3x3).

I1.2.2 Generatory grap SO(D).

Na rozdiel od odrazov, rotacie st spojitymi transforméciami, grupy SO(p) st teda Lieovymi grupami.
7 defini¢nych podmienok tychto grip pre ich prvky R a generatory X ich Lieovej algebry, obvykle
oznacovanej so(D), plati

RTR =1 det(R) = 1 R =X

Odtial vyplyvaji podmienky?!

A

Tr(X) =0 XT=-X

Matice generatorov X musia teda byt antisymetrické. Vo veobecnosti v D-rozmernom priestore maju
antisymetrické matice D x D grupy SO(D) (s nulovou diagonalou) prave p = D(D — 1)/2 voInych
parametrov (ostatné prvky matice D x D su ur¢ené definiénymi vztahmi, v tomto pripade antisymet-
rickostou). Tieto nezavislé parametre odpovedaji stupriom volnosti s prislichajicimi generatormi,
a tvoria p-rozmerny generdtorovy priestor Lieovej algebry. Pocet generatorov p sa vo vSeobecnosti

19V texte uvazujeme aktivnu lavotocivi rotaciu objektu o kladny uhol, ¢ize pasivnu pravotocivi rotaciu siradnicovej
stustavy o kladng uhol.
200dtial nazov Special Orthogonal.

21yyuzili sme maticové pravidlo det(eX) = e 17X, kde Tr(X) je stopa matice X.
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nerovna poc¢tu dimenzii redlneho priestoru, pre kazdé D je v8ak jednoznacne dany uvedenym vzta-
hom.??

V kap. 1.1.3 sme si ukazali, Ze v klasickej mechanike si generatormi spojitjch transformécii (vo
fazovom priestore), napr. infinitezimalnych rotacii o uhol § — 0, antisymetrické PZ generujucej
veli¢iny, v tomto pripade zlozky momentu hybnosti L;, a transformaéné (v tomto pripade rota¢né)
operatory (v spojitej reprezentécii) maja tvar

Ro = Ulit =21 4 9{. L}

Generatory Xj algebry so(D) (posobiace na vektorovy priestor tejto algebry) by sme teda mohli
fyzikdlne stotoznit s poissonovskymi operatormi {-, L,}. Kvantova fyzika vSak pre meratelné veli¢iny

pozaduje hermitovské operatory. Kedze matice R st redlne, musime zmenit definiciu algebry na?
A - A dR(Q)
X —aJ J = -
7 lo=0

V dalsom texte budeme pracovat s takto definovanymi hermitovskymi generatormi.

Pre D = 2 obsahuji rotacné matice jedingy parameter 6, abstraktny operdtorovy priestor Lieovej
algebry je teda l-rozmerny, p = 1, s jedinym generatorom rotécii,?* napr. v rovine zy v kartézskej
reprezentacii z predchadzajtcej kap. 11.2.1

- . 0 1
J——z(_l O)

V 3D je D = 3 a rovnako p = D(D — 1)/2 = 3, ¢omu odpovedaji 3 generatory. V kartézskej
reprezentdcii mame potom 3 rotacné matice so samostatngm parametrom ¢; okolo kazdej z osi z,y, 2
Kartézsku bazu generdtorov tvoria

) 0 0 0 ) 00 —1 ) 0 10 o )
Jo=—i| 0 0 1 Jy=—i{ 00 0 J.=—i| =1 00 [, i) = i€,
0 —1 0 10 0 0 00

Struktirnou konstantou tejto algebry je teda €jy; - (antisymetricky) Leviho-Civitov symbol. Vidime,
7e komuta¢né vzfahy pre generatory algebry so(3) a kvantovomechanické operatory momentu hyb-
nosti L; st totoZné (az na rozmerovi kongtantu /), ¢o svedéf o ich hlbokom suvise.?

Linearnou kombinaciou tychto bazovych generatorov vieme skonstruovat lubovolng prvok so(3) ako
generator rotacie okolo osi danej jednotkovym vektorom 7 = (n,,ny,n,)

R R X R N 0 —-n, ny R
J=nJpy +nydy+n.J, =n-J=1 n, 0 —-n, | =in
Ny Ny 0

22V3eobecné rotacie v D-rozmernych priestoroch sa daju rozlozit na nezavislé rotacie v jednotlivych ortogondlnych
rovindch. PoCet generatorov algebry je dany prave poc¢tom tychto rovin: V 2D je jedind rovina, v 3D sa tri. V 4D
s ortogonélnymi osami x,y, z, w mame Sest ortogonalnych rovin xy, xz, rw,yz, yw, zw, atd.

237namend to, e iJ je redlne, iJ = (iJ)* = —iJ*, a teda J* = —J. Zaroveh plati JT —J, ¢o vedie na J = J1.

24T4ato algebra neobsahuje Struktirnu konstantu (kap. I1.1.1), resp. jej struktirnou konstantou je 0.

P Kym tu uvedené vzfahy st 3-rozmernou reprezentaciou generatorov rotacii, kvantovomechanické diferencialne ope-
ratory su ich spojitou reprezentaciou. Struktira algebry je vSak rovnaka. Komuta¢né vztahy sa teda rydzo ,klasickou®
zékonitostou. Definovanie zloZiek momentu hybnosti prostrednictvom generatorov rotacii je zasadné: V kvantovej me-
chanike totiz nie je vZdy moZné definovat moment hybnosti telesa (najmé s ohladom na spin) rovnakym sposobom
ako v klasickej fyzike, L=7x P, ak uvazime, ze pojem polohovy vektor nema (mimo merania) zmysel.
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kde 7 - J je ,skalarny* sucin vektora 7 s ,vektorom® f, ktorého zlozkami st matice jj, a i je
symbol pre maticu-operdtor. Maticu takejto roticie skonstruujeme pomocou vztahu R,(6) = e
jeho rozvojom do Taylorovho radu?®,

Ron(0) = cos01 + (1 — cos0)(7 @ 7@) — sin 7

(® je tenzorovy sudin, kazdy s kazdym) ¢o je maticovy zapis tzv. Rodriguesovho vzorca, alebo

cosf +nZ(1—cos)  nyny,(l —cosf)+n,sinf nyn.(1—cosf)—n,sinb
Ru(0) = [ nyne(l —cosf) —n.sinf  cos@+n2(l—cosf)  nyn.(1—cosf)+ n,sind
n.ng (1 —cosf) +nysing n,n,(1 —cosf) —n,sinf  cosd + n(l—cosb)

I1.2.3 Dolezité reprezentacie SO(2).

Neredukovatelnou zdkladnou reprezentaciou grupy SO(2), vo forme redlnych matic 2 x 2, je kartézska
reprezentacia z predchadzajicich kapitol

—sin@ cosf

R(e):( cos sin@)

V tejto reprezentécii su transformujice sa objekty stlpcovymi vektormi 2 x 1 s redlnymi prvkami,
vyjadrujticimi kartézske zlozky 2D vektorov. V grafickom vyjadreni (obr. a nizSie) ide o rotaciu
vektora okolo pociatku suradnicového systému (napr. polohového vektora bodu).

Podobnostnou transforméciou matic R(#) dostaneme in4 reprezentaciu SO(2) vo forme komplezngch

. . . . 1 '
matic 2 x 2: Najdeme ju pomocou vlastngch vektorov matice R(#), ktorymi st \/ii ( ; ) a L < ! )

V2 \ 1
s vlastnymi hodnotami e? a e~ pri¢om tieto vektory tvoria stipce matice S = \/Li ; i takej,
i0
7e STIR(0)S = R(0) = 60 egg ) je diagondlna matica. Téato reprezentacia SO(2) je vSak

v obore komplexngch Eisel o¢ividne redukovatelnd (kap. I1.1.2) na dve rézne jednorozmerné (dalej
neredukovatelné) reprezentacie®’

RS (0) = ¢

V nich prvky grupy SO(2) uz nie st maticami 2 x 2 s redlnymi komponentami, ale kompleznijmi &is-
lami, a ,vektorovy“ priestor (t.j. mnozina navzajom sa transformujtcich objektov) tychto reprezentacii
uz nie je tvoreny 2D wvektormi ale tiez komplexnymi éislami (bodmi v Gaussovej rovine, pri nezme-
nenom pocte stuptiov volnosti),”® @ — v, + iv,. Rotacia 2D vektora v = (v,,v,) pravo,/Tavotocivo
o uhol 0 v zakladnej reprezentacii

U = (v, cosf F v, sinf, v, sin + v, cosb)
sa v kompleznej reprezentacii zmeni na nasobenie jednotkovym komplexnym ¢islom et v komplexnej
rovine.

v’ = e = (cos§ +isin 0) (v, + ivy)

V grafickom vyjadreni (obr. b) ide o pootocenie polohy bodu v Gaussovej rovine.

26yuzijeme pritom, ze 72 =7 @7 = 1 , i3 = —, atd.

*"Neexistuje podobnostna transformécia, ktora by RS () previedla na R¢ (6) alebo naopak.

28Cli rovinu, v ktorej rotujeme dany objekt, povazujeme za redlnu (kartézsku) alebo komplezni (Gaussovu), je vecou
matematického opisu - reprezentécie.
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Inym pripadom je oo-rozmernd, Cize spojitd reprezentacia, v ktorej transformujicim sa objektom je
hladkd spojitd funkcia - pole ¥(7) (bazu tvori nekoneény pocet o-funkcii). Pre jednoduchost uvazujme
skaldrne pole s trividlnou vniitornou Struktirou, ¢ize 1 ako (reélne alebo komplexné) ¢7slo pre kazdé
7. Kedze aktivna rotacia pola 1 v 2D rovine (obr. ¢) o uhol @ je ekvivalentna pasivnej rotacii siradnic
(pozorovatela) o uhol —0, pre infinitezimdlnu rotaciu @ — 0 plati (v kartézskych siradniciach)

P(r) = Royp(r) = p(RE,r) = Y(F+ AF) = {1 + (A:c% + Ay%) + 1 W(T)

kde (Taylorovym rozvojom cosf a sin @ v matici R®, v kartézskej reprezentacii)

() e (6 ) ()= (G) =)

Dosadenim Ax, Ay do predchadzajiceho vztahu a porovnanim s defini¢nym vztahom pre generator
J dostavame

RoW(7) = (7)) = [L+i0J + .. ()

Il
—
—
|
>
RS

<
Q>| Q)
|
8
gl
N————
+
| I |
<
3

V poslednom vyraze rozpozname (podla o¢akavania) predpis pre operator momentu hybnosti L (pri
h = 1), a stotoZnenie L=J=—i (xa% - y%) dava R = ¢ A, a to aj po dopocitani rozvoja do
vyssich mocnin 6. Alternativne by sme mohli prejst k polarnym siradniciam a zopakovat postup, ¢o
by nas priviedlo k vyrazu J = —i%. Pre spojitu rotaciu pola teda jej generator namiesto matice na-
dobuda tvar diferencidlneho operatora momentu hybnosti, posobiaceho na ¢ (7), ¢o svedéi o hlbokom
stvise formalizmu kvantovej (a aj klasickej) mechaniky s Lieovou algebrou.

I1.2.4 Dolezité reprezentacie SO(3).

Pri ,Standardnej“ rotacii vektorov v 3D priestore je vhodnou volbou kartézska reprezentécia s trans-
formujicimi sa stlpcovymi vektormi 3 x 1 a generatormi transformacii v tvare matic 3x3 z kap.
I1.2.2. Prechodom do komplexného oboru (analogicky ako v 2D pripade v kap. 11.2.3) dostaneme
napr. komplexni reprezentaciu matice rotacie okolo osi z v tvare

e'f- 0 0
RE@B) =] 0 e 0
0o 0 1

Na 3D pripad mozeme roz8irit aj spojita reprezentaciu z kap. 11.2.3, s generétormi v tvare diferencial-
nych operatorov. Trojica generatorov grupy SO(3) pritom spliia komutaéné vztahy [J;, Ji] = i€juJ;
nezdvislo na vibere reprezentdcie (teda ¢i uz v tvare konkrétnych matic alebo diferencidlnych opera-
torov).

Uzatvorenost (ako defini¢na vlastnost grupy) SO(D) znamena, Ze rotaciou prvku (vektora, komplex-
ného ¢isla, hodnoty pola, ...) z ,vektorového“ priestoru danej reprezentacie dostavame opét prvok

29Takymto polom je napr. Schrédingerovo pole z kap. 1.3.8
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tohto priestoru. V 3D priestore je najprirodzenejsou doménou podsobnosti grupy SO(3) gulovd plocha
S - tzv. dvojsféra®® - mnozina bodov 7(z,y,2) € S@, pre ktoré 2% + 32 + 22 = r? = konst. Poso-
benim rota¢nych matic sa totiz polohové vektory bodov dvojsféry transformujia v ramci dvojstéry,

Rir=7"¢e S

Prechodom k sférickiym suradniciam je kazdy bod na dvojsfére s fizovangm polomerom (pre jed-
noduchost mozeme uvazovat r = 1) urceny stiradnicami (,9) (¢ - odklon od osi z v rovine zy,
¥ - odklon od osi z). Pre Tubovolnti skaldrnu funkciu (¢, ), definovant na S@ pritom plati

00 l
¢(¢7 19) = Z Z alm}/lm(gﬂ 19)

=0 m=—1

kde Y, (p, ) st komplezné sférické harmonické funkcie®' (Dodatok F), a;, st komplexné koefi-
cienty, a [, m su celé &sla. Funkcie Y, (¢, 7)) teda tvoria prirodzena dplni bdzu pre realne aj kom-
plexné funkcie na S®). Na funkcie ¥(¢,9) mozeme nahliadat ako na akési ,zovieobecnené” vektory
- linedrne kombinécie bdzovych funkcii-vektorov Y, (¢, ). Rotacimi grupy SO(3) transformujeme
funkcie-vektory 1 v ramei abstraktného vektorového priestoru tychto funkcii. Tento priestor (s touto
bézou) pritom pozostava z (20 + 1)-rozmernych podpriestorov s danym [, kazdy s 2/ + 1 bazovymi
vektormi s odlisnym m. Pre Tubovolny vektor kaZdého podpriestoru (s danym [),

() =Y aumYim(P) (11 =1)

m=—I
plati, Ze jeho rotaciou maticami SO(3) dostaneme opét vektor tohto podpriestoru,

l l

Rotr(7) = Yu(Rg7) = D aimYim(R-oF) = > ammYim ()

m=—1 m=—1

Kazdy z tychto podpriestorov s danym [ - orbitalnym kvantovym ¢&islom - tvori (20 + 1)-rozmernt
ireducibilni sférick reprezentaciu grupy SO(3). Z Dodatku F vieme, 7e jej bazové stavy Y, st vlast-
nyms stavmi generatora J., ktory je v tychto reprezentaciach diagondlny. Ak tieto stavy vyjadrime
ako stlpcové vektory (matice d x 1) s jedinou nenulovou zlozkou (odpovedajicou danému bazovému
,Smeru’), J, bude diagondlnou maticou d x d. Napriek tomu, ze SO(3) je grupa rotacii v 3D priestore,
hodnota d (urcujica dimenziu reprezentacie a matic) je vo vSeobecnosti rézna od 3.

Pocet generatorov algebry p vsak od reprezentacie nezavisi. V pripade s0(3) mame 3 navzdjom
nekomutujiice generatory,3? siucasne mozeme teda diagonalizovat jeding z nich - tzv. Cartanov ge-
nerator®? - konvenc¢ne J,. Pomocou zvySnych  kartézskych* generatorov J,, J, definujeme ,pomocné”
operatory ako ich komplezné kombinacie

Jy = (o +iJ,)/V2 Jo=(J, —iJ)/V2 = 2 2=+ T+ 2
s komuta¢nymi vztahmi*

A

[, ] = J. PAPAEEDA [J%,J;] =0 [J2, Js] =0

30Kvoli odliseniu od podobnych tGtvarov vo viacrozmernych priestoroch pouzivame miesto obvyklého terminu sféra
termin dvojsféra, ako zakrivend 2D plocha vnorend do 3D priestoru. Prirodzene predpokladame pociatok kartézskych
siradnic v strede dvojsféry.

31Uvedeny vztah je akymsi zovseobecnengm Fourierovym radom, v ktorom sii reélne/komplexné harmonické funkcie
nahradené sférickymi.

32V kvantovej mechanike sa tato skuto¢nost manifestuje ako nemoznost stéasne presne urcit viac nez jednu zlozku
momentu hybnosti.

33Vo vieobecnosti, grupy SO(D) pre D > 3 obsahujt niekolko ,,Cartanov.

3 Operatory Ji neodpovedaji rotaciam, spolu s .J, viak tvoria grupu/algebru. Neplati to pre J2 - nie je linedrnou
kombinaciou .J;.
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V kontexte priestorového kvantovania orbitdlneho momentu hybnosti pozname operatory J. ako
operatory skokovo meniace priemet momentu hybnosti na os z prostrednictvom preskokov medzi
bazovymi stavmi Y}, v danej sférickej reprezentacii atébmovej podvrstvy (t.j. pre dané [). Operator
J? zas pozname ako operator (kvadratu) velkosti momentu hybnosti v podvrstve.

Stérické harmoniky Y}, v8ak tvoria len jednu z mozZnijch reprezentécii takejto algebry. Posuime preto
nase Gvahy na vSeobecnejsiu troven, a v dalSom texte oznac¢ujme vlastné stavy /vektory diagondlneho
(Cartanovho) generatora J, ako v,,. Operatory Jy posobia ako zvySovaci/zniZzovaci operator
vzhladom na vlastné hodnoty m prislugné k vektorom v,,,

szm = MU jz(jivm> = jzvmil =..= (m + 1)Umi1

Hermitovsky operator J? je tzv. Casimirovym operatorom algebry so(3) - komutuje so vetkymi
operatormi tejto grupy. Pre jeho vlastné hodnoty mozeme pisat

J?v,, = (12U J? = ©21 (i - redlne ¢islo)

Pre zvy$ovaci/znizovaci operator potom vieme odvodit vzfah?®

Jpv,, = \/,u2 —m(m £ 1) vy = p? > m(m+1)

Spektrum vlastnych hodnot m je ohranicené zdola, resp. zhora, len ak plati

~ ~ % 9 9
J—Umin =0 szmin = MminUmin J Umin = W Umin Mmin (mmin - 1) = U
J =0 J = M J? = 12 1) = u?
+VUmaz = 2Umaz = MminUmax Umaz = M Umaz Mmax (mmax + ) =H

7Z toho vyplyva3®
Mpmaz = —Mimin :] /JJ2 = ](.] + 1)

a jednotkovy pokles/narast vlastnych hodnot m je obojstranne ohraniceny, —j < m < j. Existuje
teda N jednotkovych preskokov medzi hodnotami —j a j, ¢ize j = —j + N a odtial j = % Hodnota
j teda moze oc¢ividne byt len celociselnd alebo polociselnd, a pre kazdé j existuje 25 + 1 hodnot m,

1 .3
=0,-,1,-, ... =45,7—1,...—7+1,—3
.] Y 27 Y 27 m j’] Y j + ) j
Znamena to teda, ze J, je diagondlna matica (2j +1) x (27 + 1) s komponentami 7,7 — 1,..., —j.

Ide o (2j + 1)-rozmernt reprezentaciu grupy SO(3), resp. jej algebry so(3), ktorej prvky nie si vo
vSeobecnosti maticami 3 x 3 (iba ak by j = 1).

Hodnota d = 25 + 1 - pocet bazovych vektorov - urcuje dimenzionalitu abstrakiného vektorového
priestoru, ¢ize pocet jeho stupnov volnosti. Tato baza pokryva cely priestor (operatory jx, jy st
linearnymi kombinaciami ji, a to isté plati aj o ich vlastnych vektoroch - vSetky sa daju ,yyskladat®
z bazovych vektorov). KaZdému j odpovedd d-rozmernd reprezentdcia algebry so(3) v prislusnom
d-rozmernom vektorovom priestore - jej generdtory maju tvar matic d x d.

Je namieste rekapitulacia priestorov: S grupou SO(3) pracujeme v 3D fyzickom priestore, D = 3.
Algebre tejto grupy odpoveda p = 3—rozmerny operdtorovy priestor - pocet generatorov (lebo p =
D(D —1)/2 = 3) - moze ist o sadu Js, jy, J., resp. ich kombinaciu J, J_, J,. Tieto generatory ,Zija*
(operuju) v d-rozmernych wvektorovgch priestoroch s d = 25 + 1 bézovymi vektormi v,,, pricom d
(dané prislugnou vlastnou hodnotou j Casimirovho operatora) uréuje dimenzionalitu reprezentdcie

350dvodenie sa da najst v §tandardnych uéebniciach kvantovej mechaniky.
36Vyssie uvedené zdvery st doverne zname z kurzu kvantovej mechaniky. Ako viak opét vidime, dovody ich platnosti
spocivaju v elementarnych symetriach, a kvantovy mikrosvet je len ,javiskom*, na ktorom sa manifestuja.
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(¢ize dimenzionalitu vektorov aj matic generatorov). Vo vSeobecnosti D # d, vo fyzickom 3D priestore
teda definujeme rdzne dimenzie reprezentacii.

Reprezentaciu samotnej grupy SO(3) dostaneme z reprezenticie jej algebry na zdklade vztahov
R;(0) = eifJi Napr. rotaciu (d-rozmerného) vektora v okolo osi z v redlnom priestore reprezen-
tuje matica eifJ: Vektor v je pritom superpoziciou (25 4+ 1) bazovych stavov vy, - vlastnych stavov
operatora J,, ¢ize

R.(0)0 = 0 = e Y cpvm = > e, m=—j—j 41— 1,

m m

Ako priklad uved'me reprezentaciu so(3) v trojrozmernom vektorovom priestore, d = 2j + 1 = 3, ¢ize
7 =1, m=1,0,—1. Bazové vektory a diagonalny operator su

1 0 0 10 0
|7, m) : ,1)=1{ 0 ,00=1[ 1 I1,-1)=1{ 0 J.=100 0
0 0 1 00 —1

Z tychto bazovych vektorov a predchadzajtcich vztahov vieme identifikovat tvar zvySovacieho/znizo-
vacieho operatora,

j+:\/§

coo
oo~
oo
‘Kn
I
&
oo
— oo
coo

a pomocou nich zvysné generatory algebry

(010 {0 =i 0
J,=—11 0 1 Jy=—=11 0 —i
V2 010 V2 0 ¢+ 0
Odpovedajica reprezentacia grupy SO(3) je R;(0;) = €%i = ... =1 +isinb,.J; + (cos6; — 1)(J;)?
e’ 0 0
R0)=[ 0 1 0
0 0 e

(cosf, +1)/2 isind,/v2 (cosf, —1)/2
R.(0,) = isiné’x/\/ﬁ cos 6, 1sin Gx/\/i
(cos@, —1)/2 isinf,/v/2 (cosf, +1)/2

(cosf, +1)/2  sinb,/v/2 —(cosf, —1)/2
R,(0,) = — sin Qy/\/§ cos 0, sin Qy/\/§
—(cosf, —1)/2 —sin6,/v/2 (cosb, +1)/2
¢o st o¢ividne odlisné vztahy nez tie v zdkladnej reprezentacii z kap. 11.2.1 (kde Ziadny z generatorov
nebol diagonélny).

Pripad j = 2, d = 5 by predstavoval 5 bazovych vektorov 5 x 1 a J, = diag[2,1,0, —1, —2], atd.
Rotéacia o = 27 v realnom priestore znamen4 identitu, to je viak splnené®” len pre celo¢iselné m, ¢ize

37Vidime to pomocou rozkladu na bazové vektory

ey = = (c_ju_j 4 .+ cjuy) = c_ Dy 4 ey,
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pre j = 0,1,...! Podla predchadzajuceho textu rovnako dostupné polociselné j, vedice na otocenie
jednotlivych zloziek o 7, ¢ize transformaciu v — —v, teda nemozu reprezentovat grupu SO(3). Inymi
slovami, takéto reprezentacie algebry so0(3) generuju reprezentaciu Jirgej grupy transformécii, nez je
SO(3).%8

11.2.5 Rotacie vnitorného priestoru poli - spin.

Pri rotaciach poli v spojitych reprezentaciach grip SO(2) a SO(3) z predchadzajucich kapitol sme
predpokladali trividlne - skaldrne polia. Zamerajme sa teraz na rotécie poli s netrividlnou vnirornou
§truktirou. Najjednoduchsim (a jedinym nézorne predstavitelnym) je pripad vek-

torového pola - kazdému bodu 7 v 3D priestore prislicha vektor f(7). Pasivnou ﬁi
rotaciou stradnic/pozorovatela sa transformujui (,prelievaji® jedna do druhej) nie-

—-——

len zlozky vektorov 7, ale aj vektorov f Kym pre rotaciu skaldrneho pola napr.
okolo osi z o infinitezimalny uhol 6, plati (podobne ako v kap. 11.2.3)

V() = R (7 = b(R2,7) = .. 2= (1 +i0.L.)(7)
pre rotaciu vektorového pola bude platif
f(7) = REJ(7) = Ry [(R,.7)

kde Rgz predstavuje rotaciu vektora f v danom mieste 3D priestoru, teda prostrednictvom generé-
tora v diskrétnej - maticovej reprezentécii (na rozdiel od rotacie polohy 7 naprie¢ priestorom, teda
v spojitej reprezentacii). Ak ozna¢ime tento generator ako S., potom Rgz — ¢i%:0: o (1+ i@ZS’Z),
a v linedrnom priblizeni dostaneme

— —

R F(7) =2 (1440, JO)F(7) = ... = (1 +0.5.)(1 +i6,L. >~ (1 +i6,[S, + L,
o, f(7) = ( Z\Z/)f(f (1+40.5.)(1 +i0,L.) f() = (1 +1 ) (7)

Vidime, Ze generator jz celkovej rotacie vektorového pola je su¢tom generatorov ﬁz a SZ, a rovnako
pre ostatné katrézske zlozky, X ) R

Jj — Lj + Sj
Vo fyzikdlnom kontexte to znamena, ze celkovy moment hybnosti pola je saétom orbitdlneho a

vnitorného momentu - spinu (skalarne pole je bezspinové). Komutacné vztahy generatorov algebry
50(3) pritom platia rovnako pre kartézske zlozky vSetkych generatorov,

Ly, L) = iejul; (S5, k] = i€, [Jjs i) = iejud;
Kombinéciou uvedenych vztahov tiez dostaneme
(L, ) = [Lx, 551 = 0
¢o znamené, 7e generatory L; a S; komutujii - posobia totiz na rozne vektorové priestory.

V tejto uvahe sme predpokladali vektorové pole s troms zlozkami vektora f priradenymi kazdému
7, ako alternativu k skaldrnemu polu s jedinou (redlnou ¢ komplexnou) zlozkou.*® Vo vseobec-
nosti v8ak (s ur¢itou davkou abstraktnej predstavivosti) mozeme uvazovat polia s réznym poctom

38Touto grupou, ako neskor uvidime, je SU(2), ktorej reprezentacie nie st obmedzené na redlne vektorové priestory
(tak ako SO(3)).

39Tento zéver ostava v platnosti aj v pripade vzajomnej (relativistickej) interakcie momentov Las.

408 takymito polami sa stretdvame v zakladnych kurzoch fyziky.
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realnych ¢ komplexnych komponent (priradenych kazdému 7 v 3D). Dimenziu d (# D vo vSeobec-
nosti) tohto vnidtorného priestoru pola kéduje prave jeho spin, a prejavi sa v charaktere matic 5']-,
a to prave prostrednictvom d-rozmernych reprezenticii algebry operatorov J;, j+, J = SZ, §+, S
z predchadzajiacej kap. 11.2.4. Rozmer konkrétnej reprezentécie d spinového priestoru je podla tejto
schémy dany hodnotou*' j stvisiacou s vlastnou hodnotou spinového Casimirovho operatora
J? — S2. Pre vektorové pole je d = 3, a teda j = 1 - hovorime, Ze toto pole méa spin 1. Ska-
ldrne pole d = 1, a teda j = 0, ma spin 0. O inych druhoch poli sa dozvieme v dalsich ¢astiach
textu.

V kap. 1.3.5 sme ukazali, Ze pri priestorovych rotaciach sa zachovavaji generatory tychto rotécii.
Obmedzili sme sa tam na skaldrne polia, pre ktoré to boli zlozky orbitdlneho (priestorového) mo-
mentu hybnosti pola L;, pricom zmenu pola pri transformécii sme vyjadrili v spojitej reprezentécii,
d¢ = 0, ¢ wha”. Pre polia so spinom j # 0 viak musime okrem transforméacie stradnic (v spojitej re-
prezentacii) uvazit aj transformaciu vnitornej struktiry pola v prislusnej d-rozmernej reprezentacii.
Vo vyraze pre noetherovské stvorprudy v kap. 1.3.5 tak pribudne d'alsi ¢len,

oL
dadiy YAC)
50,0

zodpovedny za mieSanie zloZziek vnutornej Struktary pola pri rotécii v prislu$nej d-rozmernej repre-
zentacii. Uvazenie oboch prispevkov vedie pri priestorovijch rotacidch na zachovavajice sa veli¢iny
(v analogii s v kap. 1.3.5)

Jj = %ejlekl =..= %ijl/ﬂ' [(.L’kal — :Clak) —+ Sj(d) ¢d3$
Vyraz v hranatej zatvorke je kombinéciou generatorov rotacii v spojitej a d-rozmernej reprezentécii.
V prvom z nich identifikujeme operator zlozky orbitdlneho momentu hybnosti L;, kym dodatocny
druhy prispevok (rovnakého fyzikalneho rozmeru) je spinovym momentom hybnosti - spinom. Dolezité
je, ze zachovdvajicimi sa velicinami si diagondlne zloZky celkového momentu hybnosti J;, a nie
orbitdlneho a spinového momentu samostatne.

Uvedeny zaver opét pod¢iarkuje dolezitost zovseobecnujiceho pohladu na veli¢iny ako moment hyb-
nosti, hybnost ¢ energia, ako na veli¢iny definované prostrednictvom casopriestorovijch transformdcii.

11.2.6 Fyzikdlny vyznam reprezentacii.

Pre hlbsie pochopenie fyzikdlneho obsahu reprezentacii a ich vztahu k elementarnym casticiam si
najprv stru¢ne zhriime predchddzajtuce kapitoly. Kazdy operator R; grupy rotécii v kartézskej re-
prezentacii, s generatormi jj v tvare nediagonalnych matic, rotuje dané vektory okolo osi j, pricom
zachovdva ich j-ta zlozku (nulovd transformécia j-tej zlozky generovana nediagonalnym jj), ale
miesa ostatné zlozky (,prelieva“ jednu do druhej). VSeobecni priestorovi rotaciu (s mieSanim vset-
kijch zloziek) dosiahneme linedrnou kombinaciou vietkych R ;, pricom sa zachovavaji vlastné hodnoty
Casimirovho operdtoru J2 (velkosti vektorov).

V sférickijch reprezentaciach s diagonalizovanym - Cartanovym generatorom J. komplexifikované
generatory J. nepredstavuji rotacie ale ,kvantované” preskoky medzi vlastnymi stavmi ,Cartana“
J,. Potet tychto stavov urcuje dimenziu reprezentacie d, ktora siavisi so zachovavajicou sa vlastnou
hodnotou ,Casimira‘ J?. Prave takéto reprezentacie si matematickym opisom transformécii v abs-
traktnych stavoviych priestoroch kvantovych objektov.

41V ugebniciach kvantovej mechaniky sa obvykle oznacuje s - spinové kvantové &islo.
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Napr. v pripade elektronu v atome vodika je ,Cartanom® operator z-ovej zlozky orbitdlneho momentu
hybnosti, J, = L., s bazou tvorenou (20 + 1) sférickgmi harmonikami Yi,,(0,¢). ,Casimirom“ je
J? = L2, ktorého vlastna hodnota urcuje [ pre dant atomovi podvrstvu. Periodické okrajové pod-
mienky na gulovej ploche (¢o je priestor v ktorom ,7iju“ funkcie Yy,,) vediu na celociselné hodnoty I,
kazda s (20 + 1) celo¢iselnymi hodnotami m. Kazdému [ teda odpoveda (2] + 1)-rozmerny abstraktng
priestor, v ktorom ,ziju* stavy elektronu, vyjadritelné (20 + 1)-rozmernymi vektormi

Coi+1

teda v superpozicii bazovych stavov s konkrétnou hodnotou m (ur¢ujicou z-ovy priemet momentu
hybnosti). Ide o (20+1)-rozmerné reprezentdcie SO(3). Posobenie operatorov .J odpoveda kvantovym
preskokom medzi stavmi s dostupnymi priemetmi orbitalneho momentu hybnosti v rdmci podvrstvy.
Operator J, je diagondlny, a to v kaZdej z tychto sférickych reprezenticii, ¢ize sférické harmoniky Y},
st vlastnymi funkciami tohto operatora, s vlastnymi hodnotami m. V kontexte kvantovej fyziky, kde
pracujeme so stavovymi vektormi (,Zijacimi“ v abstraktnijch Hilbertovyjch priestoroch a nesticimi tplna
informéciu o veli¢inach meratelnych v danom stave) je J, hermitovskym operatorom, posobiacim na
stavy reprezentované funkciami/vektormi Yy, pre ktoré plati

szzm = inm

V zmysle Noetherovej teorémy je transformacia generovand operatorom J, - rotacia okolo osi z -
symetriou stavov Y, a veli¢inou zachovavajiucou sa pri tejto transformécii je m (resp. mh, ako
vlastna hodnota z-ovej zlozky orbitdlneho momentu hybnosti). Inymi slovami, stavy Y}, s rotacne
symetrické vzhladom na os z. Po doplneni o radidlnu zavislost ich pozname ako elektrénové orbitaly
s,p,d,f... éize I = 0, 1,2, 3... v atome vodika (obr. a, pre atomovi vrstvu n = 4). Meniaca sa fdza tychto
komplexngjch funkcii (zobrazena farebne) neméa vplyv na ich spojiti rota¢ni symetriu v redlnom 3D
priestore,*? definovaniti prostrenictvom nemeniacej sa pravdepodobnosti (Y} Yin, kap. 1.2), diskrétne
hodnoty m vsak kéduja diskrétnu rotacnt symetriu v komplexnom obore: Pre dané m je identitou
rotacia (okolo osi z) o uhol 27 /m.
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42Pre Tubovolnt dimenziu d abstraktnych priestorov je uzitoéné vnimat jm, jy, J. ako generatory pasivnych rotacii
fyzickych 3D stradnic (teda rotacii pozorovatela), vyvolavajuacich transformécie ,pohladu” pozorovatela (¢ize fyzikal-
neho opisu) tychto abstraktnych priestorov. Vhodnost takéhoto pristupu sa preukaze v nasledujicich kapitolach.
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Alternativnym zobrazenim k redlnym pravdepodobnostiam Y} Y}, v (redlnom) 3D priestore su re-
dlne kombinacie komplexne zdruZenych parov Y., (Dodatok F). Tym sa sice (vo vSeobecnosti) straca
spojitd rotaéna symetria*® okolo viznacnej osi z , na obr. b v8ak opif nachadzame diskrétne rotacné
symetrie pre otocenia o 27/l (okolo jednotlinych osi). Kvantované diskrétne hodnoty momentu hyb-
nosti - a to orbitdlneho aj spinového - teda znamenaju diskrétne rotacné symetrie v redlnom priestore.

Podstatou uvedenej schémy je spojitd (rotacnd) symetria tlohy. Ak bazu d-rozmerného priestoru
stavov vybudujeme z wvlastngch stavov jedného z generdtorov symetrie, potom kazdému z tychto
2j + 1 bazovych stavov bude prislichat jedna z moznych hodnot prislusného noetherovského ndboja.
Takymi sa aj stavy |7, m) - vlastné vektory diagonalneho generatora J. s prislichajicimi hodnotami
noetherovského naboja, napr. m = +1,0, —1 pre d = 3. Poésobenim J, sa tieto vektory nemenia -
pri rotacii okolo osi z sa z-ovy priemet momentu hybnosti - noetherovsky naboj - zachovdva. Poso-
benim nediagondlnymi komplexifikovanymi operatormi J. sa vsak tieto vektory menia (skokom na
iny bazovy vektor) - z-ovy priemet nie je noetherovskym nabojom wvzhladom na takito transformé-
ciu. Ak teda za charakteristiku stavu volime z-ovy noetherovsky naboj, operdtory Jy tento naboj
zvySuji,/znizuju.

Ako to v8etko stvisi s elementarnymi ¢asticami? Tieto vnimame ako excitacie prislusnych poli, pricom
kazdé z poli mé d vnutornych stuptiov volnosti - vntitorny d-rozmerny priestor stavov, vztyceny v kaz-
dom bode casopriestoru. Stav pola v danom bode teda opisujeme urc¢itym vektorom v d-rozmernej
reprezentacii. Ak bazu tohto vektorového priestoru tvorime z vlastnych stavov generatora komu-
tujiceho s hamiltonianom (napr. v atéme vodika'* [L., H] = 0), potom ide o ,staciondrne* stavy.
Zmena takéhoto stavu moze nastat len interakciou s inym objektom (¢asticou). Pésobenie operatorov
J. nepochybne znamena takito interakciu. Casticovo orientovany pristup teda ponika nasledovnu
zovSeobecnujicu interpretaciu: Staciondrne stavy odpovedajice vlastnym stavom diagondlnych gene-
rdtorov reprezentuju castice ldatky, a im odpovedajice vlasiné hodnoty - noetherovské ndaboje - su ich
meratelnymi charakteristikami®® Generdtory reprezentuji sily, t.j. castice ,silovijch® poli, pésobiace
na takto ,mnoetherovsky nabité“ castice: Diagondlne generdtory zachovdvaji ich identitu (noetherov-
sky ndboj), na rozdiel od nediagondlnych generdtorov - sil meniacich identitu castic v rdmci triedy
Lpribuzngch® castic (podpriestoru danej reprezentdcie).*®

Transformécie v ramci jednotlivych grip symetrii teda opisuja interakcie poli (Castic), a generatory
tychto transformécii reprezentuji fundamentalne sily - ¢astice sprostredkujice silové interakcie (ako
uvidime v ¢asti IV).

(SRR RRe
Dolezité zavery:

e Ortogonalne transformécie grupy O(D), reprezentované maticami s redlnymi prvkami, zachovavaji
velkosti vektorov s redlnymi zlozkami. Patria sem rotacie a zrkadlenia. Rotéacie tvoria $pecidlnu
podgrupu SO(D), zachovavajucu chiralitu transformovanych objektov.

e D(D — 1)/2 generatorov rotacii grupy SO(D) definujeme ako hermitovské matice/operétory, a
tvoria algebru s prislu§nymi komuta¢nymi vztahmi.

43Tjeto superponované stavy uz nie st vlastnymi stavmi J,.

4 Neuvazujeme tu spin-orbitalnu interakciu.

45Pre symetrie SO(3) st noetherovskymi nabojmi priemety momentu hybnosti, v pripade inych grip symetrii ide
aj o iné ,naboje“, ako uvidime neskor.

46Pri takomto zovseobeciiujicom pohlade interpretujeme napr. stavy elektrénu s odlisnym priemetom L, ako od-
lisné ,Castice’ v ramci urcitej triedy ,Castic*. Ak neskor nahradime priestor vlastnych stavov L, inymi abstraktnymi
priestormi ingch kvantovych ¢isel, stane sa takyto pohlad prirodzenej§im.
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e Generatory rotacii SO(3) (v Tubovolnej reprezentacii) spliiaji rovnaké komutaéné vztahy ako ope-
ratory zloziek momentu hybnosti. Rotacie (ani infinitezimalne) okolo roznych osi nekomutuji (ani
v klasickom svete). Generatory rotacii v spojitej reprezentacii su diferenciadlnymi operatormi, ktoré
odpovedaju operatorom zloziek momentu hybnosti z kvantovej mechaniky.

e Grupa SO(3) mé jeden Casimirov operator, ktorého vlastné hodnoty su charakteristikami repre-
zentacii a uréuju ich rozmer. Vlastné stavy (jediného) diagonalneho - Cartanovho - generatora tvoria
vhodnu bazu vektorového priestoru danej reprezentécie. (V kvantovej mechanike odpovedaju stavom
s priemetom orbitalneho momentu hybnosti kvantovanym v celo¢iselnych nasobkoch A.)

e V ramci ortogonalnych transforméacii vektorov sa realizuju len nepdrno-rozmerné reprezentacie. Lie-
ova algebra s0(3) vSak pripusta aj moznost pdrno-rozmernych reprezentécii (tito moznost vyuzivaji
transformacie unitdrne).

e Pri rotaciach poli s viacerymi vnitorngmi stuphami volnosti - nenulovim spinom - sa popri rotacii
fyzického priestoru transformuje aj tento vndtorny priestor, a zachovavajicou sa zlozkou momentu
hybnosti je sucet odpovedajicich zloziek priestorového (orbitalneho) momentu hybnosti a spinu.

e Kvantované diskrétne hodnoty momentu hybnosti - orbitdlneho aj spinového - koduja diskrétne
rota¢né symetrie v redlnom priestore.

I11.3 Unitarne transformacie.

I1.3.1 Unitarne grupy U(D), SU(D).

V kvantovej mechanike pracujeme so stavovymi vektormi ¢i vlnovymi funkciami v obore komplex-
nych Cisel, o si vyzaduje rozSirenie tvah z predchadzajicej kap. I1.2 na transforméacie komplezngch
priestorov - unitarne transformacie.*’

Unitarna grupa U(D) v D-rozmernom priestore je tvorena mnozinou unitdérnych matic U,
Uu =1 U =u'
Takéto transformacie posobia na vektory komplezného d-rozmerného vektorového priestoru

&
E=1 . £ eC
§a
a zachovdvaji normu kompleznijch ¢isel a vektorov.® épeciélnu podgrupu SU(D) tvoria matice

splhajtice dodatoénit podmienku det(l/) = 1.

Pripad D = 1 odpoveda v zdkladnej reprezentacii matici 1 x 1, ¢ize komplexnému skaldru z = a + 1b.
Poziadavka unitarnosti 2z = 1 znamena, ze

|zl =22 =ad* +0* =1

4TV kap. 1.2 sme ukazali, Ze prave unitarne transformacie reprezentuji symetrie kvantovej mechaniky.

48V tomto zmysle sti unitarne transformacie obdobou ortogonalnych v abstraktnom priestore kompleznyjch vektorov.
Neexistuje jednoduché zobrazenie unitarnych transformaécii do redlneho priestoru nasej kazdodennej skisenosti, musime
si preto vystacit s abstraktnou matematickou argumentaciou.
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¢o je rovnica jednotkovej kruznice. Transformacie grupy U(1), ¢ize nasobenie jednotkovgm komplex-
nym c¢islom, teda odpovedaji rotdciam pozdlZ jednotkovej kruznice v komplexnej rovine - zmene uhla
6 pri fixovanej norme (jednému stupiiu volnosti v 2D priestore).

Lubovolné komplexné ¢islo viak mozeme vyjadrif aj v 2-rozmernej reprezentéacii U(1) ako maticu
2 X 2, a to definovanim jednotkovej a imagindrnej jednotkovej matice

10 . 0 1 B _ . a b
]lz(o 1) u-(_l 0) z—a—l—zb—a]l—l—bu—(_b a)

Jednotkové komplexné ¢islo z = a+ib € U(1), a®> +? = 1, ma potom maticovy tvar (Eulerov vzorec)

o _ ~un (10 0 1 . cos sinf \ _so@)
e’ =R, —(0 1)0089—{—(_1 0 sinf = einf cosd =R,

¢o je matica Standardnej rotacie v SO(2) - transformacie SO(2) a U(1) st tzv. izomorfné,*®

7' =RYWg = RP 5

Pre nés dodlezitou je grupa SU(2), ktora v zakladnej reprezentécii d = D obsahuje unitdrne matice
2 x 2 s komplexnymi prvkami

B a—id b—ic 9 2 2 2 _
u_(—b—z'c a+id) det) =a*+b"+c*+d" =1

Speciélna podmienka je rovnicou jednotkovej trojsféry®® v 4D. Grupa SU(2) teda obsahuje transfor-
macie len s tromi stupiiami volnosti v 4D. V analogii s priradenim

bod v 2D < komplexné ¢islo bod na jednotkovej kruznici <+ jednotkové komplexné ¢islo
uvazujme 4D priestor s jednou realnou a tromi imaginarnymi (ortogonélnymi) osami, a definujme

priradenie
bod v 4D <« kvaterniéon® q = (a,b,c,d) = al + b8 + cj + dk

kde 1,1, j,k st redlna a tri imaginarne jednotky - bdzové kvaterniony, pre ktoré platia vztahy

2=5=k>=tfk=—1 if = —j8 = k, atd. cyklicky

Kvaterniony sa s¢itavaju po zlozkdch (ako vektory) a nasobia kaZdd zlozka s kaZdou, vysledkami st
opét kvaterniony. Sucin kvaternionov je asociativny, ale nie je komutativny.

Bazové kvaterniony moZeme reprezentovat jednotkovymi maticami®? 2 x 2

(30 =(5 ) (5T ()

Ak pre kvaternion (v maticovom zapise) plati det(q) = 1, ide o jednotkovy kvaternion, pricom
q'q = qq' = 1, a maticovy tvar kvaterniénu je identicky s maticou & € SU(2). Mnozina vSet-
kych jednotkovych kvaternionov tvori jednotkovi trojsféru v 4D, definovant Specialnou podmienkou

49 Izomorfizmus = zhoda zobrazeni, 1:1. K tomuto zéveru sme dospeli uz v kap. 11.2.3.

50Stvorica parametrov a, b, ¢, d definuje 4D priestor, a Specidlna podmienka redukuje pocet nezavislych parametrov.
Trojsféra je analogiou gulovej plochy - dvojsféry v 3D alebo kruznice v 2D.

5lHistoricky st kvaterniony predchodcami vektorov. W.R.Hamilton definoval vektor ako imaginarnu ¢ast kvaterni-
onu. J.C.Maxwell sformuloval svoje rovnice elektromagnetizmu v jazyku kvaterniénov. V suc¢asnosti nasli kvaterniony
svoje uplatnenie v pocitacovej grafike.

52Takato volba nie je jedina.
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SU(2). Operéacie nasobenia jednotkovym kvaterniénom teda tvoria grupu SU(2) - grupu transforméacii
v ramci jednotkovej trojstéry v 4D,

jednotkové komplexné ¢islo <» U € U(1) jednotkovy kvaternion <» U € SU(2)

Podobne ako izomorfnost griap U(1)-SO(2), existuje aj stivis medzi grupami SU(2) a SO(3) - pomo-
cou oboch moézeme rotovat vektory v 3D. Ak totiz formalne stotoznime imagindrne jednotky i, j, k
s kartézskymi bazovymi jednotkovymi vektormi i s k; mozeme Tubovolny kvaternion zapisat ako
kombinaciu skaldra (redlna zlozka kvaternionu) a vektora (imaginarne zlozky kvaternionu)

q=a+bi+cj+dk = (a,7)

Ak polozime skalarnu cast a = 0, dostaneme tzv. kvaternidnovi reprezentdciu vektora, q = (0, 7).
V nej pre stéin takychto dvoch vektorov-kvaterniénov plati®?

9192 = ... = (_771 - Us, Uy X 772)

Uvazujme ako priklad otacanie vektora ¢ kolmého na os otacania, urenu jednotkovym vektorom 7
(¢ize @ - ¥ = 0), o uhol 6 (Tavotocivo). Pooto¢eny vektor ¢’ mozeme rozpisat na zlozky v rovine

—

otaCania, a to v smere povodného vektora ¢ a kolmo nan, v x 7,

P\
e
nb}vw U =Ucosf + (U x 1)sinf =

= ¥cosf — (7i X U)sinb

PrepiSme teraz tiuto rotéciu vektora do kvaternidnovej reprezentéacie: V nej su vektory 7, ¥, v’ kva-
ternibnmi s nulovou realnou castou, n = (0,7), atd., a siéin 7 X ¥ bude odpovedat kvaterniénu

nv=...=(—it- 0, x 0) = (0,7 x 7

Uvedené pootocenie vektora v ma potom v kvaterniénovej reprezentécii tvar

v/ = (cosf —nsinf)v pricom n?=(-7-@,7 X)) =..=—1

Jednotkovy kvaternion n je teda 3-rozmernym anal6gom imaginarnej jednotky (:2 = —1), a rotéacia
nagho vektora je (s pouzitim Eulerovho vzorca zovieobecneného pre kvaterniony)®

v =e ™y resp. v = v/

a reprezentuje rotaciu v rovine kolmej na 1.

Zovseobecnenie uvazovanej konfiguracie 7 L ¢ na [ubovolngy uhol medzi vektormi znamené rozklad
¥ = U+ v vzhladom k smeru 77, priom | sa rotdciou nement, a na ¥, sa vztahuje uvedend analyza.
Takze transformacny vztah je v kvaternionovom zapise

vi=e ™y, + V|

a vo vektorovom tvare vedie na Rodriguesov vzorec z kap. 11.2.2
—/ —/

=7 40 =..=cosfU—sind (7 x ) + (1 — cos ) v =

=cosO U —sin® (i x ) + (1 —cos @) (V-1) 7

33Vo vieobecnosti, ak a1, as # 0, plati qiqz = ... = (ajaz — Ty - Vo, a172 + ag¥) + U1 X Ta).
54V nagom pripade je 6 > 0 pri lavotodivej rotacii. Pri obvyklejsej pravotodivej rotécii by bola analégia s Eulerovym
vzorcom eSte zrejmejsia.
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(v pripade kolmych vektorov @ - 7 = 0 posledny ¢len vypadne). Da sa Tahko ukéazaf, 7e®®

_n0/2€n0/2 —n9/2v||en6/2 e—nevl _ €_n9/26_n9/2VL — €—n9/2vlen9/2

V||:€ VHze

a transformaény vztah nadobudne tvar®®

0
v = 6—n9/2v en9/2 — q—lvq q resp. q—l _ 6in9/2 =1 cos 5 4 (nlﬁ + njj + nk|]<) sin 5

Vo vyssie uvedenej maticovej reprezentacii f, j, k maji nase vektory-kvaterniony tvar

o o —1U V; — 1V, )
v =ut+v;j+uk= . Lo n analogicky
—U; — 5 Ay

a vektor pootoceny napr. okolo osi z (t.j. ngy = 1, n; = n; = 0) tvar

-0 .0 .
, [ ez 0 . . e’z 0 o —ivy, (v; — iv;)e®
vV = ( O 671'% ) (Uzﬂ + Ujj + 'Uk;[k) < 0 ei% ) —_— ... = ( —(/Ui + ivj)ef’ie ,l:,Uk

. / -0

Porovnanim so v§eobecnym kvaterniénovym zapisom v’ = < ) dostavame

—vf — vy vy
v; = v; cosf + v;sin @ v; = —v;sinf 4 v; cos f v}, = vy,

¢o je vysledok zhodny s rotaciou v/ = R,(6)7 v SO(3).

Ked7e jednotkové kvaterniony odpovedajt maticiam U € SU(2), moéZeme namiesto q,q ' pisaf

VI = Z/{@/Q VZ/{;/%

Vidime teda, Ze nielen rota¢né matice grupy SO(3), ale aj jednotkové kvaterniony/matice grupy
SU(2) generuju rotaciu vektorov v redlnom 3D priestore, aj ked podla odlisného predpisu (sendvié
namiesto nasobenia zlava). V porovnani s izomorfizmom U(1)<>SO(2) je tu vSak zasadny rozdiel:
Uhlu rotacie v SU(2) (&ize v kompleznom priestore) odpoveda dvojndsobng uhol rotacie v SO(3)
(v redlnom priestore)! NavySe kvaternionom q aj —q (uhlu +60/2 aj —0/2) odpovedé rovnaka rotacia
v SO(3)57. Ako uvidime neskor, tieto zdanlivo ,nepodstatné technické detaily” majt dolezité dosledky,
vratane jednej z najdolezitejsich zakonitosti fyziky - Pauliho vylucovacieho principu.

I1.3.2 Generatory grap U(1) a SU(2).

Genericka kompleznd matica D x D obsahuje 2D? redlnych parametrov. UZ v kap. 1.2.1 sme vsak
ukézali, Ze generatory unitarnych transformécii musia byt hermitovské, Xt = X, ¢o znamena D2
rovnic. Grupy U(D) teda vyzaduja 2D? — D? = D? generatorov (prislichajicich nezavislym stup-
fiom volnosti). Speciélna podmienka det(U) = 1 poskytuje dodatoéné obmedzenie na nulovi stopu
generatora, ¢ize pre grupy SU(D) potrebujeme p = D? — 1 generéatorov.

Grupe U(1) prisliacha jeden hermitovsky generator. Kedze ide o nasobenie (jednotkovym) komplex-
nym ¢islom, tento generator musi byt redlne ¢islo (skalar). Vo veobecnom formalizme Lieovych grip
to znamena

U) = ¢

% (dpoveda to vieobecnému komutaénému vzfahu pre kvaterniony, [qi, qz] = qiqe — qaq1 = 2(q1 X ¢2)-

%6 Takyto vzfah zabezpeéi transforméciu vektora na vektor. Vysledok jednoduchého nasobenia v (v analégii s 2D)
vo vSeobecnosti nemus? mat rozumnu interpretaciu.

57Znamena to, Ze dvojsféra v 3D odpoveda polovici trojsféry v 4D.
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namiesto obvyklejsieho e, kde Q je (fyzikalne bezrozmerny jednotkovy) generator rotacie v komplex-
nej rovine. V zmysle Noetherovej teorémy ide o zachovdvajicu sa veli¢inu pri U(1) symetrii, pricom
v kap. [.3.6 a 1.3.8 sme ho dali do stvisu so zachovavajicim sa poctom castic. Tento noetherovsky
naboj budeme preto nazyvat asticovym nabojom.*®

Defini¢né podmienky grupy SU(2) spliia (popri generickej matici U z predchadzajicej kap.) aj matica

. . 3
Z/{:( ng + ins n2+m1> S w1 n, €R
=0

—ng +1n1 Ng — ing
¢o sa da zapisat ako U = ngl + i(nyo1 + noog + nzos) = nel +ini - &

kde & je ,vektor®, ktorého zlozkami st Pauliho matice

0 1 0 —i 10 10
e(o) () (0 h) e ()

splhajice vzfahy
3

o0, =0l +1 g €jki01 [0, 0%] = 2i€k0% 00, = —0p0; pre j#k
I=1

Ide o alternativnu reprezentéciu SU(2) ku kvaternionovej z predchadzajicej kapitoly (bazu tu na-
miesto jednotkovych kvaternionov 8, j, k tvoria Pauliho matice). Bez jmy na vSeobecnosti moZeme
definovat®®  ng = cos? | |i| = Z?Zl n? =sing , § € (0,m) (splhajuce Z?:o n; = 1),

a uvedeny tvar matic U prepisat ako%

6 0 —— P
Un(0) = (cos 5) 1+ (sin 5) i G = o2 — gifntJ n’ =

E

o odpoveda matici rotdcie o uhol 6 okolo osi @ s generatorom J = &/2 (kap. 11.2.2). Rotéciam
vzhladom na kartézske osi z,y, z odpovedaju matice

i0.0./2 [ cos(0/2) isin(6,/2) ity cos(8,/2) sin(6,/2)
Up(0,) = %7/ = ( isin(0,/2) cos(f,/2) ) Uy(0,) =" = ( —sin(6,/2) cos(ey/z))

=

o 61’92/2 0
U.(0,) = %1% — ( 0 it

Z uvedeného priamo vyplyva volba bazovych generatorov jj transformacii grupy SU(2) v tejto re-
prezentacii

~ o A A ) ~

Jj = Ej [Jj, Jk] = ZEjlil
Tieto hermitovské matice generatorov tvoria algebru su(2). Vidime, ze grupy SU(2) a SO(3) maji
rovnaky pocet generatorov aj rovnakid Lieovu algebru (t.j. komuta¢né vztahy medzi generatormi), ¢o

opat sved¢i o ich hlbokom suvise.

V tejto hermitovskej reprezentacii je vektor U vyjadreny ako hermitovska matica (s nulovou stopou)
v baze Pauliho matic

o v Uy — 1V
V =90-0=v,0, +v,0,+0v,0, = z x v )=yt
Uy + 10y —V,

58Nateraz ide o forméalnu tpravu, ktorej vyznam pochopime pri interakciach.

3Vol'bou poloviéného uhla eliminujeme faktor 2 z komuta¢nych vztahov, ¢o priamo stvisi so vztahom rotacii v SO(3)
a SU(2).

80Pouzili sme rozklad do Taylorovho radu s uvézenim (i° - &)? = 1.
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Jej transforméacia prostrednictvom unitarnej jednotkovej matice U
V' =uvu' = uhHviut = uvuht = (V')

nezmeni jej hermitovost ani stopu (det[d] = 1). Znamena to, ze V' je hermitovskou reprezentaciou
pootoc¢eného vektora ¢ — ¢’. Ako priklad uvedme opét rotaciu okolo osi z s generatorom J, = o,/2,

/ ! i ; 10

( v, Uy — /Lvy ) _ V/ _ ei@a'z/Qve—iea'Z/Q _ ( Vy (Ux - Z'Uy)e )

, Z , =V = = i
v, +iv, = (vg + 1vy)e —v,

¢o sa opat zhoduje s transforméciou v’ = R, (6)v grupy SO(3).
Kedze grupa SU(2) ma identickt algebru s grupou SO(3), rovnakym sposobom vieme vytvorit aj

neredukovatelné d-rozmerné reprezentéacie Lieovej algebry su(2) s diagondlnym generatorom .J,, zvy-
Sovacim, znizovacim a Casimirovym operatorom

Jp = (Jo +id,)/V2 Jo= (L —id,)/V2 Ay R S O A A

s rovnakymi komuta¢nymi vztahmi ako v kap. 11.2.4, a pri platnosti vztahov

J 0 = Mo, T, = Upyiy J2v,, = J(7+ Doy,
kde
5,7 — 1 +1,—3 =0 L 1 3
m = —-1,...— — =0,-,1,-, ...
j’j ) .] 7 ..7 ._7 727 727

V pripade j = 0 ¢ize d = 1 (transformujuce sa ,vektory® su jednozlozkové, teda skaldry) st generatory
nulovymi maticami 1 x 1 (v stlade s komuta¢nymi vztahmi), a U; = €® = 1, ¢o je identita (skalary
sa rotaciami nemenia). Pre j = 1 dostavame ,obvykly* vektorovy priestor d = 3 s identickou trojroz-
mernou reprezentaciou operatorov ako v pripade so(3) (kap. I11.2.4).

Dolezitym je aj pripad j = 3, ¢ize dvojrozmerné reprezentacia (ktord v SO(3) postrddala fyzikalny
vyznam) v tvare matic (2 x 2)

jot, L0 jo= L (01 j=L(oo
==3% 720 1 T /2000 T 2010

s dvomi bdzovymi vektormi s prislichajicimi vlastnymi hodnotami

1 1 0
"= “”:(o) “*”:<1)

Ostatné operatory v tejto bdze st samozrejme

A 1 - A 170 1 1 A T . A 170 —i 1
(¢o je definicnd reprezentacia su(2)). Objekty, na ktoré posobia transforma¢né matice v tejto repre-
zentacii, vySpecifikujeme v kap. 11.3.3.

Analogicky konstruujeme Tubovolnia d-rozmerni reprezentaciu algebry su(2). Reprezentaciu samotnej
grupy SU(2) v d-rozmernom priestore dostaneme dosadenim jej generatorov do vztahov U; = ¢7/i

a to pre celoCiselné aj polo¢iselné hodnoty j. Vidime teda, ze algebra su(2) ,pokryva“ nielen grupu
SU(2), ale aj SO(3).%!

61Bolo preto prirodzené definovat generatory so(3) v kap. I1.2.2 ako hermitovské operdtory pozorovatelngch velicin,
v zhode s kvantovou mechanikou.
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11.3.3 Spinory.

V predchadzajucich kapitolach sme ukéazali, ako pomocou ,sendvi¢a“ matic/operatorov U € SU(2)
dokézeme rotovat objekty vo fyzickom 3D priestore, resp. (pri pasivnej transformacii) rotovat pozo-
rovatela a tym aj jeho opis objektov vsadenych do 3D priestoru, rovnako ako nasobenim maticami
SO(3). Co vsak reprezentuji samostatné matice grupy SU(2), posobiace zlava (teda nie ako sendvic)
na dany objekt?

Kedze grupa SU(2) zdiela spolo¢nu algebru s grupou SO(3), ktorej generatory su generatormi rotdcii
v 3D, predstavuji aj samostatné matice U € SU(2) rotacie, ale v kompleznom priestore. Transfor-
mujice sa objekty (na ktoré tieto matice posobia) teda ,ziju“ v takomto komplexnom priestore - si
komplexnymi (stfpcovy’mi d-komponentnymi) ,vektormi“. Prezentovany tizky savis rotacii prostred-
nictvom SU(2) a SO(3) pritom znamend vdzbu tohto komplexného priestoru na realny (,nas* fyzicky)
3D priestor - redlnemu 3D priestoru priradujeme odpovedajici komplexny priestor.®? Ako hned uka-
zeme, redlnemu 3D objektu (napr. ,Standardnému® trojkomponentnému vektoru v ,nagom* priestore)
mozeme priradit odpovedajici objekt (d-komponentny komplexny ,vektor) vo svojom komplexnom
priestore.

V zdkladnej dvojrozmernej reprezentacii SU(2), ¢ize j = %, st takymito objektami dvojkomponentné
vektory s komplexngmi zlozkami, teda objekty urcené vo vSeobecnosti Styrmi: redlnymi cislami -
stuptiami volnosti. Daju sa vyjadrit ako linedrne kombinécie (s komplexnymi koeficientami) bazovych
dvojkomponentnych vlastnych vektorov diagonalneho operatora J, (kap. 11.3.2)

1 0 - 1
V1/2 = ( 0 > = | T)z V_1/2 = < 1 ) = | $>z J. V172 = i§ V412

ktoré obvykle oznacujeme ako ,,spin hore®, resp. ,,spin dole”, a v kvantovej fyzike ich stotoznujeme
s dvoma moznymi priemetmi spinu (z pohladu nasho priestoru). Kedze j = %, hovorime o objektoch
So spinom % (h = 1) - spinoroch, podobne ako skalary, resp. vektory st objektami so spinom 0, resp.
1. V kontexte tejto kapitoly je v8ak spinor rydzo matematickym objektom, podobne ako wektor.5
LiSia sa navzajom tym ako sa transformuji pri rotdcidch - spinor nasobenim maticami SU(2) a 3D
vektor maticami SO(3). V Dodatku G je vysvetleny zapis spinorov pomocou premennych v, 9,6, «
(prvé tri st standardnymi 3D sférickymi stradnicami)

v = Ui\ _ VU cos? ef’(o‘”)/?
o Vv sin g eila—0)/2
ako aj ich zobrazenie do realneho 3D priestoru a stvis s vektorom v(v,, vy, v,) = 9(v, 1, ). Oproti od-

povedajiucemu vektoru ma spinor prebyto¢ny stupen volnosti «, ktory nemé interpretaciu v priestore
realnych vektorov.

Dé sa ukazat (dosadenim), ze vztah medzi odpovedajiicou si dvojicou vektor-spinor, resp. ich zloz-
kami, mozeme vyjadrit aj pomocou Pauliho matic

v =lay v; =Plo

Ako priklad uvazujme rotaciu vektora ¢ okolo osi z o uhol 6 a jej projekciu do odpovedajiceho
spinorového komplexného priestoru: Néstrojom takejto rotacie v ramci grupy SU(2) (kap. 11.3.1,

621de o abstraktny, fyzikilne nepozorovatelny interny priestor priradeny kazdému bodu fyzického priestoru.

83Pojem vektor sme doteraz ¢asto pouzivali v abstraktnom algebrickom vyzname ako maticu (n x 1), teda stipec
Cisel. V tomto zmysle aj spinory st takymito vektormi - maticami (2 x 1) s komplezngmi prvkami. V dalSom texte
budeme pojem vektor CastejSie chépat v Specifickom vyzname ako maticu s redlnymi prvkami (3 x 1) v 3D, resp.
(4 x 1) v 4D ¢asopriestore. Rozdiel medzi takto chapanym vektorom a spinorom (a skaldrom) je v sposobe, akym sa
transformuju.
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I1.3.2) je operator Uy, = e =92 = cos gll +7sin gaz , ktory na spinor 1) posobi ako ¢ — " = Uy 21 .

Rotacia odpovedajiceho vektora je potom (podla vyssie uvedeného vzorca)
7 = (U4 ) & Usyv) oy = Plemio02g o0/

S vyuzitim Eulerovho vzorca a vlastnosti Pauliho matic ojo, = ;11 + i€j0; dostavame pre jed-
notlivé zlozky povodného a transformovaného vektora

v, = (Vo) cos O+ (Yio,p) sin @ = v, cos § + v, sin v, = ... = =, sin 0 + v, cos § v, =,

¢o je naozaj rotacia vektora ' v 3D okolo osi z o uhol 6.
+i6-5/2 o RO — ez@-J

Pasivna rotécia 3D priestoru (pozorovatela, stradnicovej ststavy) o uhol 0 sa projektuje do rotacie
spinorového priestoru o uhol g. Rotacia v 3D o 360° znamena v spinorovom priestore U,y = —1), Cize
zmenu znamienka spinora.®* Dva spinorové stavy | 1), a | )., ktoré sa javia ako antiparalelné v 3D,
st ortogondlne v spinorovom priestore.%” Pre spin 1/2 je teda identitou rotacia fyzického priestoru
(pozorovatela) o 2m/3 = 4w (v stlade so zavermi z kap. I1.2.6).

Pasivna rotacia pozorovatela v 3D priestore o 180° znamena tiez viimenu vzdjomnej polohy dvojice
objektov. Im odpovedajuce spinory sa pritom v spinorovom priestore oto¢ia kazdy o 90° (v rovnakom
zmysle), dohromady teda o 180° - ich spolo¢na hodnota ¢» — —. Priamym dosledkom je Pauliho
vylucovaci princip (viac v kap. 111.2.8).

(SRR RR
Dolezité zavery:

e Unitarne transformécie grap SU(D) zachovavaju velkost/skalarny stucin vektorov so zlozkami
z oboru komplexngch &sel - oproti SO(D) rozsiruji posobnost z R na C.

e Grupa SU(2) ma rovnaki algebru ako SO(3), s D* — 1 = 3 generatormi rotacii. Zobrazenie medzi
nimi vSak nie je jedno-jednozna¢né: Rotécii o uhol 6 v SO(3) odpovedaji v redlnom 3D priestore
rotacie SU(2) o dva rozne uhly £6/2. Pre 3D rotacie je teda SU(2) vSeobecnejSou (fundamentélnejsou)
grupou.

e SU(2) mé aj reprezentéacie odpovedajice polo¢iselnym hodnotam j (odpovedajticim vlastnym hod-
notam Casimirovho operéatora). V kvantovej mechanike tomu odpovedé priestorové kvantovanie aj
poloé¢iselného momentu hybnosti - spinu 1/2.

e Priestorova rotacia o 2w predstavuje identitu pre vektor ¢ a transforméaciu ¢v — —i pre jemu
odpovedagici spinor. Identitou pre spinor je rotacia o 4. (Touto vlastnostou sa vyznacuju ¢astice
fermiony, a suvisi s Pauliho vylufovacim principom.)

64V kvantovej mechanike to nepredstavuje fyzikalny problém, kedze meratelnou je len veli¢ina |¢|%.
65(0znacenie smeru priemetu spinu ,, hore” a ,,dole* sa vztahuje na pozorovatela v 3D priestore, tam by viak tieto
smery odpovedali tomu istému stupiiu volnosti. V spinorovom priestore ide o dva nezdvislé stupne volnosti.
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I1.4 Lorentzovské transformacie.

I1.4.1 Lorentzovské grupy O(1,3), SO(1,3).

Grupy SO(3) aj SU(2) z predchadzajicich kapitol s grupami rotacii v 3D priestore. Pri relativis-
tickom opise je vS8ak poziadavkou jeho kovariantnosti zachovavnie velkosti Stvorvektorov pri trans-
formaciach medzi inercidlnymi stustavami v Minkowského casopriestore. Tuto poziadavku spliia lo-
rentzovska grupa O(1,3)% - ortogondlna grupa transformacii A

vt — ot = A

Stvorvektorovy skalarny sicin je (kap. 1.3.1)

1 0 0 0
v " = v =000 — T T " =, = diag(l, =1, -1, -1) = 8 _01 —01 8
0o 0 0 -1
a jeho zachovanie pri transformacii, v, v* = v, 0", znamena®’
v v, = v A A, — " = AEn7TAY n=ATnA

¢o je defini¢nd podmienka lorentzovskej grupy. Ak by sme Minkowského metriku nahradili euklidov-
skou, n — 1, dostali by sme defini¢nia podmienku griap O(D). Transforméacie grupy O(1,3) buda teda
casopriestorovymi analogiami transformacii O(3) - ortogonalnymi transforméciami v stvorrozmernom
Casopriestore (s Minkowského metrikou).

Kedze det(n) = —1, musi platit [det(A)]*> = 1, a teda det(A) = %1 - vtedy hovorime o rozsirenej
lorentzovskej grupe O(1,3). Podmienke det(A) = —1 vyhovuju priestorové preklopenie siradnic, ¢ize
zmena parity, a otocenie casu

1 0 0 0 -1 0 0 0
0 -1 0 0 0 100
P=10 0 -1 o0 T=1 6 010 det(P) = det(T) = —1
0O 0 0 -1 0 001
Podmienka det(A) = +1 znamena zachovanie chirality (prava ruka ostava pravou, kap. 11.4.3),

a podmienka A) > 0 zachovanie orientdcie casu. Tieto dodatoéné podmienky definuju $pecidlnu
podgrupu SO(1,3).

Z podmienky ortogonality matic vyplyva D(D —1)/2 = 6 nezavislych parametrov. Kedze priestorova
Cast metrickej matice n je —1, definiéntt podmienku lorentzovskej grupy SO(1,3) spliiaji matice
priestorovych rotacii SO(3) rozsirené o ¢asovy riadok/stlpec

1 0
m= (0 7 )

Dalsim prvkom grupy SO(1,3) je boost B - prechod medzi inercidlnymi siastavami so vzajomnou
rychlostou u v smere jednotlivijich osi (bez rotacie). Tak ako v pripade priestorovych rotacii dochadza

66Parametre st uréené volbou metriky: Prva a druh4 cislica uréuja pocet kladnych a zapornych diagonalnych ¢lenov
matice metriky 7,

67Pamitajme, 7e v skalarnom sucine je pruy z vektorov transponovang (riadkovy namiesto stipcového). Pre lorent-
zovsky transformovany vektor to znamena transponovanie aj matice A.
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k ,miesaniu® priestorovych siradnic, lorentzovsky boost je ,mieSanim* prislusnej priestorovej strad-
nice s casovou stiradnicou (ktora je rovnocennd priestorovym, kap. 1.3.1). Boost teda mézeme povazo-
vat za rotdciu v casopriestorovych rovinach. Minkowského metrika diag(1, —1, —1, —1) je v8ak odligna
od priestorovej euklidovskej, diag(1, 1,1). Kym v euklidovskej rovine ¢tz by zachovanie normy vektora
znamenalo (ct)?+ x? = konst., ¢o je rovnica kruznice, v Minkowského rovine je to (ct)? —z? = konst.,
¢o je rovnica hyperboly (plati cosh? ¢ — sinh? ¢ = 1). Konstrukciou maja preto tieto matice boostov
tvar 4D rotac¢niych matic v rovinach tx,ty a tz, ale goniometrické funkcie nahradzame hyperbolic-
kymif®

cosh¢g sinhg 0 0O coshg 0 sinh¢ 0
| sinh¢ cosh¢ 0 0 _ 0 1 0 0
Ba(9) = 0 0 10 By(¢) = sinh¢ 0 coshg O
0 0 0 1 0 0 0 1
cosh¢g 0 0O sinh¢
0 1 0 0
sinh¢ 0 0 cosho¢
Hyperbolicky ,,uhol“ ¢ je tzv. rapidita, pre ktortu plati
tanh g = 4 = f € (~1,1) hg = —— ho =B
anh¢p = — = -1, coshp = —— = sin
c /1— 332 v v

kde uz spoznavame zname relativistické vyrazy.

I1.4.2 Generatory grupy SO(1,3).

Pre infinitezimdlne lorentzovské transformacie a jej prislusné generatory plati vseobecny vztah
A=1+iw-X, kde w —> 0 je ,uhol rotacie prislusnej ku generatoru X. Z defini¢nej podmienky
ATnA = n s uvazenim 1? = 1 a do prvého radu v w plati

~ ~ ~

XT = —nXn ¢o znamena X =0 Xoj = Xjo Xjk = —ij

7 16 prvkov matice 4 x 4 je teda 10 fixovanych tymito rovnicami, a na zostavenie Lieovej algebry
grupy SO(1,3) treba najst 6 nezavislych generatorov (tri pre A = R; a tri pre A = B;) a komutacné
vztahy medzi nimi.

Prva trojicu generatorov SO(1,3) tvoria generatory priestorovijch rotécii jj z kap. 11.2.2 (rozsirené
o nulovy ¢asovy riadok/stlpec na matice 4 x 4)

00 0 0 000 0 0 0 00
. 00 0 0 . 000 —1 . 0 0 10
il Jy==1{ g 090 o0 ==l o _1 0 0
00 —1 0 010 0 0 0 00

Generatory boostu K; definujme prostrednictvom infinitezimdlnej zmeny B; = 1+i¢;K; (¢; — 0).
Boost v smere x ,mie$a“ ¢as a z-ovi stradnicu, nemeni vSak stradnice y,z (naopak, tie sa mie-
Saju pri rotacii okolo osi x). V 4 x 4 matici generatora K, budu teda ,aktivnymi“ len komponenty

%Podobne ako v pripade rotacii, znamienko pri nepérnej funkcii sinh ¢ uréuje smer boostu, resp. aktivnu/pasivnu
transformaciu.
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k11, k12 ko1, koo (odpovedajice ¢asovej aj x-ovej stradnici). Dosadenim takejto matice do definic-
nych podmienok, a opakovanim procediry pre boost v smeroch y, z, dostavame generatory v tvare
nehermitovskych matic

0100 0010 000 1
. 11000 . 0000 . {1 oo0oo0o0
Ke==i1 400 0 Ky==11"100 0 K:==11 0900 0

0000 0000 1000

Transforma¢né matice boostu z predchadzajicej kapitoly dostaneme zo vztahu B;(¢) = €155 roz-
vojom funkcie s maticovym exponentom do Taylorovho radu (Dodatok H).5

Komuta¢né vztahy medzi generatormi s

[jj, jk] = iEjkljl [jj, Kk] = iﬁjlel [Kj, Kk] = _iEjkljl

Vidime, ze kym kombinéaciou dvoch rotacii je dal$ia rotéacia, kombinaciou dvoch boostov je tiez
rotdcia.”® Vzfah medzi generatormi lorentzovskych transformdcii a vieobecngmi maticami A grupy
SO(1,3) mozeme vyjadrit v tvare

A(é; q_;) _ 6@'(?-6—&—[?-(;5)

kde zlozkami ,yvektorov* J, K st matice J;, ;. Pre infinitezimélne transformécie potom plati

0 le gb? ¢3

- A ~ ¢ 0 O3 —0,
. . By S H
1+i(J-0+ K -9) AL =68 + W) w 6y —0s 0 0

¢s O =6, O

—

A0, )

14

NS

kde wk je matica ,uhlov* vSetkych infinitezimalnych Casopriestorovych rotécii, ktorej kovariantny
tvar je antisymetrickd matica’

0
.
Gu =Ty =g gy 0 —gy | T e bi = wo,
_¢5 _92 61 0 3= M

V 3D priestore je rotacia v rovine (napr. zy) rotaciou okolo osi kolmej na tito rovinu (z). Vo viac ako
3-rozmernych priestoroch vSak takato os rotacie nie je jednoznacne definovana, v 4D cCasopriestore
preto ¢asto oznafujeme generatory rotacii prostrednictvom rovin otdcania (namiesto osi otac¢ania).
Podobne boost v smere j je mieSanim stradnice x; a Casu, ¢iZe rotaciou v rovine 0j. MoZeme teda
zaviest antisymetrickid maticu generatorov rotécii Jr (prvkami matice JH s tiez matice-generatory)

0 —-K, —-K, —Kjs
Ky 0 Js  —Jy
K —di 0 &, = o
Ky J =4 0

7o 1. Tkl
Jj = 3€imJ

i

Dostéavame tak kompaktny sposob zapisu Lieovej algebry SO(1,3)

A(w™) = e—%wuf‘“’ [j;w? jﬂﬂ} - —i(n“pj”" _ nlew) _ nl/pj/w + nwjup)

69Podobnym spésobom z generatorov jj grupy SO(3) spitne odvodime rotacné matice R; = 3.
"0Dosledkom tohto faktu je tzv. Thomasova precesia elektrénového spinu v atéme.
1S touto maticou sme sa uz stretli v kap. 1.3.5. Podobne moZeme zaviest kontravariantny tvar lorentzovskej grupy

AW — UVOA{;-
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Vsimnime si tiez, ze pre zlozky matic generatorov priestorovych rotacii J] plati
matice generatorov lorentzovskych transforméacii (casopriestorovych rotacii)
zovseobecneny vztah

(J;)r = —i€jp. Pre
mozeme potom pisat

~

oy =i =) xesp. ()= i) — )

kde dvojity index op identifikuje konkrétny generdtor, a dvojity index puv konkrétny prvok jeho
matice. (V druhom z vyrazov uz matice (j"p)’,j nie st nevyhnutne antisymetrické.) Maticu vseobec-
ného infinitezimalneho ¢asopriestorového pootocenia w# mozeme potom vyjadrit ako superpoziciu
(sumovanie cez opakujice sa dvojice indexov) jednotlivych rotéacii

wh = —i—2L(JoP)L (A2 22 68+ wh)

I1.4.3 Délezité reprezentacie SO(1,3)/0(1,3).

Ako sme uz uviedli k kap. I1.2.6, reprezentacie grip symetrii chceme vyuzit na matematicky opis ele-
mentarnych ¢astic ako stavov/excitacii prislugnych poli. Ukazalo sa totiZ, Ze prave spdsob, akym
sa jednotlivé castice transformujd, je ich adekvatnou charakteristikou.” KedZe takyto opis ma
splhat poziadavky $pecialnej relativity, musi ist o reprezentacie lorentzovskej grupy transformacif
- casopriestorovych rotécii, rozsirenych o diskrétne symetrie (parita, inverzia ¢asu), a neskor roz-
Sirenych aj o casopriestorové translacie (kap. I1.4.4). Jednotlivé druhy poli sa pritom lisia po¢tom
vnttornych stupiiov volnosti, a reprezentujeme ich réznymi druhmi stipcovych vektorov (skalary, spi-
nory, Stvorvektory,...). Ulohou je teda najst reprezentéacie lorentzovskej grupy vhodné pre jednotlivé
druhy fyzikalnych poli.

Definujme pomocou generatorov j]-, Rj grupy SO(1,3) z predchadzajtcej kapitoly nové, hermitovské
operatory’3

1. S P
N+:§(J]+ZK]) N :§(J]—ZKJ)

J J

pre ktoré platia komutacné vztahy

A~

[N, N = ieju Ny (N7 Ny = ey, [N, N7 =0

Dostavame hned dve navzajom sa neprekrijvagice (vid posledny komutator) kopie uz doverne znamej
algebry su(2), oznacované su(2)" a su(2)~. To potvrdzuje fundamentélny vyznam tejto algebry. Lo-
rentzovské transforméacie grupy SO(1,3) teda nahradzame v okoli identity (¢ize spojité infinitezimalne
transforméacie) grupou SU(2)®@SU(2) a jej algebrou su(2)* ®@su(2)~ s operatormi N+ N] Jednotliveé
jej reprezentacie st potom dané dvojicami ¢isel (57, 57), (odpovedajucich su(2)™ a 5u(2) ). V ramci
kazdej podalgebry danému j* odpoveda 2j% + 1 bézovych stavov, maticova reprezentécia (j*,77)
teda vyzaduje d = d*d~ = (257 + 1)(25~ + 1) nezévislych komponent (¢ize st d-rozmerné).

Vo vyzname spinu tu vystupuje veli¢ina j = j© + j7. Ako vyplyva z predchadzajucich kapitol, spin
suvisi s 3D priestorovymi rotdciami, tvoriacimi podgrupu lorentzovskych casopriestorovych rotacii.
Maticové reprezentacie tejto podgrupy st uréené prave hodnotou j, ¢ize vyzaduja d = 27 + 1 nezéa-
vislych komponent.™

72(Castice mikrosveta nemaju tvar, vzhlad ani naozajstni velkost - identifikovat ich mozeme len na zéklade ich
,Spravania“. Aj vlastnosti ako elektricky naboj ¢ hmotnost sa manifestuju len v interakciach.

"Tejto procedire hovorime komplexifikicia. Pripomeiime, Ze samotné K; hermitovské nie su.

™ Ako uvidime, niektoré ireducibilné reprezentacie lorentzovskej grupy v 4D st v podgrupe 3D priestorovych rotécii
reducibilné.
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Skalarna reprezentacia (0,0).

Ak j* = 0, ¢ize d¥ = 2j% + 1 = 1, ide o trivialnu 1-rozmernti, tzv. skaldrnu reprezentaciu.
Generatory su reprezentované maticami 1 x 1, ¢ize si to komplexné skaldry, rovnako ako objekty,
na ktoré posobia (skalarne polia bez vnutornej struktury). Kazda reprezentacia musi spliat vyssie
uvedené komutacné vztahy, a jedinym rieSenim je v tomto pripade N = N - = 0. Znamena to, ze

Jj :|:sz = 0, cize JJ = KJ = (. Transformac¢né ,matice* maji potom tvar e® = 1, ¢iZe nepredstavuji
Ziadnu zmenu. Tato neredukovatelna reprezentacia poskytuje adekvatny relativisticky (lorentzovsky
kovariantny) opis fyzikalnych objektov so spinom j = 0, nemeniacich sa pri lorentzovskych transfor-
méciach - tzv. skalarnych €astic/poli.”

Spinorova reprezentacia (3,0).

Ak jt = %, j~ =0,potomd" = 2,d” = 1. Ide teda o 2-rozmernu reprezentéaciu, kde transformujucimi
sa objektami st dvojprvkové objekty (matice 2x1) - spinory (kap. 11.3.3), ¢iZe o tzv. spinorovi
reprezentaciu. Operatormi transformacii budi matice 2x2. Kym v jednorozmernej reprezentacii
su(2)” mame opit z komuta¢nych vztahov N] 0, ¢omu odpoveda Jj = zKJ, v dvojrozmernej
hermitovske]j reprezentacii algebry su(2)t (kap. I1.3.2) si jej generatory dané Pauliho maticami, teda
N = (J;+iK;)/2 = % Kombinovanim tychto vztahov dostaneme iKK; = J; = 0,/2. Matice rotacie
a boostu maju potom tvar

Ry = 0i03/2 By = o#5/2
Dosadenim Pauliho matic a Taylorovym rozvojom dostdvame pre jednotlivé zlozky vyrazy

L. 0 0. i9z
o isin _ cos 3 sin 2 _ [ €7 0
R0 = (o5 S ) mey- (A M) R (O )

2 2 2

cosh 2z ginh 2= cosh & —isinh & % 0
_ 2 2 _ ) 2 _
B.(¢.) ( sinh %I cosh %” ) By(9y) ( i sinh ‘z;—y cosh %y ) B.(¢-) 0 e %

XrL1
XL2
sobenim uvedenych operatorov) si tzv. chirdlne I'avoruké™ spinory. Definovanim komplexného

>

Komplexné dvojkomponentné objekty x, = ( ), transformujice sa v tejto reprezentacii (po-

transformacného parametra « = 6 — i¢ (,uhol” rotacie a boostu) mozeme transformaéni maticu

zapisat v tvare
- i /2
A o)(@) ==

Spinorova reprezentacia (0,3).
Toto je komplementdrna spinorova reprezentacia, v tomto pripade d- = 2, d* = 1, ¢o vedie na
Kj = ZJJ = in/27 a

Ry = 0103/ B, = o~ b 5/2

Kym matice rotacie si rovnaké ako v pripade reprezentécie (%,

B cosh %” — sinh %” B cosh % 1 sinh d;—y - e’%z 0
Bao(¢e) = ( — sinh %* cosh & By(#y) = —isinh % cosh % B.(9:) = 0 %

Objekty, ktoré sa transformuju podla tejto spinorovej reprezentacie lorentzovskej grupy, sa nazyvaji
XR1
XR2

0), matice boostu sa zmenia na

chiralne pravoruké spinory, Yz = , a maticu transforméacie mézeme pomocou substitiicie

™ Jedinou dosial zndmou spomedzi elementdrnych ¢astic so spinom 0 je Higgsov bozdn.
"6ang. left-handed, left-chiral.
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& =0+ zqg zapisat v kompaktnom tvare

Aoy (@) = €712

Objekty (Castice) vyhovujice niektorej z tychto spinorovych reprezentaci - pod stthrnnym nazvom
Weylove spinory’” - maji spin j = 0+ 3 = 1. Ako ukazuji rota¢né matice, priestorovou rotéciou
o0 360° menia znamienko, Y — —Y, a na navrat do pévodného stavu je potrebnd rotacia o 720°.7

Chiréalne Tavo- a pravoruké spinory sa teda transformuju podla rdznych vztahov (reprezentécii),
a nemozno ich Tubovol'ne kombinovat.”™ D4 sa v8ak ukazat (pozri Dodatok 1), ze komplezne zdruzené
spinory maji opa¢nii chiralitu, a lorentzovsky invarianingmi st kombinacie (xz)'xr = (x&)T XL
alebo (xr)xr (analogicky ako v pripade $tvorvektorov, kde st lorentzovsky invariantnymi vyrazy
x#y,, pricom prvy zo Stvorvektorov je transponovany - riadkovy, hoci sa to nezvykne explicitne
oznacovat). Suvis oboch reprezentacii mozeme vyjadrit pomocou spinorovej metriky e (Dodatok

I) ako
-\ - —% 0 1 _ 0 —1
(Ao @) € =hoy@) = ( -1 o) - ( 10 )

N[ =

Vektorova reprezentacia ( ,%)

V tomto pripade dt = d~ = 2, ¢ize mame dve neprekrjvajice sa dvojrozmerné reprezentacie
su(2) - chiralne l'avo- aj pravoruki. Takéito reprezentacia, ¢asto oznacovana (%, 0) ® (0, %), je v 4D
neredukovatelna, a posobi na dané objekty stcasne oboma kopiami su(2) s réznymi transformadc-
nymi pravidlami. Na kazdy takyto objekt mozeme nahliadat ako na tenzorovy sucin spinorov oboch

chiralit - kazdého s dvoma stavmi | 1) a | |) (v danej béaze), ¢ize Stvorkomponentny objekt

( ™ N )
U
Preto pren pouzivame oznacenie Vab, kde a,b = 1,2 (Dodatok I), pricom dolny nebodkovany index

(konvencne) reprezentuje jeho chiralne lavoruka a horny bodkovany index chirdlne pravoruku cast
(bodka nad indexom symbolizuje komplexné zdruZenie). Jeho lorentzovska transformacia je

VI V= Aohoy) Ve = Ao [N ge |V

€
2 3 (3,0 a
Znizenim horného indexu (Dodatok I) po prenasobeni zl'ava maticou ¢! dostavame
! * .
Vab 7 Vab = Ao A1.0)Vab
kde vyraz V ; mozeme reprezentovat vSeobecnou hermitovskou maticou 2 x 2 v baze Pauliho matic,

Vg +v3 U] — 1V

V, = . = Vol + V107 + V209 + V303 = v,0"
ab V] + vy Vo — Vs 0 373 7 TnTap

Jeho lorentzovska transformécia do prvého radu transformacénych parametrov je potom (Dodatok T)

Vi~ - 1+ (i3 + ¢3)/2 (161 + Oy + P —ig) /2 Vo + U3 U] — U9 "
ab (201_€2+¢1+Z¢2)/2 1_(203+¢3)/2 V1 + 19 Vo — U3

""Pomenované na pocest Hermanna Weyla (¢itaj vagl).
"8Dosledkom je Pauliho vylugovaci princip.
"Na elementérnej trovni hmoty Priroda rozlisuje medzi chirdlnou Tavo- a pravorukostou.
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% 1—(@93—¢3)/2 (—i81+92—¢1—i¢2)/2 o U6+Ué vi—z’vé
(=16 + Oy + Py +ip2)/2 1+ (i03 — ¢3)/2 O\ v vl vy — v

Nie nédhodou V,; a V; pripominaji zapis veklora v hermitovskej reprezentécii (kap. 11.3.2), rozsire-
ného o casovu zlozku. Pre prvky matic V; a ‘/a/b zapisanych do tvaru stvorvektorov totiz dostavame

U6 Vo 0 ¢1 o5 ®3 Vo Vo
Ui (%1 le 0 03 —92 (%1 U1
= + =(1+wh
Uy Uy ¢ —03 0 0, Uy ( 2 (0
Ué V3 ¢3 (92 —(91 0 V3 U3

¢o je lorentzovské transformécia stvorvektora v,. Reprezentécia (%, %) sa preto nazyva vektorovou,

a objekty transformujice sa v tejto reprezentacii st ($tvor)vektormi®® Majt spin j = % + % =1,
a identitou je pre ne priestorova rotéacia o 360°.%!

Z hladiska ¢isto 3D priestorovijch rotécii je (genericky) Stvorvektor v* redukovatelny na skaldr v
(,Casova“ komponenta Stvorvektora) a vektor U, pricom kazdy z nich sa transformuje v inej® repre-
zentacii, j = 0 resp. 1. Symbolicky

22=143 (prej=1ljed=2j+1=3)

Takymto postupom mézeme konstruovat d-rozmerné reprezentacie v l'ubovolnom (D +1)-rozmernom
Casopriestore, s D(D—1)/2 generatormi priestorovej rotacie a D generatormi boostu (éasopriestorovej
rotécie), dohromady (D + 1)D/2, posobiace vo forme matic d x d na d-rozmerné objekty (stipcové
vektory), pri¢com prvky transformovaného vektora vznikajt ,mieSsanim*“ prvkov pévodného vektora,

v—v = Av v = Ajuy jk=1,..n

Bispinorova reprezentacia (3,0) @ (0, 3).

Transformécia P € O(1,3) (zmena parity ¢ SO(1,3)) ovplyviiuje generatory algebry SO(1,3) ako
i KR,
i i j
Zmena parity (z,y,z) — (—z, —y, —z) znamené zmenu znamienka boostu, a teda zimenu reprezen-
tacif (3,0) <> (0,3). Ak pozadujeme teoriu nezavisli aj od tejto transformécie (€iZe rozsirent grupu
0O(1,3)), definujeme tzv. Diracove (bi)spinory

XL1 R1
(x| Xre (&Y | Sre | (0 1 XL
w_<fR)_ $Rr1 w?w—(XL)— X1 —<31 0)(53)
§r2 XL2

kde medzi Weylovymi spinormi x;, a g vo vSeobecnosti nemusi byt suvislost.®? Tuto §tvorkompo-
nentni reprezenticiu nazyvame bispinorovou a oznacujeme ako (3,0) @ (0, 3). Lubovolni maticu
lorentzovskej transformacie v tejto reprezentacii moézeme schématicky zapisat ako

A _ (Mo O — A _ [ Bep O
(3.08(0,4) = 0 Agy P (0,3)®(5,0) — 0 Auqyg

80Stvorvektory teda moZeme vnimat ako spinory druhého radu (4 prvky, 2 spinorové indexy). Vidime ale tiez, ze
fundamentdlnymi objektami sd spinory a nie vektory.

811de o bozdny, ako napr. foton.

82Pri 3D priestorovych rotacidch sa ,miefaji“ len zlozky vektora, skalar ostdva nemenny. Naproti tomu pri 4D
casopriestorovych rotacidch sa vzajomne ,mieSaju“ v8etky zlozky Stvorvektora - takato reprezentacia je neredukova-
telna.

83Ak £r = xR, spinor < ;L > nazyvame Majoranovym, a budeme sa nim zaoberat v kap. I11.2.7.
R
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Ide teda o redukovatelni reprezentaciu (Casopriestorovou rotéciou sa ,miesaju“ len zlozky rovnakej
chirality). Diracove (bi)spinory nie st fundamentalnymi objektami, tymi ostavaji dvojkomponentné
Weylove spinory. Hoci st Diracove (bi)spinory stvorkomponentné (rovnako ako Stvorvektory), ne-
mozno ich komponenty priamo asociovat s ¢asopriestorovymi stiradnicami (rovnako ako ani kom-
ponenty Weylovych spinorov). Bispinorova reprezentécia poskytuje lorentzovsky kovariantny opis
objektov (spinorov), ktoré st symetrické voci transforméacii parity v tom zmysle, Ze sa nemeni chira-
lita Weylovych spinorov (meni sa len ich ,poloha“ v bispinorovom zapise).%*

Spojita reprezentacia.

Ak skiimame lorentzovska transformaciu objektov spojite rozlozenych v ¢asopriestore - poli ¢(zH),
béza takéhoto priestoru je spojitd (co-rozmernd) - pouZivame spojiti reprezentaciu tejto grupy.
éasopriestorové transformacia pozorovatela (suradnicového systému, t.j. pasivna transformécia) v poli
s netrividlnou vnutornou Struktirou je popri inverznej transformacii siradnic aj transformaciou tejto
vnitornej Struktiry (vnutorného abstraktného priestoru priradeného kazdému bodu pola).

V pripade (pasivnej) transformécie skaldrneho pola (bez vnutornej struktury, formalne sa transfor-
mujiceho v reprezentacii (0,0), ¢ize Ziadna zmena) to znamena len transforméaciu ¢asopriestorovej
stradnice (Dodatok A),

oa’) = ¢/ (a") = ¢ (A1) 2")

a po vyjadreni v kompaktnom zapise z kap. 11.4.2 pre infiniteziméalnu transformaciu

i 7o v ~ i 70 v i 70
00 =0 (o ST ) | = (14 Jues 0200, ) 60#) = (1= 7 )
kde definujeme diferencidlne operatory j(” ” ) (dosadenim prvkov matice J)
I = =P 0y = .. =i (2700 — 2PD7) = (27 — 2’} P =id”

v ¢om spozname Casopriestorové operatory momentu hybnosti a hybnosti (A = 1) v Minkowského
metrike.® Kanonické komutacné vzfahy v tejto symbolike st [z7, pf] = —in’.

V pripade pola s vnitornou Struktirou (spinorové, vektorové) transformacia obsahuje navysSe aj
transforméciu jeho vnutornej Struktiry, a to v prislusnej d-rozmernej reprezentacii. Kvoli rozliseniu
ju ozna¢me Ag, kedZe bezprostredne suvisi so spinom, a jej vSeobecné generatory v kompaktnom
zépise (v danej reprezentécii) budeme oznacovat symbolom S

d(2#) = Ay(A " at) Ay = e 58
Vysledna infinitezimdlna transformécia je potom

1 A i 70 ~ ¢ jo o Sk e
o(zh) — (1 - QwapS"”> (1 — §wapJ(£)) p(z) = (1 - §W0p‘] p) o(z") S =5+ I

Vysledny operator Jor je antisymetricky.

84V takejto redukovatelnej reprezentacii opisujeme napr. elektréon-pozitrénovy par.
85Casové zlozky J{OZ) resp. P? odpovedajt boostom resp. energii.
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I1.4.4 Poincarého grupa.

Poincarého grupa®® je rozsirenim lorentzovskej grupy o dalgie transforméacie, repektujtice postu-
laty Specialnej teorie relativity - casopriestorové transldcie

't = ANa¥ + a*

¢omu odpovedaju 4 dalSie generatory posunuti casopriestorovijch stradnic p. V pripade pasivnej
transldcie plati ¢'7(z™) = ¢7 (") bez ohladu na spin, ¢o pre infinitezimalne posunutie z'* = z# 4 €/
znamend (Taylorov rozvoj)

G () = 7@ — ) = (1 - €, 67 (4" §7(a) = 7 7 (a) & (1 + i) 67 (o)
Porovnaném oboch vyrazov dostavame

. . {0 . . .0 . . e, .
p’“‘:za’“‘zz(ﬁ,—V) pozptzlﬁ pjz—lajZ—Z%, J=T,Y,2
J

¢o st operatory energie-hybnosti (v jednotkach £).

Lieova algebra Poincarého grupy je tvorend generatormi jj, K ; (resp. v alternativnom znacenf j’“’)
a p, a ku komuta¢nym vztahom lorentzovskej grupy pribudni

A ~ ~ A~

[J;, D) = i€jmbi [J;,P0] =0 (K, Pr] = i0,,po (K, Do) = —ip;

resp. A
[p",p"] =0 [J*, 7] = i(n""p” — n""p")

Téato algebra obsahuje dva Casimirove operatory (t.j. operatory komutujice so vSetkymi bazovymi
operatormi algebry). Prvym je p,p*. Kedze vlastnymi hodnotami operatora p* st Stvorvektory
energie-hybnosti, vlastnou hodnotou tohto Casimirovho operatora (nezavislou na pozorovatelovi) je

urcéend pokojovou hmotnostou objektu m. Druhym Casimirovym operatorom je W#VAV“, kde

T 1 v Tpo
WN« = éﬁwjpo-p JP

je tzv. Pauliho-Lubanského operator (¢,,,, je antisymetricky 4D Léviho-Civitov symbol). Roz-
kladom J°° na L°F a S°° (kap. I1.2.5) a pomocou komuta¢nych vztahov sa da ukazat, ze operatory
orbitdlneho momentu hybnosti Lo? do W# neprispievaji. Pre casovi komponentu Stvorvektora WH
(ako vlastnej hodnoty operatora) dostavame potom (J; = Lej5J5)

1

Wy = §€0jklijkl = ijj = 27' S

Fyzikalny vyznam Pauliho-Lubanského stvorvektora najlepsie spozname v pokojovej stistave objektu,
kde

p=0 Py = Mmc W, = %euopgﬂ’” = %EMOMJM (# 0 len pre v =0 a teda u, p,o # 0)
a odtial (€000 = —€oppe = —€jki)
me
WO =0 Wj = —Tijlel = —chj = —mch

86 Alternativny nazov je nehomogénna lorentzovska grupa.
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Kedze operatory prislichajice zlozkam vektora S tvoria algebru su(2) s komutaénymi vztahmi
[Sj, Sk] = ’iEjlel, plati

—,

o 1
W WH = —(W)? = —m?*c(S)? = —m>c*s(s + 1) s =0, > L.

Vektor W = —meS v pokojovej stistave reprezentuje spin, a vlastnd hodnota odpovedajiuceho Ca-
simirovho operatora je skaldr (lorentzovsky invariant - rovnaky v kazdej ststave). Bazu stavov tvori
2s + 1 vlastnych stavov diagonalneho operatora (S’z) Takéto ireducibilné reprezenticie - tzv. hmot-
nostné (hmotné)® - sit teda urcené vlastnymi hodnotami Casimirovych operatorov - hmotnostou

a spinom, ¢ize zakladnymi charakteristikami konkrétnej (hmotnej) castice.

Inou triedou ireducibilnych reprezentacif (t.j. charakteristikami iného druhu ¢astic) st nehmotné®®
reprezentacie, m = 0. V tomto pripade nemd zmysel uvazovat o pokojovej stistave castice,® pracu-
jeme teda v baze vlastnych stavov operatora p*. Operatory p* a W uz nevyhovuji ako Casimirove,
lebo plati® A o

puW¥|p) =0 W, W¥p) =0 Pup"lp) =0

Pre zlozky tychto stvorvektorov plati
Wi = (W) #0 P =(B)° #0

Stvorvektory vyhovujice takymto podmienkam si musia byt navzdjom dmerné, ¢o nam umoznuje

definovat ich podiel - tzv. helicitu

W,

pH Po
D4 sa Tahko ukézat, Ze operator helicity 9 komutuje so vsetkymi operatormi Poincarého algebry,
je teda Casimirovym operatorom pre nehmotné reprezentacie. Jeho vlastné hodnoty st invariantné
voCi transformacidm grupy, a si charakteristikou nehmotnych c¢astic, nahradzajicou hmotnost aj
91

spin.

Helicitu definujeme aj pre hmotné Castice, ako priemet spinu do smeru pohybu,

1

p-5

1Pl

Nie je v8ak lorentzovskym invariantom (ani Casimirom) - ako ukdZzeme v kap. I11.2.4, necharakterizuje
samotnu casticu ale len jej stav.

H =

COOO0
Doélezité zavery:

e Lorentzovska grupa transformécii SO(1,3) zachovava velkost $tvorvektorov. Komplexifikovana al-
gebra lorentzovskej grupy je tvorena dvomi kopiami algebry su(2), s dvomi Casimirovymi operatormi,
ktorych vlastné hodnoty 5~ + j© = j ur€uju spin transformovaného objektu.

87angl. massive

88angl. massless

89Energia nehmotnej ¢astice v jej pokojovej sistave by bola nulova - astica by neezistovala.

90Prva rovnost plati veobecne (p,W* = 0) a ostatné kvoli m = 0.

91Spin sa niekedy zvykne definovat ako moment hybnosti ¢astice v jej pokojovej sistave. Pre nehmotné castice
vSak pokojova sustava neexistuje, a takto definovany spin straca zmysel - nahradza ho pojem helicita v obdobnom
fyzikalnom vyzname.
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e 4 dolezité ireducibilné d-rozmerné reprezentacie (57, 1) lorentzovskej grupy SO(1,3) v 4-rozmernom
Casopriestore st: (0,0) opisuje transforméciu skalara, (%,O) transforméciu chiralne Tavorukého a (0,%)
pravorukého Weylovho spinora, a (%,%) transforméciu vektora.

e Pri lorentzovskej transforméacii poli s vnitornou Strukttrou (nie skalarnych) musime spojitii repre-
zentaciu kombinovat s prislusnou (d > 1)-rozmernou reprezentaciou, dosledkom ¢oho zachovavajicou
sa veli¢inou pri priestorovych rotaciach nie je samostatny priestorovy (orbitélny) moment hybnosti,

ale jeho sucet s vnitornym momentom hybnosti (danym vnatornou $truktirou pola) - spinom.

e Transformécia parity, ako prvok lorentzovskej grupy O(1,3), meni chiralitu Weylovych spinorov.
Invariantnymi voéi tejto transformécii su Diracove (bi)spinory (kombindcie chiralne l'avo- a pravoru-
kého Weylovho spinora), ktoré sa transformuji v redukovatelnej reprezentécii (3,0) @ (0, 3).

e Poincarého grupa, rozsirujtca lorentzovska o c¢asopriestorové translicie, ma dva Casimirove ope-
ratory, ktorych vlastné hodnoty urcéuju hmotnost a spin transformovanych objektov. Pre nehmotné
objekty je ,nadhradnym Casimirovym operatorom helicita urCujtica orientéciu spinu voci hybnosti.
Ireducibilné (hmotné aj nehmotné) reprezentacie prave tejto grupy su teda vhodnym néstrojom na
charakterizovanie elementarnych castic.
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Polia

V tejto kapitole opiSeme zakladné druhy fundamentélnych poli, generujicich elementdrne Castice
Prirody - volné neinteragujice skaldrne, spinorové a wvektorové polia. Vychadzat budeme z lagran-
gianov tychto poli, pri konstrukeii ktorych musia byt zohTadnené isté obmedzenia: Vyssie nez druhy
rad derivacii v lagrangiane znamenaju vyssie rady derivacii v pohybovych rovniciach, ¢o by viedlo na
problémy so stabilitou rieSeni. NavySe pre volné polia musi kazdy ¢len lagrangianu tiez byt limitovany
druhym stupfiom mocniny prislu§ného pola, zabezpetujuc linearitu pohybovych rovnic. Jednotlivé
lagrangiany su zostavené v rameci pozadovanych symetrii (a urcitej volnosti) tak, aby kazdy ich ¢len
bol lorentzovskym skaldrom,' zachovavajticim si svoj tvar pri transformacii pola v prislusne; re-
prezentdcii lorentzovskej grupy (v zavislosti od spinu pola, kap. 11.4.3). Z lagrangianov tychto poli
odvodime pomocou ELR zikladné pohybové rovnice poli a ich rieSenia v lorentzovsky kovariantnej
forme.? Tieto riefenia st rozlozitelné do rovinnych vin, ktorych fourierovské koeficienty sa kano-
nickym kvantovanim stavaji operatormi, kreujtcimi a anihilujacimi c¢asticové stavy. Z lagrangianov
tiez ur¢ime kanonické hybnosti, ktoré potom vstupuju ako operatory do kdnonickych komutac¢nych
vztahov s operatormi poli.

Ak odhliadneme od kapitol o kvantovani poli, celd tato ¢ast pojednéva o klasickyjch poliach - skalar-
nych, spinorovych a vektorovych funkcidch (nie operdtoroch) ¢asopriestorovych siradnic. V kontexte
elementdrnych Castic a interakcii je v8ak jedinym (makroskopicky) meratelngm polom vektorové elek-
tromagnetické pole. Na ostatné polia musime teda nahliadat ako na rydzo matematické konstrukcie
- akési ,prekurzory®, ktoré ziskaju realny, teda meratelny obsah (v zmysle pravdepodobnosti detekcie
Castic) az kanonickym kvantovanim prostrednictvom operdtorov poli. Tu je principialny rozdiel oproti
nerelativistickej kvantovej mechanike, v ktorej (nekvantovani) vinova funkciu ¢ priamo asociujeme
s meratelnymi casticami prislusného pola, prostrednictvom jej pravdepodobnostnej interpretécie.
V pripade nekvantovanych relativistickijch poli je takdto Casticova interpreticia zavddzajica!

Napriek tomu sa pri analyze tychto (nekvantovanych) poli v zdujme nézornosti miestami uchylime
(tak ako je to bezné v literatire tohto formétu) k ich spajaniu s ¢asticami (resp. anti¢asticami). Rie-
Senia pohybovych rovnic budeme nazyvat ¢asticovymi stavmi, majme vSak neustale na paméti, ze
pojde len o akisi ,mentalnu predpripravu® k interpretéacii kvantovanijch poli, a preto ju treba vnimat
s velkou rezervovanostou. Samotné operécie s kvantovanymi polami st predmetom kvantovej tedrie
poli (QFT), ktora technickou naro¢nostou presahuje ramec tohto textu. V kapitolach o kvantovani
(ako aj v Casti o interakciach) uvadzame len zakladné vychodista pre QFT.

!Pripomeiime, Ze ,be7né* skalary ako zlozky stvorvektorov sa lorentzovsky transformuji. Lorentzovskym skaldrom
je napr. skaldrny sucin vektorov.

2Realnym postupom pri tvorbe teédrie je ,uhddnutie“ pohybovej rovnice na zaklade teoretickej konzistentnosti
a zhody jej rieSeni s experimentom, a ndsledné zostavenie vyhovujuceho lagrangianu v najjednoduchg§om tvare.
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III.1 Skalarne polia.

I11.1.1 Kleinova-Gordonova rovnica.

Skalarnym nazyvame pole, ktoré kazdému bodu casopriestoru priradi [lorentzovsky skaldr,
= ¢(xt) - velkost (amplitidu) ezcitdcie pola (okolo nulovej strednej hodnoty), ako vnutorny
stupeni volnosti ,ynoreny“ do ¢asopriestoru. Pre (pasivne) transformécie rotdciu okolo smeru j,
® — R;p, a boost v smere j, ¢ — B;p, v skaldrnej d=1-rozmernej reprezentacii (0,0) lorentzov-
skej grupy SO(1,3), plati R; = B; = 1 (Cize ziadna zmena). Zvy3$né transformacie Poincarého grupy
- Casopriestorové translacie - od spinu nezavisia.

Vseobecny tvar hustoty lagrangianu volného skalarneho pola ¢, respektujici zdkladné obmedzenia,
moZe obsahovat len ¢leny?

Dosadenim hustoty lagrangianu do ELR konStantny ¢len A pohybovii rovnicu neovplyvni, a ¢len B¢
k nej prida bezvyznamni konstantu, ¢ize mozeme polozit A = B = 0. Vyraz 0, by zas menil skalar
¢ na stvorvektor, musime teda pozadovat aj D = E = 0. Zvy$né ¢leny potom konvené¢ne zapisujeme
ako

R
=

( B0t — m*¢”)

Rozmerovy koeficient lagrangianu R, nevstupuje do pohybovej rovnice, preto sa obvykle neuvadza.*
Budeme sa nim zaoberat pri normovani pola ¢. Takéto skaldrne pole si mézeme predstavit ako elas-
tické kontinuum, modelované sustavou viazanych bodovych oscilatorov (obr.), pricom ¢ (# 0) je
lokalna vyjchylka pola z rovnovaznej hodnoty.

pruziny k,, akumuluji potencialnu energiu ~ ¢?

pruziny k, akumuluji potencialnu energiu ~ (¢; — ¢;j41)* — 9;00;¢ » -
kineticka energia ~ (¢)? = 0,¢0;¢ 7 ;3

Lagrangian takejto sistavy je teda

R

- (0,00"¢ — m*¢?) dV

£ = /EdV =—= | (Bo9pOog — 0;00; — M*¢*) AV =
Vo vyraze na pravej strane sa prvy ¢len £ obvykle nazyva kinetickym® a druhy hmotnostngm.®
Dosadenim tohto lagrangianu do ELR dostaneme pohybovi rovnicu pre skaldrne pole - Kleinovu-
Gordonovu rovnicu (KGR)

(0,0 +m?) ¢ =0

KGR je operatorovou verziou relativistického vztahu E? —m?ct—p?c?> =0 = FE = +£/m2c* + p2c?

(@) ) () () () = e ma

3Dalsi mozny ¢len druhého stupia $0,0"¢ je po preintegrovani .Z = [ Ldz" per partes ekvivalentny poslednému
¢lenu uvedeného vyrazu.

4Pohybové rovnice systému sa totiz nezmenia, ak lagrangidn vynasobime konstantou & pridame divergenciu I'ubo-
vol'nej funkcie pola. Pripominame tiez, ze v literatire tohoto typu je obvyklé pracovat s tzv. prirodzenymi jednot-
kami, ked kladieme h = ¢ = 1.

5Takyto nazov je zauZzivany napriek prispevku potencidlnej energie od pruzin k v naSom ilustra¢nom modeli.
Operétor 0; totiz reprezentuje hybnost.

5Dovody pomenovania budd ozrejmené nizgie - nejde totiz o hmotnost oscilatorov v nasom modeli.
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V standardnej kvantovej mechanike st zdporné hodnoty energie ¢astice problémom - neobmedzeny
narast energie do zapornych hodnoét totiz vylucuje existenciu stabilného zdkladného stavu (s najnizsou
energiou). K tejto otazke sa vratime neskor.

I11.1.2 RieSenia Kleinovej-Gordonovej rovnice.

KGR je pohybovou rovnicou skaldrnej ¢astice (so spinom 0). Ide o vlnovi rovnicu s rieSeniami v tvare
rovinnych vin

P(z") ~ e~ hne" kH = (g, E) kot = wt — k-7

splhajicich disperzny vztah

kﬂk“:ﬁzz wE:C\/E'E—Fﬁ”LQ

V dosledku hmotnostného ¢lena je tento disperzny vztah nelinedrny, ¢o znamena, ze viny roznych
frekvencii sa v tomto poli Siria réznymi fdzovgmi rychlostami. Je to zjavné aj z nasho modelu: Pre
velké vinove dlzky A st vizbové pruziny k, prakticky zrelaxované, a pre §irenie vin st urcujice
pruziny k,,, ktorych tuhost reprezentuje prave m?. Preto wj, = mc pre 1/m < A = 27/k. Naopak
pre kratke viny A < 1/m je vplyv véizbovych pruzin dominantny, a wy = ck. Navyse, pre wy < mc
je vlnové &islo imagindrne, k = ik, t.j. vlna sa polom nesiri, ¢(x) ~ e "*. Znamena to, Ze vzruch
vyvolany v danom mieste zanikd na vzdialenosti ~ 1/m. D4 sa to interpretovat aj tak, Ze lokalizovany
vzruch, reprezentovany vlnovym balikom, sa na tejto vzdialenosti v désledku disperzie rozplynie. Pre
makroskopické hmotnosti takyto rozruch zanikd na makroskopicky nemeratelnych $kalach - takéto
pole je preto makroskopicky nepozorovatelné.”

V kvantovom kontexte to znamené, Ze na vybudenie Siriaceho sa vzruchu je potrebné urcitd mini-
malna energia hw,,;, = hmc. V kvantovej teérii poli sa takyto vzruch stotoziuje s casticou - energe-
tickou excitaciou prislugného pola. Minimalna energia potrebné na vytvorenie ¢astice odpoveda jej
pokojovej energii mc?, a teda

m02 ~ C

wmm:T:mc:;\—
C

V tomto zmysle je Ao akymsi ,rozmerom* Castice - vzdialenostou, v akej okolie ¢asticu ,citi“. Dosah
velmi fazkych Castic je preto extrémne kratky, a naopak, dosah ¢astic s m = 0 je nekone¢ny.®

Vseobecné rieSenie KGR hladame v tvare superpozicie rovinnych vin

oa") = o [ [alha)e ™ 4 b(h)ee"] d'k

(2m)*
kde a(k,),b(k,) st komplezné koeficienty a R, je rozmerovy koeficient. Ak mé byt skalarne pole ¢
redlne, musi platit b(k,) = a*(k,). Fyzikdlne riesenia musia spliaf disperzny vztah k,k* = m?, ¢o
zabezpedime vlozenim §-funkcie 6(k, k" — m?) do podintegralneho vyrazu,” a tiez fyzikilny vyznam
priradujeme len kladngm frekvenciam, ¢o zabezpedime vloZenim Heavisideovej (skokovej) funkcie!®

"V ,botanickej zéhrade“ elementdrnych castic (teda nie kompozitov) pozname jedinu skalarnu casticu - Higgsov
bozon. Pre jeho (na mikroskopické pomery) velkt hmotnost je vSak takéto pole makroskopicky nepozorovatelné. Naj-
znamejsimi skalarnymi mikroskopickymi kompozitmi sa pidny, zabezpecujice stabilitu atomovych jadier. Ich hmotnost
limituje velkost jadra. Viac o tom v Casti IV o interakciach.

8Tento argument plati aj pre ¢astice s nenulovym spinom, akymi st fotony. Preto je elektromagnetické pole (ako
jediné) pozorovatelné, t.j makroskopické.

9Znamena to, 7e integrovanie prebieha len cez rovinné viny splhajtce disperzny vztah.

09 (w) =1 pre w = cky > 0, inak O(w) = 0.
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O©(w). Po tpravach a ¢iasto¢nom preintegrovani cez ¢asovi zlozku kg (Dodatok J) dostavame rieSenie
pre redlne pole v tvare

1

Cn)* /%

. P alky) syt (ky) P g y . . e ey
pricom a(k) = et a*(k) = et Pripomenme, Ze podintegralny prefaktor (zavisiaci od wy) nie je
wE (.«)E

L L . w. B —
[a(k)e_m“'ﬂ + a*(k:)e”““’”“] Ak Wy = od —7]; =/ (k-k)+m?
c c

o) =, |

len ,akymsi“ normovanim, v relativistickej teorii totiz integral [ d*k nie je lorentzovskym invariantom
sam osebe, ale len v kombinacii s tymto prefaktorom. Lorentzovské transformécie takychto rieseni
KGR, a to v skaldrnej reprezentacii ¢(z*) — A(o0)¢(2*), budi opét rieSeniami tej istej KGR - v tom
spociva jej lorentzovakd kovariantnost.

7Z lagrangianu z kap. II1.1.1 dostaneme (podla vztahov z kap. 1.3.2) hustotu kanonickej hybnosti
redlneho skalarneho pola

oL R ReRy [ (V@ 1o on o
") = 5 == @ o) == = ¢/ <(2jr))3;§k alFye B — at Ry | @

IT1.1.3 Kvantovanie reilneho skalarneho pola.

Kanonickym kvantovanim sa ¢ a 7 stavaju operatormi, vyjadrenymi pomocou operdtorov d(l;), dT(E),
pri platnosti komuta¢énych vztahov (kap. 1.3.7)

[Qg(ﬁ t), 7%(7?,7 t)] = Zﬁé(F_ F,) [Qb(ﬁ t)a 95(7?/7 t)] =0 [7%(7?7 t)v 7%(7?,7 t)] =0

-
A~

(a(k),a (k)] = (2m)°5(k — &) [a(k), a(k")] = [a (k). a' ()] = 0

Formélna zhoda Struktiry vyrazov pre ¢(z#) a w(z#) z kap. 111.1.2 so Struktirou operatorov polohy
a hybnosti kvantového harmonického oscilatora (Dodatok E)

h 0
&= 1[5 —(a+a) p=—iy/ 5 (a—a)

vedie na rozmerové koeficienty Ry = % a teda R; = mc = mh, ¢ize

p(a*) = / #, / thk a(R)e ™ 4 a ()™ | dk
() :/((2;71))3 /hmT&E [a(g)e—ikux# _a*(];’)eik”x#} B

¢o dava po dosadeni spravny rozmer lagrangianu aj kanonickym komuta¢nym vztahom.!' Pre hamil-
tonian

H= /(W@tqﬁ —L)dPr = ... = ?/ [(800)* + (9;0)* + M2¢?] &

HUPri pouziti prirodzenych jednotiek, A = ¢ = 1, problém s rozmerovym normovanim odpadé, a v literatire sa
s nim nestretneme. Rozmerové koeficienty preto v d'alsich vztahoch zvicSa uvadzame v ,fahko ignorovatelnom* tvare
Ry, R..
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potom prechodom k operatorom a zohladnenim vysSie uvedenych komutatorov pre &(E), &T(/;) do-
stavame (Dodatok K)

3

H=.. = g/ (;;5’)3 [aT(E)a(E) +a(1§)a*(1§)} Bl = %/wk [aT(E)a(E) + 0)| &k

alebo v pripade diskrétneho spektra k tvar
H=h) w; [&T(k)d(k) +>21<} =h) w {N(kz) +>21<}

kde a'(k)a(k) = N(l{;) (v tomto poradi) je operator poctu ,fastic* v stave k. Kombinécie hamiltonianu
s operdtormi a(k) a af(k) totiz davaji

A~ -

Ha(k) = (E — hwg)a(k) Hal(k) = (E + hwp)al (k)

¢ize operatory &(E), ELT(E) (aplikované na stav systému) znizuji/zvySuju energiu systému E o ener-
getické kvantum hwy - st anihilacngm/kreacngm operatorom Castice*!? (1.j. energetického kvanta)
s hybnostou hk. Z uvedenych komutatorov pre fL(E), dT(Ig) vyplyva nielen to, Ze kazdy takyto stav je
mnohocasticovy, ale aj to, Ze mnohocasticové stavy su symetrické vo¢i vzajomnej vymene [ubovol-
nych dvoch castic. Skalarne ¢astice st bozdny.

Pokial ide o (preskrtnuté) druhé ¢leny tychto vyrazov, reprezentuju energiu zakladného stavu bez
castic - vakua. Kvoli d-funkcii, resp. nekoneé¢nému siactu konstant %, tento vyraz vedie na neko-
necno!'® Kedze sa viak takéto nekonecéno nachadza vo vyrazoch pre energiu kaZdého systému, a pre
nas je relevantnym vzdy len rozdiel energii, mdzeme toto nekonecno ignorovat. K energii vikua sa
vratime v kap. 1I11.1.4.

Rovnako ako hamiltonian méZzeme prostrednictvom krea¢nych /anihila¢nych operatorov kvantovat
vietkych 10 generatorov Poincarého algebry (Casopriestorové rotacie a translacie) z kap. 11.4. Je
dolezité si pritom uvedomit, ze v kazdej fyzikdlnej konfiguracii pola krea¢né/anihila¢né operatory
vystupuji v podintegrdalnom vyraze, v silade so zikonmi zachovania. Dolezitou vlastnostou tiez je,
7e anihilatny operator a(k) da 0 ak posobi na stav bez castic (vikuum |0)), rovnako ako aj na stav
s Casticami inej hybnosti (| # k)). Posobenim operatora af(k) na vakuum |0) ,vyrobime asticu
s hybnostou hk - vlastnou hodnotou operatora hybnosti prislusnou k tomuto stavu,

15) = a' (k)[0) P|1g) = hk[1p)
Zlozky operatora hybnosti dostaneme zo vztahu z kap. 1.3.4'4
h e h o
_ 03, 3. _ SHOVA (TP 3
pj = /Tjd r=..= c/ﬂﬁjgbd x = e W/kja (k)a(k)d’k = o) /kj/\/(k)d k

Stav [1z) je v8ak priestorovo tplne delokalizovany a fyzikalne nerealizovateIny (nenormovatelny),
ako to vyplyva z komuta¢nych vztahov pre krea¢né/anihila¢né operatory

(Lp|15) = (0a(K)a' (k)|0) = ... = (Ol[a(k)a (F)]|0) ~ 6(K' — k) ateda  (Lgflp) ~8(0) = oo

120stra hodnota hybnosti znamena 1iplni delokalizdciu v priestore, pojem castica tu teda nem4 klasicki konotéaciu,
reprezentuje len kvantum energie. Prave v tomto zmysle budeme zvic8a pojem castica pouzivat.

I3 Technicky vzaté, nag vyraz pre H vyjadruje operdtor, a ten ziadnu hodnotu nemé. Velkost energie vakua sa pocita
ako (JOH|0).

14Obdobnym (aj ked zdlhavejsim) vypoctom by sme napr. pre operatory zloziek momentu hybnosti dostali

. 1 ih = 0 0 =
o ey | AT a4 3
Li 9 k! (2m)3 /a (k) (kk Ok ki 6kk> a(k)d’k
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Iny stav vznikne aplikovanim operatora pola ¢(7): Ak posobi na vakuum, |0), jeho anihila¢éné cast
d& 0 a kreaCné cast vytvori casticu v mieste 7, ako superpoziciu excitacii s ostrymi hodnotami k,

1) = $(7)]0) =

1 1 ik
= e TPk
e ] e
pricom v tomto vyraze ako aj v dalSom texte uz systematicky vynechédvame rozmerové normovacie
koeficienty. Problém (ne)zachovania poc¢tu ¢astic ¢i naboja vyjasnime v kap. I11.1.5. Teraz preverime
wostrost” lokalizacie takejto Castice v mieste 7, teda ¢ stavy |1z) a |1z/) st ortogondlne (tak ako
v kvantovej mechanike, kde (7|7"") = §(7" — 7)). Dosadenim dostavame

11 i &k Ak = Y S
o) == s | [ G el = | T A0

Pre ortogonalitu nevyhnutnému J-funkénému charakteru tejto priestorovej korelacie ,prekédza“ v me-

novateli faktor 2wy = 2 k- k+m2, zabezpecujtci lorentzovski kovariantnost vyrazu (kap. 111.1.2).
Znamen3 to, Ze ¢astica nie je lokalizovatelnd presne v 7 - bodové castice neexistuji!'®

I11.1.4 Enmnergia vakua.

Ukazali sme, ze kvantovanie skalarneho KG pol'a vedie na nekoneény ¢len (energia %hw,g, preintegro-

vané cez vietky k) v energii kaZdej konfiguracie pola, vratane stavu bez Castic - vdkua. Hoci takéto
nekonefno mozeme v mnohych situiciach ignorovat (ked uvazujeme rozdiel energii), rozhodne nie je
nefyzikalne.'6

Ak vytvorime v priestore vakua ohranicent oblast (pre jednoduchost v jednom rozmere) s okrajo-
vymi podmienkami ¢(t,z = 0,y,2) = ¢(0,z = L,y,z) = 0, obmedzime tym pole ako superpoziciu
rovinnych vin na stojaté viny (v smere z) s frekvenciami

2
wk—C\/ﬁz2+k§+ <%>

¢im sa zmeni aj hustota energie vakua - zmens? sa, a to v zavislosti od vzdialenosti hranic L. Ak
hustotu energie vakua na jednotku plochy hranice oznac¢ime FEg, potom na plochy hranic pdsobi

zvonka sila F = —88% - plochy sa pritahuji. Tento jav sa nazyva Casimirov jav.!’

K tejto téme este jedna poznamka: Energia vikua sa ¢asto a nesprdvne (1) spaja s fluktuaciami
vakua, ktoré st vSak produktom interakcii poli. Povod nenulovej energie vakua je rovnaky ako
u zakladného stavu kvantového harmonického oscilatora (Dodatok E), ¢ize staciondrneho stavu bez
fluktuacii. VeImi nestastny historicky zavedeny pojem energia nulovych kmitov tiez prispieva
k dezinterpretacii. Spajanie tejto energie s akymkol vek fyzikdlnym pohybom je nepochopenim principu
neurcitosti, tym skor, ze pre fermidny je energia vikua zdpornd (ako uvidime v kap. I11.2.8). Ani
k vysvetleniu Casimirovho javu sme fluktuicie nepotrebovali.

15Tento vysledok odpoveda analyze KGR z kap. IIL1.1. D4 sa ukazat, Ze pre dostatotne velkeé r = |7 — 7| plati
(17/[17) ~ e=™" = e~"/Ac pritom Xc = - Ak by sme cheeli ¢asticu o pokojovej hmotnosti m lokalizovat s presnostou

~ Ac¢ napr. foténom, jeho energia by musela byt najmenej fw =~ h—g = mc?, ¢o odpoveda pokojovej energii meranej

Castice, Cize energii postatujiicej na vygenerovanie novej identickej Gastice z vdkua. Comptonova dizka A¢ je teda dolnou
hranicou fyzikalnej lokalizovatelnosti Castice. Pre mens$ie rozmery (CiZe vacsie energie detekénych Castic) vytvarame
okolo meranej Castice oblak novych Castic/anticastic.

16Podla vietkého ma klicovy tcinok gravitacni.

17Vi¢ginou sa Casimirov jav spija s elektromagnetickym polom ako jedingm makroskopickym, teda jedinym polom,
kde takyto jav moze byt pozorovatelny. Hoci toto pole nie je skalarne, pre energiu jeho vakua uvedené argumenty
platia obdobne.
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I11.1.5 Komplexné skalarne pole.

Predpokladajme najprv dvojicu redlnych skalarnych poli ¢q, ¢2 o0 rovnakej ,hmotnosti“ m. Lagrangian
tejto ststavy bude (az na rozmerovy normovaci koeficient)

L == (0,010" 1 + 0,020" s — M* ¢ — m>¢3)

1
2
Substitucia ) _
¢1 + 102 1 — iy
2 V2

znamena zmenu bazy pri nezmenenom pocte stupnov volnosti systému (2), a novy lagrangian v tvare

=¢ =¢

L=0,6"0"¢p—m*¢*¢p

bude reprezentovat komplexné skalarne pole. Kanonickym kvantovanim sa z povodngch redlnych poli
01, 9 stavajia hermitovské operatory

. 1 L L
) = [ e [ara(B)e ™ a] y(R)e | a

) = [ G [1alP LD

s hermitovsky zdruZengmi anihilatnymi/kreatnymi operatormi dy o(k), db(lg), a s jedinym nenulovym

komutatorom

[ (K), a6 ()] = (27)20,mn(k — K) m,n=1,2

Na druhej strane, z dvojice komplexne zdruZengch poli ¢, ¢* dostavme hermitovsky zdruZené operé-

tory
1

¢($“)/(2W)3\/2—&E

R 1 T S R
gzﬂ(xﬂ):/—~ b (k)e*»" 1+ ¢(k)e ™" | dk
(2%)3 2&)]; [ }

bRy 4 & (F)eer” | a*

kde

st nové anihila¢né /kreatné operatory s jedinymi nenulovymi komutéatormi
[b(k), b1 ()] = (27)°5(k — ) [e(k), & (k)] = (2m)*S(k — &)
Vidime v8ak, Ze anihila¢né a kreacné operatory jednotlivych spektralnych komponent gg a qu uz (na

rozdiel od redlneho pola) nie si hermitovsky zdruzené - anihiluja a kreuju teda odlisné druhy castic
(odpovedajicich ale rovnakému k a teda aj rovnakej energii),

12y = b' (k)|0) 1) = ¢(k)|0)
Pre operatory (hustot) kanonickych hybnosti plati
- it 1o
=009 T =3 O
c
a jedinymi nenulovymi komutatormi pre ne st
[B(F, 1), 7 (7', )] = [6 (7, 1), 71 (7', 1)] = ihd (7 — )
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Hamiltonian takejto ststavy je'8

= # / g (B(RB(R) + & (Bje()) 'k = % / wp (Ra(F) + AL(R))

kde /\A/},(E),/\A/;(E) s operatory poctu ,Castic typu® b, resp. ¢ v danom vlnovom moéde. Podobne

operator celkovej hybnosti bude mat tvar!?

(22)3 / F(R6(F) + Na(h)) o

TR

Na prvy pohlad je zrejmé, ze lagrangian komplexného pola je invariantny voci rotaciam v komplexnej
rovine

¢ize vykazuje symetriu U(1), ktorej odpovedé zachovavajici sa noetherovsky Stvorprad (kap. 1.3.6)

)
‘7“(ma¢ﬂ¢ 5(0,0)

Noetherovskym nabojom (zachovéavajicou sa veli¢inou) je

¢)=m=wwwﬂwwww

o oL 1 ) *
o= / (5(5t¢*)¢ - 0(0,9) ¢) d*z = 2 / (0°0i0 — $0y0*) d’x

Tento vyraz (na rozdiel od Schrédingerovho pola, kap. 1.3.8) nie je pozitivne definitng. Interpretécia
noetherovského naboja ako poctu castic je tu preto neprijatelnéa - pocet castic sa nezachovdva. Ak
viak predpokladame, 7e ide o polia nabité nenulovym tzv. asticovym nabojom?’ ¢, vynasobenim
vyrazu pre noetherovsky naboj Q tymto ndbojom ¢ a kvantovanim poli dostavame

40— 0, — . — #/ [R(R) — ()]

,,éastice typu“ b a c prispievaji k celkovému cCasticovému naboju navzdjom opacnym nabojom =+q
- Castice typu“ c¢ st antiasticami k ,Casticiam typu* b - maji rovnakid hmotnost a energiu, ale
opacng ndboj. Kreovanim /anihilovanim pdrov castica-antic¢astica sa zachovdva celkovy ndboj (a nie
pocty castic.) D4 sa tiez ukazat, ze tento naboj (ako vlastna hodnota operatora Qq) je lorentzovskym
skaldrom - pri lorentzovskych transforméciach sa zachovdva.

V8eobecné riesenia KGR teda nie s jednocasticovymi rieSeniami - zahfhaji pdry ¢astica-antic¢astica.
Operéator gg(x“) v danom ¢asopriestorovom bode z# (presnejsie v jeho Ag-okoli) anihiluje Castice (¢len
b(k)e~*#") a kreuje anticastice (&f(k)e*#*"). Naopak, operator ¢f(z#) kreuje Castice (bf(k)ein")
a anihiluje antitastice (é(k)e~#»™"). Ak vychadzame z kvantovomechanickych operatorov pre energiu
a hybnost, iho; resp. —ihd;, fazy rovinnych vin Fik,z# = Fi(Et — §- 7)/h znamenaji opacné zna-
mienka energie aj hybnosti. Pri oboch anihilacnyjch operatoroch tak dostavame hybnosti +p, ktoré
moZeme interpretovat ako ,prichddzajuce* (t.j. absorbované, anihilované) castice, kym pri oboch
kreacngch operatoroch dostavame —p pre Castice ,odchadzajtice* (emitované, kreované). Zdpornd
energia anti¢astic je v8ak interpreta¢nym problémom,?! pretoZe kreovanie takychto ¢astic by zname-
nalo neohrani¢ené znizovanie energie systému, a teda nestabilitu systému vodi tvorbe anti¢astic (¢o
je nefyzikdlne). Castice so zdpornou energiou preto interpretujeme ako anticastice s kladnou energiou

ohybujtce sa opacne v case, ¢ize eEt/h = Bt/ — o—ilElt/h
ponybu)j /4 ) E<0

18]gnorujeme pritom energiu vakua pre obe polia, ¢ize 2 x %hw,; pre kazdé k.
19V tomto pripade ide o vektorowi suméciu, s ohladom na smer vektorov k.
20Moze ale nemusi pritom nevyhnutne ist o elektricky naboj. V Casti IV s stretneme s inymi druhmi naboja.

> Tento problém sme spomenuli uz v kap. II1.1.1 v stvislosti s disperznym vzfahom @y = +1/ (k)2 + m2.
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[lustraciou tejto zameny je dvojica ekvivalentnych in-

terpretécii zrazky dvoch ¢castic «, 8, pricom produk-

tami zrazky su Castice o/, §’ (obr.). Vstupujuce aj vy- —’—“
stupujtce ¢astice su pre oba scenare rovnaké (preto st

ekvivalentné), a v oboch ¢astica o vyziari f" a pohlti ;

B. V druhom scenari sa vSak a medzi tymito dvoma

udalostami pohybuje naspéift v ¢ase. MoZeme to inter-
pretovat tak, Ze v okamihu ¢; sa Castica [ premeni na pdr Castica o a jej anticastica, ktord v ¢ase to
anihiluje s o do novej ¢astice 3.

Castica anticastica 1

Pre nabojovo neutrdlne polia, ¢ = 0, nevieme rozliSit casticu od anticastice - Castica je sama sebe
anticasticou. Matematicky to znamend bf (k) = ¢ét(k), b(k) = é(k), t.j. pole je redlne. Nulovy noethe-
rovsky naboj znamené, Ze redlne KG pole nevykazuje U(1)-symetriu, ¢o vidno aj z jeho lagrangianu.
S tym suvisi aj nezachovavajuci sa casticovyj naboj (pocet Castic) pri posobeni operatora redlneho
pola na vakuum (kap. II1.1.3).

Poznamka k hermitovosti operatorov: V nerelativistickej kvantovej mechanike hermitovské operé-
tory odpovedaji veli¢inam, ktoré st (aspofi principidlne) meratelné. V relativistickej kvantovej teorii
poli to celkom neplati. Operatory poli st hermitovské pre realne polia ¢ a hermitovsky zdruzené
pre komplexne zdruzené polia 1, ¢*, pricom ani v jednom pripade nemusi ist (a zvica ani nejde)
o meratelné polia. Operatory prisluchajiuce meratelnym veli¢inam v8ak hermitovskymi musia byt.

I11.1.6 Kauzalita.

Pod pojmom castice v kvantovej teorii rozumieme nielen kvanté vinovych modov (s ostrou hodnotou
E), ale ¢asto aj viac-menej lokalizované energetické excitacie - vinové baliky prislusnych poli.?? V ramci
takejto predstavy opisujeme ich Sirenie ¢asopriestorom, ako predpoklad pre ich vzajomné interakcie
(rozptyl Castic). Relativistickd teoria pritom musi prisne respektovat princip kauzalnosti - Ziaden
energeticky balik* (ani vyuzitelna informéacia) sa nesmie $irit Minkowského ¢asopriestorom mimo
svetelného kuzela (Cize priestorom vicSou rychlostou nez c). Medzi priestoru-podobne vzdialenymi
udalostami z,, a 7}, ( kap. 1.3.1),

() = 2)* = (&, — ) (& — ) = P = 1) = (7' = 79 < 0

nesmie byt pricinnd suvislost. Tomuto principu musia vyhovovat aj komutatory a korela¢né funkcie
operatorov poli. Doteraz uvadzané komutatory operatorov skalarnych poli platia pre dang casovy
okamih, t = t'. Osobitne, komutator

VS IS SN I G U B SC A AT
[o(7", 1), o(F,1)] = ... = (27T>3/2@E (e )d k=0

(lebo podintegralny vyraz je neparnou funkciou integra¢nej premennej) znamena, ze akékol'vek ope-
racie (merania) uskuto¢nené na dvoch roznych miestach sicasne (v laboratornej siistave) musia byt
nezavislé. Na druhej strane, pre rovnaké miesto a rozne casy plati

B ), (7 1)) = ... = # / &k (e _ im0 2 g

QLUE

¢o predstavuje nenulovi pravdepodobnost najdenia ¢astice na danom mieste v ¢asoch t aj t'. Pre
priestoru-podobné vzdialenosti musi platit

O, ), 07 0] =0 resp.  [p(a),), o(x,)] =0 pre (7, —z,)* <0

22Pripomeiime, Ze takato definicia sa vztahuje na pripad mimo merania. Meranim sa ¢astica lokalizuje na detektore
- vytvori sa jej ostra poloha.
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Korelacna funkcia - amplitida pravdepodobnosti ,najdenia“ Castice v x;l, ak bola ,pripravend* v x,,
je

1 efik“-(:):;tfx#) 5 )
(Lyl1) = Q)30 = . = s [ 5 k= D~ )
Tento vyraz sa nazyva propagator,? a pre priestoru-podobné vzdialenosti musi byt nulovij! Uvedeny
vyraz vsak vedie na?*

D(x), — x,) ~ e I

Aj tento nepatrny (~ 1/m) presah svetelného kuzela naznacuje principidlny problém. Hladajme jeho
rieSenie tak, Ze formdine rozdelime operator skalarneho pola ¢(z#) ako

~

3 — M 3 dT(E)eik“xu Bl = &+ (") + o
o) = [ Gzt =60 + )

a ,kauzalny* komutator [95(:6;) (zg(xﬂ)] = 0 pre (:cL a:u)Q < 0 rozpiSeme pomocou komutétorov
ot,¢~. S uvaZenim komuta¢nych vztahov pre operatory a( ) Tk ) potom dostaneme
A - - - A - !
[0(x},), o)) = .. = [0 (2},), ¢ (2,)] = [0" (w), 0™ (2},)] = ... = D(z), — x,,) — D(z), — 7,) =0

Princip kauzéalnosti nas teda nuti uvazovat s navzdjom sa kompenzujicim Sirenim Castice/vplyvu
v opacnych casopriestorovgch smeroch (Cize s nulovym rozdielom nenulovych propagéatorov). Pre
. . 4 . / . . . v o, NI v e < > M
priestoru-podobne vzdialené udalosti x,,x, pritom nie je mozné urcit ich casovi ndslednost. Este
lepSiu predstavu ziskame, ak rozsirime nase ivahy na komplezné skaldrne pole - relevantnym komu-
tatorom je potom [p(z),), ¢'(x,)] = 0, a odpovedajiice propagatory reprezentujui Sirenie castice resp.
antic¢astice v navzajom opacnych ¢asopriestorovych smeroch. Existencia anticastic je teda dosledkom

principu kauzalnosti. (Castice redlneho pola st sami sebe anti¢asticami.)

Zavedenie tzv. operatora ¢asového usporiadania T umoziuje vseobecnejsiu definiciu propagatora,

Dir(;, = ) = (O[T 0(],)(,0)|0) Po(a)) () = { OTn)OlEu) pre 2, >

i P(z,)9(x),) pre z, > ),

Tento tzv. Feynmanov propagator mozeme tiez zapisat pomocou Heavisideovej skokovej funkcie
O(t' —t) ako
DF(:EL,JJ#) ot _t>D( IH)—F@(t—t)D(x#,x')

n
Vyraz koduje pohyb amplitidy exciticie (teda vplyvu ¢astice) z, — ), pre ' > ¢ (prvy clen)
a x, — x, pre t > t' (druhy clen). V pripade interagujicej dvojice Castic (vInovych balikov) A
a B to vyjadruje, ako minulost ¢astice B ovplyvihuje pritomnost ¢astice A (prvy ¢len), a ako pritom-
nost A ovplyvni budicnost B (druhy ¢len). Tento mechanizmus sa Casto interpretuje ako interakcia
sprostredkovand virtualnymi ¢asticami, prenasajtcimi medzi A a B hybnost.?®> Hybnost ¢astice A
v danom okamihu sa zmeni nielen absorbovanim virtualnej castice vyslanej v minulosti z B, ale aj
(podla zékona akcie a reakcie) vyslanim virtualnej Castice z A pohltenej v B v budicnosti (druhy
¢len Dp). K zmene hybnosti castice A dojde len ak je hou vysland Castica nasledne pohltena v B
- preto sprostredkujticu ,fasticu” nazyvame virtudlnou.?® 7 pohladu sicasnosti je budice pohltenie
virtualnej Castice spatnym pohybom v case, jeho sprostredkovatelom je preto (virtuélna) anticastica.

23Propagator je relativistickym zovSeobecnenim nerelativistickej kvantovomechanickej vinovej funkcie - amplitady
pravdepodobnosti namerania astice v danom mieste (bez ohladu na miesto jej ,pripravenia“), a koéduje potencialny
vplyv Castice na ind Casticu vo svojom okoli (je vychodiskom pre opis rozptylu Castic).

24Uz v kap. IIL.1.3 sme ukazali, Ze astica skalarneho pola v danom okamihu nie je ostro lokalizovan4, teda ze
(17/|17) # §(7' — ), ale exponencilne ,mizne“ na vzdialenosti ~ 1/m.

25Kedze interagujiice ¢astice nie st tplne priestorovo lokalizované, vymena virtualnych ¢astic nastava v celej oblasti
ich (de)lokalizacie.

26 Ak by islo o ,realnu“ Casticu, jej emitovanie v A by automaticky znamenalo okamZitii zmenu hybnosti A (spétny
raz), bez ohladu na to, ¢i v budicnosti dojde k jej pohlteniu v B. Rozdiel medzi ,redlnymi“ a virtudlnymi ¢asticami
spociva len v tom, Zze druhé z nich existuja len ,yovnutri“ rozptylového procesu, nevstupuji don ,zvonka“ ani z neho
nevystupuju, nie st teda meratelné.
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Podobnym sposobom sa konstruuji propagatory aj ingch poli (spinorového ¢i vektorového). Kvantova
tedria poli poskytuje matematicky aparat na vypocet takychto rozptylovych procesov.

IT1.1.7 Nerelativistickd limita v elektromagnetickom poli.

Vyjdime z lagrangianu komplexného skalarneho pola z kap. 111.1.5
L= 0,0"0"p —m*¢*¢

Nerelativistickd limita znamena, Ze vSetky energetické ¢leny su zanedbatelné voci pokojovej energii
castice, F = Ey = mc?, z ¢asove] zavislosti ¢(7,t) preto vyjmime oscilécie s pokojovou energiou

¢<F’ t) ~ e_iEOt/hw(F, t) — e—iﬁwtw(f»’ t)
Casova zlozka prvého ¢lena lagrangianu je potom po dosadeni
Bop* Qo = ... = Qo Dot + i (Y tp — PAY*) + MP*ep

Kedze m = %¢ = %, prvy ¢len je zanedbatelny vo¢i zvy$nym dvom (Gmernym m, resp. m?),
a posledny ¢len je zas kompenzovany poslednym clenom celkového lagrangianu. Nerelativisticky
lagrangian je potom

L =m(i*0pp — 1hOgp*) — 03905
Prechodom k obvyklému nerelativistickému normovaniu [ ¢* d*z = 1 dostaneme lagrangian z kap.
[.3.8 pre Schrodingerovo pole

he | . . . 1 *
L= 7 WOy — 1hOyp™ — Tajw jw
m

a po dosadeni do ELR pre ¢* aj SCHR pre voInu Casticu.
Aj nerelativisticky lagrangian komplezného skalarneho je nadalej invariantny voc¢i U(1) transformacii
¢ - 6_i€¢ ¢* — eie¢*

a prislusnym noetherovskym nabojom je

- oL 0L N o
Q‘/(@(@m)“’ a(@mﬁ)“ /W“

¢o obvykle interpretujeme ako zachovdvajici sa (na rozdiel od relativistického pripadu) pocet castic.
Anticastice ako rydzo relativisticky fenomén sa z tychto vztahov vytratili. Stoji tiez za pov§imnutie,
ze pre redlne KG pole, nevykazujtce tato U(1)-symetriu, neexistuje uspokojiva nerelativisticka limita
- vlnova funkcia kvantovej mechaniky musi byt kompleznd (ak ma vyhovovat pravdepodobnostnej
interpretécii).

Tato U(1)-symetria nam dovoluje komplexné pole ¢ reprezentovat pomocou ingch dvoch stuphov
volnosti

U(7.t) = /p(, 1)) V(T ) =/ p(F e p(Ft) = 4 (7, )i (7, 1)
Dosadenim do vysSie uvedeného lagrangianu dostavame

— e | L00p — 0800 — = (9.0)2 — L (9,0)?
L = he | 5000 = pot 87%p(é‘ p)” — 5= (050)
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Kanonické hybnosti prislusné k novym poliam st

oL ih

(7, 1) = 90) =3 o

Prechodom k operatorom musi byt splneny komutaény vztah
R - A " e/ o
[9(7’1, t)? WG(T% t)] =—h [9(7’1, t)? p(’f’g, t)] - ZHCS(Tl - TQ)

Operétor poctu Castic je N(t) = [ p(7,t)d*z, a kedze [ (7 — 75)d®x = 1, dostavame

¢o je dolezity komutator (a z neho vyplyvajtci vztah neurcitosti) v kondenzovanych systémoch opi-
sanych nerelativistickym komplexnym skaldrnym polom, nachédzajicich sa v tzv. koherentnom
stave s ostrou hodnotou (makroskopickej) fazy a tuplne neuréitym poctom castic (supratekutost,
supravodivost). Rovnako hustotu toku ¢astic/pola v koherentnom stave dostaneme z priestorovej
zlozky noetherovského stvorpridu (dosadenim lagrangidnu do vztahu z kap. 111.1.5)

i = 000" — o = ...~ —L o0

m

Ak je komplexné relativistické skalarne pole ¢ elektricky nabité (ndbojom q) a interaguje s elektro-

—.

magnetickym polom, reprezentovanym §tvorvektorom A* = (¢/c, A), ich vizbu zohladnime modifi-
kovanim operatora energie/hybnosti®’

itho* — iho" — qA*
Relativisticki KGR potom mozeme prepisat do tvaru

(thd, — qA,)(iho" — qA")¢ = (mc)2¢

resp.
62

. 2
o(721) = | (=i0% = 02(7.0)) "+ me?] o650
Jej nerelativisticka limita opédt znamena

ihd,b
0

V Tavej strane uvedenej rovnice?® preto zanedbame vsetky ¢leny neobsahujice Ej,

E >~ Ey = mc?

‘ < Eo g0 < Eo (7, t) = e By (7 1)

[ih0, — qp)” e Eothy = = E (Eoe_iEOt/h¢ — 2qpe~ Bty 4 2ih6_iE°t/h3t¢)
a porovnanim s pravou stranou dostavame

(—mv — A7, t)>2

2m

RO (7 t) = +ap(7,t) | (1)

¢o je SCHR v elektromagnetickom poli.

2THIbi vyznam tejto nahrady ozrejmime v kapitole o kalibra¢nych poliach.
28Paméitajme, Ze vyraz v hranatej zatvorke je operdtor!
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(SRR RoRe
Doélezité zavery:

e Relativisticky kovariantnou pohybovou rovnicou skaldrneho pola je KGR, a jej rieSeniami su su-
perpozicie moédov rovinnych vin.

e Zdkladngm stavom skalarneho pola je vdkuum (bez ¢astic). Energia vakua na vSetkych modoch je
nekonecnd, ide v8ak o ,odstranitelné“ nekonecno.

e Skalarne Gastice ako excitacie skalarneho pola st lokalizovatelné na svojej Comptonovej dlzke,
zéavislej od ich pokojovej hmotnosti. (Tento zaver ostane v platnosti aj pre iné druhy poli.)

o V komplexnom skaldrnom poli existuji dva druhy casticovych excitacii s opacnym casticovym
ndabojom - Castice a anticastice. Anticasticové rieSenia KGR so zdpornou energiou transformujeme na
rieSenia s kladnou energiou, pohybujice sa naspdt v case.

e Pri transformécii konfiguracie komplexného skalarneho pola sa zachovava algebricky (t.j. s ohladom
na znamienko) stcet Casticovych nabojov. Excitacie redlneho skalarneho pola st nenabité - Castice
st sami sebe anti¢asticami, a ich pocet (celkovy ¢asticovy néboj) sa nezachovava.

e Operatory (redlnych aj komplexnych) skalarnych poli (a nielen skalarnych) nereprezentuju jed-
nocasticovy problém - v jednotlivych E—tych modoch sicasne anihilugi casticu a kreuji anticasticu,
resp. naopak (aj ked v pripade redlnych poli su Castica a anticastica identické). Relativistické rovnice
poli, respektujice princip kauzéalnosti, nie si jednocasticovymi rovnicami.

e Pri nerelativiskickych energiach prechddza KGR na SCHR.

II1.2 Spinorové polia.

I111.2.1 Diracova rovnica.

Spinorové polia sii elementarnymi substanciami, ktorych excitacie stotozitujeme s ¢asticami®® so
spinom % Reprezentacia spinorového pola musi spliiat poziadavku lorentzovskej invariantnosti, vra-
tane invariantnosti voci transformacii parity. Takéto polia preto opisujeme Diracovymi spinormi -
Stvorkomponentnymi objektami zlozenymi z chirdlne [avo- aj pravorukého Weylovho spinora. Vhod-
nou reprezentéciou je teda bispinorovd reprezenticia (%, 0)a (0, %) lorentzovskej grupy (kap. 11.4.3) -
tzv. chiralna (Weylova) reprezentéacia, v ktorej Diracove spinory vyjadrujeme pomocou Weylo-
XL
&r

rovijch operatorov 0,, musi byt lorentzovskym skaldrom, ¢o zabezpecime pridanim tzv. Diracovych
gama-matic 4 x 4 (resp. 2 x 2, ktorych prvkami st tiez matice 2 x 2 - nulovd, jednotkova a Pauliho
matice). V chirdlnej reprezentdcii maji gama-matice tvar

vych v tvare ¢ = . Kazdy ¢len lagrangianu pola, ako kombinécia spinorov 1, ¥" a stvorvekto-

0 o* _ y y 0 o#
7”:( 0 ) ot =L " =nwe’=(1,-0) %=y :< 0 )

ot ot

29Patria sem leptény a kvarky, teda vietky Gastice tvoriace ldtku.
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00 10 00 0 1
. 00 (01) - 00 <10)
7= 10 00 T 0 -1 0 0
(01> 00 (—10) 00
0 0 0 —i 00 1 0
. 00 i 0 . 00 0 —1
= 0 i 00 = 10 0 0
(—z'o) 00 (01) 00

Lagrangian spinorového pola (jeho objemova hustota) mé v tomto formalizme tvar
L = he(iy"0, — m)y = P(ihcy*0, — mc?) =Ty

kde 1) a 1 st dve (komplexné) bispinorové polia, ktorych sucin

.
WIWVOw:(?IZ) (g g)(g > = = XpEr + ERxr

je ¢islom - lorentzovskym skaldrom (Co vyzaduje lagrangian). Vyraz v#0, je (napriek tvaru formalne
pripominajicemu skalarny stacin §tvorvektorov, a to v Minkowského metrike) sicétom operatorovych
matic 4x4,

3
0 o0 d 0 0 0
12 12 0 0 1 1 o
P}/aﬂ—g (J“OM 0 > 0'80—(0 a()) y 081—(81 0) s atd.

pn=0

a teda aj pri ¢lene m implicitne uvazujeme jednotkova maticu diag(1,1,1,1), ktora vSak v zapise

systematicky vynechdvame. Dosadenim lagrangianu do ELR pre ¢ aj v dostavame pohybovi - tzv.
Diracovu rovnicu (DIR)

(iv*0, —m)y =0 resp. (—iy"0, —m) =0

DIR je ststavou 4 rovnic pre p = 0, 1,2, 3. Kym operator (energie-hybnosti) 0, pésobi na casopriesto-
rové stupne volnosti, matice-operatory v* posobia na vnitorné (spinové) stupne volnosti. Argumenty
vedice k sformulovaniu DIR (ako vychodisku k zostaveniu lagrangianu) si v Dodatku L.

Overme najprv lorentzovski kovariantnost DIR: Lorentzovska transformécia bispinora znamena nie-
len transformaciu suradnic x* — x'* = (A~1)“x¥ a derivacii,
ox¥ 0 dx¥ 0

_ v _ /o v
oz A oz’ Qx't dxv O = D0y

(A, = 67 + wy z kap. 11.4.2), ale aj transformaciu wvnitorného bispinorového priestoru, cize
(k) — ' (a) = Ag(xt). Tvar transformadnej matice bispinora A; najdeme z nasledujicej uvahy:
Povodna DIR (v neciarkovanej stistave) po vynasobeni A, zlava a vlozeni A;'A, = 1 nadobudne
tvar
~ N » — T
iNAAST 0, Agh(z”) —m Agp(a¥) = (IA*A]! (Af;)—la,g —m) (") =0
—— —— ~——

Ak druhé rovnost ma byt DIR v ¢iarkovanej ststave, musi platit

/\37“/\;1 = ALY

¢o je hladany definicnyg vztah pre transformac¢ni maticu Aj.
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Pre infinitezimalnu transforméciu musi pritom platit A, = 1 — Q%LwWSW, kde S* je matica jej
generdtorov (kap. 11.4.3). Dosadenim AY a A, do defini¢ného vztahu potom dostaneme maticu
generatorov S* vyjadreni pomocou gama-matic ako

th

S — = ,u,7 v

LR
Jej priestorové zlozky S; = %ejlekl (podla kap. 11.4.2) st zlozkami spinového momentu hybnosti
(kap. 111.2.4).

Uvedme este tzv. Schrédingerovu formou DIR, ktori dostaneme vynésobenim povodnej DIR
zlava maticou 7° (s maticami v chirdlnej reprezentcii),

A

ihO (7, t) = Hy (7, 1) o 0 A 0 1 b=
dj:( ()] a-) B:<]l O)

A . R ; AN o

H = —ihca -V +mc*j3 pa=7

Postupom z kap. 1.3.6 sa da 'ahko ukazat, ze komplexné Diracovo pole ¥ (z#) (rovnako ako komplexné
skalarne pole z kap. I11.1.5) vykazuje spojitd vniatorna U(1) symetriu vzhladom na transforméaciu
P — e p 2 9h —irhe, s odpovedajicou hustotou noetherovského ($tvor)pridu a naboja

77 (a") = ey (a )y (") pa") = b)Y (a") = ¥l ")) (> 0)

Druhy z vyrazov formélne splia poziadavky na casticovii pravdepodobnostnii interpretdciu (je neza-
porny, podobne ako v pripade SCHR, a na rozdiel od pripadu KGR), a navadza na interpretaciu
DIR ako jednocasticovej relativistickej pohybovej rovnice. Ako sme v8ak uviedli v predslove k Casti
IT1, takato interpretacia je nesprdvna.®' Tuto symetriu tiez obvykle interpretujeme ako zakon zacho-
vania elektrického ndboja, ako vSak vidime, elektricky naboj v na8ich rovniciach zatial nevystupuje,
a objavuje sa az v kontexte elektromagnetickej interakcie. Je preto presnejsie hovorit o zachovavani
casticového naboja, ako rozdielu poc¢tov ¢astic a anticastic (podobne ako v kap. III.1.5). Diracovymi
antiCasticami sa zaoberame nizsie, a vyznamu pojmu elektricky naboj sa budeme venovat v kapitolach
o interakciach. Fyzikalne spravny obsah nadobudne DIR a jej riesenia az kdnonickym kvantovanim
Diracovho pola (kap. 111.2.8).

II1.2.2 RieSenia Diracovej rovnice.

Formalne mézeme DIR zapisat v tvare

A

D=0 D = (iy"0, — m)
Stoji za povsSimnutie, Ze aplikovanim kvadrdtu tzv. Diracovho operatora D dostaneme
DDy = (=i Otp — m) (in" 0,0 — i)y = (V4" 0,0y + M )ip = 0

¢o po urditych tipravich a pri splneni (pozri Dodatok L) podmienky3?

1 1 .
7 =50 ) = S0 = (¢ize {7°,7'} = 0)

300bjemova hustota noetherovského naboja T (z#) (") je skalar, nie viak lorentzovsky skalar - ako zlozka §tvor-
vektora j¥(z") sa lorentzovsky transformuje. Jej objemovy integral [T (z")y(z#)d®z uz je lorentzovskym skalarom.

31Aj ked je dnes takato interpreticia odmietnuté, zohrala rozhodujtcu tlohu pri budovani relativistickej kvantovej
tedrie.

32T4ato podmienka je ekvivalentna definovaniu matic &, /3’ v kap. II1.2.1. Vyraz {.., ..} je tzv. antikomutdtor, a uvedend
podmienka, definuje tzv. Cliffordovu algebru. Rozne reprezentacie v-matic st viazané touto podmienkou. Splhaja
ju aj Pauliho matice.
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dava KGR. Znamena to, Ze kaZdd komponenta Diracovho spinora (ako komplexny skalar) musi byt
rieenim KGR, teda rieSenim casopriestorovym, vo forme rovinnych vin f (x,) = et*ut" alebo ich su-
perpozicii, respektujtc disperzny vzfah k,k* = m?. Nad ramec KGR vSak y-matice v DIR ,miesaja*
navzajom jednotlivé komponenty bispinorov v abstraktnom spinorovom priestore ,pripnutom® ku
kazdému bodu ¢asopriestoru. Vieobecné riesenie DIR potom dostaneme integrovanim /sumovanim??
rovinnych vin cez vietky dostupné hybnosti ka konfiguracie spinu s

2
1 TN (8) ikt () ikt 3 ~ _ E
P = /———fr@ﬂwﬁve+qmuaﬂ>dk bp =k
o—1 (27‘[‘)3\/2&1’; k k he

kde pary bs(E) c*(l;:) nie su navzajom komplexne zdruzené, a u’(;), v](;) su bazové bispinory pre ostré

]
hodnoty k (a teda nezavisiace od 7), kodujice vnitornid Struktaru spinového priestoru, na ktord sa
teraz zameriame.3*

V chirdlnej baze (¢ize v baze Weylovych spinorov) nadobudni DIR (v maticovom zéapise) a lagrangian
z kap. II1.2.1 tvar

‘ B R R
o=, T ) () = (o0 (5 =
L=} k) (Dw) ( ?; ) = ix} (0 — & V)x1 +i}(0o + G - V)Er — (X1 R + ERxr)

Vidime, Ze pre m # 0 miesa posledny ¢len lagrangianu aj matica Dy, chirdlne lavo- a pravoruké po-
lia. Désledky tohto mieSania ukédZeme na najjednoduchSom rieseni DIR v tvare Diracovho (bi)spinora
s ostrou hodnotou hybnosti/energie (¢ize jednej rovinnej viny, s vynechanym normovacim koeficien-

tom). Pre ansatz
i i © —i I
(zH) ( E(L((i“)) ) = < E{L )ezkux Yo ik

(Y*ky — m)poe™**" =0

V pokojovej stustave objektu, kde k= 0, ko = m, a E = mc* = hem > 0, dostavame (po dosadeni
matice %)

xL y _ (-1 1 XL\ _ [ —XxXr+8r Y\ _ _
(70_14X4)<€;)_( 1 _1)(52)_( XLL_ERR)_O = XL_gR

Dve linedrne nezavislé riesenia DIR st

dostavame z DIR

1 0
1 _ 0 —icmt 2 o 1 —icmt
v =| = |
0 1

a stvisia s roznymi konfiguraciami spinu (hore* resp. ,dole, kap. I11.2.4), a to zhodne pre obe
chirality. Obdobnym spésobom s pouZitim ansatzu e — e’ pre E < 0 dostaneme

xr = —€g a dalgie dve linedrne nezavislé rieSenia®
1 0
0 - 1 o
3 _ iemt 4 o icmt
0 -1

33Normovaci faktor zarucujuci lorentzovskd invariantnost je rovnaky ako v pripade skalarnych poli (kap. IT1.1.2).
Rozmerové normovanie pre jednoduchost ignorujeme.

3V tomto zapise vo veobecnosti nemusi ist o spinory v chirdlnej béze, t.j chiralne Tavo/pravoruke, vid kap. I11.2.3.

35Vieme u# zo §tudia skaldrnych poli, Ze riefenia s E < 0 nepredstavuji problém. Viac sa nimi budeme zaoberat
v nasledujicej kap. I11.2.3.
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Vseobecné riesenie v pokojovej sustave je potom superpoziciou tychto bdzovyjch riesent.

Predpokladajme teraz ako ,po¢iato¢nt“ podmienku v ¢ase t = 0 spinor v stave ,chiralne I'avoruky,
spin hore“, ¢ize (v uvedenej béze)

[ (0) +4*(0)]

DO | —

¥(0) =

o O O

Jeho casovy vyvoj je ¥(t) = 5 [ (t) + ¢3(t)], a v Case t = ;%= bude

1 1 0
T 1 0 , 0 , 0
—— —im/2 im/2 —
Vo) =z || [ ] | "
0 0 0

¢o je ,,chirdlne pravoruky, spin hore”. Znamen4 to, ze Diracove spinory (ako rieSenia DIR v chirdlnej
baze) v Case neustédle oscilujii medzi stavmi opacnej chirality (cez ich superpozicie), s frekvenciou
timernou parametru m - hmotnosti excitacie pola (baliku energie, t.j. Castice). Stavy oboch chiralit
si teda navzajom previazané parametrom m - chiralita hmotngch objektov sa nezachovdva v case
(zachovava sa vSak pri interakciach, a aj pri lorentzovskych transforméciach). Znamena to tiez, ze
v Prirode nemo6zme pozorovat hmotné Weylove spinory (fixnej chirality), ale len Diracove (bi)spinory
(riesenia DIR) s kombinovanou chiralitou.

Naopak, pre nehmotné polia sa DIR redukuje na

. 0 Yolals) XL
H — H _
o0~ (g, o) (8) =1

¢o vedie na samostatné - tzv. Weylove rovnice pre Weylove spinory (jednej chirality)
Z'O'MaufR:O ia”aHXLIO

Chirélne Tavo- a pravoruka ¢ast bispinora sa teda nemiesaju, a mozeme ich (v tejto baze) interpretovat
ako samostatné polia/Castice. Ak sa teda v Prirode vyskytuju spinorové ¢astice konstantnej chirality,
musia byt nehmotné.

Na prvy pohlad by sa zdalo, ze 4 komplexné komponenty Diracovho (bi)spinora predstavuji 8 real-

nych vnitorngjch stupiiov volnosti.® Pre kanonicktt hybnost Diracovho pola (resp. jej hustotu) vsak
plati

oL

mw = —

oY

Cize nezavisi od w (na rozdiel od skalarneho KG pola, pre ktoré m ~ qb) Fazovy priestor Diracovho
(bi)spinora je teda parametrizovany ¢ a 1! (¢o si tie isté stupne volnosti ako ), a preto ma len 8
realnych rozmerov. Pocet (redlnych) stupiiov volnosti je vzdy polovi¢ny, teda v tomto pripade 4. Ako
uvidime, za ur¢itych okolnosti ich moézeme interpretovat ako odpovedajice dvojici castic (resp. Castici
a anticastici, kap. I11.2.3) v dvoch roznych spinovych stavoch.?” Z rovnakych dévodov nehmotnému
Weylovmu spinoru prislichajia 2 stupne volnosti - 2 stavy jedinej Castice, lisiace sa helicitou (kap.
I1.4.4 a Il1.2.4).

= ... =i = ilt

36Pre polia s nekoneénym poétom stupiiov volnosti (dimenzii konfiguraéného priestoru) ma zmysel hovorit o pocte
stuphov volnosti na jeden bod pola.

37Pripominame, e pre spin % sa stavy ,.spin hore* a ,spin dole* v spinovom priestore ortogondlne, ide teda o 2 rdézne
stupne volnosti.
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111.2.3 Diracove anticastice.

Ako vyplyva z kap. II1.2.1 a Dodatku L, poziadavka lorentzovskej kovariantnosti vyzaduje splnenie
podmienky (Cliffordovej algebry) {v*,7"} = 2n*”. Tvar y-matic z kap. II1.2.1 (chirdlna baza) vSak
nie je jedinym, ktory tito podmienku spliia. Unitarnou transforméaciou

v — U A — UNHUT Uc U4)

(ktora nezmeni tvar DIR) vieme vytvorif iné reprezentacie, rovnako vyhovujice Cliffordovej algebre.
Ako sme videli v kap. I11.2.2, chirélna reprezentacia je vyhodnéa pre nehmotné (alebo takmer ne-
hmotné) spinorové polia, v pripade nizkoenergetickych hmotnych poli (E ~ mc?) viak uprednostiiu-
jeme tzv. hmotnostnu (tiez Diracovu alebo §tandardni) reprezentaciu s y-maticami v tvare

0 __ 1 O i O O'j o 0 O'j A 0
7_(0 —1 T\ =0 0 b =gy 0 p=n

. C . L 1 1 .
Transformac¢nou maticou z chirdlnej do hmotnostnej reprezentacie je U = % ( ) , a bispinory

2\ -1 1
(XL)_><X5):L(5R+XL>
&R &s V2 \ &r— XL
A ~ o 7,(90 — ﬁL ZO’jaj
(D)= (Do) = (Do —ia %)
Riegenia DIR hladame v tvare superpozicie rovinnych vin ugze™*»™ resp. vy e®»® kde bispinory

ug, v s zloZené so spinorov X, &, ktorych komponenty opéit odpovedajua stavom ,spin hore” a ,spin
dole“. Dosadenim tychto rieSeni do DIR dostavame

sa transformuja ako

a matica DIR ako

(Y'ky — m)uE =0 (Yky + m)UE =0

Vyhodnost hmotnostnej reprezentécie s diagondlnou maticou «° sa prejavi v pokojovej ststave bi-
spinorov (k; — 0 = 9; — 0, matica Dp je tiez diagonalna), kde tieto rovnice prejdi na tvar®

(Z’E:OVO —m 14x4) Ujp_o =0 (U"E:OVO +m 14x4) Vo = 0

ktory pripusta len hcwp_, = Ep_, = £mc* = £hme (v stlade s disperznym vztahom k,k, = m? pre
k; = 0). Lahko sa presved&ime, Ze kombindcie matic 1° a 144 v uvedenych rovniciach ,yyprojektuja®
z bispinorov ug_,, vz_, ich horni (x;) resp. dolnt (&) cast, pre ktoré potom (v pokojovej ststave)
platia samostatné rovnice

E}Z:()Xs = mCQXs E]}':()gs = _mczgs

Ako sme uz spominali pri KGR v kap. TII.1.5, existencia Castic so zdpornou energiou by viedla
k problému so stabilitou stavu voci ich tvorbe, preto ich interpretujeme ako anticastice s kladnou
energiou pohybujice sa naspdt v Case i priestore. V pokojovej stistave mozeme teda uvazovat bazu
Casticovych/anticasticovych bispinorov pre obe konfiguracie spinu (s rozmerovym normovanim od-
povedajicim normovaniu lagrangianu z kap. I11.2.1)

0

2 P
vyl =V2m
X

v(} 2m

W =om

k=0

u(?_)o =V2m

o O O
o O =
| =
OH;O
_ o O O

38V zaujme algebrickej zrozumitelnosti tu vinimocne piseme aj jednotkovd maticu 1,y4.
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Transformaciou do chirdlnej bazy zistime, Ze tieto stavy odpovedaji spinorovym cCastiam bézovych
stavov 174(t) z kap. 111.2.2. V hmotnostnej reprezentacii teda mame bézu

{Casticay, Castica|, anti¢astica,, anticastica, }

a v pokojovej ststave bispinora zvykneme hovorit (nie celkom korektne) o samostatnej Castici alebo
anticastici v danom spinovom stave, a to v oscilujticej superpozicii oboch chiralit (pre m # 0).39

Bispinorové rieSenia pre k # 0, ktoré dostaneme z uvedenych rieSeni pre k=0 lorentzovskym boostom,
potom buda (Dodatok M)

(T)E +m 0
0 @E +m
W = ks u? = kg —iky
k ©p+m k Gotm

k
z+lk‘y —k.

wr+m &E—I—fﬁ

w&z‘
Eatl
l

FlY
!

ko —iky
wWp+m

z+lk’y —k,

+m

0 \/(:vd,;—i-fﬁ

kde v pripade anti¢asticovych bispinorov vg’z) sme pouzili transformaciu®® F — —E, k — —Fk.

va
=+
N

S
=
|
+
S
ll\')
I

OT

z

Vidime, Ze ¢asticové aj anticasticové rieSenia majt teraz obe polovice bispinora nenulové.*! Linearne
kombinacie takijchto bazovych rieseni tvoria vSeobecné riesenie uvedené v kap. 111.2.2.

111.2.4 Spin a helicita.

7 tvaru hamiltonianu R o

H = —ihca -V +mc*f =ca - p+mc*f
z kap. I11.2.1 vidime, 7e priestorovy (orbitalny) moment hybnosti L =Fx ﬁsa nezachovdva - jeho
komutator s hamiltonianom je totiz

[E,[:I]%C[’T_"X]%:O%]%] [ 7A :] ]%\ O%X]% ([‘r%ﬁk]:ﬁiéjk)
Definujme teda maticu S
g_h(a 0 A A A S & A ‘ . 3 5
S = ( g 3 ) = ... = —ih&1Gob30/2 (S}, G| = ihejpdy [S,5] =0
Potom . o
S, H] = —ichda x p [L+ S, H =0

39Pre m = 0 pokojova ststava neezistuje! Opit pripominame, Ze ak hovorime o Casticiach, mame na mysli klasické
pole (ako riesenie DIR), ktoré aZ kdnonickym kvantovanim kreuje/anihiluje ¢asticu/anticasticu.
Gp_ _ 9(=D) 5 J{Et—p-FH/h _ o—i{|Elt—(=P)-T}/h

—mc @+nw

“1Delenie bispinora na ,,castlcovu a antiCasticova Cast* mé teda zmysel (ak vobec nejaky) len v pokojovej sistave
v hmotnostnej baze.

4OPre E < 0 mozeme pisaf T
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Zachovavajicou sa veli¢inou je teda (ako uz vieme z kap. I1.2.5) celkovg moment hybnosti J=1L+ 5,
kde S je interng moment hybnosti Diracovho spinorového pola - spin. Plati tiez

G WP (3G 0 37 (1 0
2—_ — e
(S)_4( 0 5-5) 4(0 1)

¢o odpoveda vlastnej hodnote j(j + 1) Casimirovho operdtora J? algebry su(2) pre j = % z kap.
I1.3.2. V porovnani s nerelativistickymi spinormi s operatormi spinu reprezentovanymi maticami 2 x 2
(Pauliho maticami) posobiacimi na spinorovy priestor, operatory spinu relativistickych bispinorov si
matice 4 x4 posobiace na bispinorovy priestor. Vo fyzickom 3D priestore je pritom spin reprezentovany
trojicou kartézskych zloziek.

Pre anticastice transformécia (E, ) — (—F, —p) znamena L = 7 x j — —L, a zo zékona zachovania
celkového momentu hybnosti vyplyva S — —S.

V pokojovej sustave bispinora (p' = 0, L = 0) teda plati [H’, g] = 0, a bazové stavy u](;:’?,vl(;:’?
z predchadzajucej kap. 111.2.3 st aj vlastnymi stavmi operatora S,.42 ¢ize energie si degenerované.
(Na kazd hodnotu E pripadaji dva stavy castice aj antiCastice.) V laboratdrnej sdstave (p # 0)
vSak vo vSeobecnosti tieto bazové rieSenia DIR nie st vlastnymi stavmi S,, s vynimkou pripadu

7= (0,0,p.), ked ich spinorové ¢asti nadobtdaju tvar'?

wp +m 0 S 0

0 @ +m : =i

ul = ks u? = ko oW = NO _ v? = V@ETm
‘ e ' s * Gptm |t 0

2

~1/2
Stoji za zmienku, Ze ak uvazime relativistické vztahy £ = ymc®, p; = ymv;, v = (1 — Z—;) ,

zavislost tychto bispinorov od E, p'aj m sa redukuje na vylu¢ni zavislost od .

V wultrarelativistickej limite v — ¢, ¢ize pre m — 0, plati £ = pe, a DIR (v hmotnostnej baze) prejde
na alternativne rovnice (s povodnym smerom p)

0] Eﬁ = =0
7 e =P (£ >0) Xo = T & = 6 = 0 (B <0)

Néavratom do chirdlnej bazy (vhodnejsej pre ultrarelativistické pripady), xp = X%gs, Er = XS—\/*;S,

dostavame (s¢itanim/od¢itanim uvedenych rovnic) samostatné rovnice pre chirdlne komponenty

bispinora, ako varianty Weylovych rovnic z kap I11.2.2
lorentzovska
- - kontrakcia

0-p°r=+Er 7-P°XL = —XL = g-p°— %l

Ly

¢o sa da (semiklasicky) interpretovat ako ,natocenie spinu“ do/proti smeru
pohybu. Ak by sme spin klasicky asociovali s rotujicim diskom, potom pri
translacnej rychlosti disku bliziacej sa k ¢ dochadza v laboratdrnej sistave
k natacaniu roviny disku v désledku relativistickej kontrakcie dlzky v smere

translacie (obr.). V pokojovej ststave (pre v < ¢) disku sa smer spinu nement. ———
smer pohybu

42Ppracujeme v obvyklej spinorovej béaze s diagonalnym operdtorom S..
43 Aplikovanim operatora S, sa tieto stavy nemenia. Pripominame, Ze vyrazy pre v](;’z) platia pre £ > 0 a obrateny

smer p.
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Priemet spinu do smeru pohybu & - 7° sa nazyva helicita, jej bispinorovy operator definujeme ako**

6—5”‘]%0—} 6’"5‘0 O :,O_ﬁi'
h 2 0 a&-p° 1P|

a jeho vlastné hodnoty st i—%. Aj v hmotnostnej reprezentacii posobi samostatne na horni a dolni
Cast bispinora

R 1 . 1
th = j:§Xs hgs = :F§€s s = 172

Objekty s helicitou +3/ — 1 nazyvame pravo/Tavoruké.*

Aplikovanim na riegenia DIR z kap. I11.2.3 vieme ukazaf, 7e operatory p, h a H (pre volni Casticu)
navzajom komutuja*® A )

Helicita teda reprezentuje veli¢inu zachovdvajicu sa v ¢ase.*” Nie je vSak lorentzovskym invariantom
- pre pozorovatela predbiehajiiceho dany hmotng objekt sa tento objekt pohybuje opacngm smerom
(s opacnou hybnostou) - helicita meni znamienko. Naproti tomu chiralita sa zachovava pri lorent-

zovskej transformécii (je fiou definovand), ale pre hmotné objekty sa meni v Case (osciluje - kap.
I11.2.2).

Nehmotné objekty, m = 0, E = |p|c, sa pohybuji rychlostou ¢ a nemozno ich predbehntt - ich helicita
je lorentzovskym invariantom. Na druhej strane, nulova je aj frekvencia oscilacii chirality - chiralita
sa zachovdva v Case. Pre m = 0 teda chiralita a helicita fyzikalne spljvaji (aZ na znamienko).18

I11.2.5 P- a T-symetria.

Preskiimajme kovariantnost DIR vzhIadom na transforméciu parity x* ? ', Gize T ;> ' = —r, kde

P = diag[l, —1, —1, —1]. Okrem zrkadlenia stiradnic sa transformuje aj vnatornéa Struktira spinora,
teda

Up(a'h) = Pap(ah) = Pap(P~1a™) (at) = P p (™)

S uvazenim 0, = 0,,P prepisme DIR, vynasobent P, zlava, ako
0 = Py[in"d, — m]y(z) = [iPA* 0 PP — mlp(a™)

Symetria DIR vzhladom na zmenu parity - tzv. P-symetria - vyzaduje PA*PP;! = 4*. Tejto
podmienke na zaklade vlastnosti y-matic vyhovuje P, = ~°, ¢ize

Yp(a™) =1 %(a") bp(a™) = ' (a)

Yp(a™)ahp(2) = (a*)p(z*) (lorentz. skalar) Pp (MY Pp (™) = Pp(at)y 1 (a")  (4-vektor)

“4Helicita je skaldrom na fyzickom priestore, na bispinorovom priestore posobi ako matica 4 x 4. Definovali sme
ju uz v kap. I1.4.4, kde bol spin reprezentovany maticami 2 x 2. V celej kapitole o grupach sme pritom kladli pre
jednoduchost i = 1, v zvySnom texte vS8ak A explicitne uvadzame.

BKvoli rozliSeniu sa v tomto texte chirdlna Tavo/pravorukost vzdy vyskytuje s privlastkom chirdlna, kym
Tavo/pravorukost bez privlastku znamené helicitu.

46D psledkom komutativnosti operatorov H a b je dvojnasobnd degeneracia rieSeni DIR - kazdej hodnote energie
odpovedaji dve rieSenia s roznymi helicitami.

4TSamotny spin sa pritom vo vieobecnosti nezachovava v ¢ase, jeho priemet do smeru pohybu vSak 4no.

48 Chiralne komponenty nehmotného bispinora (iriace sa rovnakym smerom) reprezentuji dve nezdvislé nehmotné
Castice opacnej helicity aj chirality.
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1(28)’ vg) v ich pokojovej stistave v hmot-

nostnej reprezentacii (v ktorej 4° = diag(1,1,—1,—1)), dostavame

Aplikovanim operatora parity spinora na bazové bispinory u

2m 0

P =2 |0 e = et () =10 | VI e = e
0 0
0 0

PO = | e | e = (-1 SOTRORSPLN N P R0
0 2m

Parita®® (vlastna hodnota operatora) je teda +1 pre Diracove castice a -1 pre anticastice.

Vo vSeobecnosti, teda ak p # 0, mozeme napr. pre £ > 0 transformaciu parity vyjadrit ako

,yows@ ) = ( g O]l ) u®) o i EBt=pR) /b (8) —i(Et+(—p)7)/h
’ — k k
s=1,2

Transformaécia parity teda pochopitelne meni hybnost. Nemeni v8ak spin, a teda meni helicitu ¢astice.
To isté plati aj pre anticastice.

Analogicky preskimame kovariantnost DIR vzhTadom na otocenie casu, x* ? 't Cize t ? —t, kde

T = diag[—1,1, 1, 1]. Popri zrkadleni ¢asu predpokladajme transforméaciu spinora®
Prla) = T () = T (T~') U @) = T (a)
S uvazenim 0,, = 0,,T prepiSme komplezne zdruZend DIR, vynasobentu 7, zlava, ako
[T (") O TT, ! = mlor(a™) =0

Symetria DIR vzhladom na otoCenie ¢asu - tzv. T-symetria - vyzaduje T;(7*)*T T, ' = —+". Tejto
podmienke na zaklade vlastnosti y-matic vyhovuje T, = iy'q3, ¢ize

Yr(e™) = iy (a”)

Otocenie ¢asu ment hybnost aj spin Castice, nemeni preto jej helicitu.

I11.2.6 C-symetria.

Podl'a Dodatku I sa chiralita Weylovho spinora dd menit komplexnym konjugovanim a pomocou
spinorovej metriky e

. 1 . 0 1 .
XL = €X} = Xr Xr = € 'Xr= XL 62_61:(—1 0>:Z‘72 a,b=1,2

Tuto transformaciu nazyvame nabojovym zdruzenim® (hoci vystiznejSie je hovorit o ndbojovej
inverzii.) Hladajme obdobnu transforméciu celého Diracovho (bi)spinora, ¢ — ¢ = Cy*, ktora
c

bude symetriou DIR (zachova jej kovariantny tvar) - tzv. C-symetriou,

(iv*0, — m)pe = 0

49Hovorime o tzv. intrinzickej parite.
S0Transforméacia 7 je antiunitarna (kap. 1.2.5), preto ju aplikujeme na komplexne zdruzeny spinor.
Slangl. charge conjugation
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Komplexne zdruzeny DIR pre ¢* = C~1)¢, vynasobent C zlava, mozeme zapisat v tvare
—iC('YM)*C_laM’l/}C = 771@/)@

a porovnanim s predchadzajicou rovnicou dostavame C(y#)*C~1 = —~#, ¢ize Cy* = —y"C pre
uw=0,1,3, ale Cv* = ~*C. Tymto podmienkam vyhovuje C = iv?,

Yo = *Y* =iy’ (Y0*) = iy*y T
o)

Vplyv nabojovej inverzie preskimame na pripade rieSenia DIR !(z#) = up e~ ku 7 kap. 111.2.3,
teda Castice s £ > 0, h > 0 (v hmotnostnej baze)

— * ke —iky
2m Vom
77Z)l( ,u) o 0 102 0 —ikyxt _ _ 27% ikyat
cl@)y=1{ . 0 k. e = ... = e
109 o 0
N — y Ktk T
iy? Vvom m
¢1*($u)
. . Y . , ey . 2) 4 “ . .
¢o je antiCasticové riegenie 1t (z#) = v](; Jeikut" ¢ B> 0, opacnou hybnostou a preklopengim spinom,

¢ize s mezmenenou helicitou h > 0 (kap. I111.2.4). Ndbojovd inverzia meni casticu na anticasticu
s nezmenenou helicitou.

C-symetria v kombindacii s P- a T-symetriou (nezéavislo na poradi) vytvara fyzikalne ekvivalentny
svet anticastic ako zrkadlovy obraz sveta cCastic. Viac o tychto symetriach si povieme v casti IV
o interakciach.

I11.2.7 Majoranove spinory.

Osobitni pozornost, popri Weylovej a Diracovej reprezentécii, si zasluhuje dal$ia moznéa - tzv. Ma-
joranova reprezentacia, v ktorej y-matice (spliajiuc {v* v} = 2n*") maju tvar

0 __ 0 09 1 i0-3 0 2 0 —09 3 —ial 0
= g9 0 T 0 ’iO’g 7= (o) 0 7= 0 —igl

Vsetky tieto matice su rijdzo imagindrne, a teda rieSenia DIR (obsahujicej iv*) v tejto reprezentacii
mozu byt &isto redlne, 1* = 1. Poziadavka realnosti bispinora vSak vedie na redukovanie stupiiov
volnosti na polovicu. Vo Weylovej béze to znamené, Ze chiralne komponenty bispinora nesmi byt
nezavislé. Tomu odpovedaju bispinory v tvare

(M) _ [ XL
0= ()

- tzv. Majoranove (bi)spinory, tvorené Weylovymi spinormi ligiacimi sa len chiralitou. Nabojovo
invertovany bispinor - anticastica (kap. I111.2.6) bude

M) o ey [ 0 —iog XL \ _ [ —to2Xr \ _ [ Xz \ _ .0
=1 = . L= S = =
=it = (o ) (E) = (o) = () =

¢o je povodny bispinor.”?> Majoranov (bi)spinor je sdm sebe anticasticou, ¢ize mé nulovy néaboj.
Lagrangian v chiralnej baze (pozri kap. I11.2.2) mozeme zapisat tiez pre M) g yyuzitim yp = 102X T,
vylu¢ne pomocou X, a jeho hmotnostny ¢len nadobudne tvar

mxt e + xhyel = mxgioaxy + (ioax;) x]

P2V zéujme jasnosti postupu dosledne piseme xj g, hoci x} p = XL.&-
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Transformacia M) — M e=® (ktora je pre Diracov lagrangian U(1)-symetriou) vedie potom na

vyraz

126 —i29]

m[XEZ'@XEe _i02<X2)TXL€
ktory zavisi od 6 - symetria spojena so zachovavajicim sa ndbojom absentuje, ¢o je vysledok ocaké-

vany pre redlne pole.

Podmienka yr = ioox} tiez vylu¢uje, aby ™) bol nehmotnym (Weylovym) spinorom s (jedinou)
fixnou chiralitou. Majoranov (bi)spinor teda opisuje hmotni Casticu/anti¢asticu s nulovym néabo-
L 53

jom.

II1.2.8 Kvantovanie spinorového pola.

Kvantovanim spinorového pola sa koeficienty b,(k), ¢t (k) vo vieobecnom rieSenf DIR z kap. 111.2.2
stavaju operatormi,

2
- 1 - I - "
Pt = / ——— (bu(R)ul e (R etk ) @i

a rovnako pre hermitovsky zdruzené pole
D) = dla)) = Z / o e BT+ By &k

kde ag) = u*,(;)vo, 77,(;) = UT,(;)VO. Operétory bi(k), by(k), resp. él(k), ¢,(k) identifikujeme ako kre-
atné/anihilacné operdtory castic resp. anticastic (s kladnou energiou) v hybnostnom stave k a spi-

novom stave s. Pdr Castica-antitastica teda kreujeme operdatorom bi(k)el(k), a operatory poli v,
opat nie su jednocasticovymi operatormi (jednu z paru kreuji a druha anihiluju).

Podstatou kanonického kvantovania je definovanie (¢ize ,uhddnutie“) spravnych komutacnych vzta-
hov medzi operatormi poli a kanonickych hybnosti, alebo ekvivalentne medzi krea¢nymi a anihilac-
nymi operatormi. Komutéatory z kap. 1.3.7 plne vyhovuju skaldrnym poliam (kap. I11.1.3), st v8ak
neuspokojivé pre viackomponentné polia - potrebujeme néajst komutacné vztahy medzi jednotlivymi
komponentami (bi)spinorovych operatorov. Kritériom spravnosti je pritom fyzikalna konzistentnost
teorie, reSpektujica lorentzovsku kovariantnost a princip kauzalnosti.

Zatnime hamiltonidnom Diracovho pola (kap. 1.3.2, I11.2.1),

H= /(watw —L)dPr = .. = hc/w(—wfaj +m)y dx = h/zmoatw >z

(m = afw) = iln®), ktory prechodom k operatorom nadobudne tvar (Dodatok N)

)b () = & (R)EL(R) | &k

Ak by sme predpokladali rovnaké (nenulové) komuta¢né vzfahy pre krea¢né/anihila¢né operatory
ako pre komplexné skaldrne polia, Cize

(bo(R), bL, (k")) = [es(R), &L, (k")) = (2m)*6sb(k — k)

’ s

53V ¢ase pisania tohto textu st pravdepodobnymi kandidatmi na Majoranove spinory neutrina, ktorych oscilacie
naznaduju istd nenulovi hmotnost.
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Diracov hamiltonian by bol

-

)b () — el (k)é(k

)~ Tz di”mZ/ [0y — N )]

¢o je nefyzika’lny vysledok, lebo energia pola by s rastticim po¢tom anti¢astic NC,S(E) narastala do
zaporngch hodnot, a teda pole by bolo nestabilné voci ich tvorbe. Pre Diracove polia preto komutacné
vztahy nahradzame vztahmi s antikomutdtormi {X,Y} = XY +Y X,

{bs(k), bl (k")} = {&,(k), &l (k")} = (2m)*ds6(k — k')

{bo(R), by (k")} = {bl(k), bL,(k")} = {&,(k), éu (k")} = {e[(k), el ()} = 0

A

a nulové st aj zmiesané antikomutatory typu {b,(k),éy(k’)} a pod. Pomocou antikomutacnych
vztahov dostavame spravny hamiltonian

-

123 [ s 0+ ) - o] > 3 [ G [N )+ )

s kladnymi energiami castic aj anticastic. Za povSimnutie tieZ stoji, ze energia diracovského vikua
(ktora ignorujeme, az na mozngy gravitaény ucinok) je zdpornd.

Z uvedenych antikomutacnych vztahov sa daju odvodit (Dodatok O) rovnako antikomutacné vztahy
aj pre operatory jednotlivijch zloZiek bispinorovych poli v rovnakom case

{a(7, 1), 0y (7', 1)} = {17, 1), b} (7', 1)} = 0 a,b=1,2,3,4

{700 (7, 1), (7', 1)} = ih{1 (P, ), (7, 1)} = ihd a0 (7 — 7)
Pri platnosti tychto vztahov je, rovnako ako v pripade komplexného skalarneho pola (kap. I11.1.5),
zachovdvajici sa noetherovsky naboj (vdaka U(1)-symetrii lagrangianu) dany rozdielom po¢tu Castic
a anticastic.

Antikomutétory typu {bf(k), bl (k)} = 0 tiez prirodzene vedd na bi(k)bi(k) = 0, ¢o pri aplikovani na
vakuum da neexistenciu dvojcasticového stavu |k, s) - Pauliho vylucovaci princip

bE(R)BL(E)|0) = El(k)el()[0) = 0

Znamens to, 7e (na rozdiel od skalarneho pola) vlastné hodnoty operatorov N(k) moizu byt len 0
resp. 1 (pozri aj Dodatok E). Pre stavy dvoch ¢astic s réznymi hybnostami zas plati

|k, By = bl(k)DI(K)]0) |, k) = bl (Kbl (k)|0)
Kedze viak bl(k)bI(K') = —bi(K')bi(k), musi platit
|E7 lg/> = _|E/7E>

Cize vzadjomnéa zamena dvoch Diracovych castic je antisymetricka.

Nulovy antikomutétor operatorov Diracovho pola na dvoch réznych miestach v tom istom case, teda
pre priestoru podobnu vzdialenost, v8ak znamend ich nenulovy komutator,

{tha(7.1), (7", 1)} = O = [Wa(,8), (7, )] = 200a(7, )0y (17, 1) # O
Pritom ak maja byt dve rézne udalosti fyzikalne pozorovatelné (¢ize kauzdlne), na priestoru-podobnych
vzdialenostiach musia komutovat (nesmie medzi nimi byt pri¢inna stvislost - nemézu sa navzajom
ovplyviiovat). Uvedeny vysledok teda naznacuje, Ze samotné Diracovo ¢(7,t) nie je pozorovatelné.>*
PozorovateInymi su len jeho prejavy reprezentované operatormi tvorenymi su¢inom pdrneho poctu
operatorov ¢(7,t) (ako napr. hamiltonian ¢ operstor hybnosti).

5 Nejde o ziadne prekvapenie, ved objekty, ktorych rotaénou symetriou je otocenie aZz o 2x360°, v Prirode naozaj
nepozorujeme.
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I11.2.9 Nerelativisticka limita v elektromagnetickom poli.

Rovnako ako v pripade KGR (kap. II1.1.7), aj v DIR sa v elektromagnetickom poli nahradza
ihd,, — ih0,, — qA,, a jej schrédingerovsky tvar prejde na

iRy () = (057. (—ihV — gA) + qp + Bmc2> () () = ( ?((;C:)) )

Nerelativistické priblizenie, so substiticiou 7= (—ihV — q/_f), a s rovnakymi podmienkami ako v kap.
I11.1.7 (v8etky energie zanedbatelné voci Ey = mc?), v hmotnostnej baze da

thOyxy = ca - 7%5 + qox + Eox
1tho,§ = ca - Tx + qp€ — Foé
Pre 0 < E = Ej opat kladieme
. : ho, W | |1h0,0
X(F, 1) & e P (7 1) E(7, 1) = e PO (T 1) ! | : 5 ’ Lqp < Ey
a dostaneme .
1hof® = cd - TV + gp® — 2E,©
a odtial
. (q ;)2
> & o7
ox2 Ty hOU = >~ 4 gl
2mc 2m

Komponenta © sa teda ukazuje byt nepodstatne malou (velky menovatel), a moézeme ju ignoro-
vat. Tato ¢ast (bi)spinoru reprezentuje stupne volnosti, ktoré asociujeme s anti¢asticu, a ktoré sa
v nerelativistickej limite strdcaju.?® Zdlhavejsimi tpravami dostavame

- =

A\ 2 ~ ~ ~ ~ ~ o
<0' '7T) = 7?2 + 10 - [7? X 7?] [7? X 7?]] = €jkl[7%ka7%l] =..= zq(V X A)jEjkl = iqBjejkl

kde B = V x /Tje magnetické pole. Nerelativistickd DIR teda prejde na tzv. Pauliho rovnicu pre
dvojkomponentny spinor

. 2
(—mv A, t)) P

¢o je SCHR (pre spinor) rozsirena o interaként energiu spinu (presnejSie spinového magnetického
momentu) s magnetickym polom B.%¢

55Pochopitelne, dany stupeni volnosti bud existuje alebo neexistuje - nemoéze zaniknut limitne. Tento zaver treba,
chapat v zmysle pravdepodobnosti detekcie anti¢astice, a ta v nerelativistickej limite naozaj spojite zanikd.

56Tuto interakciu pozorujeme ako tzv. Zeemanov jav. Koeficient % odlisuje spinovy magneticky moment od orbitdl-
neho.
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(SRR RoRe
Doélezité zavery:

e Relativisticky kovariantnou pohybovou rovnicou (Diracovho) bispinorového pola je DIR, a jej
rieSenim su superpozicie rovinnych vin s vniatornou (bispinorovou) struktirou. Kazda komponenta
bispinorového pola (komplexny skalar) je pritom riesenim KGR.

e Chiralita Diracovych (bi)spinorov osciluje v ¢ase s frekvenciou tmernou ich hmotnosti (DIR miesa
chiralne komponenty bispinora). V Prirode neexistuji hmotné spinory konstantnej chirality.

e Bispinory jednej konstantnej chirality (s nulovou polovicou bispinora v chiralnej baze) musia byt
nehmotné, a $iria sa teda rychlostou c. Pre takéto spinory prechadza DIR na Weylovu rovnicu pre
Weylov spinor danej chirality.

e V hmotnostnej (Diracovej, Standardnej) baze a v pokojovej stustave mozeme hornu/dolni cast
bispinora povazovat za ¢asticovi/anticasticovii. V laboratornej siistave, resp. v inych bazach takéto
delenie nema zmysel. Anticasticové rieSenia DIR so zdpornou energiou transformujeme na rieSenia
s kladnou energiou, pohybujice sa naspdt v case.

e Helicita - orientacia spinu voc¢i smeru pohybu - sa zachovava v ¢ase, lorentzovskym invariantom je
vSak len pre nehmotné castice, kedy nahradza pojem spin a splyva s chiralitou.

e DIR vykazuje diskrétne symetrie parity (priestorovej inverzie), casovej inverzie a ndbojového zdru-
Zenia (inverzie Castica-antiCastica). Vnutorna parita Diracovych Castic/anti¢astic je +1/ — 1. Trans-
forméacia parity meni hybnost a helicitu, nemeni spin. Casova a nabojovéa inverzia menia hybnost
a spin, nemenia helicitu.

e Rieseniami DIR su aj redlne hmotné Majoranove (bi)spinory oboch chiralit s nulovgm nabojom.
Chiralne casti takychto bispinorov si navzajom zavislé.

e Pre zlozky operatorov spinorovych poli platia kanonické antikomutac¢né vztahy namiesto obvyklych
komuta¢nych (¢o suvisi s ich neobvyklym spravanim pri rotaciach o 360°), a dosledkom je Pauliho
vylucovaci princip.

e V nerelativistickom priblizeni prejde DIR v elektromagnetickom poli na Pauliho rovnicu - SCHR,
roz8irent o interakciu spinu s magnetickym polom. Anti¢asticova Cast riesenia DIR, ako wvysostne
relativisticky fenomém, pritom zaniké.

II1.3 Vektorové polia.

I11.3.1 Procova rovnica.

Vektorové polia asociujeme s ¢asticami so spinom 1, teda lorentzovsky sa transformujiacimi vo vek-

torovej reprezentacii (%, 0)® (0, %) = (%, %) Lagrangian pre redlne® vektorové pole A* musi pozosta-

vat z lorentzovsky invariantnych skalarnych ¢lenov. Vhodnou volbou (v ramei volnosti v kongtrukeii

5TZovseobecnenie na komplezné vektorové pole je analogické ako v pripade skaldrneho pola, a nebudeme sa nim
zaoberaf.
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lagrangianu) je®

1 _ 1 ~ 2
L= =5 (P AOuA, = P ADA, = FPAMA,) = .= =P F,, + T AA,
kde FH' = 9" A¥ — 9¥ A* . Dosadenim do ELR (Dodatok P) dostavame Procovu rovnicu® (PCR)

pre jednotlivé zlozky Stvorvektora A*

(0P A — O AM) + mPAY = 9, F™ + m*A” =0

Prvy c¢len tradi¢ne nazyvame kinetickym a druhy Amotnostnym. Tenzor F'* je antisymetricky, preto
musi platit 9,0, F" = 0.9 Aplikovanim $tvordivergencie na PCR teda dostavame dodato¢nt - tzv.
Lorenzovu podmienku

ELA” = 30A0 - 8]‘Aj = Q
¢o je rovnica kontinuity (zdkon zachovania) pola A”, a znamena, Ze len tri zo $tyroch jeho komponent
st linedrne nezdvislé - vnatornd Struktira tohto pola teda obsahuje len tri stupne volnosti. Suvisi to
s tym, ze kdnonické hybnosti odpovedajice zlozkam AY si
oc oL 1
0(0,A,)  cO(0A,) 2c

I

(6 A° — 8°4¥)

apre v =0 dostavame 7° = 0. Znamena to, Ze zlozka A° nemd vlastni dynamiku, a je teda fyzikilne

bezvijznamnd.5t

Podmienka 9, A" = 0 tiez zjednodusi PCR do tvaru®?

(0P A — ¥ AM) + mPAY = 9,0" A — +m*AY = 9,0" A + m*A” =0

¢o odpovedd KGR pre kazdu komponentu A” (analogicky ako v pripade DIR). Znamena to, ze
casopriestorové riesSenia PCR moézeme rozlozit do superpozicie rovinnych vin s disperznym vztahom
k,k* = m?,

4
1 - . . .
AV (") = E /—N [a,\(k)T(’j\)e_’k“x# + a}‘\(k)T(”A)e’k“x# &k
—1 (27?)3\ / QWE

kde T(yy St 4 ortogondlne bazové Stvorvektory - tzv. polarizacie. Pre redlne pole je prirodzené

stotoznit smery polarizacie s ortogonalnymi bazovymi smermi ,nasho* fyzikalneho c¢asopriestoru.®3
Lubovolng $tvorvektor v jeho pokojovej sistave potom vieme vyjadrif pomocou normovanijch bazo-

vych Stvorvektorov - linedrnych polarizacii®*

0

w
T(2) =

o= O O
_— o O O

i

O M
o= o Ty =

0

O O =

AV = A()T(S) + AlT(P;) + AQTé) + AgT(/’g)

58Iné ¢leny do druhého radu v A* bud nie st lorentzovskymi skaldrmi, alebo spadaji do volnosti v kongtruovani
lagrangianu a nemaji vplyv na pohybovi rovnicu. Rozmerovy koeficient kvoli prehladnosti ignorujeme, a volba
koeficientov pri jednotlivych ¢lenoch odpoveda fyzikilne relevantnym poliam.

5 Autorom je Alexandru Proca.

60Matica 9,0, je symetricka, a jej kombinécia s antisymetrickou maticou F** je nulova.

61O¢ividne je to dosledok nasej volby koeficientov pri jednotlivych ¢lenoch lagrangianu. Je to obdoba riefeni DIR
(kap. II1.2), ked horna a dolna ¢ast bispinora neboli nezévislé.

82Plati 9,0V = 00,.

63Nejde viak o samozrejmost, zhoda vnatorného priestoru s fyzikdlnym ¢asopriestorom je Specifikom redlnych vek-
torovych poli.

64Imaginarna jednotka v prvom §tvorvektore je vecou konvencie.
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Nezdvislym vnatornym stuphiom volnosti odpovedaji vSak len posledné ¢ri polariza¢né §vorvektory

1 0 0
7o = (0,70) =10 To=| 1 o= 0
1=1,2,3 0 0 1

Kedze ¢asopriestorové riesenia pre kazda spektralnu zlozku si ~ T(*;)ejFikﬂx“, Lorenzova podmienka

0, A" = 0 znamend

Vyznam tejto podmienky ilustrujme na excitacii pola (rieseni PCR) Siriacej sa v smere osi z,
teda k = (0,0, k.). Disperzny vzfah k k= ki — k-k = m? vedie na kg = /m2+ k2, ize
k* = (y/m?+ k2,0,0, k). Podmienka T(’f\)ku = 0 teda zvazuje komponenty T(‘g) a 7'(’;), kym zvy$né
komponenty ponechéva volné. Linearnu polariza¢nti bazu preto tvoria dva transverzalne (priecne
vodi smeru §irenia) Stvorvektory 7'(“1), T(l;), a navzajom zavislé 7'(’6), 7'(’;) nahradzame jedinou polarizé-
ciou

" splhajicou podmienku T{LL)]{?M =0

T = = 8 vyhovujicou normovacej podmienke T(L)MT(ML) =1

m
vm?+ k2 D .7

z T{LL) — 7'(‘;) v pokojovej stistave pola &k = (0,0,0)
Polarizécia T(“L) je v laboratornej stustave longitudinalna (pozdl%na) voci Sireniu excitacie priesto-
rom. (Vo svojej pokojovej ststave sa vSak excitacia ,Siri“ len v case, T(”L) — T(‘;), a v tom zmysle je

teda tiez tieZ kolmd na smer Sirenia.)

Ako alternativu ku linedrnym polarizaciam by sme tiez mohli definovat bazu (v pokojovej stistave)

1 1 0

7o = (0,70) Ty = L T2) = =10
o = = = =

1=1,2,3 V2 0 V2 0 1

kde nové vektory (), 7(2) st lineArnymi kombinaciami \/ig (F(l) :I:if(g)) odpovedajucich vektorov
linedrnej bazy,®> a predstavuju navzajom opacné kruhové polarizacie s helicitami £1. Polarizacia

T(3) pozdlZ osi z m4 helicitu 0.

I11.3.2 Nehmotné vektorové polia.

Osobitnt pozornost si zasluhuje pripad redlnych vektorovych poli s nulovou hmotnostou, m = 0, pre
ktoré sa PCR redukuje na
Ou(0MA” — 0"A!) = 0,F" =0

Odpovedajicim lagrangianom (zvolenym v ramci danej volnosti) je

1 1
L=—5(0,A0"A = 0,A,0"A") = = F I

Aplikovanie $tvordivergencie (tak ako sme to robili v kap. I111.3.1) na tito PCR by ziadnu novu infor-
méciu neprinieslo - Lorenzova podmienka 0, A" = 0 teda nevyplyva nevyhnutne z PCR nehmotného

85Tieto bazové stavy odpovedajt vlastnym vektorom |j,m;) diagondlneho operatora J, v 3D reprezentécii so(3)
z kap. 11.2.4 s vlastnymi hodnotami z-ového priemetu spinu m; = +1,0.
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pola. PCR ju vsak pripista, a mézZeme ju teda vyzadovat, ¢im dostavame PCR v zjednoduSenom
tvare

0,0"'A” =0
ktorého rieSeniami sa rovinné vlny s disperznym vztahom k,k* = 0. Ak opét predpokladdme excité-
ciu polas k = (0,0, k,), potom disperzny vztah vedie na ko = k., ¢ize k* = (k.,0,0, k,). Pri uvazeni
podmienky k, 7'“ = 0 (vyplyvajucej z Lorenzovej podmienky) dostaneme popri transverzalnych
polarizaciach 7'(1), ( longitudinalnu polarizaciu

T(L)MT&) =0+#-1()

|
— o o -

ktora ocividne nie je normovatelnd.’® Za touto nezrovnalostou sa skryva najdoleZitejsia vlastnost
nehmotnych vektorovych poli: Oproti hmotnym vektorovym poliam tu existuje volnost v ich defino-
vani, v podobe tzv. kalibra¢nej transforméacie

A (") — A" (M) = A”(a") + 9" A(z")

kde A(z¥) je Tubovolna ,poslusnd“ skaldrna funkcia. Pri takejto transformacii sa nemeni lagrangian
ani F* (Dodatok Q), a teda ani PCR a dynamika pola A" - hovorime o kalibraénej symetrii
pola, alebo o poli A* ako kalibraénom poli.®” Rozne konfiguracie A* odpovedaji tej istej fyzi-
kdlnej situdcii (tvoria tzv. triedu ekvivalencie), ¢o v8ak znamena, ze A" ako fyzikalna veli¢ina je
nemeratelnd.

Zmenou (kalibra¢nou transforméciou) konfiguracie pola, A”(z#) — A™(z*), tak modzeme pri nezme-
nenej fyzikalnej situécii vZdy dosiahnaf splnenie Lorenzovej podmienky pre A" (z#),

9, A" =0 & 0, A" = —0,0"A

(a tym zjednodusenie PCR). Poziadavku na splnenie Lorenzovej podmienky nazyvame Lorenzovou
kalibraciou. Pre riesenia PCR v tvare A%(a#) ~ 7/,,e¥**" potom plati®® A(z#) ~ F- em””"”
Problematicka longitudindlnu zlozku pola (vzhladom na smer Sirenia excitacie) Aé‘ 1) Z predchadza—
jucej tvahy potom mozeme pomocou vhodne zvolenej skalarnej funkcie Ay ~ q:ki'zej”w” kalibracne
transformovat na

k .
A = A ‘l‘ 8 A ~ T&)QZFZk”x ¥ auk :szzuz“ _ (,uL)einkzux _ k_ﬂeq:zkrux“ _
1 k. 0
_ 0 Fikyx” 1 0 Fikyx” 0 Fikyx¥
=1 l¢ “ . o |¢© = N =10
1 k. 0

¢ize povodné - a akdkolvek - longitudinédlna zlozka nehmotného pola je fyzikdlne ekvivalentnd trivial-
nej konfigurécii A?L) = 0. Znamené to, ze vnatorna Struktira nehmotného vektorového pola méa len
dva stupne volnosti - transverzdlne polarizicie.%® V kap. I11.2.4 (pre spinorové polia) sme ukazali na
klasickej predstave rotujuceho disku, pohybujtceho sa relativistickou rychlostou v, ze v laboratdorne;

66Vidime tiez, Ze vyraz pre T(”L) z predchéadzajucej kap. II1.3.1 ma ,problematickda® limitu m — 0.

67Viac o kalibra¢nej symetrii sa dozvieme v kapitole o kalibracnijch interakcidch. Nateraz stadi si uvedomit, ze takato
symetria neezxistuje pre m # 0.

%8Riesenie pre A(z*) pritom nemusime zo zndmej konfiguracie A*(x*) hladat - staci, Ze vieme, Ze existuje.

69Zjednodusene mozeme argumentovat, 7e nehmotna excitécia pola (Castica) sa musi &irit len rychlostou ¢, a teda
v smere Sfrenia toto pole nemodZe oscilovat.
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stistave sa moment hybnosti (spin) disku nata¢a do/proti smeru v. T4 ista tivaha sa (pochopitelne)
vztahuje aj na vektorové polia. Pre nehmotné pole musi platit v = ¢, natoc¢enie spinu je teda uplné.
V kvantovom svete to znamend, Ze hoci pre spin 1 existuju #ri priemety +1,0, —1, pre nehmotné
vektorové pole priemet 0 neeristuje! Castice takéhoto pola st vlastnymi stavmi operatora helicity ™
s vlastnymi hodnotami +1, ¢o prave odpoveda dvom nezavislym stupiiom volnosti.”

Majme na paméti, ze Lorenzovou kalibraciou nefixujeme pole A*(x*) jednoznacne - stale existuje
(nekonecnd) trieda ekvivalencie konfiguracii pola, zviazanych kalibra¢nymi transforméciami pomocou
skalarnych funkcii A(z#) spliiajacich podmienku 9,0*A = 0, lebo vtedy 0,A™ = J,A" (= 0).

I11.3.3 Elektromagnetické pole.

Nehmotnym vektorovym polom je aj elektromagnetické pole, reprezentované elektromagne-
tickym Stvorpotencidlom A" = (Ay, A) = (¢/c,A), a v PCR s m = 0 spozname nehomogénne
Maxwellove rovnice (MXR) volného pola, t.j. bez pritomnosti zdrojov, j* = 0 (kap. 1.3.1). Jednot-

livé zlozky elektromagnetického pola si

> > 1
Ej = —(8tA)j — (Vsﬂ)j = _C(aoAj + ajAo) = CFUj Bj = (V X A)] = EjklakAl = —§€jlekl
a F,, je antisymetricky elektromagneticky tenzor (ktorého kovariantny a kontravariantny zapis

sa lisia znamienkom v 0-tom riadku a stipci)

0 Ey/c Es/c Es/c 0 —Ei/c —Ey/c —E3/c
Fo— —El/C 0 —Bg BQ Fhv El/C 0 —Bg BQ
nv —EQ/C Bg 0 —B1 EQ/C B3 0 —Bl
—Eg/C —BQ Bl 0 Eg/C —BQ Bl 0

Tak ako sa navzajom pohybujici pozorovatelia nezhodni na pohybe naboja, teda pride, nezhodni sa
ani na vel'kosti elektrického a magnetického pola - miesanie tychto poli pri lorentzovskej transformacii
je zohl'adnené v tenzore F,,. (Odvodenie MXR s vektormi £, B je v Dodatku R.)

Lagrangian elektromagnetického pola a kanonické hybnosti, prislusné skalarnej a vektorovej Casti

Stvorpotencialu, st

0Ap oA

Hamiltonian (jeho objemova hustota) je potom (podla ocakavania)

L= %(EQ —*B?) o

Hzﬁff—ﬁ:...:%(EQJchEQ)

Z predchadzajicich kapitol vieme, ze Lorenzova podmienka/kalibracia 0,A* = 0 redukuje pocet
nezavislych vnitornijch stupiiov volnosti (polarizacii) zo 4 na 3, ¢ize nehmotnému polu stéle pone-
chava jeden prebytocny (nefyzikalny) stupei volnosti.”™ Moznou dodatoénou kalibraciou, ktora tplne

"OPre nehmotné ¢astice pojem helicita tiplne nahradza pojem spin v zmysle momentu hybnosti (v relativite defi-
novany ako moment hybunosti v pokojovej sistave, ktort nehmotny objekt nemd). Pojem spin (=1 pre vektory) v§ak
ostava v zmysle definovania reprezentdcie.

"l Nehmotné vektorové pole formélne nie je limitnym pripadom hmotného pola pre m — 0. Zmena z troch nezavis-
Iych stupiiov volnosti na dva je skokova. V redlnom svete to vSak predsa len znamena spojity zdanik pravdepodobnosti
generovania (emisie) vektorovej castice s helicitou 0 v spojitej limite m — 0.

"2Rozmerovym koeficientom pri lagrangidne v kap. I11.3.2, ktory sme kvoli prehladnosti ignorovali, je eoc? (gq -
elektrickd konstanta, ¢ize permitivita vakua).

730 nehmotnom poli vieme, Ze ma len 2 bazové polarizicie - linedrne alebo kruhové, ktoré odpovedaji helicitdm +1
nehmotngch vektorovych ¢astic - v tomto pripade foténov (pripomenime aj kap. I1.4.4 a I11.2.4). Kalibra¢na transfor-
mécia elektromagnetického potenciadlu nemeni fyzikalne polia E, é, je len vyuzitim prebyto¢ného stupiia volnosti.
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odstranuje tuto volnost, je tzv. radia¢na, prie¢na alebo Coulombova kalibracia
V-A=0, Ag=0

(vyhovujuca Lorenzovej kalibrécii). Podmienka V - A=0vedienak 7= 0, ¢ize absenciu polarizacie
v smere §irenia vlny. Skuto¢ne, pre foton pozdlzna polarizacia neexistuje. Majme viak na pamiiti, ze
tato kalibracia nie je lorentzovsky kovariantné, kedZe pri lorentzovskych boostoch sa miesaji ¢asové
a priestorové suradnice.

Vseobecnym rieSenim PCR/MXR pre volné realne pole, 0,0"A” = 0, je superpozicia rovinnych vin
oboch polarizécii

2
1 . . . .
Aty =3 / e (@Bl @ () ) dk
o= (27)3 /20 ) )

I11.3.4 Kvantovanie vektorovych poli.

-

Kanonickym kvantovanim prechadzaju fourierovské koeficienty ay(k), al(k) vo vSeobecnych riese-
niach PCR/MXR pre A”(z*) na anihila¢né/kreacné operdtory hybnostnych stavov danej polarizé-
cie,"* a pre ich netrividlne komutatory plati

[ (k). al, (K)] = (2m)*6d(k — ')

(Oxn je O-funkcia vzhladom na smery polarizicie). Naivne by sme ocakavali, ze dosadenim do ko-
mutatorov operatorov prislichajicich A, a 7 = % dostaneme obvyklé kdnonické komutacné
vztahy pre wvSetky zlozky Stvorvektorov. Pre hmotné vektorové pole v8ak lorenzovskd podmienka
0, A" = 0 redukuje pocet nezdvislych vnutornych stupiiov volnosti (polarizacii) na ¢ri. Inak pove-
dané, Fyy = (OpAg — OyAg) = 0, ¢ize lagrangian nezéavisi od 9pA°%, a teda 7¥ = m = 0. To
znamena, ze Ag nie je fyzikdlnou dynamickou premennou, ktorej priradujeme operdtor, a formalny

vztah R
[Ag(t,7), 7o (t, 7")] = 0 #£ ihd(F — ')

nemd fyzikdlny zmysel. Kanonické komutac¢né vztahy sa teda redukuju na
[A;(t, 7), 74 (t, 7)) = ili6;,0(7F — 7) gk =1,2,3

V pripade nehmotného pola s dvoma nezavislymi priecnymi polarizicimi zas vieme ukazat, Ze v cou-
lombovskej kalibracii 0;A; = 0 obe prie¢ne komponenty pola (nezévislo od smeru Sirenia vlny)

spliiaji rovnice™
k:k
———

™V pripade elektromagnetického pola hovorime o foténoch danej hybnosti/energie. (Casto sa nekorektne hovori
o foténoch danej vinovej dizky/frekvencie, toto st viak pojmy, ktoré v mikrosvete nemagi zmysel!)

"Vyraz Pjj; je tzv. projekény operator, ktory nuluje zlozky pola paralelné s k;. Pre projekciu I'ubovolného
vektora @ do smerov || k a L k totiz plati

’UH = (U : k)k U‘j = kjkk Vi _QJ_ =vU— 17” ’Ui = <6jk - kjkk) Vg

k2
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a kdnonické komutatné vztahy pre prie¢ne zlozky pola maju tvar

LA (¢, 7), iyt 7)) = i Py (7 — 7') = iho (7 — )
E/_/

[CRCReRRe
Doélezité zavery:

e Kazda zlozka vektorového pola spliia KGR.

e Vnitorniu Struktiru hmotngch vektorovych poli tvoria tri nezévislé polarizacie. Z PCR vyplyva
Lorenzova podmienka/kalibracia (ktora zviizuje povodni Stvoricu stupiov volnosti).

e Vnatornu Struktdru nehmotnych vektorovych poli tvoria dve nezavislé priecne polarizacie. Treti
stupei volnosti je prebyto¢ny, a podlieha kalibrac¢nej voInosti. Lorenzova kalibracia je tu len jednou
z moznosti, a nevycerpava tuplne kalibra¢éna volnost. Tato je vycerpana obvyklou prie¢nou Coulom-
bovou kalibraciou.

e Elektromagnetické pole je nehmotnym vektorovym polom (s dvoma stupiiami volnosti), reprezen-
tovanym $tvorpotencidlom, resp. elektromagnetickym tenzorom. PCR pre nehmotné pole je ekviva-
lentna MXR pre voIné pole bez zdrojov (ndbojov a pradov). Klasickée MXR bez zdrojov predstavuji
viizby medzi klasickymi (fyzikdlnymi) zlozkami E, B, a redukuji pocet stupiiov volnosti na dva.

e Kénonické komutacné vztahy su aplikovatelné len na fyzikdlne stupne volnosti (polarizacie) - tri
pre hmotné vektorové polia a dva pre nehmotné.
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Interakcie

V predchadzajicej ¢asti sme prostrednictvom pohybovych rovnic a ich rieSeni opisali zakladné triedy
volngch (t.j. vzajomne neinteragujucich) fundamentalnych poli. V tejto ¢asti postupne opiseme (do-
teraz zname) fundamentdlne interakcie medzi elementarnymi polami/¢asticami, tvoriace kostru tzv.
§tandardného modelu, a vysvetlime podstatu trojice fundamentalnych sil - elektromagnetickej,
slabej a silnej.

Vychadzame zo zakladnej predstavy priestoru vyplneného polami (v klasickom chapani), prislicha-
jucimi jednotlivym druhom elementarnych ¢astic, pricom lokdlne nenulové hodnoty tychto poli (v
podobe vinovych energetickych excitiaci) odpovedaju potencidlne meratelnej pritomnosti ¢astic.! In-
terakcia poli znamend energeticki vymenu medzi nimi - exciticie jedného pola ovplyviiuji ¢i generuji
excitacie iného pola. O existencii a sile vzajomnych interakcii jednotlivych poli rozhoduju ich wvdz-
bové konstanty. V pripade spominanej trojice silovych interakcii tieto konStanty - ndboje - st ich
generdtormi, a pri danej interakeii/transformacii sa zachovdvaji.? Energia excitacie jedného pola sa
pritom moéZe tplne ,preliat“ do excitacie iného pola (.Castice pri interakciach vznikaja/zanikaja),
pri splneni vSetkych zdkonov zachovania.

Pri interakciach ¢asto hovorime aj o virtudlnych Casticiach (kap. 111.1.6) - nemeratelnych mate-
matickych konstruktoch sprostredkujiicich interakcie meratelnych Castic.> (Napr. interakcia medzi
elektronmi - ,Casticami® toho istého pola - je sprostredkované virtualnymi ,Casticami elektromag-
netického pola - fotbnmi emitovanymi a pohltenymi interagujicimi elektronmi.) V nasom opise ne-
rozliSujeme medzi ,skutoénymi* a ,yvirtualnymi“ éasticami, obmedzime sa na opis interakcie poli (pri
kvantovom opise reprezentovanych operatormi), zastipenych v celkovom lagrangiane.

IV.1 Mechanizmy interakcii poli.

IV.1.1 Interakcia pola s poruchou.

Pohybovymi rovnicami samostatnych volngch fundamentélnych poli st (vinové) rovnice v homogén-
nom tvare

Do(z,) =0

'Pod pojmom ¢astica tu rozumieme produkt merania.

2Napr. generatorom elektromagnetickej interakcie (kap. IV.2) je elektricky naboj - elektromagnetické pole interaguje
len s elektricky nabitymi polami/¢asticami.

3Pomyselna doba zivota virtudlnych Castic spliia nerovnost AtAFE < Fi - st preto nemeratelné. Vznikaju a zanikaju
pocas interakcie, nevstupuji do nej a ani z nej vystupuju.
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kde D je prislugny diferencidlny ,predpis‘ (napr. pre KGR je D = 9,0* + m?). V pritomnosti (ve-
obecnej, nateraz blizsie nespecifikovanej) poruchy I'(x,,) takéto interakcie opisujeme nehomogénnymi
rovnicami v tvare

Dor(zy) = T'(xy)
Na rieSenie takychto nehomogénnych rovnic pouzivame metdédu Greenovej funkcie prislusného

pola. Podstata tejto metody je zhrnuta v Dodatku T, pricom technickou strankou rieseni sa nebudeme
zaoberat.

Zakladnti myslienku demonstrujme na priklade skaldrneho pola. Lagrangian® interagujiceho skalar-
neho pola obsahuje dodato¢ny ¢len - interakény potencial V(¢)

1 ~2
L= (fmaw - %&) +V(©)
Dosadenim tohto lagrangidnu do ELR dostavame modifikovani KGR
- ov ,
@0 + )6 = T v

kde prava strana predstavuje poruchu pola. Najjednoduchsej, priestorovo lokalizovanej staciondrnej
poruche v podobe Diracovej §-funkcie, V' = §(7 — 7’), odpoveda riesenie®
6—7717"

- AN |
O(r,7") = 4 — r=|r—r

zname ako Yukawov potencial. Znamena to, ze vplyv takejto lokalizovanej poruchy na volné pole
zanika so vzdialenostou od poruchy, a to tym prudsie, ¢im ,hmotnejsie“ je pole. Pre nehmotné pole
je dosah poruchy nekoneény (pri splneni relativistickych poziadaviek).

Pre viaceré poruchy, V}, s partikularnymi rieSeniami ¢; je vysledné pole vdaka linearite pohybovych
rovnic dané ich superpoziciou. Lubovolnu (¢aso)priestorovo rozloZent poruchu mozeme ,skompono-
vat* z §-portch (ich integrovanim). Vplyv takejto poruchy na konfiguraciu pola v danom bode, ¢(z*),
je potom tiez dany (¢aso)priestorovym integrovanim.

IV.1.2 Yukawova interakcia.

Ak dvojica poli navzajom interaguje, vysledny lagrangian musi okrem lagrangianov jednotlivijch vol-
nijch poli obsahovat aj interakcény ¢len. Uvazujme pripad interakcie skaldrneho a spinorového pola.
Najjednoduchsi tvar v tomto pripade je tzv. Yukawov interak¢ény élen’

1 m; . o —_
L= ‘cscalar + Espinor + Eint = §8u¢au¢ - 7¢ +\(“/J’Yuau¢ - mwww) + 9¢¢¢

J/

-

4Kvoli prehladnosti budeme v tejto a nasledujucich kapitolach rozmerové koeficienty lagrangianov jednotlivych poli
spravidla vynechdvat. Vynimkou budu Specifické pripady, ¢o bude o¢ividné. Ide vzdy o kombinacie fundamentalnych
kons§tant 7, ¢, g9, ktorych hodnoty v teoretickej literatture kladieme rovné 1.

5Vypocet sa realizuje zlozitym integrovanim Greenovej funkcie KGR.

5Vgetky ¢leny lagrangidnu musia byt opit lorentzovskymi skalarmi.

"Vsetky fundamentalne silové interakcie v ramci standardného modelu st sprostredkované kalibraénymi vektorovymi
polami, ako uvidime v d'alsom texte. Yukawova interakcia sa z tejto schémy vymyka - zicastnené polia interaguju
priamo. Kategorizécia tejto interakcie je teda otvorenou otazkou.
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kde ¢ je koeficient viizby tychto poli - do teorie vstupuje ako vonkajsi parameter (treba ho urcit
experimentdlne). Vplyv interakéného ¢lenu na skaldrne pole je urcéeny modifikovanou KGR, ziskanou
dosadenim lagrangianu do ELR pre toto pole

OV (¢, ¢, 9)
99
(Lspin nezavisi od ¢), pricom porucha na pravej strane je skaldr. Vplyv na spinorové pole je ur-
ceny modifikovanou DIR (pre jednotlivé zlozky Stvorkomponentného spinoru v), ziskanou obdobnym

sposobom

(3”3“ + mi)ﬁb = = giﬁ@/)

- OV (¢, 1,
(00"~ ) = S0 — g

(V zavisi od 1,1, ale nie od ich derivécii), pricom porucha na pravej strane je spinor.

Riesenim tychto rovnic (metodou Greenovych funkcii) by sa dalo analyzovat, ako tato interakcia
zmeni jednotlivé volné polia. Tieto rovnice st v8ak navzdjom previazané (rieSenia ¢ zavisia od rieseni
¢ anaopak), ¢o robi tento problém vo vSeobecnosti analyticky neriesitelngm. Dekompozicia poli na ro-
vinné vlny s naslednym kvantovanim - prechodom fourierovskych koeficientov na krea¢né/anihilacéné
operatory (Castic ako energetickych kvant tychto vlnovych modov) tu nie je moznd kvoli interaké-
nému ¢lenu ,miesajicemu’ interagujice polia - krea¢né/anihila¢né operétory stracaji ,prislusnost*
ku konkrétnemu polu, a ich casticovd interpretdcia sa strdca.

Vychodiskom st poruchové metddy, predpokladajice, Ze interakcia daného pola s inym polom je len
malou poruchou tohto pola. O velkosti poruchy, a tym aj o ,exaktnosti“ vypoc¢tu aj jeho interpreté-
cie, rozhoduji prave vdzbové konstanty tychto poli. Tento problém sa pritom netyka len Yukawovej
interakcie ale vsetkgch druhov interakcii.

IV.1.3 Kalibra¢na interakcia.

Zéakladné fyzikdlne zakony musia byt nezavislé na volbe pozorovatela. Tato nezavislost sa vztahuje
nielen na globdlny posuv ¢i pootocenie siradnic, skidlovanie alebo globalnu wvnitornd transformaciu
(transformaciu vnitorného priestoru poli), teda na globdlnu zmenu kalibrdcie v Sirsom zmysle slova,
ale aj na transformacie lokdlne (zavislé od ¢asopriestorovych stradnic).® Lokdlna kalibricia v zévis-
losti od polohy 2" sa da parametrizovat tzv. konexiou - wvektorovgm kalibracngm polom A, (z"),
zohladfiujicim a Gasopriestorovo zvizujicim lokalne rozdiely v kalibracii (pri globdlnej zmene plati
A, (z¥) = 0). Nemusi pritom isf len o pasivne prepocitavanie mier,” kalibracné pole moze zohréavat
aktivnu tlohu.'® Nazorny priklad aktivneho kalibra¢ného pola z oblasti financii je v Dodatku S.

Délezitym je pripad vnitornej symetrie U(1) pri transformacii ¢ — €¢ (kap. 1.3.6, 11.3.1). Ak
0 # 0(z#), ide o globalnu symetriu, ktorou disponuju komplexné skaldrne a spinorové polia z kap.
II1.1.5 a I11.2.1. Ak v8ak predpokladame lokdlnu transformaciu s 0 = 0(x*) (Gize ak fazu 6 lokdlne
kalibrujeme), lagrangiany spominanych poli invariantnost voci tejto transformécii stratia, kedze pole
a jeho derivécia sa transformuju odlisne,

Oup(at) — 0, [T p(a)] = €T [9,0(a#) + ig(a*) D0 ()] # €D, ()

KedZze derivacie poli vstupuji do ich pohybovych rovnic, kalibra¢na volnost stuvisiaca s danou vni-
tornou symetriou (v tomto pripade U(1)) by viedla k fyzikadlnym (t.j. meratelnym) dosledkom, ¢o je
nepripustné.

8Zasadnym sposobom sa tym rozsiruje transformaéna invariantnost zakladnych zékonov.

9Takym je napr. prepocitavanie teploty medzi réoznymi lokélne zauZivanymi stupnicami (°C+<+°F a pod.).

19Pre ilustraciu si predstavme teplotné pole ako funkciu vygky nad terénom, pri¢om samotny terén je zvlneny.
Porovnanie teplot ,meter nad zemou* medzi roznymi miestami vyZzaduje uvazit zmenu nadmorskej vysky terénu.
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UvaZzujme pripad spinorového pola 1: Problematickym je ¢len lagrangianu obsahujuci @E@Mw. Zabez-
pecit lokdlnu invariantnost lagrangianu - lokadlnu symetriu - vzhfadom na transformécie 1 — 1),
Y — e %) mozeme predefinovanim operatoru derivéicie!' 9, do tvaru D, ktory sa transformuje
ako D, — eie(z“)DH@ZJ. Spravny tvar takejto tzv. kovariantnej derivacie najdeme z nasledovne;j
uvahy: Varidciu pola v pri infinitezimélnej ¢asopriestorovej zmene dx” vyjadrime prostrednictvom
prisludnej konexie (vektorového pola) A,(z") ako

Ip(a¥) = (¥ + 0z") — P(2”) = —iCdat A, (z")p(z")

kde C je rozmerova vézbova konStanta poli ¢ a A, (opédt vonkajsi parameter, ktory sa urcuje
experimentdlne). Potom definujeme kovariantni derivaciu ako

D, (") = [?u +1CA, (") ]| Y(x")

J/

Poziadavka
Dy — Dl = (¢9D,e ) (%) = Db & (9, +iCAL)e ) = (8, +iCA,)Y

(podla pravidiel unitarnych transformécii operatorov a stavov) je splnena len vtedy ak sa vektorove

pole transformuje ako
1

c
Pole A, (") majtce takato lokdlnu kalibracni volnost nazyvame kalibraénym. V kap. I11.3.2 sme

videli, Ze touto volnostou disponuji nehmotné vektorové polia. Takym je aj elektromagnetické pole s
kalibraénou transformdciou Stvorpotencialu A, = (¢/c, —A)

Ay — A=A, — =0,0(z")

-,

Ay — A=A, +0,A 0 — o =0+ A A A =A—VA

Sucastou takejto kalibra¢nej transformacie je teda zmena fdzy komplexného pola 1 — 1), pricom
stotoznenie skalarnej funkcie A(x”) so zmenou fazy 6(z") tohto pola vztahom 6 = —CA fyzikalne
predstavuje vdzbu'? medzi polom v (z¥) a kalibracngm polom A, (z"). Zmene globdlnej symetrie
komplexného pola na lokdlnu hovorime kalibrovanie symetrie. Pre elektromagnetické pole je véz-
bovou konstantou C' = £, kde ¢ je elektricky naboj.!® Takato lokdlna U(1)-symetria latkového

pola, sposobend vizbou na kalibra¢né pole, ma aj meratelné dosledky.'* Kovariantnt derivéciu, ¢ize
zamenu

ihd, — ihD, = ihd, — qA,

vyplyvajicu z tejto vizby, sme uz pouzili v kap. II1.1.7 a I11.2.9 (pre komplexné skaldrne pole ma
kovariantna derivacia rovnaky tvar), a nazyva sa minimdalna viizba. Rozpisanim na zlozky dosté-
vame

ihd, — ihd; — qp — ihd; — —ihd; — qA

Prvy vyraz znamené vézbu latkového pola ¢ na elektromagnetické v podobe potencidlnej energie
v hamiltoniane, druhy vyraz predstavuje kinematickd hybnost v pritomnosti elektromagnetického
pola.l?

UStandardna definicia derivacie 8,9 = lim o[t (z” + €) — 1h(z¥)] /€ straca rozumnt interpretaciu ak transformacia
W — €@ zavisi od zv.

12Tahko sa presvedéime, Ze dosadenim tychto transformécii sa pohybové rovnice skaldrneho pola (KGR alebo SCHR,
kap. II1.1.7) v pritomnosti elektromagnetického pola nezmenia.

13Toto je definicia a fyzikdlny vyznam elektrického nédboja. Hodnota vizbovej kon§tanty sa urcuje experimentalne.

1Najznamejsim dosledkom je tzv. Aharonovov-Bohmov jav: Dvojstrbinova interferencia elektricky nabitjch ¢as-
tic, zavisiaca od fazového rozdielu interferujicich (pravdepodobnostnych) vin, je ovplyvnena elektromagnetickym vek-
torom A aj v pripade E= 0, B=0.

15V pritomnosti elektromagnetického pola operdtor —ihV priradujeme kdnonickej hybnosti -sictu kinematickej,
teda mwv-hybnosti, a tzv. elektromagnetickej hybnosti qA (Dodatok B).
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Z definicie kovariantnej derivacie vyplyva tiez nasledovné: Ak uskuto¢nime posunutie z; — x; + dz;
a naspat po tej istej drdhe, zmena pola bude dy = 0, t.j. prispevok konexie ~ A;dx; v opacnych
smeroch sa pripo¢itava s opacénymi znamienkami. Ak sa vSak vratime do pévodného bodu po inej
drdhe, napr. po obvode Stvorca

(zj, zr) = (xj + 0xj, xp) = (x5 + 0z, 1) + 0xx) — (25, T + 08) — (25, %)
celkova zmena pola bude
0 ~ Aj(x)dx; + Ap(xj + 0x;)dz, — Aj(xp + 0xy)0x; — Ap(x))dz) =

Ak(l'j + (51’]) — Ak(l']) - A](mk + (Sl’k) - A](xk)
533]' 53:]{2

= 5£L']5Ik [@Ak - 6kA]]

= 0x 0z
Ozna¢me (pridanim vSetkych ¢asopriestorovych staradnic) podla kap. I111.3.1

auAV(xu> - avAu(@t) = Full(xu)

Ak F,,(x,) # 0, konexie s takouto ,aktivnou" tilohou tvoria kalibracné pole, ktoré uz nie je len ,pasiv-
nou kalibraciou“ matematického opisu, ale fyzikalnym objektom s vlastnou dynamikou (¢asovym vy-
vojom), aktivne ovplyviujucim dynamiku pola 1 (z,).'* Ak kalibraénym polom je elektromagnetické
pole, ovplyviiujice dynamiku pola ¢ (jeho ¢astic s ndbojmi ¢), potom F,,(x,) je elektromagneticky
tenzor z kap. 111.3.2.

Kalibra¢nou interakciou nazyvame interakciu kalibracného vektorového pola A, (x") s komplex-
nym skalarnym alebo spinorovym polom. Lagrangian takejto interakcie obsahuje tiez lagrangiany
jednotlivych volngch poli, oproti yukawovskej interakeii (kap. IV.1.2) v8ak ulohu interak¢éného ¢lena
s kalibra¢nym polom zohrava nahrada casopriestorovgch derivacii skalarnych /spinorovych poli ich ko-
variantngmi derivaciami, obsahujicimi prislusny ndboj C ako vizbovt konstantu danej interakcie.'”
Vo v8eobecnosti pre kovariantné derivacie vzhladom na kalibra¢né pole F'* plati

w o Yipe py
Fr = C[D , D"]
Tenzor kalibra¢ného pola F* je kalibracne invariantny, hoci samotné pole A,(z¥) si kalibracnu
volnost ponechava. Podstatou kalibra¢nej interakcie vsak je, Ze tato volnost sa ,naviaze“ na volnost
fazy komplexného skalarneho/spinorového pola, a vytvori lokdlne kalibracne invariantng lagrangian.
Tym sa eliminuje moznost vplyvu ,nefyzikalnych® prebyto¢nych (kalibra¢nych) stupiiov volnosti na
Jfyzikdlne® (meratelné) vlastnosti systému.'® Sucasna fyzika aj preto vnima lokalnu kalibraéni
symetriu fundamentalnych interakcii, popri relativistickej Poincarého symetrii, ako principidlnu
poziadavku. V nasledujucich kapitolach postupne skalibrujeme globdlne symetrie U(1), SU(2) a SU(3)
pomocou prislusnych kalibra¢nych ,silovych® poli a vytvorime modely fundamentalnych silovych
interakcii Prirody.

IV.1.4 Samointerakcia a spontinne narusenie symetrie.

Fyzikalne dolezitym je pripad, ked poruchou komplexného skalarneho pola ¢ je pole samotné, vy-
jadrené ¢lenom V(¢) ~ ¢*

16V geometrii je takito ,nedokonalost konexii mierou krivosti (¢aso)priestoru.

Inymi slovami, véizbovy ¢len v kovariantnej derivicii skaldrneho/spinorového pola znamend, Ze toto pole nesie
urcity naboj.

18D4, sa to formulovat aj tak, Ze poZziadavka lokdlnej kalibracnej symetrie si vyniti existenciu kalibra¢ného pola.
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L= ( 0upd§" — m*¢* — Ap')

pricom A > 0 (podmienka ohraniéenia energie zdola). Hustota potencialnej
¢asti hamiltonianu takéhoto pola je

Hy = 5 (°0° +2¢")

l\'>|’—‘

a je na obrazku, pricom pre m? > 0 (¢o odpoveda redlnej hmotnosti castice)
ma tento potencial jediné minimum pre ¢ = 0, teda v nulovom poli. Znamené
to, ze zékladnym stavom je vdkuum - stav bez castic.

Ak vsak pripustime!® pripad m? < 0, ¢iZe imagindrnej hmotnosti, dostavame minima posunuté do

o] = ¢o = \/_2—’7;2. Zéakladnym stavom, t.j. stavom s najnizSou energiou, bude teraz jeden z tychto

stavov.?’ Kym lagrangian/hamiltonidn systému je nadalej U(1)-symetricky,?t systém si ndhodne

zvoli asymetricky stav (s danou fazou) v jednom z ekvivalentnych minim. Hovorime o spontdnnom
naruSeni symetrie.?? Skiimajme teda spravanie pola v okoli tohto zakladného stavu (t.j. ezcitdcie

z0 zakladného stavu), ¢(z+) = (¢o + ¢(z#))e@). Dosadenim do pévodného lagrangianu dostavame
1 - -
£ = 5 (8:60"6 + (90 + 6)°0,60"0 — * (00 + 6) = Aoy +9)') =
_ % D, 00" 5" + (do + 3)20,00"0 — (=273 — (A\dod® + 3" | + koms.

Vv Vv . . Vv .
kinetickd energia hmotnost  samointerakcia

¢o reprezentuje redlne skalarne pole qg(x“) excitacii s redlnou kladnou hmot-

: _~92 _ d*H,
nostou —m* = 152

i a redlne skalarne pole 0(x*) excitacii s nulovou
=0

hmotnostou (¢len ~ #? absentuje). Nehmotné excitacie § pozdlZ rovnocen-
nych zékladnych stavov (t.j. v smere s nulovou krivosfou potencidlu) sa
nazyvaju (Nambuove-)Goldstoneove bozény, a st sprievodnym javom
spontanneho narusenia globdlne; symetrie. Hmotné radialne excitacie & do
vyssich potencidlnych energii (obr.) budeme neskor nazyvat Higgsovymi
bozénmi.

IV.1.5 Higgsov mechanizmus.

Skombinujme teraz poznatky predchadzajicich dvoch kapitol. Predpokladajme kalibracni interakciu
nehmotného vektorového pola A”(x*) s kompleznym skaldrnym polom ¢(x*) (so samointerakciou) -
tzv. Higgsovym polom. Celkovy lagrangian ma tvar

L= % (Du¢)* D' — m*¢® — Ap*) — —F L,

19Tedrie obsahujice tento mechanizmus predpokladaju teplotni zdvislost parametra m?, pricom zmena znamienka,
nastane pri poklese teploty.

20Hovorime o nenulovej strednej hodnote pola. Hodnota ¢g bude jednym z fundamentalnych vonkagjsich parametrov
v d'alsich modeloch.

21Symetria vzhladom na pootocenie fazy (nésobenie jednotkovym komplexnym ¢islom) je U(1)-symetriou (kap.
11.3.1).

22Spontdnnym narufenim symetrie sa nemeni pocet stupiiov volnosti komplexného pola.
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Lokdlnu kalibra¢nt symetriu lagrangianu zarucuje nahrada 0, — D, = 0, +iC A, (Cize vizba Higg-
sovho pola na kalibra¢né pole), t.j. lagrangian je kalibracéne invariantng vzhTadom na transforméacie
1

Aufa) > Aula) =

0,0(x") o(z") — ew(zy)qﬁ(x”)

V pripade m? > 0 ma pole ¢ dva stupne volnosti (je komplexné), a pole A, rovnako dva transverzdlne
stupne volnosti (je nehmotné, kap. I11.3.2).

V pripade m? < 0 dochadza k spontannemu narugeniu symetrie, a pole ¢ nadobtida nenulovii hodnotu
Oy = \/_2—’7;2 v zéakladnom stave (vikuum). Excitacie v okoli vakua hTadame podla predchadzajtcej

kapitoly v tvare ¢(z#) = [ + ¢(x*)]e?™) | a po dosadeni do lagrangianu dostavame

1 ~ ~ o~ éleny F VF,u,zx
L= =2|0.00"0+ ¢;0,00"0 — (—2m*)¢* — C*Pp A2 + 2C¢*0,0A, + vyssich a
2 1 - s N ~~ mocnin 4

kinetické energie hmo;;losti #

Vidime, Ze tento lagrangian reprezentuje dve hmotné polia - redlne skaldrne pole ¢(z) s (kladnou)
~ ) 242 m , -
hmotnostou —m? a vektorové pole A,(z") s hmotnostou % = —CZ’;\”Q . Vektorové pole teda ziskalo

hmotnost, amernu sile vizby poli C. Tretie pole 6(z") je nefyzikdlne - mézeme totiz vyuzit kalibra¢na
symetriu vektorového pola, a zvolit transforméciu

1 v ia(z? 7 10+«
Ay — Ay — Eaﬂa{x ) ¢ — g = [gg + P(x#)]e" T
takt aby a = —6, ¢im v lagrangiane vynulujeme Cleny s 6, vratane kinetickej energie nehmotnych

Goldstoneovych excitacii a ¢lenu #. Stupen volnosti odpovedajici skalarnym Goldstoneovym exci-
taciam teda zanikne, ale vektorové pole nadobudne hmotnost a tym longitudindlny stupeii volnosti.
Celkovy pocet stupiiov volnosti sa teda nezmeni. V jazyku ¢astic hovorime, Ze nehmotné ¢astice ka-
libra¢ného pola ,zjedia“ nehmotné Goldstoneove bozony (prameniace z nenulovej strednej hodnoty
vakua s naruSenou symetriou) a tym nadobudni hmotnost. Tento mechanizmus sa nazyva (Broutov-
Englertov-...) Higgsov. Skalarne pole si pritom ponechava hmotny stupenn volnosti ¢ - Higgsove
bozony.

COOOO
Dolezité zavery:

e Dosah lokalizovanej poruchy pola v priestore zanikd nepriamo imerne hmotnosti pola.

e Lagrangian interagujicich poli obsahuje okrem lagrangianov wolngch poli aj interakény ¢len s
koeficientom vézby poli. Pri kalibracnej interakcii je tento ¢len obsiahnuty v kovariantne;j derivacii.
Pohybovi rovnicu kazdého interagujiuceho pola dostaneme dosadenim lagrangianu do ELR tohto
pola.

e Definicia kovariantnej derivacie pola ¢, a teda existencia kalibracného pola a jeho transformacny
vztah, st dosledkami poziadavky lokdlnej U(1)-symetrie pola ¢.

e Elektromagnetické pole je nehmotnym kalibra¢nym polom, jeho vizbovou konstantou je elektricky
naboj.
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e Stav vakua pri spontannom naruseni spojitej globdlnej symetrie je stavom s nenulovou strednou
hodnotou pola - hmotnymi aj nehmotnymi (Goldstoneovymi) excitaciami. Pri interakcii s nehmot-
nym kalibra¢nym polom dochadza k pohlteniu nehmotnych excitacii tymto kalibra¢nym polom, ktoré
sa tak stane hmotngym.

IV.2 Elektromagneticka interakcia.

Elektromagneticka interakcia je jednou zo Styroch (znamych) fundamentdlnych silovijch interak-
cit. Je to kalibracnd interakcia elektromagnetického pola, teda nehmotného vektorového kalibracného
pola A, s elektricky nabitym Diracovim spinorovym polom . V jazyku castic - kvdnt poli ide o in-
terakcie medzi elektricky nabitymi fermionmi, sprostredkované elektricky neutrdlnymi kalibra¢nymi
bozénmi - fotonmi. Ich opis je predmetom kvantovej elektrodynamiky.

IV.2.1 Rovnice kvantovej elektrodynamiky

Vézba spinorovych poli s kalibra¢nym elektromagnetickym je v lagrangiane zohladnené kovariantnou
derivaciou (kap. IV.1.3) s vizbovou konStantou je C' = ¢/h. Hustota celkového lagrangianu (aj
s rozmerovymi konstantami) je

2 2
- ~ €oC v T q ~ €oC v v

L= hcw(w"DH—mw)w—TFm,F“ = ﬁczb(w“@u—ﬁy“Au—mw)w—T (0,A,0"AY — 0, A,0"AM)
Podobne ako v pripade skalarneho pola, lagrangian volného spinorového pola sice vykazuje globdlnu
U(1)-symetriu ¢ — €4), nie viak lokdlnu symetriu, 6 # 6(z”). Na druhej strane, lagrangian nehmot-
ného vektorového pola vykazuje aj lokdlnu vnitorni symetriu vzhladom na kalibracéni transformaciu
A, (z) — Au(a*) + 9,A(z*). Vizbou oboch poli,?* § = —CA, dostéavame lagrangian, ktory vykazuje

lokdlnu symetriu vzhladom na kombinovanu, tzv. U(1)-kalibraéna transformaciu.

Spojitd globdlna interna symetria pola (ako Specidlny pripad lokdlnej symetrie)
b = el = iAo (1 - @%A) b=+ 6

je vzdy spojena (kap. 1.3.6) so zachovdvajicim sa noetherovskym §tvorpridom

oJ" =0, [a(g—f@ﬁ) 51[)] =..=0, [(ihcﬁ_}v“) (—Z%A@ZJ)} = 0, [cqpy"yYA] =0

Kedze A je lubovolnd premenna, zachovavajicou veli¢inou je j* = cqyy*y) . Noetherovskym nabojom
je potom
Q= /jod?’l’ = cq/ D dPx = cq

—_——
1

Dosledkom tejto vniitornej symetrie je teda zdkon zachovnia elektrického naboja. Pripomeiime,
7e zachovavajlicimi sa veli¢inami sa prave generdtory spojityjch symetrii. V tomto pripade operatorom

23Vizbova konstanta C je pomerom transformaénych parametrov interagujucich poli.
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transformécie (pootoCenia fazy) je e*/" = (1 — i4A) € U(1), a teda generatorom symetrie (v U(1)
jedinym) je naboj q.

Dosadenim lagrangianu do ELR pre prislusné pole dostavame pohybovi rovnicu tohto pola. Pohy-
bovou rovnicou elektromagnetického pola (interagujuceho s Diracovym polom) je teda

£0C°0,, (O A” — OV A") = cqiyp = j¥

pricom j”(x#*) je hustota elektricky nabitého $tvorprudu (ako porucha volného elektromagnetického

pola). Zamenou A* — E| B v tejto rovnici spoznavame nehomogénne MXR v pritomnosti zdrojov
p,J (Dodatok R).

Pohybovou rovnicou interagujiuceho elektricky nabitého Diracovho pola 1 bude zase (dosadenim do
ELR pre )

(90, = i) = 57" Ay

a pre 1 analogicky (s —i namiesto 4).%

Ndboj?® g ¢astic Diracovho pola v kvantifikuje vizbu tohto pola na kalibracné. Pre anti¢astice musi
platit identickd rovnica s ndbojom —q (rovnica pre 1 takou nie je), teda

-

(i’y“@u - mw)wc h

’YﬂAuwC

kde ¢¢ je anticasticové pole prislusné k polu ¢ (kap. II1.2.6). Z vyrazu t¢ = i7*¢* dostavame
e = ivayY?, a pre pridovii hustotu anticastic j& = —j¥, ¢o je ofakivany vysledok.

IV.2.2 CPT-symetria.

Transformacia parity Diracovho spinoru je Pyip = 7% (kap. I11.2.5), pricom pre vektorové pole takato
transformécia znamend A; — —A;.

Operator otocenia casu pre ¢ je Ty = iv'~y? (kap. IT11.2.5), a pre samotné 1 definujeme novy operator
Top = To* = iy'y39Y*. Pre vektorové pole takato transforméacia znamend Ay — — A,.

Rovnako definujeme operator ndbojovej inverzie pre 1 ako Cip = Cp* = iv** (kap. I11.2.6), pricom
takato transformécia znamenda gA* — —qA*.

Kombinacia P,CT, teda pre rovnice elektrodynamiky neznamend Ziadnu zmenu. Bispinor 1 (z*) sa
transformuje ako

vepr(—a') = PLITp(a")] = PLTap (")) = i PLTIP(a) = 1°(in)(iv'7°)" (") = if’/@/}(ﬂf“)

-~

¢o je anticastica opacnej helicity, pohybujtica sa opacne v casopriestore, a v° = iv%y'72~3. Tato tzv.
CPT-symetria je fundamentdlnou symetrion Prirody.2®

24 Alternativnym zapisom je pouzitie kovariantnej derivécie.

Pre elektromagnetické pole ide o elektricky naboj, pre iné kalibra¢né polia ide o iné naboje.

26Na rozdiel od ¢iastkovych symetrii CPT-symetria plati pre vsetky pozorované procesy v Prirode, a to nezdvislo na
poradi. Symetria l'ubovolnej dvojice transformacii je ekvivalentnd symetrii trete;j.
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Uvedené transformac¢né vztahy platia pre klasické pole. Pre kvantové pole sa 1 stava operdtorom
s transformacénymi vztahmi (podla kap. 1.2)

'4273 = 7)5127);1 QZP = ,Ps?Z,P‘:l
T T, =i TjT =]
de = CHC™L = CoT e = CC = —pTC ! Cj.C = —j,

(SRR RoR
Dolezité zavery:

e Kalibra¢na elektromagnetickd interakcia elektricky nabitého spinorového pola je jednou z funda-
mentdlnych interakcii. Lagrangian tejto interakcie vykazuje kalibra¢nu U(1)-symetriu. Jej dosledkom
je zdkon zachovania elektrického naboja.

e Pohybova rovnica elektromagneticky interagujiceho spinorového pola je symetrickd voc¢i nabojo-
vému zdruzeniu - zamene Castice za anticasticu.

e Kombinécia nabojovej inverzie, transformacie parity a ¢asovej inverzie je univerzdlnou symetriou
Prirody.

I1V.3 Slaba interakcia.

V dalom texte predstavime mechanizmus druhej fundamentalnej silovej interakcie - slabej interak-
cie. Ide o interakciu (vylucne) chirdlne lavorukyjch Diracovych ¢astic (excitacii pola) sprostredkovant
hmotngmi vektorovymi Casticami - bozénmi W, W~ a Z. Zjednotend teoria slabej a elektromag-
netickej interakcie - tzv. elektroslabej interakcie zahiha tiez nehmoiné elektromagnetické pole
s excitaciami foténmi. Jednotlivé aspekty tejto interakcie rozoberieme postupne v nasledujicich
kapitolach.

IV.3.1 SU(2)-kalibra¢na teéria.

Zakladnou schémou slabej interakcie je symetria lagrangianu pri premene jednej Diracovej castice
na 1 za ucasti sprostredkujice; vektorove) castice. Uvazujme preto dvojicu - dublet - spinorovgch
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poli 1,19, pricom premena jedného na druhé, ¢ize transformdcia U jednej zlozky dubletu do druhej
je symetriou (podobne ako pri rotacii vektoru)

¢1—>1/1/1:Oz¢1+ﬁ¢2 w_(@bl)%wl_(aﬂ)(@m)_uw
/ S\ Ju v ¢ vy )
g = Py = Y1 + 0ty

Podmienka normovanosti vyzaduje aby U € SU(2), ¢ize (kap. 11.3.2) U = %%/, Kvoli invariantnosti
lagrangianu predpokladajme (pre zaciatok), Ze polia 1, 1y si nehmotné.?”

Poziadavku lokdlnej invariantnosti pre 0= g(x”) dokazeme naplnit pritomnostou kalibracngch poli
(kap. IV.1.3). Oproti pripadu U(1) symetrie v§ak algebra SU(2) obsahuje tri generatory (kap. 11.3.2),
potrebujeme teda trojicu kalibra¢nych (¢ize nehmotnych vektorovych) poli, W;{ . Poziadavka lokalnej
invariantnosti celkového lagrangianu pri transformécii

1/}_>€ i (@ )gw:engVA ww(l—ZgwA]($V)%)¢:w+5w

kde gw = —0;/A; je vizbovd konstanta Diracovho dubletu na kalibra¢né polia (obdobne ako v kap.
IV.2.1), opét vyzaduje kalibracné transformécie tychto poli, a to tentokrat v tvare

, , ) !
le — WZLJ = Wﬁ + (‘LAJ» + gw€jk1AkW#
#

tak aby opét platilo D,y — U(D,1). Lagrangiany interagujiceho Diracovho dubletu (s kovariantnou
derivéciou) a trojice kalibra¢nych poli s prislusnymi tenzormi poli (F"”),, si potom

- Oy
£w1+¢2 = Zl/)’}/uD/ﬂ,ﬁ DM = au -+ ZgWEJW,Z
1 J AN j . .
Lwriwziws = —Z(FW ) (FV ) (F") = 0, W3 = 8,W] = gweaWiW,
—_————

#

Pritomnost dodatocnijch Elenov # (vektorové stuciny) oproti predchadzajicim kapitolam je dosledkom
nekomutativnosti generatorov su(2) (Pauliho matic), ako aj nekomutativnosti U s o;IW]. Lagrangian
trojice kalibratnych poli tentokrat zjavne obsahuje aj cleny 3. a 4. radu W}, vyjadrujice zlozita
vzdjomni interakciu tychto poli. Celkovy U(2)-kalibracéne invariantny lagrangian ma potom tvar
(bez rozmerovych koeficientov a hmotnostného ¢lenu)

. 7 1 ‘ v
00— WD~ L
— ~ S ~- g
2xDirac interakcia 3x Mazwell

Analogicky ako v kap. IV.2.1, zachovavajuici sa noetherovsky stvorprud dostaneme (az na rozmerovy
koeficient) ako

oL
Out))

cize jl = gwiy*FY pre kaZdyj z troch generatorov symetrie. Zachovavajicimi sa noetherovskymi

0T =0y | iy 00| = = 0 [609°) (i, B0) | = 0, [, o] =0

2

nabojmi (na jednotkovy objem) st

= P02 = ¢ Ly = vty =3

2TSymetrickym dubletom st aj polia rovnakej hmotnosti, Priroda v8ak ttto alternativu nevyuziva. Neskor ndjdeme
mechanizmus, ktory tymto poliam dodé, bez Gjmy na invariantnosti, hmotnost zhodni s experimentalnym pozorova-
nim.
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Ked7e generatory symetrii fj nekomutuji, ostrid hodnotu mozeme priradit len jednému z nich. V
béze s diagonédlnou o3 plati

(N (e L e\ 1 0 o 1. 1
Qf”‘(%)?(%)‘?(%)(@—1>(wz)‘§¢1¢1‘5¢2%

Casticiam oboch poli mozeme?® teda privadit kvantové cisla I3(¢1) = 3, resp. Ir(yn) = —1. Nag
dublet je analogicky ,,u¢ebnicovému® spinoru - objektu s dvoma ortogondlnymsi stavmi v 2-rozmerne;j
reprezentacii SU(2) (kap. I1.3.2), s hodnotou I = 3 prisliachajicou Casimirovmu operatoru % a
jednym (z trojice) diagonalnym (Cartanovym) generatorom Iy = % g vlastnymi hodnotami +3, ¢ize
z-ovymi priemetmi spinu (v jednotkach h). V tomto pripade vSak hovorime o z-ovych zlozkach tzv.
slabého izospinu.?® Zachovavajicim sa ,nabojom* pri tejto symetrii dubletu je teda z-ova zlozka
izospinu (opét v jednotkach h) s kvantovymi ¢islami I3 = j:%. Slabému izospinu sa tiez hovori slaby
naboj.

Kovariantnu derivaciu moézeme prepisat do tvaru

. w3 Wl —iWw? . w3 2W F
DH:3H+Z9_W ST Zgu :3“+Z9_W "o V2 "
2 \ Wi+awz W 2 \ V2w, -Ww;
kde sme definovali polia W3 = \%(W/} T iW7). Polia W7 svojou konstrukciou pripominaji zvy-
Sovacie/zniZovacie operatory algebry SU(2), a takato ulohu naozaj plnia - pri interakciach s Dira-
W+
m
covymi ¢asticami zvy8uji/znizuja ich ,naboj* Is. Triplet Wj’ odpoveda 3-rozmernej repre-
Wy
zentacii SU(2) s hodnotou Casimirovho operatoru (slabého izospinu) I = 1, s hodnotami priemetu
I3 =1,0,—1. Pri interakciach sa teda celkovy priemet izospinu zachovdva

1 1 1 1 1 1
Sl | _Z Z 4 (=1 Z 5z
g ot 2—>+2+( ) 5 7510
:% :Wl , “
L 4 1
1 " 2 W-

W3

Kedze vektorové W-bozény ,nesi” slaby naboj, teoria pripusta aj slabé interakcie vglucne medzi
nimi - samointerakciu (savisi to s nekomutativnostou generatorov). Naproti tomu vektorové fotony
elektricky naboj ,nenestt a teda (na tejto trovni teorie) navzajom elektromagneticky neinteraguja.

Izospinova symetria teda ,organizuje* Castice/polia zucastiiujice sa slabej interakcie do prislusnych
maultipletov. Uvedena schéma sa da zovSeobecnit na lubovolni spojiti lokdlnu grupu symetrii s gene-
ratormi t* (0;/2 — t*) s komutaénymi vztahmi [t ¢°] = if®t°, o vyuZijeme v kap. IV.4.1. Aby
v8ak tento tzv. Yangov-Millsov model (v alternativnej verzii s polami 1,1y rovnakej nenulo-
vej hmotnosti) korespondoval s experimentalnymi pozorovaniami, musime ho doplnit mechanizmami
dodéavajucimi spravne (t.j. meratelné) hmotnosti vektorovym aj Diracovym poliam, ¢o urobime v
nasledujtcich kapitolach.

28V tejto baze napr. Q) = %wi’(/)g + %w;wl, ¢ize, kvantové ¢isla nemdzeme priradit jednotlivyim poliam.
29Tak ako spin ¢astice/pola je momentom hybnosti vo vlastnom spinorovom priestore, aj izospin je momentom
hybnosti ,zijacim“ vo vnitornom priestore dubletu.
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IV.3.2 U(1)xSU(2)-kalibra¢na tedria.

Podl'a sucasnych predstav v prvych okamihoch po Velkom Tresku ,panovala“ U(1)xSU(2)-kali-
bra¢na symetria elektroslabijch interakcii s 1+3 generatormi. Postupnym chladnutim Vesmiru v8ak
doslo k jej spontdnnemu naruseniu, a oddeleniu elektromagnetickej a slabej interakcie. Tri kalibracné
polia W/{ nadobudli hmotnost, a povodna symetria zanikla. Namiesto nej vznikla novd U(1)-kalibra¢na
symetria nehmotného elektromagnetického pola. V tejto kapitole uvedeny mechanizmus rozoberieme.

Lagrangian nehmotnych Diracovych poli, interagujicich so stvoricou kalibrac¢nijch poli - tripletom
W7 a singletom B, s odpovedajicimi tenzormi (F"”),,, resp. (F?),,, a vizbovymi konStantami gy,
a gp odpovedajici pévodnej U(1)xSU(2)-kalibracnej symetrii, je

nz

U(1)xSU(2 n . i 7 Y 1 J I\ v 1 v
‘C2>ED);<7"ac—&E4)><J\/[axwell = ¢7M (Za}i - gWW/ilj o gBBMYw> w - Z(FW )/U/(FW ),u - Z(FB)MV(FB)M

Generatormi SU(2)-symetrie st fj = 3 (priemety izospinu), a generatorom povodnej U(1)-symetrie

(zachovavajucou sa veli¢inou) je tzv. slaby hypernaboj Y, (v spinorovom zapise matic 2 X 2 je to

"~

Y, = Y, lax2), - analog elektrického naboja q z kap. 1V.2.1.3°

V kap. IV.1.5 sme ukézali mechanizmus, akym kalibra¢né polia nadobidaji hmotnost v interakcii
so skalarnym Higgsovym polom so spontanne naruSenou symetriou. Uvazujme teda dublet hmotngch
komplexnijch skalarnych Higgsovych poli

b= ¢1 + i
¢3 + iy
v interakcii s trojicou kalibra¢nych poli I/Vl{ a kalibra¢nym polom B,,. Lagrangian tejto interakcie je
S - ‘ L .
L3 Rreintonaon = (D"0) (D,6) — i (810) — A(9)* Dy = 0+ igwWil; + ignBuY,

Posledné dva ¢leny lagrangianu predstavuju Higgsov potencial H, z kap. IV.1.4. Podla spomenute;
predstavy v pociatoénej faze Vesmiru doslo poklesom teploty k zmene m? > 0 — m? < 0 a posunu
minima H, k nenulovym hodnotam. Dosledkom bolo spontdnne naruSenie symetrie - fazovy prechod
Vesmiru do jedného z rovnocennych stavov (minim #,), pre ktoré plati

~2

= o2 (>0)

Slo=+ 5+t = 5 =

KedZe tento potencial zavisi len od ¢f¢, moézeme vyuzit tito volnost a zvolit

0
¢min:( $1=0¢2=0¢s=0
o
Stratégia je identickd ako v kap. IV.1.5: Skimame skalarne excitacie Higgsovho pola ¢ okolo no-
vého minima ¢g, teda ¢ = ( 4 (j_ (/3 ) Viazba kalibra¢nych poli W/{ na skalarne polia s lokdl-
0

now vnitornou SU(2)-symetrion ¢ — e3¢ = e9whF $ nam umortiuje vhodnou kalibraciou
Wi — Wi+ 0,A; + gwejuMeW,,  eliminovaf z teérie nehmotné skalarne excitacie (Goldstoneove
bozony) - tieto st teda nefyzikdlne (nemeratelné). Im prislichajice stupne volnosti sa vSak transfor-
muju do longitudindlnych polarizacii vektorovych poli Wﬂ , ktoré sa tym stand hmotngmi. Zo Styroch
povodnych stupiiov volnosti skalarneho dubletu ¢ zostane po spontdnnom naruseni SU(2)-symetrie
jediné hmotné redlne skalarne pole excitacii ¢ - Higgsove bozony.

30V zasade sme mohli hypernaboj Y,, zahrnit do viizbového koeficientu gp (ako v kap. IV.2.1), pouZzijeme viak
zauzivany opis.
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Hmotnosti poli W, ¢ize kvadratické cleny v lagrangiane, vzidu z vyrazu®"

1 Y| gwWi—gBB, gw(W, —iW2) ) ( 0 )
4 w(Wa +iW2) —gwW2 —gB, ®o

2

l\’)\»—‘

AL = (D"¢)!(D,g) =

¢¢0

= g [+ 2] + 2 g — goB,)°

Definovanim $tvorice novych vektorovych poli ako linearnych kombinacii povodnej Stvorice (Eize
zmenou bazy)

_ 1 .
(WJ)? + (W3)2 = 2(WH), (W) Wﬁt — E(W; T Zwi)
1 1 5
Z, = —(gWW — gBB,) Ay = ——=—=(98W, + gwB,)

V QW +gB

mozeme AL zapisat ako®?

V9w + 9B

o3 ¢
AL = fg%(WW(W )+ 40 (g7 +gB)Zﬁ+ 0 -A
mW mZ

Tri zo $tyroch novych poli, W*, W~ a Z, su teda hmotné, a ich excitacie - ¢astice so spinom 1 -
nazyvame WT, W~ a Z bozénmi. Je zrejmé, ze W a W~ bozony predstavuji pary ¢astica-anticastica.
Stvrté nové pole - elektromagnetické - ostava nehmotnym (fotony), a zachovava novi U(1)-kalibra¢na
symetriu. ,Nespotrebovany* stupen volnosti skalarneho pola patri hmotnému Higgsovmu polu (Z (s
meratel nymi excitaciami). Dolezité je, ze fotony a Z-bozoény st excitaciami navzajom ortogonalnych
linearnych kombinacii povodnych poli - maji teda spoloény pévod. Z-bozén nie je totozny s W3,
a SU(2)-symetria tripletu z predchadzajicej kapitoly je teda narusend. Dosledkom hmotnosti W a
Z-bozonov je krdtkodosahovost slabej interakcie.

Ak kovariantni derivaciu vyjadrime prostrednictvom novych vektorovych poli ({W3, Z,, A,.}),
dostaneme tvar

Dy = 8, + (€leny W*, 7,) +i—295_4, (f3 + f/w)

V9 + 9%

Novy operator Q=1+Y, je generatorom novovzniknutej symetrie U(1) elektromagnetického pola

a odpoveda elektrickému naboju s kvantovym cislom Q). Vyraz ngV_ng Ze preto identifikujeme
wTIB

ako elementarny naboj, a elektricky naboj Diracovej ¢astice ako ¢ = eQ).

Definujme tzv. uhol slabého mieSania®? 6,,

e e
Cosew:g—wz— sin @ :g—B:

¥ =
Vi + 95 9B Vo +95 9w

Pre hmotnosti vektorovych bozonov plati my = cosf,mz , a transformaciu {Wi’, B} = {Z,, A}

mozeme vyjadrit ako rotaciu

Z,\ [ cosb, —sinb, wp
A, )\ sinf, cosb, B,

$1Kladieme Y,, = —3, €o je pripad chiralne lavorukych lepténov (kap. IV.3.3), a vysvetlenie podame neskor.

32U% v predchadzajicom lagrangiane si ¢leny Wl}’z vyjadrené v hmotnostnej baze, teda ~ (Wg)z, potrebujeme ich
v8ak vyjadrif v novom SU(1)-invariantnom tvare.

33angl. weak mizing angle. T4to veli¢ina vyjadruje mieru ,primiefania“ singletu B,, do W3-komponenty poévodného
tripletu SU(2).
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Mobzeme to interpretovat tak, Ze spontanne narugenie symetrie Higgsovho pola ,rotuje rovinu“ W3 —B
do roviny Z — A. Pod ,rotovanim“ méame na mysli mieSanie jednotlivych komponent poli (takych,
ktoré maja spolo¢ny povod). Uhol slabého miesania je volngm (t.j. vonkajsim) parametrom teorie,
a fixuje sa experimentalne.

IV.3.3 NarusSenie parity.

V predchadzajicej analyze slabej interakcie sme uvazovali s nehmotnym Diracovym dubletom bez
bliz8ej specifikacie. Skor nez ozrejmime mechanizmus, akym tieto Diracove polia nadobtidaja hmot-
nost, musime do nasho modelu zakomponovat experimentélne ziskany fakt, ze

slabyjch interakcii sa zicastriuji len chirdlne lavoruké Diracove polia.

V kap. II1.2.2 sme sa pritom dozvedeli, Ze chiralita hmotngch objektov sa v Case nezachovdva -
Diracove spinory osciluju medzi stavmi opacnej chirality. Tieto dva fakty v8ak nie si nezlacitelné -
treba len zabezpecit, Ze pri opise slabyjch interakcii pracujeme len s chirdlne Tavorukymi spinormi.
Vhodnym ,filtrom* je tzv. projekény operator

Prp=— Y’ =i’y
V' chirdlnej baze, v ktorej st zlozky Diracovho dubletu ¢ = ( zl ) vyjadrené ako v, = ( 2% ),
2 R

plati

-1 0 A 10 . 00
5 _ —
) eeGo) o e

Vsetky slabointerakéné ¢leny lagrangianu, t.j. ¢leny obsahujtce Wj a Z, , musia teda obsahovat
Py 3 pricom pre Diracov dublet plati

5 PL 0 Y1\ _ [ (W)

ro=( 5 ) () - (630
Toto obmedzenie na chirdlne lavoruké Weylove spinory ma zévazny dosledok: Konstrukcia Diracovych
(bi)spinorov ako kombindacia chiradlne I'avo- a pravorukych Weylovych spinorov totiz zabezpecovala
symetriu vzhTadom na transformaciu parity (kap. IL4.3 rep. (3,0)@®(0, 3)). Vylacenim chirdlne pravo-
rukych spinorov sa tato symetria straca. Vidime to na slabointerakénom clene kovariantnej derivacie
V L Dirae, kde s uvazenim, ze {7°,7°} = 0 a teda y* P, = Pgy*, vieme ukézat, Ze transformacia parity
P tento ¢len mend,

Yy Wi Prap Py VY Wio; Prip # " Wio; Pry
Transformdcia parity nie je symetriou slabej interakcie.”
Znamena to, ze uvazovany Diracov dublet v slabointerakénych ¢lenoch moze obsahovat len chirdlne

Tavoruké objekty.®® Kedze vSak fyzikdlne (meratelné) Diracove astice, ako napr. elektron, si re-
prezentované bispinormi s oboma chiralitami, musi ich obsahovat aj lagrangian, aj ked v odlisngch

34Takato definicia je nezdvisld na vybere bazy, ktory podmiefuje tvar y-matic.

35Hoci cleny L pirae Obsahujt ¥, postatuje jeden operator Pp.

36Spinory a vektory treba transformovat osobitne, Pspin = 7°, Puec =diagl0, —1, —1, —1].

37Zachovava sa viak PCT-symetria.

387.apis vo forme dubletu (podobne ako vektoru ¢ spinoru) predpokladé, 7e jednotlivé komponenty sa mo7u navzéjom
miesat (ako pri rotécii vektoru).

114



reprezentdcidch. Slabointeragujice chiralne lavoruké komponenty tvoria SU(2) dublety, a transfor-
muji sa v 2-rozmernej reprezentacii SU(2) (kap. 11.3.2), teda v, — €%/2),, kym im prislichajice
chiralne pravoruké komponenty slabo neinteraguji (nemiesaju sa navzajom) a teda tvoria SU(2)
singlety, a transformuji sa v 1-rozmernej reprezentacii, 1p — €’1p = ¥ g (teda nijako).

IV.3.4 Leptony.

Jednu triedu elementarnych Diracovych ¢astic/poli (spin %) zucastnujacich sa elektroslabyjch interak-
cif tvoria leptony.3® Pozname Sest druhov leptonov - tzv. voni (angl. flavour), zoradenych do troch
generdcii, navzajom sa liSiacich hmotnostou:

elektron e~ (m. #0,Q = —1), e-neutrino v, (m, — 0,Q = 0) a ich anticastice e*, 7,
p-leptén p~ (m, #0,Q = —1), p-neutrino v, (m, — 0,Q = 0) a ich anticastice u*, v,
r-lepton 7~ (m, #0,Q = —1), T-neutrino v, (m, — 0,Q = 0) a ich anti¢astice 77,7,

Plati m, > m, > m.. V kazdej generacii priradujeme casticiam lepténové €islo 1 a anticasti-
ciam -1, a celkové leptonové ¢islo sa v interakciach zachovdva.’’ Elektromagnetickych interakcii sa
nezucastiuju neutrina (Q = 0), kym slabych interakcii sa nezacastiiuji chiralne pravoruké leptony.
Elektricky neutralne neutrina sa zucastnuju len slabych interakcii, koncepciu chirdlne pravorukych
neutrin preto nepotrebujeme.

Diracov dublet z predchadzajucich kapitol je v prvej generacii tvoreny chiralne lavorukym elektro-

nom a jeho neutrinom, 1), = ZL , so slabym izospinom I§ = +31, I§ = —3. Pred ,zapnutim®
L

mechanizmu, ktory lepténom dodéava hmotnost, st obe zlozky dubletu nehmotné, a opisujeme ich ako

dva SU(2)-symetrické stavy jedného systému (s moznym vzajomnym mieSanim). Interakéna spinor-

vektorova c¢ast lagrangianu je

‘CZL(;}/XSU(Q) = QZL’}/'LL (’lau — gwwifj — gBBqu> wL = ... = (ﬂL, éL)"}/'uX
o[ te(g-v,2) 2z, TWW (UL
'LL - j—
aryy; e(-4+Yo) Ayte (- -v,22) 2, L

7 experimentov vieme, Ze neutrina neinteraguju elektromagneticky, preto v prvom diagonalnom
¢lene uvedeného vyrazu (% + Yw) = 0, ¢ize pre chiralne lavoruké leptony plati Y, = —% (a +% pre
ich anticastice). Rovnako vidime, ze mimodiagonélne operatory VVMjE posobia na obe zlozky Diracovho
dubletu ligiace sa elektrickym ndbojom, a teda ho menia pri ich miesani, ¢ize bozéony W+ musia niest
elektricky naboj ) = £1. Rovnakou tvahou zistime, 7e pre Z-bozén je () = 0.

Ked7ze vsak fyzikdlne elektrony magji hmotnost, a teda su supepoziciou stavov oboch chiralit (kap.
I11.2.2), realisticky model vyzaduje doplnenie dubletu o chirdlne pravoruky singlet (er). (Rovnaka
schéma opét plati pre ostatné generacie leptonov.) Interakény lagrangian musi preto obsahovat aj
chiralne pravoruki ¢ast (pre singlet v 1-rozmernej reprezentacii SU(2), I3 = 0)

£int,R = &Pﬂ/’u (Za,u - gBBu}A/w) wR = .= (éR)’Y” {Zau —eYy (A,u - 5_5/211)] (63)

39Druht triedu tvoria kvarky, ktoré sa navyse zGcastiiujt aj tzv. silnych interakcii (kap. IV.4).
40Toto zachovavajice sa kvantové ¢islo sivisi s globalnou U(1)-symetriou vodi transformécii e*”
anticastice.

, resp. e~ pre
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Kedze er a e, musia mat rovnaky elektricky naboj (t.j. koeficient viizby na elektromagnetické pole),
musi pre chirdlne pravoruké leptony platit Y,, = —1 (a +1 pre anticastice).

V tabulke st hodnoty kvantovych ¢isel @, I3,Y,, pre leptony a antileptony prvej generacie, W,Z-
bozény, foton a Higgsov bozon.*' Hodnoty platia aj pre leptony ostatnych generacii. Pomocou nej
mozeme preverit zachovanie kvantovych ¢isel pri rozptylovych procesoch z kap. IV.3.1, konkretizova-
nych pre prvi generdciu leptonov.

‘eL €, €r €r v v Wt wW- Z v H
Q| -1 +1 -1 +1 0 O +1 -1 0 0 0
I |- +3 0 0 +3 -1 +1 -1 0 0 -3
Yo|—-3 +5 -1 +1 —3 453 0 0 0 0 +3
e Ve e
v(—>—1; e—>—1§ e
wt W
Z.y

Ostéava nam vyjasnit mechanizmus, akym Diracove ¢astice/polia nadobidajiu hmotnost, akd pozoru-
jeme v experimentoch. Kedze objekty réznych chiralit sa transformuji podla réznych reprezentacii
SU(2), poziadavka SU(2)-symetrie vylucuje (lorentzovsky invariantny) hmotnosing ¢len lagrangianu
~ Y1h =Yg + Pribr. Vieme ho viak nahradit SU(2)xSU(1)-invariantnym ¢lenom )¢, reprezen-
tujucim yukawouvski interakciu so skaldrnym dubletom ¢ (kap. IV.1.2).

7 A - = = * * v
Ly urawa = =Y [Vrovr + Yré'Pr] = —y |:(1/L,€L) ( z; > er + er(@1, ¢3) ( 62 )]
kde y je yukawovsky koeficient véizby - dalsi volny parameter modelu. Singlet eg, chirdlne pravoruky
elektron, je ekvivalentny chirdlne lavorukému antielektronu (pozitronu), a na tejto drovni modelu
vystupuje ako samostatnd Castica, bez vizby na chiralne Tavoruky dublet. Opéatf vSak nastupuje
Higgsov mechanizmus - spontanne narusenie symetrie skalarneho pola s jeho novym (opat vhodne

zvolenym) minimom ¢,,;,, = ( gg ) Po jeho dosadeni dostavame
0

(ee)

EYukawa = _y¢0 [éLeR + éReL] = - y¢0
~

me

teda hmotnostny ¢len fyzikalneho elektronu.*?

(CRCReRR
Dolezité zavery:

e Slaba interakcia je zmena slabého izospinu a elektrického naboja Diracovych c¢astic pri interakcii
s hmotnymi vektorovymi casticami - elektricky nabitymi W-bozénmi, ako aj interakcia s hmotnymi
neutralnymi Z-bozénmi (bez zmeny nabojov). V dosledku velkej hmotnosti tychto bozonov je to
kratkodosahovd interakcia.

41V alternativnej konvencii je hyperniboj definovany s faktorom %, a teda jeho kvantové ¢isla sa oproti nasej tabul'ke

lisia o faktor 2.
2Mechanizmus hmotnosti neutrin zostava v ramci Standardného modelu zatial otvorenou otézkou.
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e 7Zjednotena elektroslabd interakcia je kalibra¢nou interakciou Diracovych poli so §tvoricou nehmot-
nych vektorovych poli, teda SU(2)xU(1)-kalibra¢nou symetriou so zachovavajicim sa priemetom
slabého izospinu (SU(2)) a hypernabojom (U(1)). Interakciou so skalarnym Higgsovym polom so
spontanne narusenou symetriou (a nenulovou vikuovou hodnotou) vektorové castice SU(2)-tripletu
nadobudaji hmotnost, ¢im narusuju SU(2)-symetriu - slabé interakcia (s hmotngmi bozonmi W,Z)
sa oddeli od U(1)-kalibra¢nej elektromagnetickej interakcie (s nehmotnymi fotonmi).

e Leptony st Diracove castice, existujice v Siestich vonach, zucastiujice sa slabych a elektromag-
netickych (ak st elektricky nabité) interakcii. Chirdlne pravoruké ¢asti hmotnych leptonov pritom
interaguju len s fotonmi a bozéonmi Z (nemenia slaby ani elektricky naboj). Yukawovskou interakciou
so skalarnym Higgsovym polom (s nenulovou véakuovou hodnotou) ziskavaji leptony hmotnost.

IV.4 Silna interakcia.

Silna interakcia je poslednou - a najsilnejSou - z trojice fundamentalnych silovgjch (kalibracnych)
interakcii Standardného modelu. Tejto interakcie sa zucastiuju Diracové Castice/polia - kvarky -
nestice tzv. farebny naboj, preto hovorime o chromodynamike (v analogii s elektrodynamikou
Castic nesucich elektricky naboj). Sprostredkujtcimi silovymi vektorovgmi ¢asticami - nehmotnymi
kalibra¢nymi bozoénmi - v chromodynamike st gluény. Nasledujici text je venovany charakterizo-
vaniu tejto interakcie. Kedze viaceré jej ¢lastkové mechanizmy si analogické ¢ identické s vyssie
opisanymi interakciami, obmedzime sa v tychto pripadoch na odkazy.

IV.4.1 Kvarky.

Kuvarky st hmotné Diracove spinory, pozostavajice z chirdlne Tavo- a pravorukého Weylovho spinoru.
Existuje Sest druhov - wéni kvarkov, pricom, na rozdiel od leptonov, kazda vona existuje v troch
farbebngch nabojoch, r (red), g (green), b (blue). Rovnako ako pri leptonoch, aj vone kvarkov su
zoradené do troch generdcii, vijrazne sa lisSiacich hmotnostami:

up u, g (Q = +3), down d, 4, (Q = —3) a ich anti¢astice Uy, gp, dr gy
charm ¢, ,;, (Q = +§), strange s, 5 (Q = —%) a ich antiCastice ¢, 44, Sr g
top g (Q = +32), bottom b5, (Q = —3) a ich antiCastice &, 4, brgp

Jednotlivé ,farby“ su vnatorné stupne volnosti, tvoriace abstraking farebny priestor, a kazdy kvark
danej vone tvori v tomto priestore farebny triplet (jednotlivé komponenty tripletu maja rovnaka vonu
a hmotnost, lisia sa farebnym nabojom). Podstatou silngch interakeid su ,rotacie v tomto farebnom
priestore, tvoriace grupu symetrii SU(3). Algebra tejto grupy (blizsie ju charakterizujeme v kap.
IV.4.2) ma 32 — 1 = 8 generatorov T, (a = 1,2,...8). Globalnu farebnii symetriu SU(3) vzhladom
aba Ealibrujeme (globalna — lokélna) analogicky ako v pripade slabej interakcie

a T
u» 8 prislusnym

na transformacie e
- kazdému z d6smych generatorov priradime kalibra¢né vektorové - gluonové pole G
tenzorom a kovariantnou derivaciou

(F9) 0 = 0,G% — 0,G% — g f™™ GG D, =0, +igcGaT"

kde g je koeficient vizby gluonovych a kvarkovych poli. Opat vidime, ze gludénové polia interaguju
medzi sebou (nesu farebng naboj).
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Sucasne chiralne lavoruké dvojice kvarkov jednej generdcie tvoria dublety priblizne rovnakej hmot-
nosti - tvoria teda priblizni symetriu SU(2) (mie8anie prvkov dubletu, kazdy prvok dubletu je pritom
farebngm tripletom), kalibrovant trojicou vektorovych poli Wﬁ sprostredkujicich slabid interakciu
(kap. IV.3). A napokon, kedZe kvarky nesu aj elektricky naboj, zacastiuju sa aj elektromagnetickijch
interakcii grupy U(1), sprostredkovanych povodnym kalibra¢nym polom B, (po naruSeni symetrie
SU(2) sa nahradi fotonmi). Ide teda o kombinovani SU(3)xSU(2)xU(1)-kalibra¢ni symetriu. Ko-
variantné derivacie chiralne Tavorukého dubletu a pravorukych singletov?® prvej generacie kvarkov
maji tvartt

D, < ur, > _ [au +igeGeT, +igw Wil +ngBNYL} ( Zi )

dy,
Dyug = [aﬂ +igaGeT, + igBBu?uR} R Dydp = [au +igaGeT, + ngBMYdR} dp

Prvky dubletu maja z-ovi zlozku slabého izospinu I3 = i%, kym pre singlety I3 = 0. KedZe pre
elektricky naboj ma platit @ = I3+ Y, pre slaby hypernaboj Y chiralne l'avo/pravorukych kvarkov
kladieme 1 N ]

YL:E YUR:§ YdR:_§
Kvarky nadobudaji hmotnost identickym (Higgsovym) mechanizmom ako leptony (kap. IV.3.4) - pri
yukawovskej interakcii so skalarnym Higgsovym dubletom ¢. V pripade kvarkov prvej generécie vedie

yukawowsky interakény ¢len ¢ na
Ly ukawa = —Yu(Ur, dr) ( b1 ) up—ya(tir,dr) ( “ ) dr—YyuUr(P7, ¥5) ( o )—yddR(qﬁ,(b;) ( o )
¢2 ¢2 dL dL

kde y,, yq st yukawovské koeficienty vizby kvarkov u a d na Higgsovo pole - dalsie volné parametre
modelu. Spontannym naruSenim symetrie Higgsovho pola a nadobudnutim nenulovej vikuovej hod-
noty ¢g nadobudnii jednotlivé kvarky hmotnosti m ~ y, g, resp. yqdo, ¢im dojde k naruseniu presnej
SU(2)-symetrie kvarkového dubletu.

Experimenty ukazuja, ze gluony st nehmotné, ¢o znamenéa (na rozdiel od slabej interakcie), ze sy-
metria SU(3) ostava zachovand.

IV.4.2 Glubny.

Algebra grupy SU(3) ma 32 — 1 = 8 generatorov T, (a = 1,2,...8), ktoré v definicnej reprezentacii
vyjadrujeme pomocou tzv. Gell-Mannovych matic A, (navzajom ortogonalnych, hermitovskych a
s nulovou stopou, v analégii s Pauliho maticami pre SU(2))

o 010 0 —i 0
T. =5 (v jeduotkich h) M=[100 =i 0 0
— 000 0 0 0
1 0 0 00 1 00 —i
=0 -1 0 =000 =00 0
0 0 0 100 i 0 0
00 0 00 0 L (100
=001 =00 —i d=— (01 0
010 0i 0 V3lo 0 -2

43Glabej interakcie SU(2) sa ztcastiiuje len chiralne lavoruka ¢ast Diracovho pola.
44Toto je zjednodugeny zapis, prvy vyraz plati pre kaZdi zlozku tripletu dubletov, a ostatné vyrazy pre kazda zlozku
tripletov.
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Medzi generatormi platia komutacné vztahy [Ta,Tb] =1 f“bCTc, kde fo¢ st gtrukttrne konstanty

algebry.*® Kazdému generétoru sice prislicha jedna zachovéavajtica sa velic¢ina, v analogii s su(2) viak
relevantnymi sd len noetherovské naboje prislichajice diagondlnym (Cartanovym) generatorom, v
tomto pripade T3 a Tg D4 sa tiez ukazat, ze algebra su(3) ma dva Casimirove operdtory, C’l, C'g,
teda bazové stavy s uréené vlastnymi hodnotami tejto Stvorice operatorov, |Cy, Cy, T3, Tg) (obdobne
ako |7,m) v su(2)).

Lahko zistime, Ze prva trojica generatorov tvori algebru su(2) (v 3D-reprezentdcii) s bazovymi vek-
tormi a odpovedajicimi vlastnymi hodnotami diagonalneho operatoru 73 - operatoru z-ovej zlozky
tzv. farebného izospinu

1 0 0 11
r= 0 g = 1 b= 0 T3:+§,—§,0
0 0 1

Pomocou generatorov Tl, T2 teda definujeme zvysova(n/ znizovaci operator T4 = T7 £i75 meniaci

T3 medzi hodnotami + < —1 . Pomocou Ty zas konvencne deﬁnujme tzv. operator farebného

hypernaboja ye = %Tg s vlastnyml hodnotami Y*° = —i-g , —i-g , —5. Zo zvy$nych generatorov

konstruujeme operatory Vi = T4 + z'T5 , Ui =T, 5 z'T7 posobiace nasledovne:

2 o e ey e e e o e 1 - . . e e 1
Uy zvy8uje/znizuje Y° o 1 a znizuje/zvySuje T3 o 5 Vi zvySuje/znizuje Yo la T30 ;5
A Ye /€ _ _
) : — T —qq)
580 V2
g +1 r
@ KN — o 1 o
—5 . 2
L — L p 12, |2 ra —> 1;
1 Al V.b=r
3 {2 A i
e e
/ r -3 9
2N ®
3 il
? b (rF + gg — 20b)
kvarky antikvarky Vo

Kazdy z tejto Sestice operatorov predstavuje jeden farebny gluon, meniaci farbu kvarku vo farebnom
priestore - kreuje novi a anihiluje povodnii:*6
T+—Tg T_—gr U+:gb U__bg V+:Tl_) V. =br

Interakcie sprostredkované tymito gluénmi mozeme interpretovat nasledovne:
Kvark r emituje gluon rg, ¢im sa zmeni na kvark g. Gluén je nasledne pohlteny
kvarkom g, ktory sa zmeni na r. Transfér farby opaénym smerom zase zabezpeci
gluén gr. Fyzikalny proces na obrézku je teda superpoziciou oboch transférov, a
gluénove stavy zapisujeme ako (rg+gr)/v2, i(rg—g7r)/v/2, atd. pre iné farby,
¢o odpoveda generatorom .. Vsetkych Sest uvedenych gluénov je farebngch. V analdgii so slabou
interakciou (SU(2)), gluony ako generatory symetrii (resp. ich linearne kombinécie) sprostredkuju
yrotacie” vo farebnom priestore tripletov.

Zvy&né tri mozné kombinécie farba-antifarba, 77, ¢g, bb, predstavuji bezfarebny stav, ktory v kvan-
tovom svete existuje opit len ako superpozicia tychto stavov.'” Pri troch linedrne nezdvislijch kom-

451ch konkrétne hodnoty nie st pre potreby tohto textu podstatné. Pre tplnost, jediné nenulové a antisymetrické

kombindcie sa f123 = 1, f147:f165:f246:f257:f345:f376:%’f458: 678:§_
1 010 010 0 —i 0 S
®Napr. rg=| 0 |(010)=[ 0 0 0 |=i|[1 0 0 |+i| i 0 0 ||=Th+ila="Ts
0 00 0 00 0 0 0 0

4TBezfarebny gluén typu r# by sice mohol byt vyziareny kvarkom r (pricom by tento kvark nezmenil farbu), iny
kvark farebného tripletu by ho v8ak nemohol absorbovat. Takéto gluony si nefyzikalne.
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binaciach je vhodnou volbou
(r7 — 9g)/ V2 (rF + gg — 2bb)/\/6 (r7 + gg + bb)/V/3

Prvé dva gluény konstrukciou odpovedaji diagonalnym operatorom T 3, Tg, ¢ize nemenia farbu kvar-
kov. Posledny operétor je viak bezfarebny singlet.*® Ako uvidime v nasledujtcej kapitole, fyzikalnymi
(meratelnymi) casticami su len takéto bezfarebné singlety, interagujice zas len s inymi singletmi.
Ak by takyto mehmotny gluon redlne existoval, znamenal by nekonecéni dosah silnej interakcie, ¢o
je v rozpore s pozorovaniami. Gluony teda tvoria len farebny oktet (na obr.), odpovedajici algebre
su(3).4

IV.4.3 Hadroény.

Ked7e gluony nesi farebny naboj, interaguju aj medzi sebou (bez ucasti kvarkov). Désledkom toho

je, ze farebné pole vytvorené gluonmi medzi parmi kvark-antikvark nepripomina elektromagnetické
pole (vyjadrené silofiarami na obr.), ale vzdjomnd interakcia gluénov

sustred uje toto pole do trubice s konstantnou hustotou energie. S od- q il
dalovanim kvarkov teda rastie celkovd energia pola (t.j. rastie sila 7 I ——
vzajomného pritahovania kvarkov), a po prekroceni istej hodnoty ve- T—X—X]
die k tvorbe novyjch parov kvark-antikvark z vakua. Jednotlivé kvarky 7

teda nie je moZné od seba izolovat - vytvaraju wiazané stavy (Castice), tzv. hadrony. Celkovy
farebny naboj hadronov je vzdy nulovy. Tento efekt sa nazyva farebné uzavretie (angl. colour
confinement). Gluoény st uviiznené ,ynitri hadronov®® (=~ 107'°m, ¢o je dosah silnej interakcie),
¢ize hadrony ako farebne neutrdlne celky sa nezacastiiuju silnej interakcie. V analogii s SU(2) ich
opisujeme ako singlety, T = 0,T3 = 0, Y = 0, teda v 1D reprezentacii SU(3). Elektrickyj naboj
hadronov je celociselny (v jednotkach e).

Podmienka nulového farebného a celociselného elektrického naboja, ako aj Pauliho vyluc¢ovaci princip
(platny pre Diracove Castice) dovoluji len urc¢ité viazané stavy kvarkov: baryény qqq a antibariony
qqq s polociselnym celkovym spinom, a mezdény qq s celoc¢iselnym celkovym spinom.

Najlahsimi (a preto nagstabilnejsimi) barydnmi so spinom % st nukledny: protén uud (Q = 1) a
neutron udd (Q = 0). Hmotnosti kvarkov pritom tvoria len ~ 1% hmotnosti nukleénov!!! Takmer
celd ich hmotnost je tvoren& wvizbovou energiou kvarkov, zahriiujicou kinetickd energiu kvarkov a
gluonov. V nuklednoch totiz neustéle prebieha vymena gluonov medzi kvarkami (¢ize rotacia rgb

trojic kvarkov vo farebnom priestore).

Najlah&imi mezonmi so spinom 0 st piény tvoriace izospinovy triplet®!

mt =ud=|1,1) T =du=|1,-1) 70 = (uti—dd)/vV2 = |1,0) T 1

Existuji v neustale sa meniacich farebne neutralnych kombinaciach : :
farba-antifarba (obr.). roog b g

48Tento generator nesplia defini¢né podmienky su(3), patri algebre rozsirenej grupy U(3).
49Tde o rozklad 3® 3 =8 @ 1.
50KedZe hadrony st kompozitné Castice, md zmysel uvazovat o ich rozmeroch, danych dosahom vizbovej sily.

b d-hod) ahod) A= 5
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Piony vznikaju pri vymene gluonov medzi kvarkami v nukleénoch, a sprostredkuji vdzbu nuklednov
v atomovgjch jadrdch. Nukleony ako farebné singlety mozu emitovat /absorbovat tiez len singlety -
bezfarebné piony, nie gluony! Vizba proténov a neutrénov v atéomovych jadrach teda nie je silnou
(¢ize farebnou) interakciou, hovorime o zvys$kovej silnej interakcii.

Vdaka tomuto mechanizmu je vicsina atomovych jadier stabilngch. w-
Izolovangy neutréon méa totiz dobu Zivota asi 15 min, a rozpada sa [d
nld
u

-
prostrednictvom slabej interakcie kvarkov, d — u + W™, na protoén, N Ve
elektron a jeho antineutrino - tzv. f~ radioaktivny rozpad. N Z} p

u

Vsetky interakcie medzi ¢asticami sa riadia prislusnymi zékonmi zachovania (noetherovskych nébo-
jov). Najdolezitej$imi su zakon zachovania elektrického (pri silnej, slabej i elektromagnetickej inte-
rakcii) a farebného naboja (pri silnej interakcii - slaba a a elektromagneticka interakcia neovplyviuji
farebny naboj). Dalsim zachovavajticim sa ndbojom pri silnych interakciach je baryénové ¢&islo (+1
pre baryon/antibarion, resp. +1xpocet kvarkov/antikvarkov). Na rozdiel od leptonov, baryonové
¢islo sa zachovava naprie¢ generdciami kvarkov, a to vdaka ucasti kvarkov na slabej interakcii. Na
druhej strane, nezachovava sa vdna kvarkov.

COOOO
Doélezité zavery:

e Silna interakcia je kalibra¢nou interakciou Diracovych castic - kvarkov, nesticich elektricky a jeden z
troch farebnijch ndbojov, pri ktorej dochadza k vymene farebného naboja, sprostredkovanej oktetom
nehmotnych, elektricky neutralnych, farebnych vektorovych castic - gluénov.

e Kvarky existuja v Siestich vonach, a zicastiiuji sa aj slabych a elektromagnetickych interakcii. Pri
slabych interakcidch sa menia vone kvarkov. Hmotnost ziskavaja kvarky interakciou s Higgsovym
polom s nenulovou vakuovou hodnotou.

e Gluony, nestice farebny néaboj, interaguju aj sami medzi sebou. Té&to interakcia sposobuje tzv.
uvdznenie farieb - neexistuju izolované objekty s nevykompenzovanym farebnym nabojom - kvarky
vytvaraja viazané objekty - hadrony.

e Baryony st hadrony tvorené tromi (resp. neparnym poc¢tom) kvarkov, s celkovym poloc¢iselnym
spinom. Mezony st hadrony tvorené dvomi (resp. parnym po¢tom) kvarkov, s celkovym celo¢iselnym
spinom.
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e Najlahsie kvarky, u,d, vytvaraji nukleény - protony a neutréony (baryony) - aj piony (mezony),
sprostredkujice viazbu nukleénov do atomovych jadier. Tato interakcia je zvyskovou silnou interak-
ciou.
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Gravitacia

Newtonov gravitaény zakon pre silové podsobenie gravitaéného pola telesa o hmotnosti M na
teleso o hmotnosti m vo vzdialenosti r je

knmM _,
7

F=_ 5 = —mV(ﬁ(Fm) = mg(Fm>

r

kde ky je Newtonova gravitaé¢ni konstanta, a

IiNM N

¢(r) = — g(r) = =Vo(7)

r

su potencidl a intenzita tohto gravitacného pola, odpovedajica gravitacnému zrijchleniu. Pre obje-
movi hustotu hmotnosti p(7) (ako Zriedla gravitaéného pola) plati

—V - §(7) = V2¢(F) = drknp(7)

Oc¢ividnymi nedostatkami tejto teorie, z pohladu teorie relativity, sa okamZité posobenie na dialku
(vyjadrené potencidlom ¢(7)) a koncepcia absolitneho priestoru (a ¢asu). Tato ¢ast sa preto venuje
zovseobecneniu newtonovskej teorie aj na pripady velkych rijchlosti a hmotnosti - vieobecnej teobrii
relativity, jej zakladnym myslienkam, koncepciam a rovniciam.

V.1 Zakriveny cCasopriestor.

V.1.1 Princip ekvivalencie.

Jednym zo zékladnych principov vSeobecnej relativity je princip ekvivalencie:
Pozorovatel volne padajici v gravitacnom poli nevie odlisit svoj stav od stavu pokoja.*

Gravitacné pole je teda relativne - volne padajici pozorovatel ho (vo svojom okoli) neciti. Ostatné
volne padajice objekty sa vo¢i nemu nehybu - moze vyhlasit, Ze je v pokoji. Ani pozorovatel v
uzavretej kabine nevie rozlisit u¢inok tiaze v stojacej kabine od ekvivalentného rovnomerného zvislého
zrijehlenia kabiny nahor.? Ekvivalencia gravitacnej a zotrvacnej hmotnosti implikuje, Ze

!Kozmonauti a parautisti doverne poznaju ,beztiazovy* stav.
2Nenechajme sa zmiast fyziologickym prechodngm pocitom pri zmene zrychlenia - v okamihu skoku do prazdna &
rozbehnutia kabiny.
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gravitacné pole mozZeme zrusit alebo vytvorit zriychlenim.

Luc¢ svetla prenikajuci zboku do zrichlujicej kabiny sa z pohladu pozorovatela v o
kabine zakrivuje akoby gravita¢ne padal (obr.). Vieme vsak, Ze svetelny la¢ sa (v mgf;;ﬂ‘]f
rovnorodom prostredi) 8iri po najkrat3ej drahe - znamena to, Ze priestor zrych- —
Tujtcej kabiny je (z pohladu pozorovatela v kabine) zakriveng. Podla principu ﬁ
ekvivalencie to isté plati o gravita¢nom poli. ;

AL

Pozorovatel na rovnomerne rotujicom disku pozoruje, ze v dosledku relativistickej kontrakcie dizky
nehybnych meradiel, rozostavenych okolo disku pozdlZ jeho obvodu, s rasticou rychlosfou narasta
pomer jeho obvodu ku polomeru, % = 27y. Znamena to, ze rotujuci disk - neinercidlna sistava s
dostredivym zrijchlenim - mé zakriveni geometriu.® Podl'a principu ekvivalencie rovnaké zakrivenie
priestoru existuje v gravitaénom poli hmotného objektu.

Predpokladajme kabinu o vyske h Startujicu v case t = 0 zo zeme z = 0 so
zvislym zrychlenim g (obr.). Zdroj A (na strope) vysiela nadol sériu svetelnych
pulzov v ¢asoch t4,t4 + Ay, ..., a detektor B (na podlahe) ich prijima v ¢asoch A
tg,tg + Ap,.... Pre okamzité polohy zdroja a detektoru v réznych ¢asoch plati
(pre jednoduchost predpokladajme t4 = 0 a malé rychlosti, takze relativistické
efekty mozeme zanedbat) Z80

@y

1 1
zp(t) = §gt2 za(t) = ith +h

ZA(tA) — ZB(tB) =ctg = h ZA(tA + AA) — ZB(tB + AB) = C[tB + AB — (ZfA + AA)]

Kombinovanim (predpokladajuc kratke periody pulzov, A?& 5 — 0) dostavame

Ar=aa(1- %)

Pre pozorovatela B teda medzi dvoma po sebe idicimi pulzmi ubehol kratsi ¢as nez pre pozorovatela
A. Podla principu ekvivalencie v kabine v pokoji ¢as plynie pomalsie? v silnejSom gravita¢nom poli
so zdpornejsim potencidlom ¢p (paméitajme, ze ¢(r) < 0, ¢(o0) = 0).

Pre frekvencie svetla vy g ~ 1/A4 p v zrychlujicej kabine to znamena (dopplerovsky) posuv spektra
medzi zdrojom A a prijima¢om B na opa¢nom konci kabiny. Podl'a principu ekvivalencie rovnaky
posuv sposobuje gravitacné pole. Ak uvazime, ze v gravitatnom poli gh = |¢4 — ¢p|, ¢o je rozdiel gra-
vitacnych potencialov, vo velkej vzdialenosti A (¢4 = 0) od povrchu Ziariaceho telesa B o hmotnosti

M a polomere Ry (¢pp = —%) dostaneme gravitaény ¢erveny posuv

OB kM
Vs = VB (1—}—? =vp I—RMC2

Zakrivenie ¢asopriestoru v zrychlujucej ststave/gravita¢nom poli znamené obmedzenie platnosti za-
konov $pecialnej relativity. Princip ekvivalencie v8ak umoziiuje v rozumnom okoli kazdého bodu lu-
bovolne zakriveného Casopriestoru nahradit jeho metriku Minkowského metrikou - lokdlnou iner-
cialnou sustavou s ortogondlnou Stvorvektorovou bazou. Volne padajice laboratérium (dostatocne
malé) je tiez takouto lokilnou inercidlnou sistavou.

3Je to tzv. Ehrenfestov paradoz.

4Naozaj, s narastajicou nadmorskou vygkou na povrchu Zeme pozorujeme zrijchlovanie chodu hodin - asu, pri-
blizne o 1ns za den na kazdych 100m nadmorskej vysky. Tato skuto¢nost limituje jeden zo zdkladnych postulatov
Specialnej relativity: rychlost ¢ je invariantom len lokdlne!
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V.1.2 Metrika zakriveného Casopriestoru.

Zac¢nime metrikou plochého euklidovského 3D priestoru: Kvadrat vzdialenosti dvoch bodov nezavisi
od vyberu sdradnicovej stustavy,

D D
ds? = da® + dy? + d=? = dr® + r2d6* + r?sin 0dp® — <Z Z) Gudatdz’ = g, da"dz"
I v

kde g,, je metrika (metricky tenzor, 2 a 2’ odpovedaju rovnakému bodu v roznych saradnicovych
sustavach, u, v = 1,2, 3, ). T4 sa vSak pri prechode medzi siradnicovymi stustavami meni. V kartézskej
ststave ¢, = 0., v sférickych saradniciach g11 = grr = 1, goo = gog = 1%, g33 = gpp = 1 sin? 4, a
ostatné nulové (prvky matice nemusia mat rovnaky rozmer, a diagonélnost je vecou praktickej volby).
Linearna infinitezimdlna transformécia suradnic (kone¢néa transformécia suradnic je vo vSeobecnosti
nelinearna) je

" ) n
da'" = ?f—y dz” = A* (x) dx” (p - riadok, v - stlpec) drt = % d’ = (AN (2') dx™
T —— T ——_————

V porovnani napr. s maticou rotacie sa transformac¢na matica A" (x) vo vSeobecnosti meni s polohou,
a odpovedajico sa meni aj metrika

/ N o —1\pu —1\v
gap('r) _gHV(m) (A ) O'(A ) p
Da sa ukazat, Ze invariantngm voci transformacii siradnic v D-rozmernom priestore je jeho objemovy

element v tvare
ar /g = ar x'\/a

kde g je determinant matice metriky g,,. V kartézskych/sférickych suradniciach 3D euklidovského
priestoru to znamend drdydz = drdfdpr? sin 6, kedze Ozy: = 1 @ Grop = r*sin? 6.

Pri zakrivenom Casopriestore je z hladiska vSeobecnej relativity podstatnéa len tzv. vnatorna kri-
vost.? Na rozdiel od Minkowského metriky (kap. 1.3.1), v zakrivenom Casopriestore

Adr? #+ Adt? — da® — dy? — d2?

V predchadzajicej kapitole V.1.1 sme videli, ako newlonovské gravitacné pole s potencidlom ¢ za-
krivuje (spomaluje) das. V dalsom texte ukdzeme zakrivenie priestoru tymto polom. Ani metrika
newtonovskej gravitacie teda nie je metrikou plochého casopriestoru. Nerelativisticka limita c¢inku
pre (volnu) ¢asticu o hmotnosti m (kap. 1.3.1) rozsirena o potencidlnu energiu v gravitaénom poten-

ciali ¢ je
b t /1 123 ¢ 2
S:—mc/ d5—>/ (—mv2—m02—m¢>dt:_m02/ (1+—2——>dt
a ta \2 t c 2c2

Porovnanim podintegralnych vyrazov dostavame v slabom gravitacnom poli a v limite 2—; — 0 faktor

zmeny ¢asomiery z kap. V.1.1, dt (1 + %) = dty/1+ 24, ako aj newtonovskid metriku

2
ds® = (1 + C—f) Adt? — dr?

5Napr. plast cylindra ma len vonkagj§iu krivost (rozstrihnutim dostaneme rovinu) - je to 2D plocha vloZena do 3D
euklidovského priestoru. Neda sa to urobit s plagtom gule - ma aj vniutorni krivost. KedZe nedokdzeme vystupit z
nasho Vesmiru, vonkajsia krivost nas nezaujimal
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V.1.3 Geodetika.

V Minkowského ¢asopriestore je (¢asu-podobné) vzdialenost dvoch udalosti AB dané vztahom

R L A N () e [t

kde v poslednych vyrazoch sme svetociaru parametrizovali monoténne sa meniacou premennou &,
nadobudajicou v krajnych bodoch A,B hodnoty 0,1. KedZe tato vzdialenost odpoveda extremdlnemu
vlastnému casu, povazujme integrand za ,lagrangian®, a ELR zapiSme v tvare

of _d( o7 \_, (B _ [ dwrderdr
dur — de \ O(dar/dg) | ~ ( d&)‘ Thag Tae T de

Po dosadeni a tprave dostavame klasické pohybové rovnice pre volni Casticu

dPat du”

dr? dr
Vo wvseobecnej relativite je Gastica volnou, ak na nu neposobi Ziadna sila okrem gravitacnej (ta sa,
v zmysle principu ekvivalencie, za silu nepovazuje - je to vlastnost casopriestoru). Sveto€iara volnej
Castice medzi dvomi udalostami (v ¢asu-podobnej vzdialenosti) odpovedajica extremalnemu vlast-
nému ¢asu sa nazyva geodetikou. (Predpokladame, Ze ¢astica samotné ku zakriveniu ¢asopriestoru
neprispieva.) V tomto pripade 1, — ¢, (2)

=0

& (ot _ [ doaer
3 g dg
a rovnica geodetiky (po analogickom odvodzovani) nadobida tvar
d*z° dzt dx” du’ o Y
dr> S dr _dr resp- dr L@y

kde ]
qu(@ = §g"p(x)[8ug,,p(:c) + 00 Gup() — OpGpu ()]

st tzv. Christoffelove symboly (I'], =T7 ). Ide o relativistick verziu Newtonovho gravitatného
zakona

d2l'j . _6¢(xj)

dtQ N 817]'
pricom klasickd koncepcia gravitacného potencialu ¢ sa tplne premietla do zakrivenia metriky g,
vyjadreného prostrednictvom I'# . Zdrojom sily/zrychlenia, nahradzajicim priestorové variacie new-
tonovského gravitacného potencidlu, st ¢asopriestorové varidcie metriky, ¢ize zakrivenie ¢asopries-
toru.

Svetelny la¢ sa takisto siri pozdlz tzv. nulovej geodetiky®, ds*> = 0. V ramci newtonovskej mecha-
niky by gravitacné posobenie telesa 0 hmotnosti M sposobilo prostrednictvom dostredivého zrychlenia
svetla (ako nositel'a energie-hmotnosti) zmenu (smeru) rychlosti Av = — [ %% f(f)g“) dt = — [, =2 ' 52y

a odpovedajuci uhol ohybu svetla Ap = A” = 2’1@:\/[ = %. Po zapocitani zakrivenia cCasopries-

toru vSak dostavame spravny dvojndsobniyj uhol. Pre vzdialeného pozorovatela toto zakrivenie drahy
la¢a v pritomnosti hmotnosti znamena ¢asové oneskorenie - relativne globdlne spomalenie svetla (pri
konstantnej lokdlnej rychlosti c).

6Na nulovej geodetike vlastny ¢as 7 strdca svoj vyznam, a nemozno nim geodetiku parametrizovat. V rovnici
. u _ dat s . i
geodetiky preto 7 — &, a ut = e e jednotkovy tangencidlny vektor.
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V.1.4 Kovariantna derivacia.

V zakrivenom (Caso)priestore je vektor v.danom bode trajektorie definovatelny len v tangencialnom
plochom priestore - akomsi lokdlnom laboratoriu - len tam sa vektory riadia obvyklou algebrou.
Vektory definované v réznych bodoch teda ziju v réznych tangencidlnych priestoroch - polohovy
vektor a vektor konecného posunutia nemaju zmysel. Takéto lokdlne laboratérium sa posiva po
trajektorii, pricom kazdému bodu priradujeme vlastni ortonormdinu (Stvor)vektorovi bazu €,(z"),
v ktorej ,zija“ experimentalne meratelné velic¢iny.

Zmeny vektorov pozdlz (¢aso)priestorovej trajektorie - a teda aj ich derivacie - konstruujeme pomo-
cou paralelného posuvu (obr. a). V plochom (¢aso)priestore sa paralelnym posuvom smer vektora
zachova, ¢o vidime aj pri uzavretej trajektorii na 2D euklidovskej ploche (obr. b). Paralelnym posu-
vom po uzavretej trajektorii na gulovej ploche (obr. c¢) sa v8ak do vychodiskového bodu vektor vrati
SO Zmenenym Smerom.

> > >
v v

AV = V-

a b i c
Uvazujme vnitorne zakrivend 2D plochu povrchu gule, vnoreni do 3D euklidovského priestoru.” Si-

radnice bodu P na tejto ploche v jej stradnicovej sastave si z*, p = 1,2, kym v 3D stradniciach
su X;, 7 =1,2,3. Z pohladu 3D stiradnic definujme dvojicu bazovych

(3-zlozkovych) vektorov €, = % = 0,X; leziacich v 2D zakrive- i
nej ploche (resp. v rovine tangencialnej k bodu P), ur¢ujicich polohu L, ¢

kazdého bodu zakrivenej plochy. Kedze dX; = %dz“ = ¢ dz”, pre
kvadrat vzdialenosti dvoch infinitezimalne blizkych bodov plati

ds® = dXJ2 =€), €, dz"dx" L Gudxtdz”

¢ize pre metriku plati g,, = €, - €,. Postivanim bodu P po zakrivenej ploche sa bazové vektory budi
menit ako

de, 0 0X;
Oxv  Oxv Oxr
Takyto vektor obsahuje vo vSeobecnosti okrem tangencialnej aj zlozku normdélovia k povrchu, ¢o
mozeme zapisat v tvare

0,€, =

- 8118;LX]

— o = —
0,€, = [V, + Kt

kde I'7, (Christoffelove symboly) a K, st symetrické vzhladom na pv. Definujme teraz na tejto
ploche (resp. v tangencidlnej rovine, z pohladu 3D stradnic) vektorové pole v(z) = v¥(z)e,(x).
Ked7ze bazové vektory sa menia s posunom po zakrivenej ploche, odpovedajica zmena vektorového
pola je

0,i(x) = [0, ())6,(x) + T(@)0,6,(x) = (0,0 (@)|E () + " ()T, 8 + 0" (2) K il

Pre pozorovatela, ktorého ,Zzivotnym priestorom® je zakrivena plocha, dimenzia kolméa na tento po-
vrch (posledny ¢len) neexistuje - na zakrivenej ploche teda definuje kovariantna derivaciu podla
sradnic®
D,v = [0,v" + T4, v%€e, = (D,v") €, D" = o, 0" + T v°
— ——

"Téato 2D plocha je zjednodusenim 4D ¢asopriestoru.
8Index v tu znamena deriva¢nt premennd z”, nie index §tvorvektorovej komponenty!
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ako mieru zmeny vektorového pol'a, zahrnujtucu krivost plochy (resp. ¢asopriestoru, po rozsireni ivahy
na 4D). Prva zlozka - tenzor® d,v* - je mierou zmeny vektorového pola, kym druha zlozka zohladiiuje
zmenu metriky.

Ak opédt parametrizujeme trajektoriu monoténne sa meniacou premennou &, teda x# = x#(), kova-
riantnéd derivicia (8tvor)vektoru podla ¢ nadobudne tvar'

dx” dx¥
Dot — = (0,0" +TH v7) —
v dg ( v vo ) dg
Ak stotoznime £ s vlastnym ¢asom 7, potom % = u* je $tvorvektor rychlosti, a
dvt ! dv*  dx”
uw Dot =u” (0,0 +TH 07) = — +T* u”0v° = Dot — = — 0, " =u’o, 0"
( +1ot”) dr e “ ( dr dr )

Vyraz D,v* mé teda vyznam kovariantnej casovej derivicie vektoru v podla vlastného ¢asu. Ak za
vektor v* dosadime samotné u*, dostavame

dut 5
D" = e + I u’u?
Vyraz na pravej strane je ale podla rovnice geodetiky (kap. V.1.3) nulovg. Rovnicu geodetiky teda
mozeme zapisat v tvare

D,u" =0

V.1.5 Tenzory krivosti.

Pozorovanie zakrivenia (¢aso)priestoru je mozné pomocou merania vzajomnej vzdialenosti (najme-
nej) dvoch volne padajucich objektov. Predpokladajme teda volny pad pozorovatela a testovacieho
objektu pozdlz svojich geodetik.

Nech okamzité suradnice pozorovatela a (infinitezimalne) blizkeho po-
zorovaného objektu st z;(t) a z;(t)+;(t). V newtonovskej mechanike ! §
v gravita¢nom poli s potencidlom ¢ (obr.) plati

d2.f17j _8¢(£E])

dtQ ij )
pozorovatel objekt
Plrj+¢G) 0 +G) 0 o(z;) + 3¢(~"E‘j)ck N §
dt? oz Ox; ! xy, x
Odcitanim oboch rovnic dostavame pre casovy vyvoj vzajomnej vzdia- %
lenosti X
’G P ¢
dt2  Oxjwy g
Tenzor aiéi’k je mierou tzv. slapovej sily - vzdjomného pritahovanial’ pozorovatela a testovacieho
J
objektu, a vyraz d;téj predstavuje zrychlenie vektoru (;, odpovedajice tejto slapovej sile.

9Podobne ako gradientom skaldru je vektor, gradientom vektoru musi byt tenzor, rozlisujici smer zloziek vektoru
od smeru derivovania.

10Vyuzili sme pravidlo derivovania zloZenej funkcie.

Ak by ¢ bola vzdialenostou objektov pozdlZ pohybu (padu), slapova sila by odpovedala ich odpudzovaniu. (Do-
sledkom slapovych sil je priliv-odliv mori.) V zmysle principu ekvivalencie na zrjchlujice teleso posobia rovnakeé sily.
Ked7e posobenie sily sa pozdlz telesa prenasa konecnou rychlostou (spravidla rychlostou zvuku), zrychlujice tuhé
teleso sa roztrhne.
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V' zakrivenom (Caso)priestore treba asové derivacie nahradit kovariantngmi derivaciami (podTa

vlastného ¢asu, kap. V.1.4), d;tij — D, D,C", ¢o po dosadeni a tpravach da tvar
o ory, aFlVL A A
DuDuCu = _Rﬁapuyg u” R'llztop = axl;.p - ano‘ + Fg)\rl/p - Fz)\rz/o

kde R, je Riemannov tenzor krivosti, komplexne mapujici krivost casopriestoru.'? Tato rovnica
je relativistickym zov8eobecnenim predchadzajicej (newtonovskej) rovnice pre slapové sily. Slapové
sily si teda prejavom zakrivenia casopriestoru.

Alternativnymi veli¢inami tispornejsie opisujicimi krivost ¢asopriestoru (vyuzijac symetrie Rieman-
novho tenzoru) st symetricky Ricciho tenzor!?

Ryp =Ry, = g'uUR/u/Up Rup = Rpl/

vop

Ricciho skalar (skalarna krivost)*!
R=R)=g"Ry,

a symetricky Einsteinov tenzor!®

1
Gl/p = Rl/p - §gupR Gup = Gpl/

Vsetky uvedené formy kvantifikovania krivosti ¢asopriestoru st nastrojmi na opis ¢asopriestorovych
trajektorii hmoty-energie. Pojem gravitacného pola sa prevtelil do zakrivenosti casopriestoru. O
zdrojoch tejto zakrivenosti pojednava nasledujica kapitola.

COOOO
Doélezité zavery:

e Podla principu ekvivalencie stistava v gravitac¢nom poli je lokalne ekvivalentn4 stustave so zrychle-
nim.

e Gravitacné pole sposobuje zakrivenie ¢asopriestoru. V silnejSom gravita¢nom poli plynie ¢as po-
malsie. Pozorovatel zaznamena gravitacény cerveny posuv signalov prichadzajicich zo silnejSieho gra-
vitacného pola. Svetlo sa §iri rychlostou ¢ len lokdlne. Prejavom zakrivenia priestoru su slapové
sily.

e V gravita¢nom poli sa volna ¢astica pohybuje po geodetike.

e Casopriestorovu derivaciu Stvorvektoru v zakrivenom c¢asopriestore nahradzame kovarianou deriva-
ciou, zahriujicou aj ¢asopriestorovii zmenu metriky. Zmenu metriky vyjadrujeme prostrednictvom
Christoffelovych symbolov.

e Zakrivenie ¢asopriestoru kvantifikujeme (v zavislosti od miery podrobnosti) Riemannovym tenzo-
rom, Ricciho tenzorom, Ricciho skalarom a Einsteinovym tenzorom.

12V d’aka viacerym symetridm mé tento tenzor 4x4x4x4 len 20 nezavislych komponent.

13Predstavme si sféricky oblak volne padajucich ¢astic. Slapové sily sploituju oblak v smere kolmom na pohyb a
roztahujai ho v smere pohybu. Objem oblaku sa pritom nemeni. Ricciho tenzor opisuje tieto relativne zmeny v roznych
smeroch.

14V Einsteinovej konvencii ide o dvojitii sumu, ¢ize skaldr. Ricciho skalar vyjadruje aktsi spriemerovani krivost cez
priestor aj cas.

15>Einsteinov aj Ricciho tenzor maju vdaka symetriam len 10 nezavislych zloZziek. Einsteinov tenzor obsahuje zlozky
timerné I'? ~ (9g)? a ol ~ 9?g.
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V.2 Rovnice gravita¢ného pola.

V.2.1 Zdroje zakrivenia ¢asopriestoru.

Pozorovanim Vesmiru vieme, Ze zdrojmi zakrivenia ¢asopriestoru sia velké hmotnosti, a teda velké
energie. Prirodzenym kandidatom na ich matematickt reprezenticiu je preto tenzor energie-hybnosti-
napatia (kap. 1.3.4 a Dodatok D). V plochom ¢asopriestore $pecidlnej relativity platia zakony zacho-
vania

o,T"" =0

Najjednoduchsim (kozmologicky relevantnym) modelom rozloZenia hmoty je idedlna tekutina'® v
pokoji s tenzorom T = diag(pc?, P, P, P), kde p a P st jej hustota a tlak. Tento diagondlny tenzor

mozZeme prepisat na tvar
P
"= (P i 0—2)

Kde stfpcovy/ riadkovy vektor predstavuje vektor §tvorrychlosti v pokojovej ststave hmoty. Vo vse-
obecnosti pre systém pohybujici sa §tvorrychlostou u* mozeme pisat!’

(c000)— Pp™

O OO0

P
TH — (p+_2) uuuu_nuup
C

Hustota energie a tlak vSak vo vSeobecnosti nie st nezavislé - stvis medzi nimi upravuje modelova
stavovd rovnica v tvare
P = wpc?

kde w je koeficient zavisly od druhu energie. Rozlisujeme tri zakladné pripady:

Pripad w = 0, ¢ize P = 0, opisuje hmotny ,prach” - hmotné casti ldtky - telesa. Na§ modelovy tenzor
energie-hybnosti sa redukuje na tvar T = diag(pc?,0,0,0).

Inym typom energie je Ziarenie. Pre elektromagnetické Ziarenie ma tenzor energie-hybnosti podla
teorie tvar T = o [FHF,, — i(?ﬁFp"FpU] (F* je elektromagneticky tenzor, kap. I11.3.3), ¢o je
tenzor s nulovou stopou. Na zaklade toho pozadujeme nulovi stopu aj pre nas modelovy tenzor
T = Twrry,, = diag(pc?, — P, — P, —P) pre pripad Ziarenia, ¢o vedie na pc* = 3P, a teda w = % pre
Ziarenie.

épecialnym je pripad w = —1, ¢ize P = —pc® a T* = pc?6*. Tymto ¢lenom modelujeme energiu

vdkua - tzv. temni energiu'® - o objemovej hustote (konven¢ne vyjadrenej ako)

4 4
A v _ o c*A
vac_pvaccn -
8Tk N

2 v
PovacC = 77“

8Tk N
kde A je tzv. kozmologickd konstanta (s rozmerom m~2). Podla stcasnych predstav zostava
tato hustota koStantnou (pozostéva s konstant) aj pri rozpinani Vesmiru (na rozdiel od hustoty
latky). Fyzikalny vyznam kozmologickej kongtanty podrobnejsie rozoberieme v kap. V.3.2.1% Vyraz
P,oe = —poacc® interpretujeme ako zdporny tlak. Ako uvidime neskor, tento zaporny tlak je zdrojom
gravitacného odpudzovania (rozpinania Vesmiru).

16 Atribtitmi idedlnej tekutiny st idedlna tepelnd vodivost a zanedbatelna viskozita/dissipécia.

170téazkou referen¢nej ststavy, vzhladom na ktora tato rychlost uréujeme, sa budeme zaoberat v kap. V.3.1.
Bangl. dark energy

19Fyzikalna podstata temnej energie je viak v sii¢asnosti nevyjasnena.
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Prechod ku metrike zakriveného Casopristoru znamené nielen n* — ¢"” ale aj prechod ku kova-
riantnym derivaciam. VysSie uvedené zakony zachovania prejdd na tvar

D, T" =0

V.2.2 Einsteinova rovnica.

Pri hladani stvisu tenzoru energie-hybnosti, ako zdroja Casopriestorového zakrivenia, s tenzormi
opisujucimi toto zakrivenie (kap. V.1.5) vychadzame zo zdkonov zachovania D,T* = 0. Da sa
ukéazat, 7e prave Einsteinov tenzor G* (kap. V.1.5) spliia pre lubovolni metriku tzv. Bianchiho
identitu

1
D,G" =D, (RW - 5gWR) =0

Je teda namieste formulovat tzv. Einsteinovu rovnicu (ER) v tvare

Y , 1o, 8TKN
G" = RF —§g’“‘R: c4

SWKNTM

vac A o

1
(T* +Tr) resp. 2 RM — 593‘]% — Agt =

ER je fundamentdlnou rovnicou fyziky, a ako taka je postulovand. Koeficient iimernosti na pravej
strane je zvoleny tak, aby zabezpecil spravnu newtonovskt limitu. Energia vidkua, ¢ize pridanie
kozmologickej konstanty A, pritom nemé vplyv na zakony zachovania,?' a je tiez vecou postulovania.
ER predstavuje 10 nelinedrnych diferencialnych rovnic pre metriku g, ako pole, tieto rovnice vsak
nie st nezavislé - s zviazané 4 Bianchiho identitami. Ostava teda 6 nezavislych rovnic.

Ak v ER polozime o = p, dostavame??

4 87T/£N 8’/T/'€N w
R—R+4A="Z8T = R=dA- 5T T =g"Tu =T
a po dosadeni R do povodného tvaru ER jej alternativny tvar
1
R — SWZN (TW _ gWT) 1 g"A
& 2

V prdzdnom priestore, teda pri absencii zdrojov zakrivenia, 7, = 0, A — 0, m& ER tvar

Ry, =0

K ER sa dopracujeme aj spoésobom obvyklym z predchadzajtcich ¢asti textu - zo spravne zostaveného
lagrangianu a principu extremélneho tc¢inku (resp. z ELR). Lagrangian zakriveného ¢asopriestoru za
pritomnosti zdrojov zakrivenia musi pozostavat zo skalaru opisujiceho zakrivenie - Ricciho skalaru
R, lagrangianu hmoty L£,, a kozmologickej konstanty A, a jeho integrél - ucinok - musi obsahovat
invariantny ¢asopriestorovy element d*z,/g (kap. V.1.2). Tzv. Einsteinov-Hilbertov t¢inok mé
tvar

sz/{ C(R—2M)+ L] Vad's

167K N

Po urcitej namahe, a s vyuzitim defini¢ného vztahu pre T pri danom £, (kap. 1.3.4), dostaneme
napokon ER. Princip extremalneho (minimalneho) t¢inku nam v tomto pripade napoveda, ze

priestor a pohyb hmoty v tiom sa vyvija v ¢ase tak, aby sa minimalizovalo jeho zakrivenie.?

20po vynasobeni ¢,

21Pre metriku plati D, g"” = 0.

**Vyrazy X}* v Einsteinovej konvencii znamenaji stopu tenzoru - skalar. Navyse g/ = 6/t =Tr(diag|[1,1,1,1])=4.
23 Analogicky ako v §pecidlnej relativite sa hmota pohybuje tak aby minimalizovala svoje ,starnutie®.
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V.2.3 Linearizovani Einsteinova rovnica.

ER mozeme linearizovat v pripade malej poruchy plochej metriky ¢asopriestoru
G (27) = N + Dy (27) [ (27)] < 1

Ricciho tenzor a skalar v linedrnom priblizeni poruchy (¢leny kvadratické v I' zanedbavame, a pre
samotné 7, je R,, = 0) a po dosadeni metriky maja tvar
_ org, ory, 1

- Ox° o or? - T 2 (Dhuu + Quu) R = a,ua'/hlw +0h

R,
kde* O = n"9,0, = 0,0" je d’Alembertov (vlnovy) operétor, a
Q= 0,015 + 0,0,1% — 0,0,h (HS = 17 hupe, B = h)

ER s takymito ¢lenmi je uz linedrnou diferencidlnou rovnicou pre poruchu metriky h. Navyse, ¢lena
Q,, vo vyraze pre R, sa moZeme zbavit vhodnou kalibrdciou® - malou transformaciou siradnic
ot — ot + EF tak aby

1
W = Ty — §h77w a d"h,, =0

V tejto - tzv. lorenzovskej kalibracii nadobudne linearizovana ER tvar?

167k N

Ok, = 2R, = —— T,

a je analogiou nehomogénnej MXR pri lorenzovskej kalibracii?” (kap. 1.3.1)

OA, = ftoj, D, A" =0

V.2.4 Gravitacné viny.

Hmota-energia zakrivuje Casopriestor, a pohyb hmoty-energie sposobuje pohyb zakrivenia Casopries-
toru. Predpokladajme opét malé zakrivenie ako poruchu plochého ¢asopriestoru

G (%) = N + I (27) [P (27)] < 1

V lorenzovskej kalibracii nadobudne linearizovana ER vo vdkuu (v nepritomnosti hmoty) tvar

R,, =0Oh,, =0

24V tomto linearnom priblizeni zvy§ujeme/znizujeme indexy pomocou Minkowského metriky.

#5Pocet rovnic (10) totiz nepostacuje na Gplné urcenie vietkych zloziek h,,, mame teda kalibra¢nt volnost, ktora
nadm umoziuje zjednodusit ulohu. Inak povedané, metrika nemé vyznam sama osebe, ale len v kontexte daného sirad-
nicového systému - pasivnou transformaciou siradnic teda menime metriku, pri zachovani kovariantnosti fyzikalnych
zékonov. Pre malé £ plati

ozx'H ozt
o~ SH 124
oxv Oy 0t ox'v

= 55 - augu g;w = Guv — a,ugu - auf,u h;;,y = h;w - a,ugu - augu

*6Linearizacia ER je podmienena dostato¢ne malymi hodnotami 7),,,.
2TPreto sa aj uvedend kalibracia pre metriku nazyva lorenzovskou.
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Této homogénna vlnovd rovnica pre metriku (ako pole) je analdgiou homogénnej MXR pre elektro-
magnetické pole A* pri lorenzovskej kalibracii

UA* = 9,0"A" =0

Jej rieseniami si teda viny zakrivenia metriky - gravitaéné viny - Siriace sa plochim Casopriestorom
ako superpozicia harmonickych rovinnych vin
! o\ __ ikox®
hW(x ) = €we
kde €, je symetricky tenzor polarizacie viny. Dosadenim do linearizovanej homogénnej ER dostéa-
vame

o ikox® w2 N2
ko k€ e = 0 - (—) (B2 =0

c

¢o znamena, ze gravitacné viny sa Siria rijchlostou c. Sucasne lorenzovska kalibracia 8“h;“, = 0 vedie
na

ke, =0
¢o odpoveda priecnej polarizdcii. Z 10 nezévislych prvkov symetrickej (4 x 4) matice €,, tato pod-
mienka fixuje 4. Da sa ukézat, Ze dodatofnou transformaciou suradnic (pri dodrzani lorentzovske;
podmienky) mozeme dosiahnut

o . _ _
€, = 0 a sucasne €op = €40 = 0
¢im fixujeme dalSie 4 stupne volnosti. Ostavajia teda dva nezdvislé polarizacné stupne volnosti.

Predpokladajme (pre ilustraciu) vinu postupujicu v smere osi z, k* = (H,O,O, g), ¢o dodatocne
C 4
znamend €3, = €,3 = 0, a dve nezdvislé priecne polarizované viny s amplitidami h,, hy potom st

00 0 O 0000
h/—{_LI/(Z’t> _ th 8 é _01 8 eiw(zfct)/c h'ﬁ“’(z,t) _ h>< 8 (:3 é 8 eiw(zfct)/c
00 0 O 0000

Ucinok slapovych sil takychto vin na sféricky ,testovaci hmotny oblak“ by sa prejavil v jeho priecnom
deformovani do elipsoidu, a to v smeroch z,y pre vlnu A a v diagonalnych smeroch pre vinu h,, bez
zmeny v pozdlznom smere osi z (obr.).

D L OQ

Z charakteru polarizicie gravitacnej vlny (a porovnania s elektromagnetickou vlnou) mozeme vy-
dedukovat jej zdroje: Kym na generovanie elektromagnetickej viny (vektoru) postacuje oscilujici
dipdlovy moment (vektor), na generovanie gravitacnej vlny (tenzoru) je potrebny oscilujici kvadru-
pdlovy moment (tenzor).?®

28Takym je napr. ,ginka“ rotujuca okolo inej nez pozdlznej osi. Rotujuca sféricky symetrické hmota gravitatné
vilny nevyZzaruje (zadkon zachovania momentu hybnosti). Taktiez nevyZzaruje hmota v rovnomernom pohybe (zakon
zachovania hybnosti).
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V.2.5 Spin 2.

7 predchidajiceho textu vidime, Ze gravitacné pole je reprezentované tenzorom krivosti 4x4. Lo-
rentzovskad transformécia generického tenzoru X*” je

XM AEAVXOP

Tato 16-zlozkova reprezentacia je vak reducibilndg: Lubovolny tenzor moZzeme rozlozit na symetricky
a antisymetricky tenzor na zaklade identity

1 1
X = = (XM X o (X = X) = S A

pricom symetrickost /antisymetrickost sa pri lorentzovskej transformacii zachovdva. (Znamena to, ze
zlozky S* a A" sa medzi sebou nemiesaji.) Rovnako sa pri lorentzovskej transformacii zachovava
stopa (symetrického) tenzoru S = 7, 8", ¢ize povodna 16-rozmerna reprezentacia sa redukuje na
9-rozmernt (symetricka s nulovou stopou), 6-rozmerna (antisymetricki) a 1-rozmerni (stopu),

4®4=906d1

Kedze tenzor energie-hybnosti 7" je symetricky, podla ER musia byt symetrickymi aj tenzory
zakrivenia, pracujeme teda v 9-rozmernej reprezentécii.?? Podl'a kap. I11.4.3 tomu odpovedé

9= +1)(2j~ +1) j=iT+i=1+1=2
¢ize spin 2. V podgrupe ¢isto priestorovych rotacii sa tato reprezenticia opat redukuje na
3®3=503dD1
kde 5-rozmerna reprezentacia odpovedé préave hodnote j = 2 (5 moznych priemetov spinu).

Tak ako v pripade nehmotného vektorového pola (spin 1) je identitou priestorova rotacia o 360° a
uhol medzi dvoma prie¢nymi polarizaciami 90°, v pripade gravita¢ného pola (spin 2) je identitou
priestorova rotacia o 180° a uhol medzi dvoma prie¢nymi polarizaciami 45° (kap. V.2.4).

V.2.6 Energia gravitacnej viny.

V newtonovskej fyzike definujeme hustotu energie gravitacného pola

1

2
RE— ()

1
Wy = TN (Vo(r)?) = —

(zaporné znamienko svedéi o pritazlivej sile). V zmysle principu ekvivalencie vo vSeobecnej relativite
v8ak volbou lokdlnej inercidlnej sustavy (lokalne plochy ¢asopriestor vo volne padajicej kabine) do-
kdzeme gravitaéné pole eliminovat (V¢(7) odpoveda lokdlnemu zakriveniu ¢asopriestoru). Koncept
lokalnej hustoty gravitacnej energie teda straca zmysel.?® Volné hmotné objekty sa pohybuji po
geodetikach danych zakrivenim ¢asopriestoru, sicasne v8ak ¢asopriestor zakrivuja (podla ER). Gra-
vitacny potencial je teda len nerelativistickou aproximéaciou - pre velké alebo rychlo sa pohybujuce

29 Antisymetrickymi st napr. tenzor lorentzovskych rotacii J*¥ z kap. I1.4.2 alebo tenzor elektromagnetického pola
FH gz kap. I111.3.3.

30Kongtantna energia je dosledkom symetrie Minkowského ¢asopriestoru voci ¢asovej translécii, a to pri meniacej sa
metrike zakriveného Casopriestoru neplati.
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hmotnosti ho nevieme dobre definovat. Zakrivenie ¢asopriestoru generované hmotnostou sa pohybuje
spolu s nou.

Napriek tomu v8ak moézeme gravitacnej vine v konecnom objeme (dostato¢ne velkom vzhladom
na relevantné vinové dlzky) prostrednictvom ER priradit tenzor energie-hybnosti*' spriemerovanim

zakrivenia v tomto objeme,
ct 1
b = RLV " R
= o () = )

Ricciho tenzor a skalar vypocitame dosadenim linearizovanych vlnovych riesenf ' (z,t) a K% (2, )
z kap. V.2.4 do naruSenej plochej metriky g,.,(v7) = 7. + h,,(27), a pre hustotu energie viny
dostaneme potom vyraz*?

C4

wg = too =

2
c
Dol )+ (Ooh)?) = ... ~ — (0,1 O]
(O, (BOIL)P) = .~ 0001
Opit vidime analogiu s elektromagnetickou vlnou s hustotou energie w,,, = 9| E|? = 0|0, A* vo
vikuu (|E| = ¢|B|). Velkost toku energie elektromagnetickej viny (daného Poyntingovgm vektorom)
je CWem = c£0]0;A|?, a analogicky tok energie gravitacnej viny je ~ %(&th;k@h;k)- Obrovska hodnota
< 10%Js/m? napoved4, Ze na nepatrné zakrivenie ¢asopriestoru je potrebnd giganticka hodnota

KN
toku energie.3?

V.2.7 Gravitomagnetizmus.

Analogie medzi linearizovanymi rovnicami gravita¢ného a elektromagnetického pola maja svoj pévod
v poziadavke lorentzovskej kovariantnosti v priblizeni plochého casopriestoru. Preskiimajme ju hlbsie
na priklade dvoch paralelnych (nekone¢ne) dlhych homogénnych hmotnych ty¢i A,B s (pokojovymi)
dlzkovymi hustotami pa, pp vo vzajomnom pozdlznom pohybe kongtantnou rychlostou ¥, a testo-
vacieho objektu hmotnosti m, umiestneného symetricky medzi ty¢ami a v kfude voéi ty& B (obr.).
Predpokladajme, Ze gravitatné posobenie oboch ty¢i na testovaci objekt je vzdjomne vykompenzo-
vaneé.

) A A 0
. v 1=
Fy T .
Fa
S me S' m e v
f‘_:/ ﬁlf 5
7
) B B 0
V stistave S (spojenej s ty¢ou B a testovacim objektom) rovnovéha sil Fy = —Fp znamenda pg = ypa

(v > 1), kvoli relativistickej kontrakcii dlzky pohybujicej sa tyce A. (Pokojovd hustota tyce A teda
musi byt y-krat mendgia oproti ty¢i B.) V ststave S’ spojenej s tycou A potom plati

mez% Fs~qps =vpa =  Fp#Fy

31V nerelativistickej fyzike hovorime, ze gravitacné pole kond pricu.
32G¢itavame cez opakujiice sa indexy.
33To je pri¢inou extrémnej vzacnosti pozorovania gravitaénych vin.
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Rovnovaha sil teda musi byt ,,zabezpecena” dodatoc¢nou silou F* zavislou od rychlosti v. Kvoli analogii
s elektromagnetizmom?! tato silu nazyvame gravitomagnetickou. Gravitacni sila ma teda dva
zdroje - gravitoelektrické pole o intenzite Eg = 7 (,Standardné* pole newtonovskej gravitécie)
generované hmotnostou, a gravitomagnetické pole B, generované pohybujicou sa hmotnostou
(ako analég magnetickej indukcie B).35

Kombinovanim lorentzovskych vztahov pre transformacie sil a rychlosti vieme celkovi gravitac¢nu
silu posobiacu na objekt o hmotnosti m, pohybujici sa (v danej referen¢nej sistave) rychlostou 4 v
gravita¢nom poli tvorenom hmotou pohybujicou sa rychlostou v, vyjadrit v lorentzovskom tvare

. -
=4 = FNewt(m

— — - — v — -
F=m(E,+ 4 x4B,) Bg:ngg E,=q= -

kde faktor 4 je korekcia na malé zakrivenie Gasopriestoru, ktoré pecidlna relativita nezahrituje.?® Lo-
rentzovskym boostom gravitacného pola tvoreného statickym rozloZenim hmoty, spliiajucim rovnice

V-Eg:—élmpr Vngzo 8tEg:0

dostavame rovnice pre gravita¢né pole tvorené hmotou pohybujtcou sa rychlostou v - tzv. gravitac¢né
MXR

V-E_"g:—élm{Np V-Eg:0 Vxﬁg:—atég
= drkn - 1, = - .
V x Bg = —7] + C—QﬁtEg kde ] = pv

Od rovnic elektromagnetického pola sa ligia len®” zdporngm znamienkom pred zdrojmi p, 7, o odzr-
kadluje vzajomné pritahovanie hmotnosti (na rozdiel od odpudzovania nabojov rovnakej polarity).
Prostrednictvom vektorov E,, B, mozeme zostrojit tenzor F}" analogicky F*” z kap. TI1.3.3 a $tvor-

vektor j* = (cp, j), a nehomogénne gravitaéné MXR vyjadrit v tvare

4
O F = ——Zj” (analogicky ako 0,F"" = 195" pre elektromagnetické pole)
c

Rovnako ako v elektromagnetickom pripade, kombindciou MXR dostavame vlnové rovnice
OE, = —4xn (vp + —zatj) 0B, = 3% (v % j)
c c

¢o pri absencii zdrojov p,7 vedie na homogénne rovnice s rieSeniami v tvare gravitacnych vin s
gravitacnym Poyntingovym vektorom, hustotou energie viny a zdkonom zachovania celkove; energie
hmoty a pola/viny?®

- c? 1

Sg:_émﬁN(EgXBg) Wy =

2, 2p2 s Al
_87mN(Eg+C B;) Owyg+V -S;=—E,-j
Rovnica kontinuity pre hybnost vlny je zakonom zachovania celkovej hybnosti hmoty a pola/viny

—

S L. o
O (22| +V-M=—(pE,+jx B,) M=—

c2?

el (GRS 2E,® E, + B, ® ég)]

34 Analogicky v pripade elektricky nabitych ty¢i a testovacieho naboja odvodzujeme magnetickti Lorentzovu silu ako
relativisticky efekt elektrickej sily.

35 Jednym z désledkov gravitomagnetizmu je absencia vzajomného pritahovania paralelngch svetelnych lacov - gra-
vitomagneticka sila (pri rychlosti ¢) presne kompenzuje vzajomné (gravitoelektrické) prifahovanie energie. Naopak,
drahy antiparalelnych lacov sa navzajom ovplyviiuja.

36 Tieto vztahy sa daju odvodit z linearizovanej ER v prislusnej limite a kalibracii.

3TTato zhoda napoveda, ze tvar MXR je dany wvgjlucne lorentzovskou kovariantnostou vektorovych poli, resp. plat-
nostou rovnice kontinuity pre p a ;

38Zaporné znamienka na pravych stranich odrazaju gravitacné pritahovanie a poziadavku nulovej potencialnej
energie v nekonecnej vzdialenosti od zdrojov. Vol'ne padajuce teleso ju strica v prospech energie kinetickej.
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kde3® M je 3x3 Maxwellov tenzor napétia pola (viny) - jeho zlozky st t/*-zlozkami tenzoru energie-

hybnosti pola
v ( Wy Sy/c )
Sg/c M

V tenzorovom zapise tieto rovnice kontinuity nadobudni tvar

Ot = =g, Fi”
kde pravu stranu interpretujeme ako interakciu gravita¢ného pola s hmotou. Sthrnne sa teda zacho-
vava celkovd energia-hybnost pola (") a hmoty (T*),

0y (t +T) = 0

Na zaver treba znovu pripomenut, ze maxwellovska limita je limitou plochého Casopriestoru. Vse-
obecné tedria relativity premieta energiu gravitaéného pola/viny do zakrivenia Casopriestoru, a si-
lovi interakciu s hmotou do voIného pohybu hmoty po geodetikach. V tomto zmysle nedochidza
k transféru energie-hybnosti medzi polom a hmotou - gravita¢na sila neezistuje, a teda t** = 0.
Moézeme to interpretovat tak, Ze energia-hybnost pola/viny t*¥ = 0, vystupujuca v scendri s plochym
Casopriestorom, sa spotrebuje na jeho zakrivenie.

V.2.8 Newtonovska limita.

Newtonovski limitu Einsteinovej rovnice dostaneme ak obe jej strany - tenzor krivosti i tenzor energie
- vyjadrime v limite malyjch rijchlosti a hustét energie. Predpokladajme teda, Ze metrika ¢asopriestoru
sa len malo lisi od Minkowského metriky, a nezavisi od ¢asu

9 (7) = My + Py, (7) by (M) < 1

Potom

ds\? dr\* dx* dx”
2 — 2 — n v — - — =)
ds® = (cdr)” = g dadx = (_cdt> (dt) [ + hm,(r)]—cdt e
a v limite v/c — 0 len zlozky u = v = 0 davaji nezanedbatelny prispevok (dz° = cdt), a teda
dr\”
— | Z1+h
( dt) + hoo(7)

Tomu odpoveda prave newtonovskd metrika diag(1+i—f,—1,—1,—1) z kap. V.1.2 s hgg = i—‘f Dosadenim
do vyrazov kvantifikujacich krivost dostavame

nenulové Christoffelove symboly Féo =..= %

rovnicu geodetiky (dt = dr, u° = c) d;t"’;j = —0;¢ (¢o je Newtonova pohybova rovnica)
Ricciho tenzor Ry = ... = 5V?¢

Einsteinov tenzor Goo = ... = 2V?%¢

Tenzor energie pre hmotu v pokoji je dany vylu¢ne pokojovou hmotnostou, ¢ize Ty = pc?, a Ein-
steinova rovnica nadobudne spravny newtonovsky tvar

39Vyuzili sme tenzorovi identitu (V- @)a + (@-V)d =V - (@ ® @).
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Doélezité zavery:

e Fundamentéalnou rovnicou vSeobecnej relativity je Einsteinova rovnica (ER). Podl'a nej hmota/energia
zakrivuje Casopriestor, a zakrivenie ¢asopriestoru urcuje pohyb hmoty/energie. Priestor a pohyb
hmoty v hom sa v Case vyvijaja tak, aby sa minimalizovalo jeho zakrivenie.

e Pre malé zdroje zakrivenia sa ER da linearizovat do podoby vlnovej rovnice pre poruchu plochej
metriky ako pole, v analogii s elektromagnetickym polom. Jej rieSenim st gravitaéné viny - viny
zakrivenia metriky, Siriace sa rychlostou c.

e Gravitacna vlna je priecne polarizované, s dvoma nezavislymi polariziciami, navzajom pootoc¢enymi
o 45°. Takejto rota¢nej priestorovej symetrii (identitou je pootocenie o 180°) odpoveda spin 2.

e Klasicky koncept gravitacného pola nahradzame zakrivenym casopriestorom, ktorému energiu ne-
priradujeme. Lokalne vSak mozeme hovorit o energii gravita¢nej vlny, resp. praci nou konanej.

e Pohyb hmoty /energie ma dodato¢ny gravita¢ny acinok - gravitomagnetizmus, analogicky magne-
tizmu (ako silovému a¢inku pohybujiceho sa naboja). V linedrnom pribliZeni pre gravitoelektrické
(t.j. Standardné” gravitacné) a gravitomagnetické pole platia Maxwellove rovnice analogické elek-
tromagnetickym.

V.3 Expandujici Vesmir.

V.3.1 Metrika expandujtiiceho ¢asopriestoru.

Tato cast textu je venovana fyzike Vesmiru ako celku, na priestorovych skalach radovo prevysujucich
rozmery vesmirnych telies ¢i galaxii. Pozorovania Vesmiru nas veda k postulovaniu tzv. kozmolo-
gického principu:

Na kozmickyjch skdlach je Vesmir homogénny a izotropny - vsetky miesta a smery si rovnocenne.

Pozorujeme vSak jeho casovij vijvoj - priestorovi ezpanziu® kazdého rozmeru s danym béazovym
vektorom €; — a(t)€}, a to s rychlostou danou empirickym Hubbleovym zidkonom
alt
v=Hr = —( )7’
a(t)
kde v je rychlost vzdalovania sa vesmirneho objektu v radialnej vzdialenosti r (od pozorovatela v
Tubovolnom mieste Vesmiru), a H je tzv. Hubbleov parameter (konstanta).

40Expanziou Vesmiru rozumieme zviéSovanie vzdialenosti medzi hmotnymi objektami pri zachovani velkosti tychto
objektov (v dosledku sil ich sudrznosti) . Ak by sa totiz meradla vzdialenosti zva¢Sovali sucasne s expanziou Vesmiru,
Ziadnu expanziu by sme nepozorovali!

138



Poziadavke priestorovej homogenity a izotropnosti, ¢ize rovnopravnosti
v8etkych bodov na (jednoducho stvislej) ploche (bez ,dier) vyhovuju tri
triedy zakrivenych ploch (obr.) - plochd, sférickd (kladné krivost) a hyper-
bolickd (zaporna krivost). Bod v plochom 3D priestore je parametrizovany
sférickymi saradnicami x, 6, ¢ (x vo vyzname tradi¢ného r). Zakrivené 3D
priestory odpovedaju zakrivenym 3-plocham vnorenym v 4D, a bod na ta-
kejto 3-ploche je urceny obdobnou trojicou premennych. Priestorové casti
jednotlivych metrik sa*!

1 0 0 1 0 0 1 0 0
0 2 0 0?1 0 sin®y 0 Q2| 0 sinh?y 0
0 0 x?sin?4 0 0 sin? y sin? 6 0 0 sinh? y sin® @

(Ricciho skalar je pre vsetky pripady konstantou, v stlade s kozmologickym principom.) Kedze pre
prvky metrického tenzoru vo vSeobecnosti plati g, = €, €, (kap. V.1.4), nenulové priestorové prvky
expandugjicej metriky budi navySe vynasobené faktorom o?(t).*? Jednotny tvar metriky pre vsetky
tri druhy zakrivenia ziskame prechodom k novej premennej r = y resp. r = siny resp. r = sinh y

pre plochy /sféricky /hyperbolicky priestor. Pre zmenu bazy vo vSeobecnosti plati €, = g—;ér, a teda

2 2
Jx = (g—;) grr, CO pre jednotlivé priestory déva odpovedajico (g—;) =1,1—172 1+ r?% alebo
zjednotene 1 — kr?, kde k = 0,4+1. Parameter k je teda akousi mierou (konStantnej) vnitorne;
krivosti priestoru - nulovej pre plochy, kladnej pre sféricky a zapornej pre hyperbolicky priestor. V
premennej r (v roznych vyznamoch pre jednotlivé krivosti - obr.) dostavame teda jednotny zéapis

expandujicich cdasopriestorovych metrik - tzv. FLRW metriku*?

1 0 0 0
2

0 -2 g 0
I = 1—kr2 ) )

0 0 —a*(t)r 0

0 0 0 —a?(t)r?sin 0
Dosledkom expanzie priestoru je Casovy narast fyzikalnej vzdialenosti -~ - T
medzi bodmi s konstantngmi priestorovymi stradnicami (r,6, ). t -----

Ak pre t = 0 je tato vzdialenost L(0) = rg, jej ¢asovy vyvoj bude i ,"rlﬁ-“’rzi/rg
L(t) = a(t)ro, resp. L(t) = a(t) arcsinrg, resp. L(t) = «(t)arsinh ry. PO i

Svetlo sa §iri lokdlne rychlostou c¢. Vzhladom na expandujucu sturad-
nicu 7 napr. v plochom priestore je vSak rychlost svetla ¢, = % = ﬁ
Kedze ¢, nezavisi od miesta (v homogénnom priestore zavisi len od ¢asu), susedné maxima sa Siria
rovnakou rychlostou vSade. Ich fyzikalna (t.j. meratelnd) vzdialenost, ur¢ujica vlnova dlzku X, sa
vSak meni v Case ako A(t) = a(t)A\o (Ao je vzdialenost nemeniaca sa v FLRW stradniciach). V
expandujicom Vesmire teda vlnové dlzky $iriacich sa elektromagnetickych vin postupne narastaji

(ich frekvencie sa znizuji) - hovorime o kozmologickom ¢ervenom posuve.

Pozorovany Vesmir je vyplneny homogénnym tepelnym ziarenim - kozmickym mikrovlnnym po-

“Pre gulovt (2-)plochu v 3D plati 22 +y? + 22 = x2, kde x = x cosf, y = xsinf cosp, z = xsinfsin . Pre gulovii

3-plochu o polomere Q v 4D plati 22 + 32 + 22 + w? = Q?, kde x = Qcosf, y = Qsinfcosy, z = Qsinfsinpcosy,
w = sin @ sin psin .
Pre (2-)plochu rotacného hyperboloidu v 3D plati 22 + y? — ¢> = Q2, kde x = Qsinhycosf, y = Qsinhysin6,
q = Qcoshy. Rozgirenim na 3-plochu z? + 3% + 22 — ¢> = Q2 sa y zmeni na y = Qsinh ysinfcosy a pribudne
z = Qsinh x sin 0sin .

“2Faktor Q2 moZeme bez jmy na vieobecnosti zahrnit do o?(t).

43Friedmann, Lemaitre, Robertson, Walker
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zadim (CMB),* ktorého teplota v dosledku kozmologického ¢erveného posuvu pocas expanzie pries-
toru klesla az na sucasnych asi 2,7K. Pri jeho merani sa vSak prejavuje slaba smerovd zavislost -
Cerveny /modry dopplerovsky posuv jeho spektra v navzajom opaénych smeroch, sved¢iaci o pohybe
detektorov (druzica, Zem, Galaxia,...) vo¢i CMB. To nam umoziiuje pomocou CMB definovat (v
kazdom bode priestoru) univerzalnu vesmirnu pokojovii vztazna ststavu - taki, v ktorej ma
CMB nulovy dopplerovsky posuv.4? Casov4 stradnica FLRW metriky odpoveda prave tejto ststave.

V.3.2 Friedmannove rovnice.

Predpokladajme model homogénneho izotropného Vesmiru ako idedlnej tekutiny s konstantnou stred-
nou hodnotou hustoty hmoty p a tlaku P, s tenzorom energie-hybnosti 7, z kap. V.2.1, a FLRW
metrikou z kap. V.3.1. Dosadenim tychto predpokladov do ER (a po vypo¢itani vietkych nenulovych
prvkov tenzoru krivosti) dostavame tzv. Friedmannove rovnice (FR) pre rychlost a zrychlenie
expanzie*6

a*(t) + ke 8mryp+ Ac? alt)  Amky 3P N Ac?
a2(t) 3 a(t) 3 VT 3

Casovy vyvoj expanzie Vesmiru teda zavisi od Stvorice parametrov p, P, k, A. Analyzujme jednotlivé
scenare:

Zac¢nime statickym Vesmirom.*” Podmienky & = & = 0, (a konstantné) veda na
47TI€N 3P k 471'/4,]\[ P
A= c? (p+?) a2 (p-l—g)

V pripade ,prachovej* latkovej hmoty (kap. V.2.1) navyse P = 0, a teda A = 4’;’§Np = % > 0 (kedze
p > 0). To ale odpoveda sférickému Vesmiru s k = +1, a teda A = %

Uvazujme teraz zdanlivo kuriézny pripad prdzdneho Vesmiru,*® p, P = 0, navy$e pre jednoduchost
plochého,* k = 0. FR v tomto pripade vedt na dif. rovnicu

) Ac? Ac?
g \/ ?C = H (Hubbleov parameter) s rieSenim  a(t) = a(0) exp { ?c t}
o

Ide o expandujici vesmir. Temna energia A je teda generdtorom expanzie, a to aj pri p # 0. Navyse,
pri p # 0 expanzia priestoru vedie k neustalemu poklesu p, v limite p — 0 teda ide o realisticky
model.

Uvazujme napokon pripad A = 0. Teraz mozeme 1.FR prepisat do tvaru

8TRNP B kc?

3H?2  a2H?

z ktorého je zrejmé, ze k bude kladné len ak p > 8?;an12\7 = prrit- Hustota hmoty /energie teda rozhoduje

o krivosti Vesmiru: Pre p > pg.w bude Vesmir sféricky (uzavrety do seba), a pre p < pgq bude
hyperbolicky (otvoreny). Hrani¢na hodnota p = pg.+ odpoveda plochému Vesmiru, k = 0.

Hangl. Cosmic Microwave Background

45Mozeme ju interpretovat ako ststavu s nulovou priemernou rychlostou hmoty rozlozenej na kozmickych gkalach.

46Prvii z rovnic dostaneme z 00-komponenty ER a druht z jej stopy.

4TTento model je v rozpore s pozorovaniami. Ide o povodny Einsteinov model Vesmiru. Na zabezpecenie jeho
statickosti Einstein ad hoc zaviedol kozmologicki kongtantu A.

481de o tzv. de Sitterov model.

49Nenulova krivost k = +1 neovplyvni kvalitativne prezentované zavery. Navyse, astronomické pozorovania hovoria
v prospech plochého Vesmiru.
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Krivost Vesmiru zas rozhoduje o osude expanzie: Z 2.FR totiz v A=0
pripade A = 0 vyplyva, Ze & < 0 - expanzia Vesmiru sa spomaluje.
Ako ukaZeme neskor, sicin pa? — 0 pre o — 00, a teda podla 1.FR a(t) H

2

— —kc?

a—r00 pritomnost

1 t

Q

Pre hyperbolicky Vesmir (k = —1) to znamena & — ¢, pre plochy
Vesmir (k = 0) &, & — 0 (ustalenie velkosti Vesmiru), a pre uzavrety sféricky Vesmir (k = +1)
preklopenie do zmrstovania.®®

Viditelna“ hmota/energia (latka a Ziarenie) teda, podla o¢akavania, svojim gravitaénym tucinkom
brzdi expanziu, a pri jej dostato¢nej hustote spdsobuje zmrstovanie a kladné zakrivenie Vesmiru.
Naopak, kladnd temné energia véikua (kozmologicka konstanta A > 0) vyvolava jeho expanziu. Ak
A # 0, hrani¢na podmienka medzi nepretrzitou expanziou a prechodom ku zmrstovaniu je

Ac®>  3H?
87'('/4,]\[ N 87T/€N

Pre A > 0 len dostato¢na hustota hmoty/energie dokaze zvratit expanziu. FR vSak vo vSeobecnosti
priptistaji aj zdporni energiu vikua, A < 0.>! V takomto pripade expanzia nevyhnutne prejde do
zmrs$tovania.

Podla stacasnych astronomickych pozorovani sa Vesmir javi ako tak- a(t)

. . . P s . « v, . pritomnost’
mer plochy, & = 0, a jeho expanzia sa zrgchluje, ¢o svedéi o (malej)
kladnej hodnote A. Pociato¢né spomalovanie expanzie v minulosti v A>0

dosledku dostato¢nej hustoty hmoty /energie sa jej sustavnym zriedo-
vanim zmenilo na zrychlovanie vdaka dominantnému vplyvu A.

V.3.3 Zachovanie energie v nestacionarnom Vesmire.

Nepretrzita expanzia Vesmiru prirodzenie vedie na zmeny hustoty hmoty/energie, avsak odlisne pre
jednotlivé jej formy. Podla 1. vety termodynamickej pre objem Vesmiru V =~ o ako uzavretého
systému v termodynamickej rovnovahe (bez moZnosti vymeny tepla a latky) plati®?

) P
A0,(pV) = 0O,F = —Po,V & Po(pa’) = —Poa’® — p= —32 (p + —)

Pre & > 0 hustota energie klesd s ¢asom. Dosadenim modelovej stavovej rovnice Vesmiru P = wpc?
(kap. V.2.1) dostavame dif. rovnicu

= _32<1 + w) s rieSenim  p(a) = Ca 30+
oY

D I

(C zahriuje vSetky konstanty pri integracii.) Parameter w pritom zavisi od konkrétnej formy energie
(kap. V.2.1):

50Tieto scenare neodpovedaji si¢asnym pozorovaniam.

51Podla jednej z neoverenych predstav je hodnota A dand suctom prispevkov i%‘" od vsetkych bozoéno-
vych /fermiénovych modov (kap. 1.3.8, II1.2.8).

2Tento ¢asovy vyvoj hustoty energie sa da odvodit aj z FR (kap. V.3.2) ¢ lokdlneho zakona zachovania energie
(kap. V.2.1).
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3

Pre ldtkovi hmotu (,prach®) w = 0, a teda p(a) ~ a™?, ¢o prirodzene odpoveda expanzii priestoru v

3 rozmeroch.

Pre Ziarenie w = %, a teda p(a) ~ a~*. St¢asne s expanziou priestoru dochédza ku kozmologickému
Cervenému posuvu Ziarenia (kap. V.3.1) - narastaniu vlnovych dlzok A — o\, a teda E = hf — Ba™t
- odtial dodatoc¢ny ,rozmer.

Pre temni energiu w = —1, a teda p = konst. Hustota temnej energie sa expanziou Vesmiru nemeni!

Tieto zavery maju zésadny dopad na nase chépania zakona zachovania energie:

Pri expanzii Vesmiru sa globdlne zachovdva len energia latky!
Celkovd energia Ziarenia sa v expandujuicom Vesmire straca, kym celkovd temnd energia pribida.

Podl'a Noetherovej teorémy (kap. [.1.2) sa energia Vesmiru globdlne zachovava ak je Vesmir trans-
la¢ne symetricky v case. Expandujuci vesmir vSeobecnej relativity takym vSak nie je. Lokdlny zakon
zachovania D, 7" = 0 sice ostava v platnosti (ako lokélne rovnice kontinuity), nemozno ho viak
roz8irit na integralny zakon.

Univerzalna vesmirna pokojovéa stustava (kap. V.3.1) je stborom stradni- e, o,
covych sustav v kazdom bode priestoru (obr.). Porovnéavanie energii medzi

jednotlivymi bodmi/stistavami na konecngch vzdialenostiach v zakrivenom e, . ;
(Caso)priestore nie je mozné - potrebujeme totiz paralelng posuv (vektorov, s I
kap. V.1.4), a ten pre rozne zvolené drahy vedie k roznym vysledkom. e
RN

Doélezité zavery:
e Na kozmickych skalach je Vesmir homogénny a izotropny. Jeho rozpinanie pozorujeme prostred-
nictvom kozmologického ¢erveného posuvu.

° éasovy vyvoj Vesmiru opisuju FR. Viditelnad hmota/energia vo Vesmire spomaluje expanziu, temnéa
hmota (kladna hodnota kozmologickej konstanty) ju naopak zrychluje.

e Hustota temnej energie sa expanziou Vesmiru nemeni - energia Vesmiru sa globalne nezachovava
(zachovéva sa len lokdlne).

V.4 Fyzika pri horizonte udalosti.

V.4.1 Rovnomerne zrychl'ujaca stustava.

Princip ekvivalencie (kap. V.1.1) lokdlne zrovnopraviuje staciondrneho pozorovatela v gravitaéne
zakrivenom Casopriestore s konstantne zrijchlujicim pozorovatelom (so zrychlenim @ = g) v plochom
Minkowského ¢asopriestore. Aké st v8ak transformacné vztahy medzi pozorovatelom v laboratorne;j
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ststave S (v pokoji“) a zrychlujucim pozorovatelom P s
okamzitou rychlostou u(t) a zrychlenim a = % (vzhla-

dom na S)? KedZe standardné lorentzovské transformacné +
vztahy platia len medzi inercidlnymi sistavami, potrebu-
jeme ,pomocni” inercidlnu sistavu S’, ktord sa v danom P
okamihu t pohybuje (v smere pohybu P) konstantnou rych- *—
lostou v = wu(t) - (len a len) pre tento dany okamih je to T v/
okamZita pokojova sistava pre P, a v nej v/(t) = 0. (Kaz- E—
dému ¢asu t odpoveda ind sustava S’.) V takejto ststave S’ _—
definujeme pre P konstantné vlastné zrychlenie®® o' = ij—f (derivujeme podla vlastného casu 7 =t').
Teraz modzeme pouzit lorentzovské transformacné vztahy medzi S a S’ a vztahy pre relativistické

U—v

skladanie rychlosti, v’ = {“=&, z ktorych pre pripad u = v vyplynie

2

,_du Pdu _ pdudt g

I T

a

Pre konstantné (z pohladu P) wvlastné zrychlenie o' > 0 rychlosti v (momentéalne odpovedajicich
inercidlnych sustav S’) pre laboratérneho pozorovatela S narastaji s ¢asom, a teda zrychlenie P musi

klesat (a — 0 pre v — c). Integrovanim dostavame pre rychlost a trajektoriu (vzhladom na S)>!
a't v c? a?t?
V(t) = ——— (resp. t(v) = 7—/) r(t) = —\/1+ —
1 + a’22t2 a a cC

kde pre jednoduchost pri ¢ = 0 kladieme u(0) = 0, z(0) = & = z (a’ v tlohe volitelného parametra)

a
Dostéavame spravne limity v(t) — at, z(t) — zo + %, resp. v(t) — ¢, x(t) — ct. Tato trajektoriu
vieme parametrizovat vlastnym ¢asom 7 pozorovatela P (dt = ~dr)

a't x a'T
x(T) = x cosh — t(r) = Zsinh —
c c c
Svetodiara zrychlujiceho pozorovatela P v Minkowského ¢aso-
priestore sustavy S sa da prepisat do tvaru

(@(0))? — (ct)? =23 = (—)

a/

Z pohladu S sa teda pozorovatel P pohybuje po hyperbole pri-
slichajucej danému zy (¢ize o’): Prichadza z * — oo spoma-
[ujac z v = —ct na nulu v ¢t = 0, a nasledne zrychlene sme-
ruje naspat do x = oo. Prislu$nou volbou @’ > 0 je pre P
dostupné Tubovolné x > c|t|. Pozorovatel P meria vzdiale-
nosti a ¢as vlastnyms siradnicami £ a 7, pricom jeho poloha je
¢ = 0. Kazda z hyperbol na obr. odpovedé z pohladu P urcitej konstantnej vzdialenosti £, a poloha
na tejto hyperbole urcuje 7 (7 = 0 pre t = 0). éiary stcasnosti pre dané 7 s priamky prechadzajuce
bodom z = 0,t = 0 (pociatkom v S).

53Pozorovatel P, sediaci v smere zrychlenia, vnima/meria toto zrychlenie ako konstantni zotrvaént (pseudo)silu,
ktord realne pocituje od operadla stolicky. Jeho vlastnd okamzité rychlost (merana v S’) je pritom stéle nulovd.
54Sgradnice ¥, z sa pochopitelne netransformuja.
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Rozdielnost opisov v ststavach S a P navadza k tzv.

Bellovmu ,rakerovému“ paradoxu: Predpokla- e A/ 7l ) /
dajme pozorovatela P v prednej casti rovnomerne / r h ,’
zrychlujicej rakety (hyperbola £ = 0) a lubovolny /L o g /.{,.4/
bod A v jej zadnej ¢asti (hyperbola £ < 0, proti smeru _/}{’/-": 3 /'/f/
zrychlenia). Z pohTadu P je v kazdom okamihu 7 vzdia- _4;:'17‘/' /// /
lenost |PA|= £ konstantna (obr. a) a okamzité rychlosti al X ' .b x

va(1) = vp(7) (obr. b, doty¢nice k hyperbolam).

V sustave S je v8ak pre rozne casy t vzdialenost |PA| rdzna (obr. ¢), a va(t) # vp(t) (obr. d) - raketa
sa deformuje (zmrstuje). Rigidnost rakety z pohladu S vyzaduje konstantné zrijchlenie v tejto sistave
(obr. e), ¢o v8ak pre P znamend roztrhnutie rakety (obr. f).

4
///

ct

Riesenim tohto paradoxu je (prirodzene) rigidnost rakety pre P (obr. a) a jej postupna relativisticka
kontrakcia z pohladu S (obr. ¢). Z pohladu laboratornej sustavy to ale znamena, ze

rozne casti rigidného telesa maju rozne zrijchlenie.

V.4.2 Horizont udalosti, rychlost svetla a ¢ierne diery.

Zo vztahov z predchadzajicej kapitoly vieme odvodif transformacné vztahy medzi vlastngmi sarad-
nicami (7,&) v zrychlujucej sustave P (S’) a laboratornymi suradnicami (¢,z) v S v tvare

/ !/
sinh 27 z(1, &) = (o + &) cosh -
c c

f(r.6) = 28

t
T(t,x)zﬂlnm+c E(t,z) = —x0 + Va2 — 22

2c x—ct
Z tychto vztahov vidime, Ze pre pozorovatela P existuju redlne hodnoty vlastnych suradnic v interva-
loch —00 < 7 <00 a —xy < & < oo. Znamena to, Ze v opacnom smere voCi zrychleniu (znamienko
-) pozorovatel P neméze zmerat® vzdialenosti véicsie nez xo! Zrychlujici pozorovatel P vnima ho-
rizont udalosti dany ¢iarami®®

53V relativite akt merania vzdialenosti predpoklada rozmiestnenie a synchronizaciu hodin. Synchronizicia viak
vyzaduje obojstranny prenos signélov.

%6Pre jednoduchost tu uvazujeme 2D Casopriestor ¢t — x. V 4D asopriestore horizonty predstavuji 3-plochy (plochy
v priestore).
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e=-5 (a2 = )

pre ktoré 7 — £o0o0. Moze prijat signal vyslany z R (obr.), vnima ho v8ak ako
vyslany z horizontu v 7 — —oo. Podobne P méze vyslat signal do Q (nemoze viak
prijat signal z Q). Pozorovatel S vidi ako sa P neustale vzdaluje (s klesajucim
zrychlenim). Pozorovatel P tiez spociatku Vizdi ako sa S vzdaluje, ale napokon

2 14 3 3 _ C .
postupne ,zamiza“ na vzdialenosti —ro = —%. SR
A . . R .-).\ D
Kazdy akcelerupici objekt vytvdra horizont udalosti v smere opacnom %
v . . N R
voci zrijchleniu. o

Znamena to, ze rozmer kazdého (rovnomerne) zrychl'ujiceho kompaktného objektu je v smere pohybu

limitovany®” jeho vlastnym zrychlenim a’,%®

(9

lmaa: = -

Invariantnost ¢asopriestorového intervalu vedie na

(ds)? = (cdt)® — (dv)* = ... = (1 + é) (cdT)? — (d€)?

Zo

Pre svetelny la¢ plati (pre v8etkych pozorovatelov) ds = 0. V laboratornej sistave S a pre nasho
zrychlujuceho pozorovatela P je rychlost svetla

dz d¢ '3
7 c ale ir ( —1—%) c

Znamena to, ze

pre pozorovatelu v neinercidlnej sistave je rijchlost svetla (vo vikuu) rovnd c len lokdlne,

t.j. pre £ — 0, vo vSeobecnosti je lubovolnd (v zavislosti od smeru a velkosti @’ a &) Z konecnej
vzdialenosti £ = —xg na horizonte obdrzi P signdl v 7 — oo.

V zmysle principu ekvivalencie je zrgchleny pozorovatel (v plochom Gasopriestore) rovnocenny sta-
ciondrnemu pozorovatelovi v gravita¢nom poli, @’ = —g. Vsetky doterajSie zavery tejto Casti teda
platia aj v gravitacnom poli: Prepisom faktoru pri ¢asovej zlozke metriky do newtonovského tvaru

(1+£)- () (-2)- 3

dostavame vyrazy z kap. V.1.1, resp. V.1.2. Z pohladu stacionédrneho pozorovatela ,vznaSajiceho
sa“ nad povrchom hmotného telesa (napr. stojaceho na podlahe rozhTadne) vytvara gravitacné
pole/zrychlenie v hibke pod jeho nohami horizont udalosti. V okoli (homogénnej nerotujticej) sféric-
kej hmotnosti M je adekvatna tzv. Schwarzschildova metrika

1
ds* = (1 — &> Adt* — (1 - &> dr? — r*d6? — r*sin® §dy? Rg = 2H1\;M

r T

C

5TPre bezné zrychlenia je to giganticka velkost. V tuhych latkach sa vsak tazna sila prenasa pozdiz telesa rychlostou
zvuku ¢, < ¢, teda na dlzke [ za cas t; ~ ci Ak sa teleso nemd roztrhnut, nesmie jeho predné cast akcelerovat

2 - 2
rychlejsie nez a,,,, = f—é ~ . Odtial dlzkové obmedzenie pri danom zrychleni, [ < .
1

58 Ak by sme namiesto tuhého telesa uvazovali zrychl'ujici vinovy balik s rozptylom frekvencii A f o rozmere Al = Aif

~

a s rozptylom zrychleni Aa = <, potom vztah AlAa < c? je ekvivalentny fourierovskému principu neuréitosti
AfAt > 1.
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Faktor (1 — %) je mierou korekcie vzhladom na metriku plochého ¢asopriestoru pre r > Rg, a tzv.
Schwarzschildov polomer R, definuje prave gulovi plochu horizontu udalosti (pre r — Rg Casova
metrika zanikd a radidlna ¢ast metriky diverguje).’® Pre bezné telesd vo Vesmire o hmotnostiach
M a polomeroch R plati®® Rg < R. Teles4, ktorych celd hmotnost je stladena do gule o polomere

R < Rg st €ierne diery (korekcie metriky st zdporné®'). Radidlna rychlost svetla ¥ — 0 na

dt
horizonte, ziadne svetlo (signal/hmota/energia) teda z oblasti » < Rg neprenikne k vonkajsiemu
pozorovatel ovi.®? Svetlo prichddzajice z oblasti 7 > Rg sa postiva do ¢ervenej ¢asti spektra - hovorime

o gravitaénom ¢ervenom posuve.%

Vonkajsi pozorovatel P nad horizontom teda sleduje, ako sa volny pad pozorovatela Q do Ciernej
diery postupne spomaluje, az kym sa jeho obraz (asymptoticky) nezastavi na horizonte. Sti¢asne sa
v8ak (z pohl'adu P) spomaluje ¢as v Q, svetlo vysielané z Q) sa sfarbuje do ¢ervena a mizne z viditelnej
Casti spektra. Naproti tomu, pozorovatel Q) preletom cez horizont nepozoruje ni¢ neobvyklé, az kym
ho slapové sily nezdeformuji.%* Pozorovatel P sa mu straca z dohlTadu ako v beZnom Zivote (Ziaden
horizont), dopplerovsky ¢erveny posuv vsak registruje.

V.4.3 Unruhov jav a Hawkingovo Ziarenie.

V blizkosti horizontu ¢iernych dier si uz nevystacime s klasickou relativistickou fyzikou, ale musime
uvazovat aj relativistické kvantové javy, ako ich opisuje kvantova teodria Pol’a. Zakladom tejto teorie
je fourierovskd dekompozicia poli do vlnovych modov fi(t,7) = e @~k 3 kdnonické kvantovanie
poli, v podobe (pre jednoduchost uvazujme skaldrne pole, kap. I11.1.2)

A(t, ) ~ / [ak Folt, ) + al fr(t,7)| K
teda ako linearna superpozicia anihila¢nych a krea¢nych operatorov vinovych modov fi(t,7), fi(t, 7).
Hoci samotné (skalarne) pole je invariantné voci zmene pozorovatela, zrgchlujici pozorovatel s vlast-
nymi siradnicami (7, ) rozklada toto pole do bazy ingch modov gw (7,€), g (7, €) a im odpovedajui-
cich koeficientov /operatorov by, bL,. Kazdy z bazovych médov jednej bazy je pritom vyjadritelny ako
linedrna kombinacia bazovych vin druhej bazy, a medzi operatormi oboch baz existuju transformacné
vztahy6?
bk./ = /[Oékk/&k + Bkk/d};}di;k CALk — /[Oé;::k’bk‘/ i Bkk/b]z/]dgk,

Operatory poc¢tu/hustoty Castic pre oboch pozorovatelov si &de, resp. bl by Predpokladajme, 7e
pozorovatel A v inercidlnej siistave detektorom ¢astic zmeria stav bez ¢astic - vikuum |0,4). Znamena
to, Ze pre stredng pocet Castic plati (04]ala,|04) = 0. Ak vSak tento isty stav [0,4) meria zrgchlujici

5 Paradoxne, k spravnemu odhadu polomeru &iernej diery dospejeme aj pomocou ,nepresnych newtonovskych
argumentov: Gravitacna potencidlna energia telesa o hmotnosti m na povrchu objektu o polomere R a hmotnosti M
je B, = —k N%. Na tnik z povrchu objektu potrebuje prinajmensom rovnaka kineticki energiu, ¢o dava dnikova

rychlost vy,in = 1/%. Maximalna mozné rychlost je ¢, ak teda R < QHCNQM

, objekt je ¢iernou dierou.

60Napr. Rg < 1em pre Zem a Rg = 3km pre Slnko. Pre biliardovii gulu Rg =~ 10~ 'm.

61D4 sa to interpretovat tak, Ze ¢as a priestor si ,vymieiaji tlohy* - oblasti » < Rg s mimo chapania stéasnej
fyziky.

62Majme na pamiiti, Ze vonkaj§i pozorovatel ,vznagajtci sa“ nad horizontom udalosti je neinercidlny - pre neho
rychlost svetla (v predchadzajucom texte ju oznatujeme %) v okoli horizontu nie je kongtantna.

63V zmysle principu ekvivalencie mézeme gravitacéngj cerveny posuv interpretovat aj ako dopplerovsksj posuv.

64Pre extrémne masivne Cierne diery je Rs velmi velké, a zbiehavost geodetik v oblasti Rg je eSte zanedbatelnA.
Slapové sily sa teda prejavia az pre r < Rg.

65tzv. Bogolubovove transformdcie

146



pozorovatel B, jeho stredny pocet Castic je
(0a]bL b [04) = ... = / | B [2d®k >0 (vo vieobecnosti)

Nenulovost tohto vysledku znamené, ze
pocet castic nie je relativistickym invariantom - castica®® je relativisticky jav.

,Generovanie“ ¢astic zrychlujicim pozorovatelom sa nazyva Unruhov jav®’. Kvalitativne vysvet-
lenie je nasledovné: V kvantovej teorii poli vdkuum je vyplnené fluktuujicimi polami - neustéle
vznikajicimi a zanikajicimi parmi ¢astica-anti¢astica, s dobou zivota At < h/AFE. Pre inercialneho
pozorovatela sa tieto fluktudcie vykompenzuju na nulovy stredni pocet Castic. Dostato¢ne zrych-
Tujaci pozorovatel vSak po dobu medzi vznikom a zanikom c¢astic zmeni svoju okamZiti pokojouvi
sistavu (S, kap. V.4.1), t.j. prislusné pole sa lorentzovsky transformuje, vznik a zanik castic teda
nie st vykompenzované. 8

Dé sa spocitat, ze stredny pocet takto ,generovanych® (nehmotnych skaldrnych) Castic s energiou F

je
1

exp (27rcE) -1

a’'h

(N(E)) =

v ¢om spozname Boseho-Einsteinovo® rozdelenie pri teplote

_dh
v 2mckp

- tzv. Unruhovej teplote. Zrychlujici pozorovatel sa teda nachédza akoby v tepelnom kipeli o
teplote Ty ~ a’. Energia ¢astic kiipela pochadza zo zdroja zrychlenia.™

Komplementarny efekt nastava v gravitacnom poli na horizonte ¢iernych dier: Pri fluktuéciach virtu-
alnych parov castica-anti¢astica moze nastat situacia, ze jedna z ¢astic sa ocitne pod horizontom (t.j.
spadne do ¢iernej diery) a druha nad horizontom s nenulovou pravdepodobnostou uniknit a stat sa
redlnou casticou detekovatelnou pozorovatelom (nad horizontom). Voéi nej je (z pohladu pozorova-
tela) pohltena (virtualna) ¢astica anticasticou s formélne zdpornou energiou, zniZujicou hmotnost
¢iernej diery (energia sa zachovava). Tento jav nazyvame Hawkingovo Ziarenie, a ¢ierna diera sa
prostrednictvom neho ,,vyparuje®.

V zmysle principu ekvivalencie je stacionarny pozorovatel nad horizontom zrychlujici so zrychlenim
-/

d’ = —g (inak by sa neudrzal nad horizontom), a Castice Ziarenia detekuje v dosledku Unruhovho
javu. Ak teda vo vyraze pre Ty zamenime zrychlenia’

KM ct
R%Z  4knM

a’ — g(Rs) =

dostavame teplotu Hawkingovho ziarenia - Hawkingovu teplotu

hed he

T = =
" 87T]€B/1NM 47T]€BR5

66 ¢astica, ako ju chape kvantova tedria poli

67tiez Fullingov-Daviesov-Unruhov jav

68 Dekompozicia vakua na zlozky s kladnymi a zdpornymi frekvenciami - Castice a anticastice - je odlisnd pre po-
zorovatelov s odlisnym zrychlenim. Rovnako by sme mohli  pripravit“ vikuum |0p) v zrychlujtcej sustave B, a v
inercialnej sistave A by sme pozorovali Castice. Takto pripraveny stav pre A nie je stavom s najnizSou energiou.

89V pripade Diracovho pola (bispinorov) vypodcet povedie na Fermiho-Diracovo rozdelenie.

"OVyjadrené v ¢&islach, ide o extrémne neefektivny sposob generovania astic.

"I Pouzity newtonovsky vztah pre g nemé v prvom priblizeni vplyv na vysledok.
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Hawkingovo Ziarenie mé charakter ziarenia absoliitne ¢ierneho telesa. Kedze Ty ~ M™!, masivnejsie
¢ierne diery sa vyparuju pomalSie. NavySe, gravitaénym pohltenim okolitej hmoty a ziarenia mézu
svoju hmotnost zvySovat.” So stratou hmotnosti sa rychlost vyparovania prudko vysuje.

Hawkingovu teplotu teda priradujeme horizontu ¢iernej diery - sférickej ploche o polomere Rg a
obsahu A = 47 R%. Z termodynamickej vety dS = dFE/T vieme urdit entropiu ¢iernej diery, ak
polozime T = Ty a E = Mc?. Preintegrovanim dostavame
471']{33/1NM2 ]CBC3
S=.= =
he 4hk N

Entropia ¢iernej diery je teda dané vglucne plochou horizontu.

A

V.4.4 Horizont a Planckova skala.

Einsteinov-Hilbertov uéinok a v8etky tvary ER (kap. V.2.2), ako aj vyrazy pre energiu gravitacnej
C4

viny (kap. V.2.6) obsahuji prefaktor <, ktory ma fyzikilny rozmer sily/¢asovej zmeny hybnosti, a

N
jeho fyzikdlny vyznam pochopime z nasledovnej tivahy: Cierne diery predstavuja najhustejsie objekty
vo Vesmire, a ich ,objem* (~ R¥) je dany vylu¢ne hmotnostou M v nich ststredenou. Existuje teda
hranicnd hustota hmoty, a tym aj hranicnd sila F,,q., ktord dokdze hmotu stlacit. Této sila je dana
pricou, ¢ize transférom energie £ = Mc? do objemu ~ R% cez plochu horizontu ~ R% na vzdialenost
~ Rs maximéalnou rychlostou c. Z rovnice kontinuity vyplynie préave
E ct c

Fmaa: == (8tp)max ~ R_S ~ E resp. (atE)max ~ a

Tak ako $pecidlna tedria relativity je vybudovana na (experimentalne overenom) fakte konecénej a
invariantnej mazimdlnej rychlosti Sirenia hmoty-energie, v,,0. = ¢, pri formulovani™ vieobecnej teorie
relativity mozeme vychadzat z postulatu o

konecnom a invariantnom mazimdlnom toku hybnosti/energie.”™

Plogna hustota hrani¢nej energie pretekajticej elementom plochy horizontu dA je (dand pomerom
celkovej energie ku celkovej ploche)
OF ARg 1 ct
mazx ~ S — - 5Emagc ~
0A Ky Ry ks
D4 sa ukazat, Ze pre vSeobecni geometriu horizontu aj suradnicovy systém odpoveda Tava strana
poslednej rovnosti plo$nému integralu tenzoru energie-hybnosti 7),,,, a prava strana rovnakému integ-
ralu Ricciho tenzoru R, (vyjadrujiceho krivost horizontu™), ¢o nas privadza (s uvazenim zakona

0A

zachovania energie, kap. V.2.2) k ER, s faktorom timernosti ~ %, vyjadrujicim ,elasticitu® c¢aso-

priestoru.”®

"2 Pre ilustraciu, ¢ierna diera hmotnosti Slnka ma Ty ~ 10~8K, naproti tomu pohlcované reliktné Ziarenie mé 2,7 K
(o by odpovedalo ¢iernej diere hmotnosti Mesiaca).

"3Prezentujeme tu alternativnu cestu k ER.

"Tieto extremélne hodnoty sa realizuji na horizontoch udalosti, na rozdiel od priamych merani maximéalnej rych-
losti teda priame merania uvedenych limitov neexistuju (resp. su nedostupné, % ~ 10*®N). Su v8ak konzistentné s
vystavbou teodrie vychddzajicou z alternativnych principov, a zZiadne dostupné experimenty tymto tvrdeniam neproti-
reCia. Pripadné pridanie ¢iselného faktoru nema hlbsi fyzikilny vyznam, zabezpecuje len spravnu newtonovsku limitu.
Horny limit pre vytok energie/hmoty mozeme myslienkovo manifestovat na priklade reaktivneho pohonu, ked limitné
mnoZstvo emitovanych spalin gravitaénym posobenim ohrani¢i dalsi narast rychlosti.

">Horizont ¢iernej diery je plochou s maximalnou moznou krivostou.

"Dosledkom existencie hranicnej deformovatelnosti/krivosti ¢asopriestoru je neexistencia bodovijich hmotnych ob-
jektov. Pre Newtonov gravitaény zakon musi platif obmedzenie F' = ”Nl# < Fiuaz, a odtial [ > Rg. Princip, podla
ktorého musi byt kazd4 ¢asopriestorova singularita pred vonkajsim pozorovatelom ,zahalen&“ oblastou pod horizontom
udalosti, nazyvame kozmickou cenztirou.
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N s s 2 4 . . s v ’ LI T 3
Hrani¢n4 sila definovana ako Fp = ,f—N - Planckova sila - je sti¢astou tzv. Planckovej §kaly, tvorenej

wprirodzenymi jednotkami, zostavenymi vylu¢ne z fundamentalnych konstant c, h, ky, kg. Jej zaklad
tvori Planckova dlzka a Planckov ¢as

hk i l hr _
lp = c_3N (= 107%°m) tpzz”: C—5N (= 10~*%)

Vzdialenosti Al < [p a ¢asové tseky At < tp st principidlne nemeratelné. Musi totiz platit”™”
Al > Rg ~ =5 a sucasne Al > Xo = mi'c, a pre presnost hodin o rozmere [ zase At > é Pre
Planckovu silu potom dostavame
h
Fp=—  (=10“N)
lptp

Dalsimi prirodzenymi jednotkami si Planckova hmotnost (dana podmienkou X, > Ip) a Planc-
kova hustota

h 5
T (= 10%kg) pp =k = °

— = ~ 10%kegm 3
KN 3 hk3 ( g )

mp =

Pre ¢iernu dieru o hmotnosti mp plati Rg ~ lp, a pp je hrani¢na hustota. Obdobnym sposobom
definujeme Planckovu teplotu

ktorej odpoved4 tepelné Ziarenie o vlnovej dlzke ~ [p.

Tieto jednotky definuji hranice sicasného fyzikdlneho chapania sveta.” Posunutie tychto hranic
predpoklada dobudovanie kvantovej gravitacie - kvantovej tedrie ¢asopriestoru.

COOOO
Doélezité zavery:

e Miesta s rovnakym zrychlenim z pohladu svojej pokojovej sustavy maji rézne zrychlenia v la-
boratornej sustave. Pozorovatel v zrychlujucej sustave vnima horizont udalosti - udalosti za tymto
horizontom st preitho nedostupné.

e Horizont udalosti existuje aj pre stacionarneho pozorovatela v gravitaénom poli, pozorovatelny je
vSak len v okoli ¢iernych dier. Cas na horizonte ¢iernej diery sa zastavuje.

e Stav vakua pre laboratérneho pozorovatela je tepelnym kapelom Castic pre zrychlujiceho pozoro-
vatela, s teplotou amernou jeho zrychleniu (Unruhov jav). Stacionarny pozorovatel nad horizontom
(ekvivalentny zrychlujicemu pozorovatelovi) pozoruje tepelné 7Ziarenie - Hawkingovo ziarenie, pro-
strednictvom ktorého sa ¢ierna diera zbavuje hmoty.

e Ciernej diere priradujeme entropiu, umernt ploche jej horizontu.

""Meradlo nesmie byt Gernou dierou, a pri jeho dizke Al < Xco generujeme z vikua nové meradlo. Pre rozmer
meradla musi platit mc > Ap > %.

"Planckova kéila predstavuje prirodzent energetickt hranicu platnosti §tandardného modelu (¢ast IV). Dnes do-
stupné energerickd hranica je v8ak stale o niekolko radov niZ§ia, existuje tu teda este dostato¢ny priestor pre ,novi
fyziku“.
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DODATKY

A Aktivna a pasivna transformacia.

Uvazujme skalarnu funkciu ¢(x). Aktivnou transformaciou T' je napr. posunutie funkcie doprava,

B(x) =+ &'(2) = To(x) = o(T"') T

Pasivnou transformaciou je posunutie suradnicového /
systému dolava, pricom funkcia sa nemend ,

rod=Te  gla) = da!) = ol) = oI —
Premenovanim premennych dostavame v oboch pripadoch transformacny vztah ¢'(y) = ¢(T 'y).
Obe transformacie su teda formdlne ekvivalentné.

Plati to aj v kvantovomechanickom formalizme pre unitdru transformaciu, 7T = T, a stavovi
funkciu ¢(z) = (z|¢),

To(z) = (2|T|¢) = (T"z|¢) = (T~ 'z|¢) = $(T'x)

B Kanonickd hybnost hmotného telesa.

Preskiimajme defini¢ny vztah pre kanonicka hybnost p; = %{f‘m pre niektoré délezité pripady.
J

Pre teleso v poli konzervativnej sily v kartézskych suradniciach ¢; = x; plati

. ma? OK (i _
L = K(i) = V()= 5 — Vi) pj = aéj) = mi;
J

J

Kénonicka hybnost tu splyva s newtonovskou kinematickou hybnostou. Pre pohyb v poldrnych si-
radniciach g; = r, 9 vSak plati

m (7’"2 - 7“2192)
2

Pr = mr
—V(r,9) Py =m0

.,2”:[((7",7",19)—‘/(7’,19) =
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Zlozka kanonickej hybnosti py tu odpoveda momentu hybnosti.

Dolezitym je pripad nekonzervativnej elektromagnetickej Lorentzove]j sily posobiacej na Casticu
nabitti elektrickym nabojom™ g, pohybujiicu sa v poli rychlostou 7,

Fy=a(E+5x B); =q (- — 04+ x (V x )

J

S pouzitim rovnosti ¥ x (Vx A) =V(7-A) —(7-V)A a %‘f = % +(7-V)A  (pohybujica sa

Castica ,citi“ zmenu pola ak sa pole meni v case a/alebo pozdlZ drdhy pohybu) dostavame (v; = g;)

_e—qi4)) | d9(p—giA))

F,=q

J

Definujeme zovseobecneni (kianonicki) silu

F. = _aV(QJ7QJ7t) iaV(Qqu]at)
’ dg; dt g

Porovnanim vyrazov dostavame zovseobecnenid potencidlnu energiu (vyhovujucu ELR) a lagrangian
. . : L. .
Vg 45,t) = alelas t) — ¢;45(q;,1)] L(gj:45,1) = 5md; — ale(a;, t) — 4545(¢;,1)]
Kéanonickd hybnost prislichajuca j-temu stupiiu volnosti je potom

_ 6£<Qj7 ij t)

j i, =mq; + qA;(g;, t) resp. P=muv+ qff(ﬁ t)
J

a Newtonova pohybova rovnica ma tvar

d, - R
(Mt +ad)=—aqV(p—7-A4)

Zovseobecneny potencidl v lagrangeovskom formalizme je potencial, ktory ,citi“ pohybujici sa ndboj
(pre pohybujiiceho pozorovatela sa elektromagnetické pole transformuje), a prava strana je teda
akousi konzervativnou silou. Interpretacia kanonickej hybnosti je nasledovné: Predpokladajme ¢asticu
v klude v nulovom poli, teda 7= mt = 0 (A = 0). Pri zapnuti pola z 0 na hodnotu By po dobu At

je % #0= %—f #0 (z0na Ay) = E= —%—f =# 0. Toto elektrické pole udeli nabitej castici hybnost

A’ —
—q—At =~ —qA

q ot q4o
Kanonicka hybnost stustavy Castica-pole je zachovdvajicou sa veli¢inou, tento prirastok kinematickej
hybnosti je kompenzovany opacnou elektromagnetickou hybnostou qA. (Inym prikladom zachovania
kanonickej hybnosti zakrivenie drahy naboja pri vlietnuti do oblasti s magnetickym polom.)

AF = qEAt =

C Vztah Poissonovych zatvoriek a komutatorov.

Pre Poissonove zatvorky dvoch pdrov funkcii na fazovom priestore plati (s vyuzitim Leibnizovho
pravidla)
{F\Fy, GG} = {F, GiGo} Py + I {Fy, GiGa} = ... =

"Kvoli rozliseniu elektrického naboja od zovieobecnenej siradnice v tomto dodatku pouzivame symbol g.
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={F,G1}Go s + Gi{F1, Go} Fy + Fi{F, G1}Go + F1G1{ F3, G2}

Pri alternativnom postupe vSak dostavame
{FlFQ, Gng} = {Fng, Gl}GQ + Gl{Fng, Gg} = ... =

={F, G} [5Gy + Fi{F, G }Gy + G1{F\, Gy} Fo + G1Fi{ F2, G2}

Oba koncové vyrazy st nevyhnutne ekvivalentné, ¢o znamena
(£2Ga — GoIo){ 11, Gi} = (F1G1 — GiF){F2, Ga}

alebo tiez
(F1Gy — G1Fy) B (F5Gy — GaFy)

= L A (redlne ¢islo
{F,G1} {F,, Go} ( )

¢o sa da vSeobecne formulovat ako

{F,G} = <[F,G]

> =

D Tenzor napatia-energie-hybnosti.

Predpokladajme pole s energiou-hybnostou cdp” = c(6p°, 6p®, dp¥, dp?) v objeme dxdydz. Nulty
stipec (v = 0) tenzora T pozostava podla kap. 1.3.4 z objemovych hustét Stvorvektora cdpt, teda
cop*/6xdydz. Z tam uvedeného definiéného vztahu pre tento tenzor, a s uvazenim 0;¢ = qB/i’j, pre
dalsie stipce tenzora plati TH = ;T /c, Eize

spY opY opY opY
Ttt Tta: Tty th §$5(5y152’ 05251152 052(5252 cé?aﬂcﬁéy
Y4 4 4 D
THY Txt TEE TR TEE . dxdydz  cotdydz  cdtdxdz  cdtdxdy
= 7wt v pw pve | =€ SpY spY SpY SpY
2t . . - dxdydz  cotdydz  cdtdxdz  cotdxdy
T T T2 T 5p* 5p* 5p* 5p?

dxdydz  cotdydz  cotdxdz  cotdxdy

Fyzikalny vyznam prvkov tychto stipcov je nasledovny:

Cleny T vyjadruji tok energie 6p° ploskou kolmou na smer j za ¢as ot.

Diagonalne ¢leny T%7 vyjadruja tok zlozky hybnosti dp; ploskou kolmou na smer j za ¢as ot (obr. a).
Mimodiagonalne ¢leny T7% vyjadruju tok zlozky hybnosti dp; ploskou kolmou na smer k za Cas 0t

(obr. b).
Symetrickost tenzora TH je zrejma z jeho definicie.

P
F 4
i
- — —_— - ——
%, il
a b

Nulova divergencia 0-tého riadku tenzora predstavuje zakon zachovania energie

ort or*t 9Tt 9T* oT" =
= T = 9,TV =
cot * Ox * dy * 0z cot v O 0




a nulové divergencie ostatnych riadkov zakony zachovania j-tej zlozky hybnosti

oT’t 9T’ 9T 9T o1t - ,
= T = 0,T =
cot + ox + dy + 0z cot vV 0 0

Naopak, j-ty stlpec tenzora predstavuje tok Stvorvektora p v smere j.

éleny T7* sa dajt prepisat do tvaru Z%c%’ kde 6pj je sila posobiaca v smere j na plosku X kolmu

na smer k. Samotny 3x3 tenzor T7% je teda tenzorom napéitia. Pre j = k ide o napiétie v tlaku,
pre j # k o napétie v $myku.

E Kvantovy harmonicky operator.

Hamiltonian harmonického oscilatora (Castice v parabolickej jame) v operatorovom tvare je

o) 249

A D MW=T

H=-—
ijL 2

Operatory #,p mozeme vyjadrit prostrednictvom novych operatorov a, af

_ /hmw (G- dT)
/ af = .
wh 2h wh

Hamiltonian teda mozeme vyjadrit ako kvadraticki formu operatorov a, aT, a pomocou kanonického
komuta¢ného vztahu [z, p| = ik dostaneme

=
I
t‘

=
+

Q>
=
3>

1 (. 1 1 (. 1
fot L + ats — = B
aa " (H—i— Zfiw) a'a " (H 2%)
a teda R R
[a,a'] =1 [H,a] = —hwa [H,a'] = hwa!

Odtial okrem vztahu
o hw A.‘.A ~ TA 1
H=—"(d"a+aal).. =hw(ada'a+ - 5

vyplyva aj funkcia operdtorov a,a' ako operdtorov zniZovania/zvySovania energie stavu o kvantum

hw.

\Y% kvantovej teorii poli rozkladame volné polia do fourierovského spektra rovinnych vin s koeficien-
tami ag, a k, ktoré prejdi na operatory ak,aﬂ odoberajuce/pridavajice kazdej spektralnej zlozke
energetické kvantum - casticu,

agln)g = Vnln —1); atln)g = Vn+1|n+1); (agl0)z =0)

Kazda spektralna zlozka hamiltonidnu pola je potom tiez kvadratickou formou operatorov d,;;,dj;.

V tom (a len v tom) je éisto formdlna zhoda s kvantovomechanickym harmonickym operatorom.

Je vSak zjavné, ze takato schéma plati len ak stavy s ostrou hodnotou k mézu byt obsadené viacerymi
Casticami, Cize len pre bozony. Pre fermionové stavy je v dosledku Pauliho vylucovacieho principu
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0)z a |1)z. Pre fermionové anihilacné/kreacné operatory by, b% musi preto

platit
it it it)? |
bLOLI0); = BEIL) = 0 Cie (bk> —0 (1)
Tieto poziadavky mozeme vyjadrit vztahmi
bgln)y; = n|l —n); bhin)g = (1 —n)|1 —n); n=01
bLbg|n)p = nln); bpbtin)p = (1 —n)|n); bpbgln)g = bLbLIn); =0

odkial pre samotné operatory dostavame

117 N
bgbg + bEbE =1

S
N
Il
—~
>
E
~—
N
I
(@)

¢o sa da vyjadrif v tvare antikomutatorov®®

{bg, b1} = (2m)%6(k — K) {bg, by} = {bL, 0L} =0

Bk

F Sférické harmonické funkcie.

Uvazujme tzv. harmonické polynémy [-tého stupiia v tvare linearnych (vo veobecnosti komplex-
ngich) kombinacii x'y2*, kde i, j, k st celé nezdporné &isla, al =i+ j + k,

filz,y, z) = Z cijpr'y’ 2 (¢iji - komplexné ¢isla)
i7j7k

ktoré su rieseniami Laplaceovej rovnice A f; = 0. V sférickych stradniciach majua tieto rieSenia tvar

fl<T7 l97 90> = TIYZ(197 90)

kde funkcie Y;(9, ) st sférické harmonické funkcie, spliajtice podmienku r2AY; = —I(1 +1)Y].
Pre dané [ existuje 2/ + 1 nezavislych rieseni Y, (¢, ), kde m je celé ¢islo —l < m < [, a teda
vo vSeobecnosti

1
Yi(0, p) = Z 1 Yim (U, @) (aym - komplexné ¢isla)

m=—1

Lubovolné (rozumna) funkcia definovana na jednotkovej (r = 1) dvojsfére sa potom da zapisat ako

V(0 0) =Y aYi(0,0) =Y Y amYim(D, )

l

Pre ilustraciu, najnizsie sférické harmonické funkcie maji tvar Yoo (9, ¢) ./

Y (9,¢) = —U%sinﬁei‘p Yio(9, ) = \/%00519 Yii (0, ) =4/ 8?; sin Je~ %

80V tejto tvahe sme, tak ako je zvykom v kvantovej mechanike, ad hoc uplatnili Pauliho vylucovaci princip, a dospeli
sme k formulovaniu antikomutaénych vztahov. V kvantovej tedrii poli je logicka argumentécia obrdtend: Antikomutacné
vztahy stvisia s rotaénymi vlastnostami spinorov (kap. I1.3.3, I11.2.8 a Dodatok I), a Pauliho vylu¢ovaci princip je ich
dosledkom. Poziadavka 5;5;|O> 7 = 0 priamo vyplyva z antikomutatora {ZA);.Z;TE} =0.
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Lahko nahliadneme, Ze v kartézskych suradniciach Y3, odpovedaju (ignorujic normovaci koeficient
\/ =) polynoémom 1. stupiia

1 _ 1 _
Y1 (9, 0) = ——=(x +iy) Yio(¥,¢) = 2 Yiog = —=(z — iy)

V2 V2

¢ize podpriestor funkcii na dvojsfére pre [ = 1 mé bazu

Yl — 5 (@ +1iy)
Yy < z
Yh \%(m —iy)
Aplikovanim operatora z-ovej zlozky momentu hybnosti (ako generatora rotacii okolo osi z, A = 1)
L,=—i (xa% - y%) na tieto bazové vektory /funkcie dostavame
L.(z+iy) = (z +iy) L.z=0 L.(x —iy) = —(z — iy)

Bazové funkcie sa teda vlastngmi funkciami (s vlastnymi hodnotami m = 1,0, —1) operatora L.,
ktory v tejto 3-rozmernej sférickej reprezentacii nadobuda tvar diagondlnej matice

0
0

R 1
Lz|l:1 - 0
0 —1

o O O

¢o je odligny tvar od kartézskej reprezentacie (kap. 11.2.2), kde L.z =iy, Lyy = —ix, L,z = 0,
a teda .
—i
0
0

j—/z|xyz -

S = O
o O O

Rovnako pre [ = 2 bude platit

Yoo ~ 2° Yoir ~ (x £iy)z Youo ~ (z £ iy)?

a takto vieme ukézat, ze sférické harmoniky Y}, st vlastnymi funkciami operatora L, pre kaZdé [,
teda v kazdej sférickej (20 + 1)-rozmernej reprezentacii.

Linearnymi kombinaciami komplexne zdruzenych funkcii Y5, = Y;_,, pre |m| > 0 vieme vytvorit
redlne sférické harmoniky®!

Yi—-Yi—=Y, ~z Yu+Yia =Y, ~y Yio—= Y, ~z

Analogicky pre | =2 (m = +2,+1,0) dostavame realne funkcie

2 2 2
de o YT =Y Y

Tl —y Ty

~ Ty Y, ~uxz Ya,. ~yz Yi,~z

Tz P

Tieto redlne funkcie, po doplneni o radialnu zavislost (ako riesenie SCHR), opisuji orbitaly v atome
vodika (obr.)%?

81Postupujeme analogicky ako pri komplexnych /realnych harmonickych et < cos ¢, sin ¢. Pouzivame pritom ob-
vykla symboliku s, p,d, ... pre l =0,1,2,....

82Nejde tu o 3D zobrazenie! Vzdialenost od pociatku stradnic je mierou velkosti hodnoty prislusnej sférickej funkcie
na jednotkovej kruhovej ploche. Kladné a zaporné znamienko je rozliSené farebne.
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+Z +Z
Y x
Py

+Y
Pz
+Y

+Z

p =

+Z

N0

Oya-y2

G Stereograficka projekcia a priestorové zobrazenie spinoru.

V tomto dodatku ukdZzeme spbdsob projekcie medzi redlnym a komplexngm priestorom.

Predpokladajme najprv jednotkovy vektor v = (1,9,0) v sférickych stiradniciach (¢ - uhol voéi osi z,
0 - uhol v rovine zy). Mnozina takychto vektorov vo v8etkych moZnych smerov tvori jednotkovit
gulovu plochu. Kazdému bodu P na tejto ploche moZeme jednoznacne priradit komplexné islo Q

ako bod v komplexnej rovine z = 0 - priesecnik tejto
roviny s priamkou NP kde N = (1,0, ) (,severny pol“
jednotkovej gulovej plochy). Body ,severnej/juznej”
Casti sa premietaji mimo/dovnitra jednotkovej kruz-
nice v komplexnej rovine (zy). Odpovedajuce kom-
plexné ¢islo je (z podobnosti trojuholnikov NQO a
NPP,, dodrzujuc Tavotoc¢ivi konvenciu)

0 sin 0

_ sy 9
_1—008196

Q0,0) = [Q(V)[e

= .. =cot—e¢
2

Samotnému bodu N odpoveda |Q(0)| = cot(0) — oo.

Uvedené zobrazenie premieta dva stupne volnosti
realneho priestoru do dvoch stupiiov volnosti kom-
plexnej roviny. Na projekciu wvseobecného wvektora
U = (v,9,0), v # 1, potrebujeme dalsi stupenr vol-
nosti: Je zrejmé, Ze so zmenou v (polomeru gulovej
plochy) sa bude gkalovat aj |@|. Rovnaky skalovaci
efekt v8ak dosiahneme aj vertikdlnym posuvom kom-
plexnej roviny do vzdialenosti 6 od bodu N. Nové
komplexné ¢islo v posunutej rovine bude

U1 (6,9,0) = 6Q(V,0) = 6 cot g e
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Ak by sme namiesto redlneho ¢&isla 6 pouzili komplexné &islo 10y = de’, znamenalo by to oticanie
komplexnej roviny okolo osi z, a teda dodato¢ny fazovy posuv ¥; o ¢

b1 = 2@ = et 49

Tymto sposobom sme vektor ¢ v redlnom 3D priestore projektovali (s jednym prebyto¢nym stupiiom
volnosti ¢) do dvojice komplexnych &isel 1,15, ktoré mozeme vnimat ako zlozky komplexného
dvojkomponentného ,vektora“ - spinora
_ (¥
v ( by

Ak definujeme (v analdgii s vektormi) velkost spinora [1)| :== \/|¢1]? + |¥2|? , a poZadujeme priradenie

|| < |U] = v, dostaneme ;
0= \/Zsin§

Stcasne substiticiou a := 2 + 0 ,symetrizujeme” zlozky spinora do kone¢ného tvaru
. b\ [ Vv cos g pi(a+0)/2

Spinor v tomto zapise je definovany Styrmi parametrami (v,d, 6, «), pricom odpovedajici vektor
U(v,7,0) je definovany len tromi z nich. Kartézske suradnice tohto vektora st

v, = vsindcos O = ... = Pabs + Py
v, = —vsinvsinf = ... = (Y15 — Yihs)
v, =veost = ... = |[P1]* — [th]?

V smeroch osi z (¢ = 0, resp. 7) sa ¥ projektuje do spinora 1 ako

0 A 0
i(a+0)/2
0|« ( \/560 > 0

0
< ( U eia0)/2 >

Parameter « je pre vektor fubovolnyg. Do redlneho 3D priestoru ho v8ak mo-
zeme projektovat ako d'alsi stupen volnosti - orientdciu plochy ,yvlajky” pevne
pripnutej na vektor ¥ (otacajucej sa spolu s nim) vzhladom na referen¢nu
rovinu (napr zvisla). \

(% —v

Zmenou uhla 0 o 360° sa vektor v 4plne otoci okolo osi z, a zmenou uhla o 0 360° sa uplne otodi
aj s ,vlajkou* okolo swvojej osi. V oboch pripadoch sa komplexné rovina oto¢i o 180°, a obe zlozky
spinora zmenia znamienko ('™ = —1). Znamena to, ze spinory 1 aj — sa do realneho 3D priestoru
premietaji rovnako, tato projekcia je teda 2:1.

H Taylorov rozvoj maticovych exponencial.

Generator boostu v smere z je (v blokovej schéme)
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Pre ,aktivnu“ ¢ast matice, k,, plati k2" = 1 a k"' = k,. Potom matica tejto transformacie je

¢2n o ¢2n+1

Ba(o) = e m_em_z Z(2n)!1+20:(2n+1)!k”:

- _ [ cosh¢ sinh¢
= 1 cosh® + k, sinh§ = ( sinh ¢ cosh ¢ )

Analogicky, generator rotacie v rovine xy je

i o (0 1
z (4 JZ jZ_ _1 O

Pre aktivnu“ ¢ast matice, j., plati j2* = (—=1)"1 a j2"*! = (—1)"j,. Potom matica transformacie je

R(0) = - — obi- — Z 9”] _ i (-1 nezn i n92n+1jz —
5 n!’? 5 (2n +1)!
o cosf sind
_]lc089+jzsme_<_sin9 0089)

I Spinorova metrika a symbolika.

Skalarny sucin stvorvektorov je lorentzovskym invariantom - lorentzovzkym skaldrom, a rovnaki
poziadavku kladieme na skalarny sucin spinorov. Ttto invariantnost zabezpecuje prislusna metrika.
Pre stvorvektory Minkowského ¢asopriestoru je touto metrikou n** = n,, = diag(l,—1,—1,—1),
a skalarny sucin je
uv, = u'nu v’ = ' = uwn,

(¢o je lorentzovsky invariant vdaka defini¢nej podmienke lorentzovkej grupy n = ATnA z kap. 11.4.1).
Metrika vymienia kovariantny a kontravariantny tvar Stvorvektorov (zvysuje/znizuje indexy). Aj v pri-
pade Weylovych spinorov definujeme ich kontra- a kovariantny tvar, spinorovii metriku € plniacu
tlohu analogickt metrike 7,

1
a X ab X1 b
€ u =€, a,b=1,2
X ( X2 ) Xb X < Yo ) bX

a skaldrny sucin spinorov
XE = X6 = X eart”

Ak méa tento sucin (z definicie) byt lorentzovskym skalarom, ¢ize®® Y%, = (A2%°)Teu(A5EY),
spinorova metrika musi mat tvar®*

ab 0 1Y\ (0 =1\ 4
ev=1_1 g )=c =11 o =€

83Prvy ¢len skalarneho su¢inu musi byt transponovany (riadkovy spinor namiesto stipcového).
84Dokaz dostaneme dosadenim matic A = R;, B, z kap. 1L4.1.
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Vidime, 7e (na rozdiel od diagondlnej matice n) matica € je antisymetrickd! Znamena to, ze®

2
X1 b —X
a = = €, =
X <X2) " ( % )

X6 = X en” + XPent” = —x'E + X3 = —xat” X"6a = —Xat"
Najpozoruhodnej$ou vlastnostou spinorov je viak antikomutativnost suéinu spinorovych zloZiek,
Xaé-a — _gaxa

To znamen4, Ze skalarny staéin spinorov (ako celkov) je komutativny, x& = Ex, v zhode s kap. 1.3.7.

Chiréalne lavoruké spinory (kap. I11.4.3) konvenc¢ne vyjadrujeme v kovariantnom tvare (index dole),
a lorentzovsky ich transformujeme v reprezentacii A(%,O),

b

ei0~&'/2+¢'5/2> X
a

XL =Xa 7 Xao = (
Kedze zlozky spinorov st komplexné ¢isla, definujme spinor komplexne zdruZeng ku xr, a jeho trans-
formaciu, pricom bodka nad indexom vyjadruje komplexné zdruzenie®”

b

b 0 =k ﬂ_&*
XZ _ (6710-0 /2+¢ /2) X

X =Xa = Xa=(Xo)" = (6”'5/ o3/ 2)

A a a
A -~ 7
Ao
kde ¢* = (01, —09,03). Zmenu kovariantného tvaru spinora na kontravarianty dosiahneme jeho
vynasobenim metrikou e,
*_~_¢'1i;__ a __ a\ * ab _ ab __ R _ -1
e(xr)” = X1 =€"x; = x" = (x") (=€ =€, =€ =€)

a s vyuzitim rovnosti eA(&)e ™t = A(ede!) a ed*e ™! = —F ho transformujeme ako

)y e 2\ D y o Nb
T — et (e_’("” /246G /2>. EI;éGbC Xp = = <620~a/2—¢-a/2> V¢
A Q@ N~ R ¢
1 '

v ¢om spozname reprezentaciu A 1y(dJ) = e ‘@/2_ Znamena to, Ze spinor Y sa transformuje ako -
2

a teda je - chiralne pravoruky, y, = x* = xr (konvencne s bodkovangm indexom hore). Analogicky,

spinor komplexne zdruZeny k chirdlne pravorukému spinoru sa transformuje ako

*

i = () =X = %= (Y9 = <€¢9.5/2—¢-5/2>6 (Xb> _ <6—i6~5*/2—¢~5*/2>b v

(0,4)

a jeho kovariantny tvar (dostaneme ho vynasobenim kontravariantného tvaru metrikou e 1)

Yr = €an(Xr)" = €a(X")" = Xa

85Gkalarny stcin je konvenciou definovany ako x%&,. Ak by sme ho (v inej konvencii) definovali ako x,£%, museli by
sme zmenit aj metriku, € — —e.
86 Zlozky spinorov su tzv. Grassmannove ¢&isla, ktorych defini¢nou vlastnostou je

a?=0 (a #£0) aa = —aa = af = —Ba

871de o tzv. van der Waerdenovo znadenie.
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bude chiralne lavoruky. V tomto zmysle su chirdlne Tavo- a pravoruké spinory navzajom komplerne
zdruZené. Plati teda

X1 = Xa = Xa e’ xr = €"xy = X" X = ()" =x" €abXr = €4X" = Xa
Yo =X = ¢x; = x" = xr alebo ( 01 ) ( XL > = ( XLa ) = ( XR1 )
’ -1 0 XL2 —XI1 XR2
v ' 0 -1 X — X7 XL
x by * R1 R2
=€ = €q =Xa = alebo . = I =
T = oo = () = xa = (V) ()= ( )=
a stuvis medzi spinorovymi reprezentaciami je

€ <A(%70) (cU))* el = A(Oé)(ﬁ*)

Pri lorentzovskej transformacii sa zachovéava skalarny stéin spinorov rovnakej reprezentdcie,®®

i0-6* /2—-5* @ T i0-7 o
(r)xe = ()T xe = () xa — (777207 02) 3 0) 7 (eFa/2e8012)
A b

T —i0-5/2—4-G e 0.6 o a
(Xb) (e 0.5/2—4 /2>b( i0-5 )2+ /2) e = (x )TXa

a rovnako pre (xr) xr-

Vyraz V,; z kap. 11.4.3 sa transformuje v reprezentécii A 0)©(0.1) ako

N

Vi = V= e_lva’i’ =e ! [A(

— * — b — * — b *
— lA(l’ |:€A(270) i| Va = A(%,O) |:€ 16} A(%,O) |:€ 1‘/;] = A(%’O)A

T
<ei5~6/2+$'5/2> “ v, < <€—i§-a*/+$.a*/2> b) _ <€i§~5/2+$~5/2> .
c d (o*)T'=0ct=0

C

v, <e—i§.&/+<{s’-a/z)z ~
(1—1—@6 G/2+ 6 - 0'/2> (1—@9 G/2+6- 0/2> =

1+(293+¢3)/2 (291+92+¢1—2¢2)/2 Vg + VU3 Ul—ivg %
(i91—62+¢1+i¢2)/2 1—(2‘93+¢3)/2 U1+?;U2 Vg — U3

% 1-— (193 — ¢3)/2 (—201 + 02 — le — Z¢2)/2 . U6 + Ué Ui — M)é
(=it + Oy + ¢y + i) /2 1+ (i03 — ¢3)/2 o\ v Fivy vy — vy

88V oznaceni (x?)” xq sa symbol T zvykne vynechaf, ak viak spinor (x)

transformujeme, musime transponovat
transformaény predpis. Plati pritom (0*)” = ¢f = 0.
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J Relativistické normovanie.

Redlne skaldrne pole ako fyzikdlne riesenie KGR, splhajtce disperzny vztah k,k* = k2 — k2 = m?
¢ize w = wp = cV k2 + m2, mé pre kladné frekvencie (O (ko) = 1 pre ko = w/c > 0, inak O(kg) = 0)
tvar

R¢

,u

@(ko)[ (k )efik#zﬂ —i—a*(k ) zk#;p/} d4k’

pricom
5(k k" — 2) O (ko) = .. = d(k2 — (wz/c)?) O (ko)

Na zéaklade vlastnosti zloZenej d-funkcie

W(O‘)):Zfdﬁf 9 pre flag) =0

dostavame lorentzovsky invariantny tvar®®

§(ko — w
/ §(k ket — %) O (ko)d*k = / %dkod% = / 2id3k

0 wi

Fourierovské koeficienty a(k,),a*(k,) potom vyjadrujeme ako funkcie k, pri¢om do nich ciastocne
zahriujeme uvedené relativistické normovanie,

" a(k,u) * (7 a*(k#)
a(k) = —£= a*(k) =
(k) 2wy /c *) V2wi/c

vdaka ¢omu maji nenulové komutaéné vztahy (pre operatory, kap. I11.1.3) jednoduchsi (rozmerovo
spravny) tvar

[a(k), al (k)] = (2m)*6(k — ')
Vysledny tvar realneho skalarneho pola je potom

Ry

Pt = / (27m)3/ 2wy /c

[cz(lg)ez_ik”l’H + a*(lz)eik““””] &k

K Kvantovanie skaldirneho hamiltonianu.

Jednotlivé ¢leny hamiltonidnu redlneho skalarneho pola z kap. 111.1.3

H= ”;h / [(900)* + (8;0)> + M*¢?] d*x

po dosadeni operatorového tvaru skalarneho pola

~ 1 h - ; m At TN i iz
blar) = / — [a(R)e e + al ()™ | dk

(2m)3\ 2mig

89Gamotné skaldrne pole je lorentzovzkym invariantom.
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a s vyuzitim vlastnosti d-funkcii nadobudnu tvar

mh /(aOQb ///\/wkwk/ )@(k/> —i(ku+k;, )" —&(E)dT(E')e_i(k”_kﬁ)W

2

—al (B)a(k')e!Fn k0w 4 6t (F)al (K)eitnthi) ] ErdK P =

ortogonélnost

_—h WEYE [~ A (TN (T L TN o—i(wetwe )t A DNAT (IS (T T Wi )t
= o [a(k)a(k)é(knLk)e et — a(R)at ()8 (k — ) ;
—af (F)a(K)o(k — kel @t 4 af(k)al (K)o (k + K)el@rten ]d3kd3k’( -
W_Rp=wg

-

= _h/ Wi [&(E)&(—E)e—izw;;t _ &(E)&T(E) — @T(E)&(E) +&T(E)&T(—k/)ei2wl€t] P

h cAm? - L o o ) o
- _/— [d(k)&(—k)eww,;t+d(k:)gﬁ(k;) +at(k)a(k) +dT(k)&T(_k/)ez2wEt] Bl

S¢itanfm tychto lenov a s uvizenim disperzného vzfahu &2 = k? +m? dostaneme napokon vyraz

= g / (;f)g (@t @ya(®) + a(®yal ()] d*

L. Cesta k Diracovej rovnici.

Relativistické diferenciélne (vlnové) rovnice 2. radu (akou je KGR) nepodporuji pravdepodobnostni
interpretaciu vlnovych funkcii (vyrazy aSpirujice na hustotu pravdepodobnosti nie st pozitivne de-
finitné). RieSenie tohto problému (zachovanie pravdepodobnostnej interpretacie) spociva v najdeni
relativistickej diferencialnej rovnice 1. radu, ktora v8ak spliia relativisticky vztah (z ktorého vychadza
aj KGR)

E2 2 2

= =p*+m? resp. p'p, = m-c
Vyuzijeme skuto¢nost, 7e pomocou Pauliho matic, spliiajicich anti-komuta¢né podmienky
{0j,00} = 00, + 0Koj = 205,

dokaZeme pre lubovolny vektor, a teda aj vektor p, napisat®

(@-p)(@-p)=(-p)L=p-P

OVyraz & - p je skalarom vo fyzickom priestore ale maticou 2 x 2 v spinorovom priestore. MoZe vyvstat otazka,
preco potrebujeme na faktorizaciu takyto vyraz namiesto p’- p = p®. Faktorizacia p? by viedla na skaldr p, ktorému
nedokdZeme priradit operdtor (operator hybnosti je generatorom priestorového posunutia, a teda vyzaduje zadany
smer). Uvedenému problému sa poloZartom hovori ;hladanie odmocniny z operétora‘“.
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Pre nehmotné pole (m = 0), t.j. v ultrarelativistickej limite, potom plati
E? , E? . E . \N(F . _
Ppu= o = = (69 = (?”'p) (F_U'p) -

s rieSeniami o-p = j:%. Prechodom k operatorom dostavame dve samostatné rovnice pre dvojkomponentné
Weylove spinory opacnej chirality /helicity (kap. I11.2.4).

Pre hmotné polia vak faktorizacia vyrazu p*p, —m?c? uZ nie je mozna pomocou o-matic 2 x 2, ale
pomocou matic y-matic 4 x 4, splhajicich podmienky
{7 =AM A =2
a pomocou ktorych vieme zapisat velkost Stvorvektora ako
P'ou = V"'0uy Py
Potom
Py —m*c = (Ypu +me)(Y'p, — me) =0

a prechodom k operdtorom hybnosti dostdvame DIR pre §tvorkomponentné bispinory ¢ a v (kap.
I11.2.1).

M Lorentzovsky boost Diracovych spinorov.

Lorentzovsky boost Diracovych bispinorov (bez ¢asopriestorovych stupfiov volnosti) v chirdlnej re-
prezentacii sa riadi pravidlom (kap. 11.4.3, pre pasivnu transforméciu, ¢ize boost pozorovatela)

6"-072 0
W) — AW — | € B (W) wy _ ([ XL
vE A ( 0 66-/2)w ¥ (sR)

—

kde boostova rychlost je v = c0%tanh 0. Nas viak zaujima pohybujuci sa bispinor (¢ize aktivna
transformacia), a teda ¥ — —v7 a § — —6. Odpovedajice bispinory v hmotnostnej reprezentacii st
(kap. II1.2.3)

1 1 1
(D) — 140)(W) (D) — 1 fo)y/ W) — w) — —1,(D) -
Y Uy P Uy UA UNU Y U NG ( 11 )
a po dosadeni dostavame maticu lorentzovského boostu (bispinora) v hmotnostnej reprezentacii,
wl(D) - = ~ COShg GO'ESinhg w(D)
0° - &sinh g cosh

Boostova rychlost bispinora je jeho grupovou rychlostou, ¢o pre disperzny vztah wp = cvk? +m?
i

B %, a teda tanh?6 = % § vyuzitim identit

w2
k

1 h 1 hog —1
coshf— = cosh ) = [ oosho+1 gy 0 Jeoshf—1
\/1—tanh29 2 2 2 2

dostavame napokon pre transformac¢ni maticu boostu v hmotnostnej reprezenticii kone¢ny tvar

znamena v =

~ k&

! GRS o

— k-G =

2m — w,g-i-ﬁb
‘/wEer
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N Kvantovanie Diracovho hamiltonianu.

Hamiltonian Diracovho pola H = h [ i1)y°0yp d*x z kap. T11.2.8 nadobudne po dosadeni poli ¢(z*)
a Y(z") a prechodom k ich operdtorom tvar

_ A 7 iky,xt 7= (s") 72]6/1‘%'“
- 32/ [ s (s i)

s,8'=1

~

> (—ZW];”YO) <bs(lg)ul(_:)e—ikuz“ _ él(E)véS)eikuxf‘)} Bk BE Br =

w =N T (s ik o o) ik i
62///\/w: bT (k)b k“;(; ,(; (K =ku) bT(k;)TU{;)’(; OI%)e(kﬂJrkM)u_i_

s,8'=1

Téy (/{: )[) (/{:) )'V u( ) pilk), Hhu)at és'(E/)éi(E)TJS)’VOU%S)€7i(k;”7k“)mp} Bk BE B

S uvéaZenim ortogonalnosti rovinnych vin (analogicky ako v Dodatku K) dostavame

/e > / [131,(12)85(12)@5;%0% — bl (—k)el (k)a )y vl e 4

oy (R (R)T A e (R)el (ol 00l 'k

ug e

Teraz treba vyhodnotit skaldrne sa¢iny (transponovanych) bispinorov « resp. v s bispinormi %u resp.
7Pv. Z bazovych riegeni z kap. I11.2.3 (v hmotnostnej béze, kde 7° je diagondlna) okamzite vidime,
ze

UpVp = Vpup = 0 fLE’yOUE = UZ“UE =0 TJE’YOUE = v’%u,; =0
,(5),}/ u(~ ) _ u;;(S)u(*S) S 2&;;555’ @;(ZS)VOUI(;/) _ U;%(S)U;%S,) B 265555’

a teda hamiltonidn nadobudne tvar

O Vypocet (anti)komutatorov spinovych poli.

Postup pri odvodeni komutac¢nych ¢i antikomutac¢nych vztahov pre operatory spinorovych poli je
analogicky ako pri odvodzovani hamiltonianu v Dodatku N. Okrem vypoctu bispinorovych skaldrnych
stcinov, ktorych nenulovymi vysledkami su skaldry (¢isla),

Ut(s)u(aS/) = 2&3];535’ U“( )’U(“S) - 2&E588' %)u

) _ o (), ) _ o~
k k k pA = 2Mm0sy vy v = —2mlggy

k Tk

??'l/\

v8ak v komutatoroch /antikomutatoroch musime spoéitat aj sac¢iny typu ul(zs)al(;/), ¢o su matice. Uva-

Zujme vyraz

2
(s") ~(s") ( _ () ~1  (s)
E TSI 5 uﬁ ua w. = wu. 2m = [2m|u
E R E E E
§'= W—/ '\/'_
N’ 2m6 g =
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Vyraz = na oboch stranich rovnice je matica, a maticovy zapis DIR pre bispinor ul(;) z kap. I11.2.3 je
(7"ky, — m)us) =0 = Vhy = i (Lixs) = 2 — (Y, + m)u’

Plati teda®'
2
Zu’(;)al(;) = 'k, +m a analogicky Z v v =Mk, —

Pomocou tychto vyrazov dostaneme konefné tvary komutatorov/antikomutatorov operatorov Dira-
covych poli.

P Odvodenie Procovej rovnice.

Definujeme tenzor F* = OFAY — OV A" a vyraz F*F,, mozeme rozpisat ako

FME,, = ("A” — 0" A")(0,A, — 0,A,) = 0" A, A, — 0" A0, A, — 0¥ APD, A, + 0¥ A"9, A, =

TV TV
n=v p—v

=2(0"AY0,A, — 0"A"0,A,)
Procov lagrangién z kap. I11.3.1 ma potom tvar

~2

L= —lFWFuy + %A#A# - _% (8“A”8”AV —0"A"0, A, — mQA#Au)

4
Tento vyraz dosadime do ELR
oL _, (o
0A, e 0(0,4A,)

pricom pre jednotlivé ¢leny plati

aiAp(ﬁfA“A ) = 2m2AP
B, [ﬁ(@%@um} = 0, {%(@AJ + (8“A”)g§g’;ﬁ:;
= 0, {n““n”gg A ;@ A,) + (8‘64”)%} 05 [0 6208(0,A,) + 8560(0"AV) ] =
= 8, [07A? + 97 AP] = 20,0 A°
Dy {8(%141,0(8“AV8”A“)] = .. =20°9,A°

Vysledna pohybova - Procova rovnica je potom

0, (07 AP — JPA) + 2AP = 8, F°P + m2AP = 0

91de o rovnosti matic, a overif sa daji dosadenim po zlozkach, ako rovnosti zloZiek matic 4 x 4.
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Q Kalibra¢na transformacia.

Transformacia A”(z") — A%(at) = AY(z*) + 0,A(z*) pre Procov lagrangian nehmotného pola
znamena

L— L= —%[G“A’”auA; — O"A"9, A | =
1
—5 [0(A” + 0"N)Du(A, + 0,A) = 0"(A” + 0" N)D,(Ay + 0uh] = ..
= —%[G“A’@Ay + Q"N A, + 0" AD,0,A + 0" N, O, N ]+

1
+—[8“A”8VA,L + 8"8”A&,AH + orAY 8V8HA + O*9YA (‘L@,ﬂ\] =
2 =0v oK

=OHPY —9HHv
137

1 v v
= 50", A, — " A0, ) = L

R Odvodenie Maxwellovych rovnic.

Nehomogénne MXR bez zdrojov v najznamejSom tvare odvodime z PCR (kap. I11.3.2) pre elek-
tromagneticky tenzor F*¥

0 —El/C —EQ/C —E3/C

; Ey/c 0 —B B

LAV QU AR uy o Ov v wy 1 3 2

D, (0" A” — Q" AF) = 0, F" = 9,F™ + 9;F" = =\ e B o 5
Es/c  —DBs By 0

v==~k: aoFOk—i-aijk:—80Ek/6+6kﬂajBl:0 = Vxé—@tE/CQZO

v=0: GF% +8;F°=0+8;E;/c=0 & V-E=0

V pritomnosti zdrojov j* = (cp,j') by pravé strany obsahovali zlozky Stvorpradu pugj* (viac o tom
v kap. IV.2.1).

Definujme teraz dualny elektromagneticky tenzor

0 —bB —B, — B3
1 Bl 0 E3/C —EQ/C
wv . _pvop —
G 26 Fap B2 —Eg/C 0 El/C

Bg EQ/C —El/c 0
pre ktory platia homogénne MXR

1
@LG”” _ 5@6““"”(3,;140 — 8014;)) =..=0

v=rk: 0G% +8;G* = —0By — er;i0;E, =0 < VXxE+8B=0

v=20: 80G00+8jGj0:O+aij:0 <~ Vé:O
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S Hrackarsky model finanéného kalibra¢ného pola.

Uvazujme kruhovi zmenu peniazi (peniaze za peniaze) podla nasledujicej schémy: Majme 4 krajiny
(stiradnice) s roznou menou «, 3,7,

§:(z,y+dy) + ~v:(x+dz,y+dy)
{ )
a:(z,y) — B:(x+dx,y)

a v nich 4 zmenarne so zmenami mien v danych kurzoch Z_,(z,y) = g, atd.

Z(x,y+dy) < Z_(x+dx,y+dy)

{ )
Zo(ey) = Zyla+day)

Bilancia v (z,y) po uzavreti kruhu a« —  — v — 0 — a je
B(w,y) = Z-(x,y) - Z(x +dw,y) - Zo(x + da,y + dy) - Z)(z,y + dy)

Upravmeme oznacenia zmennych kurzov podla smeru osi:

1
Z_(x,y) = Zs(x,y) Z(x+dr,y+dy) = Z_ (v +dr,y +dy) = 7yt dy)
Ziy(x +dx,y) = Zy(v + dv, y) Zy(z,y+dy) = Z_y(2,y +dy) =
Zy(l',y)
Zo(x,y) - Z,(x + dx,

Zz(l', Y+ dy) ' Zy<£L', y)

Ak by tato bilancia bola rovna 1, iloha zmenarni by bola ¢isto pasivnou. Z praxe v8ak vieme, Ze to
tak nie je.

Definujme logaritmy:
A=InZ (Z=¢e F=mB (B=eé")
Flz,y) = .. = [Ay(z + da,y) — Ay(z,y)] = [Ae(z,y + dy) — Au(2,9)]
¢o prechodom od 2D mriezky ku spojitej 2D resp. 4D limite prejde na
F(z,y) = 0, A, — 0,A, F., =0,A,—0,A,

(Nulté zlozky stvorvektorov tu znamenaji obchodovanie v case - ndkup a predaj v roznych ¢asoch
na rovnakom mieste.)

Pripustme lokdlnu kalibrdciu (devalvaciu/revalviciu) meny v jednotlivych krajindch (napr. $krtanie
nal):
a— G(z,y)a B — G(x +dx,y)p 7, 0 analogicky

Zmenné kurzy po kalibraciach prejda na

4 = - —_—=7 .
x(x>y) o — G(.I',y) :c(-ray) atd

Definujme logaritmus A = InG (G =€) :

Ap(r,y) = Ae(r,y) + Mo +dr,y) — Az,y) — Agz,y) + 0:.A(z,y)
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Lokalna kalibracia mien nemoéze ovplyvnif bilanciu po uzavreti kruhu (¢ VA - dl = 0) - BaF s
kalibracne invariantné (fyzikalne), a nenulovost F' je dosledkom aktivnej ulohy zmenarni.

Uvazujme teraz obchodovanie tovaru. Ak T je zmena tovaru na peniaze (predaj komodity), potom %
je zmena penazi na tovar (ndkup komodity). Predpokladajme nakup v krajine (z,y) v mene «, jej
predaj v krajine (x + dz,y) v mene [ a spatna konverziu meny § — «:

Vysledna bilancia je
T(z +dz,y)

Blzy) = T(x,y) Ze(x,y)

Opit zavedme logaritmy
=T (T =e®) F'=lB (F=¢)
Fi(z,y) = oz + do,y) —o(z,y) — Au(z,y) = Ovp(a,y) — Au(z,y)
Aj keby by $lo o ndkup a predaj v tej istej mene, tj. A, = 0, potom by F. # 0 nepochybne
znamenalo vznik gradientu danej komodity (¢) - tovar by sa hromadil na miestach vynosnejsej

obchodovatelnosti. F” ma teda vo v8eobecnosti (A # 0) fyzikalny vyznam gradientu ¢ pri aktivnej
uc¢asti zmenarni, s novym oznacenim

F' — Dy,p=0,0—A4,

Ak by sa ktordkoIvek centralna banka rozhodla pre kalibraciu meny, prejavilo by sa to na oboch
¢lenoch vyrazu rovnako,

Dy — (Oup + OuN) — (A +0,\) = Dy

Takto definovany gradient pola ¢ je teda kalibracéne invariantny.

T Metdéda Greenovych funkcii.

Zakladom tejto metody je fakt, ze I'ubovolna skaldrnu funkciu I'(z,) na pravej strane linedrnej
diferencialnej rovnice pre skalarne pole ¢(x,,)

Do(zy) =I'(z,)
vieme vyjadrit pomocou Diracovej d-funkcie ako
[(z,) = /F(x&)é(x“ — $L)d4m’

¢ize Tubovolny priebeh funkcie vieme rozlozit a spatne ,skomponovat® pomocou d-pikov s ,vahou*
F(xL) Linearita pohybovej rovnice zaruci, Ze jej rieSenie je superpoziciou ¢iastkovych rieSeni pre
pravé strany v podobe jednotlivych J-pikov,

AN /
ngG(zM’xlt) - 6(‘TM B x;L)
Tieto ciastkové - fundamentdlne - rieSenia ¢c(x,, :L’;L) nazyvame Greenovymi funkciami prislusnej
diferencialnej rovnice. RieSenie rovnice s pravou stranou I'(z,) je potom

b(,) = / D(2!) b6 (w,, 2,)d's!

Ako priklad uvedme Greenovu funkciu KGR
7zk“(xufm/) 4
06 (T 21,) = (2m)4 /m — kykH ndk
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