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Úvod

Fyzika pouºíva na opis Prírody jazyk matematiky, teda �vtlá£a� Prírode matematickú ²truktúru. Ak
sa takýto opis zhoduje s pozorovaniami, kon²tatujeme, ºe Príroda má takúto matematickú ²truktúru.
Pritom nie je dostato£ne (alebo moºno vôbec) jasné, pre£o to tak dobre funguje.

Fyzikálny svet by nám nedával zmysel, keby sme nedokázali reprodukova´ výsledky pozorovaní a
overova´ tak jeho zákonitosti v rôznom £ase alebo na rôznych miestch, £i za inak zmenených okolností.
Príroda nám tým odha©uje isté symetrie, ktoré premietame aj do matematických ²truktúr, ktorými
ju opisujeme. Moderný prístup k fyzike sa opiera práve o tieto symetrie. Neznamená to, ºe Príroda
sa musí riadi´ symetriami. Príroda je taká aká je, a my ju spoznávame jej pozorovaním. Ak v²ak
spoznáme (a uveríme), ºe má svoje symetrie, sme oprávnení vyuºi´ matematiku symetrií na jej
hlb²ie pochopenie. Neznamená to teda, ºe fundamentálne zákony fyziky sú dôsledkami symetrií, ale
ºe tieto symetrie re²pektujú.

Spojité £asopriestorové symetrie klasickej fyziky súvisia so známymi zákonmi zachovania. Kvantová
mechanika priná²a nové symetrie v súvislosti s princípom superpozície ako aj s výmenou identických
£astíc. Symetrie teórie relativity súvisia s novými vlastnos´ami, akými sú spin £i helicita. �asto sú
v²ak symetrie Prírody �zamaskované�, a to nielen náhodnými okrajovými podmienkami, ale ich spon-
tánnym naru²ením, ktoré tvorí podstatu existencie kry²talickej ²truktúry pevných látok, £i podstatu
javov ako feromagnetizmus £i supravodivos´. Osobitné miesto vo svete symetrií zaujímajú kalibra£né
symetrie - symetrie matematického opisu. Tento druh symetrií je v²ak podstatou fundamentálnych
síl (interakcií) Prírody.

Tento text chce by´ sprievodcom po fundamentálnych zákonitostiach fyziky a ich súvise so symet-
riami Prírody. Jeho ambíciou je ukáza´, ºe na otázky typu �Odkia© sa vzali princípy neur£itosti?, �o
je spin a odkia© sa vzal?, Pre£o majú operátory známych veli£ín práve taký tvar? Ako si máme pred-
stavi´ elementárne £astice a aké sú ich pohybové rovnice? Odkia© sa vzal Pauliho vylu£ovací princíp?
�o je podstatou fundamentálnych síl? �o sú vlastne elektrické a iné náboje? �o je to hmotnos´? �o
znamená zakrivený £asopriestor? �, a podobné, poznáme odpovede vyplývajúce z viery v symetrie
Prírody. Text predpokladá vedomosti na úrovni bakalárskej fyziky, jeho cie©om nie je zahlti´ £ita-
te©a matematickými technikáliami, ale upriami´ pozornos´ na k©ú£ové fyzikálne súvislosti. Pouºitý
matematický formalizmus má slúºi´ len ako vodítko pre matematicky zaloºených £itate©ov.

Inými slovami, text je orientovaný na v²etkých ²tudentov fyziky. Ako pri kaºdom takomto texte, jeho
úrove¬ je limitovaná nielen poznatkami sú£asnej fyziky, ale predov²etkým h¨bkou ich pochopenia jeho
autorom.
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Symetrie

Snaha o adekvátny opis ²truktúry Prírody na elementárnej úrovni (t.j. na úrovni elementárnych �£as-
tíc� ako excitácií príslu²ných polí) v jazyku beºných pojmov zlyháva kvôli ich vágnosti v kontexte
mikrosveta. Kvantová fyzika preto reviduje klasickú newtonovskú fyziku v tom zmysle, ºe za základný
princíp si kladie neredukovate©ný vplyv kaºdého merania na meraný objekt. Kým pre makroskopické
objekty môºe by´ tento vplyv celkom zanedbate©ný, v mikrosvete s ním musíme vºdy po£íta´. Pozo-
rovate©né veli£iny, ako výsledky merania, sú teda vºdy produktami ur£itej (hoci aj zanedbate©nej)
transformácie stavu skúmaného objektu. Vo formalizme kvantovej fyziky preto nahrádzame dyna-
mické premenné (reprezentované £íslami ako hodnotami pozorovate©ných veli£ín) operátormi, vo
význame generátorov odpovedajúcich transformácií. Takýto prístup pritom nie je cudzí ani klasickej
fyzike - naopak, je plne rozvinutý v jej lagrangeovsko-hamiltonovskom formalizme. V tejto úvodnej
£asti sumarizujeme jeho základné £rty, a to v klasickej i kvantovanej podobe.

Základným predpokladom, ktorý celému ná²mu úsiliu dáva zmysel, sú symetrie Prírody. Symetriami
nazývame také transformácie (£iºe aj merania, otázky kladené Prírode), pri ktorých sa ur£itá vlast-
nos´ (vyjadrená hodnotou príslu²nej premennej) zachováva.1 Takúto vlastnos´/veli£inu nazývame
invariantnou vzh©adom na danú transformáciu. Vlastnos´ami zachovávajúcimi sa pri symetriách
môºu v²ak by´ aj pravidlá - dynamika systému, tvar pohybových rovníc (samotné veli£iny sa pri-
tom môºu transformáciou meni´). Vtedy hovoríme o kovariantnosti systému (vzh©adom na danú
transformáciu).

Tak ako kaºdé meranie, aj kaºdá transformácia má svojho pozorovate©a, ktorým resp. vo£i ktorému sa
uskuto£¬uje. Z poh©adu �nezávislej� laboratórnej sústavy môºe ís´ o transformáciu meraného objektu
- tzv. aktívnu, alebo (opa£nú) transformáciu pozorovate©a - pasívnu. Obe sú ekvivalentné (Dodatok
A), a v pokovovej sústave pozorovate©a splynú.2

Ukazuje sa, ºe najvýstiºnej²ím spôsobom charakterizovania elementárnych �stavebných prvkov� Prí-
rody je ur£enie pravidiel, akými sa tieto objekty správajú pri ur£itých transformáciách, a aké cha-
rakteristiky sa pritom zachovávajú.3 Rovnako dynamika týchto entít - ich pohybové rovnice musia
by´ rovnaké pre v²etkých pozorovate©ov. H©adáme ich teda v kovariantnom tvare - nezávislom na
posunutí pozorovate©a v priestore £i £ase, jeho pooto£ení, zmene jeho rýchlosti £i poh©ade do zrkadla.
Musíme pritom re²pektova´ relativistické �prelievanie� priestorových súradníc do £asu a naopak, £o
nás od (nerelativistickej) klasickej aj kvantovaj mechaniky privedie k relativistickej teórii polí.

1Ak by bezprostredne opakované merania produkovali zásadne rozdielne výsledky, nemali by pre nás cenu.
2Napr. transformácia vektora v danej báze (sústave súradníc) je aktívnou, kým transformácia vektorovej bázy na

inú (fyzicky nemeníme vektor, iba jeho opis) je pasívnou. Príkladom tohto rozdielu v kvantovej mechanike je aj
Schrödingerov vs. Heisenbergov obraz: V prvom z nich pôsobíme operátormi na stavy meniace sa v £ase - to je aktívna
transformácia. V druhom z nich sú stavy nemenné, operátory sa v²ak v £ase menia pod©a Heisenbergovej rovnice, £iºe
menia sa ich bázové stavy, do ktorých skúmaný stav rozkladáme - to je pasívna transformácia. (viac v kap. I.2.3).

3To, £o robí napr. elektrón elektrónom, musí by´ rovnaké pre v²etkých pozorovate©ov - inak nejde o fundamentálnu
vlastnos´.

1



I.1 Symetrie v klasickej mechanike.

Táto úvodná kapitola je zhrnutím tých základných postulátov klasickej mechaniky, ktoré sa v tej £i
onej podobe premietajú do moderného kvantového opisu Prírody. Látka je usporiadaná tak, aby po-
skytovala £o najprirodzenej²í prechod od klasických pojmov a zákonitostí ku kvantovomechanickým.

I.1.1 Lagrangián a ú£inok.

Systém (teleso, £astica) v klasickej lagrangeovskej mechanike �ºije� vo svojom v kon�gura£nom
priestore - kaºdý rozmer tohto abstraktného priestoru odpovedá ur£itému stup¬u vo©nosti, a kaºdý
bod tohto priestoru, ur£ený zov²eobecnenými súradnicami qj(t), odpovedá stavu systému. Vývoj
(pohyb) systému reprezentuje �dráha� v tomto priestore. Túto dráhu parametrizuje lagrangián
L (qj(t), q̇j(t), t) - veli£ina (spravidla) o rozmere energie, ktorá v sebe kóduje celú dynamiku sys-
tému. Ak je systém izolovaný (£o nateraz pre jednoduchos´ predpokladáme), jeho lagrangián závisí
od £asu len implicitne, teda prostredníctvom £asového vývoja zov²eobecnených súradníc a rýchlostí,
L (qj(t), q̇j(t)). Na rozdiel od energie systému, ktorá sa pre izolovaný systém vºdy zachováva, lagran-
gián sa zachováva´ nemusí.

Pomocou lagrangiánu de�nujeme ú£inok4 vývoja systému v danom £asovom intervale ako funkcionál

S =

∫ t2

t1

L dt

Hodnota ú£inku (ako £íslo) závisí od výberu dráhy v kon�gura£nom priestore medzi �xnými hrani£-
nými bodmi qj(t1), qj(t2). Príroda sa pritom �riadi� princípom extremálneho ú£inku - zo v²etkých
moºných priebehov vývoja systému, £iºe dráh medzi za£iato£ným a kone£ným stavom, si �zvolí� práve
tú s extremálnym (zvä£²a minimálnym) ú£inkom.5 Túto dráhu v £asoch t1 < t < t2 teda h©adáme
varia£nou metódou medzi �xnými koncovými bodmi, δqj(t1) = δqj(t2) = 0, tak aby L (qj(t), q̇j(t))
sp¨¬al podmienku δS = 0. Diferenciál lagrangiánu je6

δL (qj, q̇j) =
∂L

∂qj
δqj +

∂L

∂q̇j
δq̇j =

∂L

∂qj
δqj −

d

dt

(
∂L

∂q̇j

)
δqj +

d

dt

(
∂L

∂q̇j
δqj

)
q̇j =

dqj
dt

V (ur£itom) integráli ú£inku posledný £len vypadne, ke¤ºe (ako totálna derivácia) bude rozdielom
hrani£ných hodnôt, pre ktoré δqj = 0.7 Podmienka extremálneho ú£inku δS = 0 vedie na δL = 0,
odkia© dostávame (bez oh©adu na výber zov²eobecných súradníc) Eulerovu-Lagrangeovu rovnicu
(ELR)

∂L (qj, q̇j)

∂qj
− d

dt

(
∂L (qj, q̇j)

∂q̇j

)
= 0

Rie²ením tejto rovnice s daným lagrangiánom dostaneme odpovedajúcu pohybovú rovnicu systému.
4Práve neredukovate©nos´ ú£inku kaºdého pozorovania, vyjadrená hodnotou Planckovej kon²tanty ~, je k©ú£om ku

kvantovému opisu Prírody. Aj preto je lagrangeovský formalizmus správnou stratégiou budovania jej fundamentálneho
fyzikálneho obrazu.

5Táto obrazná formulácia je oslavou geniality tvorcov lagrangeovského formalizmu.
6V celom texte pouºívame Einsteinovu konvenciu - sumovanie cez opakujúci sa index.
7Tento £len teda predstavuje len aditívnu kon²tantu k energii, ktorú môºeme prida´/ubra´ bez vplyvu na pohy-

bovú rovnicu. V ¤al²om texte ho preto nebudeme uvaºova´. Vo v²eobecnosti môºeme lagrangián roz²íri´ o totálnu
£asovú deriváciu ©ubovo©nej funkcie G(qj , t). Koncové body dráhy v kon�gura£nom priestore sú totoº �xované a po
zintegrovaní pridajú k ú£inku kon²tantný £len G(qj(t2), t2) − G(qj(t1), t1), ktorý pri jeho variácii vypadne. Pridanie
£lena ±dG(qj ,t)

dt k lagrangiánu teda nemá vplyv na dráhu s extremálnym ú£inkom. Taktieº vynásobenie lagrangiánu
©ubovo©nou kon²tantou nemá vplyv na dráhu s extremálnym ú£inkom ani na ELR.
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V nerelativistickej fyzike je lagrangián rozdielom kinetickej a potenciálnej energie systému,
Lnerelat = K − V . Kinetická energia je akousi mierou �ak£nosti� systému - pohybu. Naopak, po-
tenciálna energia je mierou e²te �nerealizovanej akcie� - energie, ktorú má systém �v rezerve� (t.j.
k dispozícii ako potencialitu). Minimálny lagrangián je teda prirodzenou mierou úspornosti Prírody.
Pový²enie extremálneho ú£inku na princíp v²ak vyºaduje jeho invariantnos´ vo£i rôznym transfor-
máciám. Lagrangián preto musí obsahova´ v²etky symetrie systému. Lnerelat takým celkom ur£ite nie
je, ve¤ sta£í zmeni´ pohybový stav pozorovate©a - rôzni pozorovatelia sa nezhodnú na rýchlostiach
ani na £asomiere. Napr. pre vo©ný (V = 0) relativistický objekt (£asticu) o hmotnosti m a rýchlosti v
má správny lagrangián tvar L = −mc2/γ, kde γ = (1− v2

c2
)−1/2. Vo v²eobecnosti preto de�nujeme

lagrangián ako funkciu, pre ktorú extremálny ú£inok odpovedá dráhe zvolenej Prírodou.

Ak predpokladáme L (qj, q̇j) = K(q̇j) − V (qj), potom prvý £len v ELR, ∂L (qj ,q̇j)

∂qj
= −∂V (qj)

∂qj
, repre-

zentuje zov²eobecnenú silu. Druhý £len v ELR musí preto by´ (v súlade s Newtonovou pohybovou
rovnicou) £asovou zmenou zov²eobecnenej - kánonickej hybnosti

pj =
∂L (qj, q̇j)

∂q̇j

V tomto ²peciálnom prípade pj =
∂K(q̇j)

∂q̇j
, £o je �beºná� kinematická hybnos´. Vo v²eobecnosti sa

v²ak kánonická hybnos´ od �beºnej� newtonovskej hybnosti hmotného telesa/£astice môºe lí²i´, ako
je uvedené v Dodatku B.

Od lagrangeovského formalizmu prejdeme k hamiltonovskému de�novaním hamiltoniánu

H = pj q̇j −L

Porovnaním dvoch výrazov pre variáciu hamiltoniánu,

δH = q̇jδpj + pjδq̇j −
∂L

∂q̇j
δq̇j︸ ︷︷ ︸

0

− ∂L

∂qj
δqj δH =

∂H

∂pj
δpj +

∂H

∂qj
δqj

dostávame pomocou ELR Hamiltonove rovnice (HR)

dqj
dt

=
∂H

∂pj

dpj
dt

= −∂H
∂qj

Vo v²eobecnosti pre ú£inok platí

S =

∫ t2

t1

L (qj, q̇j, t)dt =

∫ t2

t1

[pj q̇j −H(pj, qj, t)]dt qj = qj(t), pj = pj(t)

Ke¤ºe q̇jdt = dqj, môºeme uvedený vz´ah zapísa´ ako

S(qj(t)) =

∫ qj(t2)

qj(t1)

pjdqj −
∫ t2

t1

Hdt

Tento výraz môºeme vníma´ ako dráhový integrál medzi bodmi (qj(t1), t1) a (qj(t2), t2) v rovinách
qj − t (pre kaºdý stupe¬ vo©nosti j), a pre¬ musí tieº plati´

S(qj(t)) =

∫ qj(t2)

qj(t1)

∂S

∂qj
dqj +

∫ t2

t1

∂S

∂t
dt

Porovnaním podintegrálnych výrazov dostávame

pj =
∂S

∂qj
H = −∂S

∂t
H = H

(
∂S

∂qj
, qj, t

)
3



Prvá z rovníc má v kartézskej sústave tvar ~p = ∇S, a znamená pohyb v smere nárastu ú£inku,
kolmo na plochy S = kon²t . Druhá z rovníc je Hamiltonova-Jacobiho rovnica (HJR), a je al-
ternatívnou formuláciou klasickej mechaniky (popri newtonovskej, lagrangeovskej a hamiltonovskej),
ktorá, ako hne¤ uvidíme, zbliºuje £asticové a vlnové h©adisko. Navy²e, obe pripomínajú predpisy pre
kvantovomechanické operátory (v súradnicovej reprezentácii, ak S → ~

i
)

p̂j =
~
i

∂

∂qj
Ĥ = −~

i

∂

∂t

Pre nerelativistickú £asticu je H = p2

2m
+ V , a HJR má v kartézskych súradniciach tvar

−∂S
∂t

=
(∇S)2

2m
+ V

ktorý zas pripomína Schrödingerovu rovnicu (SCHR)

−~
i

∂ψ

∂t
=

(
~∇
i

)2
ψ

2m
+ V ψ

Skôr neº túto podobnos´ preskúmame hlb²ie, uvaºujme e²te ²peciálny prípad izolovanej £astice v kon-
²tantnom potenciáli, pre ktorú platí −∂S

∂t
= H = E = kon²t , a teda S = −Et + f(~r). Potom

p = |∇S| = |∇f(~r)|, a uváºením nerelativistickej hybnosti p =
√

2m(E − V ) = kon²t = |∇f(~r)|
ú£inok nadobudne tvar

S = ~p · ~r − Et

Tento výraz pripomína fázu vlnovej funkcie kvantovomechanickej £astice v tvare rovinnej vlny
ψ(~r, t) ∼ eiS/~, s vlnovým vektorom ~k = ~p/~ a frekvenciou ω = E/~. Klasická £asticová mechanika
v hamiltonovsko-jacobiovskom formalizme teda nazna£uje prechod ku schrödingerovskej kvantovej
mechanike!

V geometrickej optike poznáme Fermatov princíp, pod©a ktorého svetelný lú£ �volí� medzi bodmi A
a B dráhu odpovedajúcuminimálnemu £asu Tmin. V zmysle uvedenej v²eobecnej de�nície lagrangiánu
môºeme optický ú£inok - veli£inu, ktorá sa minimalizuje - a lagrangián kon²truova´ pomocou optickej
dráhy8

S̃ =

∫ B

A

L̃ dt = cT =

∫ B

A

cdt =

∫ B

A

n(~r)ṙdt =

∫ B

A

n(~r)dl

kde n(~r) = c
ṙ
je index lomu prostredia (pre jednoduchos´ predpokladajme izotropné prostredie), a

dl = ṙdt =
√
ẋ2 + ẏ2 + ż2 dt je in�nitezimálny dráhový úsek. Môºeme v²ak vyuºi´ vo©nos´ v kon-

²trukcii lagrangiánu - pripo£ítajme k L̃ kon²tantu α a vynásobme ho rozmerovou kon²tantou β.
Lagrangián (so �správnym� fyzikálnym rozmerom) potom bude

L (~r, ~̇r) = β
(
n(~r)

√
ẋ2 + ẏ2 + ż2 + α

)
Odpovedajúca kánonická optická hybnos´ má potom zloºky

px =
∂L

∂ẋ
=

βn(~r)ẋ√
ẋ2 + ẏ2 + ż2

py, pz analogicky p2 = p2
x + p2

y + p2
z = (βn)2

£iºe n = p
β
. Optický ú£inok je potom

S =

∫ B

A

L (~r, ~̇r)dt =

∫ B

A

(pxẋ+ pyẏ + pz ż + βα) dt =

∫ B

A

(pxdx+ pydy + pzdz + βαdt)

8Takto de�nované veli£iny v²ak nemajú �správny� fyzikálny rozmer, £o je vyjadrené symbolom ∼.
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Odtia© dostávame

∂S

∂x
= px py, pz analogicky ⇔ ∇S = ~p (resp. |∇S̃| = n(~r) )

Táto rovnica9 hovorí, ºe svetelný lú£ sa ²íri kolmo na plochy S = kon²t., vo formálnej zhode s ²írením
£astice v klasickej mechanike. Z de�nície v²ak platí L = pjẋj − H (kde sme formálne de�novali
optický hamiltonián). Porovnaním s predchádzajúcim výrazom pre S dostávame

∂S

∂t
= −H = βα

Oba tieto výsledky pre lú£ svetla sú formálne zhodné s rovnicami hamiltonovsko-jacobiovského for-
malizmu pre £asticu. Navy²e, ak uváºime, ºe index lomu dáva do súvisu frekvenciu svetla s vlnovým
£íslom, n = kc

ω
, potom optická hybnos´ je

p = βn = β
c

ω
k

Ak kon²tanty β a α zvolíme rozmerovo �správne� ako β = ~ω
c

a α = −c , dostaneme známe vz´ahy
p = ~k a H = ~ω, pri£om rozmerová kon²tanta ~ je (nie náhodou) zhodná s Planckovou kon²tantou.
Optický ú£inok nadobudne tvar

S = ~
∫ B

A

(~k · d~r − ωdt) =

∫ B

A

(~p · d~r −Hdt)

a plochy S = kon²t. fyzikálne odpovedajú vlnoplochám (plochám kon²tantnej fázy) rovinnej vlny
ψ ∼ eiS/~ (resp. eiS̃/λ̄, kde λ̄ = λ

2π
= 1

k
je tzv. redukovaná vlnová d¨ºka).

V HJR, s ú£inkom S ako ústredným pojmom, sa teda stretáva kvantová mechanika s klasickou
£asticovou i vlnovou mechanikou. Ak dosadíme kvantovomechanickú komplexnú vlnovú funkciu vo©nej
£astice v tvare ψ = eiS/~ (|ψ| = 1) do SCHR, dostaneme (po predelení ψ)

−∂S
∂t

= − i~
2m
∇2S +

(∇S)2

2m
+ V

V limite ~ → 0, £o je klasická limita kvantovej mechaniky, dostávame HJR pre vo©nú £asticu.
Klasická aj kvantová (pravdepodobnostná) vlna v tvare eiS̃/λ̄, resp. eiS/~ predstavujú rovinné vlny
(s kon²tantnou amplitúdou), môºeme im teda priradi´ vlnové d¨ºky, odpovedajúce zmene fázy o 2π:

δS̃

λ̄
= 2π δl =

(
∂S̃

∂l

)−1

δS̃ =
1

n
λ = λn (vlnová d¨ºka v prostredí s n ≥ 1)

δS

~
= 2π δl =

(
∂S

∂l

)−1

δS =
1

p
h = λp (de Broglieova vlnová d¨ºka)

Klasická vlna eiS̃/λ̄ ²íriaca sa priestorom v kaºdom jeho bode interferuje sama so sebou. Jednotlivé po-
myselné dráhy sa lí²ia fázou £iºe hodnotou ú£inku, a interferenciu kon²truktívne �preºijú� len dráhy,
ktorých ú£inky sa lí²ia o menej neº ≈ λ/4. V geometrickej limite λ→ 0 sa smer ²írenia vlny redukuje
na dráhu lú£a kolmú na vlnoplochy (v izotropnom prostredí), sp¨¬ajúcu rovnaké pohybové zákony
ako klasická trajektória £astice (HJR). V kvantovej mechanike sa pomyselná �£astica� (v zmysle prav-
depodobnosti detekcie) ²íri priestorom ako vlna eiS/~, v superpozícii v²etkých dostupných a navzájom
interferujúcich �dráh�. Interferenciu �preºijú� len dráhy, ktorých ú£inky sa lí²ia o menej neº ≈ h/4,

9V alternatívnom tvare je táto rovnica známa ako rovnica eikonálu.
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£o v²ak vzh©adom na malos´ p môºe na mikroskopických ²kálach znamena´ zna£ne ve©ký �koridor�.
V klasickej limite ~→ 0 sa tento �koridor� redukuje na trajektóriu £astice.

Kon²truktívna interferencia (rovinných v¨n) je teda k©ú£om k pochopeniu princípu extremálneho
ú£inku. Relevantný príspevok k integrálu cez v²etky myslite©né dráhy pochádza len z dráh, ktorých
priestorová variácia (vzh©adom na odpovedajúcu vlnovú d¨ºku) vedie k zanedbate©nej zmene fázy.
Ke¤ºe fáza týchto rovinných v¨n je daná práve ú£inkom S, podmienka δS = 0 ur£uje �reálnu�
trajektóriu £astice/lú£a.

I.1.2 Noetherovej teoréma a zákony zachovania.

Lagrangeovsko-hamiltonovský formalizmus je vhodný aj na opis spojitých symetrií, teda transformá-
cií, pri ktorých zmena transforma£nej premennej má spojitú limitu v nule (a vieme teda de�nova´
jej in�nitezimálnu variáciu). Podmienkou kovariantnosti dynamiky daného systému, t.j. zachovania
tvaru jeho pohybovej rovnice pri ur£itej spojitej transformácii (alebo mnoºine transformácií), je in-
variantnos´ ú£inku S =

∫
L dt vzh©adom na túto transformáciu, £iºe δS = δ

∫
L dt = 0, £o je

prirodzene zaistené podmienkou δL = 0.

Pre dráhovú variáciu lagrangiánu izolovaného systému (t.j. takého, v ktorom lagrangián závisí od
£asu len implicitne prostredníctvom qj(t), q̇j(t), £iºe ∂L

∂t
= 0)

δL =
∂L

∂qj
δqj +

∂L

∂q̇j
δq̇j =

ELR

d

dt

∂L
∂q̇j

δqj︸ ︷︷ ︸
 =

d

dt
Q︸︷︷︸ =

symetria
0

kde Q je veli£ina zachovávajúca sa v £ase - tzv. noetherovský náboj.10 Uve¤me príklady noethe-
rovských nábojov základných £asopriestorových symetrií:

Lagrangián vo©nej nerelativistickej £astice o hmotnosti m je L = m(~̇q)2/2. Pri priestorovej translá-
cii, ~q → ~q + ∆~q, je ∂L

∂q̇j
∆qj = mq̇j∆qj. Ke¤ºe ∆~q je ©ubovo©né, noetherovským nábojom je m~̇q = ~p,

£iºe hybnos´ £astice v smere translácie.

Ak translácia vo fyzickom priestore je symetriou lagrangiánu (ú£inku), zachováva sa hybnos´.

Ak je transformáciou rotácia polohového vektora vo©nej £astice ~q v rovine danej normálovým vek-
torom ~n, potom in�nitezimálna zmena je ∆~q = ~n × ~q pre ~n → 0, a teda qj → qj + εjklnkql
(εjkl - Leviho-Civitov symbol). Potom ∂L

∂q̇j
∆qj = pjεjklnkql → (~q × ~p) · ~n, a noetherovským nábojom

je moment hybnosti ~q × ~p = ~L.

Ak rotácia vo fyzickom priestore je symetriou, zachováva sa moment hybnosti.

�asový vývoj - translácia v £ase - lagrangiánu izolovaného systému (pre ktorý ∂L
∂t

= 0) je

dL

dt
=
∂L

∂qj

∂qj
∂t

+
∂L

∂q̇j

∂q̇j
∂t

ELR
=

(
d

dt

∂L

∂q̇j

)
∂qj
∂t

+
∂L

∂q̇j

∂q̇j
∂t

=
d

dt

(
∂L

∂q̇j
q̇j

)
a odtia©

d

dt

(
∂L

∂q̇j
q̇j −L

)
= 0 ⇒ Q =

∂L

∂q̇j
q̇j −L

£o pre vo©nú £asticu vedie na Q = pj q̇j−L = H, £iºe správny (relativistický) vz´ah pre hamiltonián.
Ak do tohto vz´ahu dosadíme relativistický výraz L = −mc2/γ pre vo©nú £asticu, rozvojom do

10Pomenovanie pod©a Emmy Noetherovej.
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Taylorovho radu pre q̇ � c dostaneme nerelativistický hamiltonián H = mc2 + L , v ktorom L
obsahuje len kinetickú energiu, a kon²tantnú pokojovú energiu £asticemc2 môºeme (ale nemusíme)
zahrnú´ do (inak nulovej) potenciálnej energie ako aditívnu kon²tantu.

Ak translácia v £ase je symetriou, zachováva sa energia.

V²etky tieto závery sú prejavmi Noetherovej teorémy:

Kaºdá spojitá symetria súvisí so zachovávajúcou sa veli£inou.

Prechod od lagrangeovského k hamiltonovskému formalizmu je prechodom od mapovania skúma-
ného systému v kon�gura£nom priestore (zov²eobecnených súradníc) k jeho mapovaniu vo fázovom
priestore (zov²eobecnených súradníc a hybností). �asová zmena ©ubovo©nej funkcie F (qj, pj, t), de�-
novanej na fázovom priestore, je dF

dt
= ∂F

∂qj
q̇j + ∂F

∂pj
ṗj + ∂F

∂t
, z £oho pomocou HR (kap. I.1.1) dostávame

Hamiltonovu evolu£nú rovnicu
dF

dt
= {F,H}+

∂F

∂t

kde {F,G} =
∑

j

(
∂F
∂qj

∂G
∂pj
− ∂F

∂pj

∂G
∂qj

)
sú Poissonove zátvorky (PZ), pre ktoré platí

{F,G} = −{G,F} {qj, pk} = δjk {qj, qk} = 0 {pj, pk} = 0

kde posledné tri výrazy sú tzv. fundamentálne PZ. Ak funkcia F nezávisí od £asu explicitne,
∂F
∂t

= 0 (£iºe závisí od £asu len implicitne, prostredníctvom qj(t), pj(t)), a sú£asne {F,H} = 0 - vtedy
hovoríme, ºe F a H poissonovsky komutujú11 - funkcia F sa zachováva v £ase.

V izolovanom systéme sa veli£ina poissonovsky komutujúca s hamiltoniánom zachováva v £ase.

Pomocou PZ môºeme HR z kap. I.1.1 vyjadri´ v tvare

{qj, H} =
∂H

∂pj
{pj, H} = −∂H

∂qj

Dvojice súradníc fázového priestoru (qj, pj) tvoria kánonicky konjugované páry.

Ilustrujme tieto závery na príklade fázového priestoru x − px: Stav hmotného
bodu v kaºdom okamihu odpovedá bodu (x(t), px(t)) vo fázovom priestore. �asový
vývoj stavu - tzv. tok na fázovom priestore - je daný evolu£nými rovnicami

dx

dt
= {x,H} dpx

dt
= {px, H}

£o vo v²eobecnosti odpovedá k©ukatej trajektórii na obr. Hovoríme, ºe

hamiltonián generuje (prostredníctvom PZ) tok (v £ase) na fázovom priestore.

Ak {px, H} = 0, potom dpx
dt

= 0 - hybnos´ sa zachováva v £ase. Je zrejmé, ºe £asovému vývoju
s px = kon²t. odpovedá vodorovná trajektória vo fázovom priestore na obr. - translácia polohy x.
Obdobne, ak {x,H} = 0, potom x = kon²t. (zvislá trajektória) - £asový vývoj odpovedá translácii
v hybnostnom priestore px.

Hamiltonián H(qj, pj) je v²ak len jednou (aj ke¤ najvýznamnej²ou) z moºných funkcií na fázovom
priestore. V skuto£nosti akáko©vek funkcia G(qj, pj), de�novaná na fázovom priestore, generuje na

11Presnej²ia formulácia znie �komutujú v zmysle PZ �.
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¬om prostredníctvom PZ tok stavu (qj, pj) pozd¨º odpovedajúcej - konjugovanej premennej θ tak, ºe
platí

dqj
dθ

= {qj, G}
dpj
dθ

= {pj, G}

Súradnice fázového priestoru môºeme vyjadri´ ako funkcie tejto premennej, qj(θ), pj(θ), £iºe platí
d
dθ

=
∑

j

(
dqj
dθ

∂
∂qj

+
dpj
dθ

∂
∂pj

)
, odkia© dostávame

dqj
dθ

=
∂G

∂pj

dpj
dθ

= −∂G
∂qj

O£ividne, ak G = H, potom θ = t. Ak G = px, potom

dx

dθ
= {x, px} = 1

dpx
dθ

= {px, px} = 0 ⇒ θ = x

Znamená to, ºe px generuje tok pozd¨º x, teda

hybnos´ generuje (prostredníctvom PZ) priestorovú transláciu.

Obdobne, ak G = x, potom dpx
dθ

= {px, x} = −1 a teda θ = −px

priestorová súradnica generuje (prostredníctvom PZ) transláciu v hybnostnom priestore.

Kánonickým párom zov²eobecnených súradníc fázového priestoru (qj, pj) je aj (ϕj, Lj), £iºe pár uhol
oto£enia-moment hybnosti (kolmý na rovinu oto£enia), a platí teda, ºe

zloºky momentu hybnosti generujú (prostredníctvom PZ) priestorové rotácie okolo príslu²ných osí.

�ubovo©ná funkcia na fázovom priestore teda generuje (prostredníctvom PZ) ur£itú transformáciu
stavu. Z h©adiska symetrií má v²ak výsadné postavenie hamiltonián, generujúci transláciu v £ase -
£asový vývoj: Napr. pre zov²eobecnenú hybnos´ zachovávajúcu sa v £ase platí

0︸︷︷︸ =
dpj
dt

= {pj, H} = −{H, pj} = − ∂H

∂qj︸︷︷︸
£o je podmienka transla£nej/rota£nej (ak pj → Lj) invariancie hamiltoniánu.12 Platí preto, ºe ak je
priestorová translácia/rotácia symetriou hamiltoniánu, veli£ina, ktorá ju generuje - hybnos´/moment
hybnosti - sa zachováva. Vo v²eobecnosti,

ak je spojitá transformácia symetriou hamiltoniánu, zachováva sa jej generujúca veli£ina.

Toto je Noetherovej teoréma v hamiltonovskom formalizme. Ak je transformácia-symetria generovaná
samotným hamiltoniánom, G = H, dostneme HR.

I.1.3 Operátory a generátory transformácií.

Pod©a predchádzajúcej kapitoly pre ©ubovo©nú funkciu F (qj, pj), de�novanú na fázovom priestore,
platí

{F, pj} =
dF

dqj
{F,H} =

dF

dt

12Rovnos´ {H, pj} = ∂H
∂qj

interpretujeme ako priestorovú transláciu hamiltoniánu generovanú hybnos´ou.
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Význam PZ môºeme teda zov²eobecni´ pre ©ubovo©ný konjugovaný pár G, θ (pôsobiaci na funkciu
F ) ako

{F (qj, pj), G(qj, pj)} =
dF

dθ

£iºe PZ ur£ujú vývoj/tok funkcie F (qj, pj) vo fázovom priestore pri transformácii premennej θ, ge-
nerovanej funkciou G(qj, pj). De�níciu PZ môºeme prepísa´ do tvaru

{F,G} =
∑
j

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
=
∑
j

(
∂G

∂pj

∂

∂qj
− ∂G

∂qj

∂

∂pj

)
︸ ︷︷ ︸F = OGF

kde OG = {· , G} =
d

dθ

má význam operátora - generátora transformácie generovanej funkciou G, pôsobiaceho13 na fun-
kciu F . Ak G = pj a teda θ = qj, resp. ak G = qj a teda θ = −pj, potom

Opj =
∂

∂qj
resp. Oqj = − ∂

∂pj

£o odpovedá generátorom translácií súradnice resp. hybnosti. Ak G = H a teda θ = t, potom (z HR)

OH = ... = q̇j
∂

∂qj
+ ṗj

∂

∂pj
=

d

dt

(
∂F

∂t
= 0

)
Platí teda, ºe ©ubovo©ná funkcia G, de�novaná na fázovom priestore, vytvára prostredníctvom PZ
generátor OG odpovedajúci derivácii pod©a jej príslu²nej (konjugovanej) premennej θ. Uvaºujme te-
raz inú funkciu F tejto premennej θ (konjugovanej ku G), a de�nujme v²eobecnú spojitú lineárnu
transformáciu

F (θ)→ AθF (θ) = F (θ + δθ)

£iºe transláciu funkcie14 F (θ) pozd¨º premennej θ, kde Aθ je operátor transformácie. Potom

dF (θ)

dθ
= lim

δθ→0

F (θ + δθ)− F (θ)

δθ
= lim

δθ→0

Aθ − 1

δθ
F (θ) = OGF (θ)

£iºe OG je generátorom transformácie Aθ. Pre in�nitezimálnu transformáciu o δθ → 0 platí

Aθ ∼= 1 + δθOG = 1 + δθ{· , G}

Kone£ná transformácia o ∆θ je (N →∞)-násobným opakovaním in�nitezimálnej transformácie δθ,

Aθ(∆θ) = [Aθ(δθ)]N =

[
1 +

∆θ

N
OG
]N

→
N→∞

e∆θOG = e∆θ{· ,G} =

= 1 + ∆θ{· , G}+
(∆θ)2

2!
{{· , G}, G}+ ... = 1 + ∆θ

(
d

dθ

)
∆θ→0

+
(∆θ)2

2!

(
d2

dθ2

)
∆θ→0

+ ...

£o je operátor Taylorovho rozvoja transformovanej funkcie F (θ + ∆θ) = AθF (θ).

Kaºdej funkcii G(qj, pj) de�novanej na fázovom priestore môºeme teda priradi´ operátor OG, ktorý
je generátorom ur£itej spojitej transformácie Aθ (pozd¨º konjugovanej premennej θ).

13Hovoríme, ºe G pôsobí na F prostredníctvom PZ, £iºe operátora {· , G}.
14Rozli²ujme transláciu funkcie de�novanej na fázovom priestore od translácie bodu fázového priestoru.
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Stojí za pov²imnutie, ºe ak dve rôzne funkcie G1, G2 poissonovsky nekomutujú, {G1, G2} = G3 6= 0,
potom pre operátor priradený ich PZ platí15

OG3 = O{G1,G2} = OG1OG2 −OG2OG1 = [OG1 ,OG2 ]

£o je komutátor východiskových generátorov.

Ak napr. G1 = px a G2 = x, potom OG1 ,OG2 sú generátormi posunutí
súradnice x a hybnosti px vo fázovom priestore, pri£om platí

{x, px} = 1 a teda OG3 = O1 = ... = 0

£iºe posunutia súradnice a odpovedajúcej hybnosti v klasickej fyzike komu-
tujú! Z vlastností PZ v²ak tieº vo v²eobecnosti vyplýva (Dodatok C)

{F,G} =
1

λ
[F,G]

kde λ je kon²tanta (£íslo) rozmeru ú£inku. Ke¤ºe táto rovnica obsahuje funkcie (nie operátory), ich
komutátor na pravej strane musí by´ nulový, a to aj v prípade nenulových PZ. Znamená to, ºe kla-
dieme λ = 0. Uvedený vz´ah (hoci triviálny v klasickej mechanike) je východiskom pre prechod ku
kvantovej mechanike. Veli£inu λ interpretujeme ako ú£inok (vplyv) �merania� (stanovenia hodnoty)
F na hodnotu G, resp. merania G na hodnotu F . V klasickej mechanike takýto ú£inok neuvaºujeme,
λ→ 0 (pripú²´ame ideálne meranie), £o nás opráv¬uje reprezentova´ dynamické premenné v danom
stave prostredníctvom £ísel - hodnôt funkcií. Veli£iny ako energia, poloha, hybnos´ £i moment hyb-
nosti ur£ujú (pohybový) stav telesa, a prira¤ujeme im sú£asne v kaºdom okamihu konkrétne hodnoty,
bez oh©adu na to £i je daná veli£ina predmetom merania. V kvantovej mechanike v²ak takýto prístup
zlyháva - hodnoty týchto veli£ín sú (£asto nekomutujúcimi) produktmi merania, pri£om kaºdé me-
ranie ovplyv¬uje stav kvantového objektu. Priradenie konkrétnej hodnoty niektorej z veli£ín je teda
transformáciou stavu, v kvantovom formalizme vyjadrenou diferenciálnym operátorom tejto veli£iny,
Ĝ ∼ ∂

∂θ
(v θ-reprezentácii).16 (Prechod od klasických generátorov OG ku kvantovomechanickým ope-

rátorom a od PZ ku komutátorom je predmetom nasledujúcej kapitoly.) Z uvedeného v²ak vidíme,
ºe hoci v klasickej limite takúto transformáciu zanedbávame, v jej formalizme je prítomná práve
v podobe generátorov OG (PZ) prislúchajúcich jednotlivým veli£inám. Kvôli správnemu chápaniu
vz´ahu klasickej a kvantovej mechaniky je vhodné vníma´ tieto klasické �stavové� veli£iny (ur£ujúce
klasický pohybový stav) v²eobecnej²ie ako veli£iny generujúce spojité transformácie stavu (pozd¨º
konjugovaných premenných θ), a to prostredníctvom PZ.17

Na záver e²te analyzujme význam dôleºitých (netriviálnych) PZ. Uvaºujme pritom pasívnu transfor-
máciu (Dodatok A), pri ktorej generátor OG = { ·, G} netransformuje funkciu F (na ktorú pôsobí),
ale fázový priestor (pozd¨º odpovedajúcej premennej θ):

{qj, pk} = { ·, pk}qj =
∂

∂qk
qj = δjk resp. {qj, pk} = −{pk, qj} = −{ ·, qj}pk = −

(
− ∂

∂pj

)
pk = δjk

Táto PZ nám hovorí, ako sa mení daná zloºka polohy/hybnosti, ak posúvame fázový priestor v jej
smere. Kartézske zloºky momentu hybnosti Lk generujú prostredníctvom OLk = { ·, Lk} rotáciu

15Pre PZ totiº platí Jacobiho identita {f, {f1, f2}} = {{f, f1}, f2}+ {{f2, f}, f1} = {{f, f1}, f2} − {{f, f2}, f1}.
16Napr. p̂x = ~

i
∂
∂x v x-reprezentácii, x̂ = −~

i
∂
∂px

v px-reprezentácii, a pod.
17Pojem energia je ústredným pojmom fyziky. Moderná fyzika vníma elementárne £astice (elektróny, fotóny,...) ako

�balíky� energie príslu²ného po©a (ako uvidíme v ¤al²om texte). Vyvstáva teda otázka, ako fyzikálne de�nova´ pojem
energia (ako základnú substanciu hmoty). Tradi£ná de�nícia - schopnos´ kona´ prácu - vystihuje len ur£itý aspekt
energie. Kontext symetrií ponúka iný poh©ad: Energia = schopnos´ existova´ (zachováva´ sa) v £ase - premiest¬ova´
sa pozd¨º £asovej osi. (Fotón, ktorý stratí svoju energiu, prestane existova´. V¤aka ekvivalencii E = γmc2 to platí aj
pre £astice s nenulovou pokojovou hmotnos´ou m.) Analogicky, hybnos´/moment hybnosti je schopnos´ priestorovej
translácie/rotácie.
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roviny jl (fázového priestoru) okolo osi k. Platí

{Lj, Lk} = { ·, Lk}Lj = OLkLj = ... = εjklLl

£o môºeme interpretova´ ako pooto£enie osi rotácie j generátorom OLk (okolo osi k) do smeru l,

Lj → AδθkLj ∼= (1 + δθk{ ·, Lk})Lj = Lj + δθk{Lj, Lk} = Lj + δθk εjklLl

Ke¤ºe OLl = O{Lj ,Lk} = [OLj ,OLk ] 6= 0, rotácie okolo rôznych osí v klasickej fyzike nekomutujú!18

Platí tieº
{pj, Lk} = { ·, Lk}pj = εjklpl {qj, Lk} = { ·, Lk}qj = εjklql

£o znamená, ºe pôvodné smery j (potenciálnych) translácii polohy/hybnosti sú pooto£ené v rovine
jl (okrem prípadov translácií v smere osi oto£enia, k = j).

� � � � �

Dôleºité závery:

• Princíp extremálneho ú£inku je nosným princípom modernej fyziky. Zaloºený je na kon²truktívnej
interferencii v²etkých pomyselných priestorových �trajektórií� objektov ako rovinných v¨n, ktorých
fázy sú ur£ené ú£inkom.

• Zo znalosti lagrangiánu systému dokáºeme pomocou ELR zostavi´ pohybovú rovnicu systému.
V praxi v²ak práve lagrangián zostavujeme tak, aby jeho ELR viedla k �správnej� pohybovej rovnici.

• Kaºdá spojitá £asopriestorová transformácia-symetria súvisí so zachovávajúcou sa veli£inou, ktorá
túto transformáciu generuje.

• Funkcie de�nované na fázovom priestore generujú transformácie na tomto priestore prostredníctvom
PZ.

• Veli£iny, ktorých PZ s hamiltoniánom je nulová, sa zachovávajú v £ase (v izolovanej sústave).
Transformácie nimi generované sú symetriami hamiltoniánu.

• Posunutia súradníc a hybností v klasickej mechanike komutujú, kým rotácie s inými rotáciami £i
posunutiami vo v²eobecnosti nie.

I.2 Symetrie v kvantovej mechanike.

Pod©a predchádzajúceho textu symetrie vzh©adom na spojité transformácie sú späté so zachováva-
júcimi sa veli£inami G, ktoré generujú tieto transformácie. V kvantovej mechanike v²ak dynamické

18Pooto£enia okolo rôznych osí nekomutujú.
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premenné nemajú fyzikálny zmysel mimo kontext merania,19 a nahrádzame ich hermitovskými
operátormi Ĝ so spektrami reálnych vlastných hodnôt ako mnoºinami realizovate©ných výsledkov
meraní. Stav skúmaného objektu (£astice £i systému £astíc) je reprezentovaný stavovým vektorom
|ψ〉 �ºijúcim� v abstraktnom komplexnom priestore v²etkých realizovate©ných stavov.20

Kaºdý operátor transformuje stav, na ktorý pôsobí.

Pre ur£ité stavy je v²ak táto transformácia symetriou (vzh©adom na generujúcu veli£inu, prislú-
chajúcu operátoru) - takéto stavy sú vlastnými stavmi daného operátora, a zachovávajúcou sa
veli£inou (v zmysle Noetherovej teorémy) je vlastná hodnota tohto operátora, príslu²ná k danému
vlastnému stavu,21

Ĝ|ψn〉 = Gn|ψn〉
V tejto kapitole preskúmame vz´ah stavových vektorov a na nich pôsobiacich operátorov ku £aso-
priestorovým transformáciám-symetriám.

I.2.1 Spojité priestorové symetrie.

Rozloºenie (normovanej) pravdepodobnosti namerania22 £astíc pozd¨º osi x je

P(x) = |ψ(x)|2 = |〈x|ψ〉|2

kde |x〉 a 〈x| = |x〉∗ sú navzájom komplexne zdruºené stavy s ostrou hodnotou polohy. Nech Ux je
operátor priestorovej translácie systému v smere x. Ak má by´ táto transformácia symetriou, nesmie
sa rozloºenie pravdepodobnosti zmeni´,

|ψ〉 → |ψ′〉 = Ux|ψ〉 P(x)→ P(x′) = P(x)

Ak |x〉 → Ux|x〉, potom23 〈x| → 〈x|U †x, a teda 〈x|ψ〉 = 〈x|U †xUx|ψ〉 ⇒ U †xUx = 1 = U−1
x Ux.

Takúto transformáciu nazývame unitárnou.

V kvantovej mechanike symetrie reprezentujeme unitárnymi transformáciami.

V prípade spojitej in�nitezimálnej translácie δx→ 0 musí by´ operátor Ux blízky jednotkovému, £iºe
Ux ∼= 1+δxĜx , kde Ĝx je generátor tejto spojitej translácie. Translácia sústavy o kone£né ∆x potom
pre stav |ψ〉 znamená (podobne ako v kap. I.1.3, OG → Ĝ)

|ψ〉 → |ψ′〉 = Ux|ψ〉 = e∆xĜx |ψ〉 ∼=
∆x→0

(
1 + ∆xĜx

)
|ψ〉

Pre ©ubovo©nú merate©nú veli£inu24 reprezentovanú operátorom F̂ je pri transla£nej symetrii inva-
riantnou jej stredná hodnota

〈ψ|F̂ |ψ〉 = 〈ψ|
(
U−1
x Ux︸ ︷︷ ︸

)
1

F̂

(
U−1
x Ux︸ ︷︷ ︸

)
1

|ψ〉 = 〈ψ|U−1
x︸ ︷︷ ︸

〈ψ′|

(
UxF̂ U−1

x

)
Ux|ψ〉︸ ︷︷ ︸
|ψ′〉

= 〈ψ′|F̂ ′|ψ′〉

19V ²tandardnej interpretácii kvantová mechanika poskytuje len predpovede týkajúce sa moºných výsledkov experi-
menov, akéko©vek iné otázky leºia za hranicami fyziky. Inými slovami, kvantová mechanika neopisuje aký Vesmír je,
ale £o sa o ¬om môºeme dozvedie´ prostredníctvom na²ich meraní (t.j. experimentov nami navrhovaných �v na²om
jazyku�).

20Stav je jednozna£ne charakterizovaný smerom stavového vektora v tomto (Hilbertovom) priestore, bez oh©adu
na ve©kos´ vektora. Hovoríme, ºe stav je lú£om v Hilbertovom priestore. Kaºdý stav pritom môºeme vyjadri´ ako
superpozíciu iných stavov. Po£et nezávislých bázových stavov ur£uje dimenzionalitu tohto priestoru.

21Takýto stav je moºným výsledkom merania. Bezprostredne opakovanými meraniami sa hodnota veli£iny nemení, £o
v²ak neznamená nulový ú£inok meraní na tento stav - znamená len, ºe transformácia spôsobená meraním je symetriou.

22V ²tandardnej interpretácii meranie polohy £astice túto polohu neodha©uje ale vytvára.
23 U†x je operátor hermitovsky zdruºený ku Ux.
24angl. observable
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Znamená to, ºe daný operátor sa transformuje ako

F̂ → F̂ ′ = UxF̂ U−1
x

Potom pre in�nitezimálne posunutie dostávame (s oh©adom na poradie operátorov a zanedbaním
£lena ∼ (δx)2)

F̂ ′ = UxF̂ U−1
x
∼= (1 + δxĜx)F̂ (1− δxĜx) = ... = F̂ − δx[F̂ , Ĝx]

Pasívna transformácia sústavy v smere x o δx znamená pre transformovaný operátor F̂ ′ = F̂ |x−δx,
a preto

∂F̂

∂x
!

=
F̂ − F̂ ′

δx

∣∣∣∣∣
δx→0

= [F̂ , Ĝx]

V analógii s klasickou mechanikou, kde priestorová translácia je generovaná hybnos´ou, kladieme
Ĝx = 1

i~ p̂x, kde ~ je univerzálna rozmerová (Plancková) kon²tanta, a imaginárna jednotka i zabez-
pe£uje hermitovos´ operátora hybnosti.25 Potom

∂F̂

∂x
=

1

i~
[F̂ , p̂x]

(
£o odpovedá klasickému

∂F

∂x
= {F, px}

)
Prechod od klasickej ku kvantovej mechanike je prechodom od funkcií k operátorom, £iºe

∂F

∂x
= {F, px} =

1

λ
[F, px] → ∂F̂

∂x
=

1

i~
[F̂ , p̂x] λ→ i~

Ak napr. poloºíme F̂ = x̂ = x (súradnicová reprezentácia, kap. I.2.2), dostávame ∂F̂
∂x

= 1̂ (jednotkový
operátor). Nenulová PZ teda prejde na {x, px} = 1→ 1̂, a fundamentálny kánonický komuta£ný
vz´ah bude [x̂, p̂x] = i~1̂, resp. vo v²eobecnom tvare26

[q̂j, p̂k] = i~δjk1̂

Priradenie λ → i~ (v klasickej mechanike λ → 0) znamená, ºe vplyv merania (ur£enia hodnoty)
dynamickej veli£iny na stav objektu uº nemôºeme ignorova´, pri£om jeho minimálny ú£inok je ≈ ~.

Generátor posunutia p̂ teda pôsobí na operátor F̂ prostredníctvom komutátora (namiesto PZ v kla-
sickej mechanike), kým na stavový vektor pôsobí priamo27

F̂ ′ = UxF̂U−1
x = ei∆x[ ·, p̂x]/~F̂ ∼= (1− i∆x[p̂x, · ]/~)F̂

25Pre generátor Ĝ unitárnej transformácie platí hermitovos´

U†xUx ∼= (1− δx Ĝ†)(1 + δx Ĝ) ∼= 1 + δx(Ĝ− Ĝ†) !
= 1 ⇒ Ĝ = Ĝ†

26Napriek tomu, ºe ide o operátorovú rovnos´, jednotkový operátor 1̂ na pravej strane obvykle vynechávame.
27Klasickým analógom kvantovomechanického stavu sú zov²eobecnené súradnice fázového priestoru qj , pj - jedno-

zna£ne ur£ujú stav objektu. In�nitezimálna transformácia klasického stavu je teda transformáciou jeho súradníc vo
fázovom priestore,

∂qk
∂qj

= Opjqk = {qk, pj} = δkj
∂pk
∂qj

= Opjpk = {pk, pj} = 0

∂qk
∂pj

= −Oqjqk = −{qk, qj} = 0
∂pk
∂pj

= −Oqjpk = −{pk, qj} = δkj

Nenulové PZ znamenajú, ºe kánonicky zdruºené páry qj , pj nie sú nezávislé. Znamená to tieº, ºe vz´ah [Oqj ,Opj ] = 0
(kap. I.1.3) je len klasickým priblíºením (~→ 0) v²eobecnej²ieho vz´ahu [q̂k, p̂j ] = i~δkj , £iºe transformácie kvantovo-
mechanického stavu v súradnici a konjugovanej hybnosti uº nekomutujú.
Klasickým analógom kvantovomechanického operátora je funkcia zov²eobecnených súradníc (a hybností) fázového

priestoru. Na rozdiel od stavu, operátory generujúce príslu²nú transformáciu pôsobia na iné funkcie/operátory pro-
stredníctvom PZ/komutátorov.
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|ψ′〉 = Ux|ψ〉 = e−i∆x p̂x/~|ψ〉 ∼= (1− i∆xp̂x/~) |ψ〉

I.2.2 Princíp neur£itosti.

Kánonický komuta£ný vz´ah z predchádzajúcej kapitoly nezávisí od reprezentácie - výberu bázy,
v ktorej kon²truujeme stavové vektory. Súradnicová reprezentácia je taká, v ktorej stavové vek-
tory |ψ〉 sú superpozíciami ortogonálnych vlastných stavov |q〉 operátora q̂, teda operátora ur£enia
súradnice, s amplitúdami (komplexnými £íslami) ψq = 〈q|ψ〉. Platí

〈q′|q̂|q〉 = qδ(q − q′) q̂|q〉 = q|q〉 £iºe q̂ = q

Prostredná rovnica (veta o vlastnom stave operátora a jemu príslu²nej vlastnej hodnote) predstavuje
transformáciu-symetriu. Stav po transformácii operátorom q̂ je v tejto reprezentácii identický28 s pô-
vodným stavom |q〉, a v zmysle Noetherovej teorémy sa zachováva veli£ina generujúca transformáciu,
vyjadrená vlastnou hodnotou q. Treba v²ak ma´ na pamäti, ºe v kvantovom svete kaºdá interakcia
znamená zmenu stavu - táto transformácia je teda symetriou len vzh©adom na premennú q, £o sa
prejaví práve v tejto reprezentácii. Zmena stavu v tomto prípade nastáva v konjugovanej premennej
p, ako znázor¬ujú zvislé trajektórie (zachovávajúce polohu) na obr. v kap. I.1.2.29

V tejto reprezentácii uvaºujme operátor posunutia súradnice ∂q = ∂
∂q
. Jeho komuta£ný vz´ah s ope-

rátorom q̂ = q je

(∂q q̂ − q̂∂q)ψq = ∂q (qψq)− q(∂qψq) = ... = ψq pre kaºdé ψq, £iºe [∂q, q̂] = 1

£o je (aº na faktor i~) zhodné s kánonickým komuta£ným vz´ahom. To nás opráv¬uje de�nova´
kánonicky zdruºený operátor (zov²eobecnenej) hybnosti, ktorý je generátorom priestorovej translácie,
v súradnicovej reprezentácii prostredníctvom operátora posunutia súradnice ako

p̂ = −i~∂q

Rovnaký vz´ah získame aj Taylorovým rozvojom transformovanej vlnovej funkcie (s operátorom p̂
v úlohe generátora in�nitezimálneho posunutia, pri£om stále uvaºujeme pasívnu transformáciu)

ψq → ψq−δq = Uqψq =

(
1− iδq p̂/~︸ ︷︷ ︸+...

)
ψq ψq−δq =

(
1− δq ∂q︸︷︷︸+...

)
ψq

Generátorom posunutia v smere x (q = x) je x-ová zloºka hybnosti s operátorom p̂x = −i~∂x, generá-
torom rotácie v smere ϕ (q = ϕ) okolo danej osi je príslu²ná zloºka momentu hybnosti s operátorom
L̂ = −i~∂ϕ.

V hybnostnej reprezentácii diagonalizujeme operátor hybnosti, t.j. stavové vektory kon²truujeme
ako superpozície ortogonálnych vlastných stavov |p〉 operátora p̂ s amplitúdami ψp = 〈p|ψ〉. Platí

〈p′|p̂|p〉 = pδ(p− p′) p̂|p〉 = p|p〉 p̂ = p

Opä´ ide o symetriu, tentokrát vzh©adom na �meranie� hybnosti. Takého transformácie odpovedajú
vodorovným trajektóriám (zachovávajúcim hybnos´) na obr. v kap. I.1.2, £iºe ide o priestorovú sy-
metriu hybnostných stavov.

28Vynásobenie reálnym £íslom nemení stav v Hilbertovom priestore.
29Transformácia operátorom q̂ odpovedá meraniu polohy. Kaºdé meranie polohy vyºaduje �dotyk� meraného objektu

(trebárs len svetlom - fotónmi), a kaºdý dotyk je transférom hybnosti.

14



Analogickým spôsobom sa dá ukáza´, ºe v tejto reprezentácii kánonickým komuta£ným vz´ahom
vyhovuje operátor kánonicky zdruºenej súradnice ako generátor posunutia v hybnostnom priestore,
v tvare

q̂ = i~∂p
V oboch týchto reprezentáciách je nekomutatívnos´ kánonicky zdruºených párov súradnica-hybnos´
fyzikálne zrejmá: Vºdy jeden z operátorov manipuluje tou istou dynamickou premennou, ktorú druhý
operátor �xuje - na poradí týchto úkonov teda záleºí.

Vzájomný súvis oboch týchto reprezentácií vyjadruje aj amplitúda ich �prekryvu� 〈q|p〉 (skalárny
sú£in, £iºe priemet jedného vektora do druhého). Platí

p|p〉 = p̂|p〉 ⇒ p〈q|p〉 = −i~∂q〈q|p〉

£o je diferenciálna rovnica s rie²ením 〈q|p〉 = Ceipq/~ (C je normovacia kon²tanta). Vlnové funkcie
v oboch reprezentáciách sú30

ψq = 〈q|ψ〉 =

∫ ∞
−∞
〈q|p′〉〈p′|ψ〉dp′ = C

∫ ∞
−∞

eip
′q/~ ψp′ dp

′

ψp = 〈p|ψ〉 =

∫ ∞
−∞
〈p|q′〉〈q′|ψ〉dq′ = C

∫ ∞
−∞

e−iq
′p/~ ψq′ dq

′

Vidíme, ºe vz´ahmi medzi týmito kánonicky konjugovanými reprezentáciami sú Fourierove transfor-
mácie.31 Potreba výberu konkrétnej reprezentácie (pri konfrontovaní s výsledkami meraní) v kvantovej
mechanike znamená výber �otázky, ktorú kladieme Prírode�, a odzrkad©uje neredukovate©nú úlohu
pozorovate©a. Naproti tomu, klasická mechanika úlohu pozorovate©a neuvaºuje, merania súradnice
a odpovedajúcej hybnosti preto komutujú, £o umoº¬uje jednotnú reprezentáciu prostredníctvom £ísel
q, p namiesto operátorov.

Prechod od klasickej ku kvantovej mechanike je teda prechodom od dynamických premenných a ich
PZ k ich operátorom a ich komutátorom, s multiplika£ným faktorom i~. Tejto procedúre hovoríme
kánonické kvantovanie. Fundamentálne kánonické komuta£né vz´ahy úzko súvisia so symetriami
matematickej ²truktúry klasickej aj kvantovej mechaniky. V klasickej hamiltonovskej mechanike po-
známe tzv. kánonické transformácie súradníc fázového priestoru, (qj, pj)→ (q′j, p

′
j), pri ktorých sa

zachováva tvar HR (teda PZ). Konjugované páry súradnica-hybnos´ s nenulovými PZ sa pri týchto
transformáciách netransformujú nezávislo na sebe (£omu odpovedajú kánonické komuta£né vz´ahy
medzi ich kvantovomechanickými operátormi).

�Recept� na kánonické kvantovanie môºeme aplikova´ aj na klasické PZ medzi zloºkami momentu
hybnosti (kap. I.1.3), £o vedie na komuta£né vz´ahy pre operátory32

[L̂j, L̂k] = i~εjklL̂l

Majme pritom na pamäti, ºe operátory L̂j sú generátormi rotácií.

30Prvé z integrálov znamenajú, ºe amplitúda �preklopenia� stavu |ψ〉 do stavu |q〉 resp. |p〉 je daná superpozíciou
prechodov cez v²etky dostupné �medzistavy� |p′〉 resp. |q′〉.

31Fourierova transformácia dáva do súvisu priestorovú (∆r) a vlno£tovú (∆k) ²írku vlnového balíku, £o v kvan-
tovomechanickom kontexte ur£uje limit pre sú£in neur£itostí polohy a hybnosti de Broglieovej vlny-£astice. Takýto
vlnovo-£asticový poh©ad na princíp neur£itosti je ekvivalentnou alternatívou k ná²mu prístupu z poh©adu symetrií,
vychádza v²ak z netriviálneho vlnovo-£asticového dualizmu. Postup zaloºený na transformáciách-symetriách klasickej
aj kvantovej mechaniky ºiaden takýto predpoklad nevyºaduje (a je teda v²eobecnej²í).

32Tieto vz´ahy dostaneme aj dosadením operátorov polohy a hybnosti (v konkrétnej reprezentácii) do klasického
vz´ahu ~L = ~r × ~p.
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I.2.3 �asový vývoj.

Nech Ut je operátor transformácie stavu v £ase, |ψ′〉 = Ut|ψ〉, pri ktorej sa nemení norma stavu 〈ψ|ψ〉.
Znamená to opä´, ºe Ut je unitárna, U−1

t Ut = 1. Potom33

|ψ′〉 − |ψ〉
∆t

=
Ut − 1

∆t
|ψ〉 →

∆t→0

∂|ψ〉
∂t

Pre in�nitezimálnu £asovú transláciu δt→ 0 opä´ de�nujeme unitárny generátor £asového posuvu Ĝ
prostredníctvom vz´ahu Ut ∼= 1 + δtĜ. V analógii s klasickou mechanikou, kde generátorom £asového
vývoja je hamiltonián, volíme Ĝ = 1

i~Ĥ, a teda

Ut ∼= 1− iδtĤ/~ ⇒ Ĥ = i~
∂

∂t

v £om po aplikovaní na |ψ〉 spoznáme Schrödingerovu rovnicu (SCHR) s £asovým vývojom stavu
(£iºe unitárnou transformáciou v £ase)

|ψ′〉 = e−iĤt/~|ψ〉 = Ut|ψ〉 resp. 〈ψ′| = 〈ψ|U−1
t

Pre operátory merate©ných veli£ín v²ak o£akávame (vo v²eobecnosti) £asový vývoj ich stredných
hodnôt, 〈ψ|F̂ |ψ〉. V tzv. Schrödingerovom obraze (kvantovej mechaniky) je tento £asový vývoj
spôsobený £asovým vývojom stavov, s operátormi nezávislými na £ase. Pre strednú hodnotu veli£iny
F pritom platí

〈ψ|F̂ |ψ〉 →
Ut
〈ψ′|F̂ |ψ′〉 = 〈ψ′|Ut︸ ︷︷ ︸

︷ ︸︸ ︷
U−1
t F̂Ut U−1

t |ψ′〉︸ ︷︷ ︸ = 〈ψ|
︷ ︸︸ ︷
U−1
t F̂Ut |ψ〉

Takéto presunutie £asovej závislosti zo stavu na operátor, F̂ ′ = U−1
t F̂Ut , sa nazývaHeisenbergovým

obrazom. Dosadením linearizovaného tvaru Ut (pre δt→ 0) dostávame

F̂ ′ ∼= (1 + iδtĤ/~)F̂ (1− iδtĤ/~) ∼= F̂ +
i

~
δt[Ĥ, F̂ ]

Hamiltonián opä´ generuje £asový posuv operátora dynamickej premennej F̂ (x̂j, p̂j) (nezávisiacej
explicitne od £asu) prostredníctvom komutátora, a tento vývoj je (analogicky ako v kap. I.1.2) daný
Heisenbergovou evolu£nu rovnicou34

F̂ ′ − F̂
δt

→
δt→0

dF̂

dt
=
i

~

[
Ĥ, F̂

]
+
�
�
�S
S
S

∂F̂

∂t

Na druhej strane, ak tento operátor F̂ je generátorom unitárnej transformácie Uθ (napr. priestorového
posuvu), potom

Ĥ → UθĤU−1
θ

Ak táto transformácia je symetriou hamiltomiánu, £iºe Ĥ = UθĤU−1
θ , potom

[Ĥ,Uθ] = 0 ⇒ [Ĥ, F̂ ] = 0

Ke¤ºe hamiltonián de�nuje £asový vývoj systému, symetria systému vzh©adom na danú transformá-
ciu Uθ s generátorom F̂ je symetriou hamiltoniánu, a jej generátor F̂ je veli£inou zachovávajúcou sa
v £ase (v izolovanom systéme).

33Tu prirodzene uvaºujeme £asový vývoj systému, £iºe aktívnu transformáciu.
34Táto rovnica je základným zákonom kvantovej mechaniky, ekvivalentným SCHR. Formálne ide o kánonicky kvan-

tovanú Hamiltonovu evolu£nu rovnicu (pre operátory) z kap. I.1.2.
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Podmienka dF̂
dt

= 0 v²ak neznamená, ºe existuje jediná zachovávajúca sa vlastná hodnota F ! V skuto£-
nosti sa zachováva celé spektrum vlastných hodnôt operátora F̂ aj s rozdelením ich pravdepodobností,
t.j. neur£itos´ou, a strednou hodnotou s £asovým vývojom

0 =
d〈F̂ 〉
dt

=
i

~

〈[
Ĥ, F̂

]〉
+

�
�
�
�@

@
@
@

〈
∂F̂

∂t

〉

�asový vývoj napr. operátora hybnosti v tomto obraze je

dp̂

dt
=
i

~
[Ĥ, p̂]

Opä´ (v analógii so závermi kap. I.1.2), ak priestorová translácia je symetriou hamiltoniánu, £iºe
[p̂, Ĥ] = 0, tak sa zachováva jej generátor p̂. Takými sú aj operátory momentu hybnosti35

[L̂2, Ĥ] = 0 [L̂z, Ĥ] = 0

Samotný £as v nerelativistickej klasickej ani kvantovej mechanike nie je dynamickou premennou ale
parametrom, neprira¤ujeme mu preto operátor, a netvorí s hamiltoniánom kánonicky konjugovaný pár
ani komutátor.36 Nerelativistické teórie nesp¨¬ajú základnú podmienku, kladenú na fundamentálne
teórie - invariantnos´ vo£i zmene (pohybového stavu) pozorovate©a, a vyºadujú si teda zov²eobecne-
nie.

I.2.4 Princíp kauzálnosti.

Jedným z pilierov kaºdej fundamentálnej teórie musí by´ princíp kauzálnosti: �iadna forma hmoty
-energie (ani vyuºite©nej informácie) sa nesmie ²íri´ priestorom vä£²ou rýchlos´ou neº c. �asový
vývoj polohy vo©ného objektu v ²tandardnej (t.j. nerelativistickej) kvantovej mechanike v²ak je
(v Schrödingerovom obraze, kap. I.2.3)

|~r(t)〉 = e−iĤt/~|~r0〉 ~r0 = ~r(0) Ĥ =
(~̂p)2

2m

Amplitúda pravdepodobnosti jeho namerania v okamihu t na konkrétnom mieste ~r je

A(t) = 〈~r |e−iĤt/~|~r0〉 = 〈~r |e−i(~̂p)2t/2m~|~r0〉 = 〈~r |
∫
e−i(~̂p)

2t/2m~ |~p〉〈~p |~r0〉 d3p

kde sme pouºili rozklad do úplnej bázy operátora ~̂p (v ktorej platí
∫
|~p〉〈~p |d3p = 1 ). S vyuºitím

vz´ahov37

~̂p |~p〉 = ~p |~p〉 〈~r |~p〉 = (〈~p |~r〉)∗ =
1

(2π~)3/2
ei~p·~r/~

dostaneme

A(t) = ... =
1

(2π~)3

∫
e−i(~p)

2t/2m~ ei~p·(~r−~r0)/~ d3p = ... =
( m

2πi~t

)3/2

eim·(~r−~r0)2/2~t

£o je výraz nenulový pre ©ubovo©né ~r a t ! Nerelativistická kvantová mechanika teda (pod©a o£a-
kávania) nesp¨¬a princíp kauzálnosti. Ani samotné dosadenie relativistického výrazu pre energiu,

35Ide o veli£iny, ktorých PZ s hamiltoniánom sú nulové.
36Vz´ah neur£itosti energia-£as má iné postavenie neº vz´ahy pre zov²eobecnené hybnosti-súradnice.
37Pripomíname, ºe symetrické/asymetrické fourierovské normovanie je vecou konvencie. V kone£nom výraze v²ak

vystupujú skalárne sú£iny 〈~r |~p〉 aj 〈~p |~r〉, a teda od výberu konvencie nezávisí.
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E2 = (~p)2c2 +m2c4, problém celkom nevyrie²i, lebo povedie k výrazu A(t) ∼ e−mc
√

(~r−~r0)2−(ct)2/~ pre
|~r− ~r0| > ct, £o je síce malé ale principiálne naru²enie kauzality (viac v kap. III.1.6). Rie²ením je aº
dôsledná rozluka s jedno£asticovou fyzikou. Relativistické pohybové rovnice, vybudované na princípe
kauzálnosti (predstavíme ich v £asti III), nebudú ma´ jedno£asticové rie²enia.

I.2.5 Priestorová a £asová inverzia.

Popri vy²²ie uvedených spojitých £asopriestorových symetriách, ktorých generátormi sú hermitovské
operátory zov²eobecnenej hybnosti a energie, dôleºitými z poh©adu fundamentálnych symetrií Prírody
sú aj diskrétne transformácie - parita a prevrátenie £asu (priestorová a £asová inverzia)38

~r →
P
~r ′ = P~r = −~r t→

T
t′ = T t = −t

Rozli²ujeme pôsobenie operátora P na stavy a na operátory dynamických premenných

|ψ〉 →
P
P|ψ〉 ~̂r →

P
P~̂rP−1 = −~̂r ~̂p →

P
P ~̂pP−1 = −~̂p

Fundamentálne komuta£né vz´ahy [x̂j, p̂j] = i~ ostanú zachované len ak PiP−1 = i, £o znamená, ºe
operátor P musí by´ unitárny. Pre tzv. axiálne vektorové operátory orbitálneho a spinového momentu
hybnosti platia transforma£né vz´ahy39

~̂L = ~̂r × ~̂p →
P
P ~̂LP−1 = ~̂L ~̂S →

P
~̂S

Pre operátor T v²ak platí40

~̂r →
T
T ~̂r T −1 = ~̂r ~̂p →

T
T ~̂p T −1 = −~̂p

a fundamentálne komuta£né vz´ahy ostanú zachované len ak T iT −1 = −i, operátor T musí preto
by´ antiunitárny, £o znamená

T ψ(~r, t) = ψ∗(~r,−t) 〈T φ|T ψ〉 = 〈φ|ψ〉∗

Pre operátory momentov hybnosti platí

~̂L →
T
−~̂L ~̂S →

T
− ~̂S

� � � � �

Dôleºité závery:

• Generátormi transformácií v kvantovej mechanike sú operátory, prislúchajúce dynamickým pre-
menným (napr. generátorom priestorovej translácie je operátor hybnosti). Alebo naopak, operátory
dynamických premenných de�nujeme41 ako generátory príslu²ných transformácií: Kaºdý takýto ope-
rátor je nástrojom (generátorom) na ur£itú transformáciu stavov.

38Na rozdiel od spojitých symetrií, na diskrétne symetrie sa Noetherovej teoréma nevz´ahuje.
39Priestorová inverzia otá£a znamienka zloºiek vektorov ~r aj ~p, nezmení teda zloºky ich vektorového sú£inu.
40Oto£enie £asu zmení smer hybnosti, nie v²ak polohu.
41V klasickej mechanike majú dynamické premenné (ako poloha alebo hybnos´) dvojjedinú úlohu: De�nujú stav

systému (bod vo fázovom priestore), a sú£asne generujú transformácie (prostredníctvom PZ). V kvantovej mechanike
stav nie je bodom vo fázovom priestore (nemoºno mu jednozna£ne priradi´ polohu a hybnos´ - mimo aktu merania tieto
pojmy strácajú zmysel). Ostáva teda len moºnos´ de�nova´ operátory prostredníctvom transformácií, ktoré generujú.
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• Operátory/generátory transformácií pôsobia na stavy priamo, na iné operátory prostredníctvom
komutátorov.

• Ak je ur£itá spojitá transformácia (generovaná daným diferenciálnym operátorom) symetriou stavu,
na ktorý pôsobí (t.j. tento stav sa pri transformácii nezmení), nazývame tento stav vlastným sta-
vom tohto operátora-generátora. Dôsledkom spojitej symetrie je zachovávajúca sa veli£ina (noethe-
rovský náboj) - vlastná hodnota operátora príslu²ná k vlastnému stavu.

• Ak ur£itá transformácia nie je symetriou stavu - stav sa transformáciou mení, operátor-generátor
tejto transformácie nemá vlastnú hodnotu prislúchajúcu pôvodnému stavu. V kontexte merania to
znamená, ºe zmeraná hodnota prislúcha novému stavu.

• Nenulovým PZ klasických dynamických premenných prislúchajú nenulové komutátory príslu²ných
operátorov.

• Fundamentálny kánonický komuta£ný vz´ah (kvantovej mechaniky) poloha-hybnos´ úzko súvisí
s transla£nou symetriou: Operátor hybnosti je generátorom posunutia - jeho aplikovaním meníme
polohu.

• Vývoj stavu v kvantovej mechanike je ur£ený hamiltoniánom, a symetrie sú opísané unitárnymi
operátormi, komutujúcimi s hamiltoniánom. Kvantovomechanické operátory veli£ín komutujúcich
s hamiltoniánom sa zachovávajú v £ase (v izolovanej sústave). Nerelativistická kvantová mechanika
v²ak nie je v súlade s princípom kauzálnosti.

• Unitárny operátor parity mení znamienko súradníc aj hybnosti, ale nemení znamienko momentu
hybnosti. Antiunitárny operátor prevrátenia £asu nemení súradnice, ale mení znamienko hybnosti aj
momentu hybnosti.

I.3 Symetrie v teórii polí.

Pri rýchlostiach nezanedbate©ných vo£i rýchlosti svetla vo vákuu c dochádza k relativistickému �mie-
²aniu� priestorových súradníc a £asu pri prechode medzi navzájom sa pohybujúcimi sústavami, ako
dôsledku základných postulátov ²peciálnej teórie relativity. �as teda stráca svoje �výsadné� postave-
nie, a stáva sa súradnicou rovnocennou s priestorovými v jednotnomMinkowského £asopriestore,
na opis ktorého pouºívame ²tvorvektorový formalizmus, ktorého základy na úvod stru£ne zhrnieme.
Hlavnou nápl¬ou tejto kapitoly v²ak je relativistický opis fyzikálnych polí a ich základných symetrií.

I.3.1 Minkowského £asopriestor.

Klasické trajektórie objektov ~r(t) mapujeme do £asopriestoru v podobe tzv.
sveto£iar (angl. world lines). Strmos´ sveto£iary (v dvojrozmernom grafe na
obr.) je d(ct)

dx
= c

vx
, £iºe zvislý úsek sveto£iary odpovedá prípadu vx = 0, kým

sklon 45◦ znamená vx = c, £o je limit pre fyzikálne objekty.

Pre vzdialenos´ dvoch bodov A(~rA, tA) a B(~rB, tB) v Minkowského £asopriestore platí (na rozdiel od
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euklidovského priestoru)42

(∆s)2 = c2(tB − tA)2 − (xB − xA)2 − (yB − yA)2 − (zB − zA)2

�asopriestorové vzdialenosti bodov, pre ktoré (c∆t)2 < (∆~r)2, nazývame priestoru-podobné (angl.
spacelike) - medzi udalos´ami odpovedajúcimi týmto bodom nemôºe by´ prí£inná súvislos´. Nemô-
ºeme ani jednozna£ne ur£i´ ich £asovú následnos´ - pre rôznych pozorovate©ov môºe by´ rôzna. Ak sa
medzi takýmito udalos´ami ²íri £astica, smer jej ²írenia nie je jednozna£ný (môºe by´ emitovaná v A
a absorbovaná v B, alebo naopak).43 Sveto£iara hmotného objektu musí by´ £asu-podobná (angl.
timelike), t.j. (c∆t)2 > (∆~r)2, pre nehmotné objekty platí (c∆t)2 = (∆~r)2 (svetlu-podobné, angl.
lightlike).

Celá ²peciálna teória relativity je postavená na dvoch princípoch/postulátoch - (1) symetrii zákonov
fyziky vzh©adom na transformáciu medzi inerciálnymi sústavami,44 a (2) invariantnosti rýchlosti svetla
vo vákuu, c, pre v²etky takéto sústavy. Podmienka inerciálnosti vedie na lineárnos´ transforma£ných
vz´ahov, a poºiadavka invariantnosti c v sústavách S a S' znamená pre ²írenie svetla dx = cdt
a dx′ = cdt′. Tomu odpovedajú transforma£né vz´ahy £asopriestorových súradníc z laboratórnej
sústavy S do sústavy S' pohybujúcej sa vo£i S kon²tantnou rýchlos´ou v v smere x - tzv. lorentzovský
boost45

x′ = γ(x− vt) t′ = γ
(
t− vx

c2

)
y′ = y z′ = z γ =

1√
1− v2

c2

(resp. v → −v pri opa£nej transformácii S'→S), a vedú na javy
kontrakcie d¨ºky a dilatácie £asu v S' �z poh©adu� S. Lorent-
zovský boost je neeuklidovskou analógiou rotácie súradnicovej
sústavy v 3D, tentokrát v²ak v rovine ct-xj, xj = x, y, z (viac
v kap. II.4.1). Ekvivalentnos´ inerciálnych sústav znamená, ºe
transformované súradnicové osi x′j a ct

′ zostávajú v Minkowského
£asopriestore ortogonálne (£o sa nedá zobrazi´ v euklidovskej
geometrii na obr.), rovnako ako osi xj a ct.

Udalosti A a B, ktoré sú sú£asné ale nesúmiestne v sústave S
(£ervenej na obr.), nie sú sú£asnými v sústave S' (modrej), a
naopak.

Zárove¬ v²ak pre £asopriestorové vzdialenosti udalostí platí

(∆s′)2 = (c∆t′)2 − (∆x′)2 = c2(t′B − t′A)2 − (x′B − x′A)2 =

... = c2(tB − tA)2 − (xB − xA)2 = (∆s)2

Znamená to, ºe

£asopriestorová vzdialenos´ dvoch udalostí nezávisí od vo©by inercialnej sústavy.46

V sústave (£iarkovanej) spojenej s (relatívne) pohybujúcim sa objektom prirodzene platí dr′ = 0 a
teda (ds′)2 = (cdt′)2 pre kaºdý úsek jeho sveto£iary. To nám umoº¬uje stotoºni´ t′ s tzv. vlastným

42V alternatívnej konvencii sú znamienka v²etkých £lenov na pravej strane opa£né.
43Hovoríme o relativite sú£asnosti.
44Inerciálnou nazývame sústavu, v ktorej platí 1. Newtonov zákon (zákon zotrva£nosti).
45Slovenská terminológia pouºíva pre boost termín Lorentzova transformácia, £o je v²ak v²eobecnej²í pojem, zahr¬u-

júci aj priestorové rotácie. Kvôli absencii samostatného slovenského termínu pre boost bude v tomto texte pouºívaný
beºný anglický termín.

46Vzdialenos´ou medzi udalos´ami tu rozumieme ich priamo£iaru £asopriestorovú spojnicu. Naproti tomu £asopries-
torová trajektória objektu medzi týmito udalos´ami je vo v²eobecnosti krivo£iarou.
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£asom objektu,47 τ , ako mierou d¨ºky jeho sveto£iary,48 l′AB =
∫ B
A
ds′

dτ =
ds′

c
=
ds

c
=

√
(dt)2 −

(
d~r

c

)2

l′AB = c

∫ B

A

dτ = c

∫ B

A

√
1−

(
~v(t)

c

)2

dt = c

∫ B

A

dt

γ

(ds je in�nitezimálny úsek sveto£iary pohybujúceho sa objektu z poh©adu sústavy S.) Vidíme, ºe

(dt′ =) dτ =
dt

γ
< dt

teda ºe v pohybujúcej sa sústave plynie £as pomal²ie (prirodzene len relatívne, z poh©adu S).

Vidíme tieº, ºe £as prejdený medzi udalos´ami A a B prirodzene závisí od tvaru sveto£iary spájajúcej
tieto udalosti, a to aj v prípade ~rA = ~rB (£o je rozuzlením tzv. paradoxu dvoj£iat):
�as medzi súmiestnymi udalos´ami A a B na obr., uplynuv²í v nehybnej (labo-
ratórnej) sústave S, je ∆t = tB − tA, a odpovedá vlastnému £asu tejto sústavy.
Naproti tomu vlastný £as v pohybujúcej sa sústave S' (kozmonauta odlietajúceho
a vracajúceho sa na to isté miesto) je ∆t′ < ∆t (znamienko - vo výraze pod od-
mocninou). Vlastné £asy sú mierami d¨ºok sveto£iar, a teda sú prirodzene rôzne.
Neoby£ajné v²ak je, ºe

priama spojnica ©ubovo©ných dvoch udalostí v Minkowského £asopriestore je tou najdlh²ou.49

Tak ako sa pri euklidovskej rotácii zachováva ve©kos´ vektorov a ich skalárny sú£in, zachováva sa
pri rotácii £i booste v Minkowského £asopriestore ve©kos´ a skalárny sú£in tzv. ²tvorvektorov.
Súradnice udalosti v £asopriestore de�nujú jej polohový ²tvorvektor v tzv. kontravariantnom, resp.
kovariantnom zápise50

xµ = (ct, ~r) resp. xµ = (ct,−~r) µ = 0, 1, 2, 3

Kombinácia oboch tvarov zabezpe£uje lorentzovskú invariantnos´ ve©kosti ²tvorvektora de�novaním
skalárneho sú£inu (ur£ujúceho kvadrát jeho ve©kosti)51

xµx
µ = xµxµ = (ct)2 − ~r · ~r

(pri£om sumujeme cez opakujúci sa index µ). Vz´ah medzi kontra- a kovariantným tvarom ²tvorvek-
tora je

xµ = ηµνxν xµ = ηµνx
ν ηµν = ηµν = diag(1,−1,−1,−1) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


kde ηµν je tzv. Minkowského metrika,52 nahrádzajúca euklidovskú metriku, δµν = diag(1, 1, 1, 1),
meniaca jeden tvar ²tvorvektora na druhý.

47Napr. pre ºivú hmotu vlastný £as odpovedá biologickému £asu.
48D¨ºka sveto£iary objektu medzi bodmi A, B je daná trajektóriou v £asopriestore.
49V uvedenej úvahe nejde o relatívnos´ pohybu medzi dvomi inerciálnymi sústavami. Sústava S' je nevyhnutne

neinerciálnou - návrat nie je moºný bez jej zrýchlenia. Pozorovate© v tejto sústave teda poci´uje zotrva£né pseudosily.
50Existuje viacero konvencií v relativistickom ²tvorvektorovom zápise, £o je potrebné zoh©adni´ pri porovnávaní

rôznych textov. Obvykle sa kontravariantný vektor zapisuje ako st¨pcový a kovariantný ako riadkový.
51Kvôli názornosti pripome¬me, ºe a2− b2 = (a+ b)(a− b), £o nám môºe slúºi´ ako �motivácia� pre zápis skalárneho

sú£inu ²tvorvektorov ako kombinácie ich kontra- a kovariantného tvaru.
52V na²ej konvencii je kladným £asový diagonálny £len, v alterntívnej konvencii (−1, 1, 1, 1) sú kladnými priestorové

diagonálne £leny.
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Pri lorentzovskom booste sa vzájomne �mie²ajú� aj iné dvojice veli£ín (skalár + vektor) a vytvárajú
²tvorvektory so zachovávajúcou sa ve©kos´ou a rovnakými transforma£nými vz´ahmi ako polohový
²tvorvektor. Dôleºité ²tvorvektory získame pomocou derivácie polohového ²tvorvektora pod©a vlast-
ného £asu τ .

�tvorrýchlos´ de�nujeme ako

uµ =
dxµ

dτ
= γ

dxµ

dt
= γ(c, ~v) uµuµ = γ2(c2 − ~v · ~v) = c2

Môºeme to interpretova´ tak, ºe

kaºdý objekt putuje £asopriestorom kon²tantnou rýchlos´ou c,

pri£om relatívna zmena rýchlosti putovania priestorom je kompenzovaná zmenou rýchlosti putovania
£asom.53 Okamºitý �smer� ²tvorrýchlosti v £asopriestorových diagramoch je doty£nicou k sveto£iare
objektu.

Newtonov pohybový zákon v ²peciálnej relativite prejde na tvar54

m
d2~r

dt2
= m~a = ~F → m

d2xµ

dτ 2
= maµ = F µ F µ = γ(~v · ~F/c, ~F )

K©ú£ovým ²tvorvektorom je ²tvorhybnos´ (²tvorvektor energia-hybnos´)

pµ = muµ = mγ(c, ~v) = (E/c, ~p) ~p = γm~v E = γmc2 pµp
µ =

E2

c2
− ~p · ~p = m2c2

Posledná rovnica je relativistický vz´ah pre energiu £astice o (invariantnej ) hmotnosti m. Vyplýva
z neho tieº, ºe £astica s nulovou hmotnos´ou nesmie by´ v pokoji v ºiadnej sústave: Pre p = 0 by
totiº platilo E = 0, £o v kvantovej fyzike znamená absenciu £astice.

Obdobným spôsobom de�nujeme dôleºité ²tvorvektory frekvencie-vlno£tu (vlnového vektora), nábo-
jovej-prúdovej hustoty, a elektromagnetického skalárneho-vektorového potenciálu - ve©kosti v²etkých
sú lorentzovskými invariantmi (ako sa patrí na skalárne sú£iny v Minkowského metrike)

kµ = (ω/c,~k) jµ = (cρ,~j) Aµ = (ϕ/c, ~A)

Kombinácia kontravariantného a kovariantného zápisu je elegantným prostriedkom na zápis lorent-
zovsky invariantného skalárneho sú£inu rôznych ²tvorvektorov

aµb
µ = aµη

µνbν = aµηµνb
ν = aµbµ = a0b0 − ~a ·~b

Potrebujeme e²te de�nova´ ²tvorvektorovú deriváciu

∂µ =
∂

∂xµ
=

(
∂

c∂t
,−∇

)
∂µ =

∂

∂xµ
=

(
∂

c∂t
,∇
)

²tvorgradient (skalára φ), ²tvordivergenciu (²tvorvektora aµ) a ²tvorlaplacián (= vlnový operátor)

∂µφ =
∂φ

∂xµ
=

(
∂φ

c∂t
,−∇φ

)
∂µa

µ =
∂aµ

∂xµ
=
∂a0

c∂t
+∇ · ~a ∂µ∂

µ =
∂2

c2∂t2
−∇2

53Pre objekt v k©ude plynie £as (pohyb na £asovej osi) rýchlos´ou c, pre objekt pohybujúci sa priestorom (pre
pozorovate©a v laboratórnej sústave) rýchlos´ou c £as stojí. Pre v → c v²ak γ → ∞, £o je nefyzikálne - neexistuje
inerciálna sústava spojená s nehmotným objektom. To tieº znamená, ºe sveto£iaru objektu s nulovou hmotnos´ou
nemôºeme parametrizova´ vlastným £asom.

54�tvorvektorová rovnica predstavuje ²tyri rovnice pre jednotlivé zloºky. �ahko v²ak ukáºeme, ºe Fµuµ = 0, a teda
len tri z nich sú nezávislé, rovnako ako v newtonovskej mechanike.
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Fáza rovinnej vlny, rovnica kontinuity a lorenzovská kalibrácia55 nadobudnú tvar

ωt− ~k · ~r = kµx
µ ∂ρ

∂t
+∇ ·~j = ∂µj

µ = 0
∂ϕ

c2∂t
+∇ · ~A = ∂µA

µ = 0

V lorenzovskej kalibrácii nadobúdajú nehomogénne Maxwellove rovnice kompaktný ²tvorvektorový
tvar

∂µ∂
µAν = µ0j

ν

Napokon e²te vyjadrime relativistický ú£inok vo©nej £astice. Pomocou vlastného £asu £astice môºeme
ú£inok vyjadri´ ako

S =

∫ τ2

τ1

L γdτ (dt = γdτ)

Poºiadavka relativistickej invariantnosti ú£inku znamená v tomto prípade invariantnos´ výrazu L γ,
£o je splnené pre L γ = kon²t . Vo©bou L γ = −mc2 dostávame

S = −mc2

∫ τ2

τ1

dτ = −mc
∫ b

a

ds′ (v sústave £astice ds′ =
√
c2dτ 2 − 0)

£o vedie na správny relativistický hamiltonián

H = ~p · ~v −L =
∂L

∂~v
· ~v −L = ... = γ~v · ~v +

mc2

γ
= ... = γmc2

a správne nerelativistické (v � c) priblíºenieH = mv2/2. Minimalizácia ú£inku znamená (paradoxne,
kvôli znamienku -) maximalizáciu £asopriestorového dráhového integrálu v Minkowského metrike.
Môºeme to tieº interpretova´ tak, ºe £astica maximalizuje trvanie vlastného £asu.56 Ako uº vieme,
maximálnemu £asu odpovedá priama sveto£iara.

V nerelativistickej limite (cdt)2 � (d~r)2 platí −mc
√

(cdt)2 − (d~r)2 ∼= (d~r)2

2dt
− mc2dt, £o pre ú£inok

znamená

S = −mc
∫ tB

tA

√
(cdt)2 − (d~r)2 ∼=

∫ tB

tA

[
1

2
m

(
d~r

dt

)2

−mc2 + ...

]
︸ ︷︷ ︸

L

dt

Pokojová energia mc2 v nerelativistickom lagrangiáne hrá úlohu akejsi potenciálnej energie, a pri
h©adaní extermálneho ú£inku predstavuje len aditívnu kon²tantu.

�tvorvektorový zápis ú£inku v Minkowského metrike je

S = −mc
∫ tB

tA

√
ηµνdxµdxν

I.3.2 Lagrangián v teórii polí.

V teórii polí predmetom záujmu nie sú hmotné objekty v priestore, ale priestor samotný - polia.
Základnou my²lienkou je, ºe priestor je tvorený energiou polí, �uktuujúcou okolo stredných hodnôt,
ktoré lokálne môºu by´ aj nulové - úplne prázdny priestor v²ak neexistuje. O charaktere týchto polí sa
dozvieme v ¤al²ích £astiach. Nateraz predpokladajme, ºe v kaºdom okamihu v kaºdom bode reálneho
priestoru tieto polia nadobúdajú ur£ité hodnoty hladkých funkcií, tvoriacich kon�gurácie týchto polí

55Pomenovanie na po£es´ L.V.Lorenza, nie H.A.Lorentza - autora transforma£ných vz´ahov.
56Preto sa princípu najmen²ieho ú£inku hovorí aj princíp lenivosti Prírody - Príroda sa o£ividne nikam neponáh©a.
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v priestore a £ase, φ(t, ~r). Ako nosite©ovi energie a dynamiky môºeme kaºdému po©u φ(t, ~r) priradi´
lagrangián L (φ, φ̇) ako funkciu jeho kon�gurácie a jej £asopriestorových derivácií, v analógii s dráhou
v kon�gura£nom priestore q(t) a jej £asovou deriváciou q̇ (pre mechaniku telies v priestore),

q(t)→ φ(t, ~r) = φ(xµ) q̇(t)→ ∂µφ(xµ) S =

∫
L (φ, ∂µφ)dt

Ke¤ºe pole je priestorovo rozloºený objekt, de�nujeme objemovú hustotu lagrangiánu L(φ, ∂µφ)
prostredníctvom vz´ahu

L =

∫
L(φ, ∂µφ)d3x

Ú£inok potom de�nujeme ako

S =

∫
L dt =

∫
L(φ, ∂µφ)d4x d4x = dtd3x = dV ∗

pri£om £asová a priestorové súradnice v poslednom integráli sú uº rovnocenné parametre, de�nujúce
bod £asopriestoru, v ktorom pole nadobúda ur£itú hodnotu.57 H©adanie extremálneho ú£inku spo-
£íva vo variovaní kon�gurácie po©a, δφ(xµ) a δ(∂µφ(xµ)), medzi �xnými hrani£nými kon�guráciami
∂φ(xµ)|Σ = 0, kde Σ je hranica obopínajúca danú £asopriestorovú oblas´ V ∗. Potom

0 = δS =

∫
V ∗

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
dV ∗ =

=

∫
V ∗

[{
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)}
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)]
dV ∗

Pre posledný £len ako totálnu deriváciu, s uváºením Gaussovej vety pre ²tvordivergenciu, platí∫
V ∗
∂µ

(
∂L

∂(∂µφ)
δφ

)
dV ∗ =

∫
Σ

(
∂L

∂(∂µφ)
δφ

)
dΣ = 0 ke¤ºe δφ|Σ = 0

Podmienka extremálneho ú£inku potom vedie na

∂L(φ, ∂µφ)

∂φ
− ∂µ

(
∂L(φ, ∂µφ)

∂(∂µφ)

)
= 0

£o je ELR pre pole φ. Rie²ením takejto rovnice (s daným L) dostaneme pohybovú rovnicu ur£ujúcu
dynamiku príslu²ného po©a.58 V analógií s £asticovou mechanikou de�nujeme kánonickú hybnos´
po©a

Π(xµ) =
∂L

∂φ̇(xµ)
=

∂

∂φ̇(xµ)

∫
L(φ(yµ), ∂µφ(yµ))d3y

a jej objemovú hustotu

π(xµ) =
∂L

∂φ̇(xµ)

(
φ̇ =

∂φ

∂t
, nie

∂φ

c∂t
!!!
)

Následne môºeme de�nova´ objemovú hustotu hamiltoniánu po©a

H(φ, π) = π(xµ)φ̇(xµ)− L(xµ)

φ a π tvoria kánonicky zdruºený pár, sp¨¬ajúci HR (kap. I.1.1) pre pole. Fyzikálny význam kánonickej
hybnosti po©a ozrejmíme v ¤al²om texte.59

57Takáto formulácia je v zhode s teóriou relativity, a teda predstavuje základ realistickej teórie.
58Nech napr. pre vo©né pole (bez interakcií) je hustota lagrangiánu L = 1

2∂µφ∂
µφ, £iºe ∂L

∂φ = 0. ELR povedie na
homogénnu vlnovú rovnicu ∂µ∂µφ = 0.

59Ako uvidíme v nasledujúcich kapitolách, zachovanie kinematickej £i kánonickej hybnosti odpovedá odli²ným sy-
metriám polí.
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I.3.3 Noetherovej teoréma pre polia.

Rovnako ako v £asticovej mechanike, aj pre spojité transformácie kon�gurácií polí platí Noethero-
vej teoréma (kap. I.1.2) Predpokladajme ©ubovo©nú in�nitezimálnu transformáciu kon�gurácie po©a
φ(xµ)→ φ(xµ) + δφ a odpovedajúcu zmenu (hustoty) lagrangiánu L → L+ δL . Ak má by´ takáto
transformácia symetriou, musí plati´

δS = δ

(∫
Ld4x

)
!

= 0

Integrál v zátvorke musí by´ teda kon²tantou, £o platí nielen ak δL = 0, ale aj splnením slab²ej
podmienky (pri �xovanej kon�gurácii po©a na £asopriestorových hraniciach integrálu)

δL(φ) = ∂νKν(φ)

£o je totálna derivácia ©ubovo©nej funkcie Kν(φ). Ke¤ºe (pod©a kap. I.3.2)

(∂νKν =) δL =
∂L
∂φ

δφ+
∂L

∂(∂νφ)
δ(∂νφ) =

ELR
∂ν

(
∂L

∂(∂νφ)
δφ

)
de�nujeme novú veli£inu - hustotu noetherovského ²tvorprúdu,

J ν !
=

∂L
∂(∂νφ)

δφ−Kν

pre ktorú zjavne platí
∂νJ ν = 0

£o je rovnica kontinuity, £iºe zákon zachovania noetherovského náboja. Fyzikálny význam noethe-
rovského ²tvorprúdu a náboja bude závisie´ od charakteru transformácie kon�gurácie po©a δφ, ako
uvidíme v nasledujúcich kapitolách.

I.3.4 Transla£ná symetria polí.

O spojitej transla£nej symetrii po©a φ(xν) hovoríme vtedy ke¤ sa nemení hustota lagrangiánu
pri in�nitezimálnej £asopriestorovej translácii xµ → xµ + δxµ (v niektorých zo 4 £asopriestorových
smerov µ). Predpokladajme pre jednoduchos´ reálne skalárne pole60 (bez vnútornej ²truktúry), ktoré
sa v tomto prípade transformuje ako

φ(xν)→ φ(xν) + δφ ∼= φ(xν) + ∂µφ(xν)δxµ

Odpovedajúca transformácia lagrangiánu je

L → L+ δL ∼= L+ ∂µL δxµ

£iºe δL = ∂µL δxµ pre daný smer translácie µ, pri£om z podmienky symetrie platí δL = ∂νKν
(kap. I.3.3, so sumáciou cez v²etky ν). Porovnaním oboch výrazov dostávame ∂νKν = ∂ν(δ

ν
µL)δxµ,

kde δνµ = ηµρη
ρν = ηνµ je Kroneckerov symbol v tenzorovom/maticovom zápise. Pre hustoty noet-

herovských ²tvorprúdov v kaºdom zo 4 ortogonálnych smeroch £asopriestorových translácií µ teda
platí

∂νJ ν
µ = ∂ν

 ∂L
∂(∂νφ)

∂µφ− Lδνµ︸ ︷︷ ︸
 δxµ

 = ∂ν [T
ν
µ δx

µ] = 0 ⇒ ∂νT
ν
µ = 0

60Význam tohto obmedzenia ozrejmíme v kap. II.2.5.
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(sumácia prebieha cez opakujúci sa index ν), kde T νµ je ²tvortenzor napätia-energie-hybnosti.
Rovnica kontinuity pre smer µ,

∂νT
ν
µ = ∂0T

0
µ + ∂jT

j
µ =

∂T 0
µ

c∂t
+∇ · ~Tµ = 0

je zákonom zachovania noetherovského náboja s objemovou hustotou T 0
µ , pri£om plo²ná hustota

jeho toku - noetherovského prúdu - je ~Tµ = (T 1
µ , T

2
µ , T

3
µ). Noetherovským nábojom pre µ = 0 je

energia, lebo∫
T 0

0 d
3x =

∫ (
∂L

∂(∂0φ)
∂0φ− Lδ0

0

)
d3x =

∫ (
πφ̇− L

)
d3x =

∫
Hd3x = E

Podobne, pre µ = j = 1, 2, 3 sú noetherovskými nábojmi zloºky
kinematickej hybnosti∫

T 0
j d

3x =

∫ (
∂L

∂(∂0φ)
∂jφ− L��SSδ

0
j

)
d3x =

∫
cπ ∂jφ d

3x = cpj

(poznamenajme, ºe platí ∂jφ = φ̇/ẋj). Pod©a o£akávania, zachovávajúcimi sa veli£inami pri £aso-
priestorových transla£ných symetriách po©a sú jeho energia a (kinematická) hybnos´. Symetrický
tvar ²tvortenzora je T νρ = T ρν = ηρµT νµ . Jeho 0-tý st¨pec predstavuje hustotu ²tvorvektora hybnosti-
energie, a ostatné st¨pce toky tohto ²tvorvektora v jednotlivých smeroch. Smer zloºky ²tvorhybnosti
a jej toku sú vo v²eobecnosti rôzne. T jk pre j, k = 1, 2, 3 sú zloºkami tenzora napätia. Nulové diver-
gencie riadkov ²tvortenzora tvoria ²tvoricu zákonov zachovania pre jednotlivé zloºky ²tvorhybnosti
(Dodatok D).

I.3.5 Rota£ná symetria polí.

Rota£ná symetria po©a znamená invariantnos´ jeho lagrangiánu vo£i (£aso)priestorovým rotá-
ciám.61 Uvaºujme opä´ pre jednoduchos´ skalárne pole. Pre rotáciu priestorových súradníc platí
δxµ = ωµνx

ν , kde ωµν = ηµρω
ρ
ν je antisymetrická matica in�nitezimálnych rotácií.62 Podmienka sy-

metrie je63

0 = ∂ν

(
∂L

∂(∂νφ)
∂µφ− Lδνµ

)
ωµρx

ρ = ∂νT
ν
µω

µ
ρx

ρ = ... =
1

2
∂ν (xρT µν − xµT ρν)︸ ︷︷ ︸ωρµ =

1

2
∂ν (J ν)ρµ︸ ︷︷ ︸ωρµ

Znamená to, ºe pre kaºdé zo 6 nenulových ωρµ existuje noetherovský ²tvorprúd (J ν)ρµ, sp¨¬ajúci
rovnicu kontinuity so zachovávajúcim sa noetherovským nábojom (ν = 0)

∂ν(J ν)ρµ = 0 Qρµ =

∫
(J 0)ρµd3x =

∫ (
xρT µ0 − xµT ρ0

)
d3x

Pre priestorové rotácie (ν → j = 1, 2, 3) sa v tomto prípade zachovávajú veli£iny

Lj =
1

2
εjklQkl =

1

2
εjkl

∫ (
xkT l0 − xlT k0

)
d3x =

1

2
εjkl

∫
π

(
xk∂l − xl∂k︸ ︷︷ ︸

)
φ d3x

Prechodom ku kvantovému formalizmu v tomto výraze spoznáme zloºky operátora (orbitálneho)
momentu hybnosti. Zachovávajúcou sa veli£inou pri priestorových rotáciách je teda zloºka momentu
hybnosti po©a Lj.

61Lorentzovský boost - transformáciu sústavy o kon²tantnú rýchlos´ - môºeme vníma´ tieº ako rotáciu v £asopriestore.
62Ke¤ºe ωρµ = −ωµρ, ωµµ = 0, £iºe existuje 6 nenulových zloºiek ωρµ - 3 pre rotácie a 3 pre boosty. Inými slovami,

existuje 6 navzájom kolmých £asopriestorových rovín, xy, xz, xt, ...zt, a ωρµ sú in�nitezimálne rotácie v kaºdej z nich.
63Pri úprave sme do výrazu vloºili ηµρηµρ = 1 a následne vyuºili antisymetrickos´ ωρµ (ωµρ antisymetrickou nie je!).
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I.3.6 Vnútorné symetrie polí.

O vnútornej symetrii hovoríme v prípade invariancie vo£i vnútorným transformáciám polí,
φ(xµ) → φ(xµ) + δφ, nevz´ahujúcim sa na £asopriestorové transformácie (δφ 6= ∂µφδx

µ). Kým
£asopriestorová symetria vedie na δL = ∂µKµ, kde Kµ = Lδxµ (kap. I.3.4), pri absencii takejto
transformácie, δxµ = 0 a teda Kµ = 0, je podmienkou symetrie priamo (kap. I.3.3)

0 = δL = ∂ν

(
∂L

∂(∂νφ)
δφ

)
= ∂νJ ν J ν =

∂L
∂(∂νφ)

δφ

Veli£inou zachovávajúcou sa v £ase (noetherovským nábojom) je Q ∼
∫
J 0d3x, £iºe

Q =

∫
∂L
∂φ̇

d3x =

∫
πd3x = Π

£o je práve kánonická hybnos´ po©a s objemovou hustotou π (konjugovanou s φ, kap. I.3.2). Táto
veli£ina nie je totoºná s kinematickou hybnos´ou po©a s hustotou T j0 /c = π ∂jφ, zachovávajúcou sa
pri priestorovej translácii (kap. I.3.4)!

V prípade komplexného po©a64 je dôleºitou vnútornou transformáciou fázový posuv (rotácia v kom-
plexnej rovine), φ→ φ′ = e−iεφ, a teda φ∗ → eiεφ∗. V prípade spojitej in�nitezimálnej zmeny môºeme
pouºi´ priblíºenie δφ = φ′ − φ ∼= −iεφ, δφ∗ ∼= iεφ∗. Ke¤ºe v tomto prípade L = L(φ, ∂µφ, φ

∗, ∂µφ
∗),

²tandardným postupom dostaneme rovnicu kontinuity a noetherovský náboj (po odstránení iε 6= 0)

∂µJ µ = ∂µ

(
∂L

∂(∂µφ∗)
φ∗ − ∂L

∂(∂µφ)
φ

)
iε = 0 Q =

∫ (
∂L
∂φ̇∗

φ∗ − ∂L
∂φ̇

φ

)
d3x

Tento výsledok budeme neskôr interpretova´, v závislosti od kontextu, ako zákon zachovania po£tu
£astíc, resp. ich pravdepodobnosti, alebo ako zákon zachovania elektrického náboja.

Napokon uváºme £asopriestorovú transformáciu, ktorá spôsobí aj vnútornú transformáciu po©a,
φ(xµ)→ φ′(x′µ) = φ(xµ) + δφ. Zmena po©a sa dá vyjadri´ (roz²írením o 0) ako

δφ = [φ′(x′µ)−
︷ ︸︸ ︷
φ(x′µ)] + [φ(x′µ)−φ(xµ)] ∼= δφφ+ ∂µφ δx

µ

Ak je takáto transformácia symetriou, rovnica kontinuity nadobúda tvar

∂ν

J ν︷ ︸︸ ︷[(
∂L

∂(∂νφ)
∂µφ− Lδνµ

)
δxµ − ∂L

∂(∂νφ)
δφ

]
=0

I.3.7 Kvantovanie polí.

V predchádzajúcich kapitolách sme predstavili koncepciu klasického po©a ako nosite©a energie, hyb-
nosti aj momentu hybnosti, teda vlastností, ktoré obvykle prira¤ujeme hmotným objektom £i £asti-
ciam.65 Kvantová mechanika zbliºuje tieto dva k©ú£ové pojmy (pole a £astica) e²te viac, prostredníc-
tvom komplexného skalárneho po©a - vlnovej funkcie ψ(~r, t) - ur£ujúceho amplitúdu pravdepodob-
nosti namerania £astice v danom mieste a £ase. Zásadný problém v²ak spo£íva v tom, ºe SCHR ako

64Komplexným je napr. tzv. Schrödingerovo pole (kap. I.3.8), reprezentované komplexnou vlnovou funkciou.
65S touto koncepciou sme sa uº stretli v elektromagnetizme, kde sme po©u priradili energiu, hybnos´ aj moment

hybnosti, a spoznali sme zákony ich zachovania.
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pohybová rovnica pre vlnovú funkciu nie je lorentzovsky kovariantná. Kým priestorovým súradni-
ciam sú priradené operátory, x̂j, £as vystupuje v tejto rovnici ako �klasický� parameter. SCHR teda
nesp¨¬a relativistickú poºiadavku na adekvátny opis fyzikálneho sveta.66

Relativistickým východiskom je zrieknutie sa operátora polohy £astice v prospech polohy ako sú-
radnice po©a, teda parametra rovnocenného s £asom. Tým v²ak strácajú zmysel aj fundamentálne
kánonické komuta£né vz´ahy ²tandardnej kvantovej mechaniky, [x̂j, p̂k] = i~δjk, kde operátory x̂j, p̂j
pôsobiace na £asticu jej �prira¤ujú� polohu a hybnos´, teda atribúty, bez ktorých pojem £astica
stráca svoj tradi£ný zmysel. Namiesto toho sa samotná vlnová funkcia stáva operátorom £asti-
cového po©a parametrizovaným £asopriestorovými súradnicami, ψ̂(xµ), pôsobiacim na stav tohto
po©a, a generujúcim alebo anihilujúcim jeho excitácie - £astice.

Základným nástrojom na opis £asopriestorových kon�gurácii vo©ných polí je ich fourierovský rozklad
do spektra navzájom nezávislých harmonických rovinných v¨n67

ψ(xµ) =
1

(2π)4

∫
a(kµ)e−ikµx

µ

d4k

kde integrovanie prebieha cez v²etky ²tyri (kladné aj záporné) zloºky k-priestoru (teda cez zloºky
vlnového vektora aj frekvenciu). Obvyklej²ím je v²ak tvar

ψ(~r, t) =
1

(2π)3

∫
f(ω~k)a(~k) e−i(ωkt−

~k·~r)d3k

ktorý vznikne preintegrovaním cez �£asovú� zloºku ²tvorvektora kµ, pri£om ω~k a ~k sú viazané príslu²-
ným disperzným vz´ahom. S uváºením známych vz´ahov, spájajúcich relativistickú £asticu s vlnou,

E = ~ω ~p = ~~k E2 = c2(~p · ~p) + (mc2)2

dostávame relativistický disperzný vz´ah

ω~k = ±c
√
~k · ~k + m̃2 m̃ =

mc

~
= λ̄−1

C

kde λ̄C je redukovaná Comptonova vlnová d¨ºka. V nerelativistickej kvantovej mechanike, t.j.
pre E ∼= mc2 (� pc) sa podintegrálny faktor f(ω~k) stáva �nepodstatnou� kon²tantou zahrnute©nou
do normovania (ktoré je obvykle vecou pragmatickej vo©by). V relativistickej teórii v²ak tento faktor
zabezpe£uje lorentzovskú kovariantnos´ celého integrálu, ke¤ºe samotný integrál

∫
d3k takým nie je!

Dôsledky uvidíme v £asti III.

Prvým krokom ku kvantovému opisu je prechod od po©a ψ(~r, t) k operátoru po©a, ψ̂(~r, t). Ak má by´
hermitovským, dá sa rozpísa´ ako superpozícia sú£tu hermitivsky zdruºených operátorov â(~k), â†(~k),

ψ̂(~r, t) =
1

(2π)3

∫
f(ω~k)

[
â(~k) e−i(ω~kt−

~k·~r) + â†(~k) ei(ω~kt−
~k·~r)
]
d3k

Obdobne de�nujeme operátor (hustoty) kánonickej hybnosti po©a (kap. I.3.2)

π(xµ) =
∂L

∂φ̇(xµ)
→ π̂(xµ)

66�U£ebnicová� nerelativistická kvantová mechanika pripú²´a nenulovú pravdepodobnos´ nájdenia £astice, priprave-
nej v danom mieste a £ase, ©ubovo©ne ¤aleko po ©ubovo©ne krátkom £ase, £o je v rozpore s teóriou relativity.

67Lagrangiány vo©ných polí (t.j. bez interakcií) sú spravidla kvadratické v ψ a ∂µψ, ich pohybové rovnice (zís-
kané z ELR) sú preto lineárne. Linearita pohybovej rovnice nám umoº¬uje zapísa´ jej v²eobecné rie²enie v podobe
superpozície - fourierovského rozkladu do spektrálnych zloºiek.

28



Druhým krokom je kánonické kvantovanie polí, resp. (nie celkom výstiºne) druhé kvantovanie
- formulovanie (de�novanie) kánonických komuta£ných vz´ahov pre operátory ψ̂, π̂. Motiváciu
nájdeme v analógii s klasickou aj nerelativistickou kvantovou mechanikou: Kánonická hybnos´ po©a
je generátorom spojitej (unitárnej) transformácie ψ → ψ+ ε (kap. I.3.6), ktorú môºeme vyjadri´ ako

ψ → ψ′ = eiεπ̂/~ψ ∼= (1 + iε
↓
π̂/~)ψ ale aj ψ → ψ′ = (1 + ε

↓
∂ψ)ψ (ε→ 0)

£o znamená priradenie π̂(xµ) = −i~∂ψ. Ke¤ºe ide o analógiu súradnicovej reprezentácie, kladieme
prirodzene ψ̂(xµ) = ψ(xµ). a pre komutátor i

~ [ψ̂(t, ~r), π̂(t, ~r ′)] potom platí68[
ψ(t, ~r),

∂

∂ψ(t, ~r ′)

]
|ψ〉 = ... =

���
���

���XXXXXXXXX
ψ(t, ~r)

∂ |ψ〉
∂ψ(t, ~r ′)

−
(
∂ψ(t, ~r)

∂ψ(t, ~r ′)
|ψ〉+

���
���

���XXXXXXXXX
ψ(t, ~r)

∂ |ψ〉
∂ψ(t, ~r ′)

)
= −δ(~r − ~r ′)|ψ〉

kde δ(~r − ~r ′) je 3-rozmerná δ-funkcia. Fundamentálnymi komuta£nými vz´ahmi sú teda

[ψ̂(t, ~r), π̂(t, ~r ′)] = i~δ(~r − ~r ′) [ψ̂(t, ~r), ψ̂(t, ~r ′)] = 0 [π̂(t, ~r), π̂(t, ~r ′)] = 0

Interpretujeme ich tak, ºe nemoºno presne ur£i´ v danom bode v tom istom okamihu amplitúdu po©a
aj rýchlos´ jeho zmeny. Z týchto vz´ahov sa dajú odvodi´ komuta£né vz´ahy pre operátory â(~k), â†(~k)
v tvare (pri správnom normovaní)69

[â(~k), â(~k′)] = [â†(~k), â†(~k′)] = 0 [â(~k), â†(~k′)] = (2π)3δ(~k − ~k′)

Tieto komutátory manifestujú vzájomnú nezávislos´ spektrálnych zloºiek.

Kánonické komuta£né vz´ahy v tejto podobe platia pre skalárne polia. Pre polia s vnútornou ²truk-
túrou sú ψ̂, π̂ viackomponentné, a komuta£né vz´ahy musíme de�nova´ pre jednotlivé ich zloºky (ako
uvidíme v £asti III.). V²imnime si tieº, ºe operátory ψ̂, π̂ sú v tomto formalizme funkciami £asu -
pracujeme teda v tzv. Heisenbergovom obraze (kap. I.2.3).

I.3.8 Schrödingerovo pole.

Na demon²tráciu vy²²ie uvedených záverov pouºijeme tzv. Schrödingerovo pole - nerelativistické
vo©né komplexné skalárne pole s hustotou lagrangiánu70

L =
i~
2

(ψ∗∂tψ − ψ∂tψ∗)−
~2

2m
∂jψ

∗∂jψ

Polia ψ a ψ∗ môºeme vníma´ ako dva nezávislé stupne vo©nosti. Dosadením L do ELR pre ψ aj ψ∗

dostaneme dve komplexne zdruºené SCHR pre vo©nú bez spinovú (t.j. skalárnu) £asticu71 o hmotnosti
m,

i~∂tψ = − ~2

2m
∂2
jψ − i~∂tψ∗ = − ~2

2m
∂2
jψ
∗

68Vo výraze eiεπ̂/~ by mal by´ exponent bezrozmerný. Ke¤ºe ε má rozmer ψ, z rozmerovej analýzy zistíme, ºe táto
poºiadavka nie je splnená. Tento nedostatok v²ak odstra¬uje 3-rozmerná δ-funkcia, ktorej rozmer je m−3.

69Vyuºívame tu vlastnosti (3-rozmerných) δ-funkcií

1

(2π)3

∫
e−i(ω~k−ω~k′ )tei(

~k·~r−~k′·~r ′)δ(~k − ~k′)d3k′ = ei
~k·(~r−~r ′) δ(~r − ~r ′) =

1

(2π)3

∫
ei
~k·(~r−~r ′)d3k

70Tento výraz odvodíme v kap. III.1.7.
71V základnych kurzoch kvantovej mechaniky sa SCHR obvykle spája predov²etkým s elektrónom - £asticou s ne-

nulovým spinom. Samotná SCHR (bez modi�kácií) v²ak spinové stupne vo©nosti ignoruje. Pre vo©nú £asticu je aj
elektrický náboj irelevantný.
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s rie²eniami (fourierovsky) rozloºite©nými do rovinných v¨n72

ψ(~r, t) =
1

(2π)3

∫
a(~k)e−i(ω~kt−

~k·~r)d3k ψ∗(~r, t) =
1

(2π)3

∫
a∗(~k)ei(ω~kt−

~k·~r)d3k ω~k =
~k2

2m

pri£om hustoty konjugovaných hybností a hamiltoniánu sú

π =
∂L

∂(∂tψ)
=
i~
2
ψ∗ π∗ =

∂L
∂(∂tψ∗)

= −i~
2
ψ H = π∂tψ + π∗∂tψ

∗ − L

Po dosadení dostávame hamiltonián73

H =

∫
Hd3r = ... =

~
(2π)3

∫
ω~k a

∗(~k)a(~k)︸ ︷︷ ︸ d3k

Vnútornou symetriou Schrödingerovho po©a je transformácia

ψ(~r, t)→ eiθψ(~r, t) ψ∗(~r, t)→ e−iθψ∗(~r, t)

opísaná v kap. I.3.6, s hustotou noetherovského náboja a prúdu

ρ(~r, t) = ~ψ∗(~r, t)ψ(~r, t) ~j(~r, t) =
~

2m
[ψ∗(~r, t)∂jψ(~r, t)− ψ(~r, t)∂jψ

∗(~r, t)]

a zachovávajúcim sa (bezrozmerným) noetherovským nábojom

Q =

∫
ψ∗(~r, t)ψ(~r, t)d3r =

1

(2π)3

∫
a∗(~k)a(~k)︸ ︷︷ ︸ d3k

Transla£nej symetrii zas odpovedá zachovávajúca sa kinematická (nie kánonická!) hybnos´ (kap.
I.3.4)

~p = ... =
~

(2π)3

∫
~k a∗(~k)a(~k)︸ ︷︷ ︸ d3k

V²imnime si, ºe v integráloch pre H, ~p aj Q rovnako �guruje (pre kaºdú spektrálnu zloºku) sú£in
�kvanta� danej veli£iny (~ω, ~~k a 1) s výrazom a∗(~k)a(~k) = N (~k). Odtia© je zrejmý fyzikálny vý-
znam výrazu N (~k) ako po£tu kvánt v ~k-tom móde. Takéto kvantá asociujeme s pojmom £astica.74

Prechodom k operátorom (kap. I.3.7) sa výrazy

N̂ =
1

(2π)3

∫
N̂ (~k)d3k N̂ (~k) = â†(~k)â(~k) [N̂ (~k), N̂ (~k′)] = 0

stávajú operátorom po£tu £astíc a operátorom spektrálnej hustoty £astíc v takýchto priestorovo úplne
delokalizovaných �£asticových� stavoch.75 Formálna podobnos´ s kvantovým harmonickým osciláto-
rom (Dodatok E) vyplýva z kvadratického charakteru lagrangiánu/hamiltoniánu, a vz´ahuje sa aj na
funkciu operátorov â(~k), â†(~k) - zniºujú resp. zvy²ujú energiu daného módu o elementárne kvantum,
ktoré v²ak v na²om kontexte vnímame ako £asticu - sú anihila£ným/krea£ným operátorom (ta-
kejto) £astice (v ~k-tom móde). Kvantovanie Schrödingerovho po©a je teda (nerelativistickým, £iºe nie
celkom korektným) formalizmom opisu (bezspinových) mnoho£asticových stavov.

72V²imnime si, ºe v tomto nerelativistickom prípade ignorujeme podintegrálny faktor f(ω~k) z kap. I.3.7.
73Pri integrovaní vyuºívame ortogonálnos´ rovinných v¨n,

∫
ei
~k·~rd3r = (2π)3δ(~k).

74Pojem £astica má v kvantovej fyzike viacero významov. Naj£astej²ie ide o diskrétny objekt-udalos´ detegovanú
experimentálnym zariadením. V teórii v²ak pod týmto pojmom rozumieme kvantum energie v danom móde po©a,
a v tomto zmysle ho pouºívame aj v tomto texte.

75Zdôraznime, ºe predstava ostrej priestorovej lokalizácie £astice mimo merania (ako miniatúrnej gu©ô£ky potu-
lujúcej sa priestorom v �opare� neur£itosti) nemá oporu vo fyzike! Jej lokalizácia makroskopickým meracím prístro-
jom (priestorovým detektorom, hmlovou komorou,...) je len dôsledkom nedelite©nosti kvanta energie pri interakcii
s makrosvetom - lokalizovanou energetickou odozvou meracieho systému (makroskopické priestorové rozloºenie by
znamenalo delite©nos´ energie kvanta).
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Dôleºité závery:

• Priestorová (transla£ná a rota£ná) invariancia súvisí so zachovávajúcou sa hybnos´ou a momentom
hybnosti po©a. �asová invariancia súvisí so zachovaním energie po©a.

• Vnútorná symetria vzh©adom na posunutie hodnoty po©a súvisí so zachovaním kánonickej hybnosti
po©a.

• Vnútorná symetria vzh©adom na zmenu fázy komplexného nabitého po©a súvisí so zachovaním
£asticového náboja (v prípade Schrödingerovho po©a vo význame po£tu £astíc).

• V kvantovej teórii polí je samotnému po©u priradený operátor generujúci jeho energetickú excitáciu
- �£asticu�. Fundamentálnymi sú komutátory operátora po©a a jeho kánonickej hybnosti.
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Dôleºité grupy symetrií

Skôr neº sformulujeme fundamentálne rovnice fyziky a identi�kujeme ich elementárnych �aktérov�,
musíme sa oboznámi´ s � jazykom� symetrií. Táto £as´ bude preto o matematike symetrií - teórii
grúp. Grupou symetrie nazývame mnoºinu v²etkých transformácií, ktoré ponechajú ur£itý objekt
resp. jeho ur£itú charakteristiku invariantnou. V £asti I boli objektami transformácií najprv (kap. I.1)
funkcie de�nované na fázovom priestore, neuvaºovali sme pritom ich vnútorné stupne vo©nosti
(implicitne sme predpokladali skalárne a nie napr. vektorové funkcie). Potom (kap. I.2) sme trans-
formovali stavové vektory de�nované na Hilbertových priestoroch, opä´ bez oh©adu na ich vnútornú
²truktúru. A napokon (kap. I.3) sme analyzovali symetrie polí pri ich £asopriestorových i vnútorných
transformáciách, opä´ implicitne predpokladajúc skalárne polia. Teória grúp je tým vhodným ná-
strojom na zov²eobec¬ujúci prístup k symetriám. V jej jazyku transformujeme objekty ná²ho záujmu
ako abstraktné matematické objekty, pri£om transforma£né pravidlá kaºdej grupy sú sformulované
v jej algebre. Vnútorné stupne vo©nosti transformujúcich sa objektov rovnako podliehajú transfor-
máciám, a ich ²peci�ckos´ je zoh©adnená v odli²ných reprezentáciách danej algebry (i samotnej
grupy).

V kap. I.3.7 sme uº nazna£ili, ºe predstava elementárnych £astíc Prírody ako �ve©mi malých�
£i �bodových gu©ô£ok� do dne²nej fyziky na fundamentálnej úrovni nepatrí. Nahrádza ju predstava
fundamentálnych polí, ktorých excitácie (zo základného stavu - vákua) stotoº¬ujeme s elementárnymi
£asticami.1 Tieto polia sa navzájom prelínajú a interagujú. (Fyzikálnému opisu základných typov polí
a ich interakcií sú venované £asti III aº V.)

Jednotlivé polia sa lí²ia po£tom vnútorných stup¬ov vo©-
nosti. Z klasickej fyziky poznáme skalárne (jeden stu-
pe¬ vo©nosti) a vektorové polia (tri stupne vo©nosti).
V kvantovej mechanike pribudlo komplexné skalárne
pole - vlnová funkcia (dva reálne = jeden komplexný
stupe¬ vo©nosti). Zave¤me jednotný opis, v ktorom kaº-
dému £asopriestorovému bodu xµ daného po©a s d vnú-
tornými stup¬ami vo©nosti priradíme st¨pcovú maticu
- �vektor� s d reálnymi alebo komplexnými komponen-
tami (obr.). Takýto vektor tvorí akýsi d-rozmerný re-
álny resp. komplexný vnútorný priestor �vztý£ený� nad
kaºdým bodom fyzického £asopriestoru. Aktívna aj pa-
sívna £asopriestorová transformácia (skúmaného po©a,
resp. pozorovate©a £i súradnicovej sústavy) znamená aj
transformáciu tohto vnútorného priestoru, a to v závis-
losti od jeho dimenzie.

1Kvantovanos´ energie pri vzájomných interakciách polí, a najmä pri interakciách s meracími zariadeniami, nás
na¤alej motivuje tieto kvantá stotoº¬ova´ s £asticami (ako ich vnímame v klasickom svete), inak v²ak takáto new-
tonovská predstava nemá oporu v matematickom formalizme modernej fyziky. Od samého zrodu kvantovej fyziky
existuje de�nícia elementárnej £astice ako objektu, ktorý vzniká pri meraní.
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Transformujeme teda £asopriestorové polia, reprezentované spojitými funkciami, aj ich vnútornú
d-rozmernú ²truktúru, reprezentovanú d-rozmernými vektormi. Dôleºitou spolo£nou vlastnos´ou spo-
jitých transformácií-symetrií sú zachovávajúce sa veli£iny - generátory transformácií (Noetherovej
teoréma). V £asti I sme identi�kovali súvis £asopriestorových translácií s pojmami hybnos´ a energia,
ako aj súvis priestorových rotácií s pojmom moment hybnosti. V tejto £asti sa sústredíme najmä
na rotácie vnútorných priestorov (vnútornej ²truktúry - stup¬ov vo©nosti) objektov/polí a s tým
súvisiacim vnútorným momentom hybnosti - spinom - jedným z kvantových £ísel, pomocou kto-
rých charakterizujeme jednotlivé druhy elementárnych £astíc.2 Takéto kvantové £ísla preto musia by´
invariantmi pri transformáciách. V rámci jednotlivých grúp transformácií odhalíme súvis medzi ich
generátormi a kvantovými £íslami.

II.1 Lieove grupy transformácií.

V tejto kapitole de�nujeme základné pojmy (len v miere nevyhnutnej pre potreby ¤al²ieho textu)
a súvislosti medzi nimi na v²eobecnej úrovni. Následne (v kap. II.2 - II.4) ich aplikujeme na fyzikálne
relevantné druhy transformácií v reálnych a komplexných priestoroch, a pomocou nich vybudujeme
reprezentácie vyhovujúce poºiadavkám ²peciálnej relativity.

II.1.1 De�nícia Lieovej grupy a algebry.

O spojitej transformácii hovoríme vtedy ak existuje in�nitezimálna transformácia blízka identite 1,
vyjadrená operátorom A(εj) = 1 + εjX̂j, kde3 εj → 0 je in�nitezimálne �posunutie� v j-tom �smere�
d-rozmerného priestoru,4 a X̂j je generátor príslu²nej transformácie.5 Linearita tohto vz´ahu zaru£í
aj pre kombináciu takýchto in�nitezimálnych transformácií A(ε1j)A(ε2j) = 1 + (ε1j + ε2j)X̂j. Mnoºina
takýchto spojitých transformácií tvorí Lieovu grupu6.

Binárnou operáciou Lieovej grupy je násobenie.7 N -násobným opakovaním in�nitezimálnej transfor-
mácie dosiahneme kone£nú zmenu transforma£ného parametra θj = Nεj (N →∞)

A(θj) = [A(εj)]
N =

[
1 +

θj
N
X̂j

]N
→

N→∞
eθjX̂j = 1 + θjX̂j + ...

2Niektoré základné charakteristiky, ako sú hmotnosti, stále nedokáºeme kvantova´, a zostávajú nevyrie²enými otáz-
nikmi teórie.

3V zmysle Einsteinovej suma£nej konvencie εjX̂j =
∑n
j εjX̂j .

4Pojmy �posunutie� a �smer� nemusia ma´ význam £asopriestorový, môºe ís´ o zmenu hodnoty vnútorného stup¬a
vo©nosti.

5Pojmy operátor a generátor transformácie sme vysvetlili v kap. I.1.3.
6Grupa G je mnoºina prvkov a, b, c..., medzi ktorými je de�novaná binárna operácia ◦, výsledkom ktorej je opä´

prvok tejto mnoºiny, £iºe a, b ∈ G, a ◦ b ∈ G. Okrem tejto uzatvorenosti musí by´ táto operácia asociatívna, musí
existova´ neutrálny prvok grupy e ∈ G a inverzný prvok a−1 ∈ G ku kaºdému prvku grupy,

(a ◦ b) ◦ c = a ◦ (b ◦ c) a ◦ e = e ◦ a = a a ◦ a−1 = a−1 ◦ a = e

Operácia ◦ pritom nemusí by´ komutatívna.
7Dve po sebe nasledujúce transformácie, napr. rotácie R1(θ) a R2(φ), sú ekvivalentné jedinej transformácii, v tomto

prípade R3(ϑ) = R1(θ)R2(φ) (vo v²eobecnosti okolo rôznych osí). Sú£in operátorov je vo v²eobecnosti nekomutatívny!
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V prípade spojitých transformácií je teda vz´ah medzi transformáciou a jej generátorom8

A(θj) = eθjX̂j X̂j =

(
dA(θj)

dθj

)
θj=0

Generátory tejto grupy sú formálne deriváciami jej prvkov (operátorov transformácií) v okolí identity
(θj → 0), a tvoria tieº vlastnú grupu - tzv. Lieovu algebru g. Pre kombináciu kone£ných (nie
in�nitezimálnych) transformácií v²ak platí

A(θ1
j )A(θ2

j ) = 1 + (θ1
j + θ2

j )X̂j + ... 6= A(θ1 + θ2)

Binárnou operáciou tejto grupy - Lieovej algebry - teda nie je prosté násobenie - jeho výsledok totiº
nemusí by´ tieº prvkom tejto mnoºiny! Dá sa v²ak ukáza´, ºe jej prvkom9 bude komutátor

[X̂1, X̂2] = X̂1X̂2 − X̂2X̂1 eX̂1eX̂2 = eX̂1+X̂2+ 1
2 [X̂1,X̂2]− 1

12 [X̂1,[X̂1,X̂2]]− 1
12 [X̂2,[X̂1,X̂2]]+...

Inými slovami, eX̂1eX̂2 = eX̂1+X̂2 len ak generátory X̂1, X̂2 komutujú, £o vo v²eobecnosti neplatí.
Lieove algebry teda tvoria uzatvorené grupy vzh©adom na binárnu operáciu komutátor.10

Kaºdá Lieova grupa de�nuje ur£itý po£et p lineárne nezávislých bázových generátorov svojej Lie-
ovej algebry, X̂j, pomocou ktorých vieme skon²truova´ ©ubovo©ný iný prvok algebry, X̂ =

∑p
j cjX̂j

(cj môºu by´ reálne alebo komplexné). V tomto zmysle generátory algebry tvoria vlastný p -rozmerný
abstraktný priestor algebry. Ke¤ºe komutátor ©ubovo©ných dvoch bázových prvkov algebry (t.j. ge-
nerátorov) musí by´ tieº prvkom tejto algebry (poºiadavka uzavretosti grupy), platí (v Einsteinovej
konvencii)

[X̂j, X̂k] = −[X̂k, X̂j] = CjklX̂l = −CkjlX̂l

kde Cjkl je tzv. ²truktúrna kon²tanta, ktorá de�nuje danú Lieovu algebru.

Z predchádzajúcich kapitol vieme, ºe generátormi transformácií (t.j. generátormi Lieovej algebry) sú
merate©né veli£iny.11 V kvantovej fyzike v²ak operátory merate©ných veli£ín musia by´ hermitovské,
£o zabezpe£íme �prede�novaním� Lieovej algebry na

X̂ → iX̂ A(θ)→ eiθX̂ = 1 + iθX̂ + ... X̂ = −i
(
dA(θ)

dθ

)
θ=0

V maticových reprezentáciách operátorov to znamená12 X̂† = (X̂T )∗ = X̂, pri£om prvky matíc X̂
budú z oboru komplexných £ísel. Znamienko ± pred i závisí od vo©by konvencie.

8Vo v²eobecnosti Taylorov rozvoj funkcie v okolí referen£nej hodnoty premennej je

f(θ0 + θ) = f(θ0) + θ

(
df

dθ

)
θ0

+ ...

V na²om prípade je touto funkciou transforma£ný predpis, f(θ0 + θ)→ A(θj) a f(θ0)→ A(0) = 1.
9X̂1, X̂2 ∈ g, [X̂1, X̂2] ∈ g ale X̂1 · X̂2 /∈ g

10Uº v kap. I.1.3 a I.2.1 sme ukázali, ºe generátory transformácií pôsobia prostredníctvom komutátorov, resp.
PZ v klasickej mechanike, kým operátory transformácií pôsobia priamo, t.j. násobením z©ava. Doporu£ujeme preto
�nezasvätenému� £itate©ovi konfrontova´ tieto abstraktne znejúce tvrdenia s obsahom spomínaných predchádzajúcich
kapitol.

11V skuto£nosti súbor v²etkých kvantovomechanických operátorov pozorovate©ných veli£ín tvorí Lieovu algebru.
12† - hermitovsky zdruºený, T - transponovaný, ∗ - komplexne zdruºený operátor.
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II.1.2 Reprezentácie Lieovej grupy a algebry.

Reprezentáciou Lieovej grupy spojitých transformácií G bude pre nás konkrétne vyjadrenie prvkov
danej grupy,13 A ∈ G, a generátorov jej algebry, X̂ ∈ g. Vo©ba reprezentácie závisí od charakteru
a dimenzionality priestoru, v ktorom �ºijú� transformujúce sa objekty. Ak týmito objektami sú spojité
funkcie £asopriestoru, báza tohto priestoru je ∞-rozmerná.14 V tomto prípade generátory X̂ repre-
zentujeme prostredníctvom diferenciálnych operátorov (ako ich poznáme z kvantovej mechaniky,
napr. p̂x = −i~∂x). Takéto reprezentácie nazývame spojitými. Samotné operátory transformácií A
sú v tejto reprezentácii exponenciálami s diferenciálnymi operátormi v exponente (kap. I.2.1 alebo
I.2.3).

Pri transformácii objektu s d stup¬ami vo©nosti (napr. pri rotácii 3D vektora okolo svojho po-
£iatku je d = 3) je tento objekt reprezentovaný d-rozmerným vektorom (lineárnou kombináciou
d bázových vektorov).15 Generátory transformácií X̂ sú v tomto prípade reprezentované maticami
d×d, pôsobiacimi prostredníctvom násobenia na d-rozmerné vektory. Takéto reprezentácie nazývame
d-rozmernými. Samotné operátory transformácií A sú v takýchto reprezentáciách exponenciálami
s maticami v exponente.

V kontexte fundamentálnych fyzikálnych polí (spojite rozloºených v £asopriestore) s vnútornými
stup¬ami vo©nosti (vnútornými abstraktnými d-rozmernými vektorovými priestormi ºijúcimi nad
£asopriestorovými bodmi) to znamená, ºe £asopriestorové (aktívne £i pasívne) transformácie polí
budú pozostáva´ z £asopriestorovej £asti v spojitej reprezentácii a transformácie vnútorných priestorov
v d-rozmernej reprezentácii.16

Pri d-rozmerných reprezentáciách konkrétny tvar transforma£ných operátorov a generátorov závisí
od vo©by bázy vektorového priestoru. (Zmenou bázy sa zmení ich tvar, ako uvidíme v nasledujúcich
kapitolách.) Nezávislou na tejto vo©be je v²ak ²truktúra algebry - komuta£né vz´ahy medzi generá-
tormi.

Väzba medzi konkrétnou reprezentáciou Lieovej grupy a jej algebry v²ak nie je jedno-jednozna£ná:
Z danej reprezentácie grupy vieme derivovaním jednozna£ne ur£i´ odpovedajúcu reprezentáciu jej
algebry. Opa£ný proces - dosadenie reprezentácie algebry do exponenciály - uº jednozna£ným by´
nemusí - daná reprezentácia algebry môºe prislúcha´, ako uvidíme, viacerým grupám.

O neredukovate©nej (ireducibilnej) reprezentácii hovoríme vtedy, ak pôsobenie ©ubovo©ného
prvku grupy na ©ubovo©ný vektor daného priestoru vedie opa´ na vektor celého tohto priestoru. Na-
opak, ak v danej reprezentácii existujú podpriestory, v ktorých je pôsobenie grupy uzavreté (t.j. tieto
podpriestory sa navzájom �nemie²ajú�), reprezentácia je redukovate©ná. Znamená to vtedy, ºe kaºdý
generátor algebry X̂j sa dá rozdeli´ na generátory X̂1

j , X̂
2
j , ... pôsobiace oddelene v podpriestoroch,

13Samotná grupa je len mnoºinou abstraktných objektov s de�novanými vzájomnými vz´ahmi - ²truktúrou. Jed-
notlivé reprezentácie prira¤ujú týmto abstraktným objektom konkrétnu formu (£ísla, vektory, matice, jablká...) pri
zachovaní ²truktúry grupy.

14Bázou rozumieme mnoºinu ortogonálnych funkcií, prostredníctvom ktorých vieme �skomponova´� kaºdú funkciu
daného priestoru. Napr. pomocou Fourierovej transformácie dokáºeme ©ubovo©nú spojitú funkciu £asopriestoru vytvori´
z nekone£ného po£tu bázových funkcií - sínusov a kosínusov v²etkých frekvencií a vlnových £ísel.

15V tejto £asti textu pouºívame pojem vektor v zov²eobecnenom význame, ako ©ubovo©nú st¨pcovú maticu d × 1,
s d reálnymi alebo komplexnými komponentami. V iných £astiach textu je tento pojem vyhradený pre �beºné� 2D/3D
objekty s reálnymi komponentami, resp. pre 4D relativistické ²tvorvektory. Rozlí²enie významu by malo by´ zrejmé
z kontextu.

16V kap. I.3.4 a I.3.5 sme transformovali (posúvali a otá£ali) skalárne polia bez vnútornej ²truktúry (jediný stupe¬
vo©nosti), vysta£ili sme teda so spojitou reprezentáciou. V²eobecnej²ie prípady rozoberieme v ¤al²om texte.
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v maticovej podobe

X̂j =

 X̂1
j 0 ...

0 X̂2
j ...
...


kde X̂1

j , X̂
2
j , ... sú matice rozmerov podpriestorov.

Pojem ireducibilná reprezentácia je k©ú£ový pri kategorizácii elementárnych £astíc. Je zrejmé, ºe prí-
vlastok elementárny sa viaºe invariantnos´ fundamentálnych vlastností vo£i transformáciám pri ich
pozorovaní. V závere tejto £asti de�nujeme grupu takýchto transformácií.17 Rôznorodos´ vlastností
elementárnych £astíc/polí sa manifestuje práve v rozdielnom spôsobe ich transformovania, vyjad-
renom konkrétnou ireducibilnou reprezentáciou tejto grupy. Nasledujúce kapitoly sú preto venované
h©adaniu ireducibilných reprezentácií dôleºitych grúp ako nástrojov na de�nície elementárnych £astíc.

II.2 Ortogonálne transformácie.

II.2.1 Ortogonálne grupy O(D), SO(D).

Ortogonálna grupa O(D) je grupou priestorových transformácií vD-rozmernom reálnom priestore,
pri ktorých sa zachováva ve©kos´ vektora (skalárny sú£in). Je tvorená mnoºinou ortogonálnych matíc18

AA−1 = AAT = 1 =


1 0 ... 0
0 1 ... 0

...
0 0 ... 1

 A−1 = AT

kde A−1 a AT sú inverzná a transponovaná matica k matici A, a 1 je jednotková matica (identita).
V d -rozmernej reprezentácii majú matice rozmer d × d a pôsobia na d-rozmerné vektory. Pre zá-
kladnú (de�ni£nú) reprezentáciu grupy platí d = D. Z týchto de�ni£ných vz´ahov grúp O(D)
tieº vyplýva podmienka det(A) = ±1.

V 2D (D = 2) sú takýmito transformáciami odraz a rotácia. Ak zvolíme �kartézsku� reprezentáciu
transformujúcich sa 2D vektorov (s bázou ~ex, ~ey),

~v = vx~ex + vy~ey = vx

(
1
0

)
+ vy

(
0
1

)
=

(
vx
vy

)
potom odraz (zrkadlenie) zloºiek vektora ~v vzh©adom na os x, resp. y je

v′x = −1 · vx + 0 · vy v′y = 0 · vx + 1 · vy resp. v′x = 1 · vx + 0 · vy v′y = 0 · vx − 1 · vy

Matice odrazu v takejto reprezentácii sú

Px =

(
−1 0
0 1

)
Py =

(
1 0
0 −1

)
17Bude ¬ou Poincarého grupa.
18Kaºdý st¨pec/riadok ortogonálnej matice je vektorom ortogonálnym vo£i ostatným st¨pcom/riadkom.

36



Rotácia vektora ~v ©avoto£ivo19 o uhol θ (> 0) znamená transformáciu jeho zloºiek

v′x = vx cos θ + vy sin θ v′y = −vx sin θ + vy cos θ

Matica ©avoto£ivej rotácie vektora ~v v 2D v tejto reprezentácii je teda

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
~v ′ = R(θ)~v

Samotné matice rotácie tvoria podgrupu SO(D), sp¨¬ajúcu dodato£nú ²peciálnu20 podmienku

det(A) = 1

ktorá zabezpe£uje zachovanie ©avej/pravej �ruky�. (Pre matice odrazu platí det(A) = −1, pri odraze
sa mení pravá �ruka� na ©avú a naopak.)

Matice rotácií okolo ortogonálnych osí x, y, z v 3D, tvoriace v �kartézskej� reprezentácii bázu grupy
SO(3), sú

Rx(θx) =

 1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 Ry(θy) =

 cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy



Rz(θz) =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1


Roz²írením SO(3) aj na prípady det(A) = −1 dostávame grupu O(3), ktorá popri rota£ných maticiach
obsahuje aj matice odrazov (zrkadlení pod©a jednej z osí) 3 × 3 a maticu priestorovej inverzie, £iºe
zmeny parity, P = −1(3×3).

II.2.2 Generátory grúp SO(D).

Na rozdiel od odrazov, rotácie sú spojitými transformáciami, grupy SO(D) sú teda Lieovými grupami.
Z de�ni£ných podmienok týchto grúp pre ich prvky R a generátory X̂ ich Lieovej algebry, obvykle
ozna£ovanej so(D), platí

RTR = 1 det(R) = 1 R = eθX̂

Odtia© vyplývajú podmienky21

Tr(X̂) = 0 X̂T = −X̂

Matice generátorov X̂ musia teda by´ antisymetrické. Vo v²eobecnosti vD-rozmernom priestore majú
antisymetrické matice D ×D grupy SO(D) (s nulovou diagonálou) práve p = D(D − 1)/2 vo©ných
parametrov (ostatné prvky matice D×D sú ur£ené de�ni£nými vz´ahmi, v tomto prípade antisymet-
rickos´ou). Tieto nezávislé parametre odpovedajú stup¬om vo©nosti s prislúchajúcimi generátormi,
a tvoria p-rozmerný generátorový priestor Lieovej algebry. Po£et generátorov p sa vo v²eobecnosti

19V texte uvaºujeme aktívnu ©avoto£ivú rotáciu objektu o kladný uhol, £iºe pasívnu pravoto£ivú rotáciu súradnicovej
sústavy o kladný uhol.

20odtia© názov Special Orthogonal.
21Vyuºili sme maticové pravidlo det(eX̂) = eTr(X̂), kde Tr(X̂) je stopa matice X̂.
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nerovná po£tu dimenzií reálneho priestoru, pre kaºdé D je v²ak jednozna£ne daný uvedeným vz´a-
hom.22

V kap. I.1.3 sme si ukázali, ºe v klasickej mechanike sú generátormi spojitých transformácií (vo
fázovom priestore), napr. in�nitezimálnych rotácií o uhol θ → 0, antisymetrické PZ generujúcej
veli£iny, v tomto prípade zloºky momentu hybnosti Lj, a transforma£né (v tomto prípade rota£né)
operátory (v spojitej reprezentácii) majú tvar

Rθ = eθ{· ,Lj} ∼= 1 + θ{· , Lj}

Generátory X̂j algebry so(D) (pôsobiace na vektorový priestor tejto algebry) by sme teda mohli
fyzikálne stotoºni´ s poissonovskými operátormi {· , Lj}. Kvantová fyzika v²ak pre merate©né veli£iny
poºaduje hermitovské operátory. Ke¤ºe matice R sú reálne, musíme zmeni´ de�níciu algebry na23

X̂ → iĴ Ĵ = −idR(θ)

dθ
|θ=0

V ¤al²om texte budeme pracova´ s takto de�novanými hermitovskými generátormi.

Pre D = 2 obsahujú rota£né matice jediný parameter θ, abstraktný operátorový priestor Lieovej
algebry je teda 1-rozmerný, p = 1, s jediným generátorom rotácií,24 napr. v rovine xy v kartézskej
reprezentácii z predchádzajúcej kap. II.2.1

Ĵ = −i
(

0 1
−1 0

)

V 3D je D = 3 a rovnako p = D(D − 1)/2 = 3, £omu odpovedajú 3 generátory. V kartézskej
reprezentácii máme potom 3 rota£né matice so samostatným parametrom θj okolo kaºdej z osí x, y, z.
Kartézsku bázu generátorov tvoria

Ĵx = −i

 0 0 0
0 0 1
0 −1 0

 Ĵy = −i

 0 0 −1
0 0 0
1 0 0

 Ĵz = −i

 0 1 0
−1 0 0
0 0 0

 [Ĵj, Ĵk] = iεjklĴl

�truktúrnou kon²tantou tejto algebry je teda εjkl - (antisymetrický) Leviho-Civitov symbol. Vidíme,
ºe komuta£né vz´ahy pre generátory algebry so(3) a kvantovomechanické operátory momentu hyb-
nosti L̂j sú totoºné (aº na rozmerovú kon²tantu ~), £o sved£í o ich hlbokom súvise.25

Lineárnou kombináciou týchto bázových generátorov vieme skon²truova´ ©ubovo©ný prvok so(3) ako
generátor rotácie okolo osi danej jednotkovým vektorom ~n = (nx, ny, nz)

Ĵ = nxĴx + nyĴy + nzĴz = ~n · ~̂J = i

 0 −nz ny
nz 0 −nx
−ny nx 0

 = i ~̂n

22V²eobecné rotácie v D-rozmerných priestoroch sa dajú rozloºi´ na nezávislé rotácie v jednotlivých ortogonálnych
rovinách. Po£et generátorov algebry je daný práve po£tom týchto rovín: V 2D je jediná rovina, v 3D sú tri. V 4D
s ortogonálnymi osami x, y, z, w máme ²es´ ortogonálnych rovín xy, xz, xw, yz, yw, zw, at¤.

23Znamená to, ºe iĴ je reálne, iĴ = (iĴ)∗ = −iĴ∗, a teda Ĵ∗ = −Ĵ . Zárove¬ platí ĴT = −Ĵ , £o vedie na Ĵ = Ĵ†.
24Táto algebra neobsahuje ²truktúrnu kon²tantu (kap. II.1.1), resp. jej ²truktúrnou kon²tantou je 0.
25Kým tu uvedené vz´ahy sú 3-rozmernou reprezentáciou generátorov rotácií, kvantovomechanické diferenciálne ope-

rátory sú ich spojitou reprezentáciou. �truktúra algebry je v²ak rovnaká. Komuta£né vz´ahy sú teda rýdzo �klasickou�
zákonitos´ou. De�novanie zloºiek momentu hybnosti prostredníctvom generátorov rotácií je zásadné: V kvantovej me-
chanike totiº nie je vºdy moºné de�nova´ moment hybnosti telesa (najmä s oh©adom na spin) rovnakým spôsobom
ako v klasickej fyzike, ~L = ~r × ~p, ak uváºime, ºe pojem polohový vektor nemá (mimo merania) zmysel.
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kde ~n · ~̂J je �skalárny� sú£in vektora ~n s �vektorom� ~̂J , ktorého zloºkami sú matice Ĵj, a ~̂n je
symbol pre maticu-operátor. Maticu takejto rotácie skon²truujeme pomocou vz´ahu Rn(θ) = ei~̂nθ

jeho rozvojom do Taylorovho radu26,

Rn(θ) = cos θ 1 + (1− cos θ)(~n⊗ ~n)− sin θ ~̂n

(⊗ je tenzorový sú£in, kaºdý s kaºdým) £o je maticový zápis tzv. Rodriguesovho vzorca, alebo

Rn(θ) =

 cos θ + n2
x(1− cos θ) nxny(1− cos θ) + nz sin θ nxnz(1− cos θ)− ny sin θ

nynx(1− cos θ)− nz sin θ cos θ + n2
y(1− cos θ) nynz(1− cos θ) + nx sin θ

nznx(1− cos θ) + ny sin θ nzny(1− cos θ)− nx sin θ cos θ + n2
z(1− cos θ)



II.2.3 Dôleºité reprezentácie SO(2).

Neredukovate©nou základnou reprezentáciou grupy SO(2), vo forme reálnych matic 2×2, je kartézska
reprezentácia z predchádzajúcich kapitol

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
V tejto reprezentácii sú transformujúce sa objekty st¨pcovými vektormi 2 × 1 s reálnymi prvkami,
vyjadrujúcimi kartézske zloºky 2D vektorov. V gra�ckom vyjadrení (obr. a niº²ie) ide o rotáciu
vektora okolo po£iatku súradnicového systému (napr. polohového vektora bodu).

Podobnostnou transformáciou matíc R(θ) dostaneme inú reprezentáciu SO(2) vo forme komplexných

matíc 2×2: Nájdeme ju pomocou vlastných vektorov matice R(θ), ktorými sú 1√
2

(
1
i

)
a 1√

2

(
i
1

)
s vlastnými hodnotami eiθ a e−iθ, pri£om tieto vektory tvoria st¨pce matice S = 1√

2

(
1 i
i 1

)
takej,

ºe S−1R(θ)S = Rc(θ) =

(
eiθ 0
0 e−iθ

)
je diagonálna matica. Táto reprezentácia SO(2) je v²ak

v obore komplexných £ísel o£ividne redukovate©ná (kap. II.1.2) na dve rôzne jednorozmerné (¤alej
neredukovate©né) reprezentácie27

Rc
±(θ) = e±iθ

V nich prvky grupy SO(2) uº nie sú maticami 2× 2 s reálnymi komponentami, ale komplexnými £ís-
lami, a �vektorový� priestor (t.j. mnoºina navzájom sa transformujúcich objektov) týchto reprezentácií
uº nie je tvorený 2D vektormi ale tieº komplexnými £íslami (bodmi v Gaussovej rovine, pri nezme-
nenom po£te stup¬ov vo©nosti),28 ~v → vx + ivy. Rotácia 2D vektora ~v = (vx, vy) pravo/©avoto£ivo
o uhol θ v základnej reprezentácii

~v ′ = (vx cos θ ∓ vy sin θ , vx sin θ ± vy cos θ)

sa v komplexnej reprezentácii zmení na násobenie jednotkovým komplexným £íslom e±iθ v komplexnej
rovine.

v ′ = e±iθv = (cos θ ± i sin θ)(vx + ivy)

V gra�ckom vyjadrení (obr. b) ide o pooto£enie polohy bodu v Gaussovej rovine.

26Vyuºijeme pritom, ºe ~̂n2 = ~n⊗ ~n = 1 , ~̂n3 = −~̂n, at¤.
27Neexistuje podobnostná transformácia, ktorá by Rc+(θ) previedla na Rc−(θ) alebo naopak.
28�i rovinu, v ktorej rotujeme daný objekt, povaºujeme za reálnu (kartézsku) alebo komplexnú (Gaussovu), je vecou

matematického opisu - reprezentácie.
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Iným prípadom je ∞-rozmerná, £iºe spojitá reprezentácia, v ktorej transformujúcim sa objektom je
hladká spojitá funkcia - pole ψ(~r) (bázu tvorí nekone£ný po£et δ-funkcií). Pre jednoduchos´ uvaºujme
skalárne pole s triviálnou vnútornou ²truktúrou, £iºe ψ ako (reálne alebo komplexné) £íslo29 pre kaºdé
~r. Ke¤ºe aktívna rotácia po©a ψ v 2D rovine (obr. c) o uhol θ je ekvivalentná pasívnej rotácii súradníc
(pozorovate©a) o uhol −θ, pre in�nitezimálnu rotáciu θ → 0 platí (v kartézskych súradniciach)

ψ(~r) → Rs
θψ(~r) = ψ(Rs

−θ~r) = ψ(~r + ∆~r) =

[
1 +

(
∆x

∂

∂x
+ ∆y

∂

∂y

)
+ ...

]
ψ(~r)

kde (Taylorovým rozvojom cos θ a sin θ v matici Rs
−θ v kartézskej reprezentácii)

∆~r =

(
∆x
∆y

)
= Rs

−θ~r − ~r ∼=
(

1 −θ
θ 1

)(
x
y

)
−
(
x
y

)
=

(
−yθ
xθ

)
Dosadením ∆x,∆y do predchádzajúceho vz´ahu a porovnaním s de�ni£ným vz´ahom pre generátor
Ĵ dostávame

Rs
θψ(~r) = eiθĴψ(~r) = [1 + iθĴ + ...]ψ(~r) =

[
1− θ

(
y
∂

∂x
− x ∂

∂y

)
+ ...

]
ψ(~r)

V poslednom výraze rozpoznáme (pod©a o£akávania) predpis pre operátor momentu hybnosti L (pri
~ = 1), a stotoºnenie L̂ = Ĵ = −i

(
x ∂
∂y
− y ∂

∂x

)
dáva Rs

θ = eiθĴ , a to aj po dopo£ítaní rozvoja do
vy²²ích mocnín θ. Alternatívne by sme mohli prejs´ k polárnym súradniciam a zopakova´ postup, £o
by nás priviedlo k výrazu Ĵ = −i ∂

∂ϕ
. Pre spojitú rotáciu po©a teda jej generátor namiesto matice na-

dobúda tvar diferenciálneho operátora momentu hybnosti, pôsobiaceho na ψ(~r), £o sved£í o hlbokom
súvise formalizmu kvantovej (a aj klasickej) mechaniky s Lieovou algebrou.

II.2.4 Dôleºité reprezentácie SO(3).

Pri �²tandardnej� rotácii vektorov v 3D priestore je vhodnou vo©bou kartézska reprezentácia s trans-
formujúcimi sa st¨pcovými vektormi 3 × 1 a generátormi transformácií v tvare matíc 3×3 z kap.
II.2.2. Prechodom do komplexného oboru (analogicky ako v 2D prípade v kap. II.2.3) dostaneme
napr. komplexnú reprezentáciu matice rotácie okolo osi z v tvare

Rc
z(θz) =

 eiθz 0 0
0 e−iθz 0
0 0 1


Na 3D prípad môºeme roz²íri´ aj spojitú reprezentáciu z kap. II.2.3, s generátormi v tvare diferenciál-
nych operátorov. Trojica generátorov grupy SO(3) pritom sp¨¬a komuta£né vz´ahy [Ĵj, Ĵk] = iεjklĴl
nezávislo na výbere reprezentácie (teda £i uº v tvare konkrétnych matíc alebo diferenciálnych operá-
torov).

Uzatvorenos´ (ako de�ni£ná vlastnos´ grupy) SO(D) znamená, ºe rotáciou prvku (vektora, komplex-
ného £ísla, hodnoty po©a, ...) z �vektorového� priestoru danej reprezentácie dostávame opä´ prvok

29Takýmto po©om je napr. Schrödingerovo pole z kap. I.3.8
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tohto priestoru. V 3D priestore je najprirodzenej²ou doménou pôsobnosti grupy SO(3) gu©ová plocha
S(2) - tzv. dvojsféra30 - mnoºina bodov ~r(x, y, z) ∈ S(2), pre ktoré x2 + y2 + z2 = r2 = konst. Pôso-
bením rota£ných matíc sa totiº polohové vektory bodov dvojsféry transformujú v rámci dvojsféry,

R~r = ~r ′ ∈ S(2)

Prechodom k sférickým súradniciam je kaºdý bod na dvojsfére s �xovaným polomerom (pre jed-
noduchos´ môºeme uvaºova´ r = 1) ur£ený súradnicami (ϕ, ϑ) (ϕ - odklon od osi x v rovine xy,
ϑ - odklon od osi z). Pre ©ubovo©nú skalárnu funkciu ψ(ϕ, ϑ), de�novanú na S(2) pritom platí

ψ(ϕ, ϑ) =
∞∑
l=0

l∑
m=−l

almYlm(ϕ, ϑ)

kde Ylm(ϕ, ϑ) sú komplexné sférické harmonické funkcie31 (Dodatok F), alm sú komplexné koe�-
cienty, a l,m sú celé £ísla. Funkcie Ylm(ϕ, ϑ) teda tvoria prirodzenú úplnú bázu pre reálne aj kom-
plexné funkcie na S(2). Na funkcie ψ(ϕ, ϑ) môºeme nahliada´ ako na akési �zov²eobecnené� vektory
- lineárne kombinácie bázových funkcií-vektorov Ylm(ϕ, ϑ). Rotácimi grupy SO(3) transformujeme
funkcie-vektory ψ v rámci abstraktného vektorového priestoru týchto funkcií. Tento priestor (s touto
bázou) pritom pozostáva z (2l + 1)-rozmerných podpriestorov s daným l, kaºdý s 2l + 1 bázovými
vektormi s odli²ným m. Pre ©ubovo©ný vektor kaºdého podpriestoru (s daným l),

ψl(~r) =
l∑

m=−l

almYlm(~r) (|~r| = 1)

platí, ºe jeho rotáciou maticami SO(3) dostaneme opä´ vektor tohto podpriestoru,

Rθψl(~r) = ψl(R−θ~r) =
l∑

m=−l

almYlm(R−θ~r) =
l∑

m=−l

almYlm(~r ′)

Kaºdý z týchto podpriestorov s daným l - orbitálnym kvantovým £íslom - tvorí (2l+1)-rozmernú
ireducibilnú sférickú reprezentáciu grupy SO(3). Z Dodatku F vieme, ºe jej bázové stavy Ylm sú vlast-
nými stavmi generátora Ĵz, ktorý je v týchto reprezentáciách diagonálny. Ak tieto stavy vyjadríme
ako st¨pcové vektory (matice d× 1) s jedinou nenulovou zloºkou (odpovedajúcou danému bázovému
�smeru�), Ĵz bude diagonálnou maticou d×d. Napriek tomu, ºe SO(3) je grupa rotácii v 3D priestore,
hodnota d (ur£ujúca dimenziu reprezentácie a matíc) je vo v²eobecnosti rôzna od 3.

Po£et generátorov algebry p v²ak od reprezentácie nezávisí. V prípade so(3) máme 3 navzájom
nekomutujúce generátory,32 sú£asne môºeme teda diagonalizova´ jediný z nich - tzv. Cartanov ge-
nerátor33 - konven£ne Ĵz. Pomocou zvy²ných �kartézskych� generátorov Ĵx, Ĵy de�nujeme �pomocné�
operátory ako ich komplexné kombinácie

Ĵ+ = (Ĵx + iĴy)/
√

2 Ĵ− = (Ĵx − iĴy)/
√

2 Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z = Ĵ+Ĵ− + Ĵ−Ĵ+ + Ĵ2

z

s komuta£nými vz´ahmi34

[Ĵ+, Ĵ−] = Ĵz [Ĵz, Ĵ±] = ±Ĵ± [Ĵ2, Ĵj] = 0 [Ĵ2, Ĵ±] = 0

30Kvôli odlí²eniu od podobných útvarov vo viacrozmerných priestoroch pouºívame miesto obvyklého termínu sféra
termín dvojsféra, ako zakrivená 2D plocha vnorená do 3D priestoru. Prirodzene predpokladáme po£iatok kartézskych
súradníc v strede dvojsféry.

31Uvedený vz´ah je akýmsi zov²eobecneným Fourierovým radom, v ktorom sú reálne/komplexné harmonické funkcie
nahradené sférickými.

32V kvantovej mechanike sa táto skuto£nos´ manifestuje ako nemoºnos´ sú£asne presne ur£i´ viac neº jednu zloºku
momentu hybnosti.

33Vo v²eobecnosti, grupy SO(D) pre D > 3 obsahujú nieko©ko �Cartanov�.
34Operátory Ĵ± neodpovedajú rotáciám, spolu s Ĵz v²ak tvoria grupu/algebru. Neplatí to pre Ĵ2 - nie je lineárnou

kombináciou Ĵj .
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V kontexte priestorového kvantovania orbitálneho momentu hybnosti poznáme operátory Ĵ± ako
operátory skokovo meniace priemet momentu hybnosti na os z prostredníctvom preskokov medzi
bázovými stavmi Ylm v danej sférickej reprezentácii atómovej podvrstvy (t.j. pre dané l). Operátor
Ĵ2 zas poznáme ako operátor (kvadrátu) ve©kosti momentu hybnosti v podvrstve.

Sférické harmoniky Ylm v²ak tvoria len jednu z moºných reprezentácií takejto algebry. Posu¬me preto
na²e úvahy na v²eobecnej²iu úrove¬, a v ¤al²om texte ozna£ujme vlastné stavy/vektory diagonálneho
(Cartanovho) generátora Ĵz ako vm. Operátory Ĵ± pôsobia ako zvy²ovací/zniºovací operátor
vzh©adom na vlastné hodnoty m príslu²né k vektorom vm,

Ĵzvm = mvm Ĵz(Ĵ±vm) = Ĵzvm±1 = ... = (m± 1)vm±1

Hermitovský operátor Ĵ2 je tzv. Casimirovým operátorom algebry so(3) - komutuje so v²etkými
operátormi tejto grupy. Pre jeho vlastné hodnoty môºeme písa´

Ĵ2vm = µ2vm Ĵ2 = µ21 (µ - reálne £íslo)

Pre zvy²ovací/zniºovací operátor potom vieme odvodi´ vz´ah35

Ĵ±vm =
√
µ2 −m(m± 1) vm±1 ⇒ µ2 ≥ m(m± 1)

Spektrum vlastných hodnôt m je ohrani£ené zdola, resp. zhora, len ak platí

Ĵ−vmin = 0 Ĵzvmin = mminvmin Ĵ2vmin = µ2vmin mmin(mmin − 1) = µ2

Ĵ+vmax = 0 Ĵzvmax = mminvmax Ĵ2vmax = µ2vmax mmax(mmax + 1) = µ2

Z toho vyplýva36

mmax = −mmin := j µ2 = j(j + 1)

a jednotkový pokles/nárast vlastných hodnôt m je obojstranne ohrani£ený, −j ≤ m ≤ j . Existuje
teda N jednotkových preskokov medzi hodnotami −j a j, £iºe j = −j +N a odtia© j = N

2
. Hodnota

j teda môºe o£ividne by´ len celo£íselná alebo polo£íselná, a pre kaºdé j existuje 2j + 1 hodnôt m,

j = 0,
1

2
, 1,

3

2
, ... m = j, j − 1, ...− j + 1,−j

Znamená to teda, ºe Ĵz je diagonálna matica (2j + 1) × (2j + 1) s komponentami j, j − 1, ...,−j.
Ide o (2j + 1)-rozmernú reprezentáciu grupy SO(3), resp. jej algebry so(3), ktorej prvky nie sú vo
v²eobecnosti maticami 3× 3 (iba ak by j = 1).

Hodnota d = 2j + 1 - po£et bázových vektorov - ur£uje dimenzionalitu abstraktného vektorového
priestoru, £iºe po£et jeho stup¬ov vo©nosti. Táto báza pokrýva celý priestor (operátory Ĵx, Ĵy sú
lineárnymi kombináciami Ĵ±, a to isté platí aj o ich vlastných vektoroch - v²etky sa dajú �vysklada´�
z bázových vektorov). Kaºdému j odpovedá d-rozmerná reprezentácia algebry so(3) v príslu²nom
d-rozmernom vektorovom priestore - jej generátory majú tvar matíc d× d.

Je namieste rekapitulácia priestorov: S grupou SO(3) pracujeme v 3D fyzickom priestore, D = 3.
Algebre tejto grupy odpovedá p = 3−rozmerný operátorový priestor - po£et generátorov (lebo p =
D(D− 1)/2 = 3) - môºe ís´ o sadu Ĵx, Ĵy, Ĵz, resp. ich kombináciu Ĵ+, Ĵ−, Ĵz. Tieto generátory �ºijú�
(operujú) v d-rozmerných vektorových priestoroch s d = 2j + 1 bázovými vektormi vm, pri£om d
(dané príslu²nou vlastnou hodnotou j Casimirovho operátora) ur£uje dimenzionalitu reprezentácie

35Odvodenie sa dá nájs´ v ²tandardných u£ebniciach kvantovej mechaniky.
36Vy²²ie uvedené závery sú dôverne známe z kurzu kvantovej mechaniky. Ako v²ak opä´ vidíme, dôvody ich platnosti

spo£ívajú v elementárnych symetriách, a kvantový mikrosvet je len � javiskom�, na ktorom sa manifestujú.
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(£iºe dimenzionalitu vektorov aj matíc generátorov). Vo v²eobecnostiD 6= d, vo fyzickom 3D priestore
teda de�nujeme rôzne dimenzie reprezentácií.

Reprezentáciu samotnej grupy SO(3) dostaneme z reprezentácie jej algebry na základe vz´ahov
Rj(θ) = eiθĴj : Napr. rotáciu (d-rozmerného) vektora v okolo osi z v reálnom priestore reprezen-
tuje matica eiθĴz . Vektor v je pritom superpozíciou (2j + 1) bázových stavov vm - vlastných stavov
operátora Ĵz, £iºe

Rz(θ)v = eiθĴzv = eiθĴz
∑
m

cmvm =
∑
m

eimθcmvm m = −j,−j + 1, ..., j − 1, j

Ako príklad uve¤me reprezentáciu so(3) v troj rozmernom vektorovom priestore, d = 2j+ 1 = 3, £iºe
j = 1, m = 1, 0,−1. Bázové vektory a diagonálny operátor sú

|j,m〉 : |1, 1〉 =

 1
0
0

 |1, 0〉 =

 0
1
0

 |1,−1〉 =

 0
0
1

 Jz =

 1 0 0
0 0 0
0 0 −1


Z týchto bázových vektorov a predchádzajúcich vz´ahov vieme identi�kova´ tvar zvy²ovacieho/zniºo-
vacieho operátora,

Ĵ+ =
√

2

 0 1 0
0 0 1
0 0 0

 Ĵ− =
√

2

 0 0 0
1 0 0
0 1 0


a pomocou nich zvy²né generátory algebry

Ĵx =
1√
2

 0 1 0
1 0 1
0 1 0

 Ĵy =
1√
2

 0 −i 0
i 0 −i
0 i 0


Odpovedajúca reprezentácia grupy SO(3) je Rj(θj) = eiθj Ĵj = ... = 1 + i sin θjĴj + (cos θj − 1)(Ĵj)

2

Rz(θz) =

 eiθz 0 0
0 1 0
0 0 e−iθz



Rx(θx) =

 (cos θx + 1)/2 i sin θx/
√

2 (cos θx − 1)/2

i sin θx/
√

2 cos θx i sin θx/
√

2

(cos θx − 1)/2 i sin θx/
√

2 (cos θx + 1)/2


Ry(θy) =

 (cos θy + 1)/2 sin θy/
√

2 −(cos θy − 1)/2

− sin θy/
√

2 cos θy sin θy/
√

2

−(cos θy − 1)/2 − sin θy/
√

2 (cos θy + 1)/2


£o sú o£ividne odli²né vz´ahy neº tie v základnej reprezentácii z kap. II.2.1 (kde ºiadny z generátorov
nebol diagonálny).

Prípad j = 2, d = 5 by predstavoval 5 bázových vektorov 5 × 1 a Ĵz = diag[2, 1, 0,−1,−2], at¤.
Rotácia o θ = 2π v reálnom priestore znamená identitu, to je v²ak splnené37 len pre celo£íselném, £iºe

37Vidíme to pomocou rozkladu na bázové vektory

eiθĴzv = eiθĴz (c−jv−j + ...+ cjvj) = c−je
iθ(−j)v−j + ...+ cje

iθ(j)vj
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pre j = 0, 1, ...! Pod©a predchádzajúceho textu rovnako dostupné polo£íselné j, vedúce na oto£enie
jednotlivých zloºiek o π, £iºe transformáciu v → −v, teda nemôºu reprezentova´ grupu SO(3). Inými
slovami, takéto reprezentácie algebry so(3) generujú reprezentáciu ²ir²ej grupy transformácií, neº je
SO(3).38

II.2.5 Rotácie vnútorného priestoru polí - spin.

Pri rotáciách polí v spojitých reprezentáciách grúp SO(2) a SO(3) z predchádzajúcich kapitol sme
predpokladali triviálne - skalárne polia. Zamerajme sa teraz na rotácie polí s netriviálnou vnúrornou
²truktúrou. Najjednoduch²ím (a jediným názorne predstavite©ným) je prípad vek-
torového po©a - kaºdému bodu ~r v 3D priestore prislúcha vektor ~f(~r). Pasívnou
rotáciou súradníc/pozorovate©a sa transformujú (�prelievajú� jedna do druhej) nie-
len zloºky vektorov ~r, ale aj vektorov ~f . Kým pre rotáciu skalárneho po©a napr.
okolo osi z o in�nitezimálny uhol θz platí (podobne ako v kap. II.2.3)

ψ(~r) → Rs
θzψ(~r) = ψ(Rs

−θz~r) = ... ∼= (1 + iθzL̂z)ψ(~r)

pre rotáciu vektorového po©a bude plati´

~f(~r) → Rtot
θz
~f(~r) = Rd

θz
~f(Rs

−θz~r)

kde Rd
θz

predstavuje rotáciu vektora ~f v danom mieste 3D priestoru, teda prostredníctvom generá-
tora v diskrétnej - maticovej reprezentácii (na rozdiel od rotácie polohy ~r naprie£ priestorom, teda
v spojitej reprezentácii). Ak ozna£íme tento generátor ako Ŝz, potom Rd

θz
= eiŜzθz ∼= (1 + iθzŜz),

a v lineárnom priblíºení dostaneme

Rtot
θz
~f(~r) ∼= (1 + iθz Ĵ

tot
z︸︷︷︸)~f(~r) = ... = (1 + iθzŜz)(1 + iθzL̂z)~f(~r) ∼= (1 + iθz[Ŝz + L̂z︸ ︷︷ ︸])~f(~r)

Vidíme, ºe generátor Ĵz celkovej rotácie vektorového po©a je sú£tom generátorov L̂z a Ŝz, a rovnako
pre ostatné katrézske zloºky,

Ĵj = L̂j + Ŝj

Vo fyzikálnom kontexte to znamená, ºe celkový moment hybnosti po©a je sú£tom orbitálneho a
vnútorného momentu - spinu (skalárne pole je bezspinové). Komuta£né vz´ahy generátorov algebry
so(3) pritom platia rovnako pre kartézske zloºky v²etkých generátorov,

[L̂j, L̂k] = iεjklL̂j [Ŝj, Ŝk] = iεjklŜj [Ĵj, Ĵk] = iεjklĴj

Kombináciou uvedených vz´ahov tieº dostaneme

[L̂j, Ŝk]− [L̂k, Ŝj] = 0

£o znamená, ºe generátory L̂j a Ŝj komutujú - pôsobia totiº na rôzne vektorové priestory.39

V tejto úvahe sme predpokladali vektorové pole s tromi zloºkami vektora ~f priradenými kaºdému
~r, ako alternatívu k skalárnemu po©u s jedinou (reálnou £i komplexnou) zloºkou.40 Vo v²eobec-
nosti v²ak (s ur£itou dávkou abstraktnej predstavivosti) môºeme uvaºova´ polia s rôznym po£tom

38Touto grupou, ako neskôr uvidíme, je SU(2), ktorej reprezentácie nie sú obmedzené na reálne vektorové priestory
(tak ako SO(3)).

39Tento záver ostáva v platnosti aj v prípade vzájomnej (relativistickej) interakcie momentov ~L a ~S.
40S takýmito po©ami sa stretávame v základných kurzoch fyziky.
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reálnych £i komplexných komponent (priradených kaºdému ~r v 3D). Dimenziu d (6= D vo v²eobec-
nosti) tohto vnútorného priestoru po©a kóduje práve jeho spin, a prejaví sa v charaktere matíc Ŝj,
a to práve prostredníctvom d-rozmerných reprezentácií algebry operátorov Ĵz, Ĵ+, Ĵ− → Ŝz, Ŝ+, Ŝ−
z predchádzajúcej kap. II.2.4. Rozmer konkrétnej reprezentácie d spinového priestoru je pod©a tejto
schémy daný hodnotou41 j súvisiacou s vlastnou hodnotou spinového Casimirovho operátora
Ĵ2 → Ŝ2. Pre vektorové pole je d = 3, a teda j = 1 - hovoríme, ºe toto pole má spin 1. Ska-
lárne pole d = 1, a teda j = 0, má spin 0. O iných druhoch polí sa dozvieme v ¤al²ích £astiach
textu.

V kap. I.3.5 sme ukázali, ºe pri priestorových rotáciách sa zachovávajú generátory týchto rotácií.
Obmedzili sme sa tam na skalárne polia, pre ktoré to boli zloºky orbitálneho (priestorového) mo-
mentu hybnosti po©a Lj, pri£om zmenu po©a pri transformácii sme vyjadrili v spojitej reprezentácii,
δφ = ∂µφω

µ
νx

ν . Pre polia so spinom j 6= 0 v²ak musíme okrem transformácie súradníc (v spojitej re-
prezentácii) uváºi´ aj transformáciu vnútornej ²truktúry po©a v príslu²nej d-rozmernej reprezentácii.
Vo výraze pre noetherovské ²tvorprúdy v kap. I.3.5 tak pribudne ¤al²í £len,

∂L
∂(∂νφ)

δφ(d)

zodpovedný za mie²anie zloºiek vnútornej ²truktúry po©a pri rotácii v príslu²nej d-rozmernej repre-
zentácii. Uváºenie oboch príspevkov vedie pri priestorových rotáciách na zachovávajúce sa veli£iny
(v analógii s v kap. I.3.5)

Jj =
1

2
εjklQkl = ... =

1

2
εjkl

∫
π
[
(xk∂l − xl∂k) + Ŝ

(d)
j

]
φ d3x

Výraz v hranatej zátvorke je kombináciou generátorov rotácií v spojitej a d-rozmernej reprezentácii.
V prvom z nich identi�kujeme operátor zloºky orbitálneho momentu hybnosti Lj, kým dodato£ný
druhý príspevok (rovnakého fyzikálneho rozmeru) je spinovým momentom hybnosti - spinom. Dôleºité
je, ºe zachovávajúcimi sa veli£inami sú diagonálne zloºky celkového momentu hybnosti Jj, a nie
orbitálneho a spinového momentu samostatne.

Uvedený záver opä´ pod£iarkuje dôleºitos´ zov²eobec¬ujúceho poh©adu na veli£iny ako moment hyb-
nosti, hybnos´ £i energia, ako na veli£iny de�nované prostredníctvom £asopriestorových transformácií.

II.2.6 Fyzikálny význam reprezentácií.

Pre hlb²ie pochopenie fyzikálneho obsahu reprezentácií a ich vz´ahu k elementárnym £asticiam si
najprv stru£ne zhr¬me predchádzajúce kapitoly. Kaºdý operátor Rj grupy rotácií v kartézskej re-
prezentácii, s generátormi Ĵj v tvare nediagonálnych matíc, rotuje dané vektory okolo osi j, pri£om
zachováva ich j-tú zloºku (nulová transformácia j-tej zloºky generovaná nediagonálnym Ĵj), ale
mie²a ostatné zloºky (�prelieva� jednu do druhej). V²eobecnú priestorovú rotáciu (s mie²aním v²et-
kých zloºiek) dosiahneme lineárnou kombináciou v²etkýchRj, pri£om sa zachovávajú vlastné hodnoty
Casimirovho operátoru Ĵ2 (ve©kosti vektorov).

V sférických reprezentáciách s diagonalizovaným - Cartanovým generátorom Ĵz komplexi�kované
generátory Ĵ± nepredstavujú rotácie ale �kvantované� preskoky medzi vlastnými stavmi �Cartana�
Ĵz. Po£et týchto stavov ur£uje dimenziu reprezentácie d, ktorá súvisí so zachovávajúcou sa vlastnou
hodnotou �Casimira� Ĵ2. Práve takéto reprezentácie sú matematickým opisom transformácií v abs-
traktných stavových priestoroch kvantových objektov.

41V u£ebniciach kvantovej mechaniky sa obvykle ozna£uje s - spinové kvantové £íslo.
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Napr. v prípade elektrónu v atóme vodíka je �Cartanom� operátor z-ovej zloºky orbitálneho momentu
hybnosti, Ĵz = L̂z, s bázou tvorenou (2l + 1) sférickými harmonikami Ylm(θ, ϕ). �Casimirom� je
Ĵ2 = L̂2, ktorého vlastná hodnota ur£uje l pre danú atómovú podvrstvu. Periodické okrajové pod-
mienky na gu©ovej ploche (£o je priestor v ktorom �ºijú� funkcie Ylm) vedú na celo£íselné hodnoty l,
kaºdú s (2l+ 1) celo£íselnými hodnotami m. Kaºdému l teda odpovedá (2l+ 1)-rozmerný abstraktný
priestor, v ktorom �ºijú� stavy elektrónu, vyjadrite©né (2l + 1)-rozmernými vektormi

|ψ〉 =


c1

c2

...
c2l+1


teda v superpozícii bázových stavov s konkrétnou hodnotou m (ur£ujúcou z-ový priemet momentu
hybnosti). Ide o (2l+1)-rozmerné reprezentácie SO(3). Pôsobenie operátorov Ĵ± odpovedá kvantovým
preskokom medzi stavmi s dostupnými priemetmi orbitálneho momentu hybnosti v rámci podvrstvy.
Operátor Ĵz je diagonálny, a to v kaºdej z týchto sférických reprezentácii, £iºe sférické harmoniky Ylm
sú vlastnými funkciami tohto operátora, s vlastnými hodnotami m. V kontexte kvantovej fyziky, kde
pracujeme so stavovými vektormi (�ºijúcimi� v abstraktných Hilbertových priestoroch a nesúcimi úplnú
informáciu o veli£inách merate©ných v danom stave) je Ĵz hermitovským operátorom, pôsobiacim na
stavy reprezentované funkciami/vektormi Ylm, pre ktoré platí

ĴzYlm = mYlm

V zmysle Noetherovej teorémy je transformácia generovaná operátorom Ĵz - rotácia okolo osi z -
symetriou stavov Ylm, a veli£inou zachovávajúcou sa pri tejto transformácii je m (resp. m~, ako
vlastná hodnota z-ovej zloºky orbitálneho momentu hybnosti). Inými slovami, stavy Ylm sú rota£ne
symetrické vzh©adom na os z. Po doplnení o radiálnu závislos´ ich poznáme ako elektrónové orbitály
s,p,d,f... £iºe l = 0, 1, 2, 3... v atóme vodíka (obr. a, pre atómovú vrstvu n = 4). Meniaca sa fáza týchto
komplexných funkcií (zobrazená farebne) nemá vplyv na ich spojitú rota£nú symetriu v reálnom 3D
priestore,42 de�novanú prostreníctvom nemeniacej sa pravdepodobnosti (Y ∗lmYlm, kap. I.2), diskrétne
hodnoty m v²ak kódujú diskrétnu rota£nú symetriu v komplexnom obore: Pre dané m je identitou
rotácia (okolo osi z) o uhol 2π/m.

42Pre ©ubovo©nú dimenziu d abstraktných priestorov je uºito£né vníma´ Ĵx, Ĵy, Ĵz ako generátory pasívnych rotácií
fyzických 3D súradníc (teda rotácií pozorovate©a), vyvolávajúcich transformácie �poh©adu� pozorovate©a (£iºe fyzikál-
neho opisu) týchto abstraktných priestorov. Vhodnos´ takéhoto prístupu sa preukáºe v nasledujúcich kapitolách.
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Alternatívnym zobrazením k reálnym pravdepodobnostiam Y ∗lmYlm v (reálnom) 3D priestore sú re-
álne kombinácie komplexne zdruºených párov Yl±m (Dodatok F). Tým sa síce (vo v²eobecnosti) stráca
spojitá rota£ná symetria43 okolo význa£nej osi z , na obr. b v²ak opä´ nachádzame diskrétne rota£né
symetrie pre oto£enia o 2π/l (okolo jednotliných osí). Kvantované diskrétne hodnoty momentu hyb-
nosti - a to orbitálneho aj spinového - teda znamenajú diskrétne rota£né symetrie v reálnom priestore.

Podstatou uvedenej schémy je spojitá (rota£ná) symetria úlohy. Ak bázu d-rozmerného priestoru
stavov vybudujeme z vlastných stavov jedného z generátorov symetrie, potom kaºdému z týchto
2j + 1 bázových stavov bude prislúcha´ jedna z moºných hodnôt príslu²ného noetherovského náboja.
Takými sú aj stavy |j,m〉 - vlastné vektory diagonálneho generátora Ĵz s prislúchajúcimi hodnotami
noetherovského náboja, napr. m = +1, 0,−1 pre d = 3. Pôsobením Ĵz sa tieto vektory nemenia -
pri rotácii okolo osi z sa z-ový priemet momentu hybnosti - noetherovský náboj - zachováva. Pôso-
bením nediagonálnymi komplexi�kovanými operátormi Ĵ± sa v²ak tieto vektory menia (skokom na
iný bázový vektor) - z-ový priemet nie je noetherovským nábojom vzh©adom na takúto transformá-
ciu. Ak teda za charakteristiku stavu volíme z-ový noetherovský náboj, operátory Ĵ± tento náboj
zvy²ujú/zniºujú.

Ako to v²etko súvisí s elementárnymi £asticami? Tieto vnímame ako excitácie príslu²ných polí, pri£om
kaºdé z polí má d vnútorných stup¬ov vo©nosti - vnútorný d-rozmerný priestor stavov, vztý£ený v kaº-
dom bode £asopriestoru. Stav po©a v danom bode teda opisujeme ur£itým vektorom v d-rozmernej
reprezentácii. Ak bázu tohto vektorového priestoru tvoríme z vlastných stavov generátora komu-
tujúceho s hamiltoniánom (napr. v atóme vodíka44 [L̂z, Ĥ] = 0), potom ide o �stacionárne� stavy.
Zmena takéhoto stavu môºe nasta´ len interakciou s iným objektom (£asticou). Pôsobenie operátorov
Ĵ± nepochybne znamená takúto interakciu. �asticovo orientovaný prístup teda ponúka nasledovnú
zov²eobec¬ujúcu interpretáciu: Stacionárne stavy odpovedajúce vlastným stavom diagonálnych gene-
rátorov reprezentujú £astice látky, a im odpovedajúce vlastné hodnoty - noetherovské náboje - sú ich
merate©nými charakteristikami.45 Generátory reprezentujú sily, t.j. £astice �silových� polí, pôsobiace
na takto �noetherovsky nabité� £astice: Diagonálne generátory zachovávajú ich identitu (noetherov-
ský náboj), na rozdiel od nediagonálnych generátorov - síl meniacich identitu £astíc v rámci triedy
�príbuzných� £astíc (podpriestoru danej reprezentácie).46

Transformácie v rámci jednotlivých grúp symetrií teda opisujú interakcie polí (£astíc), a generátory
týchto transformácií reprezentujú fundamentálne sily - £astice sprostredkujúce silové interakcie (ako
uvidíme v £asti IV).

� � � � �

Dôleºité závery:

• Ortogonálne transformácie grupy O(D), reprezentované maticami s reálnymi prvkami, zachovávajú
ve©kosti vektorov s reálnymi zloºkami. Patria sem rotácie a zrkadlenia. Rotácie tvoria ²peciálnu
podgrupu SO(D), zachovávajúcu chiralitu transformovaných objektov.

• D(D − 1)/2 generátorov rotácií grupy SO(D) de�nujeme ako hermitovské matice/operátory, a
tvoria algebru s príslu²nými komuta£nými vz´ahmi.

43Tieto superponované stavy uº nie sú vlastnými stavmi Ĵz.
44Neuvaºujeme tu spin-orbitálnu interakciu.
45Pre symetrie SO(3) sú noetherovskými nábojmi priemety momentu hybnosti, v prípade iných grúp symetrií ide

aj o iné �náboje�, ako uvidíme neskôr.
46Pri takomto zov²eobec¬ujúcom poh©ade interpretujeme napr. stavy elektrónu s odli²ným priemetom Lz ako od-

li²né �£astice� v rámci ur£itej triedy �£astíc�. Ak neskôr nahradíme priestor vlastných stavov L̂z inými abstraktnými
priestormi iných kvantových £ísel, stane sa takýto poh©ad prirodzenej²ím.
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• Generátory rotácií SO(3) (v ©ubovo©nej reprezentácii) sp¨¬ajú rovnaké komuta£né vz´ahy ako ope-
rátory zloºiek momentu hybnosti. Rotácie (ani in�nitezimálne) okolo rôznych osí nekomutujú (ani
v klasickom svete). Generátory rotácií v spojitej reprezentácii sú diferenciálnymi operátormi, ktoré
odpovedajú operátorom zloºiek momentu hybnosti z kvantovej mechaniky.

• Grupa SO(3) má jeden Casimirov operátor, ktorého vlastné hodnoty sú charakteristikami repre-
zentácií a ur£ujú ich rozmer. Vlastné stavy (jediného) diagonálneho - Cartanovho - generátora tvoria
vhodnú bázu vektorového priestoru danej reprezentácie. (V kvantovej mechanike odpovedajú stavom
s priemetom orbitálneho momentu hybnosti kvantovaným v celo£íselných násobkoch ~.)

• V rámci ortogonálnych transformácií vektorov sa realizujú len nepárno-rozmerné reprezentácie. Lie-
ova algebra so(3) v²ak pripú²´a aj moºnos´ párno-rozmerných reprezentácií (túto moºnos´ vyuºívajú
transformácie unitárne).

• Pri rotáciách polí s viacerými vnútornými stup¬ami vo©nosti - nenulovým spinom - sa popri rotácii
fyzického priestoru transformuje aj tento vnútorný priestor, a zachovávajúcou sa zloºkou momentu
hybnosti je sú£et odpovedajúcich zloºiek priestorového (orbitálneho) momentu hybnosti a spinu.

• Kvantované diskrétne hodnoty momentu hybnosti - orbitálneho aj spinového - kódujú diskrétne
rota£né symetrie v reálnom priestore.

II.3 Unitárne transformácie.

II.3.1 Unitárne grupy U(D), SU(D).

V kvantovej mechanike pracujeme so stavovými vektormi £i vlnovými funkciami v obore komplex-
ných £ísel, £o si vyºaduje roz²írenie úvah z predchádzajúcej kap. II.2 na transformácie komplexných
priestorov - unitárne transformácie.47

Unitárna grupa U(D) v D-rozmernom priestore je tvorená mnoºinou unitárnych matíc U ,

U †U = 1 U † = U−1

Takéto transformácie pôsobia na vektory komplexného d-rozmerného vektorového priestoru

ξ =

 ξ1

..
ξd

 ξj ∈ C

a zachovávajú normu komplexných £ísel a vektorov.48 �peciálnu podgrupu SU(D) tvoria matice
sp¨¬ajúce dodato£nú podmienku det(U) = 1.

Prípad D = 1 odpovedá v základnej reprezentácii matici 1× 1, £iºe komplexnému skaláru z = a+ ib.
Poºiadavka unitárnosti z†z = 1 znamená, ºe

|z| = zz∗ = a2 + b2 = 1

47V kap. I.2 sme ukázali, ºe práve unitárne transformácie reprezentujú symetrie kvantovej mechaniky.
48V tomto zmysle sú unitárne transformácie obdobou ortogonálnych v abstraktnom priestore komplexných vektorov.

Neexistuje jednoduché zobrazenie unitárnych transformácií do reálneho priestoru na²ej kaºdodennej skúsenosti, musíme
si preto vysta£i´ s abstraktnou matematickou argumentáciou.
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£o je rovnica jednotkovej kruºnice. Transformácie grupy U(1), £iºe násobenie jednotkovým komplex-
ným £íslom, teda odpovedajú rotáciám pozd¨º jednotkovej kruºnice v komplexnej rovine - zmene uhla
θ pri �xovanej norme (jednému stup¬u vo©nosti v 2D priestore).

�ubovo©né komplexné £íslo v²ak môºeme vyjadri´ aj v 2-rozmernej reprezentácii U(1) ako maticu
2× 2, a to de�novaním jednotkovej a imaginárnej jednotkovej matice

1 =

(
1 0
0 1

)
i =

(
0 1
−1 0

)
z = a+ ib = a1 + bi =

(
a b
−b a

)
Jednotkové komplexné £íslo z = a+ ib ∈ U(1), a2 + b2 = 1, má potom maticový tvar (Eulerov vzorec)

eiθ = RU(1)
θ =

(
1 0
0 1

)
cos θ +

(
0 1
−1 0

)
sin θ =

(
cos θ sin θ
− sin θ cos θ

)
= RSO(2)

θ

£o je matica ²tandardnej rotácie v SO(2) - transformácie SO(2) a U(1) sú tzv. izomorfné,49

~v ′ = RU(1)
θ ~v = RSO(2)

θ ~v

Pre nás dôleºitou je grupa SU(2), ktorá v základnej reprezentácii d = D obsahuje unitárne matice
2× 2 s komplexnými prvkami

U =

(
a− id b− ic
−b− ic a+ id

)
det(U) = a2 + b2 + c2 + d2 = 1

�peciálna podmienka je rovnicou jednotkovej trojsféry50 v 4D. Grupa SU(2) teda obsahuje transfor-
mácie len s tromi stup¬ami vo©nosti v 4D. V analógii s priradením

bod v 2D ↔ komplexné £íslo bod na jednotkovej kruºnici↔ jednotkové komplexné £íslo

uvaºujme 4D priestor s jednou reálnou a tromi imaginárnymi (ortogonálnymi) osami, a de�nujme
priradenie

bod v 4D ↔ kvaternión51 q = (a, b, c, d) = a1 + bi + cj + dk

kde 1, i, j, k sú reálna a tri imaginárne jednotky - bázové kvaternióny, pre ktoré platia vz´ahy

i2 = j2 = k2 = ijk = −1 ij = −ji = k, at¤. cyklicky

Kvaternióny sa s£ítavajú po zloºkách (ako vektory) a násobia kaºdá zloºka s kaºdou, výsledkami sú
opä´ kvaternióny. Sú£in kvaterniónov je asociatívny, ale nie je komutatívny.

Bázové kvaternióny môºeme reprezentova´ jednotkovými maticami52 2× 2

1 =

(
1 0
0 1

)
i =

(
0 1
−1 0

)
j =

(
0 −i
−i 0

)
k =

(
−i 0
0 i

)
Ak pre kvaternión (v maticovom zápise) platí det(q) = 1, ide o jednotkový kvaternión, pri£om
q†q = qq† = 1, a maticový tvar kvaterniónu je identický s maticou U ∈ SU(2). Mnoºina v²et-
kých jednotkových kvaterniónov tvorí jednotkovú trojsféru v 4D, de�novanú ²peciálnou podmienkou

49Izomor�zmus = zhoda zobrazení, 1:1. K tomuto záveru sme dospeli uº v kap. II.2.3.
50�tvorica parametrov a, b, c, d de�nuje 4D priestor, a ²peciálna podmienka redukuje po£et nezávislých parametrov.

Trojsféra je analógiou gu©ovej plochy - dvoj sféry v 3D alebo kruºnice v 2D.
51Historicky sú kvaternióny predchodcami vektorov. W.R.Hamilton de�noval vektor ako imaginárnu £as´ kvaterni-

ónu. J.C.Maxwell sformuloval svoje rovnice elektromagnetizmu v jazyku kvaterniónov. V sú£asnosti na²li kvaternióny
svoje uplatnenie v po£íta£ovej gra�ke.

52Takáto vo©ba nie je jediná.
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SU(2). Operácie násobenia jednotkovým kvaterniónom teda tvoria grupu SU(2) - grupu transformácií
v rámci jednotkovej troj sféry v 4D,

jednotkové komplexné £íslo↔ U ∈ U(1) jednotkový kvaternión↔ U ∈ SU(2)

Podobne ako izomorfnos´ grúp U(1)-SO(2), existuje aj súvis medzi grupami SU(2) a SO(3) - pomo-
cou oboch môºeme rotova´ vektory v 3D. Ak totiº formálne stotoºníme imaginárne jednotky i, j, k
s kartézskymi bázovými jednotkovými vektormi ~i,~j,~k, môºeme ©ubovo©ný kvaternión zapísa´ ako
kombináciu skalára (reálna zloºka kvaterniónu) a vektora (imaginárne zloºky kvaterniónu)

q = a+ b~i+ c~j + d~k = (a,~v)

Ak poloºíme skalárnu £as´ a = 0, dostaneme tzv. kvaterniónovú reprezentáciu vektora, q = (0, ~v).
V nej pre sú£in takýchto dvoch vektorov-kvaterniónov platí53

q1q2 = ... = (−~v1 · ~v2 , ~v1 × ~v2)

Uvaºujme ako príklad otá£anie vektora ~v kolmého na os otá£ania, ur£enú jednotkovým vektorom ~n
(£iºe ~n · ~v = 0), o uhol θ (©avoto£ivo). Pooto£ený vektor ~v ′ môºeme rozpísa´ na zloºky v rovine
otá£ania, a to v smere pôvodného vektora ~v a kolmo na¬, ~v × ~n,

~v ′ = ~v cos θ + (~v × ~n) sin θ =

= ~v cos θ − (~n× ~v) sin θ

Prepí²me teraz túto rotáciu vektora do kvaterniónovej reprezentácie: V nej sú vektory ~n,~v,~v ′ kva-
terniónmi s nulovou reálnou £as´ou, n = (0, ~n), at¤., a sú£in ~n× ~v bude odpoveda´ kvaterniónu

nv = ... = (−~n · ~v, ~n× ~v) = (0, ~n× ~v)

Uvedené pooto£enie vektora ~v má potom v kvaterniónovej reprezentácii tvar

v′ = (cos θ − n sin θ)v pri£om n2 = (−~n · ~n, ~n× ~n) = ... = −1

Jednotkový kvaternión n je teda 3-rozmerným analógom imaginárnej jednotky (i2 = −1), a rotácia
ná²ho vektora je (s pouºitím Eulerovho vzorca zov²eobecneného pre kvaternióny)54

v′ = e−nθv resp. v = enθv′

a reprezentuje rotáciu v rovine kolmej na ~n.

Zov²eobecnenie uvaºovanej kon�gurácie ~n ⊥ ~v na ©ubovo©ný uhol medzi vektormi znamená rozklad
~v = ~v‖+~v⊥ vzh©adom k smeru ~n, pri£om ~v‖ sa rotáciou nemení, a na ~v⊥ sa vz´ahuje uvedená analýza.
Takºe transforma£ný vz´ah je v kvaterniónovom zápise

v′ = e−nθv⊥ + v‖

a vo vektorovom tvare vedie na Rodriguesov vzorec z kap. II.2.2

~v ′ = ~v ′⊥ + ~v‖ = ... = cos θ ~v − sin θ (~n× ~v) + (1− cos θ)~v‖ =

= cos θ ~v − sin θ (~n× ~v) + (1− cos θ) (~v · ~n)~n

53Vo v²eobecnosti, ak a1, a2 6= 0, platí q1q2 = ... = (a1a2 − ~v1 · ~v2 , a1~v2 + a2~v1 + ~v1 × ~v2).
54V na²om prípade je θ > 0 pri ©avoto£ivej rotácii. Pri obvyklej²ej pravoto£ivej rotácii by bola analógia s Eulerovým

vzorcom e²te zrejmej²ia.
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(v prípade kolmých vektorov ~v · ~n = 0 posledný £len vypadne). Dá sa ©ahko ukáza´, ºe55

v‖ = e−nθ/2enθ/2v‖ = e−nθ/2v‖e
nθ/2 e−nθv⊥ = e−nθ/2e−nθ/2v⊥ = e−nθ/2v⊥e

nθ/2

a transforma£ný vz´ah nadobudne tvar56

v′ = e−nθ/2v enθ/2 = q−1vq q resp. q−1 = e±nθ/2 = 1 cos
θ

2
± (nii + njj + nkk) sin

θ

2

Vo vy²²ie uvedenej maticovej reprezentácii i, j, k majú na²e vektory-kvaternióny tvar

v = vii + vjj + vkk =

(
−ivk vi − ivj
−vi − ivj ivk

)
n analogicky

a vektor pooto£ený napr. okolo osi z (t.j. nk = 1, ni = nj = 0) tvar

v ′ =

(
ei
θ
2 0

0 e−i
θ
2

)
(vii + vjj + vkk)

(
e−i

θ
2 0

0 ei
θ
2

)
= ... =

(
−ivk (vi − ivj)eiθ

−(vi + ivj)e
−iθ ivk

)

Porovnaním so v²eobecným kvaterniónovým zápisom v ′ =

(
−iv′k v′i − iv′j
−v′i − iv′j iv′k

)
dostávame

v′i = vi cos θ + vj sin θ v′j = −vi sin θ + vj cos θ v′k = vk

£o je výsledok zhodný s rotáciou ~v ′ = Rz(θ)~v v SO(3).

Ke¤ºe jednotkové kvaternióny odpovedajú maticiam U ∈ SU(2), môºeme namiesto q,q−1 písa´

v ′ = Uθ/2 vU−1
θ/2

Vidíme teda, ºe nielen rota£né matice grupy SO(3), ale aj jednotkové kvaternióny/matice grupy
SU(2) generujú rotáciu vektorov v reálnom 3D priestore, aj ke¤ pod©a odli²ného predpisu (sendvi£
namiesto násobenia z©ava). V porovnaní s izomor�zmom U(1)↔SO(2) je tu v²ak zásadný rozdiel:
Uhlu rotácie v SU(2) (£iºe v komplexnom priestore) odpovedá dvojnásobný uhol rotácie v SO(3)
(v reálnom priestore)! Navy²e kvaterniónom q aj −q (uhlu +θ/2 aj −θ/2) odpovedá rovnaká rotácia
v SO(3)57. Ako uvidíme neskôr, tieto zdanlivo �nepodstatné technické detaily� majú dôleºité dôsledky,
vrátane jednej z najdôleºitej²ích zákonitostí fyziky - Pauliho vylu£ovacieho princípu.

II.3.2 Generátory grúp U(1) a SU(2).

Generická komplexná matica D × D obsahuje 2D2 reálnych parametrov. Uº v kap. I.2.1 sme v²ak
ukázali, ºe generátory unitárnych transformácií musia by´ hermitovské, X̂† = X̂, £o znamená D2

rovníc. Grupy U(D) teda vyºadujú 2D2 − D2 = D2 generátorov (prislúchajúcich nezávislým stup-
¬om vo©nosti). �peciálna podmienka det(U) = 1 poskytuje dodato£né obmedzenie na nulovú stopu
generátora, £iºe pre grupy SU(D) potrebujeme p = D2 − 1 generátorov.

Grupe U(1) prislúcha jeden hermitovský generátor. Ke¤ºe ide o násobenie (jednotkovým) komplex-
ným £íslom, tento generátor musí by´ reálne £íslo (skalár). Vo v²eobecnom formalizme Lieových grúp
to znamená

U(θ) = eiθQ̂

55Odpovedá to v²eobecnému komuta£nému vz´ahu pre kvaternióny, [q1,q2] = q1q2 − q2q1 = 2(~q1 × ~q2).
56Takýto vz´ah zabezpe£í transformáciu vektora na vektor. Výsledok jednoduchého násobenia enθv (v analógii s 2D)

vo v²eobecnosti nemusí ma´ rozumnú interpretáciu.
57Znamená to, ºe dvoj sféra v 3D odpovedá polovici troj sféry v 4D.
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namiesto obvyklej²ieho eiθ, kde Q̂ je (fyzikálne bezrozmerný jednotkový) generátor rotácie v komplex-
nej rovine. V zmysle Noetherovej teorémy ide o zachovávajúcu sa veli£inu pri U(1) symetrii, pri£om
v kap. I.3.6 a I.3.8 sme ho dali do súvisu so zachovávajúcim sa po£tom £astíc. Tento noetherovský
náboj budeme preto nazýva´ £asticovým nábojom.58

De�ni£né podmienky grupy SU(2) sp¨¬a (popri generickej matici U z predchádzajúcej kap.) aj matica

U =

(
n0 + in3 n2 + in1

−n2 + in1 n0 − in3

) 3∑
j=0

n2
j = 1 nj ∈ R

£o sa dá zapísa´ ako U = n01 + i(n1σ1 + n2σ2 + n3σ3) = n01 + i~n · ~σ

kde ~σ je �vektor�, ktorého zloºkami sú Pauliho matice

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
a 1 =

(
1 0
0 1

)
sp¨¬ajúce vz´ahy

σjσk = δjk1 + i
3∑
l=1

εjklσl [σj, σk] = 2iεjklσk σjσk = −σkσj pre j 6= k

Ide o alternatívnu reprezentáciu SU(2) ku kvaterniónovej z predchádzajúcej kapitoly (bázu tu na-
miesto jednotkových kvaterniónov i, j, k tvoria Pauliho matice). Bez újmy na v²eobecnosti môºeme

de�nova´59 n0 = cos θ
2
, |~n| =

√∑3
j=1 n

2
j = sin θ

2
, θ

2
∈ (0, π) (sp¨¬ajúce

∑3
j=0 n

2
j = 1),

a uvedený tvar matíc U prepísa´ ako60

U~n(θ) =

(
cos

θ

2

)
1 + i

(
sin

θ

2

)
~no · ~σ = eiθ~n

o·~σ/2 = eiθ~n
o· ~̂J ~no =

~n

|~n|

£o odpovedá matici rotácie o uhol θ okolo osi ~n0 s generátorom ~̂J = ~σ/2 (kap. II.2.2). Rotáciám
vzh©adom na kartézske osi x, y, z odpovedajú matice

Ux(θx) = eiθxσx/2 =

(
cos(θx/2) i sin(θx/2)
i sin(θx/2) cos(θx/2)

)
Uy(θy) = eiθyσy/2 =

(
cos(θy/2) sin(θy/2)
− sin(θy/2) cos(θy/2)

)
Uz(θz) = eiθzσz/2 =

(
eiθz/2 0

0 e−iθz/2

)
Z uvedeného priamo vyplýva vo©ba bázových generátorov Ĵj transformácií grupy SU(2) v tejto re-
prezentácii

Ĵj =
σj
2

[Ĵj, Ĵk] = iεjklĴl

Tieto hermitovské matice generátorov tvoria algebru su(2). Vidíme, ºe grupy SU(2) a SO(3) majú
rovnaký po£et generátorov aj rovnakú Lieovu algebru (t.j. komuta£né vz´ahy medzi generátormi), £o
opä´ sved£í o ich hlbokom súvise.

V tejto hermitovskej reprezentácii je vektor ~v vyjadrený ako hermitovská matica (s nulovou stopou)
v báze Pauliho matíc

V = ~v · ~σ = vxσx + vyσy + vzσz =

(
vz vx − ivy

vx + ivy −vz

)
= V †

58Nateraz ide o formálnu úpravu, ktorej význam pochopíme pri interakciách.
59Vo©bou polovi£ného uhla eliminujeme faktor 2 z komuta£ných vz´ahov, £o priamo súvisí so vz´ahom rotácií v SO(3)

a SU(2).
60Pouºili sme rozklad do Taylorovho radu s uváºením (~n0 · ~σ)2 = 1.
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Jej transformácia prostredníctvom unitárnej jednotkovej matice U

V ′ = UV U † = (U †)†V †U † = (UV U †)† = (V ′)†

nezmení jej hermitovos´ ani stopu (det[U ] = 1). Znamená to, ºe V ′ je hermitovskou reprezentáciou
pooto£eného vektora ~v → ~v ′. Ako príklad uve¤me opä´ rotáciu okolo osi z s generátorom Jz = σz/2,(

v′z v′x − iv′y
v′x + iv′y −v′z

)
= V ′ = eiθσz/2V e−iθσz/2 =

(
vz (vx − ivy)eiθ

(vx + ivy)e
−iθ −vz

)
£o sa opä´ zhoduje s transformáciou ~v ′ = Rz(θ)~v grupy SO(3).

Ke¤ºe grupa SU(2) má identickú algebru s grupou SO(3), rovnakým spôsobom vieme vytvori´ aj
neredukovate©né d-rozmerné reprezentácie Lieovej algebry su(2) s diagonálnym generátorom Ĵz, zvy-
²ovacím, zniºovacím a Casimirovým operátorom

Ĵ+ = (Ĵx + iĴy)/
√

2 Ĵ− = (Ĵx − iĴy)/
√

2 Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z = Ĵ+Ĵ− + Ĵ−Ĵ+ + Ĵ2

z

s rovnakými komuta£nými vz´ahmi ako v kap. II.2.4, a pri platnosti vz´ahov

Ĵzvm = mvm Ĵ±vm = vm±1 Ĵ2vm = j(j + 1)vm

kde
m = j, j − 1, ...− j + 1,−j j = 0,

1

2
, 1,

3

2
, ...

V prípade j = 0 £iºe d = 1 (transformujúce sa �vektory� sú jednozloºkové, teda skaláry) sú generátory
nulovými maticami 1 × 1 (v súlade s komuta£nými vz´ahmi), a Uj = e0 = 1, £o je identita (skaláry
sa rotáciami nemenia). Pre j = 1 dostávame �obvyklý� vektorový priestor d = 3 s identickou troj roz-
mernou reprezentáciou operátorov ako v prípade so(3) (kap. II.2.4).

Dôleºitým je aj prípad j = 1
2
, £iºe dvoj rozmerná reprezentácia (ktorá v SO(3) postrádala fyzikálny

význam) v tvare matíc (2× 2)

Ĵz =
1

2
σz =

1

2

(
1 0
0 −1

)
Ĵ+ =

1√
2

(
0 1
0 0

)
Ĵ− =

1√
2

(
0 0
1 0

)
s dvomi bázovými vektormi s prislúchajúcimi vlastnými hodnotami

m = ±1

2
v1/2 =

(
1
0

)
v−1/2 =

(
0
1

)
Ostatné operátory v tejto báze sú samozrejme

Ĵx =
1√
2

(Ĵ− + Ĵ+) =
1

2

(
0 1
1 0

)
=

1

2
σx Ĵy =

i√
2

(Ĵ− − Ĵ+) =
1

2

(
0 −i
i 0

)
=

1

2
σy

(£o je de�ni£ná reprezentácia su(2)). Objekty, na ktoré pôsobia transforma£né matice v tejto repre-
zentácii, vy²peci�kujeme v kap. II.3.3.

Analogicky kon²truujeme ©ubovo©nú d-rozmernú reprezentáciu algebry su(2). Reprezentáciu samotnej
grupy SU(2) v d-rozmernom priestore dostaneme dosadením jej generátorov do vz´ahov Uj = eiθĴj ,
a to pre celo£íselné aj polo£íselné hodnoty j. Vidíme teda, ºe algebra su(2) �pokrýva� nielen grupu
SU(2), ale aj SO(3).61

61Bolo preto prirodzené de�nova´ generátory so(3) v kap. II.2.2 ako hermitovské operátory pozorovate©ných veli£ín,
v zhode s kvantovou mechanikou.
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II.3.3 Spinory.

V predchádzajúcich kapitolách sme ukázali, ako pomocou �sendvi£a� matíc/operátorov U ∈ SU(2)
dokáºeme rotova´ objekty vo fyzickom 3D priestore, resp. (pri pasívnej transformácii) rotova´ pozo-
rovate©a a tým aj jeho opis objektov vsadených do 3D priestoru, rovnako ako násobením maticami
SO(3). �o v²ak reprezentujú samostatné matice grupy SU(2), pôsobiace z©ava (teda nie ako sendvi£)
na daný objekt?

Ke¤ºe grupa SU(2) zdie©a spolo£nú algebru s grupou SO(3), ktorej generátory sú generátormi rotácií
v 3D, predstavujú aj samostatné matice U ∈ SU(2) rotácie, ale v komplexnom priestore. Transfor-
mujúce sa objekty (na ktoré tieto matice pôsobia) teda �ºijú� v takomto komplexnom priestore - sú
komplexnými (st¨pcovými d-komponentnými) �vektormi�. Prezentovaný úzky súvis rotácií prostred-
níctvom SU(2) a SO(3) pritom znamená väzbu tohto komplexného priestoru na reálny (�ná²� fyzický)
3D priestor - reálnemu 3D priestoru prira¤ujeme odpovedajúci komplexný priestor.62 Ako hne¤ uká-
ºeme, reálnemu 3D objektu (napr. �²tandardnému� trojkomponentnému vektoru v �na²om� priestore)
môºeme priradi´ odpovedajúci objekt (d-komponentný komplexný �vektor�) vo svojom komplexnom
priestore.

V základnej dvoj rozmernej reprezentácii SU(2), £iºe j = 1
2
, sú takýmito objektami dvojkomponentné

vektory s komplexnými zloºkami, teda objekty ur£ené vo v²eobecnosti ²tyrmi reálnymi £íslami -
stup¬ami vo©nosti. Dajú sa vyjadri´ ako lineárne kombinácie (s komplexnými koe�cientami) bázových
dvojkomponentných vlastných vektorov diagonálneho operátora Ĵz (kap. II.3.2)

v1/2 =

(
1
0

)
= | ↑〉z v−1/2 =

(
0
1

)
= | ↓〉z Ĵz v±1/2 = ±1

2
v±1/2

ktoré obvykle ozna£ujeme ako �spin hore�, resp. �spin dole�, a v kvantovej fyzike ich stotoº¬ujeme
s dvoma moºnými priemetmi spinu (z poh©adu ná²ho priestoru). Ke¤ºe j = 1

2
, hovoríme o objektoch

so spinom 1
2
(~ = 1) - spinoroch, podobne ako skaláry, resp. vektory sú objektami so spinom 0, resp.

1. V kontexte tejto kapitoly je v²ak spinor rýdzo matematickým objektom, podobne ako vektor.63

Lí²ia sa navzájom tým ako sa transformujú pri rotáciách - spinor násobením maticami SU(2) a 3D
vektor maticami SO(3). V Dodatku G je vysvetlený zápis spinorov pomocou premenných v, ϑ, θ, α
(prvé tri sú ²tandardnými 3D sférickými súradnicami)

ψ =

(
ψ1

ψ2

)
=

( √
v cos ϑ

2
ei(α+θ)/2

√
v sin ϑ

2
ei(α−θ)/2

)
ako aj ich zobrazenie do reálneho 3D priestoru a súvis s vektorom ~v(vx, vy, vz) = ~v(v, ϑ, θ). Oproti od-
povedajúcemu vektoru má spinor prebyto£ný stupe¬ vo©nosti α, ktorý nemá interpretáciu v priestore
reálnych vektorov.

Dá sa ukáza´ (dosadením), ºe vz´ah medzi odpovedajúcou si dvojicou vektor-spinor, resp. ich zloº-
kami, môºeme vyjadri´ aj pomocou Pauliho matíc

~v = ψ†~σψ vj = ψ†σjψ

Ako príklad uvaºujme rotáciu vektora ~v okolo osi z o uhol θ a jej projekciu do odpovedajúceho
spinorového komplexného priestoru: Nástrojom takejto rotácie v rámci grupy SU(2) (kap. II.3.1,

62Ide o abstraktný, fyzikálne nepozorovate©ný interný priestor priradený kaºdému bodu fyzického priestoru.
63Pojem vektor sme doteraz £asto pouºívali v abstraktnom algebrickom význame ako maticu (n × 1), teda st¨pec

£ísel. V tomto zmysle aj spinory sú takýmito vektormi - maticami (2 × 1) s komplexnými prvkami. V ¤al²om texte
budeme pojem vektor £astej²ie chápa´ v ²peci�ckom význame ako maticu s reálnymi prvkami (3 × 1) v 3D, resp.
(4 × 1) v 4D £asopriestore. Rozdiel medzi takto chápaným vektorom a spinorom (a skalárom) je v spôsobe, akým sa
transformujú.
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II.3.2) je operátor Uθ/2 = eiσzθ/2 = cos θ
2
1+ i sin θ

2
σz , ktorý na spinor ψ pôsobí ako ψ → ψ′ = Uθ/2ψ .

Rotácia odpovedajúceho vektora je potom (pod©a vy²²ie uvedeného vzorca)

~v → ~v ′ =
(
ψ†U−1

θ/2

)
~σ
(
Uθ/2ψ

)
v′j = ψ†e−iσzθ/2σje

iσzθ/2ψ

S vyuºitím Eulerovho vzorca a vlastností Pauliho matíc σjσk = δjk1 + iεjklσl dostávame pre jed-
notlivé zloºky pôvodného a transformovaného vektora

v′x = (ψ†σxψ) cos θ+ (ψ†σyψ) sin θ = vx cos θ+ vy sin θ v′y = ... = −vx sin θ+ vy cos θ v′z = vz

£o je naozaj rotácia vektora ~v v 3D okolo osi z o uhol θ.

U±θ/2 = e±i
~θ·~σ/2 ↔ Rθ = ei

~θ· ~̂J

Pasívna rotácia 3D priestoru (pozorovate©a, súradnicovej sústavy) o uhol θ sa projektuje do rotácie
spinorového priestoru o uhol θ

2
. Rotácia v 3D o 360◦ znamená v spinorovom priestore Uπψ = −ψ, £iºe

zmenu znamienka spinora.64 Dva spinorové stavy | ↑〉z a | ↓〉z, ktoré sa javia ako antiparalelné v 3D,
sú ortogonálne v spinorovom priestore.65 Pre spin 1/2 je teda identitou rotácia fyzického priestoru
(pozorovate©a) o 2π/1

2
= 4π (v súlade so závermi z kap. II.2.6).

Pasívna rotácia pozorovate©a v 3D priestore o 180◦ znamená tieº výmenu vzájomnej polohy dvojice
objektov. Im odpovedajúce spinory sa pritom v spinorovom priestore oto£ia kaºdý o 90◦ (v rovnakom
zmysle), dohromady teda o 180◦ - ich spolo£ná hodnota ψ → −ψ. Priamym dôsledkom je Pauliho
vylu£ovací princíp (viac v kap. III.2.8).

� � � � �

Dôleºité závery:

• Unitárne transformácie grúp SU(D) zachovávajú ve©kos´/skalárny sú£in vektorov so zloºkami
z oboru komplexných £ísel - oproti SO(D) roz²irujú pôsobnos´ z R na C.

• Grupa SU(2) má rovnakú algebru ako SO(3), s D2 − 1 = 3 generátormi rotácií. Zobrazenie medzi
nimi v²ak nie je jedno-jednozna£né: Rotácii o uhol θ v SO(3) odpovedajú v reálnom 3D priestore
rotácie SU(2) o dva rôzne uhly±θ/2. Pre 3D rotácie je teda SU(2) v²eobecnej²ou (fundamentálnej²ou)
grupou.

• SU(2) má aj reprezentácie odpovedajúce polo£íselným hodnotám j (odpovedajúcim vlastným hod-
notám Casimirovho operátora). V kvantovej mechanike tomu odpovedá priestorové kvantovanie aj
polo£íselného momentu hybnosti - spinu 1/2.

• Priestorová rotácia o 2π predstavuje identitu pre vektor ~v a transformáciu ψ → −ψ pre jemu
odpovedajúci spinor. Identitou pre spinor je rotácia o 4π. (Touto vlastnos´ou sa vyzna£ujú £astice
fermióny, a súvisí s Pauliho vylu£ovacím princípom.)

64V kvantovej mechanike to nepredstavuje fyzikálny problém, ke¤ºe merate©nou je len veli£ina |ψ|2.
65Ozna£enie smeru priemetu spinu � hore� a �dole� sa vz´ahuje na pozorovate©a v 3D priestore, tam by v²ak tieto

smery odpovedali tomu istému stup¬u vo©nosti. V spinorovom priestore ide o dva nezávislé stupne vo©nosti.
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II.4 Lorentzovské transformácie.

II.4.1 Lorentzovské grupy O(1,3), SO(1,3).

Grupy SO(3) aj SU(2) z predchádzajúcich kapitol sú grupami rotácii v 3D priestore. Pri relativis-
tickom opise je v²ak poºiadavkou jeho kovariantnosti zachovávnie ve©kosti ²tvorvektorov pri trans-
formáciách medzi inerciálnymi sústavami v Minkowského £asopriestore. Túto poºiadavku sp¨¬a lo-
rentzovská grupa O(1,3)66 - ortogonálna grupa transformácií Λ

vµ → v′µ = Λµ
νv

ν

�tvorvektorový skalárny sú£in je (kap. I.3.1)

vµv
µ = vµηµνv

ν = v0v0 − ~v · ~v ηµν = ηµν = diag(1,−1,−1,−1) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


a jeho zachovanie pri transformácii, vµvµ = v′µv

′µ, znamená67

vµη
µνvν = vσΛσ

µη
µνΛτ

νvτ → ηµν = Λµ
ση

στΛν
τ η = ΛTηΛ

£o je de�ni£ná podmienka lorentzovskej grupy. Ak by sme Minkowského metriku nahradili euklidov-
skou, η → 1, dostali by sme de�ni£nú podmienku grúp O(D). Transformácie grupy O(1,3) budú teda
£asopriestorovými analógiami transformácií O(3) - ortogonálnymi transformáciami v ²tvorrozmernom
£asopriestore (s Minkowského metrikou).

Ke¤ºe det(η) = −1, musí plati´ [det(Λ)]2 = 1, a teda det(Λ) = ±1 - vtedy hovoríme o roz²írenej
lorentzovskej grupe O(1,3). Podmienke det(Λ) = −1 vyhovujú priestorové preklopenie súradníc, £iºe
zmena parity, a oto£enie £asu

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 det(P) = det(T ) = −1

Podmienka det(Λ) = +1 znamená zachovanie chirality (pravá ruka ostáva pravou, kap. II.4.3),
a podmienka Λ0

0 > 0 zachovanie orientácie £asu. Tieto dodato£né podmienky de�nujú ²peciálnu
podgrupu SO(1,3).

Z podmienky ortogonality matíc vyplýva D(D−1)/2 = 6 nezávislých parametrov. Ke¤ºe priestorová
£as´ metrickej matice η je −1, de�ni£nú podmienku lorentzovskej grupy SO(1,3) sp¨¬ajú matice
priestorových rotácií SO(3) roz²írené o £asový riadok/st¨pec

Rj =

(
1 0
0 R3×3

j

)
�al²ím prvkom grupy SO(1,3) je boost B - prechod medzi inerciálnymi sústavami so vzájomnou
rýchlos´ou u v smere jednotlivých osí (bez rotácie). Tak ako v prípade priestorových rotácií dochádza

66Parametre sú ur£ené vo©bou metriky: Prvá a druhá £íslica ur£ujú po£et kladných a záporných diagonálnych £lenov
matice metriky ηµν .

67Pamätajme, ºe v skalárnom sú£ine je prvý z vektorov transponovaný (riadkový namiesto st¨pcového). Pre lorent-
zovsky transformovaný vektor to znamená transponovanie aj matice Λ.
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k �mie²aniu� priestorových súradníc, lorentzovský boost je �mie²aním� príslu²nej priestorovej súrad-
nice s £asovou súradnicou (ktorá je rovnocenná priestorovým, kap. I.3.1). Boost teda môºeme povaºo-
va´ za rotáciu v £asopriestorových rovinách. Minkowského metrika diag(1,−1,−1,−1) je v²ak odli²ná
od priestorovej euklidovskej, diag(1, 1, 1). Kým v euklidovskej rovine tx by zachovanie normy vektora
znamenalo (ct)2 +x2 = kon²t., £o je rovnica kruºnice, v Minkowského rovine je to (ct)2−x2 = kon²t.,
£o je rovnica hyperboly (platí cosh2 φ− sinh2 φ = 1). Kon²trukciou majú preto tieto matice boostov
tvar 4D rota£ných matíc v rovinách tx, ty a tz, ale goniometrické funkcie nahrádzame hyperbolic-
kými68

Bx(φ) =


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 By(φ) =


coshφ 0 sinhφ 0

0 1 0 0
sinhφ 0 coshφ 0

0 0 0 1



Bz(φ) =


coshφ 0 0 sinhφ

0 1 0 0
0 0 1 0

sinhφ 0 0 coshφ


Hyperbolický �uhol� φ je tzv. rapidita, pre ktorú platí

tanhφ =
u

c
= β ∈ (−1, 1) coshφ =

1√
1− β2

= γ sinhφ = βγ

kde uº spoznávame známe relativistické výrazy.

II.4.2 Generátory grupy SO(1,3).

Pre in�nitezimálne lorentzovské transformácie a jej príslu²né generátory platí v²eobecný vz´ah
Λ = 1 + iω · X̂, kde ω → 0 je �uhol rotácie� príslu²nej ku generátoru X̂. Z de�ni£nej podmienky
ΛTηΛ = η s uváºením η2 = 1 a do prvého rádu v ω platí

X̂T = −ηX̂η £o znamená X̂µµ = 0 X̂0j = X̂j0 X̂jk = −X̂kj

Z 16 prvkov matice 4 × 4 je teda 10 �xovaných týmito rovnicami, a na zostavenie Lieovej algebry
grupy SO(1,3) treba nájs´ 6 nezávislých generátorov (tri pre Λ = Rj a tri pre Λ = Bj) a komuta£né
vz´ahy medzi nimi.

Prvú trojicu generátorov SO(1,3) tvoria generátory priestorových rotácií Ĵj z kap. II.2.2 (roz²írené
o nulový £asový riadok/st¨pec na matice 4× 4)

Ĵx = −i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 Ĵy = −i


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 Ĵz = −i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


Generátory boostu K̂j de�nujme prostredníctvom in�nitezimálnej zmeny Bj = 1+iφjK̂j (φj → 0).
Boost v smere x �mie²a� £as a x-ovú súradnicu, nemení v²ak súradnice y, z (naopak, tie sa mie-
²ajú pri rotácii okolo osi x). V 4 × 4 matici generátora K̂x budú teda �aktívnymi� len komponenty

68Podobne ako v prípade rotácií, znamienko pri nepárnej funkcii sinhφ ur£uje smer boostu, resp. aktívnu/pasívnu
transformáciu.
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k11, k12,k21, k22 (odpovedajúce £asovej aj x-ovej súradnici). Dosadením takejto matice do de�ni£-
ných podmienok, a opakovaním procedúry pre boost v smeroch y, z, dostávame generátory v tvare
nehermitovských matíc

K̂x = −i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 K̂y = −i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 K̂z = −i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


Transforma£né matice boostu z predchádzajúcej kapitoly dostaneme zo vz´ahu Bj(φ) = eiφjK̂j roz-
vojom funkcie s maticovým exponentom do Taylorovho radu (Dodatok H).69

Komuta£né vz´ahy medzi generátormi sú

[Ĵj, Ĵk] = iεjklĴl [Ĵj, K̂k] = iεjklK̂l [K̂j, K̂k] = −iεjklĴl

Vidíme, ºe kým kombináciou dvoch rotácií je ¤al²ia rotácia, kombináciou dvoch boostov je tieº
rotácia.70 Vz´ah medzi generátormi lorentzovských transformácií a v²eobecnými maticami Λ grupy
SO(1,3) môºeme vyjadri´ v tvare

Λ(~θ, ~φ) = ei(
~̂J ·~θ+ ~̂K·~φ)

kde zloºkami �vektorov� ~̂J, ~̂K sú matice Ĵj, K̂j. Pre in�nitezimálne transformácie potom platí

Λ(~θ, ~φ) ∼= 1 + i( ~̂J · ~θ + ~̂K · ~φ) Λµ
ν
∼= δµν + ωµν ωµν =


0 φ1 φ2 φ3

φ1 0 θ3 −θ2

φ2 −θ3 0 θ1

φ3 θ2 −θ1 0


kde ωµν je matica �uhlov� v²etkých in�nitezimálnych £asopriestorových rotácií, ktorej kovariantný
tvar je antisymetrická matica71

ωµν = ηµσω
σ
ν =


0 φ1 φ2 φ3

−φ1 0 −θ3 θ2

−φ2 θ3 0 −θ1

−φ3 −θ2 θ1 0

 = −ωνµ
θj = −1

2
εjklωkl

φj = ω0j

V 3D priestore je rotácia v rovine (napr. xy) rotáciou okolo osi kolmej na túto rovinu (z). Vo viac ako
3-rozmerných priestoroch v²ak takáto os rotácie nie je jednozna£ne de�novaná, v 4D £asopriestore
preto £asto ozna£ujeme generátory rotácií prostredníctvom rovín otá£ania (namiesto osí otá£ania).
Podobne boost v smere j je mie²aním súradnice xj a £asu, £iºe rotáciou v rovine 0j. Môºeme teda
zavies´ antisymetrickú maticu generátorov rotácií Ĵµν (prvkami matice Ĵµν sú tieº matice-generátory)

Ĵµν =


0 −K̂1 −K̂2 −K̂3

K̂1 0 Ĵ3 −Ĵ2

K̂2 −Ĵ3 0 Ĵ1

K̂3 Ĵ2 −Ĵ1 0


Ĵj = 1

2
εjklĴ

kl

K̂j = Ĵ0j

Dostávame tak kompaktný spôsob zápisu Lieovej algebry SO(1,3)

Λ(ωµν) = e−
i
2
ωµν Ĵµν [Ĵµν , Ĵρσ] = −i(ηµρĴνσ − ηµσĴνρ − ηνρĴµσ + ηνσĴµρ)

69Podobným spôsobom z generátorov Ĵj grupy SO(3) spätne odvodíme rota£né matice Rj = eiθj Ĵj .
70Dôsledkom tohto faktu je tzv. Thomasova precesia elektrónového spinu v atóme.
71S touto maticou sme sa uº stretli v kap. I.3.5. Podobne môºeme zavies´ kontravariantný tvar lorentzovskej grupy

Λµν = ηνσΛµσ.
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V²imnime si tieº, ºe pre zloºky matíc generátorov priestorových rotácií Ĵj platí (Ĵj)kl = −iεjkl. Pre
matice generátorov lorentzovských transformácií (£asopriestorových rotácií) môºeme potom písa´
zov²eobecnený vz´ah

(Ĵσρ)µν = i(ησµηρν − ηρµησν) resp. (Ĵσρ)µν = i(ησµδρν − ηρµδσν )

kde dvojitý index σρ identi�kuje konkrétny generátor, a dvojitý index µν konkrétny prvok jeho
matice. (V druhom z výrazov uº matice (Ĵσρ)µν nie sú nevyhnutne antisymetrické.) Maticu v²eobec-
ného in�nitezimálneho £asopriestorového pooto£enia ωµν môºeme potom vyjadri´ ako superpozíciu
(sumovanie cez opakujúce sa dvojice indexov) jednotlivých rotácií

ωµν = −iωσρ
2

(Ĵσρ)µν (Λµ
ν
∼= δµν + ωµν )

II.4.3 Dôleºité reprezentácie SO(1,3)/O(1,3).

Ako sme uº uviedli k kap. II.2.6, reprezentácie grúp symetrií chceme vyuºi´ na matematický opis ele-
mentárnych £astíc ako stavov/excitácií príslu²ných polí. Ukázalo sa totiº, ºe práve spôsob, akým
sa jednotlivé £astice transformujú, je ich adekvátnou charakteristikou.72 Ke¤ºe takýto opis má
sp¨¬a´ poºiadavky ²peciálnej relativity, musí ís´ o reprezentácie lorentzovskej grupy transformácií
- £asopriestorových rotácií, roz²írených o diskrétne symetrie (parita, inverzia £asu), a neskôr roz-
²írených aj o £asopriestorové translácie (kap. II.4.4). Jednotlivé druhy polí sa pritom lí²ia po£tom
vnútorných stup¬ov vo©nosti, a reprezentujeme ich rôznymi druhmi st¨pcových vektorov (skaláry, spi-
nory, ²tvorvektory,...). Úlohou je teda nájs´ reprezentácie lorentzovskej grupy vhodné pre jednotlivé
druhy fyzikálnych polí.

De�nujme pomocou generátorov Ĵj, K̂j grupy SO(1,3) z predchádzajúcej kapitoly nové, hermitovské
operátory73

N̂+
j =

1

2
(Ĵj + iK̂j) N̂−j =

1

2
(Ĵj − iK̂j)

pre ktoré platia komuta£né vz´ahy

[N̂+
j , N

+
k ] = iεjklN̂

+
l [N̂−j , N̂

−
k ] = iεjklN̂

−
l [N̂+

j , N̂
−
k ] = 0

Dostávame hne¤ dve navzájom sa neprekrývajúce (vi¤ posledný komutátor) kópie uº dôverne známej
algebry su(2), ozna£ované su(2)+ a su(2)−. To potvrdzuje fundamentálny význam tejto algebry. Lo-
rentzovské transformácie grupy SO(1,3) teda nahrádzame v okolí identity (£iºe spojité in�nitezimálne
transformácie) grupou SU(2)⊗SU(2) a jej algebrou su(2)+⊗su(2)− s operátormi N̂+

j , N̂
−
j . Jednotlivé

jej reprezentácie sú potom dané dvojicami £ísel (j+, j−), (odpovedajúcich su(2)+ a su(2)−). V rámci
kaºdej podalgebry danému j± odpovedá 2j± + 1 bázových stavov, maticová reprezentácia (j+, j−)
teda vyºaduje d = d+d− = (2j+ + 1)(2j− + 1) nezávislých komponent (£iºe sú d-rozmerné).

Vo význame spinu tu vystupuje veli£ina j = j+ + j−. Ako vyplýva z predchádzajúcich kapitol, spin
súvisí s 3D priestorovými rotáciami, tvoriacimi podgrupu lorentzovských £asopriestorových rotácií.
Maticové reprezentácie tejto podgrupy sú ur£ené práve hodnotou j, £iºe vyºadujú d = 2j + 1 nezá-
vislých komponent.74

72�astice mikrosveta nemajú tvar, vzh©ad ani naozajstnú ve©kos´ - identi�kova´ ich môºeme len na základe ich
�správania�. Aj vlastnosti ako elektrický náboj £i hmotnos´ sa manifestujú len v interakciách.

73Tejto procedúre hovoríme komplexi�kácia. Pripome¬me, ºe samotné Kj hermitovské nie sú.
74Ako uvidíme, niektoré ireducibilné reprezentácie lorentzovskej grupy v 4D sú v podgrupe 3D priestorových rotácií

reducibilné.

59



Skalárna reprezentácia (0,0).
Ak j± = 0, £iºe d± = 2j± + 1 = 1, ide o triviálnu 1-rozmernú, tzv. skalárnu reprezentáciu.
Generátory sú reprezentované maticami 1 × 1, £iºe sú to komplexné skaláry, rovnako ako objekty,
na ktoré pôsobia (skalárne polia bez vnútornej ²truktúry). Kaºdá reprezentácia musí sp¨¬a´ vy²²ie
uvedené komuta£né vz´ahy, a jediným rie²ením je v tomto prípade N̂+

j = N̂−j = 0. Znamená to, ºe
Ĵj ± iK̂j = 0, £iºe Ĵj = K̂j = 0. Transforma£né �matice� majú potom tvar e0 = 1, £iºe nepredstavujú
ºiadnu zmenu. Táto neredukovate©ná reprezentácia poskytuje adekvátny relativistický (lorentzovsky
kovariantný) opis fyzikálnych objektov so spinom j = 0, nemeniacich sa pri lorentzovských transfor-
máciách - tzv. skalárnych £astíc/polí.75

Spinorová reprezentácia (1
2
,0).

Ak j+ = 1
2
, j− = 0, potom d+ = 2, d− = 1. Ide teda o 2-rozmernú reprezentáciu, kde transformujúcimi

sa objektami sú dvojprvkové objekty (matice 2×1) - spinory (kap. II.3.3), £iºe o tzv. spinorovú
reprezentáciu. Operátormi transformácií budú matice 2×2. Kým v jednorozmernej reprezentácii
su(2)− máme opä´ z komuta£ných vz´ahov N̂−j = 0, £omu odpovedá Ĵj = iK̂j, v dvoj rozmernej
hermitovskej reprezentácii algebry su(2)+ (kap. II.3.2) sú jej generátory dané Pauliho maticami, teda
N̂+
j = (Ĵj + iK̂j)/2 =

σj
2
. Kombinovaním týchto vz´ahov dostaneme iK̂j = Ĵj = σj/2. Matice rotácie

a boostu majú potom tvar
Rθ = ei

~θ·~σ/2 Bφ = e
~φ·~σ/2

Dosadením Pauliho matíc a Taylorovým rozvojom dostávame pre jednotlivé zloºky výrazy

Rx(θx) =

(
cos θx

2
i sin θx

2

i sin θx
2

cos θx
2

)
Ry(θy) =

(
cos θy

2
sin θy

2

− sin θy
2

cos θy
2

)
Rz(θz) =

(
ei
θz
2 0

0 e−i
θz
2

)

Bx(φx) =

(
cosh φx

2
sinh φx

2

sinh φx
2

cosh φx
2

)
By(φy) =

(
cosh φy

2
−i sinh φy

2

i sinh φy
2

cosh φy
2

)
Bz(φz) =

(
e
φz
2 0

0 e−
φz
2

)

Komplexné dvojkomponentné objekty χL =

(
χL1

χL2

)
, transformujúce sa v tejto reprezentácii (pô-

sobením uvedených operátorov) sú tzv. chirálne ©avoruké76 spinory. De�novaním komplexného
transforma£ného parametra ~ω = ~θ − i~φ (�uhol� rotácie a boostu) môºeme transforma£nú maticu
zapísa´ v tvare

Λ( 1
2
,0)(~ω) = ei~ω·~σ/2

Spinorová reprezentácia (0,1
2
).

Toto je komplementárna spinorová reprezentácia, v tomto prípade d− = 2, d+ = 1, £o vedie na
K̂j = iĴj = iσj/2, a

Rθ = ei
~θ·~σ/2 Bφ = e−

~φ·~σ/2

Kým matice rotácie sú rovnaké ako v prípade reprezentácie (1
2
,0), matice boostu sa zmenia na

Bx(φx) =

(
cosh φx

2
− sinh φx

2

− sinh φx
2

cosh φx
2

)
By(φy) =

(
cosh φy

2
i sinh φy

2

−i sinh φy
2

cosh φy
2

)
Bz(φz) =

(
e−

φz
2 0

0 e
φz
2

)
Objekty, ktoré sa transformujú pod©a tejto spinorovej reprezentácie lorentzovskej grupy, sa nazývajú

chirálne pravoruké spinory, χR =

(
χR1

χR2

)
, a maticu transformácie môºeme pomocou substitúcie

75Jedinou dosia© známou spomedzi elementárnych £astíc so spinom 0 je Higgsov bozón.
76ang. left-handed, left-chiral.
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~ω∗ = ~θ + i~φ zapísa´ v kompaktnom tvare

Λ(0, 1
2

)(~ω
∗) = ei~ω

∗·~σ/2

Objekty (£astice) vyhovujúce niektorej z týchto spinorových reprezentácí - pod súhrnným názvom
Weylove spinory77 - majú spin j = 0 + 1

2
= 1

2
. Ako ukazujú rota£né matice, priestorovou rotáciou

o 360◦ menia znamienko, χ→ −χ, a na návrat do pôvodného stavu je potrebná rotácia o 720◦.78

Chirálne ©avo- a pravoruké spinory sa teda transformujú pod©a rôznych vz´ahov (reprezentácií),
a nemoºno ich ©ubovo©ne kombinova´.79 Dá sa v²ak ukáza´ (pozri Dodatok I), ºe komplexne zdruºené
spinory majú opa£nú chiralitu, a lorentzovsky invariantnými sú kombinácie (χR)†χL = (χ∗R)TχL
alebo (χL)†χR (analogicky ako v prípade ²tvorvektorov, kde sú lorentzovsky invariantnými výrazy
xµyµ, pri£om prvý zo ²tvorvektorov je transponovaný - riadkový, hoci sa to nezvykne explicitne
ozna£ova´). Súvis oboch reprezentácií môºeme vyjadri´ pomocou spinorovej metriky ε (Dodatok
I) ako

ε
(

Λ( 1
2
,0)(~ω)

)∗
ε−1 = Λ(0, 1

2
)(~ω
∗) ε =

(
0 1
−1 0

)
ε−1 =

(
0 −1
1 0

)

Vektorová reprezentácia (1
2
,1

2
).

V tomto prípade d+ = d− = 2, £iºe máme dve neprekrývajúce sa dvoj rozmerné reprezentácie
su(2) - chirálne ©avo- aj pravorukú. Takáto reprezentácia, £asto ozna£ovaná (1

2
, 0) ⊗ (0, 1

2
), je v 4D

neredukovate©ná, a pôsobí na dané objekty sú£asne oboma kópiami su(2) s rôznymi transforma£-
nými pravidlami. Na kaºdý takýto objekt môºeme nahliada´ ako na tenzorový sú£in spinorov oboch
chiralít - kaºdého s dvoma stavmi | ↑〉 a | ↓〉 (v danej báze), £iºe ²tvorkomponentný objekt(

↑↑ ↑↓
↓↑ ↓↓

)
Preto pre¬ pouºívame ozna£enie V ḃ

a , kde a, b = 1, 2 (Dodatok I), pri£om dolný nebodkovaný index
(konven£ne) reprezentuje jeho chirálne ©avorukú a horný bodkovaný index chirálne pravorukú £as´
(bodka nad indexom symbolizuje komplexné zdruºenie). Jeho lorentzovská transformácia je

V ḃ
a →

Λ
V ′ḃa = Λ( 1

2
,0)Λ(0, 1

2
)V

ḃ
a = Λ( 1

2
,0)

[
εΛ∗

( 1
2
,0)
ε−1
]
V ḃ
a

Zníºením horného indexu (Dodatok I) po prenásobení z©ava maticou ε−1 dostávame

Vaḃ →
Λ
V ′
aḃ

= Λ( 1
2
,0)Λ

∗
( 1
2
,0)
Vaḃ

kde výraz Vaḃ môºeme reprezentova´ v²eobecnou hermitovskou maticou 2× 2 v báze Pauliho matíc,

Vaḃ =

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
= v01 + v1σ1 + v2σ2 + v3σ3 = vµσ

µ

aḃ

Jeho lorentzovská transformácia do prvého rádu transforma£ných parametrov je potom (Dodatok I)

V ′
aḃ
∼= ... =

(
1 + (iθ3 + φ3)/2 (iθ1 + θ2 + φ1 − iφ2)/2

(iθ1 − θ2 + φ1 + iφ2)/2 1− (iθ3 + φ3)/2

)(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
×

77Pomenované na po£es´ Hermanna Weyla (£ítaj vajl).
78Dôsledkom je Pauliho vylu£ovací princíp.
79Na elementárnej úrovni hmoty Príroda rozli²uje medzi chirálnou ©avo- a pravorukos´ou.
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×
(

1− (iθ3 − φ3)/2 (−iθ1 + θ2 − φ1 − iφ2)/2
(−iθ1 + θ2 + φ1 + iφ2)/2 1 + (iθ3 − φ3)/2

)
=

(
v′0 + v′3 v′1 − iv′2
v′1 + iv′2 v′0 − v′3

)
Nie náhodou Vaḃ a V

′
aḃ

pripomínajú zápis vektora v hermitovskej reprezentácii (kap. II.3.2), roz²íre-
ného o £asovú zloºku. Pre prvky matíc Vaḃ a V

′
aḃ
zapísaných do tvaru ²tvorvektorov totiº dostávame

v′0
v′1
v′2
v′3

 =


v0

v1

v2

v3

+


0 φ1 φ2 φ3

φ1 0 θ3 −θ2

φ2 −θ3 0 θ1

φ3 θ2 −θ1 0




v0

v1

v2

v3

 = (1 + ωµν )


v0

v1

v2

v3


£o je lorentzovská transformácia ²tvorvektora vµ. Reprezentácia (1

2
, 1

2
) sa preto nazýva vektorovou,

a objekty transformujúce sa v tejto reprezentácii sú (²tvor)vektormi.80 Majú spin j = 1
2

+ 1
2

= 1,
a identitou je pre ne priestorová rotácia o 360◦.81

Z h©adiska £isto 3D priestorových rotácií je (generický) ²tvorvektor vµ redukovate©ný na skalár v0

(�£asová� komponenta ²tvorvektora) a vektor ~v, pri£om kaºdý z nich sa transformuje v inej 82 repre-
zentácii, j = 0 resp. 1. Symbolicky

2⊗ 2 = 1⊕ 3 ( pre j = 1 je d = 2j + 1 = 3 )

Takýmto postupom môºeme kon²truova´ d-rozmerné reprezentácie v ©ubovo©nom (D+1)-rozmernom
£asopriestore, sD(D−1)/2 generátormi priestorovej rotácie aD generátormi boostu (£asopriestorovej
rotácie), dohromady (D + 1)D/2, pôsobiace vo forme matíc d × d na d-rozmerné objekty (st¨pcové
vektory), pri£om prvky transformovaného vektora vznikajú �mie²aním� prvkov pôvodného vektora,

v → v′ = Λv v′j = Λjkvk j, k = 1, ...n

Bispinorová reprezentácia (1
2
, 0)⊕ (0, 1

2
).

Transformácia P ∈O(1,3) (zmena parity /∈ SO(1,3)) ovplyv¬uje generátory algebry SO(1,3) ako

Ĵj →
P
Ĵj K̂j →

P
−K̂j

Zmena parity (x, y, z)→ (−x,−y,−z) znamená zmenu znamienka boostu, a teda zámenu reprezen-
tácií (1

2
, 0)↔ (0, 1

2
). Ak poºadujeme teóriu nezávislú aj od tejto transformácie (£iºe roz²írenú grupu

O(1,3)), de�nujeme tzv. Diracove (bi)spinory

ψ =

(
χL
ξR

)
=


χL1

χL2

ξR1

ξR2

 ψ →
P

ψ′ =

(
ξR
χL

)
=


ξR1

ξR2

χL1

χL2

 =

(
0 1

1 0

)(
χL
ξR

)

kde medzi Weylovými spinormi χL a ξR vo v²eobecnosti nemusí by´ súvislos´.83 Túto ²tvorkompo-
nentnú reprezentáciu nazývame bispinorovou a ozna£ujeme ako (1

2
, 0) ⊕ (0, 1

2
). �ubovo©nú maticu

lorentzovskej transformácie v tejto reprezentácii môºeme schématicky zapísa´ ako

Λ( 1
2
,0)⊕(0, 1

2
) =

(
Λ( 1

2
,0) 0

0 Λ(0, 1
2

)

)
←→
P

Λ(0, 1
2

)⊕( 1
2
,0) =

(
Λ(0, 1

2
) 0

0 Λ( 1
2
,0)

)
80�tvorvektory teda môºeme vníma´ ako spinory druhého rádu (4 prvky, 2 spinorové indexy). Vidíme ale tieº, ºe

fundamentálnymi objektami sú spinory a nie vektory.
81Ide o bozóny, ako napr. fotón.
82Pri 3D priestorových rotáciách sa �mie²ajú� len zloºky vektora, skalár ostáva nemenný. Naproti tomu pri 4D

£asopriestorových rotáciách sa vzájomne �mie²ajú� v²etky zloºky ²tvorvektora - takáto reprezentácia je neredukova-
te©ná.

83Ak ξR = χR, spinor
(
χL
χR

)
nazývame Majoranovým, a budeme sa ním zaobera´ v kap. III.2.7.
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Ide teda o redukovate©nú reprezentáciu (£asopriestorovou rotáciou sa �mie²ajú� len zloºky rovnakej
chirality). Diracove (bi)spinory nie sú fundamentálnymi objektami, tými ostávajú dvojkomponentné
Weylove spinory. Hoci sú Diracove (bi)spinory ²tvorkomponentné (rovnako ako ²tvorvektory), ne-
moºno ich komponenty priamo asociova´ s £asopriestorovými súradnicami (rovnako ako ani kom-
ponenty Weylových spinorov). Bispinorová reprezentácia poskytuje lorentzovsky kovariantný opis
objektov (spinorov), ktoré sú symetrické vo£i transformácii parity v tom zmysle, ºe sa nemení chira-
lita Weylových spinorov (mení sa len ich �poloha� v bispinorovom zápise).84

Spojitá reprezentácia.
Ak skúmame lorentzovskú transformáciu objektov spojite rozloºených v £asopriestore - polí φ(xµ),
báza takéhoto priestoru je spojitá (∞-rozmerná) - pouºívame spojitú reprezentáciu tejto grupy.
�asopriestorová transformácia pozorovate©a (súradnicového systému, t.j. pasívna transformácia) v poli
s netriviálnou vnútornou ²truktúrou je popri inverznej transformácii súradníc aj transformáciou tejto
vnútornej ²truktúry (vnútorného abstraktného priestoru priradeného kaºdému bodu po©a).

V prípade (pasívnej) transformácie skalárneho po©a (bez vnútornej ²truktúry, formálne sa transfor-
mujúceho v reprezentácii (0,0), £iºe ºiadna zmena) to znamená len transformáciu £asopriestorovej
súradnice (Dodatok A),

φ(xµ)→ φ′(xµ) = φ
(
(Λ−1)µν x

ν
)

a po vyjadrení v kompaktnom zápise z kap. II.4.2 pre in�nitezimálnu transformáciu

φ′(xµ) = φ

(
xµ +

i

2
ωσρ(Ĵ

σρ)µν x
ν

)
∼=

Taylor. r.

(
1 +

i

2
ωσρ(Ĵ

σρ)µν x
ν∂µ

)
φ(xµ) =

(
1− i

2
ωσρĴ

σρ
(∞)

)
φ(xµ)

kde de�nujeme diferenciálne operátory Ĵσρ(∞) (dosadením prvkov matice Ĵσρ)

Ĵσρ(∞) = −(Ĵσρ)µν x
ν∂µ = ... = i (xσ∂ρ − xρ∂σ) = (xσp̂ρ − xρp̂σ) p̂σ = i∂σ

v £om spoznáme £asopriestorové operátory momentu hybnosti a hybnosti (~ = 1) v Minkowského
metrike.85 Kánonické komuta£né vz´ahy v tejto symbolike sú [xσ, p̂ρ] = −iησρ.

V prípade po©a s vnútornou ²truktúrou (spinorové, vektorové) transformácia obsahuje navy²e aj
transformáciu jeho vnútornej ²truktúry, a to v príslu²nej d-rozmernej reprezentácii. Kvôli rozlí²eniu
ju ozna£me Λs, ke¤ºe bezprostredne súvisí so spinom, a jej v²eobecné generátory v kompaktnom
zápise (v danej reprezentácii) budeme ozna£ova´ symbolom Ŝσρ

φ(xµ)→ Λsφ(Λ−1xµ) Λs = e−i
ωµν
2
Ŝµν

Výsledná in�nitezimálna transformácia je potom

φ(xµ)→
(

1− i

2
ωσρŜ

σρ

)(
1− i

2
ωσρĴ

σρ
(∞)

)
φ(xµ) ∼=

(
1− i

2
ωσρĴ

σρ

)
φ(xµ) Ĵσρ = Ŝσρ + Ĵσρ(∞)

Výsledný operátor Ĵσρ je antisymetrický.

84V takejto redukovate©nej reprezentácií opisujeme napr. elektrón-pozitrónový pár.
85�asové zloºky Jσρ(∞) resp. P

σ odpovedajú boostom resp. energii.
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II.4.4 Poincarého grupa.

Poincarého grupa86 je roz²írením lorentzovskej grupy o ¤al²ie transformácie, re²pektujúce postu-
láty ²peciálnej teórie relativity - £asopriestorové translácie

x′µ = Λµ
νx

ν + aµ

£omu odpovedajú 4 ¤al²ie generátory posunutí £asopriestorových súradníc p̂µ. V prípade pasívnej
translácie platí φ′σ(x′µ) = φσ(xµ) bez oh©adu na spin, £o pre in�nitezimálne posunutie x′µ = xµ + εµ

znamená (Taylorov rozvoj)

φ′σ(x′µ) = φσ(x′µ − εµ) ∼= (1− ερ∂ρ)φσ(x′µ) φ′σ(x′µ) = eiερp̂
ρ

φσ(x′µ) ∼= (1 + iερp
ρ)φσ(x′µ)

Porovnaném oboch výrazov dostávame

p̂µ = i∂µ = i

(
∂

c∂t
,−∇

)
p̂0 = p̂t = i

∂

c∂t
p̂j = −i∂j = −i ∂

∂xj
, j = x, y, z

£o sú operátory energie-hybnosti (v jednotkách ~).

Lieova algebra Poincarého grupy je tvorená generátormi Ĵj, K̂j (resp. v alternatívnom zna£ení Ĵµν)
a p̂µ, a ku komuta£ným vz´ahom lorentzovskej grupy pribudnú

[Ĵj, p̂k] = iεjklp̂l [Ĵj, p̂0] = 0 [K̂j, p̂k] = iδjkp̂0 [K̂j, p̂0] = −ip̂j

resp.
[p̂µ, p̂ν ] = 0 [Ĵµν , p̂ρ] = i(ηµρp̂ν − ηνρp̂µ)

Táto algebra obsahuje dva Casimirove operátory (t.j. operátory komutujúce so v²etkými bázovými
operátormi algebry). Prvým je p̂µp̂

µ. Ke¤ºe vlastnými hodnotami operátora p̂µ sú ²tvorvektory
energie-hybnosti, vlastnou hodnotou tohto Casimirovho operátora (nezávislou na pozorovate©ovi) je

pµp
µ =

E2

c2
− ~p · ~p = m2c2

ur£ená pokojovou hmotnos´ou objektu m. Druhým Casimirovým operátorom je ŴµŴ
µ, kde

Ŵµ =
1

2
εµνρσp̂

ν Ĵρσ

je tzv. Pauliho-Luba«ského operátor (εµνρσ je antisymetrický 4D Léviho-Civitov symbol). Roz-
kladom Ĵσρ na L̂σρ a Ŝσρ (kap. II.2.5) a pomocou komuta£ných vz´ahov sa dá ukáza´, ºe operátory
orbitálneho momentu hybnosti L̂σρ do Ŵµ neprispievajú. Pre £asovú komponentu ²tvorvektora W µ

(ako vlastnej hodnoty operátora) dostávame potom (Jj = 1
2
εjklJkl)

W0 =
1

2
ε0jklpjJkl = pjSj = ~p · ~S

Fyzikálny význam Pauliho-Luba«ského ²tvorvektora najlep²ie spoznáme v pokojovej sústave objektu,
kde

~p = 0 p0 = mc Wµ =
mc

2
εµ0ρσJ

ρσ =
mc

2
εµ0klJkl (6= 0 len pre ν = 0 a teda µ, ρ, σ 6= 0)

a odtia© (εµ0ρσ = −ε0µρσ = −εjkl)

W0 = 0 Wj = −mc
2
εjklJkl = −mcJj = −mcSj

86Alternatívny názov je nehomogénna lorentzovská grupa.
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Ke¤ºe operátory prislúchajúce zloºkám vektora ~S tvoria algebru su(2) s komuta£nými vz´ahmi
[Ŝj, Ŝk] = iεjklŜl, platí

WµW
µ = −( ~W )2 = −m2c2(~S)2 = −m2c2s(s+ 1) s = 0,

1

2
, 1, ...

Vektor ~W = −mc ~S v pokojovej sústave reprezentuje spin, a vlastná hodnota odpovedajúceho Ca-
simirovho operátora je skalár (lorentzovsky invariant - rovnaký v kaºdej sústave). Bázu stavov tvorí
2s+ 1 vlastných stavov diagonálneho operátora (Ŝz). Takéto ireducibilné reprezentácie - tzv. hmot-
nostné (hmotné)87 - sú teda ur£ené vlastnými hodnotami Casimirových operátorov - hmotnos´ou
a spinom, £iºe základnými charakteristikami konkrétnej (hmotnej) £astice.

Inou triedou ireducibilných reprezentácií (t.j. charakteristikami iného druhu £astíc) sú nehmotné88

reprezentácie, m = 0. V tomto prípade nemá zmysel uvaºova´ o pokojovej sústave £astice,89 pracu-
jeme teda v báze vlastných stavov operátora p̂µ. Operátory p̂µ a Ŵ µ uº nevyhovujú ako Casimirove,
lebo platí 90

p̂µŴ
µ|p〉 = 0 ŴµŴ

µ|p〉 = 0 p̂µp̂
µ|p〉 = 0

Pre zloºky týchto ²tvorvektorov platí

W 2
0 = ( ~W )2 6= 0 p2

0 = (~p)2 6= 0

�tvorvektory vyhovujúce takýmto podmienkam si musia by´ navzájom úmerné, £o nám umoº¬uje
de�nova´ ich podiel - tzv. helicitu

H =
W µ

pµ
=
W0

p0

Dá sa ©ahko ukáza´, ºe operátor helicity Ĥ komutuje so v²etkými operátormi Poincarého algebry,
je teda Casimirovým operátorom pre nehmotné reprezentácie. Jeho vlastné hodnoty sú invariantné
vo£i transformáciám grupy, a sú charakteristikou nehmotných £astíc, nahrádzajúcou hmotnos´ aj
spin.91

Helicitu de�nujeme aj pre hmotné £astice, ako priemet spinu do smeru pohybu,

H =
~p · ~S
|~p|

Nie je v²ak lorentzovským invariantom (ani Casimirom) - ako ukáºeme v kap. III.2.4, necharakterizuje
samotnú £asticu ale len jej stav.

� � � � �

Dôleºité závery:

• Lorentzovská grupa transformácií SO(1,3) zachováva ve©kos´ ²tvorvektorov. Komplexi�kovaná al-
gebra lorentzovskej grupy je tvorená dvomi kópiami algebry su(2), s dvomi Casimirovými operátormi,
ktorých vlastné hodnoty j− + j+ = j ur£ujú spin transformovaného objektu.

87angl. massive
88angl. massless
89Energia nehmotnej £astice v jej pokojovej sústave by bola nulová - £astica by neexistovala.
90Prvá rovnos´ platí v²eobecne (pµWµ = 0) a ostatné kvôli m = 0.
91Spin sa niekedy zvykne de�nova´ ako moment hybnosti £astice v jej pokojovej sústave. Pre nehmotné £astice

v²ak pokojová sústava neexistuje, a takto de�novaný spin stráca zmysel - nahrádza ho pojem helicita v obdobnom
fyzikálnom význame.

65



• 4 dôleºité ireducibilné d-rozmerné reprezentácie (j−, j+) lorentzovskej grupy SO(1,3) v 4-rozmernom
£asopriestore sú: (0,0) opisuje transformáciu skalára, (1

2
,0) transformáciu chirálne ©avorukého a (0,1

2
)

pravorukého Weylovho spinora, a (1
2
,1
2
) transformáciu vektora.

• Pri lorentzovskej transformácii polí s vnútornou ²truktúrou (nie skalárnych) musíme spojitú repre-
zentáciu kombinova´ s príslu²nou (d > 1)-rozmernou reprezentáciou, dôsledkom £oho zachovávajúcou
sa veli£inou pri priestorových rotáciách nie je samostatný priestorový (orbitálny) moment hybnosti,
ale jeho sú£et s vnútorným momentom hybnosti (daným vnútornou ²truktúrou po©a) - spinom.

• Transformácia parity, ako prvok lorentzovskej grupy O(1,3), mení chiralitu Weylových spinorov.
Invariantnými vo£i tejto transformácii sú Diracove (bi)spinory (kombinácie chirálne ©avo- a pravoru-
kého Weylovho spinora), ktoré sa transformujú v redukovate©nej reprezentácii (1

2
, 0)⊕ (0, 1

2
).

• Poincarého grupa, roz²irujúca lorentzovskú o £asopriestorové translácie, má dva Casimirove ope-
rátory, ktorých vlastné hodnoty ur£ujú hmotnos´ a spin transformovaných objektov. Pre nehmotné
objekty je �náhradným� Casimirovým operátorom helicita ur£ujúca orientáciu spinu vo£i hybnosti.
Ireducibilné (hmotné aj nehmotné) reprezentácie práve tejto grupy sú teda vhodným nástrojom na
charakterizovanie elementárnych £astíc.
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Polia

V tejto kapitole opí²eme základné druhy fundamentálnych polí, generujúcich elementárne £astice
Prírody - vo©né neinteragujúce skalárne, spinorové a vektorové polia. Vychádza´ budeme z lagran-
giánov týchto polí, pri kon²trukcii ktorých musia by´ zoh©adnené isté obmedzenia: Vy²²ie neº druhý
rád derivácii v lagrangiáne znamenajú vy²²ie rády derivácií v pohybových rovniciach, £o by viedlo na
problémy so stabilitou rie²ení. Navy²e pre vo©né polia musí kaºdý £len lagrangiánu tieº by´ limitovaný
druhým stup¬om mocniny príslu²ného po©a, zabezpe£ujúc linearitu pohybových rovníc. Jednotlivé
lagrangiány sú zostavené v rámci poºadovaných symetrií (a ur£itej vo©nosti) tak, aby kaºdý ich £len
bol lorentzovským skalárom,1 zachovávajúcim si svoj tvar pri transformácii po©a v príslu²nej re-
prezentácii lorentzovskej grupy (v závislosti od spinu po©a, kap. II.4.3). Z lagrangiánov týchto polí
odvodíme pomocou ELR základné pohybové rovnice polí a ich rie²enia v lorentzovsky kovariantnej
forme.2 Tieto rie²enia sú rozloºite©né do rovinných v¨n, ktorých fourierovské koe�cienty sa káno-
nickým kvantovaním stávajú operátormi, kreujúcimi a anihilujúcimi £asticové stavy. Z lagrangiánov
tieº ur£íme kánonické hybnosti, ktoré potom vstupujú ako operátory do kánonických komuta£ných
vz´ahov s operátormi polí.

Ak odhliadneme od kapitol o kvantovaní polí, celá táto £as´ pojednáva o klasických poliach - skalár-
nych, spinorových a vektorových funkciách (nie operátoroch) £asopriestorových súradníc. V kontexte
elementárnych £astíc a interakcií je v²ak jediným (makroskopicky)merate©ným po©om vektorové elek-
tromagnetické pole. Na ostatné polia musíme teda nahliada´ ako na rýdzo matematické kon²trukcie
- akési �prekurzory�, ktoré získajú reálny, teda merate©ný obsah (v zmysle pravdepodobnosti detekcie
£astíc) aº kánonickým kvantovaním prostredníctvom operátorov polí. Tu je principiálny rozdiel oproti
nerelativistickej kvantovej mechanike, v ktorej (nekvantovanú) vlnovú funkciu ψ priamo asociujeme
s merate©nými £asticami príslu²ného po©a, prostredníctvom jej pravdepodobnostnej interpretácie.
V prípade nekvantovaných relativistických polí je takáto £asticová interpretácia zavádzajúca!

Napriek tomu sa pri analýze týchto (nekvantovaných) polí v záujme názornosti miestami uchýlime
(tak ako je to beºné v literatúre tohto formátu) k ich spájaniu s £asticami (resp. anti£asticami). Rie-
²enia pohybových rovníc budeme nazýva´ £asticovými stavmi, majme v²ak neustále na pamäti, ºe
pôjde len o akúsi �mentálnu predprípravu� k interpretácii kvantovaných polí, a preto ju treba vníma´
s ve©kou rezervovanos´ou. Samotné operácie s kvantovanými po©ami sú predmetom kvantovej teórie
polí (QFT), ktorá technickou náro£nos´ou presahuje rámec tohto textu. V kapitolách o kvantovaní
(ako aj v £asti o interakciách) uvádzame len základné východistá pre QFT.

1Pripome¬me, ºe �beºné� skaláry ako zloºky ²tvorvektorov sa lorentzovsky transformujú. Lorentzovským skalárom
je napr. skalárny sú£in vektorov.

2Reálnym postupom pri tvorbe teórie je �uhádnutie� pohybovej rovnice na základe teoretickej konzistentnosti
a zhody jej rie²ení s experimentom, a následné zostavenie vyhovujúceho lagrangiánu v najjednoduch²om tvare.
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III.1 Skalárne polia.

III.1.1 Kleinova-Gordonova rovnica.

Skalárnym nazývame pole, ktoré kaºdému bodu £asopriestoru priradí lorentzovský skalár,
xµ → φ(xµ) - ve©kos´ (amplitúdu) excitácie po©a (okolo nulovej strednej hodnoty), ako vnútorný
stupe¬ vo©nosti �vnorený� do £asopriestoru. Pre (pasívne) transformácie rotáciu okolo smeru j,
φ → Rjφ, a boost v smere j, φ → Bjφ, v skalárnej d=1-rozmernej reprezentácii (0,0) lorentzov-
skej grupy SO(1,3), platí Rj = Bj = 1 (£iºe ºiadna zmena). Zvy²né transformácie Poincarého grupy
- £asopriestorové translácie - od spinu nezávisia.

V²eobecný tvar hustoty lagrangiánu vo©ného skalárneho po©a φ, re²pektujúci základné obmedzenia,
môºe obsahova´ len £leny3

L = A+Bφ+ Cφ2 +D∂µφ+ Eφ∂µφ+ F∂µφ∂
µφ

Dosadením hustoty lagrangiánu do ELR kon²tantný £len A pohybovú rovnicu neovplyvní, a £len Bφ
k nej pridá bezvýznamnú kon²tantu, £iºe môºeme poloºi´ A = B = 0. Výraz ∂µ by zas menil skalár
φ na ²tvorvektor, musíme teda poºadova´ aj D = E = 0. Zvy²né £leny potom konven£ne zapisujeme
ako

L =
RL
2

(
∂µφ∂

µφ− m̃2φ2
)

Rozmerový koe�cient lagrangiánu RL nevstupuje do pohybovej rovnice, preto sa obvykle neuvádza.4

Budeme sa ním zaobera´ pri normovaní po©a φ. Takéto skalárne pole si môºeme predstavi´ ako elas-
tické kontinuum, modelované sústavou viazaných bodových oscilátorov (obr.), pri£om φ (6= 0) je
lokálna výchylka po©a z rovnováºnej hodnoty.

pruºiny km akumulujú potenciálnu energiu ∼ φ2

pruºiny kv akumulujú potenciálnu energiu ∼ (φj − φj+1)2 → ∂jφ∂jφ
kinetická energia ∼ (φ̇)2 = ∂tφ∂tφ

Lagrangián takejto sústavy je teda

L =

∫
LdV =

RL
2

∫ (
∂0φ∂0φ− ∂jφ∂jφ− m̃2φ2

)
dV =

RL
2

∫ (
∂µφ∂

µφ− m̃2φ2
)
dV

Vo výraze na pravej strane sa prvý £len L obvykle nazýva kinetickým5 a druhý hmotnostným.6

Dosadením tohto lagrangiánu do ELR dostaneme pohybovú rovnicu pre skalárne pole - Kleinovu-
Gordonovu rovnicu (KGR) (

∂µ∂
µ + m̃2

)
φ = 0

KGR je operátorovou verziou relativistického vz´ahu E2−m2c4−p2c2 = 0 ⇒ E = ±
√
m2c4 + p2c2

−
(
E

c~

)2

+
(p
~

)2

+
(mc

~

)2

→ −
(
i~∂t
c~

)2

+

(
−i~∂j
~

)2

+
(mc

~

)2

= ∂2
0 − ∂2

j + m̃2 = ∂µ∂
µ + m̃2

3�al²í moºný £len druhého stup¬a φ∂µ∂µφ je po preintegrovaní L =
∫
Ldxµ per partes ekvivalentný poslednému

£lenu uvedeného výrazu.
4Pohybové rovnice systému sa totiº nezmenia, ak lagrangián vynásobíme kon²tantou £i pridáme divergenciu ©ubo-

vo©nej funkcie po©a. Pripomíname tieº, ºe v literatúre tohoto typu je obvyklé pracova´ s tzv. prirodzenými jednot-

kami, ke¤ kladieme ~ = c = 1.
5Takýto názov je zauºívaný napriek príspevku potenciálnej energie od pruºín k v na²om ilustra£nom modeli.

Operátor ∂j totiº reprezentuje hybnos´.
6Dôvody pomenovania budú ozrejmené niº²ie - nejde totiº o hmotnos´ oscilátorov v na²om modeli.
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V ²tandardnej kvantovej mechanike sú záporné hodnoty energie £astice problémom - neobmedzený
nárast energie do záporných hodnôt totiº vylu£uje existenciu stabilného základného stavu (s najniº²ou
energiou). K tejto otázke sa vrátime neskôr.

III.1.2 Rie²enia Kleinovej-Gordonovej rovnice.

KGR je pohybovou rovnicou skalárnej £astice (so spinom 0). Ide o vlnovú rovnicu s rie²eniami v tvare
rovinných v¨n

φ(xµ) ∼ e−ikµx
µ

kµ =
(ω
c
,~k
)

kµx
µ = ωt− ~k · ~r

sp¨¬ajúcich disperzný vz´ah

kµk
µ = m̃2 ω~k = c

√
~k · ~k + m̃2

V dôsledku hmotnostného £lena je tento disperzný vz´ah nelineárny, £o znamená, ºe vlny rôznych
frekvencií sa v tomto poli ²íria rôznymi fázovými rýchlos´ami. Je to zjavné aj z ná²ho modelu: Pre
ve©ké vlnové d¨ºky λ sú väzbové pruºiny kv prakticky zrelaxované, a pre ²írenie v¨n sú ur£ujúce
pruºiny km, ktorých tuhos´ reprezentuje práve m̃2. Preto ωk ∼= m̃c pre 1/m̃ � λ = 2π/k. Naopak
pre krátke vlny λ � 1/m̃ je vplyv väzbových pruºín dominantný, a ωk ∼= ck. Navy²e, pre ωk < m̃c
je vlnové £íslo imaginárne, k = iκ, t.j. vlna sa po©om ne²íri, φ(x) ∼ e−κx. Znamená to, ºe vzruch
vyvolaný v danom mieste zaniká na vzdialenosti ≈ 1/m̃. Dá sa to interpretova´ aj tak, ºe lokalizovaný
vzruch, reprezentovaný vlnovým balíkom, sa na tejto vzdialenosti v dôsledku disperzie rozplynie. Pre
makroskopické hmotnosti takýto rozruch zaniká na makroskopicky nemerate©ných ²kálach - takéto
pole je preto makroskopicky nepozorovate©né.7

V kvantovom kontexte to znamená, ºe na vybudenie ²íriaceho sa vzruchu je potrebná ur£itá mini-
málna energia ~ωmin = ~m̃c. V kvantovej teórii polí sa takýto vzruch stotoº¬uje s £asticou - energe-
tickou excitáciou príslu²ného po©a. Minimálna energia potrebná na vytvorenie £astice odpovedá jej
pokojovej energii mc2, a teda

ωmin =
mc2

~
= m̃c =

c

λ̄C

V tomto zmysle je λ̄C akýmsi �rozmerom� £astice - vzdialenos´ou, v akej okolie £asticu �cíti�. Dosah
ve©mi ´aºkých £astíc je preto extrémne krátky, a naopak, dosah £astíc s m = 0 je nekone£ný.8

V²eobecné rie²enie KGR h©adáme v tvare superpozície rovinných v¨n

φ(xµ) =
Rφ

(2π)4

∫ [
a(kµ)e−ikµx

µ

+ b(kµ)eikµx
µ]
d4k

kde a(kµ), b(kµ) sú komplexné koe�cienty a Rφ je rozmerový koe�cient. Ak má by´ skalárne pole φ
reálne, musí plati´ b(kµ) = a∗(kµ). Fyzikálne rie²enia musia sp¨¬a´ disperzný vz´ah kµkµ = m̃2, £o
zabezpe£íme vloºením δ-funkcie δ(kµkµ − m̃2) do podintegrálneho výrazu,9 a tieº fyzikálny význam
prira¤ujeme len kladným frekvenciám, £o zabezpe£íme vloºením Heavisideovej (skokovej) funkcie10

7V �botanickej záhrade� elementárnych £astíc (teda nie kompozitov) poznáme jedinú skalárnu £asticu - Higgsov
bozón. Pre jeho (na mikroskopické pomery) ve©kú hmotnos´ je v²ak takéto pole makroskopicky nepozorovate©né. Naj-
známej²ími skalárnymi mikroskopickými kompozitmi sú pióny, zabezpe£ujúce stabilitu atómových jadier. Ich hmotnos´
limituje ve©kos´ jadra. Viac o tom v £asti IV o interakciách.

8Tento argument platí aj pre £astice s nenulovým spinom, akými sú fotóny. Preto je elektromagnetické pole (ako
jediné) pozorovate©né, t.j makroskopické.

9Znamená to, ºe integrovanie prebieha len cez rovinné vlny sp¨¬ajúce disperzný vz´ah.
10Θ(ω) = 1 pre ω = ck0 > 0, inak Θ(ω) = 0.
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Θ(ω). Po úpravách a £iasto£nom preintegrovaní cez £asovú zloºku k0 (Dodatok J) dostávame rie²enie
pre reálne pole v tvare

φ(xµ) = Rφ

∫
1

(2π)3
√

2ω̃~k

[
a(~k)e−ikµx

µ

+ a∗(~k)eikµx
µ
]
d3k ω̃~k =

ω~k
c

=
E~k
c~

=

√
(~k · ~k) + m̃2

pri£om a(~k) = a(kµ)√
2ω̃~k

, a∗(~k) = a∗(kµ)√
2ω̃~k

. Pripome¬me, ºe podintegrálny prefaktor (závisiaci od ω̃~k) nie je

len �akýmsi� normovaním, v relativistickej teórii totiº integrál
∫
d3k nie je lorentzovským invariantom

sám osebe, ale len v kombinácii s týmto prefaktorom. Lorentzovské transformácie takýchto rie²ení
KGR, a to v skalárnej reprezentácii φ(xµ)→ Λ(0,0)φ(xµ), budú opä´ rie²eniami tej istej KGR - v tom
spo£íva jej lorentzovaká kovariantnos´.

Z lagrangiánu z kap. III.1.1 dostaneme (pod©a vz´ahov z kap. I.3.2) hustotu kánonickej hybnosti
reálneho skalárneho po©a

π(xµ) =
∂L

∂(∂tφ)
= ... =

RL
c2
∂tφ(xµ) = ... =

RLRφ

c

∫
(−i)

√
ω̃~k

(2π)3
√

2

[
a(~k)e−ikµx

µ − a∗(~k)eikµx
µ
]
d3k

III.1.3 Kvantovanie reálneho skalárneho po©a.

Kánonickým kvantovaním sa φ a π stávajú operátormi, vyjadrenými pomocou operátorov â(~k), â†(~k),
pri platnosti komuta£ných vz´ahov (kap. I.3.7)

[φ̂(~r, t), π̂(~r ′, t)] = i~δ(~r − ~r ′) [φ̂(~r, t), φ̂(~r ′, t)] = 0 [π̂(~r, t), π̂(~r ′, t)] = 0

[â(~k), â†(~k′)] = (2π)3δ(~k − ~k′) [â(~k), â(~k′)] = [â†(~k), â†(~k′)] = 0

Formálna zhoda ²truktúry výrazov pre φ(xµ) a π(xµ) z kap. III.1.2 so ²truktúrou operátorov polohy
a hybnosti kvantového harmonického oscilátora (Dodatok E)

x̂ =

√
~

2mω
(â+ â†) p̂ = −i

√
~mω

2
(â− â†)

vedie na rozmerové koe�cienty Rφ =
√

~
m

a teda RL = mc = m̃~, £iºe

φ(xµ) =

∫
1

(2π)3

√
~

2mω̃~k

[
a(~k)e−ikµx

µ

+ a∗(~k)eikµx
µ
]
d3k

π(xµ) =

∫
(−i)
(2π)3

√
~mω̃~k

2

[
a(~k)e−ikµx

µ − a∗(~k)eikµx
µ
]
d3k

£o dáva po dosadení správny rozmer lagrangiánu aj kánonickým komuta£ným vz´ahom.11 Pre hamil-
tonián

H =

∫
(π∂tφ− L)d3x = ... =

m̃~
2

∫ [
(∂0φ)2 + (∂jφ)2 + m̃2φ2

]
d3x

11Pri pouºití prirodzených jednotiek, ~ = c = 1, problém s rozmerovým normovaním odpadá, a v literatúre sa
s ním nestretneme. Rozmerové koe�cienty preto v ¤al²ích vz´ahoch zvä£²a uvádzame v �©ahko ignorovate©nom� tvare
Rφ, RL.
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potom prechodom k operátorom a zoh©adnením vy²²ie uvedených komutátorov pre â(~k), â†(~k) do-
stávame (Dodatok K)

Ĥ = ... =
~
2

∫
ω~k

(2π)3

[
â†(~k)â(~k) + â(~k)â†(~k)

]
d3k =

~
(2π)3

∫
ω~k

[
â†(~k)â(~k) +

�
��

�
��HH

HHHH

(2π)3

2
δ(0)

]
d3k

alebo v prípade diskrétneho spektra ~k tvar

Ĥ = ~
∑
~k

ω~k

[
â†(~k)â(~k) +

�
�
�A
A
A

1

2

]
= ~

∑
~k

ω~k

[
N̂ (~k) +

�
�
�A
A
A

1

2

]

kde â†(~k)â(~k) = N̂ (~k) (v tomto poradí) je operátor po£tu �£astíc� v stave ~k. Kombinácie hamiltoniánu
s operátormi â(~k) a â†(~k) totiº dávajú

Ĥâ(~k) = (E − ~ω~k)â(~k) Ĥâ†(~k) = (E + ~ω~k)â
†(~k)

£iºe operátory â(~k), â†(~k) (aplikované na stav systému) zniºujú/zvy²ujú energiu systému E o ener-
getické kvantum ~ω~k - sú anihila£ným/krea£ným operátorom �£astice�12 (t.j. energetického kvanta)
s hybnos´ou ~~k. Z uvedených komutátorov pre â(~k), â†(~k) vyplýva nielen to, ºe kaºdý takýto stav je
mnoho£asticový, ale aj to, ºe mnoho£asticové stavy sú symetrické vo£i vzájomnej výmene ©ubovo©-
ných dvoch £astíc. Skalárne £astice sú bozóny.

Pokia© ide o (pre²krtnuté) druhé £leny týchto výrazov, reprezentujú energiu základného stavu bez
£astíc - vákua. Kvôli δ-funkcii, resp. nekone£nému sú£tu kon²tánt 1

2
, tento výraz vedie na neko-

ne£no!13 Ke¤ºe sa v²ak takéto nekone£no nachádza vo výrazoch pre energiu kaºdého systému, a pre
nás je relevantným vºdy len rozdiel energií, môºeme toto nekone£no ignorova´. K energii vákua sa
vrátime v kap. III.1.4.

Rovnako ako hamiltonián môºeme prostredníctvom krea£ných/anihila£ných operátorov kvantova´
v²etkých 10 generátorov Poincarého algebry (£asopriestorové rotácie a translácie) z kap. II.4. Je
dôleºité si pritom uvedomi´, ºe v kaºdej fyzikálnej kon�gurácii po©a krea£né/anihila£né operátory
vystupujú v podintegrálnom výraze, v súlade so zákonmi zachovania. Dôleºitou vlastnos´ou tieº je,
ºe anihila£ný operátor â(~k) dá 0 ak pôsobí na stav bez £astíc (vákuum |0〉), rovnako ako aj na stav
s £asticami inej hybnosti (|~k′ 6= ~k〉). Pôsobením operátora â†(~k) na vákuum |0〉 �vyrobíme £asticu�
s hybnos´ou ~~k - vlastnou hodnotou operátora hybnosti príslu²nou k tomuto stavu,

|1~k〉 = â†(~k)|0〉 ~̂p |1~k〉 = ~~k|1~k〉

Zloºky operátora hybnosti dostaneme zo vz´ahu z kap. I.3.414

pj =

∫
T 0
j d

3x = ... = c

∫
π∂jφ d

3x = ...
pj→p̂j

=
~

(2π)3

∫
kj â
†(~k)â(~k)d3k =

~
(2π)3

∫
kjN̂ (~k)d3k

Stav |1~k〉 je v²ak priestorovo úplne delokalizovaný a fyzikálne nerealizovate©ný (nenormovate©ný),
ako to vyplýva z komuta£ných vz´ahov pre krea£né/anihila£né operátory

〈1~k′ |1~k〉 = 〈0|â(~k′)â†(~k)|0〉 = ... = 〈0|[â(~k′)â†(~k)]|0〉 ∼ δ(~k′ − ~k) a teda 〈1~k|1~k〉 ∼ δ(0)→∞
12Ostrá hodnota hybnosti znamená úplnú delokalizáciu v priestore, pojem £astica tu teda nemá klasickú konotáciu,

reprezentuje len kvantum energie. Práve v tomto zmysle budeme zvä£²a pojem £astica pouºíva´.
13Technicky vzaté, ná² výraz pre Ĥ vyjadruje operátor, a ten ºiadnu hodnotu nemá. Ve©kos´ energie vákua sa po£íta

ako 〈|0Ĥ|0〉.
14Obdobným (aj ke¤ zd¨havej²ím) výpo£tom by sme napr. pre operátory zloºiek momentu hybnosti dostali

L̂j =
1

2
εjkl

i~
(2π)3

∫
â†(~k)

(
kk

∂

∂kl
− kl

∂

∂kk

)
â(~k)d3k
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Iný stav vznikne aplikovaním operátora po©a φ̂(~r): Ak pôsobí na vákuum, |0〉, jeho anihila£ná £as´
dá 0 a krea£ná £as´ vytvorí £asticu v mieste ~r, ako superpozíciu excitácií s ostrými hodnotami ~k,

|1~r〉 = φ̂(~r)|0〉 = ... =
1

(2π)3

∫
1√
2ω̃~k

e−i
~k·~r |1~k〉d

3k

pri£om v tomto výraze ako aj v ¤al²om texte uº systematicky vynechávame rozmerové normovacie
koe�cienty. Problém (ne)zachovania po£tu £astíc £i náboja vyjasníme v kap. III.1.5. Teraz preveríme
�ostros´� lokalizácie takejto £astice v mieste ~r, teda £i stavy |1~r〉 a |1~r ′〉 sú ortogonálne (tak ako
v kvantovej mechanike, kde 〈~r |~r ′〉 = δ(~r ′ − ~r)). Dosadením dostávame

〈1~r ′ |1~r〉 = ... =
1

(2π)6

∫ ∫
ei(

~k′·~r ′−~k·~r)

2
√
ω̃~kω̃~k′

〈1~k ′|1~k〉 d
3k d3k′ = ... =

1

(2π)3

∫
ei
~k·(~r ′−~r)

2ω̃~k
d3k 6= δ(~r ′ − ~r)

Pre ortogonalitu nevyhnutnému δ-funk£nému charakteru tejto priestorovej korelácie �prekáºa� v me-
novateli faktor 2ω̃~k = 2

√
~k · ~k + m̃2, zabezpe£ujúci lorentzovskú kovariantnos´ výrazu (kap. III.1.2).

Znamená to, ºe £astica nie je lokalizovate©ná presne v ~r - bodové £astice neexistujú!15

III.1.4 Energia vákua.

Ukázali sme, ºe kvantovanie skalárneho KG po©a vedie na nekone£ný £len (energia 1
2
~ω~k, preintegro-

vaná cez v²etky ~k) v energii kaºdej kon�gurácie po©a, vrátane stavu bez £astíc - vákua. Hoci takéto
nekone£no môºeme v mnohých situáciách ignorova´ (ke¤ uvaºujeme rozdiel energií), rozhodne nie je
nefyzikálne.16

Ak vytvoríme v priestore vákua ohrani£enú oblas´ (pre jednoduchos´ v jednom rozmere) s okrajo-
vými podmienkami φ(t, x = 0, y, z) = φ(0, x = L, y, z) = 0, obmedzíme tým pole ako superpozíciu
rovinných v¨n na stojaté vlny (v smere x) s frekvenciami

ωk = c

√
m̃2 + k2

x +
(nπ
L

)2

£ím sa zmení aj hustota energie vákua - zmen²í sa, a to v závislosti od vzdialenosti hraníc L. Ak
hustotu energie vákua na jednotku plochy hranice ozna£íme ES, potom na plochy hraníc pôsobí
zvonka sila F = −∂ES

∂L
- plochy sa pri´ahujú. Tento jav sa nazýva Casimirov jav.17

K tejto téme e²te jedna poznámka: Energia vákua sa £asto a nesprávne (!) spája s �uktuáciami
vákua, ktoré sú v²ak produktom interakcií polí. Pôvod nenulovej energie vákua je rovnaký ako
u základného stavu kvantového harmonického oscilátora (Dodatok E), £iºe stacionárneho stavu bez
�uktuácií. Ve©mi ne²´astný historicky zavedený pojem energia nulových kmitov tieº prispieva
k dezinterpretácii. Spájanie tejto energie s akýmko©vek fyzikálnym pohybom je nepochopením princípu
neur£itosti, tým skôr, ºe pre fermióny je energia vákua záporná (ako uvidíme v kap. III.2.8). Ani
k vysvetleniu Casimirovho javu sme �uktuácie nepotrebovali.

15Tento výsledok odpovedá analýze KGR z kap. III.1.1. Dá sa ukáza´, ºe pre dostato£ne ve©ké r = |~r ′ − ~r | platí
〈1~r ′ |1~r〉 ∼ e−m̃r = e−r/λ̄C , pri£om λ̄C = ~

mc . Ak by sme chceli £asticu o pokojovej hmotnostim lokalizova´ s presnos´ou
≈ λ̄C napr. fotónom, jeho energia by musela by´ najmenej ~ω ≈ ~c

λ̄C
= mc2, £o odpovedá pokojovej energii meranej

£astice, £iºe energii posta£ujúcej na vygenerovanie novej identickej £astice z vákua. Comptonova d¨ºka λC je teda dolnou
hranicou fyzikálnej lokalizovate©nosti £astice. Pre men²ie rozmery (£iºe vä£²ie energie detek£ných £astíc) vytvárame
okolo meranej £astice oblak nových £astíc/anti£astíc.

16Pod©a v²etkého má k©ú£ový ú£inok gravita£ný.
17Vä£²inou sa Casimirov jav spája s elektromagnetickým po©om ako jediným makroskopickým, teda jediným po©om,

kde takýto jav môºe by´ pozorovate©ný. Hoci toto pole nie je skalárne, pre energiu jeho vákua uvedené argumenty
platia obdobne.
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III.1.5 Komplexné skalárne pole.

Predpokladajme najprv dvojicu reálnych skalárnych polí φ1, φ2 o rovnakej �hmotnosti� m̃. Lagrangián
tejto sústavy bude (aº na rozmerový normovací koe�cient)

L =
1

2

(
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 − m̃2φ2

1 − m̃2φ2
2

)
Substitúcia

φ1 + iφ2√
2

= φ
φ1 − iφ2√

2
= φ∗

znamená zmenu bázy pri nezmenenom po£te stup¬ov vo©nosti systému (2), a nový lagrangián v tvare

L = ∂µφ
∗∂µφ− m̃2φ∗φ

bude reprezentova´ komplexné skalárne pole. Kánonickým kvantovaním sa z pôvodných reálnych polí
φ1, φ2 stávajú hermitovské operátory

φ̂1,2(xµ) =

∫
1

(2π)3
√

2ω̃~k

[
â1,2(~k)e−ikµx

µ

+ â†1,2(~k)eikµx
µ
]
d3k

s hermitovsky zdruºenými anihila£nými/krea£nými operátormi â1,2(~k), â†1,2(~k), a s jediným nenulovým
komutátorom

[âm(~k), â†n(~k′)] = (2π)3δmnδ(~k − ~k′) m,n = 1, 2

Na druhej strane, z dvojice komplexne zdruºených polí φ, φ∗ dostávme hermitovsky zdruºené operá-
tory

φ̂(xµ)

∫
1

(2π)3
√

2ω̃~k

[
b̂(~k)e−ikµx

µ

+ ĉ†(~k)eikµx
µ
]
d3k

φ̂†(xµ) =

∫
1

(2π)3
√

2ω̃~k

[
b̂†(~k)eikµx

µ

+ ĉ(~k)e−ikµx
µ
]
d3k

kde
b̂(~k) =

1√
2

(
â1(~k) + iâ2(~k)

)
b̂†(~k) =

1√
2

(
â†1(~k)− iâ†2(~k)

)
ĉ(~k) =

1√
2

(
â1(~k)− iâ2(~k)

)
ĉ†(~k) =

1√
2

(
â†1(~k) + iâ†2(~k)

)
sú nové anihila£né/krea£né operátory s jedinými nenulovými komutátormi

[b̂(~k), b̂†(~k′)] = (2π)3δ(~k − ~k′) [ĉ(~k), ĉ†(~k′)] = (2π)3δ(~k − ~k′)

Vidíme v²ak, ºe anihila£né a krea£né operátory jednotlivých spektrálnych komponent φ̂ a φ̂† uº (na
rozdiel od reálneho po©a) nie sú hermitovsky zdruºené - anihilujú a kreujú teda odli²né druhy £astíc
(odpovedajúcich ale rovnakému ~k a teda aj rovnakej energii),

|1(b)
~k
〉 = b̂†(~k)|0〉 |1(c)

~k
〉 = ĉ†(~k)|0〉

Pre operátory (hustôt) kánonických hybností platí

π̂ =
1

c2
∂tφ̂
† π̂† =

1

c2
∂tφ̂

a jedinými nenulovými komutátormi pre ne sú

[φ̂(~r, t), π̂(~r ′, t)] = [φ̂†(~r, t), π̂†(~r ′, t)] = i~δ(~r − ~r ′)
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Hamiltonián takejto sústavy je18

Ĥ =
~

(2π)3

∫
ω~k

(
b̂†(~k)b̂(~k) + ĉ†(~k)ĉ(~k)

)
d3k =

~
(2π)3

∫
ω~k

(
N̂b(~k) + N̂c(~k)

)
d3k

kde N̂b(~k), N̂c(~k) sú operátory po£tu �£astíc typu� b, resp. c v danom vlnovom móde. Podobne
operátor celkovej hybnosti bude ma´ tvar19

~̂p =
~

(2π)3

∫
~k
(
N̂b(~k) + N̂c(~k)

)
d3k

Na prvý poh©ad je zrejmé, ºe lagrangián komplexného po©a je invariantný vo£i rotáciam v komplexnej
rovine

φ→ e−iεφ ∼= φ− iφε φ∗ → eiεφ∗ ∼= φ∗ + iφ∗ε

£iºe vykazuje symetriu U(1), ktorej odpovedá zachovávajúci sa noetherovský ²tvorprúd (kap. I.3.6)

J µ =

(
∂L

∂(∂µφ∗)
φ∗ − ∂L

∂(∂µφ)
φ

)
= ... = (∂µφ)φ∗ − (∂µφ∗)φ

Noetherovským nábojom (zachovávajúcou sa veli£inou) je

Q =

∫ (
∂L

∂(∂tφ∗)
φ∗ − ∂L

∂(∂tφ)
φ

)
d3x =

1

c2

∫
(φ∗∂tφ− φ∂tφ∗) d3x

Tento výraz (na rozdiel od Schrödingerovho po©a, kap. I.3.8) nie je pozitívne de�nitný. Interpretácia
noetherovského náboja ako po£tu £astíc je tu preto neprijate©ná - po£et £astíc sa nezachováva. Ak
v²ak predpokladáme, ºe ide o polia nabité nenulovým tzv. £asticovým nábojom20 q, vynásobením
výrazu pre noetherovský náboj Q týmto nábojom q a kvantovaním polí dostávame

qQ → Q̂q = ... =
q

(2π)3

∫ [
N̂b(~k)− N̂c(~k)

]
d3k

��astice typu� b a c prispievajú k celkovému £asticovému náboju navzájom opa£ným nábojom ±q
- �£astice typu� c sú anti£asticami k �£asticiam typu� b - majú rovnakú hmotnos´ a energiu, ale
opa£ný náboj. Kreovaním/anihilovaním párov £astica-anti£astica sa zachováva celkový náboj (a nie
po£ty £astíc.) Dá sa tieº ukáza´, ºe tento náboj (ako vlastná hodnota operátora Q̂q) je lorentzovským
skalárom - pri lorentzovských transformáciách sa zachováva.

V²eobecné rie²enia KGR teda nie sú jedno£asticovými rie²eniami - zah¯¬ajú páry £astica-anti£astica.
Operátor φ̂(xµ) v danom £asopriestorovom bode xµ (presnej²ie v jeho λC-okolí) anihiluje £astice (£len
b̂(~k)e−ikµx

µ
) a kreuje anti£astice (ĉ†(~k)eikµx

µ
). Naopak, operátor φ̂†(xµ) kreuje £astice (b̂†(~k)eikµx

µ
)

a anihiluje anti£astice (ĉ(~k)e−ikµx
µ
). Ak vychádzame z kvantovomechanických operátorov pre energiu

a hybnos´, i~∂t resp. −i~∂j, fázy rovinných v¨n ∓ikµxµ = ∓i(Et− ~p · ~r)/~ znamenajú opa£né zna-
mienka energie aj hybnosti. Pri oboch anihila£ných operátoroch tak dostávame hybnosti +~p, ktoré
môºeme interpretova´ ako �prichádzajúce� (t.j. absorbované, anihilované) £astice, kým pri oboch
krea£ných operátoroch dostávame −~p pre £astice �odchádzajúce� (emitované, kreované). Záporná
energia anti£astíc je v²ak interpreta£ným problémom,21 pretoºe kreovanie takýchto £astíc by zname-
nalo neohrani£ené zniºovanie energie systému, a teda nestabilitu systému vo£i tvorbe anti£astíc (£o
je nefyzikálne). �astice so zápornou energiou preto interpretujeme ako anti£astice s kladnou energiou
pohybujúce sa opa£ne v £ase, £iºe eiEt/~|E<0 = ei|E|(−t)/~ = e−i|E|t/~.

18Ignorujeme pritom energiu vákua pre obe polia, £iºe 2× 1
2~ω~k pre kaºdé ~k.

19V tomto prípade ide o vektorovú sumáciu, s oh©adom na smer vektorov ~k.
20Môºe ale nemusí pritom nevyhnutne ís´ o elektrický náboj. V £asti IV s stretneme s inými druhmi náboja.
21Tento problém sme spomenuli uº v kap. III.1.1 v súvislosti s disperzným vz´ahom ω̃~k = ±

√
(~k)2 + m̃2.
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Ilustráciou tejto zámeny je dvojica ekvivalentných in-
terpretácií zráºky dvoch £astíc α, β, pri£om produk-
tami zráºky sú £astice α′, β′ (obr.). Vstupujúce aj vy-
stupujúce £astice sú pre oba scenáre rovnaké (preto sú
ekvivalentné), a v oboch £astica α vyºiari β′ a pohltí
β. V druhom scenári sa v²ak α medzi týmito dvoma
udalos´ami pohybuje naspä´ v £ase. Môºeme to inter-
pretova´ tak, ºe v okamihu t1 sa £astica β premení na pár £astica α′ a jej anti£astica, ktorá v £ase t2
anihiluje s α do novej £astice β′.

Pre nábojovo neutrálne polia, q = 0, nevieme rozlí²i´ £asticu od anti£astice - £astica je sama sebe
anti£asticou. Matematicky to znamená b̂†(~k) = ĉ†(~k), b̂(~k) = ĉ(~k), t.j. pole je reálne. Nulový noethe-
rovský náboj znamená, ºe reálne KG pole nevykazuje U(1)-symetriu, £o vidno aj z jeho lagrangiánu.
S tým súvisí aj nezachovávajúci sa £asticový náboj (po£et £astíc) pri pôsobení operátora reálneho
po©a na vákuum (kap. III.1.3).

Poznámka k hermitovosti operátorov: V nerelativistickej kvantovej mechanike hermitovské operá-
tory odpovedajú veli£inám, ktoré sú (aspo¬ principiálne) merate©né. V relativistickej kvantovej teórii
polí to celkom neplatí. Operátory polí sú hermitovské pre reálne polia ψ a hermitovsky zdruºené
pre komplexne zdruºené polia ψ, ψ∗, pri£om ani v jednom prípade nemusí ís´ (a zvä£²a ani nejde)
o merate©né polia. Operátory prislúchajúce merate©ným veli£inám v²ak hermitovskými musia by´.

III.1.6 Kauzalita.

Pod pojmom £astice v kvantovej teórii rozumieme nielen kvantá vlnových módov (s ostrou hodnotou
~k), ale £asto aj viac-menej lokalizované energetické excitácie - vlnové balíky príslu²ných polí.22 V rámci
takejto predstavy opisujeme ich ²írenie £asopriestorom, ako predpoklad pre ich vzájomné interakcie
(rozptyl £astíc). Relativistická teória pritom musí prísne re²pektova´ princíp kauzálnosti - ºiaden
energetický �balík� (ani vyuºite©ná informácia) sa nesmie ²íri´ Minkowského £asopriestorom mimo
svetelného kuºela (£iºe priestorom vä£²ou rýchlos´ou neº c). Medzi priestoru-podobne vzdialenými
udalos´ami xµ a x′µ ( kap. I.3.1),

(x′µ − xµ)2 = (x′µ − xµ)(x′µ − xµ) = c2(t′ − t)2 − (~r ′ − ~r)2 < 0

nesmie by´ prí£inná súvislos´. Tomuto princípu musia vyhovova´ aj komutátory a korela£né funkcie
operátorov polí. Doteraz uvádzané komutátory operátorov skalárnych polí platia pre daný £asový
okamih, t = t′. Osobitne, komutátor

[φ̂(~r ′, t), φ̂(~r, t)] = ... =
1

(2π)3

∫
1

2ω̃~k

(
e−i

~k·(~r ′−~r) − ei~k·(~r ′−~r)
)
d3k = 0

(lebo podintegrálny výraz je nepárnou funkciou integra£nej premennej) znamená, ºe akéko©vek ope-
rácie (merania) uskuto£nené na dvoch rôznych miestach sú£asne (v laboratórnej sústave) musia by´
nezávislé. Na druhej strane, pre rovnaké miesto a rôzne £asy platí

[φ̂(~r, t′), φ̂(~r, t)] = ... =
1

(2π)3

∫
d3k

2ω̃~k

(
eim̃(t′−t) − e−im̃(t′−t)

)
6= 0

£o predstavuje nenulovú pravdepodobnos´ nájdenia £astice na danom mieste v £asoch t aj t′. Pre
priestoru-podobné vzdialenosti musí plati´

[φ̂(~r ′, t′), φ̂(~r, t)] = 0 resp. [φ̂(x′µ), φ̂(xµ)] = 0 pre (x′µ − xµ)2 < 0

22Pripome¬me, ºe takáto de�nícia sa vz´ahuje na prípad mimo merania. Meraním sa £astica lokalizuje na detektore
- vytvorí sa jej ostrá poloha.
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Korela£ná funkcia - amplitúda pravdepodobnosti �nájdenia� £astice v x′µ, ak bola �pripravená� v xµ,
je

〈1x′µ|1xµ〉 = 〈0|φ̂(x′µ)φ̂(xµ)|0〉 = ... =
1

(2π)3

∫
e−ik

µ·(x′µ−xµ)

2ω̃~k
d3k = D(x′µ − xµ)

Tento výraz sa nazýva propagátor,23 a pre priestoru-podobné vzdialenosti musí by´ nulový ! Uvedený
výraz v²ak vedie na24

D(x′µ − xµ) ∼ e−m̃|~r
′−~r|

Aj tento nepatrný (∼ 1/m̃) presah svetelného kuºela nazna£uje principiálny problém. H©adajme jeho
rie²enie tak, ºe formálne rozdelíme operátor skalárneho po©a φ(xµ) ako

φ̂(xµ) =

∫
â(~k)e−ikµx

µ

(2π)3
√

2ω̃~k
d3k +

∫
â†(~k)eikµx

µ

(2π)3
√

2ω̃~k
d3k = φ̂+(xµ) + φ̂−(xµ)

a �kauzálny� komutátor [φ̂(x′µ), φ̂(xµ)] = 0 pre (x′µ − xµ)2 < 0 rozpí²eme pomocou komutátorov
φ̂+, φ̂−. S uváºením komuta£ných vz´ahov pre operátory â(~k), â†(~k) potom dostaneme

[φ̂(x′µ), φ̂(xµ)] = ... = [φ̂+(x′µ), φ̂−(xµ)]− [φ̂+(xµ), φ̂−(x′µ)] = ... = D(x′µ − xµ)−D(xµ − x′µ)
!

= 0

Princíp kauzálnosti nás teda núti uvaºova´ s navzájom sa kompenzujúcim ²írením £astice/vplyvu
v opa£ných £asopriestorových smeroch (£iºe s nulovým rozdielom nenulových propagátorov). Pre
priestoru-podobne vzdialené udalosti xµ, x′µ pritom nie je moºné ur£i´ ich £asovú následnos´. E²te
lep²iu predstavu získame, ak roz²írime na²e úvahy na komplexné skalárne pole - relevantným komu-
tátorom je potom [φ̂(x′µ), φ̂†(xµ)] = 0, a odpovedajúce propagátory reprezentujú ²írenie £astice resp.
anti£astice v navzájom opa£ných £asopriestorových smeroch. Existencia anti£astíc je teda dôsledkom
princípu kauzálnosti. (�astice reálneho po©a sú sami sebe anti£asticami.)

Zavedenie tzv. operátora £asového usporiadania T̂ umoº¬uje v²eobecnej²iu de�níciu propagátora,

DF (x′µ − xµ) = 〈0|T̂ φ̂(x′µ)φ̂(xµ)|0〉 T̂ φ̂(x′µ)φ̂(xµ) =

{
φ̂(x′µ)φ̂(xµ) pre x′µ > xµ
φ̂(xµ)φ̂(x′µ) pre xµ > x′µ

Tento tzv. Feynmanov propagátor môºeme tieº zapísa´ pomocou Heavisideovej skokovej funkcie
Θ(t′ − t) ako

DF (x′µ, xµ) = Θ(t′ − t)D(x′µ, xµ) + Θ(t− t′)D(xµ, x
′
µ)

Výraz kóduje pohyb amplitúdy excitácie (teda vplyvu £astice) xµ → x′µ pre t′ > t (prvý £len)
a x′µ → xµ pre t > t′ (druhý £len). V prípade interagujúcej dvojice £astíc (vlnových balíkov) A
a B to vyjadruje, ako minulos´ £astice B ovplyv¬uje prítomnos´ £astice A (prvý £len), a ako prítom-
nos´ A ovplyvní budúcnos´ B (druhý £len). Tento mechanizmus sa £asto interpretuje ako interakcia
sprostredkovaná virtuálnymi £asticami, prená²ajúcimi medzi A a B hybnos´.25 Hybnos´ £astice A
v danom okamihu sa zmení nielen absorbovaním virtuálnej £astice vyslanej v minulosti z B, ale aj
(pod©a zákona akcie a reakcie) vyslaním virtuálnej £astice z A pohltenej v B v budúcnosti (druhý
£len DF ). K zmene hybnosti £astice A dôjde len ak je ¬ou vyslaná £astica následne pohltená v B
- preto sprostredkujúcu �£asticu� nazývame virtuálnou.26 Z poh©adu sú£asnosti je budúce pohltenie
virtuálnej £astice spätným pohybom v £ase, jeho sprostredkovate©om je preto (virtuálna) anti£astica.

23Propagátor je relativistickým zov²eobecnením nerelativistickej kvantovomechanickej vlnovej funkcie - amplitúdy
pravdepodobnosti namerania £astice v danom mieste (bez oh©adu na miesto jej �pripravenia�), a kóduje potenciálny
vplyv £astice na inú £asticu vo svojom okolí (je východiskom pre opis rozptylu £astíc).

24Uº v kap. III.1.3 sme ukázali, ºe £astica skalárneho po©a v danom okamihu nie je ostro lokalizovaná, teda ºe
〈1~r ′ |1~r〉 6= δ(~r ′ − ~r), ale exponenciálne �mizne� na vzdialenosti ∼ 1/m̃.

25Ke¤ºe interagujúce £astice nie sú úplne priestorovo lokalizované, výmena virtuálnych £astíc nastáva v celej oblasti
ich (de)lokalizácie.

26Ak by i²lo o �reálnu� £asticu, jej emitovanie v A by automaticky znamenalo okamºitú zmenu hybnosti A (spätný
ráz), bez oh©adu na to, £i v budúcnosti dôjde k jej pohlteniu v B. Rozdiel medzi �reálnymi� a virtuálnymi £asticami
spo£íva len v tom, ºe druhé z nich existujú len �vovnútri� rozptylového procesu, nevstupujú do¬ �zvonka� ani z neho
nevystupujú, nie sú teda merate©né.
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Podobným spôsobom sa kon²truujú propagátory aj iných polí (spinorového £i vektorového). Kvantová
teória polí poskytuje matematický aparát na výpo£et takýchto rozptylových procesov.

III.1.7 Nerelativistická limita v elektromagnetickom poli.

Výjdime z lagrangiánu komplexného skalárneho po©a z kap. III.1.5

L = ∂µφ
∗∂µφ− m̃2φ∗φ

Nerelativistická limita znamená, ºe v²etky energetické £leny sú zanedbate©né vo£i pokojovej energii
£astice, E ∼= E0 = mc2, z £asovej závislosti φ(~r, t) preto vyjmime oscilácie s pokojovou energiou

φ(~r, t) ∼= e−iE0t/~ψ(~r, t) = e−im̃ctψ(~r, t)

�asová zloºka prvého £lena lagrangiánu je potom po dosadení

∂0φ
∗∂0φ = ... = ∂0ψ

∗∂0ψ + im̃(ψ∗∂0ψ − ψ∂0ψ
∗) + m̃2ψ∗ψ

Ke¤ºe m̃ = mc
~ = E0

~c , prvý £len je zanedbate©ný vo£i zvy²ným dvom (úmerným m̃, resp. m̃2),
a posledný £len je zas kompenzovaný posledným £lenom celkového lagrangiánu. Nerelativistický
lagrangián je potom

L = m̃(iψ∗∂0ψ − iψ∂0ψ
∗)− ∂jψ∗∂jψ

Prechodom k obvyklému nerelativistickému normovaniu
∫
ψ∗ψ d3x = 1 dostaneme lagrangián z kap.

I.3.8 pre Schrödingerovo pole

L =
~c
2

[
iψ∗∂0ψ − iψ∂0ψ

∗ − 1

m̃
∂jψ

∗∂jψ

]
a po dosadení do ELR pre ψ∗ aj SCHR pre vo©nú £asticu.

Aj nerelativistický lagrangián komplexného skalárneho je na¤alej invariantný vo£i U(1) transformácii

φ→ e−iεφ φ∗ → eiεφ∗

a príslu²ným noetherovským nábojom je

Q =

∫ (
∂L

∂(∂tφ∗)
φ∗ − ∂L

∂(∂tφ)
φ

)
d3x = ... ∼

∫
ψ∗ψ d3x

£o obvykle interpretujeme ako zachovávajúci sa (na rozdiel od relativistického prípadu) po£et £astíc.
Anti£astice ako rýdzo relativistický fenomén sa z týchto vz´ahov vytratili. Stojí tieº za pov²imnutie,
ºe pre reálne KG pole, nevykazujúce túto U(1)-symetriu, neexistuje uspokojivá nerelativistická limita
- vlnová funkcia kvantovej mechaniky musí by´ komplexná (ak má vyhovova´ pravdepodobnostnej
interpretácii).

Táto U(1)-symetria nám dovo©uje komplexné pole ψ reprezentova´ pomocou iných dvoch stup¬ov
vo©nosti

ψ(~r, t) =
√
ρ(~r, t)eiθ(~r,t) ψ∗(~r, t) =

√
ρ(~r, t)e−iθ(~r,t) ρ(~r, t) = ψ∗(~r, t)ψ(~r, t)

Dosadením do vy²²ie uvedeného lagrangiánu dostávame

L = ~c
[
i

2
∂0ρ− ρ∂0θ −

1

8m̃ρ
(∂jρ)2 − ρ

2m̃
(∂jθ)

2

]
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Kánonické hybnosti príslu²né k novým poliam sú

πρ(~r, t) =
∂L

∂(∂tρ)
=
i~
2

πθ(~r, t) =
∂L

∂(∂tθ)
= −~ρ(~r, t)

Prechodom k operátorom musí by´ splnený komuta£ný vz´ah

[θ̂(~r1, t), π̂θ(~r2, t)] = −~ [θ̂(~r1, t), ρ̂(~r2, t)]
!

= i~δ(~r1 − ~r2)

Operátor po£tu £astíc je N̂(t) =
∫
ρ̂(~r, t)d3x, a ke¤ºe

∫
δ(~r1 − ~r2)d3x = 1, dostávame

[N̂(t), θ̂(~r, t)] = i

£o je dôleºitý komutátor (a z neho vyplývajúci vz´ah neur£itosti) v kondenzovaných systémoch opí-
saných nerelativistickým komplexným skalárnym po©om, nachádzajúcich sa v tzv. koherentnom
stave s ostrou hodnotou (makroskopickej) fázy a úplne neur£itým po£tom £astíc (supratekutos´,
supravodivos´). Rovnako hustotu toku £astíc/po©a v koherentnom stave dostaneme z priestorovej
zloºky noetherovského ²tvorprúdu (dosadením lagrangiánu do vz´ahu z kap. III.1.5)

Jj = ψ∂jψ
∗ − ψ∗∂jψ = ... ∼ − ρ

m̃
∂jθ

Ak je komplexné relativistické skalárne pole φ elektricky nabité (nábojom q) a interaguje s elektro-
magnetickým po©om, reprezentovaným ²tvorvektorom Aµ = (ϕ/c, ~A), ich väzbu zoh©adníme modi�-
kovaním operátora energie/hybnosti27

i~∂µ → i~∂µ − qAµ

Relativistickú KGR potom môºeme prepísa´ do tvaru

(i~∂µ − qAµ)(i~∂µ − qAµ)φ = (mc)2φ

resp.
[i~∂t − qϕ(~r, t)]2

c2
φ(~r, t) =

[(
−i~∇− q ~A(~r, t)

)2

+ (mc)2

]
φ(~r, t)

Jej nerelativistická limita opä´ znamená

E ∼= E0 = mc2

∣∣∣∣i~∂tφφ
∣∣∣∣� E0 |qϕ| � E0 φ(~r, t) ∼= e−iE0t/~ψ(~r, t)

V ©avej strane uvedenej rovnice28 preto zanedbáme v²etky £leny neobsahujúce E0,

[i~∂t − qϕ]2 e−iE0t/~ψ = ... ∼= E0

(
E0e

−iE0t/~ψ − 2qϕe−iE0t/~ψ + 2i~e−iE0t/~∂tψ
)

a porovnaním s pravou stranou dostávame

i~∂tψ(~r, t) =


(
−i~∇− q ~A(~r, t)

)2

2m
+ qϕ(~r, t)

ψ(~r, t)

£o je SCHR v elektromagnetickom poli.

27Hlb²í význam tejto náhrady ozrejmíme v kapitole o kalibra£ných poliach.
28Pamätajme, ºe výraz v hranatej zátvorke je operátor !
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Dôleºité závery:

• Relativisticky kovariantnou pohybovou rovnicou skalárneho po©a je KGR, a jej rie²eniami sú su-
perpozície módov rovinných v¨n.

• Základným stavom skalárneho po©a je vákuum (bez £astíc). Energia vákua na v²etkých módoch je
nekone£ná, ide v²ak o �odstránite©né� nekone£no.

• Skalárne £astice ako excitácie skalárneho po©a sú lokalizovate©né na svojej Comptonovej d¨ºke,
závislej od ich pokojovej hmotnosti. (Tento záver ostane v platnosti aj pre iné druhy polí.)

• V komplexnom skalárnom poli existujú dva druhy £asticových excitácií s opa£ným £asticovým
nábojom - £astice a anti£astice. Anti£asticové rie²enia KGR so zápornou energiou transformujeme na
rie²enia s kladnou energiou, pohybujúce sa naspä´ v £ase.

• Pri transformácii kon�gurácie komplexného skalárneho po©a sa zachováva algebrický (t.j. s oh©adom
na znamienko) sú£et £asticových nábojov. Excitácie reálneho skalárneho po©a sú nenabité - £astice
sú sami sebe anti£asticami, a ich po£et (celkový £asticový náboj) sa nezachováva.

• Operátory (reálnych aj komplexných) skalárnych polí (a nielen skalárnych) nereprezentujú jed-
no£asticový problém - v jednotlivých ~k-tych módoch sú£asne anihilujú £asticu a kreujú anti£asticu,
resp. naopak (aj ke¤ v prípade reálnych polí sú £astica a anti£astica identické). Relativistické rovnice
polí, re²pektujúce princíp kauzálnosti, nie sú jedno£asticovými rovnicami.

• Pri nerelativiskických energiách prechádza KGR na SCHR.

III.2 Spinorové polia.

III.2.1 Diracova rovnica.

Spinorové polia sú elementárnymi substanciami, ktorých excitácie stotoº¬ujeme s £asticami29 so
spinom 1

2
. Reprezentácia spinorového po©a musí sp¨¬a´ poºiadavku lorentzovskej invariantnosti, vrá-

tane invariantnosti vo£i transformácii parity. Takéto polia preto opisujeme Diracovými spinormi -
²tvorkomponentnými objektami zloºenými z chirálne ©avo- aj pravorukého Weylovho spinora. Vhod-
nou reprezentáciou je teda bispinorová reprezentácia (1

2
, 0)⊕ (0, 1

2
) lorentzovskej grupy (kap. II.4.3) -

tzv. chirálna (Weylova) reprezentácia, v ktorej Diracove spinory vyjadrujeme pomocou Weylo-

vých v tvare ψ =

(
χL
ξR

)
. Kaºdý £len lagrangiánu po©a, ako kombinácia spinorov ψ, ψ† a ²tvorvekto-

rových operátorov ∂µ, musí by´ lorentzovským skalárom, £o zabezpe£íme pridaním tzv. Diracových
gama-matíc 4× 4 (resp. 2× 2, ktorých prvkami sú tieº matice 2× 2 - nulová, jednotková a Pauliho
matice). V chirálnej reprezentácii majú gama-matice tvar

γµ =

(
0 σµ

σ̄µ 0

)
σµ = (1, σj) σ̄µ = ηµνσ

ν = (1,−σj) γµ = ηµνγ
ν =

(
0 σ̄µ

σµ 0

)
29Patria sem leptóny a kvarky, teda v²etky £astice tvoriace látku.
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γ0 =


0 0
0 0

(
1 0
0 1

)
(

1 0
0 1

)
0 0
0 0

 γ1 =


0 0
0 0

(
0 1
1 0

)
(

0 −1
−1 0

)
0 0
0 0



γ2 =


0 0
0 0

(
0 −i
i 0

)
(

0 i
−i 0

)
0 0
0 0

 γ3 =


0 0
0 0

(
1 0
0 −1

)
(
−1 0
0 1

)
0 0
0 0


Lagrangián spinorového po©a (jeho objemová hustota) má v tomto formalizme tvar

L = ~c ψ̄(iγµ∂µ − m̃)ψ = ψ̄(i~c γµ∂µ −mc2)ψ ψ̄ = ψ†γ0

kde ψ a ψ̄ sú dve (komplexné) bispinorové polia, ktorých sú£in

ψ̄ψ = ψ†γ0ψ =

(
χL
ξR

)†(
0 1

1 0

)(
χL
ξR

)
= ... = χ†LξR + ξ†RχL

je £íslom - lorentzovským skalárom (£o vyºaduje lagrangián). Výraz γµ∂µ je (napriek tvaru formálne
pripomínajúcemu skalárny sú£in ²tvorvektorov, a to v Minkowského metrike) sú£tom operátorových
matíc 4×4,

γµ∂µ =
3∑

µ=0

(
0 σµ∂µ

σ̄µ∂µ 0

)
σ0∂0 =

(
∂0 0
0 ∂0

)
, σ1∂1 =

(
0 ∂1

∂1 0

)
, at¤.

a teda aj pri £lene m̃ implicitne uvaºujeme jednotkovú maticu diag(1,1,1,1), ktorú v²ak v zápise
systematicky vynechávame. Dosadením lagrangiánu do ELR pre ψ aj ψ̄ dostávame pohybovú - tzv.
Diracovu rovnicu (DIR)

(iγµ∂µ − m̃)ψ = 0 resp. (−iγµ∂µ − m̃)ψ̄ = 0

DIR je sústavou 4 rovníc pre µ = 0, 1, 2, 3. Kým operátor (energie-hybnosti) ∂µ pôsobí na £asopriesto-
rové stupne vo©nosti, matice-operátory γµ pôsobia na vnútorné (spinové) stupne vo©nosti. Argumenty
vedúce k sformulovaniu DIR (ako východisku k zostaveniu lagrangiánu) sú v Dodatku L.

Overme najprv lorentzovskú kovariantnos´ DIR: Lorentzovská transformácia bispinora znamená nie-
len transformáciu súradníc xµ → x′µ = (Λ−1)µνx

ν a derivácií,

∂xν

∂x′µ
= Λν

µ

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
∂′µ = Λν

µ∂ν

(Λν
µ
∼= δνµ + ωνµ z kap. II.4.2), ale aj transformáciu vnútorného bispinorového priestoru, £iºe

ψ(xµ)→ ψ′(x′µ) = Λsψ(xµ). Tvar transforma£nej matice bispinora Λs nájdeme z nasledujúcej úvahy:
Pôvodná DIR (v ne£iarkovanej sústave) po vynásobení Λs z©ava a vloºení Λ−1

s Λs = 1 nadobudne
tvar

iΛsγ
µΛ−1

s

︷︸︸︷
∂µ Λsψ(xν)︸ ︷︷ ︸−m̃Λsψ(xν)︸ ︷︷ ︸ = (iΛsγ

µΛ−1
s

︷ ︸︸ ︷
(Λµ

ν )−1∂′µ−m̃)ψ′(x′ν)︸ ︷︷ ︸ = 0

Ak druhá rovnos´ má by´ DIR v £iarkovanej sústave, musí plati´

Λsγ
µΛ−1

s = Λµ
νγ

ν

£o je h©adaný de�ni£ný vz´ah pre transforma£nú maticu Λs.
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Pre in�nitezimálnu transformáciu musí pritom plati´ Λs
∼= 1 − i

2~ωµνS
µν , kde Sµν je matica jej

generátorov (kap. II.4.3). Dosadením Λν
µ a Λs do de�ni£ného vz´ahu potom dostaneme maticu

generátorov Sµν vyjadrenú pomocou gama-matíc ako

Sµν =
i~
4

[γµ, γν ]

Jej priestorové zloºky Sj = 1
2
εjklS

kl (pod©a kap. II.4.2) sú zloºkami spinového momentu hybnosti
(kap. III.2.4).

Uve¤me e²te tzv. Schrödingerovu formou DIR, ktorú dostaneme vynásobením pôvodnej DIR
z©ava maticou γ0 (s maticami v chirálnej reprezentácii),

i~∂tψ(~r, t) = Ĥψ(~r, t)

Ĥ = −i~c ~̂α · ∇+mc2β̂

α̂j =

(
−σj 0

0 σj

)
β̂ =

(
0 1

1 0

) β̂ = γ0

β̂~̂α = ~γ

Postupom z kap. I.3.6 sa dá ©ahko ukáza´, ºe komplexné Diracovo pole ψ(xµ) (rovnako ako komplexné
skalárne pole z kap. III.1.5) vykazuje spojitú vnútornú U(1) symetriu vzh©adom na transformáciu
ψ → e−iεψ ∼= ψ − iψε, s odpovedajúcou hustotou noetherovského (²tvor)prúdu a náboja30

jν(xµ) = cψ̄(xµ)γνψ(xµ) ρ(xµ) = ψ̄(xµ)γ0ψ(xµ) = ψ†(xµ)ψ(xµ) (≥ 0)

Druhý z výrazov formálne sp¨¬a poºiadavky na £asticovú pravdepodobnostnú interpretáciu (je nezá-
porný, podobne ako v prípade SCHR, a na rozdiel od prípadu KGR), a navádza na interpretáciu
DIR ako jedno£asticovej relativistickej pohybovej rovnice. Ako sme v²ak uviedli v predslove k £asti
III, takáto interpretácia je nesprávna.31 Túto symetriu tieº obvykle interpretujeme ako zákon zacho-
vania elektrického náboja, ako v²ak vidíme, elektrický náboj v na²ich rovniciach zatia© nevystupuje,
a objavuje sa aº v kontexte elektromagnetickej interakcie. Je preto presnej²ie hovori´ o zachovávaní
£asticového náboja, ako rozdielu po£tov £astíc a anti£astíc (podobne ako v kap. III.1.5). Diracovými
anti£asticami sa zaoberáme niº²ie, a významu pojmu elektrický náboj sa budeme venova´ v kapitolách
o interakciách. Fyzikálne správny obsah nadobudne DIR a jej rie²enia aº kánonickým kvantovaním
Diracovho po©a (kap. III.2.8).

III.2.2 Rie²enia Diracovej rovnice.

Formálne môºeme DIR zapísa´ v tvare

D̂ψ = 0 D̂ = (iγµ∂µ − m̃)

Stojí za pov²imnutie, ºe aplikovaním kvadrátu tzv. Diracovho operátora D̂ dostaneme

D̂∗D̂ψ = (−iγµ∂µψ − m̃)(iγν∂νψ − m̃)ψ = (γµγν∂µ∂ν + m̃2)ψ = 0

£o po ur£itých úpravách a pri splnení (pozri Dodatok L) podmienky32

γµγν =
1

2
(γµγν + γνγµ) =

1

2
{γµ, γν} = ηµν (£iºe {γ0, γj} = 0)

30Objemová hustota noetherovského náboja ψ†(xµ)ψ(xµ) je skalár, nie v²ak lorentzovský skalár - ako zloºka ²tvor-
vektora jν(xµ) sa lorentzovsky transformuje. Jej objemový integrál

∫
ψ†(xµ)ψ(xµ)d3x uº je lorentzovským skalárom.

31Aj ke¤ je dnes takáto interpretácia odmietnutá, zohrala rozhodujúcu úlohu pri budovaní relativistickej kvantovej
teórie.

32Táto podmienka je ekvivalentná de�novaniu matíc α̂, β̂ v kap. III.2.1. Výraz {.., ..} je tzv. antikomutátor, a uvedená
podmienka de�nuje tzv. Cli�ordovu algebru. Rôzne reprezentácie γ-matíc sú viazané touto podmienkou. Sp¨¬ajú
ju aj Pauliho matice.
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dáva KGR. Znamená to, ºe kaºdá komponenta Diracovho spinora (ako komplexný skalár) musí by´
rie²ením KGR, teda rie²ením £asopriestorovým, vo forme rovinných v¨n f(xµ) = e±ikµx

µ
alebo ich su-

perpozícií, re²pektujúc disperzný vz´ah kµkµ = m̃2. Nad rámec KGR v²ak γ-matice v DIR �mie²ajú�
navzájom jednotlivé komponenty bispinorov v abstraktnom spinorovom priestore �pripnutom� ku
kaºdému bodu £asopriestoru. V²eobecné rie²enie DIR potom dostaneme integrovaním/sumovaním33

rovinných v¨n cez v²etky dostupné hybnosti ~k a kon�gurácie spinu s

ψ =
2∑
s=1

∫
1

(2π)3
√

2ω̃~k

(
bs(~k)u

(s)
~k
e−ikµx

µ

+ c∗s(
~k)v

(s)
~k
eikµx

µ
)
d3k

(
ω̃~k =

E~k
~c

)
kde páry bs(~k), c∗s(

~k) nie sú navzájom komplexne zdruºené, a u(s)
~k
, v

(s)
~k

sú bázové bispinory pre ostré

hodnoty ~k (a teda nezávisiace od ~r), kódujúce vnútornú ²truktúru spinového priestoru, na ktorú sa
teraz zameriame.34

V chirálnej báze (£iºe v báze Weylových spinorov) nadobudnú DIR (v maticovom zápise) a lagrangián
z kap. III.2.1 tvar

(iγµ∂µ − m̃)ψ =

(
−m̃ iσµ∂µ
iσ̄µ∂µ −m̃

)(
χL
ξR

)
=
(
D̂W

)( χL
ξR

)
= 0

L = (χ†L ξ
†
R)
(
D̂W

)( χL
ξR

)
= iχ†L(∂0 − ~σ · ∇)χL + iξ†R(∂0 + ~σ · ∇)ξR − m̃(χ†LξR + ξ†RχL)

Vidíme, ºe pre m̃ 6= 0 mie²a posledný £len lagrangiánu aj matica D̂W chirálne ©avo- a pravoruké po-
lia. Dôsledky tohto mie²ania ukáºeme na najjednoduch²om rie²ení DIR v tvare Diracovho (bi)spinora
s ostrou hodnotou hybnosti/energie (£iºe jednej rovinnej vlny, s vynechaným normovacím koe�cien-
tom). Pre ansatz

ψ(xµ) =

(
χL(xµ)
ξR(xµ)

)
=

(
χL
ξR

)
e−ikµx

µ

= ψ0e
−ikµxµ

dostávame z DIR
(γµkµ − m̃)ψ0e

−ikµxµ = 0

V pokojovej sústave objektu, kde ~k = 0, k0 = m̃, a E = mc2 = ~cm̃ > 0, dostávame (po dosadení
matice γ0)

(γ0 − 14×4)

(
χL
ξR

)
=

(
−1 1
1 −1

)(
χL
ξR

)
=

(
−χL + ξR
χL − ξR

)
= 0 ⇒ χL = ξR

Dve lineárne nezávislé rie²enia DIR sú

ψ1(t) =


1
0
1
0

 e−icm̃t ψ2(t) =


0
1
0
1

 e−icm̃t

a súvisia s rôznymi kon�guráciami spinu (�hore� resp. �dole�, kap. III.2.4), a to zhodne pre obe
chirality. Obdobným spôsobom s pouºitím ansatzu ψ0e

ikµxµ → ψ0e
icm̃t pre E < 0 dostaneme

χL = −ξR a ¤al²ie dve lineárne nezávislé rie²enia35

ψ3(t) =


1
0
−1
0

 eicm̃t ψ4(t) =


0
1
0
−1

 eicm̃t

33Normovací faktor zaru£ujúci lorentzovskú invariantnos´ je rovnaký ako v prípade skalárnych polí (kap. III.1.2).
Rozmerové normovanie pre jednoduchos´ ignorujeme.

34V tomto zápise vo v²eobecnosti nemusí ís´ o spinory v chirálnej báze, t.j chirálne ©avo/pravoruké, vi¤ kap. III.2.3.
35Vieme uº zo ²túdia skalárnych polí, ºe rie²enia s E < 0 nepredstavujú problém. Viac sa nimi budeme zaobera´

v nasledujúcej kap. III.2.3.
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V²eobecné rie²enie v pokojovej sústave je potom superpozíciou týchto bázových rie²ení.

Predpokladajme teraz ako �po£iato£nú� podmienku v £ase t = 0 spinor v stave �chirálne ©avoruký,
spin hore�, £iºe (v uvedenej báze)

ψ(0) =


1
0
0
0

 =
1

2

[
ψ1(0) + ψ3(0)

]

Jeho £asový vývoj je ψ(t) = 1
2

[ψ1(t) + ψ3(t)], a v £ase t = π
2cm̃

bude

ψ
( π

2cm̃

)
=

1

2




1
0
1
0

 e−iπ/2 +


1
0
−1
0

 eiπ/2

 = −i


0
0
1
0


£o je �chirálne pravoruký, spin hore�. Znamená to, ºe Diracove spinory (ako rie²enia DIR v chirálnej
báze) v £ase neustále oscilujú medzi stavmi opa£nej chirality (cez ich superpozície), s frekvenciou
úmernou parametru m̃ - hmotnosti excitácie po©a (balíku energie, t.j. £astice). Stavy oboch chiralít
sú teda navzájom previazané parametrom m̃ - chiralita hmotných objektov sa nezachováva v £ase
(zachováva sa v²ak pri interakciách, a aj pri lorentzovských transformáciách). Znamená to tieº, ºe
v Prírode nemôºme pozorova´ hmotné Weylove spinory (�xnej chirality), ale len Diracove (bi)spinory
(rie²enia DIR) s kombinovanou chiralitou.

Naopak, pre nehmotné polia sa DIR redukuje na

iγµ∂µψ =

(
0 iσµ∂µ

iσ̄µ∂µ 0

)(
χL
ξR

)
= 0

£o vedie na samostatné - tzv. Weylove rovnice pre Weylove spinory (jednej chirality)

iσµ∂µξR = 0 iσ̄µ∂µχL = 0

Chirálne ©avo- a pravoruká £as´ bispinora sa teda nemie²ajú, a môºeme ich (v tejto báze) interpretova´
ako samostatné polia/£astice. Ak sa teda v Prírode vyskytujú spinorové £astice kon²tantnej chirality,
musia by´ nehmotné.

Na prvý poh©ad by sa zdalo, ºe 4 komplexné komponenty Diracovho (bi)spinora predstavujú 8 reál-
nych vnútorných stup¬ov vo©nosti.36 Pre kánonickú hybnos´ Diracovho po©a (resp. jej hustotu) v²ak
platí

π =
∂L
∂ψ̇

= ... = i~γ0ψ̄ = i~ψ†

£iºe nezávisí od ψ̇ (na rozdiel od skalárneho KG po©a, pre ktoré π ∼ φ̇). Fázový priestor Diracovho
(bi)spinora je teda parametrizovaný ψ a ψ† (£o sú tie isté stupne vo©nosti ako ψ), a preto má len 8
reálnych rozmerov. Po£et (reálnych) stup¬ov vo©nosti je vºdy polovi£ný, teda v tomto prípade 4. Ako
uvidíme, za ur£itých okolností ich môºeme interpretova´ ako odpovedajúce dvojici £astíc (resp. £astici
a anti£astici, kap. III.2.3) v dvoch rôznych spinových stavoch.37 Z rovnakých dôvodov nehmotnému
Weylovmu spinoru prislúchajú 2 stupne vo©nosti - 2 stavy jedinej £astice, lí²iace sa helicitou (kap.
II.4.4 a III.2.4).

36Pre polia s nekone£ným po£tom stup¬ov vo©nosti (dimenzií kon�gura£ného priestoru) má zmysel hovori´ o po£te
stup¬ov vo©nosti na jeden bod po©a.

37Pripomíname, ºe pre spin 1
2 sú stavy �spin hore� a �spin dole� v spinovom priestore ortogonálne, ide teda o 2 rôzne

stupne vo©nosti.
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III.2.3 Diracove anti£astice.

Ako vyplýva z kap. III.2.1 a Dodatku L, poºiadavka lorentzovskej kovariantnosti vyºaduje splnenie
podmienky (Cli�ordovej algebry) {γµ, γν} = 2ηµν . Tvar γ-matíc z kap. III.2.1 (chirálna báza) v²ak
nie je jediným, ktorý túto podmienku sp¨¬a. Unitárnou transformáciou

ψ → Uψ γµ → UγµU † U ∈ U(4)

(ktorá nezmení tvar DIR) vieme vytvori´ iné reprezentácie, rovnako vyhovujúce Cli�ordovej algebre.
Ako sme videli v kap. III.2.2, chirálna reprezentácia je výhodná pre nehmotné (alebo takmer ne-
hmotné) spinorové polia, v prípade nízkoenergetických hmotných polí (E ≈ mc2) v²ak uprednost¬u-
jeme tzv. hmotnostnú (tieº Diracovu alebo ²tandardnú) reprezentáciu s γ-maticami v tvare

γ0 =

(
1 0
0 −1

)
γj =

(
0 σj
−σj 0

)
resp. α̂j =

(
0 σj
σj 0

)
β̂ = γ0

Transforma£nou maticou z chirálnej do hmotnostnej reprezentácie je U = 1√
2

(
1 1

−1 1

)
, a bispinory

sa transformujú ako (
χL
ξR

)
→
(
χs
ξs

)
=

1√
2

(
ξR + χL
ξR − χL

)
a matica DIR ako (

D̂W

)
→
(
D̂D

)
=

(
i∂0 − m̃ iσj∂j
−iσj∂j −i∂0 − m̃

)
Rie²enia DIR h©adáme v tvare superpozície rovinných v¨n u~k e

−ikµxµ resp. v~k e
ikµxµ , kde bispinory

u~k, v~k sú zloºené so spinorov χs, ξs, ktorých komponenty opä´ odpovedajú stavom �spin hore� a �spin
dole�. Dosadením týchto rie²ení do DIR dostávame

(γµkµ − m̃)u~k = 0 (γµkµ + m̃)v~k = 0

Výhodnos´ hmotnostnej reprezentácie s diagonálnou maticou γ0 sa prejaví v pokojovej sústave bi-
spinorov (kj → 0⇒ ∂j → 0, matica D̂D je tieº diagonálna), kde tieto rovnice prejdú na tvar38(

ω̃~k=0γ
0 − m̃ 14×4

)
u~k=0 = 0

(
ω̃~k=0γ

0 + m̃ 14×4

)
v~k=0 = 0

ktorý pripú²´a len ~c ω̃~k=0 = E~k=0 = ±mc2 = ±~m̃c (v súlade s disperzným vz´ahom kµkµ = m̃2 pre
kj = 0). �ahko sa presved£íme, ºe kombinácie matíc γ0 a 14×4 v uvedených rovniciach �vyprojektujú�
z bispinorov u~k=0, v~k=0 ich hornú (χs) resp. dolnú (ξs) £as´, pre ktoré potom (v pokojovej sústave)
platia samostatné rovnice

E~k=0χs = mc2χs E~k=0ξs = −mc2ξs

Ako sme uº spomínali pri KGR v kap. III.1.5, existencia £astíc so zápornou energiou by viedla
k problému so stabilitou stavu vo£i ich tvorbe, preto ich interpretujeme ako anti£astice s kladnou
energiou pohybujúce sa naspä´ v £ase i priestore. V pokojovej sústave môºeme teda uvaºova´ bázu
£asticových/anti£asticových bispinorov pre obe kon�gurácie spinu (s rozmerovým normovaním od-
povedajúcim normovaniu lagrangiánu z kap. III.2.1)

u
(1)
~k=0

=
√

2m̃


1
0
0
0

 u
(2)
~k=0

=
√

2m̃


0
1
0
0

 v
(1)
~k=0

=
√

2m̃


0
0
1
0

 v
(2)
~k=0

=
√

2m̃


0
0
0
1


38V záujme algebrickej zrozumite©nosti tu výnimo£ne pí²eme aj jednotkovú maticu 14×4.
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Transformáciou do chirálnej bázy zistíme, ºe tieto stavy odpovedajú spinorovým £astiam bázových
stavov ψ1−4(t) z kap. III.2.2. V hmotnostnej reprezentácii teda máme bázu

{£astica↑, £astica↓, anti£astica↑, anti£astica↓}

a v pokojovej sústave bispinora zvykneme hovori´ (nie celkom korektne) o samostatnej £astici alebo
anti£astici v danom spinovom stave, a to v oscilujúcej superpozícii oboch chiralít (pre m̃ 6= 0).39

Bispinorové rie²enia pre ~k 6= 0, ktoré dostaneme z uvedených rie²ení pre ~k = 0 lorentzovským boostom,
potom budú (Dodatok M)

u
(1)
~k

=


√
ω̃~k + m̃

0
kz√
ω̃~k+m̃

kx+iky√
ω̃~k+m̃

 u
(2)
~k

=


0√

ω̃~k + m̃
kx−iky√
ω̃~k+m̃
−kz√
ω̃~k+m̃



v
(1)
~k

=


kz√
ω̃~k+m̃

kx+iky√
ω̃~k+m̃√
ω̃~k + m̃

0

 v
(2)
~k

=


kx−iky√
ω̃~k+m̃
−kz√
ω̃~k+m̃

0√
ω̃~k + m̃


kde v prípade anti£asticových bispinorov v

(1,2)
~k

sme pouºili transformáciu40 E → −E, ~k → −~k.
Vidíme, ºe £asticové aj anti£asticové rie²enia majú teraz obe polovice bispinora nenulové.41 Lineárne
kombinácie takýchto bázových rie²ení tvoria v²eobecné rie²enie uvedené v kap. III.2.2.

III.2.4 Spin a helicita.

Z tvaru hamiltoniánu
Ĥ = −i~c ~̂α · ∇+mc2β̂ = c ~̂α · ~̂p+mc2β̂

z kap. III.2.1 vidíme, ºe priestorový (orbitálny) moment hybnosti ~̂L = ~r × ~̂p sa nezachováva - jeho
komutátor s hamiltoniánom je totiº

[~̂L, Ĥ]→ c[~r × ~̂p, ~̂α · ~̂p] = c[~r, ~̂α · ~̂p]× ~̂p = ic~ ~̂α× ~̂p ([xj, p̂k] = i~δjk)

De�nujme teda maticu ~̂S

~̂S =
~
2

(
~σ 0
0 ~σ

)
= ... = −i~α̂1α̂2α̂3~̂α/2 [Ŝj, α̂k] = i~εjklα̂l [ ~̂S, β̂] = 0

Potom
[ ~̂S, Ĥ] = −ic~ ~̂α× ~̂p [~̂L+ ~̂S, Ĥ] = 0

39Pre m̃ = 0 pokojová sústava neexistuje! Opä´ pripomíname, ºe ak hovoríme o £asticiach, máme na mysli klasické
pole (ako rie²enie DIR), ktoré aº kánonickým kvantovaním kreuje/anihiluje £asticu/anti£asticu.

40Pre E < 0 môºeme písa´ ~σ·~p
E
c −mc

= ~σ·(−~p)
|E|
c +mc

a ei{Et−~p·~r}/~ = e−i{|E|t−(−~p)·~r}/~.
41Delenie bispinora na �£asticovú a anti£asticovú £as´� má teda zmysel (ak vôbec nejaký) len v pokojovej sústave

v hmotnostnej báze.
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Zachovávajúcou sa veli£inou je teda (ako uº vieme z kap. II.2.5) celkový moment hybnosti ~J = ~L+ ~S,
kde ~S je interný moment hybnosti Diracovho spinorového po©a - spin. Platí tieº

( ~̂S)2 =
~2

4

(
~σ · ~σ 0

0 ~σ · ~σ

)
= ... =

3~2

4

(
1 0
0 1

)
£o odpovedá vlastnej hodnote j(j + 1) Casimirovho operátora J2 algebry su(2) pre j = 1

2
z kap.

II.3.2. V porovnaní s nerelativistickými spinormi s operátormi spinu reprezentovanými maticami 2×2
(Pauliho maticami) pôsobiacimi na spinorový priestor, operátory spinu relativistických bispinorov sú
matice 4×4 pôsobiace na bispinorový priestor. Vo fyzickom 3D priestore je pritom spin reprezentovaný
trojicou kartézskych zloºiek.

Pre anti£astice transformácia (E, ~p)→ (−E,−~p) znamená ~L = ~r× ~p→ −~L, a zo zákona zachovania
celkového momentu hybnosti vyplýva ~S → −~S.

V pokojovej sústave bispinora (~p = 0, ~L = 0) teda platí [Ĥ, ~̂S] = 0, a bázové stavy u
(1,2)
~k=0

, v
(1,2)
~k=0

z predchádzajucej kap. III.2.3 sú aj vlastnými stavmi operátora Ŝz,42 £iºe energie sú degenerované.
(Na kaºdú hodnotu E pripadajú dva stavy £astice aj anti£astice.) V laboratórnej sústave (~p 6= 0)
v²ak vo v²eobecnosti tieto bázové rie²enia DIR nie sú vlastnými stavmi Ŝz, s výnimkou prípadu
~p = (0, 0, pz), ke¤ ich spinorové £asti nadobúdajú tvar43

u
(1)
~k

=


√
ω̃~k + m̃

0
kz√
ω̃~k+m̃

0

 u
(2)
~k

=


0√

ω̃~k + m̃
0
−kz√
ω̃~k+m̃

 v
(1)
~k

=


kz√
ω̃~k+m̃

0√
ω̃~k + m̃

0

 v
(2)
~k

=


0
−kz√
ω̃~k+m̃

0√
ω̃~k + m̃


Stojí za zmienku, ºe ak uváºime relativistické vz´ahy E = γmc2, pj = γmvj , γ =

(
1− v2

c2

)−1/2

,
závislos´ týchto bispinorov od E, ~p aj m sa redukuje na výlu£nú závislos´ od ~v.

V ultrarelativistickej limite v → c, £iºe pre m→ 0, platí E ∼= pc, a DIR (v hmotnostnej báze) prejde
na alternatívne rovnice (s pôvodným smerom ~p)

ξs =
~σ · ~p
E
c

χs =
~σ · ~p
|~p |

χs = ~σ · ~p oχs (E > 0) χs =
~σ · ~p
E
c

ξs =
~σ · ~p
|~p |

ξs = ~σ · ~p oξs (E < 0)

Návratom do chirálnej bázy (vhodnej²ej pre ultrarelativistické prípady), χL = χs−ξs√
2
, ξR = χs+ξs√

2
,

dostávame (s£ítaním/od£ítaním uvedených rovníc) samostatné rovnice pre chirálne komponenty
bispinora, ako varianty Weylových rovníc z kap III.2.2

~σ · ~p oξR = +ξR ~σ · ~p oχL = −χL ⇒ ~σ · ~p o → ±1

£o sa dá (semiklasicky) interpretova´ ako �nato£enie spinu� do/proti smeru
pohybu. Ak by sme spin klasicky asociovali s rotujúcim diskom, potom pri
transla£nej rýchlosti disku blíºiacej sa k c dochádza v laboratórnej sústave
k natá£aniu roviny disku v dôsledku relativistickej kontrakcie d¨ºky v smere
translácie (obr.). V pokojovej sústave (pre v < c) disku sa smer spinu nemení.

42Pracujeme v obvyklej spinorovej báze s diagonálnym operátorom Ŝz.
43Aplikovaním operátora Ŝz sa tieto stavy nemenia. Pripomíname, ºe výrazy pre v(1,2)

~k
platia pre E > 0 a obrátený

smer ~p.
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Priemet spinu do smeru pohybu ~σ · ~p o sa nazýva helicita, jej bispinorový operátor de�nujeme ako44

ĥ =
~̂S · ~̂p o

~
=

1

2

(
~σ · ~̂p o 0

0 ~σ · ~̂p o

)
~̂p o =

~̂p

|~p |

a jeho vlastné hodnoty sú ±1
2
. Aj v hmotnostnej reprezentácii pôsobí samostatne na hornú a dolnú

£as´ bispinora

ĥχs = ±1

2
χs ĥξs = ∓1

2
ξs s = 1, 2

Objekty s helicitou +1
2
/− 1

2
nazývame pravo/©avoruké.45

Aplikovaním na rie²enia DIR z kap. III.2.3 vieme ukáza´, ºe operátory ~̂p, ĥ a Ĥ (pre vo©nú £asticu)
navzájom komutujú46

[ĥ, p̂j] = [ĥ, Ĥ] = [p̂j, Ĥ] = 0

Helicita teda reprezentuje veli£inu zachovávajúcu sa v £ase.47 Nie je v²ak lorentzovským invariantom
- pre pozorovate©a predbiehajúceho daný hmotný objekt sa tento objekt pohybuje opa£ným smerom
(s opa£nou hybnos´ou) - helicita mení znamienko. Naproti tomu chiralita sa zachováva pri lorent-
zovskej transformácii (je ¬ou de�novaná), ale pre hmotné objekty sa mení v £ase (osciluje - kap.
III.2.2).

Nehmotné objekty,m = 0, E = |~p |c, sa pohybujú rýchlos´ou c a nemoºno ich predbehnú´ - ich helicita
je lorentzovským invariantom. Na druhej strane, nulová je aj frekvencia oscilácií chirality - chiralita
sa zachováva v £ase. Pre m = 0 teda chiralita a helicita fyzikálne splývajú (aº na znamienko).48

III.2.5 P- a T-symetria.

Preskúmajme kovariantnos´ DIR vzh©adom na transformáciu parity xµ →
P
x′µ, £iºe ~r →

P
~r ′ = −~r, kde

P = diag[1,−1,−1,−1]. Okrem zrkadlenia súradníc sa transformuje aj vnútorná ²truktúra spinora,
teda

ψP(x′µ) = Psψ(xµ) = Psψ(P−1x′µ) ψ(xµ) = P−1
s ψP(x′µ)

S uváºením ∂µ = ∂µ′P prepí²me DIR, vynásobenú Ps z©ava, ako

0 = Ps[iγµ∂µ − m̃]ψ(xµ) = [iPsγµ∂µ′PP−1
s − m̃]ψP(x′µ)

Symetria DIR vzh©adom na zmenu parity - tzv. P-symetria - vyºaduje PsγµPP−1
s = γµ. Tejto

podmienke na základe vlastností γ-matíc vyhovuje Ps = γ0, £iºe

ψP(x′µ) = γ0ψ(xµ) ψ̄P(x′µ) = ψ†(xµ)

ψ̄P(x′µ)ψP(x′µ) = ψ̄(xµ)ψ(xµ) (lorentz. skalár) ψ̄P(x′µ)γνψP(x′µ) = Pψ̄(xµ)γνψ(xµ) (4-vektor)

44Helicita je skalárom na fyzickom priestore, na bispinorovom priestore pôsobí ako matica 4 × 4. De�novali sme
ju uº v kap. II.4.4, kde bol spin reprezentovaný maticami 2 × 2. V celej kapitole o grupách sme pritom kládli pre
jednoduchos´ ~ = 1, v zvy²nom texte v²ak ~ explicitne uvádzame.

45Kvôli rozlí²eniu sa v tomto texte chirálna ©avo/pravorukos´ vºdy vyskytuje s prívlastkom chirálna, kým
©avo/pravorukos´ bez prívlastku znamená helicitu.

46Dôsledkom komutatívnosti operátorov Ĥ a ĥ je dvojnásobná degenerácia rie²ení DIR - kaºdej hodnote energie
odpovedajú dve rie²enia s rôznymi helicitami.

47Samotný spin sa pritom vo v²eobecnosti nezachováva v £ase, jeho priemet do smeru pohybu v²ak áno.
48Chirálne komponenty nehmotného bispinora (²íriace sa rovnakým smerom) reprezentujú dve nezávislé nehmotné

£astice opa£nej helicity aj chirality.
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Aplikovaním operátora parity spinora na bázové bispinory u
(s)
~k
, v

(s)
~k

v ich pokojovej sústave v hmot-
nostnej reprezentácii (v ktorej γ0 = diag(1, 1,−1,−1)), dostávame

γ0ψ1(t) = γ0


√

2m̃
0
0
0

 e−icm̃t = (+1)ψ1(t) γ0ψ2(t) = γ0


0√
2m̃
0
0

 e−icm̃t = (+1)ψ2(t)

γ0ψ3(t) = γ0


0
0√
2m̃
0

 eicm̃t = (−1)ψ3(t) γ0ψ4(t) = γ0


0
0
0√
2m̃

 eicm̃t = (−1)ψ4(t)

Parita49 (vlastná hodnota operátora) je teda +1 pre Diracove £astice a -1 pre anti£astice.

Vo v²eobecnosti, teda ak ~p 6= 0, môºeme napr. pre E > 0 transformáciu parity vyjadri´ ako

γ0ψs(t, ~r)
s=1,2

=

(
1 0
0 −1

)
u

(s)
~k
e−i(Et−~p·~r)/~ = u

(s)

−~k
e−i(Et+(−~p)·~r)/~

Transformácia parity teda pochopite©ne mení hybnos´. Nemení v²ak spin, a teda mení helicitu £astice.
To isté platí aj pre anti£astice.

Analogicky preskúmame kovariantnos´ DIR vzh©adom na oto£enie £asu, xµ →
T
x′µ £iºe t→

T
−t, kde

T = diag[−1, 1, 1, 1]. Popri zrkadlení £asu predpokladajme transformáciu spinora50

ψT (x′µ) = Tsψ∗(xµ) = Tsψ∗(T −1x′µ) ψ∗(xµ) = T −1
s ψT (x′µ)

S uváºením ∂µ = ∂µ′T prepí²me komplexne zdruºenú DIR, vynásobenú Ts z©ava, ako

[−iTs(γµ)∗∂µ′T T −1
s − m̃]ψT (x′µ) = 0

Symetria DIR vzh©adom na oto£enie £asu - tzv. T-symetria - vyºaduje Ts(γµ)∗T T −1
s = −γµ. Tejto

podmienke na základe vlastností γ-matíc vyhovuje Ts = iγ1γ3, £iºe

ψT (x′µ) = iγ1γ3ψ∗(xµ)

Oto£enie £asu mení hybnos´ aj spin £astice, nemení preto jej helicitu.

III.2.6 C-symetria.

Pod©a Dodatku I sa chiralita Weylovho spinora dá meni´ komplexným konjugovaním a pomocou
spinorovej metriky ε

χL → εχ∗L = χR χR → ε−1χ∗R = χL ε = −ε−1 =

(
0 1
−1 0

)
= iσ2 a, b = 1, 2

Túto transformáciu nazývame nábojovým zdruºením51 (hoci výstiºnej²ie je hovori´ o nábojovej
inverzii.) H©adajme obdobnú transformáciu celého Diracovho (bi)spinora, ψ →

C
ψC = Cψ∗, ktorá

bude symetriou DIR (zachová jej kovariantný tvar) - tzv. C-symetriou,

(iγµ∂µ − m̃)ψC = 0

49Hovoríme o tzv. intrinzickej parite.
50Transformácia T je antiunitárna (kap. I.2.5), preto ju aplikujeme na komplexne zdruºený spinor.
51angl. charge conjugation
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Komplexne zdruºenú DIR pre ψ∗ = C−1ψC, vynásobenú C z©ava, môºeme zapísa´ v tvare

−iC(γµ)∗C−1∂µψC = m̃ψC

a porovnaním s predchádzajúcou rovnicou dostávame C(γµ)∗C−1 = −γµ, £iºe Cγµ = −γµC pre
µ = 0, 1, 3, ale Cγ2 = γ2C. Týmto podmienkam vyhovuje C = iγ2,

ψC = iγ2ψ∗ = iγ2γ0(γ0ψ∗) = iγ2γ0ψ̄T

Vplyv nábojovej inverzie preskúmame na prípade rie²enia DIR ψ1(xµ) = u
(1)
~k
e−ikµx

µ
z kap. III.2.3,

teda £astice s E > 0, h > 0 (v hmotnostnej báze)

ψ1
C(x

µ) =

(
0 iσ2

−iσ2 0

)
︸ ︷︷ ︸

iγ2



√

2m̃
0
kz√
2m̃

kx+iky√
2m̃

 e−ikµx
µ


∗

︸ ︷︷ ︸
ψ1∗(xµ)

= ... =


kx−iky√

2m̃
−kz√

2m̃

0√
2m̃

 eikµx
µ

£o je anti£asticové rie²enie ψ4(xµ) = v
(2)
~k
eikµx

µ
s E > 0, opa£nou hybnos´ou a preklopeným spinom,

£iºe s nezmenenou helicitou h > 0 (kap. III.2.4). Nábojová inverzia mení £asticu na anti£asticu
s nezmenenou helicitou.

C-symetria v kombinácii s P- a T-symetriou (nezávislo na poradí) vytvára fyzikálne ekvivalentný
svet anti£astíc ako zrkadlový obraz sveta £astíc. Viac o týchto symetriách si povieme v £asti IV
o interakciách.

III.2.7 Majoranove spinory.

Osobitnú pozornos´, popri Weylovej a Diracovej reprezentácii, si zasluhuje ¤al²ia moºná - tzv. Ma-
joranova reprezentácia, v ktorej γ-matice (sp¨¬ajúc {γµ, γν} = 2ηµν) majú tvar

γ0 =

(
0 σ2

σ2 0

)
γ1 =

(
iσ3 0
0 iσ3

)
γ2 =

(
0 −σ2

σ2 0

)
γ3 =

(
−iσ1 0

0 −iσ1

)
V²etky tieto matice sú rýdzo imaginárne, a teda rie²enia DIR (obsahujúcej iγµ) v tejto reprezentácii
môºu by´ £isto reálne, ψ∗ = ψ. Poºiadavka reálnosti bispinora v²ak vedie na redukovanie stup¬ov
vo©nosti na polovicu. Vo Weylovej báze to znamená, ºe chirálne komponenty bispinora nesmú by´
nezávislé. Tomu odpovedajú bispinory v tvare

ψ(M) =

(
χL
χR

)
- tzv. Majoranove (bi)spinory, tvorené Weylovými spinormi lí²iacimi sa len chiralitou. Nábojovo
invertovaný bispinor - anti£astica (kap. III.2.6) bude

ψ
(M)
C = iγ2ψ∗(M) =

(
0 −iσ2

iσ2 0

)(
χ∗L
χ∗R

)
=

(
−iσ2χ

∗
R

iσ2χ
∗
L

)
=

(
χL
χR

)
= ψ(M)

£o je pôvodný bispinor.52 Majoranov (bi)spinor je sám sebe anti£asticou, £iºe má nulový náboj.
Lagrangián v chirálnej báze (pozri kap. III.2.2) moºeme zapísa´ tieº pre ψ(M) s vyuºitím χR = iσ2χ

∗
L

výlu£ne pomocou χL, a jeho hmotnostný £len nadobudne tvar

m̃[χ†LχR + χ†RχL] = m̃[χ†Liσ2χ
∗
L + (iσ2χ

∗
L)†χL]

52V záujme jasnosti postupu dôsledne pí²eme χ∗L,R, hoci χ
∗
L,R = χL,R.
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Transformácia ψ(M) → ψ(M)e−iθ (ktorá je pre Diracov lagrangián U(1)-symetriou) vedie potom na
výraz

m̃[χ†Liσ2χ
∗
Le

i2θ − iσ2(χ∗L)†χLe
−i2θ]

ktorý závisí od θ - symetria spojená so zachovávajúcim sa nábojom absentuje, £o je výsledok o£aká-
vaný pre reálne pole.

Podmienka χR = iσ2χ
∗
L tieº vylu£uje, aby ψ(M) bol nehmotným (Weylovým) spinorom s (jedinou)

�xnou chiralitou. Majoranov (bi)spinor teda opisuje hmotnú £asticu/anti£asticu s nulovým nábo-
jom.53

III.2.8 Kvantovanie spinorového po©a.

Kvantovaním spinorového po©a sa koe�cienty bs(~k), c∗s(
~k) vo v²eobecnom rie²ení DIR z kap. III.2.2

stávajú operátormi,

ψ̂(xµ) =
2∑
s=1

∫
1

(2π)3
√

2ω̃~k

(
b̂s(~k)u

(s)
~k
e−ikµx

µ

+ ĉ†s(
~k)v

(s)
~k
eikµx

µ
)
d3k

a rovnako pre hermitovsky zdruºené pole

ˆ̄ψ(xµ) = ψ̂†(xµ)γ0 =
2∑
s=1

∫
1

(2π)3
√

2ω̃~k

(
b̂†s(
~k)ū

(s)
~k
eikµx

µ

+ ĉs(~k)v̄
(s)
~k
e−ikµx

µ
)
d3k

kde ū(s)
~k

= u†
(s)
~k
γ0, v̄(s)

~k
= v†

(s)
~k
γ0. Operátory b̂†s(~k), b̂s(~k), resp. ĉ†s(~k), ĉs(~k) identi�kujeme ako kre-

a£né/anihila£né operátory £astíc resp. anti£astíc (s kladnou energiou) v hybnostnom stave ~k a spi-
novom stave s. Pár £astica-anti£astica teda kreujeme operátorom b̂†s(

~k)ĉ†s(
~k), a operátory polí ψ̂, ˆ̄ψ

opä´ nie sú jedno£asticovými operátormi (jednu z páru kreujú a druhú anihilujú).

Podstatou kánonického kvantovania je de�novanie (£iºe �uhádnutie�) správnych komuta£ných vz´a-
hov medzi operátormi polí a kánonických hybností, alebo ekvivalentne medzi krea£nými a anihila£-
nými operátormi. Komutátory z kap. I.3.7 plne vyhovujú skalárnym poliam (kap. III.1.3), sú v²ak
neuspokojivé pre viackomponentné polia - potrebujeme nájs´ komuta£né vz´ahy medzi jednotlivými
komponentami (bi)spinorových operátorov. Kritériom správnosti je pritom fyzikálna konzistentnos´
teórie, re²pektujúca lorentzovskú kovariantnos´ a princíp kauzálnosti.

Za£nime hamiltoniánom Diracovho po©a (kap. I.3.2, III.2.1),

H =

∫
(π∂tψ − L)d3x = ... = ~c

∫
ψ̄(−iγj∂j + m̃)ψ d3x =

DIR
~
∫
iψ̄γ0∂tψ d

3x

(π = ∂L
∂(∂tψ)

= i~ψ̄γ0), ktorý prechodom k operátorom nadobudne tvar (Dodatok N)

Ĥ =
2∑
s=1

∫ ~ω~k
(2π)3

[
b̂†s(
~k)b̂s(~k)− ĉs(~k)ĉ†s(

~k)
]
d3k

Ak by sme predpokladali rovnaké (nenulové) komuta£né vz´ahy pre krea£né/anihila£né operátory
ako pre komplexné skalárne polia, £iºe

[b̂s(~k), b̂†s′(
~k ′)] = [ĉs(~k), ĉ†s′(

~k ′)] = (2π)3δss′δ(~k − ~k ′)
53V £ase písania tohto textu sú pravdepodobnými kandidátmi na Majoranove spinory neutrína, ktorých oscilácie

nazna£ujú istú nenulovú hmotnos´.
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Diracov hamiltonián by bol

Ĥ =
2∑
s=1

∫ ~ω~k
(2π)3

[
b̂†s(
~k)b̂s(~k)− ĉ†s(~k)ĉs(~k)−����

�XXXXX(2π)3δ(0)
]
d3k →

2∑
s=1

∫ ~ω~k
(2π)3

[
N̂b,s(~k)− N̂c,s(~k)

]
d3k

£o je nefyzikálny výsledok, lebo energia po©a by s rastúcim po£tom anti£astíc Nc,s(~k) narastala do
záporných hodnôt, a teda pole by bolo nestabilné vo£i ich tvorbe. Pre Diracove polia preto komuta£né
vz´ahy nahrádzame vz´ahmi s antikomutátormi {X̂, Ŷ } = X̂Ŷ + Ŷ X̂,

{b̂s(~k), b̂†s′(
~k ′)} = {ĉs(~k), ĉ†s′(

~k ′)} = (2π)3δss′δ(~k − ~k ′)

{b̂s(~k), b̂s′(~k
′)} = {b̂†s(~k), b̂†s′(

~k ′)} = {ĉs(~k), ĉs′(~k
′)} = {ĉ†s(~k), ĉ†s′(

~k ′)} = 0

a nulové sú aj zmie²ané antikomutátory typu {b̂s(~k), ĉs′(~k
′)} a pod. Pomocou antikomuta£ných

vz´ahov dostávame správny hamiltonián

Ĥ =
2∑
s=1

∫ ~ω~k
(2π)3

[
b̂†s(
~k)b̂s(~k) + ĉ†s(

~k)ĉs(~k)−����
�XXXXX(2π)3δ(0)
]
d3k →

2∑
s=1

∫ ~ω~k
(2π)3

[
N̂b,s(~k) + N̂c,s(~k)

]
d3k

s kladnými energiami £astíc aj anti£astíc. Za pov²imnutie tieº stojí, ºe energia diracovského vákua
(ktorú ignorujeme, aº na moºný gravita£ný ú£inok) je záporná.

Z uvedených antikomuta£ných vz´ahov sa dajú odvodi´ (Dodatok O) rovnako antikomuta£né vz´ahy
aj pre operátory jednotlivých zloºiek bispinorových polí v rovnakom £ase

{ψ̂a(~r, t), ψ̂b(~r ′, t)} = {ψ̂†a(~r, t), ψ̂
†
b(~r
′, t)} = 0 a, b = 1, 2, 3, 4

{π̂a(~r, t), ψ̂b(~r ′, t)} = i~{ψ̂†a(~r, t), ψ̂b(~r ′, t)} = i~δabδ(~r − ~r ′)
Pri platnosti týchto vz´ahov je, rovnako ako v prípade komplexného skalárneho po©a (kap. III.1.5),
zachovávajúci sa noetherovský náboj (v¤aka U(1)-symetrii lagrangiánu) daný rozdielom po£tu £astíc
a anti£astíc.

Antikomutátory typu {b̂†s(~k), b̂†s(
~k)} = 0 tieº prirodzene vedú na b̂†s(

~k)b̂†s(
~k) = 0 , £o pri aplikovaní na

vákuum dá neexistenciu dvoj £asticového stavu |~k, s〉 - Pauliho vylu£ovací princíp

b̂†s(
~k)b̂†s(

~k)|0〉 = ĉ†s(
~k)ĉ†s(

~k)|0〉 = 0

Znamená to, ºe (na rozdiel od skalárneho po©a) vlastné hodnoty operátorov N̂s(~k) môºu by´ len 0
resp. 1 (pozri aj Dodatok E). Pre stavy dvoch £astíc s rôznymi hybnos´ami zas platí

|~k,~k′〉 = b̂†s(
~k)b̂†s(

~k′)|0〉 |~k′, ~k〉 = b̂†s(
~k′)b̂†s(

~k)|0〉

Ke¤ºe v²ak b̂†s(
~k)b̂†s(

~k′) = −b̂†s(~k′)b̂†s(~k), musí plati´

|~k,~k′〉 = −|~k′, ~k〉
£iºe vzájomná zámena dvoch Diracových £astíc je antisymetrická.

Nulový antikomutátor operátorov Diracovho po©a na dvoch rôznych miestach v tom istom £ase, teda
pre priestoru podobnú vzdialenos´, v²ak znamená ich nenulový komutátor,

{ψ̂a(~r, t), ψ̂b(~r ′, t)} = 0 ⇒ [ψ̂a(~r, t), ψ̂b(~r
′, t)] = 2ψ̂a(~r, t)ψ̂b(~r

′, t) 6= 0

Pritom ak majú by´ dve rôzne udalosti fyzikálne pozorovate©né (£iºe kauzálne), na priestoru-podobných
vzdialenostiach musia komutova´ (nesmie medzi nimi by´ prí£inná súvislos´ - nemôºu sa navzájom
ovplyv¬ova´). Uvedený výsledok teda nazna£uje, ºe samotné Diracovo ψ(~r, t) nie je pozorovate©né.54

Pozorovate©nými sú len jeho prejavy reprezentované operátormi tvorenými sú£inom párneho po£tu
operátorov ψ̂(~r, t) (ako napr. hamiltonián £i operátor hybnosti).

54Nejde o ºiadne prekvapenie, ve¤ objekty, ktorých rota£nou symetriou je oto£enie aº o 2×360◦, v Prírode naozaj
nepozorujeme.
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III.2.9 Nerelativistická limita v elektromagnetickom poli.

Rovnako ako v prípade KGR (kap. III.1.7), aj v DIR sa v elektromagnetickom poli nahrádza
i~∂µ → i~∂µ − qAµ, a jej schrödingerovský tvar prejde na

i~∂tψ(xµ) =
(
c ~̂α · (−i~∇− q ~A) + qϕ+ β̂mc2

)
ψ(xµ) ψ(xµ) =

(
χ(xµ)
ξ(xµ)

)
Nerelativistické priblíºenie, so substitúciou ~̂π = (−i~∇−q ~A), a s rovnakými podmienkami ako v kap.
III.1.7 (v²etky energie zanedbate©né vo£i E0 = mc2), v hmotnostnej báze dá

i~∂tχ = c ~σ · ~̂πξ + qϕχ+ E0χ

i~∂tξ = c ~σ · ~̂πχ+ qϕξ − E0ξ

Pre 0 < E ∼= E0 opä´ kladieme

χ(~r, t) ∼= e−iE0t/~Ψ(~r, t) ξ(~r, t) ∼= e−iE0t/~Θ(~r, t)

∣∣∣∣i~∂tΨΨ

∣∣∣∣ , ∣∣∣∣i~∂tΘΘ

∣∣∣∣ , qϕ� E0

a dostaneme
i~∂tΨ = c ~σ · ~̂πΘ + qϕΨ

��
��i~∂tΘ = c ~σ · ~̂πΨ +��

�qϕΘ− 2E0Θ

a odtia©

Θ ∼=
~σ · ~̂π
2mc

Ψ i~∂tΨ =

(
~σ · ~̂π

)2

2m
Ψ + qϕΨ

Komponenta Θ sa teda ukazuje by´ nepodstatne malou (ve©ký menovate©), a môºeme ju ignoro-
va´. Táto £as´ (bi)spinoru reprezentuje stupne vo©nosti, ktoré asociujeme s anti£asticu, a ktoré sa
v nerelativistickej limite strácajú.55 Zd¨havej²ími úpravami dostávame(

~σ · ~̂π
)2

= ~̂π2 + i~σ · [~̂π × ~̂π] [~̂π × ~̂π]j = εjkl[π̂k, π̂l] = ... = iq(∇× ~A)jεjkl = iqBjεjkl

kde ~B = ∇× ~A je magnetické pole. Nerelativistická DIR teda prejde na tzv. Pauliho rovnicu pre
dvojkomponentný spinor

i~∂tΨ(~r, t) ∼=


(
−i~∇− q ~A(~r, t)

)2

2m
− q~

2m
~σ · ~B(~r, t) + qϕ(~r, t)

Ψ(~r, t)

£o je SCHR (pre spinor) roz²írená o interak£nú energiu spinu (presnej²ie spinového magnetického
momentu) s magnetickým po©om ~B.56

55Pochopite©ne, daný stupe¬ vo©nosti bu¤ existuje alebo neexistuje - nemôºe zaniknú´ limitne. Tento záver treba
chápa´ v zmysle pravdepodobnosti detekcie anti£astice, a tá v nerelativistickej limite naozaj spojite zaniká.

56Túto interakciu pozorujeme ako tzv. Zeemanov jav. Koe�cient 1
2 odli²uje spinový magnetický moment od orbitál-

neho.
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Dôleºité závery:

• Relativisticky kovariantnou pohybovou rovnicou (Diracovho) bispinorového po©a je DIR, a jej
rie²ením sú superpozície rovinných v¨n s vnútornou (bispinorovou) ²truktúrou. Kaºdá komponenta
bispinorového po©a (komplexný skalár) je pritom rie²ením KGR.

• Chiralita Diracových (bi)spinorov osciluje v £ase s frekvenciou úmernou ich hmotnosti (DIR mie²a
chirálne komponenty bispinora). V Prírode neexistujú hmotné spinory kon²tantnej chirality.

• Bispinory jednej kon²tantnej chirality (s nulovou polovicou bispinora v chirálnej báze) musia by´
nehmotné, a ²íria sa teda rýchlos´ou c. Pre takéto spinory prechádza DIR na Weylovu rovnicu pre
Weylov spinor danej chirality.

• V hmotnostnej (Diracovej, ²tandardnej) báze a v pokojovej sústave môºeme hornú/dolnú £as´
bispinora povaºova´ za £asticovú/anti£asticovú. V laboratórnej sústave, resp. v iných bázach takéto
delenie nemá zmysel. Anti£asticové rie²enia DIR so zápornou energiou transformujeme na rie²enia
s kladnou energiou, pohybujúce sa naspä´ v £ase.

• Helicita - orientácia spinu vo£i smeru pohybu - sa zachováva v £ase, lorentzovským invariantom je
v²ak len pre nehmotné £astice, kedy nahrádza pojem spin a splýva s chiralitou.

• DIR vykazuje diskrétne symetrie parity (priestorovej inverzie), £asovej inverzie a nábojového zdru-
ºenia (inverzie £astica-anti£astica). Vnútorná parita Diracových £astíc/anti£astíc je +1/− 1. Trans-
formácia parity mení hybnos´ a helicitu, nemení spin. �asová a nábojová inverzia menia hybnos´
a spin, nemenia helicitu.

• Rie²eniami DIR sú aj reálne hmotné Majoranove (bi)spinory oboch chiralít s nulovým nábojom.
Chirálne £asti takýchto bispinorov sú navzájom závislé.

• Pre zloºky operátorov spinorových polí platia kánonické antikomuta£né vz´ahy namiesto obvyklých
komuta£ných (£o súvisí s ich neobvyklým správaním pri rotáciách o 360◦), a dôsledkom je Pauliho
vylu£ovací princíp.

• V nerelativistickom priblíºení prejde DIR v elektromagnetickom poli na Pauliho rovnicu - SCHR
roz²írenú o interakciu spinu s magnetickým po©om. Anti£asticová £as´ rie²enia DIR, ako výsostne
relativistický fenomém, pritom zaniká.

III.3 Vektorové polia.

III.3.1 Procova rovnica.

Vektorové polia asociujeme s £asticami so spinom 1, teda lorentzovsky sa transformujúcimi vo vek-
torovej reprezentácii (1

2
, 0)⊗ (0, 1

2
) = (1

2
, 1

2
). Lagrangián pre reálne57 vektorové pole Aµ musí pozostá-

va´ z lorentzovsky invariantných skalárnych £lenov. Vhodnou vo©bou (v rámci vo©nosti v kon²trukcii

57Zov²eobecnenie na komplexné vektorové pole je analogické ako v prípade skalárneho po©a, a nebudeme sa ním
zaobera´.
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lagrangiánu) je58

L = −1

2

(
∂µAν∂µAν − ∂µAν∂νAµ − m̃2AµAµ

)
= ... = −1

4
F µνFµν +

m̃2

2
AµAµ

kde F µν = ∂µAν − ∂νAµ . Dosadením do ELR (Dodatok P) dostávame Procovu rovnicu59 (PCR)
pre jednotlivé zloºky ²tvorvektora Aµ

∂µ(∂µAν − ∂νAµ) + m̃2Aν = ∂µF
µν + m̃2Aν = 0

Prvý £len tradi£ne nazývame kinetickým a druhý hmotnostným. Tenzor F µν je antisymetrický, preto
musí plati´ ∂ν∂µF µν = 0.60 Aplikovaním ²tvordivergencie na PCR teda dostávame dodato£nú - tzv.
Lorenzovu podmienku

∂νA
ν = ∂0A0 − ∂jAj = 0

£o je rovnica kontinuity (zákon zachovania) po©a Aν , a znamená, ºe len tri zo ²tyroch jeho komponent
sú lineárne nezávislé - vnútorná ²truktúra tohto po©a teda obsahuje len tri stupne vo©nosti. Súvisí to
s tým, ºe kánonické hybnosti odpovedajúce zloºkám Aν sú

πν =
∂L

∂(∂tAν)
=

∂L
c ∂(∂0Aν)

=
1

2c

(
∂νA0 − ∂0Aν

)
a pre ν = 0 dostávame π0 = 0. Znamená to, ºe zloºka A0 nemá vlastnú dynamiku, a je teda fyzikálne
bezvýznamná.61

Podmienka ∂νAν = 0 tieº zjednodu²í PCR do tvaru62

∂µ(∂µAν − ∂νAµ) + m̃2Aν = ∂µ∂
µAν − ∂ν��

�HHH∂µA
µ + m̃2Aν = ∂µ∂

µAν + m̃2Aν = 0

£o odpovedá KGR pre kaºdú komponentu Aν (analogicky ako v prípade DIR). Znamená to, ºe
£asopriestorové rie²enia PCR môºeme rozloºi´ do superpozície rovinných v¨n s disperzným vz´ahom
kµk

µ = m̃2,

Aν(xµ) =
4∑

λ=1

∫
1

(2π)3
√

2ω̃~k

[
aλ(~k)τ ν(λ)e

−ikµxµ + a∗λ(
~k)τ ν(λ)e

ikµxµ
]
d3k

kde τ ν(λ) sú 4 ortogonálne bázové ²tvorvektory - tzv. polarizácie. Pre reálne pole je prirodzené
stotoºni´ smery polarizácie s ortogonálnymi bázovými smermi �ná²ho� fyzikálneho £asopriestoru.63

�ubovo©ný ²tvorvektor v jeho pokojovej sústave potom vieme vyjadri´ pomocou normovaných bázo-
vých ²tvorvektorov - lineárnych polarizácií64

τµ(0) =


i
0
0
0

 τµ(1) =


0
1
0
0

 τµ(2) =


0
0
1
0

 τµ(3) =


0
0
0
1

 τ(λ)µ
τµ(λ) = −1

λ = 0, 1, 2, 3

Aµ = A0τ
µ
(0) + A1τ

µ
(1) + A2τ

µ
(2) + A3τ

µ
(3)

58Iné £leny do druhého rádu v Aµ bu¤ nie sú lorentzovskými skalármi, alebo spadajú do vo©nosti v kon²truovaní
lagrangiánu a nemajú vplyv na pohybovú rovnicu. Rozmerový koe�cient kvôli preh©adnosti ignorujeme, a vo©ba
koe�cientov pri jednotlivých £lenoch odpovedá fyzikálne relevantným poliam.

59Autorom je Alexandru Proça.
60Matica ∂ν∂µ je symetrická, a jej kombinácia s antisymetrickou maticou Fµν je nulová.
61O£ividne je to dôsledok na²ej vo©by koe�cientov pri jednotlivých £lenoch lagrangiánu. Je to obdoba rie²ení DIR

(kap. III.2), ke¤ horná a dolná £as´ bispinora neboli nezávislé.
62Platí ∂µ∂ν = ∂ν∂µ.
63Nejde v²ak o samozrejmos´, zhoda vnútorného priestoru s fyzikálnym £asopriestorom je ²peci�kom reálnych vek-

torových polí.
64Imaginárna jednotka v prvom ²tvorvektore je vecou konvencie.
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Nezávislým vnútorným stup¬om vo©nosti odpovedajú v²ak len posledné tri polariza£né ²vorvektory

τµ(l)
l=1,2,3

= (0, ~τ(l)) ~τ(1) =

 1
0
0

 ~τ(2) =

 0
1
0

 ~τ(3) =

 0
0
1


Ke¤ºe £asopriestorové rie²enia pre kaºdú spektrálnu zloºku sú ∼ τµ(λ)e

∓ikµxµ , Lorenzova podmienka
∂µA

µ = 0 znamená
τµ(λ)kµ = 0

Význam tejto podmienky ilustrujme na excitácii po©a (rie²ení PCR) ²íriacej sa v smere osi z,
teda ~k = (0, 0, kz). Disperzný vz´ah kµk

µ = k2
0 − ~k · ~k = m̃2 vedie na k0 =

√
m̃2 + k2

z , £iºe
kµ = (

√
m̃2 + k2

z , 0, 0, kz). Podmienka τµ(λ)kµ = 0 teda zväzuje komponenty τµ(0) a τµ(3), kým zvy²né
komponenty ponecháva vo©né. Lineárnu polariza£nú bázu preto tvoria dva transverzálne (prie£ne
vo£i smeru ²írenia) ²tvorvektory τµ(1), τ

µ
(2), a navzájom závislé τµ(0), τ

µ
(3) nahrádzame jedinou polarizá-

ciou

τµ(L) =
1

m̃


kz
0
0√

m̃2 + k2
z


sp¨¬ajúcou podmienku τµ(L)kµ = 0

vyhovujúcou normovacej podmienke τ(L)µ
τµ(L) = −1

τµ(L) → τµ(3) v pokojovej sústave po©a ~k = (0, 0, 0)

Polarizácia τµ(L) je v laboratórnej sústave longitudinálna (pozd¨ºna) vo£i ²íreniu excitácie priesto-
rom. (Vo svojej pokojovej sústave sa v²ak excitácia �²íri� len v £ase, τµ(L) → τµ(3), a v tom zmysle je
teda tieº tieº kolmá na smer ²írenia.)

Ako alternatívu ku lineárnym polarizáciám by sme tieº mohli de�nova´ bázu (v pokojovej sústave)

τµ(l)
l=1,2,3

= (0, ~τ(l)) ~τ(1) =
1√
2

 1
i
0

 ~τ(2) =
1√
2

 1
−i
0

 ~τ(3) =

 0
0
1


kde nové vektory ~τ(1), ~τ(2) sú lineárnymi kombináciami 1√

2

(
~τ(1) ± i~τ(2)

)
odpovedajúcich vektorov

lineárnej bázy,65 a predstavujú navzájom opa£né kruhové polarizácie s helicitami ±1. Polarizácia
~τ(3) pozd¨º osi z má helicitu 0.

III.3.2 Nehmotné vektorové polia.

Osobitnú pozornos´ si zasluhuje prípad reálnych vektorových polí s nulovou hmotnos´ou, m̃ = 0, pre
ktoré sa PCR redukuje na

∂µ(∂µAν − ∂νAµ) = ∂µF
µν = 0

Odpovedajúcim lagrangiánom (zvoleným v rámci danej vo©nosti) je

L = −1

2
(∂µAν∂

µAν − ∂µAν∂νAµ) = −1

4
FµνF

µν

Aplikovanie ²tvordivergencie (tak ako sme to robili v kap. III.3.1) na túto PCR by ºiadnu novú infor-
máciu neprinieslo - Lorenzova podmienka ∂µAµ = 0 teda nevyplýva nevyhnutne z PCR nehmotného

65Tieto bázové stavy odpovedajú vlastným vektorom |j,mj〉 diagonálneho operátora Jz v 3D reprezentácii so(3)
z kap. II.2.4 s vlastnými hodnotami z-ového priemetu spinu mj = ±1, 0.
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po©a. PCR ju v²ak pripú²´a, a môºeme ju teda vyºadova´, £ím dostávame PCR v zjednodu²enom
tvare

∂µ∂
µAν = 0

ktorého rie²eniami sú rovinné vlny s disperzným vz´ahom kµk
µ = 0. Ak opä´ predpokladáme excitá-

ciu po©a s ~k = (0, 0, kz), potom disperzný vz´ah vedie na k0 = kz, £iºe kµ = (kz, 0, 0, kz). Pri uváºení
podmienky kµτ

µ
(λ) = 0 (vyplývajúcej z Lorenzovej podmienky) dostaneme popri transverzálnych

polarizáciách τµ(1), τ
µ
(2) longitudinálnu polarizáciu

τµ(L) =


1
0
0
1

 τ(L)µ
τµ(L) = 0 6= −1 (!)

ktorá o£ividne nie je normovate©ná.66 Za touto nezrovnalos´ou sa skrýva najdôleºitej²ia vlastnos´
nehmotných vektorových polí: Oproti hmotným vektorovým poliam tu existuje vo©nos´ v ich de�no-
vaní, v podobe tzv. kalibra£nej transformácie

Aν(xµ) → A′ν(xµ) = Aν(xµ) + ∂µΛ(xµ)

kde Λ(xν) je ©ubovo©ná �poslu²ná� skalárna funkcia. Pri takejto transformácii sa nemení lagrangián
ani F µν (Dodatok Q), a teda ani PCR a dynamika po©a Aµ - hovoríme o kalibra£nej symetrii
po©a, alebo o poli Aµ ako kalibra£nom poli.67 Rôzne kon�gurácie Aµ odpovedajú tej istej fyzi-
kálnej situácii (tvoria tzv. triedu ekvivalencie), £o v²ak znamená, ºe Aµ ako fyzikálna veli£ina je
nemerate©ná.

Zmenou (kalibra£nou transformáciou) kon�gurácie po©a, Aν(xµ) → A′ν(xµ), tak môºeme pri nezme-
nenej fyzikálnej situácii vºdy dosiahnú´ splnenie Lorenzovej podmienky pre A′ν(xµ),

∂µA
′µ = 0 ⇔ ∂µA

µ = −∂µ∂µΛ

(a tým zjednodu²enie PCR). Poºiadavku na splnenie Lorenzovej podmienky nazývame Lorenzovou
kalibráciou. Pre rie²enia PCR v tvare Aµ(xµ) ∼ τµ(λ)e

∓ikµxν potom platí68 Λ(xµ) ∼ ∓ i
kµ
e∓ikµx

µ
.

Problematickú longitudinálnu zloºku po©a (vzh©adom na smer ²írenia excitácie) Aµ(L) z predchádza-
júcej úvahy potom môºeme pomocou vhodne zvolenej skalárnej funkcie Λ(L) ∼ ∓ i

kz
e∓ikµx

µ
kalibra£ne

transformova´ na

A′µ(L) = Aµ(L) + ∂µΛ(L) ∼ τµ(L)e
∓ikµxν ∓ ∂µ

i

kz
e∓ikµx

µ

= τµ(L)e
∓ikµxν − kµ

kz
e∓ikµx

µ

=

=


1
0
0
1

 e∓ikµx
ν − 1

kz


kz
0
0
kz

 e∓ikµx
ν

=


0
0
0
0

 e∓ikµx
ν

= 0

£iºe pôvodná - a akáko©vek - longitudinálna zloºka nehmotného po©a je fyzikálne ekvivalentná triviál-
nej kon�gurácii Aµ(L) = 0. Znamená to, ºe vnútorná ²truktúra nehmotného vektorového po©a má len
dva stupne vo©nosti - transverzálne polarizácie.69 V kap. III.2.4 (pre spinorové polia) sme ukázali na
klasickej predstave rotujúceho disku, pohybujúceho sa relativistickou rýchlos´ou v, ºe v laboratórnej

66Vidíme tieº, ºe výraz pre τµ(L) z predchádzajúcej kap. III.3.1 má �problematickú� limitu m̃→ 0.
67Viac o kalibra£nej symetrii sa dozvieme v kapitole o kalibra£ných interakciách. Nateraz sta£í si uvedomi´, ºe takáto

symetria neexistuje pre m̃ 6= 0.
68Rie²enie pre Λ(xµ) pritom nemusíme zo známej kon�gurácie Aµ(xµ) h©ada´ - sta£í, ºe vieme, ºe existuje.
69Zjednodu²ene môºeme argumentova´, ºe nehmotná excitácia po©a (£astica) sa musí ²íri´ len rýchlos´ou c, a teda

v smere ²írenia toto pole nemôºe oscilova´.

96



sústave sa moment hybnosti (spin) disku natá£a do/proti smeru v. Tá istá úvaha sa (pochopite©ne)
vz´ahuje aj na vektorové polia. Pre nehmotné pole musí plati´ v = c, nato£enie spinu je teda úplné.
V kvantovom svete to znamená, ºe hoci pre spin 1 existujú tri priemety +1, 0,−1, pre nehmotné
vektorové pole priemet 0 neexistuje! �astice takéhoto po©a sú vlastnými stavmi operátora helicity70

s vlastnými hodnotami ±1, £o práve odpovedá dvom nezávislým stup¬om vo©nosti.71

Majme na pamäti, ºe Lorenzovou kalibráciou ne�xujeme pole Aµ(xµ) jednozna£ne - stále existuje
(nekone£ná) trieda ekvivalencie kon�gurácií po©a, zviazaných kalibra£nými transformáciami pomocou
skalárnych funkcií Λ(xµ) sp¨¬ajúcich podmienku ∂µ∂

µΛ = 0, lebo vtedy ∂µA
′µ = ∂µA

µ (= 0).

III.3.3 Elektromagnetické pole.

Nehmotným vektorovým po©om je aj elektromagnetické pole, reprezentované elektromagne-
tickým ²tvorpotenciálom Aµ = (A0, ~A) = (ϕ/c, ~A), a v PCR s m̃ = 0 spoznáme nehomogénne
Maxwellove rovnice (MXR) vo©ného po©a, t.j. bez prítomnosti zdrojov, jµ = 0 (kap. I.3.1). Jednot-
livé zloºky elektromagnetického po©a sú

Ej = −(∂t ~A)j − (∇ϕ)j = −c(∂0Aj + ∂jA0) = cF0j Bj = (∇× ~A)j = εjkl∂kAl = −1

2
εjklF

kl

a Fµν je antisymetrický elektromagnetický tenzor (ktorého kovariantný a kontravariantný zápis
sa lí²ia znamienkom v 0-tom riadku a st¨pci)

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

 F µν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0


Tak ako sa navzájom pohybujúci pozorovatelia nezhodnú na pohybe náboja, teda prúde, nezhodnú sa
ani na ve©kosti elektrického a magnetického po©a -mie²anie týchto polí pri lorentzovskej transformácii
je zoh©adnené v tenzore Fµν . (Odvodenie MXR s vektormi ~E, ~B je v Dodatku R.)

Lagrangián elektromagnetického po©a a kánonické hybnosti, príslu²né skalárnej a vektorovej £asti
²tvorpotenciálu, sú72

L =
ε0

2
( ~E2 − c2 ~B2) π0 =

∂L
∂Ȧ0

= 0 ~π =
∂L

∂ ~̇A
= −ε0

~E

Hamiltonián (jeho objemová hustota) je potom (pod©a o£akávania)

H = ~π · ~̇A− L = ... =
ε0

2
( ~E2 + c2 ~B2)

Z predchádzajúcich kapitol vieme, ºe Lorenzova podmienka/kalibrácia ∂µA
µ = 0 redukuje po£et

nezávislých vnútorných stup¬ov vo©nosti (polarizácií) zo 4 na 3, £iºe nehmotnému po©u stále pone-
cháva jeden prebyto£ný (nefyzikálny) stupe¬ vo©nosti.73 Moºnou dodato£nou kalibráciou, ktorá úplne

70Pre nehmotné £astice pojem helicita úplne nahrádza pojem spin v zmysle momentu hybnosti (v relativite de�-
novaný ako moment hybnosti v pokojovej sústave, ktorú nehmotný objekt nemá). Pojem spin (=1 pre vektory) v²ak
ostáva v zmysle de�novania reprezentácie.

71Nehmotné vektorové pole formálne nie je limitným prípadom hmotného po©a pre m̃→ 0. Zmena z troch nezávis-
lých stup¬ov vo©nosti na dva je skoková. V reálnom svete to v²ak predsa len znamená spojitý zánik pravdepodobnosti
generovania (emisie) vektorovej £astice s helicitou 0 v spojitej limite m̃→ 0.

72Rozmerovým koe�cientom pri lagrangiáne v kap. III.3.2, ktorý sme kvôli preh©adnosti ignorovali, je ε0c
2 (ε0 -

elektrická kon²tanta, £iºe permitivita vákua).
73O nehmotnom poli vieme, ºe má len 2 bázové polarizácie - lineárne alebo kruhové, ktoré odpovedajú helicitám ±1

nehmotných vektorových £astíc - v tomto prípade fotónov (pripome¬me aj kap. II.4.4 a III.2.4). Kalibra£ná transfor-
mácia elektromagnetického potenciálu nemení fyzikálne polia ~E, ~B, je len vyuºitím prebyto£ného stup¬a vo©nosti.
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odstra¬uje túto vo©nos´, je tzv. radia£ná, prie£na alebo Coulombova kalibrácia

∇ · ~A = 0 , A0 = 0

(vyhovujúca Lorenzovej kalibrácii). Podmienka ∇· ~A = 0 vedie na ~k ·~τ = 0, £iºe absenciu polarizácie
v smere ²írenia vlny. Skuto£ne, pre fotón pozd¨ºna polarizácia neexistuje. Majme v²ak na pamäti, ºe
táto kalibrácia nie je lorentzovsky kovariantná, ke¤ºe pri lorentzovských boostoch sa mie²ajú £asové
a priestorové súradnice.

V²eobecným rie²ením PCR/MXR pre vo©né reálne pole, ∂µ∂µAν = 0, je superpozícia rovinných v¨n
oboch polarizácií

Aµ(xµ) =
2∑

λ=1

∫
1

(2π)3
√

2ω̃~k

(
aλ(~k)τµ(λ)e

−ikµxµ + a∗λ(
~k)τµ(λ)e

ikµxµ
)
d3k

III.3.4 Kvantovanie vektorových polí.

Kánonickým kvantovaním prechádzajú fourierovské koe�cienty aλ(~k), a∗λ(
~k) vo v²eobecných rie²e-

niach PCR/MXR pre Aν(xµ) na anihila£né/krea£né operátory hybnostných stavov danej polarizá-
cie,74 a pre ich netriviálne komutátory platí

[âλ(~k), â†λ′(
~k′)] = (2π)3δλλ′δ(~k − ~k′)

(δλλ′ je δ-funkcia vzh©adom na smery polarizácie). Naivne by sme o£akávali, ºe dosadením do ko-
mutátorov operátorov prislúchajúcich Aν a πν = ∂L

∂(∂tAν)
dostaneme obvyklé kánonické komuta£né

vz´ahy pre v²etky zloºky ²tvorvektorov. Pre hmotné vektorové pole v²ak lorenzovská podmienka
∂µA

µ = 0 redukuje po£et nezávislých vnútorných stup¬ov vo©nosti (polarizácií) na tri. Inak pove-
dané, F00 = (∂0A0 − ∂0A0) = 0, £iºe lagrangián nezávisí od ∂0A

0, a teda π0 = ∂L
c ∂(∂0A0)

= 0. To
znamená, ºe A0 nie je fyzikálnou dynamickou premennou, ktorej prira¤ujeme operátor, a formálny
vz´ah

[Â0(t, ~r), π̂0(t, ~r ′)] = 0 6= i~δ(~r − ~r ′)

nemá fyzikálny zmysel. Kánonické komuta£né vz´ahy sa teda redukujú na

[Âj(t, ~r), π̂k(t, ~r
′)] = i~δjkδ(~r − ~r ′) j, k = 1, 2, 3

V prípade nehmotného po©a s dvoma nezávislými prie£nymi polarizácimi zas vieme ukáza´, ºe v cou-
lombovskej kalibrácii ∂jAj = 0 obe prie£ne komponenty po©a (nezávislo od smeru ²írenia vlny)
sp¨¬ajú rovnice75

A⊥j =

δjk − kjkk
klkl︸ ︷︷ ︸

Ak = PjkAk A⊥j kj = 0

74V prípade elektromagnetického po©a hovoríme o fotónoch danej hybnosti/energie. (�asto sa nekorektne hovorí
o fotónoch danej vlnovej d¨ºky/frekvencie, toto sú v²ak pojmy, ktoré v mikrosvete nemajú zmysel !)

75Výraz Pjk je tzv. projek£ný operátor, ktorý nuluje zloºky po©a paralelné s kj . Pre projekciu ©ubovo©ného
vektora ~v do smerov ‖ ~k a ⊥ ~k totiº platí

~v‖ =
(~v · ~k)~k

k2
vj‖ =

kjkk
k2

vk ~v⊥ = ~v − ~v‖ vj⊥ =

(
δjk −

kjkk
k2

)
vk
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a kánonické komuta£né vz´ahy pre prie£ne zloºky po©a majú tvar

[Â⊥j (t, ~r), π̂k(t, ~r
′)] = i~Pjkδ(~r − ~r ′)︸ ︷︷ ︸ = i~δ⊥jk(~r − ~r ′)

� � � � �

Dôleºité závery:

• Kaºdá zloºka vektorového po©a sp¨¬a KGR.

• Vnútornú ²truktúru hmotných vektorových polí tvoria tri nezávislé polarizácie. Z PCR vyplýva
Lorenzova podmienka/kalibrácia (ktorá zväzuje pôvodnú ²tvoricu stup¬ov vo©nosti).

• Vnútornú ²truktúru nehmotných vektorových polí tvoria dve nezávislé prie£ne polarizácie. Tretí
stupe¬ vo©nosti je prebyto£ný, a podlieha kalibra£nej vo©nosti. Lorenzova kalibrácia je tu len jednou
z moºností, a nevy£erpáva úplne kalibra£nú vo©nos´. Táto je vy£erpaná obvyklou prie£nou Coulom-
bovou kalibráciou.

• Elektromagnetické pole je nehmotným vektorovým po©om (s dvoma stup¬ami vo©nosti), reprezen-
tovaným ²tvorpotenciálom, resp. elektromagnetickým tenzorom. PCR pre nehmotné pole je ekviva-
lentná MXR pre vo©né pole bez zdrojov (nábojov a prúdov). Klasické MXR bez zdrojov predstavujú
väzby medzi klasickými (fyzikálnymi) zloºkami ~E, ~B, a redukujú po£et stup¬ov vo©nosti na dva.

• Kánonické komuta£né vz´ahy sú aplikovate©né len na fyzikálne stupne vo©nosti (polarizácie) - tri
pre hmotné vektorové polia a dva pre nehmotné.
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Interakcie

V predchádzajúcej £asti sme prostredníctvom pohybových rovníc a ich rie²ení opísali základné triedy
vo©ných (t.j. vzájomne neinteragujúcich) fundamentálnych polí. V tejto £asti postupne opí²eme (do-
teraz známe) fundamentálne interakcie medzi elementárnymi po©ami/£asticami, tvoriace kostru tzv.
²tandardného modelu, a vysvetlíme podstatu trojice fundamentálných síl - elektromagnetickej,
slabej a silnej.

Vychádzame zo základnej predstavy priestoru vyplneného po©ami (v klasickom chápaní), prislúcha-
júcimi jednotlivým druhom elementárnych £astíc, pri£om lokálne nenulové hodnoty týchto polí (v
podobe vlnových energetických excitácí) odpovedajú potenciálne merate©nej prítomnosti £astíc.1 In-
terakcia polí znamená energetickú výmenu medzi nimi - excitácie jedného po©a ovplyv¬ujú £i generujú
excitácie iného po©a. O existencii a sile vzájomných interakcií jednotlivých polí rozhodujú ich väz-
bové kon²tanty. V prípade spomínanej trojice silových interakcií tieto kon²tanty - náboje - sú ich
generátormi, a pri danej interakcii/transformácii sa zachovávajú.2 Energia excitácie jedného po©a sa
pritom môºe úplne �prelia´� do excitácie iného po©a (�£astice� pri interakciách vznikajú/zanikajú),
pri splnení v²etkých zákonov zachovania.

Pri interakciách £asto hovoríme aj o virtuálnych £asticiach (kap. III.1.6) - nemerate©ných mate-
matických kon²truktoch sprostredkujúcich interakcie merate©ných £astíc.3 (Napr. interakcia medzi
elektrónmi - �£asticami� toho istého po©a - je sprostredkovaná virtuálnymi �£asticami� elektromag-
netického po©a - fotónmi emitovanými a pohltenými interagujúcimi elektrónmi.) V na²om opise ne-
rozli²ujeme medzi �skuto£nými� a �virtuálnymi� £asticami, obmedzíme sa na opis interakcie polí (pri
kvantovom opise reprezentovaných operátormi), zastúpených v celkovom lagrangiáne.

IV.1 Mechanizmy interakcií polí.

IV.1.1 Interakcia po©a s poruchou.

Pohybovými rovnicami samostatných vo©ných fundamentálnych polí sú (vlnové) rovnice v homogén-
nom tvare

Dφ(xµ) = 0

1Pod pojmom £astica tu rozumieme produkt merania.
2Napr. generátorom elektromagnetickej interakcie (kap. IV.2) je elektrický náboj - elektromagnetické pole interaguje

len s elektricky nabitými po©ami/£asticami.
3Pomyselná doba ºivota virtuálnych £astíc sp¨¬a nerovnos´ ∆t∆E < ~ - sú preto nemerate©né. Vznikajú a zanikajú

po£as interakcie, nevstupujú do nej a ani z nej vystupujú.
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kde D je príslu²ný diferenciálny �predpis� (napr. pre KGR je D = ∂µ∂
µ + m̃2). V prítomnosti (v²e-

obecnej, nateraz bliº²ie ne²peci�kovanej) poruchy Γ(xµ) takéto interakcie opisujeme nehomogénnymi
rovnicami v tvare

DφΓ(xµ) = Γ(xµ)

Na rie²enie takýchto nehomogénnych rovníc pouºívame metódu Greenovej funkcie príslu²ného
po©a. Podstata tejto metódy je zhrnutá v Dodatku T, pri£om technickou stránkou rie²ení sa nebudeme
zaobera´.

Základnú my²lienku demon²trujme na príklade skalárneho po©a. Lagrangián4 interagujúceho skalár-
neho po©a obsahuje dodato£ný £len - interak£ný potenciál V (φ)

L =

(
1

2
∂µφ∂

µφ− m̃2

2
φ2

)
+ V (φ)

Dosadením tohto lagrangiánu do ELR dostávame modi�kovanú KGR

(∂µ∂
µ + m̃2)φ =

∂V (φ)

∂φ
= V ′(φ)

kde pravá strana predstavuje poruchu po©a. Najjednoduch²ej, priestorovo lokalizovanej stacionárnej
poruche v podobe Diracovej δ-funkcie, V ′ = δ(~r − ~r ′), odpovedá rie²enie5

φ(~r, ~r ′) =
e−m̃r

4πr
r = |~r − ~r ′|

známe ako Yukawov potenciál. Znamená to, ºe vplyv takejto lokalizovanej poruchy na vo©né pole
zaniká so vzdialenos´ou od poruchy, a to tým prud²ie, £ím �hmotnej²ie� je pole. Pre nehmotné pole
je dosah poruchy nekone£ný (pri splnení relativistických poºiadaviek).

Pre viaceré poruchy, V ′j , s partikulárnymi rie²eniami φj je výsledné pole v¤aka linearite pohybových
rovníc dané ich superpozíciou. �ubovo©nú (£aso)priestorovo rozloºenú poruchu môºeme �skompono-
va´� z δ-porúch (ich integrovaním). Vplyv takejto poruchy na kon�guráciu po©a v danom bode, φ(xµ),
je potom tieº daný (£aso)priestorovým integrovaním.

IV.1.2 Yukawova interakcia.

Ak dvojica polí navzájom interaguje, výsledný lagrangián musí okrem lagrangiánov jednotlivých vo©-
ných polí obsahova´ aj interak£ný £len.6 Uvaºujme prípad interakcie skalárneho a spinorového po©a.
Najjednoduch²í tvar v tomto prípade je tzv. Yukawov interak£ný £len7

L = Lscalar + Lspinor + Lint =

(
1

2
∂µφ∂

µφ−
m̃2
φ

2
φ2

)
︸ ︷︷ ︸+

(
iψ̄γµ∂µψ − m̃ψψ̄ψ

)︸ ︷︷ ︸+
︷ ︸︸ ︷
gψ̄φψ

4Kvôli preh©adnosti budeme v tejto a nasledujúcich kapitolách rozmerové koe�cienty lagrangiánov jednotlivých polí
spravidla vynecháva´. Výnimkou budú ²peci�cké prípady, £o bude o£ividné. Ide vºdy o kombinácie fundamentálnych
kon²tánt ~, c, ε0, ktorých hodnoty v teoretickej literatúre kladieme rovné 1.

5Výpo£et sa realizuje zloºitým integrovaním Greenovej funkcie KGR.
6V²etky £leny lagrangiánu musia by´ opä´ lorentzovskými skalármi.
7V²etky fundamentálne silové interakcie v rámci ²tandardného modelu sú sprostredkované kalibra£nými vektorovými

po©ami, ako uvidíme v ¤al²om texte. Yukawova interakcia sa z tejto schémy vymyká - zú£astnené polia interagujú
priamo. Kategorizácia tejto interakcie je teda otvorenou otázkou.
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kde g je koe�cient väzby týchto polí - do teórie vstupuje ako vonkaj²í parameter (treba ho ur£i´
experimentálne). Vplyv interak£ného £lenu na skalárne pole je ur£ený modi�kovanou KGR, získanou
dosadením lagrangiánu do ELR pre toto pole

(∂µ∂
µ + m̃2

φ)φ =
∂V (φ, ψ, ψ̄)

∂φ
= gψ̄ψ

(Lspin nezávisí od φ), pri£om porucha na pravej strane je skalár. Vplyv na spinorové pole je ur-
£ený modi�kovanou DIR (pre jednotlivé zloºky ²tvorkomponentného spinoru ψ), získanou obdobným
spôsobom

(i∂µγ
µ − m̃ψ)ψ = −∂V (φ, ψ, ψ̄)

∂ψ̄
= −gφψ

(V závisí od ψ, ψ̄, ale nie od ich derivácií), pri£om porucha na pravej strane je spinor.

Rie²ením týchto rovníc (metódou Greenových funkcií) by sa dalo analyzova´, ako táto interakcia
zmení jednotlivé vo©né polia. Tieto rovnice sú v²ak navzájom previazané (rie²enia ψ závisia od rie²ení
φ a naopak), £o robí tento problém vo v²eobecnosti analyticky nerie²ite©ným. Dekompozícia polí na ro-
vinné vlny s následným kvantovaním - prechodom fourierovských koe�cientov na krea£né/anihila£né
operátory (£astíc ako energetických kvánt týchto vlnových módov) tu nie je moºná kvôli interak£-
nému £lenu �mie²ajúcemu� interagujúce polia - krea£né/anihila£né operátory strácajú �príslu²nos´�
ku konkrétnemu po©u, a ich £asticová interpretácia sa stráca.

Východiskom sú poruchové metódy, predpokladajúce, ºe interakcia daného po©a s iným po©om je len
malou poruchou tohto po©a. O ve©kosti poruchy, a tým aj o �exaktnosti� výpo£tu aj jeho interpretá-
cie, rozhodujú práve väzbové kon²tanty týchto polí. Tento problém sa pritom netýka len Yukawovej
interakcie ale v²etkých druhov interakcií.

IV.1.3 Kalibra£ná interakcia.

Základné fyzikálne zákony musia by´ nezávislé na vo©be pozorovate©a. Táto nezávislos´ sa vz´ahuje
nielen na globálny posuv £i pooto£enie súradníc, ²kálovanie alebo globálnu vnútornú transformáciu
(transformáciu vnútorného priestoru polí), teda na globálnu zmenu kalibrácie v ²ir²om zmysle slova,
ale aj na transformácie lokálne (závislé od £asopriestorových súradníc).8 Lokálna kalibrácia v závis-
losti od polohy xν sa dá parametrizova´ tzv. konexiou - vektorovým kalibra£ným po©om Aµ(xν),
zoh©ad¬ujúcim a £asopriestorovo zväzujúcim lokálne rozdiely v kalibrácii (pri globálnej zmene platí
Aµ(xν) = 0). Nemusí pritom ís´ len o pasívne prepo£ítavanie mier,9 kalibra£né pole môºe zohráva´
aktívnu úlohu.10 Názorný príklad aktívneho kalibra£ného po©a z oblasti �nancií je v Dodatku S.

Dôleºitým je prípad vnútornej symetrie U(1) pri transformácii φ → eiθφ (kap. I.3.6, II.3.1). Ak
θ 6= θ(xµ), ide o globálnu symetriu, ktorou disponujú komplexné skalárne a spinorové polia z kap.
III.1.5 a III.2.1. Ak v²ak predpokladáme lokálnu transformáciu s θ = θ(xµ) (£iºe ak fázu θ lokálne
kalibrujeme), lagrangiány spomínaných polí invariantnos´ vo£i tejto transformácii stratia, ke¤ºe pole
a jeho derivácia sa transformujú odli²ne,

∂µφ(xµ)→ ∂µ
[
eiθ(x

µ)φ(xµ)
]

= eiθ(x
µ) [∂µφ(xµ) + iφ(xµ)∂µθ(x

µ)] 6= eiθ(x
µ)∂µφ(xµ)

Ke¤ºe derivácie polí vstupujú do ich pohybových rovníc, kalibra£ná vo©nos´ súvisiaca s danou vnú-
tornou symetriou (v tomto prípade U(1)) by viedla k fyzikálnym (t.j. merate©ným) dôsledkom, £o je
neprípustné.

8Zásadným spôsobom sa tým roz²iruje transforma£ná invariantnos´ základných zákonov.
9Takým je napr. prepo£ítavanie teploty medzi rôznymi lokálne zauºívanými stupnicami (◦C↔◦F a pod.).

10Pre ilustráciu si predstavme teplotné pole ako funkciu vý²ky nad terénom, pri£om samotný terén je zvlnený.
Porovnanie teplôt �meter nad zemou� medzi rôznymi miestami vyºaduje uváºi´ zmenu nadmorskej vý²ky terénu.
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Uvaºujme prípad spinorového po©a ψ: Problematickým je £len lagrangiánu obsahujúci ψ̄∂µψ. Zabez-
pe£i´ lokálnu invariantnos´ lagrangiánu - lokálnu symetriu - vzh©adom na transformácie ψ → eiθψ,
ψ̄ → e−iθψ̄ môºeme prede�novaním operátoru derivácie11 ∂µ do tvaru Dµ, ktorý sa transformuje
ako Dµψ → eiθ(x

µ)Dµψ . Správny tvar takejto tzv. kovariantnej derivácie nájdeme z nasledovnej
úvahy: Variáciu po©a ψ pri in�nitezimálnej £asopriestorovej zmene δxν vyjadríme prostredníctvom
príslu²nej konexie (vektorového po©a) Aµ(xν) ako

δψ(xν) = ψ(xν + δxν)− ψ(xν) = −iCdxµAµ(xν)ψ(xν)

kde C je rozmerová väzbová kon²tanta polí ψ a Aµ (opä´ vonkaj²í parameter, ktorý sa ur£uje
experimentálne). Potom de�nujeme kovariantnú deriváciu ako

Dµψ(xν) = [ ∂µ + iCAµ(xν)︸ ︷︷ ︸ ]ψ(xν)

Poºiadavka

Dµψ → D′µψ
′ = (eiθDµe

−iθ)(eiθψ)
!

= eiθDµψ ⇔ (∂µ + iCA′µ)eiθψ = eiθ(∂µ + iCAµ)ψ

(pod©a pravidiel unitárnych transformácií operátorov a stavov) je splnená len vtedy ak sa vektorové
pole transformuje ako

Aµ → A′µ = Aµ −
1

C
∂µθ(x

ν)

Pole Aµ(xν) majúce takúto lokálnu kalibra£nú vo©nos´ nazývame kalibra£ným. V kap. III.3.2 sme
videli, ºe touto vo©nos´ou disponujú nehmotné vektorové polia. Takým je aj elektromagnetické pole s
kalibra£nou transformáciou ²tvorpotenciálu Aµ = (ϕ/c,− ~A)

Aµ → A′µ = Aµ + ∂µΛ ϕ→ ϕ′ = ϕ+ ∂tΛ ~A→ ~A′ = ~A−∇Λ

Sú£as´ou takejto kalibra£nej transformácie je teda zmena fázy komplexného po©a ψ → eiθψ , pri£om
stotoºnenie skalárnej funkcie Λ(xν) so zmenou fázy θ(xν) tohto po©a vz´ahom θ = −CΛ fyzikálne
predstavuje väzbu12 medzi po©om ψ(xν) a kalibra£ným po©om Aµ(xν). Zmene globálnej symetrie
komplexného po©a na lokálnu hovoríme kalibrovanie symetrie. Pre elektromagnetické pole je väz-
bovou kon²tantou C = q

~ , kde q je elektrický náboj.13 Takáto lokálna U(1)-symetria látkového
po©a, spôsobená väzbou na kalibra£né pole, má aj merate©né dôsledky.14 Kovariantnú deriváciu, £iºe
zámenu

i~∂µ → i~Dµ = i~∂µ − qAµ

vyplývajúcu z tejto väzby, sme uº pouºili v kap. III.1.7 a III.2.9 (pre komplexné skalárne pole má
kovariantná derivácia rovnaký tvar), a nazýva sa minimálna väzba. Rozpísaním na zloºky dostá-
vame

i~∂t → i~∂t − qϕ − i~∂j → −i~∂j − q ~A

Prvý výraz znamená väzbu látkového po©a ψ na elektromagnetické v podobe potenciálnej energie
v hamiltoniáne, druhý výraz predstavuje kinematickú hybnos´ v prítomnosti elektromagnetického
po©a.15

11�tandardná de�nícia derivácie ∂µψ = limε→0[ψ(xν + ε)− ψ(xν)]/ε stráca rozumnú interpretáciu ak transformácia
ψ → eiθ(x

ν)ψ závisí od xν .
12�ahko sa presved£íme, ºe dosadením týchto transformácií sa pohybové rovnice skalárneho po©a (KGR alebo SCHR,

kap. III.1.7) v prítomnosti elektromagnetického po©a nezmenia.
13Toto je de�nícia a fyzikálny význam elektrického náboja. Hodnota väzbovej kon²tanty sa ur£uje experimentálne.
14Najznámej²ím dôsledkom je tzv. Aharonovov-Bohmov jav: Dvoj²trbinová interferencia elektricky nabitých £as-

tíc, závisiaca od fázového rozdielu interferujúcich (pravdepodobnostných) v¨n, je ovplyvnená elektromagnetickým vek-
torom ~A aj v prípade ~E = 0, ~B = 0.

15V prítomnosti elektromagnetického po©a operátor −i~∇ prira¤ujeme kánonickej hybnosti -sú£tu kinematickej,
teda mv-hybnosti, a tzv. elektromagnetickej hybnosti q ~A (Dodatok B).
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Z de�nície kovariantnej derivácie vyplýva tieº nasledovné: Ak uskuto£níme posunutie xj → xj + δxj
a naspä´ po tej istej dráhe, zmena po©a bude δψ = 0, t.j. príspevok konexie ∼ Ajδxj v opa£ných
smeroch sa pripo£ítava s opa£nými znamienkami. Ak sa v²ak vrátime do pôvodného bodu po inej
dráhe, napr. po obvode ²tvorca

(xj, xk)→ (xj + δxj, xk)→ (xj + δxj, xk + δxk)→ (xj, xk + δxk)→ (xj, xk)

celková zmena po©a bude

δψ ∼ Aj(xk)δxj + Ak(xj + δxj)δxk − Aj(xk + δxk)δxj − Ak(xj)δxk =

= δxjδxk

[
Ak(xj + δxj)− Ak(xj)

δxj
− Aj(xk + δxk)− Aj(xk)

δxk

]
= δxjδxk [∂jAk − ∂kAj]

Ozna£me (pridaním v²etkých £asopriestorových súradníc) pod©a kap. III.3.1

∂µAν(xµ)− ∂νAµ(xµ) = Fµν(xµ)

Ak Fµν(xµ) 6= 0, konexie s takouto �aktívnou� úlohou tvoria kalibra£né pole, ktoré uº nie je len �pasív-
nou kalibráciou� matematického opisu, ale fyzikálnym objektom s vlastnou dynamikou (£asovým vý-
vojom), aktívne ovplyv¬ujúcim dynamiku po©a ψ(xµ).16 Ak kalibra£ným po©om je elektromagnetické
pole, ovplyv¬ujúce dynamiku po©a ψ (jeho £astíc s nábojmi q), potom Fµν(xµ) je elektromagnetický
tenzor z kap. III.3.2.

Kalibra£nou interakciou nazývame interakciu kalibra£ného vektorového po©a Aµ(xν) s komplex-
ným skalárnym alebo spinorovým po©om. Lagrangián takejto interakcie obsahuje tieº lagrangiány
jednotlivých vo©ných polí, oproti yukawovskej interakcii (kap. IV.1.2) v²ak úlohu interak£ného £lena
s kalibra£ným po©om zohráva náhrada £asopriestorových derivácií skalárnych/spinorových polí ich ko-
variantnými deriváciami, obsahujúcimi príslu²ný náboj C ako väzbovú kon²tantu danej interakcie.17

Vo v²eobecnosti pre kovariantné derivácie vzh©adom na kalibra£né pole F µν platí

F µν =
i

C
[Dµ, Dν ]

Tenzor kalibra£ného po©a F µν je kalibra£ne invariantný, hoci samotné pole Aµ(xν) si kalibra£nú
vo©nos´ ponecháva. Podstatou kalibra£nej interakcie v²ak je, ºe táto vo©nos´ sa �naviaºe� na vo©nos´
fázy komplexného skalárneho/spinorového po©a, a vytvorí lokálne kalibra£ne invariantný lagrangián.
Tým sa eliminuje moºnos´ vplyvu �nefyzikálnych� prebyto£ných (kalibra£ných) stup¬ov vo©nosti na
�fyzikálne� (merate©né) vlastnosti systému.18 Sú£asná fyzika aj preto vníma lokálnu kalibra£nú
symetriu fundamentálnych interakcií, popri relativistickej Poincarého symetrii, ako principiálnu
poºiadavku. V nasledujúcich kapitolách postupne skalibrujeme globálne symetrie U(1), SU(2) a SU(3)
pomocou príslu²ných kalibra£ných �silových� polí a vytvoríme modely fundamentálnych silových
interakcií Prírody.

IV.1.4 Samointerakcia a spontánne naru²enie symetrie.

Fyzikálne dôleºitým je prípad, ke¤ poruchou komplexného skalárneho po©a φ je pole samotné, vy-
jadrené £lenom V (φ) ∼ φ4

16V geometrii je takáto �nedokonalos´ � konexií mierou krivosti (£aso)priestoru.
17Inými slovami, väzbový £len v kovariantnej derivácii skalárneho/spinorového po©a znamená, ºe toto pole nesie

ur£itý náboj.
18Dá sa to formulova´ aj tak, ºe poºiadavka lokálnej kalibra£nej symetrie si vynúti existenciu kalibra£ného po©a.
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L =
1

2

(
∂µφ∂

µφ∗ − m̃2φ2 − λφ4
)

pri£om λ > 0 (podmienka ohrani£enia energie zdola). Hustota potenciálnej
£asti hamiltoniánu takéhoto po©a je

Hp =
1

2

(
m̃2φ2 + λφ4

)
a je na obrázku, pri£om pre m̃2 > 0 (£o odpovedá reálnej hmotnosti £astice)
má tento potenciál jediné minimum pre φ = 0, teda v nulovom poli. Znamená
to, ºe základným stavom je vákuum - stav bez £astíc.

Ak v²ak pripustíme19 prípad m̃2 < 0, £iºe imaginárnej hmotnosti, dostávame minimá posunuté do

|φ| = φ0 =
√
−m̃2

2λ
. Základným stavom, t.j. stavom s najniº²ou energiou, bude teraz jeden z týchto

stavov.20 Kým lagrangián/hamiltonián systému je na¤alej U(1)-symetrický,21 systém si náhodne
zvolí asymetrický stav (s danou fázou) v jednom z ekvivalentných miním. Hovoríme o spontánnom
naru²ení symetrie.22 Skúmajme teda správanie po©a v okolí tohto základného stavu (t.j. excitácie
zo základného stavu), φ(xµ) = (φ0 + φ̃(xµ))eiθ(x

µ). Dosadením do pôvodného lagrangiánu dostávame

L =
1

2

(
∂µφ̃∂

µφ̃+ (φ0 + φ̃)2∂µθ∂
µθ − m̃2(φ0 + φ̃)2 − λ(φ0 + φ̃)4

)
= ...

... =
1

2

∂µφ̃∂µφ̃∗ + (φ0 + φ̃)2∂µθ∂
µθ︸ ︷︷ ︸

kinetická energia

− (−2m̃2)φ̃2︸ ︷︷ ︸
hmotnos´

− (4λφ0φ̃
3 + λφ̃4)︸ ︷︷ ︸

samointerakcia

+ kon²t.

£o reprezentuje reálne skalárne pole φ̃(xµ) excitácií s reálnou kladnou hmot-
nos´ou −m̃2 = d2Hp

dφ2

∣∣∣
φ=φ0

a reálne skalárne pole θ(xµ) excitácií s nulovou

hmotnos´ou (£len ∼ θ2 absentuje). Nehmotné excitácie θ pozd¨º rovnocen-
ných základných stavov (t.j. v smere s nulovou krivos´ou potenciálu) sa
nazývajú (Nambuove-)Goldstoneove bozóny, a sú sprievodným javom
spontánneho naru²enia globálnej symetrie. Hmotné radiálne excitácie φ̃ do
vy²²ích potenciálnych energií (obr.) budeme neskôr nazýva´ Higgsovými
bozónmi.

IV.1.5 Higgsov mechanizmus.

Skombinujme teraz poznatky predchádzajúcich dvoch kapitol. Predpokladajme kalibra£nú interakciu
nehmotného vektorového po©a Aν(xµ) s komplexným skalárnym po©om φ(xµ) (so samointerakciou) -
tzv. Higgsovým po©om. Celkový lagrangián má tvar

L =
1

2

(
(Dµφ)∗Dµφ− m̃2φ2 − λφ4

)
− 1

4
FµνF

µν

19Teórie obsahujúce tento mechanizmus predpokladajú teplotnú závislos´ parametra m̃2, pri£om zmena znamienka
nastane pri poklese teploty.

20Hovoríme o nenulovej strednej hodnote po©a. Hodnota φ0 bude jedným z fundamentálnych vonkaj²ích parametrov
v ¤al²ích modeloch.

21Symetria vzh©adom na pooto£enie fázy (násobenie jednotkovým komplexným £íslom) je U(1)-symetriou (kap.
II.3.1).

22Spontánnym naru²ením symetrie sa nemení po£et stup¬ov vo©nosti komplexného po©a.
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Lokálnu kalibra£nú symetriu lagrangiánu zaru£uje náhrada ∂µ → Dµ = ∂µ + iCAµ (£iºe väzba Higg-
sovho po©a na kalibra£né pole), t.j. lagrangián je kalibra£ne invariantný vzh©adom na transformácie

Aµ(xν)→ Aµ(xν)− 1

C
∂µθ(x

ν) φ(xν)→ eiθ(x
ν)φ(xν)

V prípade m̃2 > 0 má pole φ dva stupne vo©nosti (je komplexné), a pole Aµ rovnako dva transverzálne
stupne vo©nosti (je nehmotné, kap. III.3.2).

V prípade m̃2 < 0 dochádza k spontánnemu naru²eniu symetrie, a pole φ nadobúda nenulovú hodnotu

φ0 =
√
−m̃2

2λ
v základnom stave (vákuum). Excitácie v okolí vákua h©adáme pod©a predchádzajúcej

kapitoly v tvare φ(xµ) = [φ0 + φ̃(xµ)]eiθ(x
µ), a po dosadení do lagrangiánu dostávame

L = ... =
1

2

∂µφ̃∂µφ̃+ φ2
0 ∂µθ∂

µθ︸ ︷︷ ︸
kinetické energie

− (−2m̃2)φ̃2 − C2φ2
0A

2
µ︸ ︷︷ ︸

hmotnosti

+ 2Cφ2∂µθAµ︸ ︷︷ ︸
#

+
£leny
vy²²ích
mocnín

− FµνF
µν

4

Vidíme, ºe tento lagrangián reprezentuje dve hmotné polia - reálne skalárne pole φ̃(xν) s (kladnou)
hmotnos´ou −m̃2 a vektorové pole Aµ(xν) s hmotnos´ou C2φ20

2
= −C2m̃2

4λ
. Vektorové pole teda získalo

hmotnos´, úmernú sile väzby polí C. Tretie pole θ(xν) je nefyzikálne - môºeme totiº vyuºi´ kalibra£nú
symetriu vektorového po©a, a zvoli´ transformáciu

Aµ → Aµ −
1

C
∂µα(xν) φ→ eiα(xν)φ = [φ0 + φ̃(xµ)]ei(θ+α)

takú aby α = −θ, £ím v lagrangiáne vynulujeme £leny s θ, vrátane kinetickej energie nehmotných
Goldstoneových excitácií a £lenu #. Stupe¬ vo©nosti odpovedajúci skalárnym Goldstoneovým exci-
táciám teda zanikne, ale vektorové pole nadobudne hmotnos´ a tým longitudinálny stupe¬ vo©nosti.
Celkový po£et stup¬ov vo©nosti sa teda nezmení. V jazyku £astíc hovoríme, ºe nehmotné £astice ka-
libra£ného po©a �zjedia� nehmotné Goldstoneove bozóny (prameniace z nenulovej strednej hodnoty
vákua s naru²enou symetriou) a tým nadobudnú hmotnos´. Tento mechanizmus sa nazýva (Broutov-
Englertov-...) Higgsov. Skalárne pole si pritom ponecháva hmotný stupe¬ vo©nosti φ̃ - Higgsove
bozóny.

� � � � �

Dôleºité závery:

• Dosah lokalizovanej poruchy po©a v priestore zaniká nepriamo úmerne hmotnosti po©a.

• Lagrangián interagujúcich polí obsahuje okrem lagrangiánov vo©ných polí aj interak£ný £len s
koe�cientom väzby polí. Pri kalibra£nej interakcii je tento £len obsiahnutý v kovariantnej derivácii.
Pohybovú rovnicu kaºdého interagujúceho po©a dostaneme dosadením lagrangiánu do ELR tohto
po©a.

• De�nícia kovariantnej derivácie po©a φ, a teda existencia kalibra£ného po©a a jeho transforma£ný
vz´ah, sú dôsledkami poºiadavky lokálnej U(1)-symetrie po©a φ.

• Elektromagnetické pole je nehmotným kalibra£ným po©om, jeho väzbovou kon²tantou je elektrický
náboj.
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• Stav vákua pri spontánnom naru²ení spojitej globálnej symetrie je stavom s nenulovou strednou
hodnotou po©a - hmotnými aj nehmotnými (Goldstoneovými) excitáciami. Pri interakcii s nehmot-
ným kalibra£ným po©om dochádza k pohlteniu nehmotných excitácii týmto kalibra£ným po©om, ktoré
sa tak stane hmotným.

IV.2 Elektromagnetická interakcia.

Elektromagnetická interakcia je jednou zo ²tyroch (známych) fundamentálnych silových interak-
cií. Je to kalibra£ná interakcia elektromagnetického po©a, teda nehmotného vektorového kalibra£ného
po©a Aµ, s elektricky nabitým Diracovým spinorovým po©om ψ. V jazyku £astíc - kvánt polí ide o in-
terakcie medzi elektricky nabitými fermiónmi, sprostredkované elektricky neutrálnymi kalibra£nými
bozónmi - fotónmi. Ich opis je predmetom kvantovej elektrodynamiky.

IV.2.1 Rovnice kvantovej elektrodynamiky

Väzba spinorových polí s kalibra£ným elektromagnetickým je v lagrangiáne zoh©adnená kovariantnou
deriváciou (kap. IV.1.3) s väzbovou kon²tantou je C = q/~. Hustota celkového lagrangiánu (aj
s rozmerovými kon²tantami) je

L = ~c ψ̄(iγµDµ−m̃ψ)ψ− ε0c
2

4
FµνF

µν = ~c ψ̄(iγµ∂µ−
q

~
γµAµ−m̃ψ)ψ− ε0c

2

2
(∂µAν∂

µAν − ∂µAν∂νAµ)

Podobne ako v prípade skalárneho po©a, lagrangián vo©ného spinorového po©a síce vykazuje globálnu
U(1)-symetriu ψ → eiθψ, nie v²ak lokálnu symetriu, θ 6= θ(xν). Na druhej strane, lagrangián nehmot-
ného vektorového po©a vykazuje aj lokálnu vnútornú symetriu vzh©adom na kalibra£nú transformáciu
Aµ(xµ)→ Aµ(xµ) + ∂µΛ(xµ). Väzbou oboch polí,23 θ = −CΛ, dostávame lagrangián, ktorý vykazuje
lokálnu symetriu vzh©adom na kombinovanú, tzv. U(1)-kalibra£nú transformáciu.

Spojitá globálna interná symetria po©a (ako ²peciálny prípad lokálnej symetrie)

ψ → eiθψ = e−iqΛ/~ψ ∼=
(

1− i q
~

Λ
)
ψ = ψ + δψ

je vºdy spojená (kap. I.3.6) so zachovávajúcim sa noetherovským ²tvorprúdom

∂µJ µ = ∂µ

[
∂L

∂(∂µψ)
δψ

]
= ... = ∂µ

[
(i~cψ̄γµ)

(
−i q

~
Λψ
)]

= ∂µ
[
cqψ̄γµψΛ

]
= 0

Ke¤ºe Λ je ©ubovo©ná premenná, zachovávajúcou veli£inou je jµ = cqψ̄γµψ . Noetherovským nábojom
je potom

Q =

∫
j0d3x = cq

∫
ψ̄γ0ψ d3x︸ ︷︷ ︸

1

= cq

Dôsledkom tejto vnútornej symetrie je teda zákon zachovnia elektrického náboja. Pripome¬me,
ºe zachovávajúcimi sa veli£inami sú práve generátory spojitých symetrií. V tomto prípade operátorom

23Väzbová kon²tanta C je pomerom transforma£ných parametrov interagujúcich polí.
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transformácie (pooto£enia fázy) je e−iqΛ/~ ∼= (1− i q~Λ) ∈U(1), a teda generátorom symetrie (v U(1)
jediným) je náboj q.

Dosadením lagrangiánu do ELR pre príslu²né pole dostávame pohybovú rovnicu tohto po©a. Pohy-
bovou rovnicou elektromagnetického po©a (interagujúceho s Diracovým po©om) je teda

ε0c
2∂µ (∂µAν − ∂νAµ) = cqψ̄γνψ = jν

pri£om jν(xµ) je hustota elektricky nabitého ²tvorprúdu (ako porucha vo©ného elektromagnetického
po©a). Zámenou Aµ → ~E, ~B v tejto rovnici spoznávame nehomogénne MXR v prítomnosti zdrojov
ρ,~j (Dodatok R).

Pohybovou rovnicou interagujúceho elektricky nabitého Diracovho po©a ψ bude zase (dosadením do
ELR pre ψ)

(iγµ∂µ − m̃ψ)ψ =
q

~
γµAµψ

a pre ψ̄ analogicky (s −i namiesto i).24

Náboj 25 q £astíc Diracovho po©a ψ kvanti�kuje väzbu tohto po©a na kalibra£né. Pre anti£astice musí
plati´ identická rovnica s nábojom −q (rovnica pre ψ̄ takou nie je), teda

(iγµ∂µ − m̃ψ)ψC = − q
~
γµAµψC

kde ψC je anti£asticové pole príslu²né k po©u ψ (kap. III.2.6). Z výrazu ψC = iγ2ψ∗ dostávame
ψ̄C = iγ2γ0ψ

T , a pre prúdovú hustotu anti£astíc jνC = −jν , £o je o£akávaný výsledok.

IV.2.2 CPT-symetria.

Transformácia parity Diracovho spinoru je Psψ = γ0ψ (kap. III.2.5), pri£om pre vektorové pole takáto
transformácia znamená Aj → −Aj.

Operátor oto£enia £asu pre ψ∗ je Ts = iγ1γ3 (kap. III.2.5), a pre samotné ψ de�nujeme nový operátor
T̄sψ = Tsψ∗ = iγ1γ3ψ∗. Pre vektorové pole takáto transformácia znamená A0 → −A0.

Rovnako de�nujeme operátor nábojovej inverzie pre ψ ako C̄ψ = Cψ∗ = iγ2ψ∗ (kap. III.2.6), pri£om
takáto transformácia znamená qAµ → −qAµ.

Kombinácia PsC̄T̄s teda pre rovnice elektrodynamiky neznamená ºiadnu zmenu. Bispinor ψ(xµ) sa
transformuje ako

ψCPT (−xµ) = PsC̄[T̄sψ(xµ)] = PsC[T̄sψ(xµ)]∗ = i PsCT ∗s ψ(xµ) = γ0(iγ2)(iγ1γ3)∗︸ ︷︷ ︸ψ(xµ) = iγ5︸︷︷︸ψ(xµ)

£o je anti£astica opa£nej helicity, pohybujúca sa opa£ne v £asopriestore, a γ5 = iγ0γ1γ2γ3. Táto tzv.
CPT-symetria je fundamentálnou symetriou Prírody.26

24Alternatívnym zápisom je pouºitie kovariantnej derivácie.
25Pre elektromagnetické pole ide o elektrický náboj, pre iné kalibra£né polia ide o iné náboje.
26Na rozdiel od £iastkových symetrií CPT-symetria platí pre v²etky pozorované procesy v Prírode, a to nezávislo na

poradí. Symetria ©ubovo©nej dvojice transformácií je ekvivalentná symetrii tretej.
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Uvedené transforma£né vz´ahy platia pre klasické pole. Pre kvantové pole sa ψ stáva operátorom
s transforma£nými vz´ahmi (pod©a kap. I.2)

ψ̂P = Psψ̂P−1
s

ˆ̄ψP = Ps ˆ̄ψP−1
s

Ts ˆ̄ψψ̂T −1
s = ˆ̄ψψ̂ Ts ˆ̄ψ~jT −1

s = −~j

ψ̂C = Cψ̂C−1 = C ˆ̄ψT ˆ̄ψC = C ˆ̄ψC−1 = −ψ̂TC−1 CjµC−1 = −jµ

� � � � �

Dôleºité závery:

• Kalibra£ná elektromagnetická interakcia elektricky nabitého spinorového po©a je jednou z funda-
mentálnych interakcií. Lagrangián tejto interakcie vykazuje kalibra£nú U(1)-symetriu. Jej dôsledkom
je zákon zachovania elektrického náboja.

• Pohybová rovnica elektromagneticky interagujúceho spinorového po©a je symetrická vo£i nábojo-
vému zdruºeniu - zámene £astice za anti£asticu.

• Kombinácia nábojovej inverzie, transformácie parity a £asovej inverzie je univerzálnou symetriou
Prírody.

IV.3 Slabá interakcia.

V ¤al²om texte predstavíme mechanizmus druhej fundamentálnej silovej interakcie - slabej interak-
cie. Ide o interakciu (výlu£ne) chirálne ©avorukých Diracových £astíc (excitácii po©a) sprostredkovanú
hmotnými vektorovými £asticami - bozónmi W+, W− a Z. Zjednotená teória slabej a elektromag-
netickej interakcie - tzv. elektroslabej interakcie zah¯¬a tieº nehmotné elektromagnetické pole
s excitáciami fotónmi. Jednotlivé aspekty tejto interakcie rozoberieme postupne v nasledujúcich
kapitolách.

IV.3.1 SU(2)-kalibra£ná teória.

Základnou schémou slabej interakcie je symetria lagrangiánu pri premene jednej Diracovej £astice
na inú za ú£asti sprostredkujúcej vektorovej £astice. Uvaºujme preto dvojicu - dublet - spinorových
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polí ψ1, ψ2, pri£om premena jedného na druhé, £iºe transformácia U jednej zloºky dubletu do druhej
je symetriou (podobne ako pri rotácii vektoru)

ψ1 → ψ′1 = αψ1 + βψ2

ψ2 → ψ′2 = γψ1 + δψ2

ψ =

(
ψ1

ψ2

)
→
U
ψ′ =

(
α β
γ δ

)(
ψ1

ψ2

)
= Uψ

Podmienka normovanosti vyºaduje aby U ∈ SU(2), £iºe (kap. II.3.2) U = ei
~θ·~σ/2. Kvôli invariantnosti

lagrangiánu predpokladajme (pre za£iatok), ºe polia ψ1, ψ2 sú nehmotné.27

Poºiadavku lokálnej invariantnosti pre ~θ = ~θ(xν) dokáºeme naplni´ prítomnos´ou kalibra£ných polí
(kap. IV.1.3). Oproti prípadu U(1) symetrie v²ak algebra SU(2) obsahuje tri generátory (kap. II.3.2),
potrebujeme teda trojicu kalibra£ných (£iºe nehmotných vektorových) polí, W j

µ. Poºiadavka lokálnej
invariantnosti celkového lagrangiánu pri transformácii

ψ → eiθj(x
ν)
σj
2 ψ = e−igWΛj(x

ν)
σj
2 ψ ∼=

(
1− igWΛj(x

ν)
σj
2

)
ψ = ψ + δψ

kde gW = −θj/Λj je väzbová kon²tanta Diracovho dubletu na kalibra£né polia (obdobne ako v kap.
IV.2.1), opä´ vyºaduje kalibra£né transformácie týchto polí, a to tentokrát v tvare

W j
µ → W ′j

µ = W j
µ + ∂µΛj + gW εjklΛkW

l
µ︸ ︷︷ ︸

#

tak aby opä´ platilo Dµψ → U(Dµψ). Lagrangiány interagujúceho Diracovho dubletu (s kovariantnou
deriváciou) a trojice kalibra£ných polí s príslu²nými tenzormi polí (FW j

)µν sú potom

Lψ1+ψ2 = iψ̄γµDµψ Dµ = ∂µ + igW
σj
2
W j
µ

LW 1+W 2+W 3 = −1

4
(FW j

)µν(F
W j

)µν (FW j

)µν = ∂µW
j
ν − ∂νW j

µ − gW εjklW k
µW

l
ν︸ ︷︷ ︸

#

Prítomnos´ dodato£ných £lenov # (vektorové sú£iny) oproti predchádzajúcim kapitolám je dôsledkom
nekomutatívnosti generátorov su(2) (Pauliho matíc), ako aj nekomutatívnosti U s σjW j

µ. Lagrangián
trojice kalibra£ných polí tentokrát zjavne obsahuje aj £leny 3. a 4. rádu W j

µ, vyjadrujúce zloºitú
vzájomnú interakciu týchto polí. Celkový U(2)-kalibra£ne invariantný lagrangián má potom tvar
(bez rozmerových koe�cientov a hmotnostného £lenu)

L = iψ̄γµ∂µψ︸ ︷︷ ︸
2×Dirac

− gW ψ̄γµW j
µ

σj
2
ψ︸ ︷︷ ︸

interakcia

− 1

4
(FW j

)µν(F
W j

)µν︸ ︷︷ ︸
3×Maxwell

Analogicky ako v kap. IV.2.1, zachovávajúci sa noetherovský ²tvorprúd dostaneme (aº na rozmerový
koe�cient) ako

∂µJ µ = ∂µ

[
∂L

∂(∂µψ)
δψ

]
= ... = ∂µ

[
(iψ̄γµ)

(
−igWΛj

σj
2
ψ
)]

= ∂µ

[
gW ψ̄γ

µΛj
σj
2
ψ
]

= 0

£iºe jjµ = gW ψ̄γ
µ σj

2
ψ pre kaºdý z troch generátorov symetrie. Zachovávajúcimi sa noetherovskými

nábojmi (na jednotkový objem) sú

Qj = ψ̄γ0
σj
2
ψ = ψ†

σj
2
ψ = ψ†Îjψ Îj =

σj
2

27Symetrickým dubletom sú aj polia rovnakej hmotnosti, Príroda v²ak túto alternatívu nevyuºíva. Neskôr nájdeme
mechanizmus, ktorý týmto poliam dodá, bez újmy na invariantnosti, hmotnos´ zhodnú s experimentálnym pozorova-
ním.
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Ke¤ºe generátory symetrií Îj nekomutujú, ostrú hodnotu môºeme priradi´ len jednému z nich. V
báze s diagonálnou σ3 platí

Q3 =

(
ψ1

ψ2

)†
σ3

2

(
ψ1

ψ2

)
=

1

2

(
ψ1

ψ2

)†(
1 0
0 −1

)(
ψ1

ψ2

)
=

1

2
ψ†1ψ1 −

1

2
ψ†2ψ2

�asticiam oboch polí môºeme28 teda priradi´ kvantové £ísla I3(ψ1) = 1
2
, resp. I3(ψ2) = −1

2
. Ná²

dublet je analogický �u£ebnicovému� spinoru - objektu s dvoma ortogonálnymi stavmi v 2-rozmernej
reprezentácii SU(2) (kap. II.3.2), s hodnotou I = 1

2
prislúchajúcou Casimirovmu operátoru Î2 , a

jedným (z trojice) diagonálnym (Cartanovým) generátorom Î3 = σ3
2
s vlastnými hodnotami ±1

2
, £iºe

z-ovými priemetmi spinu (v jednotkách ~). V tomto prípade v²ak hovoríme o z-ových zloºkách tzv.
slabého izospinu.29 Zachovávajúcim sa �nábojom� pri tejto symetrii dubletu je teda z-ová zloºka
izospinu (opä´ v jednotkách ~) s kvantovými £íslami I3 = ±1

2
. Slabému izospinu sa tieº hovorí slabý

náboj.

Kovariantnú deriváciu môºeme prepísa´ do tvaru

Dµ = ∂µ + i
gW
2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
= ∂µ + i

gW
2

(
W 3
µ

√
2W+

µ√
2W−

µ −W 3
µ

)
kde sme de�novali polia W±

µ = 1√
2
(W 1

µ ∓ iW 2
µ) . Polia W±

µ svojou kon²trukciou pripomínajú zvy-
²ovacie/zniºovacie operátory algebry SU(2), a takúto úlohu naozaj plnia - pri interakciách s Dira-

covými £asticami zvy²ujú/zniºujú ich �náboj� I3. Triplet

 W+
µ

W 3
µ

W−
µ

 odpovedá 3-rozmernej repre-

zentácii SU(2) s hodnotou Casimirovho operátoru (slabého izospinu) I = 1, s hodnotami priemetu
I3 = 1, 0,−1. Pri interakciách sa teda celkový priemet izospinu zachováva

+
1

2
→ −1

2
+ 1 − 1

2
→ +

1

2
+ (−1)

1

2
→ 1

2
+ 0

Ke¤ºe vektorové W-bozóny �nesú� slabý náboj, teória pripú²´a aj slabé interakcie výlu£ne medzi
nimi - samointerakciu (súvisí to s nekomutatívnos´ou generátorov). Naproti tomu vektorové fotóny
elektrický náboj �nenesú� a teda (na tejto úrovni teórie) navzájom elektromagneticky neinteragujú.

Izospinová symetria teda �organizuje� £astice/polia zú£ast¬ujúce sa slabej interakcie do príslu²ných
multipletov. Uvedená schéma sa dá zov²eobecni´ na ©ubovo©nú spojitú lokálnu grupu symetrií s gene-
rátormi ta (σj/2 → ta) s komuta£nými vz´ahmi [ta, tb] = ifabctc, £o vyuºijeme v kap. IV.4.1. Aby
v²ak tento tzv. Yangov-Millsov model (v alternatívnej verzii s po©ami ψ1, ψ2 rovnakej nenulo-
vej hmotnosti) kore²pondoval s experimentálnymi pozorovaniami, musíme ho doplni´ mechanizmami
dodávajúcimi správne (t.j. merate©né) hmotnosti vektorovým aj Diracovým poliam, £o urobíme v
nasledujúcich kapitolách.

28V tejto báze napr. Q1 = 1
2ψ
†
1ψ2 + 1

2ψ
†
2ψ1, £iºe, kvantové £ísla nemôºeme priradi´ jednotlivým poliam.

29Tak ako spin £astice/po©a je momentom hybnosti vo vlastnom spinorovom priestore, aj izospin je momentom
hybnosti �ºijúcim� vo vnútornom priestore dubletu.
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IV.3.2 U(1)xSU(2)-kalibra£ná teória.

Pod©a sú£asných predstáv v prvých okamihoch po Ve©kom Tresku �panovala� U(1)×SU(2)-kali-
bra£ná symetria elektroslabých interakcií s 1+3 generátormi. Postupným chladnutím Vesmíru v²ak
do²lo k jej spontánnemu naru²eniu, a oddeleniu elektromagnetickej a slabej interakcie. Tri kalibra£né
poliaW j

µ nadobudli hmotnos´, a pôvodná symetria zanikla. Namiesto nej vznikla nová U(1)-kalibra£ná
symetria nehmotného elektromagnetického po©a. V tejto kapitole uvedený mechanizmus rozoberieme.

Lagrangián nehmotných Diracových polí, interagujúcich so ²tvoricou kalibra£ných polí - tripletom
W j
µ a singletom Bµ, s odpovedajúcimi tenzormi (FW j

)µν , resp. (FB)µν , a väzbovými kon²tantami gW
a gB odpovedajúci pôvodnej U(1)×SU(2)-kalibra£nej symetrii, je

LU(1)×SU(2)
2×Dirac+4×Maxwell = ψ̄γµ

(
i∂µ − gWW j

µ Îj − gBBµŶw

)
ψ − 1

4
(FW j

)µν(F
W j

)µν − 1

4
(FB)µν(F

B)µν

Generátormi SU(2)-symetrie sú Îj =
σj
2
(priemety izospinu), a generátorom pôvodnej U(1)-symetrie

(zachovávajúcou sa veli£inou) je tzv. slabý hypernáboj Ŷw (v spinorovom zápise matíc 2× 2 je to
Ŷw = Yw12×2), - analóg elektrického náboja q z kap. IV.2.1.30

V kap. IV.1.5 sme ukázali mechanizmus, akým kalibra£né polia nadobúdajú hmotnos´ v interakcii
so skalárnym Higgsovým po©om so spontánne naru²enou symetriou. Uvaºujme teda dublet hmotných
komplexných skalárnych Higgsových polí

φ =

(
φ1 + iφ2

φ3 + iφ4

)
v interakcii s trojicou kalibra£ných polí W j

µ a kalibra£ným po©om Bµ. Lagrangián tejto interakcie je

LU(1)×SU(2)
4×KleinGordon = (Dµφ)†(Dµφ)− m̃2(φ†φ)− λ(φ†φ)2 Dµ = ∂µ + igWW

j
µ Îj + igBBµŶw

Posledné dva £leny lagrangiánu predstavujú Higgsov potenciál Hp z kap. IV.1.4. Pod©a spomenutej
predstavy v po£iato£nej fáze Vesmíru do²lo poklesom teploty k zmene m̃2 > 0 → m̃2 < 0 a posunu
minima Hp k nenulovým hodnotám. Dôsledkom bolo spontánne naru²enie symetrie - fázový prechod
Vesmíru do jedného z rovnocenných stavov (miním Hp), pre ktoré platí

φ†φ = φ2
1 + φ2

2 + φ2
3 + φ2

4 =
−m̃2

2λ
!

= φ2
0 (> 0)

Ke¤ºe tento potenciál závisí len od φ†φ, môºeme vyuºi´ túto vo©nos´ a zvoli´

φmin =

(
0
φ0

)
φ1 = φ2 = φ4 = 0

Stratégia je identická ako v kap. IV.1.5: Skúmame skalárne excitácie Higgsovho po©a φ̃ okolo no-

vého minima φ0, teda φ =

(
0

φ0 + φ̃

)
. Väzba kalibra£ných polí W j

µ na skalárne polia s lokál-

nou vnútornou SU(2)-symetriou φ → eiθj
σj
2 φ = e−igWΛj

σj
2 φ nám umoº¬uje vhodnou kalibráciou

W j
µ → W j

µ + ∂µΛj + gW εjklΛkW
l
µ eliminova´ z teórie nehmotné skalárne excitácie (Goldstoneove

bozóny) - tieto sú teda nefyzikálne (nemerate©né). Im prislúchajúce stupne vo©nosti sa v²ak transfor-
mujú do longitudinálnych polarizácií vektorových polí W j

µ, ktoré sa tým stanú hmotnými. Zo ²tyroch
pôvodných stup¬ov vo©nosti skalárneho dubletu φ zostane po spontánnom naru²ení SU(2)-symetrie
jediné hmotné reálne skalárne pole excitácií φ̃ - Higgsove bozóny.

30V zásade sme mohli hypernáboj Yw zahrnú´ do väzbového koe�cientu gB (ako v kap. IV.2.1), pouºijeme v²ak
zauºívaný opis.
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Hmotnosti polí W j
µ, £iºe kvadratické £leny v lagrangiáne, vzídu z výrazu31

∆L = (Dµφ)†(Dµφ) = Yw=− 1
2...

φ→φ0
=

1

4

∣∣∣∣( gWW
3
µ − gBBµ gW (W 1

µ − iW 2
µ)

gW (W 1
µ + iW 2

µ) −gWW 3
µ − gBBµ

)(
0
φ0

)∣∣∣∣2 =

= ... =
φ2

0

4
g2
W

[
(W 1

µ)2 + (W 2
µ)2
]

+
φ2

0

4

[
gWW

3
µ − gBBµ

]2
De�novaním ²tvorice nových vektorových polí ako lineárnych kombinácií pôvodnej ²tvorice (£iºe
zmenou bázy)

(W 1
µ)2 + (W 2

µ)2 = 2(W+)µ(W−)µ W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ)

Zµ =
1√

g2
W + g2

B

(gWW
3
µ − gBBµ) Aµ =

1√
g2
W + g2

B

(gBW
3
µ + gWBµ)

môºeme ∆L zapísa´ ako32

∆L =
φ2

0

2
g2
W︸ ︷︷ ︸

m̃2
W

(W+)µ(W−)µ +
φ2

0

4
(g2
W + g2

B)︸ ︷︷ ︸
m̃2
Z

Z2
µ + 0︸︷︷︸

m̃2
A

· A2
µ

Tri zo ²tyroch nových polí, W+, W− a Z, sú teda hmotné, a ich excitácie - £astice so spinom 1 -
nazývameW+, W− a Z bozónmi. Je zrejmé, ºe W+ a W− bozóny predstavujú páry £astica-anti£astica.
�tvrté nové pole - elektromagnetické - ostáva nehmotným (fotóny), a zachováva novú U(1)-kalibra£nú
symetriu. �Nespotrebovaný� stupe¬ vo©nosti skalárneho po©a patrí hmotnému Higgsovmu po©u φ̃ (s
merate©nými excitáciami). Dôleºité je, ºe fotóny a Z-bozóny sú excitáciami navzájom ortogonálnych
lineárnych kombinácií pôvodných polí - majú teda spolo£ný pôvod. Z-bozón nie je totoºný s W3,
a SU(2)-symetria tripletu z predchádzajúcej kapitoly je teda naru²ená. Dôsledkom hmotnosti W a
Z-bozónov je krátkodosahovos´ slabej interakcie.

Ak kovariantnú deriváciu vyjadríme prostredníctvom nových vektorových polí ({W±
µ , Zµ, Aµ}),

dostaneme tvar

Dµ = ∂µ + (£leny W±
µ , Zµ) + i

gWgB√
g2
W + g2

B

Aµ

(
Î3 + Ŷw︸ ︷︷ ︸

)
Q

Nový operátor Q̂ = Î3 + Ŷw je generátorom novovzniknutej symetrie U(1) elektromagnetického po©a

a odpovedá elektrickému náboju s kvantovým £íslom Q. Výraz gW gB√
g2W+g2B

!
= e preto identi�kujeme

ako elementárny náboj, a elektrický náboj Diracovej £astice ako q = eQ.

De�nujme tzv. uhol slabého mie²ania33 θw

cos θw =
gW√

g2
W + g2

B

=
e

gB
sin θw =

gB√
g2
W + g2

B

=
e

gW

Pre hmotnosti vektorových bozónov platí mW = cos θwmZ , a transformáciu {W 3
µ , Bµ} → {Zµ, Aµ}

môºeme vyjadri´ ako rotáciu(
Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3
µ

Bµ

)
31Kladieme Yw = − 1

2 , £o je prípad chirálne ©avorukých leptónov (kap. IV.3.3), a vysvetlenie podáme neskôr.
32Uº v predchádzajúcom lagrangiáne sú £leny W 1,2

µ vyjadrené v hmotnostnej báze, teda ∼ (W j
µ)2, potrebujeme ich

v²ak vyjadri´ v novom SU(1)-invariantnom tvare.
33angl. weak mixing angle. Táto veli£ina vyjadruje mieru �primie²ania� singletu Bµ do W3-komponenty pôvodného

tripletu SU(2).
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Môºeme to interpretova´ tak, ºe spontánne naru²enie symetrie Higgsovho po©a �rotuje rovinu� W 3−B
do roviny Z − A. Pod �rotovaním� máme na mysli mie²anie jednotlivých komponent polí (takých,
ktoré majú spolo£ný pôvod). Uhol slabého mie²ania je vo©ným (t.j. vonkaj²ím) parametrom teórie,
a �xuje sa experimentálne.

IV.3.3 Naru²enie parity.

V predchádzajúcej analýze slabej interakcie sme uvaºovali s nehmotným Diracovým dubletom bez
bliº²ej ²peci�kácie. Skôr neº ozrejmíme mechanizmus, akým tieto Diracove polia nadobúdajú hmot-
nos´, musíme do ná²ho modelu zakomponova´ experimentálne získaný fakt, ºe

slabých interakcií sa zú£ast¬ujú len chirálne ©avoruké Diracove polia.

V kap. III.2.2 sme sa pritom dozvedeli, ºe chiralita hmotných objektov sa v £ase nezachováva -
Diracove spinory oscilujú medzi stavmi opa£nej chirality. Tieto dva fakty v²ak nie sú nezlú£ite©né -
treba len zabezpe£i´, ºe pri opise slabých interakcií pracujeme len s chirálne ©avorukými spinormi.
Vhodným ��ltrom� je tzv. projek£ný operátor34

P̂L,R =
1∓ γ5

2
γ5 = iγ0γ1γ2γ3

V chirálnej báze, v ktorej sú zloºky Diracovho dubletu ψ =

(
ψ1

ψ2

)
vyjadrené ako ψa =

(
χaL
ξaR

)
,

platí

γ5 =

(
−1 0
0 1

)
P̂L =

(
1 0
0 0

)
P̂R =

(
0 0
0 1

)
V²etky slabointerak£né £leny lagrangiánu, t.j. £leny obsahujúce W±

µ a Zµ , musia teda obsahova´
P̂L,35 pri£om pre Diracov dublet platí

P̂Lψ =

(
P̂L 0

0 P̂L

)(
ψ1

ψ2

)
=

(
(ψ1)L
(ψ2)L

)
Toto obmedzenie na chirálne ©avoruké Weylove spinory má závaºný dôsledok: Kon²trukcia Diracových
(bi)spinorov ako kombinácia chirálne ©avo- a pravorukých Weylových spinorov totiº zabezpe£ovala
symetriu vzh©adom na transformáciu parity (kap. II.4.3 rep. (1

2
, 0)⊕(0, 1

2
)). Vylú£ením chirálne pravo-

rukých spinorov sa táto symetria stráca. Vidíme to na slabointerak£nom £lene kovariantnej derivácie
v LDirac, kde s uváºením, ºe {γ5, γ0} = 0 a teda γµP̂L = P̂Rγ

µ, vieme ukáza´, ºe transformácia parity
P tento £len mení,36

ψ̄γµW j
µσjP̂Lψ →P ψ̄γµW j

µσjP̂Rψ 6= ψ̄γµW j
µσjP̂Lψ

Transformácia parity nie je symetriou slabej interakcie.37

Znamená to, ºe uvaºovaný Diracov dublet v slabointerak£ných £lenoch moºe obsahova´ len chirálne
©avoruké objekty.38 Ke¤ºe v²ak fyzikálne (merate©né) Diracove £astice, ako napr. elektrón, sú re-
prezentované bispinormi s oboma chiralitami, musí ich obsahova´ aj lagrangián, aj ke¤ v odli²ných

34Takáto de�nícia je nezávislá na výbere bázy, ktorý podmie¬uje tvar γ-matíc.
35Hoci £leny LDirac obsahujú ψ̄ψ, posta£uje jeden operátor P̂L.
36Spinory a vektory treba transformova´ osobitne, Pspin = γ0, Pvec =diag[0,−1,−1,−1].
37Zachováva sa v²ak PCT-symetria.
38Zápis vo forme dubletu (podobne ako vektoru £i spinoru) predpokladá, ºe jednotlivé komponenty sa môºu navzájom

mie²a´ (ako pri rotácii vektoru).
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reprezentáciách. Slabointeragujúce chirálne ©avoruké komponenty tvoria SU(2) dublety, a transfor-
mujú sa v 2-rozmernej reprezentácii SU(2) (kap. II.3.2), teda ψL → eiθjσj/2ψL, kým im prislúchajúce
chirálne pravoruké komponenty slabo neinteragujú (nemie²ajú sa navzájom) a teda tvoria SU(2)
singlety, a transformujú sa v 1-rozmernej reprezentácii, ψR → e0ψR = ψR (teda nijako).

IV.3.4 Leptóny.

Jednu triedu elementárnych Diracových £astíc/polí (spin 1
2
) zú£ast¬ujúcich sa elektroslabých interak-

cií tvoria leptóny.39 Poznáme ²es´ druhov leptónov - tzv. vôní (angl. �avour), zoradených do troch
generácií, navzájom sa lí²iacich hmotnos´ou:

elektrón e− (me 6= 0, Q = −1), e-neutríno νe (mν → 0, Q = 0) a ich anti£astice e+, ν̄e

µ-leptón µ− (mµ 6= 0, Q = −1), µ-neutríno νµ (mν → 0, Q = 0) a ich anti£astice µ+, ν̄µ

τ-leptón τ− (mτ 6= 0, Q = −1), τ-neutríno ντ (mν → 0, Q = 0) a ich anti£astice τ+, ν̄τ

Platí mτ � mµ � me. V kaºdej generácií prira¤ujeme £asticiam leptónové £íslo 1 a anti£asti-
ciam -1, a celkové leptónové £íslo sa v interakciách zachováva.40 Elektromagnetických interakcií sa
nezú£ast¬ujú neutrína (Q = 0), kým slabých interakcií sa nezú£ast¬ujú chirálne pravoruké leptóny.
Elektricky neutrálne neutrína sa zú£ast¬ujú len slabých interakcií, koncepciu chirálne pravorukých
neutrín preto nepotrebujeme.

Diracov dublet z predchádzajúcich kapitol je v prvej generácii tvorený chirálne ©avorukým elektró-

nom a jeho neutrínom, ψL =

(
νL
eL

)
, so slabým izospinom Iν3 = +1

2
, Ie3 = −1

2
. Pred �zapnutím�

mechanizmu, ktorý leptónom dodáva hmotnos´, sú obe zloºky dubletu nehmotné, a opisujeme ich ako
dva SU(2)-symetrické stavy jedného systému (s moºným vzájomným mie²aním). Interak£ná spinor-
vektorová £as´ lagrangiánu je

LU(1)×SU(2)
int,L = ψ̄Lγ

µ
(
i∂µ − gWW j

µ Îj − gBBµŶw

)
ψL = ... = (ν̄L, ēL)γµ×

×

i∂µ −
 e

(
1
2

+ Yw
)
Aµ + e

(
gW
2gB
− Yw gB

gW

)
Zµ

gW√
2
W+
µ

gW√
2
W−
µ e

(
−1

2
+ Yw

)
Aµ + e

(
− gW

2gB
− Yw gB

gW

)
Zµ

( νL
eL

)
Z experimentov vieme, ºe neutrína neinteragujú elektromagneticky, preto v prvom diagonálnom
£lene uvedeného výrazu

(
1
2

+ Yw
) !

= 0, £iºe pre chirálne ©avoruké leptóny platí Yw = −1
2
(a +1

2
pre

ich anti£astice). Rovnako vidíme, ºe mimodiagonálne operátoryW±
µ pôsobia na obe zloºky Diracovho

dubletu lí²iace sa elektrickým nábojom, a teda ho menia pri ich mie²aní, £iºe bozóny W± musia nies´
elektrický náboj Q = ±1. Rovnakou úvahou zistíme, ºe pre Z-bozón je Q = 0.

Ke¤ºe v²ak fyzikálne elektróny majú hmotnos´, a teda sú supepozíciou stavov oboch chiralít (kap.
III.2.2), realistický model vyºaduje doplnenie dubletu o chirálne pravoruký singlet (eR). (Rovnaká
schéma opä´ platí pre ostatné generácie leptónov.) Interak£ný lagrangián musí preto obsahova´ aj
chirálne pravorukú £as´ (pre singlet v 1-rozmernej reprezentácii SU(2), I3 = 0)

Lint,R = ψ̄Rγ
µ
(
i∂µ − gBBµŶw

)
ψR = ... = (ēR)γµ

[
i∂µ − eYw

(
Aµ −

gB
gW

Zµ

)]
(eR)

39Druhú triedu tvoria kvarky, ktoré sa navy²e zú£ast¬ujú aj tzv. silných interakcií (kap. IV.4).
40Toto zachovávajúce sa kvantové £íslo súvisí s globálnou U(1)-symetriou vo£i transformácii eiϑ, resp. e−iϑ pre

anti£astice.
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Ke¤ºe eR a eL musia ma´ rovnaký elektrický náboj (t.j. koe�cient väzby na elektromagnetické pole),
musí pre chirálne pravoruké leptóny plati´ Yw = −1 (a +1 pre anti£astice).

V tabu©ke sú hodnoty kvantových £ísel Q, I3, Yw pre leptóny a antileptóny prvej generácie, W,Z-
bozóny, fotón a Higgsov bozón.41 Hodnoty platia aj pre leptóny ostatných generácií. Pomocou nej
môºeme preveri´ zachovanie kvantových £ísel pri rozptylových procesoch z kap. IV.3.1, konkretizova-
ných pre prvú generáciu leptónov.

eL ēL eR ēR ν ν̄ W+ W− Z γ H
Q −1 +1 −1 +1 0 0 +1 −1 0 0 0
I3 −1

2
+1

2
0 0 +1

2
−1

2
+1 −1 0 0 −1

2

Yw −1
2

+1
2
−1 +1 −1

2
+1

2
0 0 0 0 +1

2

Ostáva nám vyjasni´ mechanizmus, akým Diracove £astice/polia nadobúdajú hmotnos´, akú pozoru-
jeme v experimentoch. Ke¤ºe objekty rôznych chiralít sa transformujú pod©a rôznych reprezentácií
SU(2), poºiadavka SU(2)-symetrie vylu£uje (lorentzovsky invariantný) hmotnostný £len lagrangiánu
∼ ψ̄ψ = ψ̄LψR + ψ̄RψL. Vieme ho v²ak nahradi´ SU(2)×SU(1)-invariantným £lenom ψ̄φψ, reprezen-
tujúcim yukawovskú interakciu so skalárnym dubletom φ (kap. IV.1.2).

LY ukawa = −y
[
ψ̄LφψR + ψ̄Rφ

†ψL
]

= −y
[
(ν̄L, ēL)

(
φ1

φ2

)
eR + ēR(φ∗1, φ

∗
2)

(
νL
eL

)]
kde y je yukawovský koe�cient väzby - ¤al²í vo©ný parameter modelu. Singlet eR, chirálne pravoruký
elektrón, je ekvivalentný chirálne ©avorukému antielektrónu (pozitrónu), a na tejto úrovni modelu
vystupuje ako samostatná £astica, bez väzby na chirálne ©avoruký dublet. Opä´ v²ak nastupuje
Higgsov mechanizmus - spontánne naru²enie symetrie skalárneho po©a s jeho novým (opä´ vhodne

zvoleným) minimom φmin =

(
0
φ0

)
. Po jeho dosadení dostávame

LY ukawa = −yφ0[ēLeR + ēReL] = − yφ0︸︷︷︸
m̃e

(ēe)

teda hmotnostný £len fyzikálneho elektrónu.42

� � � � �

Dôleºité závery:

• Slabá interakcia je zmena slabého izospinu a elektrického náboja Diracových £astíc pri interakcii
s hmotnými vektorovými £asticami - elektricky nabitými W-bozónmi, ako aj interakcia s hmotnými
neutrálnymi Z-bozónmi (bez zmeny nábojov). V dôsledku ve©kej hmotnosti týchto bozónov je to
krátkodosahová interakcia.

41V alternatívnej konvencii je hypernáboj de�novaný s faktorom 1
2 , a teda jeho kvantové £ísla sa oproti na²ej tabu©ke

lí²ia o faktor 2.
42Mechanizmus hmotnosti neutrín zostáva v rámci �tandardného modelu zatia© otvorenou otázkou.
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• Zjednotená elektroslabá interakcia je kalibra£nou interakciou Diracových polí so ²tvoricou nehmot-
ných vektorových polí, teda SU(2)×U(1)-kalibra£nou symetriou so zachovávajúcim sa priemetom
slabého izospinu (SU(2)) a hypernábojom (U(1)). Interakciou so skalárnym Higgsovým po©om so
spontánne naru²enou symetriou (a nenulovou vákuovou hodnotou) vektorové £astice SU(2)-tripletu
nadobúdajú hmotnos´, £ím naru²ujú SU(2)-symetriu - slabá interakcia (s hmotnými bozónmi W,Z)
sa oddelí od U(1)-kalibra£nej elektromagnetickej interakcie (s nehmotnými fotónmi).

• Leptóny sú Diracove £astice, existujúce v ²iestich vô¬ach, zu£ast¬ujúce sa slabých a elektromag-
netických (ak sú elektricky nabité) interakcií. Chirálne pravoruké £asti hmotných leptónov pritom
interagujú len s fotónmi a bozónmi Z (nemenia slabý ani elektrický náboj). Yukawovskou interakciou
so skalárnym Higgsovým po©om (s nenulovou vákuovou hodnotou) získavajú leptóny hmotnos´.

IV.4 Silná interakcia.

Silná interakcia je poslednou - a najsilnej²ou - z trojice fundamentálnych silových (kalibra£ných)
interakcií �tandardného modelu. Tejto interakcie sa zú£ast¬ujú Diracové £astice/polia - kvarky -
nesúce tzv. farebný náboj, preto hovoríme o chromodynamike (v analógii s elektrodynamikou
£astíc nesúcich elektrický náboj). Sprostredkujúcimi silovými vektorovými £asticami - nehmotnými
kalibra£nými bozónmi - v chromodynamike sú gluóny. Nasledujúci text je venovaný charakterizo-
vaniu tejto interakcie. Ke¤ºe viaceré jej £iastkové mechanizmy sú analogické £i identické s vy²²ie
opísanými interakciami, obmedzíme sa v týchto prípadoch na odkazy.

IV.4.1 Kvarky.

Kvarky sú hmotné Diracove spinory, pozostávajúce z chirálne ©avo- a pravorukého Weylovho spinoru.
Existuje ²es´ druhov - vôní kvarkov, pri£om, na rozdiel od leptónov, kaºdá vô¬a existuje v troch
farbebných nábojoch, r (red), g (green), b (blue). Rovnako ako pri leptónoch, aj vône kvarkov sú
zoradené do troch generácií, výrazne sa lí²iacich hmotnos´ami:

up ur,g,b (Q = +2
3
), down dr,g,b (Q = −1

3
) a ich anti£astice ūr,g,b, d̄r,g,b

charm cr,g,b (Q = +2
3
), strange sr,g,b (Q = −1

3
) a ich anti£astice c̄r,g,b, s̄r,g,b

top tr,g,b (Q = +2
3
), bottom br,g,b (Q = −1

3
) a ich anti£astice t̄r,g,b, b̄r,g,b

Jednotlivé �farby� sú vnútorné stupne vo©nosti, tvoriace abstraktný farebný priestor, a kaºdý kvark
danej vône tvorí v tomto priestore farebný triplet (jednotlivé komponenty tripletu majú rovnakú vô¬u
a hmotnos´, lí²ia sa farebným nábojom). Podstatou silných interakcií sú �rotácie� v tomto farebnom
priestore, tvoriace grupu symetrií SU(3). Algebra tejto grupy (bliº²ie ju charakterizujeme v kap.
IV.4.2) má 32 − 1 = 8 generátorov T̂a (a = 1, 2, ...8). Globálnu farebnú symetriu SU(3) vzh©adom
na transformácie eiT̂aθa kalibrujeme (globálna → lokálna) analogicky ako v prípade slabej interakcie
- kaºdému z ôsmych generátorov priradíme kalibra£né vektorové - gluónové pole Ga

µ, s príslu²ným
tenzorom a kovariantnou deriváciou

(FGa)µν = ∂µG
a
ν − ∂νGa

µ − gGfabcGb
µG

c
ν Dµ = ∂µ + igGG

a
µT̂

a

kde gG je koe�cient väzby gluónových a kvarkových polí. Opä´ vidíme, ºe gluónové polia interagujú
medzi sebou (nesú farebný náboj).
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Sú£asne chirálne ©avoruké dvojice kvarkov jednej generácie tvoria dublety pribliºne rovnakej hmot-
nosti - tvoria teda pribliºnú symetriu SU(2) (mie²anie prvkov dubletu, kaºdý prvok dubletu je pritom
farebným tripletom), kalibrovanú trojicou vektorových polí W j

µ sprostredkujúcich slabú interakciu
(kap. IV.3). A napokon, ke¤ºe kvarky nesú aj elektrický náboj, zú£ast¬ujú sa aj elektromagnetických
interakcií grupy U(1), sprostredkovaných pôvodným kalibra£ným po©om Bµ (po naru²ení symetrie
SU(2) sa nahradí fotónmi). Ide teda o kombinovanú SU(3)×SU(2)×U(1)-kalibra£nú symetriu. Ko-
variantné derivácie chirálne ©avorukého dubletu a pravorukých singletov43 prvej generácie kvarkov
majú tvar44

Dµ

(
uL
dL

)
=
[
∂µ + igGG

a
µT̂a + igWW

j
µ Îj + igBBµŶL

]( uL
dL

)
DµuR =

[
∂µ + igGG

a
µT̂a + igBBµŶuR

]
uR DµdR =

[
∂µ + igGG

a
µT̂a + igBBµŶdR

]
dR

Prvky dubletu majú z-ovú zloºku slabého izospinu I3 = ±1
2
, kým pre singlety I3 = 0. Ke¤ºe pre

elektrický náboj má plati´ Q = I3 + Y , pre slabý hypernáboj Y chirálne ©avo/pravorukých kvarkov
kladieme

YL =
1

6
YuR =

2

3
YdR = −1

3

Kvarky nadobúdajú hmotnos´ identickým (Higgsovým) mechanizmom ako leptóny (kap. IV.3.4) - pri
yukawovskej interakcii so skalárnym Higgsovým dubletom φ. V prípade kvarkov prvej generácie vedie
yukawowský interak£ný £len ψ̄φψ na

LY ukawa = −yu(ūL, d̄L)

(
φ1

φ2

)
uR−yd(ūL, d̄L)

(
φ1

φ2

)
dR−yuūR(φ∗1, φ

∗
2)

(
uL
dL

)
−ydd̄R(φ∗1, φ

∗
2)

(
uL
dL

)
kde yu, yd sú yukawovské koe�cienty väzby kvarkov u a d na Higgsovo pole - ¤al²ie vo©né parametre
modelu. Spontánnym naru²ením symetrie Higgsovho po©a a nadobudnutím nenulovej vákuovej hod-
noty φ0 nadobudnú jednotlivé kvarky hmotnosti m̃ ∼ yuφ0, resp. ydφ0, £ím dôjde k naru²eniu presnej
SU(2)-symetrie kvarkového dubletu.

Experimenty ukazujú, ºe gluóny sú nehmotné, £o znamená (na rozdiel od slabej interakcie), ºe sy-
metria SU(3) ostáva zachovaná.

IV.4.2 Gluóny.

Algebra grupy SU(3) má 32 − 1 = 8 generátorov T̂a (a = 1, 2, ...8), ktoré v de�ni£nej reprezentácii
vyjadrujeme pomocou tzv. Gell-Mannových matíc λa (navzájom ortogonálnych, hermitovských a
s nulovou stopou, v analógii s Pauliho maticami pre SU(2))

T̂a =
λa
2

(v jednotkách ~) λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0



λ3 =

 1 0 0
0 −1 0
0 0 0

 λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


43Slabej interakcie SU(2) sa zú£ast¬uje len chirálne ©avoruká £as´ Diracovho po©a.
44Toto je zjednodu²ený zápis, prvý výraz platí pre kaºdú zloºku tripletu dubletov, a ostatné výrazy pre kaºdú zloºku

tripletov.

118



Medzi generátormi platia komuta£né vz´ahy [T̂a, T̂b] = ifabcT̂c , kde fabc sú ²truktúrne kon²tanty
algebry.45 Kaºdému generátoru síce prislúcha jedna zachovávajúca sa veli£ina, v analógii s su(2) v²ak
relevantnými sú len noetherovské náboje prislúchajúce diagonálnym (Cartanovým) generátorom, v
tomto prípade T̂3 a T̂8. Dá sa tieº ukáza´, ºe algebra su(3) má dva Casimirove operátory, Ĉ1, Ĉ2, a
teda bázové stavy sú ur£ené vlastnými hodnotami tejto ²tvorice operátorov, |C1, C2, T3, T8〉 (obdobne
ako |j,m〉 v su(2)).

�ahko zistíme, ºe prvá trojica generátorov tvorí algebru su(2) (v 3D-reprezentácii) s bázovými vek-
tormi a odpovedajúcimi vlastnými hodnotami diagonálneho operátoru T̂3 - operátoru z-ovej zloºky
tzv. farebného izospinu

r =

 1
0
0

 g =

 0
1
0

 b =

 0
0
1

 T3 = +
1

2
,−1

2
, 0

Pomocou generátorov T̂1, T̂2 teda de�nujeme zvy²ovací/zniºovací operátor T̂± = T̂1± iT̂2 meniaci
T3 medzi hodnotami +1

2
↔ −1

2
. Pomocou T̂8 zas konven£ne de�nujme tzv. operátor farebného

hypernáboja Ŷ c = 2√
3
T̂8 s vlastnými hodnotami Y c = +1

3
,+1

3
,−2

3
. Zo zvy²ných generátorov

kon²truujeme operátory V̂± = T̂4 ± iT̂5 , Û± = T̂6 ± iT̂7 pôsobiace nasledovne:

Û± zvy²uje/zniºuje Y c o 1 a zniºuje/zvy²uje T3 o 1
2

V̂± zvy²uje/zniºuje Y c o 1 a T3 o 1
2

Kaºdý z tejto ²estice operátorov predstavuje jeden farebný gluón, meniaci farbu kvarku vo farebnom
priestore - kreuje novú a anihiluje pôvodnú:46

T̂+ = rḡ T̂− = gr̄ Û+ = gb̄ Û− = bḡ V̂+ = rb̄ V̂− = br̄
Interakcie sprostredkované týmito gluónmi môºeme interpretova´ nasledovne:
Kvark r emituje gluón rḡ, £ím sa zmení na kvark g. Gluón je následne pohltený
kvarkom g, ktorý sa zmení na r. Transfér farby opa£ným smerom zase zabezpe£í
gluón gr̄. Fyzikálny proces na obrázku je teda superpozíciou oboch transférov, a
gluónové stavy zapisujeme ako (rḡ+gr̄)/

√
2 , i(rḡ−gr̄)/

√
2 , at¤. pre iné farby,

£o odpovedá generátorom T̂a. V²etkých ²es´ uvedených gluónov je farebných. V analógii so slabou
interakciou (SU(2)), gluóny ako generátory symetrií (resp. ich lineárne kombinácie) sprostredkujú
�rotácie� vo farebnom priestore tripletov.

Zvy²né tri moºné kombinácie farba-antifarba, rr̄, gḡ, bb̄, predstavujú bez farebný stav, ktorý v kvan-
tovom svete existuje opä´ len ako superpozícia týchto stavov.47 Pri troch lineárne nezávislých kom-

45Ich konkrétne hodnoty nie sú pre potreby tohto textu podstatné. Pre úplnos´, jediné nenulové a antisymetrické
kombinácie sú f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 = 1

2 , f
458 = f678 =

√
3

2 .

46Napr. rḡ =

 1
0
0

 (0 1 0) =

 0 1 0
0 0 0
0 0 0

 = 1
2

 0 1 0
1 0 0
0 0 0

+ i

 0 −i 0
i 0 0
0 0 0

 = T̂1 + iT̂2 = T̂+

47Bezfarebný gluón typu rr̄ by síce mohol by´ vyºiarený kvarkom r (pri£om by tento kvark nezmenil farbu), iný
kvark farebného tripletu by ho v²ak nemohol absorbova´. Takéto gluóny sú nefyzikálne.
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bináciách je vhodnou vo©bou

(rr̄ − gḡ)/
√

2 (rr̄ + gḡ − 2bb̄)/
√

6 (rr̄ + gḡ + bb̄)/
√

3

Prvé dva gluóny kon²trukciou odpovedajú diagonálnym operátorom T̂3, T̂8, £iºe nemenia farbu kvar-
kov. Posledný operátor je v²ak bezfarebný singlet.48 Ako uvidíme v nasledujúcej kapitole, fyzikálnymi
(merate©nými) £asticami sú len takéto bezfarebné singlety, interagujúce zas len s inými singletmi.
Ak by takýto nehmotný gluón reálne existoval, znamenal by nekone£ný dosah silnej interakcie, £o
je v rozpore s pozorovaniami. Gluóny teda tvoria len farebný oktet (na obr.), odpovedajúci algebre
su(3).49

IV.4.3 Hadróny.

Ke¤ºe gluóny nesú farebný náboj, interagujú aj medzi sebou (bez ú£asti kvarkov). Dôsledkom toho
je, ºe farebné pole vytvorené gluónmi medzi pármi kvark-antikvark nepripomína elektromagnetické
pole (vyjadrené silo£iarami na obr.), ale vzájomná interakcia gluónov
sústre¤uje toto pole do trubice s kon²tantnou hustotou energie. S od-
¤a©ovaním kvarkov teda rastie celková energia po©a (t.j. rastie sila
vzájomného pri´ahovania kvarkov), a po prekro£ení istej hodnoty ve-
die k tvorbe nových párov kvark-antikvark z vákua. Jednotlivé kvarky
teda nie je moºné od seba izolova´ - vytvárajú viazané stavy (£astice), tzv. hadróny. Celkový
farebný náboj hadrónov je vºdy nulový. Tento efekt sa nazýva farebné uzavretie (angl. colour
con�nement). Gluóny sú uväznené �vnútri� hadrónov50 (≈ 10−15m, £o je dosah silnej interakcie),
£iºe hadróny ako farebne neutrálne celky sa nezú£ast¬ujú silnej interakcie. V analógii s SU(2) ich
opisujeme ako singlety, T = 0 , T3 = 0 , Y c = 0 , teda v 1D reprezentácii SU(3). Elektrický náboj
hadrónov je celo£íselný (v jednotkách e).

Podmienka nulového farebného a celo£íselného elektrického náboja, ako aj Pauliho vylu£ovací princíp
(platný pre Diracove £astice) dovo©ujú len ur£ité viazané stavy kvarkov: baryóny qqq a antibarióny
q̄q̄q̄ s polo£íselným celkovým spinom, a mezóny qq̄ s celo£íselným celkovým spinom.

Naj©ah²ími (a preto najstabilnej²ími) baryónmi so spinom 1
2
sú nukleóny: protón uud (Q = 1) a

neutrón udd (Q = 0). Hmotnosti kvarkov pritom tvoria len ≈ 1% hmotnosti nukleónov!!! Takmer
celá ich hmotnos´ je tvorená väzbovou energiou kvarkov, zahr¬ujúcou kinetickú energiu kvarkov a
gluónov. V nukleónoch totiº neustále prebieha výmena gluónov medzi kvarkami (£iºe rotácia rgb
trojíc kvarkov vo farebnom priestore).

Naj©ah²ími mezónmi so spinom 0 sú pióny tvoriace izospinový triplet51

π+ = ud̄ = |1, 1〉 π− = dū = |1,−1〉 π0 = (uū−dd̄)/
√

2 = |1, 0〉

Existujú v neustále sa meniacich farebne neutrálnych kombináciách
farba-antifarba (obr.).

48Tento generátor nesp¨¬a de�ni£né podmienky su(3), patrí algebre roz²írenej grupy U(3).
49Ide o rozklad 3⊗ 3̄ = 8⊕ 1.
50Ke¤ºe hadróny sú kompozitné £astice, má zmysel uvaºova´ o ich rozmeroch, daných dosahom väzbovej sily.
51 u =

∣∣ 1
2 ,

1
2

〉
, d =

∣∣ 1
2 ,−

1
2

〉
, ū =

∣∣ 1
2 ,−

1
2

〉
, d̄ =

∣∣ 1
2 ,

1
2

〉
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Pióny vznikajú pri výmene gluónov medzi kvarkami v nukleónoch, a sprostredkujú väzbu nukleónov
v atómových jadrách. Nukleóny ako farebné singlety môºu emitova´/absorbova´ tieº len singlety -
bezfarebné pióny, nie gluóny! Väzba protónov a neutrónov v atómových jadrách teda nie je silnou
(£iºe farebnou) interakciou, hovoríme o zvy²kovej silnej interakcii.

V¤aka tomuto mechanizmu je vä£²ina atómových jadier stabilných.
Izolovaný neutrón má totiº dobu ºivota asi 15 min, a rozpadá sa
prostredníctvom slabej interakcie kvarkov, d → u + W−, na protón,
elektrón a jeho antineutríno - tzv. β− rádioaktívny rozpad.

V²etky interakcie medzi £asticami sa riadia príslu²nými zákonmi zachovania (noetherovských nábo-
jov). Najdôleºitej²ími sú zákon zachovania elektrického (pri silnej, slabej i elektromagnetickej inte-
rakcii) a farebného náboja (pri silnej interakcii - slabá a a elektromagnetická interakcia neovplyv¬ujú
farebný náboj). �al²ím zachovávajúcim sa nábojom pri silných interakciách je baryónové £íslo (±1
pre baryón/antibarión, resp. ±1

3
×po£et kvarkov/antikvarkov). Na rozdiel od leptónov, baryónové

£íslo sa zachováva naprie£ generáciami kvarkov, a to v¤aka ú£asti kvarkov na slabej interakcii. Na
druhej strane, nezachováva sa vô¬a kvarkov.

� � � � �

Dôleºité závery:

• Silná interakcia je kalibra£nou interakciou Diracových £astíc - kvarkov, nesúcich elektrický a jeden z
troch farebných nábojov, pri ktorej dochádza k výmene farebného náboja, sprostredkovanej oktetom
nehmotných, elektricky neutrálnych, farebných vektorových £astíc - gluónov.

• Kvarky existujú v ²iestich vô¬ach, a zú£ast¬ujú sa aj slabých a elektromagnetických interakcií. Pri
slabých interakciách sa menia vône kvarkov. Hmotnos´ získavajú kvarky interakciou s Higgsovým
po©om s nenulovou vákuovou hodnotou.

• Gluóny, nesúce farebný náboj, interagujú aj sami medzi sebou. Táto interakcia spôsobuje tzv.
uväznenie farieb - neexistujú izolované objekty s nevykompenzovaným farebným nábojom - kvarky
vytvárajú viazané objekty - hadróny.

• Baryóny sú hadróny tvorené tromi (resp. nepárnym po£tom) kvarkov, s celkovým polo£íselným
spinom. Mezóny sú hadróny tvorené dvomi (resp. párnym po£tom) kvarkov, s celkovým celo£íselným
spinom.
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• Naj©ah²ie kvarky, u, d, vytvárajú nukleóny - protóny a neutróny (baryóny) - aj pióny (mezóny),
sprostredkujúce väzbu nukleónov do atómových jadier. Táto interakcia je zvy²kovou silnou interak-
ciou.
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Gravitácia

Newtonov gravita£ný zákon pre silové pôsobenie gravita£ného po©a telesa o hmotnosti M na
teleso o hmotnosti m vo vzdialenosti r je

~F = −κNmM
r2

~r 0 = −m∇φ(~rm) = m~g(~rm)

kde κN je Newtonova gravita£ná kon²tanta, a

φ(~r) = −κNM
r

~g(~r) = −∇φ(~r)

sú potenciál a intenzita tohto gravita£ného po©a, odpovedajúca gravita£nému zrýchleniu. Pre obje-
movú hustotu hmotnosti ρ(~r) (ako ºriedla gravita£ného po©a) platí

−∇ · ~g(~r) = ∇2φ(~r) = 4πκNρ(~r)

O£ividnými nedostatkami tejto teórie, z poh©adu teórie relativity, sú okamºité pôsobenie na dia©ku
(vyjadrené potenciálom φ(~r)) a koncepcia absolútneho priestoru (a £asu). Táto £as´ sa preto venuje
zov²eobecneniu newtonovskej teórie aj na prípady ve©kých rýchlostí a hmotností - v²eobecnej teórii
relativity, jej základným my²lienkam, koncepciám a rovniciam.

V.1 Zakrivený £asopriestor.

V.1.1 Princíp ekvivalencie.

Jedným zo základných princípov v²eobecnej relativity je princíp ekvivalencie:

Pozorovate© vo©ne padajúci v gravita£nom poli nevie odlí²i´ svoj stav od stavu pokoja.1

Gravita£né pole je teda relatívne - vo©ne padajúci pozorovate© ho (vo svojom okolí) necíti. Ostatné
vo©ne padajúce objekty sa vo£i nemu nehýbu - môºe vyhlási´, ºe je v pokoji. Ani pozorovate© v
uzavretej kabíne nevie rozlí²i´ ú£inok tiaºe v stojacej kabíne od ekvivalentného rovnomerného zvislého
zrýchlenia kabíny nahor.2 Ekvivalencia gravita£nej a zotrva£nej hmotnosti implikuje, ºe

1Kozmonauti a para²utisti dôverne poznajú �beztiaºový� stav.
2Nenechajme sa zmias´ fyziologickým prechodným pocitom pri zmene zrýchlenia - v okamihu skoku do prázdna £i

rozbehnutia kabíny.
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gravita£né pole môºeme zru²i´ alebo vytvori´ zrýchlením.

Lú£ svetla prenikajúci zboku do zrých©ujúcej kabíny sa z poh©adu pozorovate©a v
kabíne zakrivuje akoby gravita£ne padal (obr.). Vieme v²ak, ºe svetelný lú£ sa (v
rovnorodom prostredí) ²íri po najkrat²ej dráhe - znamená to, ºe priestor zrých-
©ujúcej kabíny je (z poh©adu pozorovate©a v kabíne) zakrivený. Pod©a princípu
ekvivalencie to isté platí o gravita£nom poli.

Pozorovate© na rovnomerne rotujúcom disku pozoruje, ºe v dôsledku relativistickej kontrakcie d¨ºky
nehybných meradiel, rozostavených okolo disku pozd¨º jeho obvodu, s rastúcou rýchlos´ou narastá
pomer jeho obvodu ku polomeru, l

r
= 2πγ. Znamená to, ºe rotujúci disk - neinerciálna sústava s

dostredivým zrýchlením - má zakrivenú geometriu.3 Pod©a princípu ekvivalencie rovnaké zakrivenie
priestoru existuje v gravita£nom poli hmotného objektu.

Predpokladajme kabínu o vý²ke h ²tartujúcu v £ase t = 0 zo zeme z = 0 so
zvislým zrýchlením ~g (obr.). Zdroj A (na strope) vysiela nadol sériu svetelných
pulzov v £asoch tA, tA + ∆A, ..., a detektor B (na podlahe) ich prijíma v £asoch
tB, tB + ∆B, .... Pre okamºité polohy zdroja a detektoru v rôznych £asoch platí
(pre jednoduchos´ predpokladajme tA = 0 a malé rýchlosti, takºe relativistické
efekty môºeme zanedba´)

zB(t) =
1

2
gt2 zA(t) =

1

2
gt2 + h

zA(tA)− zB(tB) = ctB ∼= h zA(tA + ∆A)− zB(tB + ∆B) = c[tB + ∆B − (tA + ∆A)]

Kombinovaním (predpokladajúc krátke periódy pulzov, ∆2
A,B → 0) dostávame

∆B = ∆A

(
1− gh

c2

)
Pre pozorovate©a B teda medzi dvoma po sebe idúcimi pulzmi ubehol krat²í £as neº pre pozorovate©a
A. Pod©a princípu ekvivalencie v kabíne v pokoji £as plynie pomal²ie4 v silnej²om gravita£nom poli
so zápornej²ím potenciálom φB (pamätajme, ºe φ(r) < 0, φ(∞)

!
= 0).

Pre frekvencie svetla νA,B ∼ 1/∆A,B v zrých©ujúcej kabíne to znamená (dopplerovský) posuv spektra
medzi zdrojom A a prijíma£om B na opa£nom konci kabíny. Pod©a princípu ekvivalencie rovnaký
posuv spôsobuje gravita£né pole. Ak uváºime, ºe v gravita£nom poli gh = |φA−φB|, £o je rozdiel gra-
vita£ných potenciálov, vo ve©kej vzdialenosti A (φA = 0) od povrchu ºiariaceho telesa B o hmotnosti
M a polomere RM (φB = −κNM

RM
) dostaneme gravita£ný £ervený posuv

νA = νB

(
1 +

φB
c2

)
= νB

(
1− κNM

RMc2

)

Zakrivenie £asopriestoru v zrých©ujúcej sústave/gravita£nom poli znamená obmedzenie platnosti zá-
konov ²peciálnej relativity. Princíp ekvivalencie v²ak umoº¬uje v rozumnom okolí kaºdého bodu ©u-
bovo©ne zakriveného £asopriestoru nahradi´ jeho metriku Minkowského metrikou - lokálnou iner-
ciálnou sústavou s ortogonálnou ²tvorvektorovou bázou. Vo©ne padajúce laboratórium (dostato£ne
malé) je tieº takouto lokálnou inerciálnou sústavou.

3Je to tzv. Ehrenfestov paradox.
4Naozaj, s narastajúcou nadmorskou vý²kou na povrchu Zeme pozorujeme zrých©ovanie chodu hodín - £asu, pri-

bliºne o 1ns za de¬ na kaºdých 100m nadmorskej vý²ky. Táto skuto£nos´ limituje jeden zo základných postulátov
²peciálnej relativity: rýchlos´ c je invariantom len lokálne!

124



V.1.2 Metrika zakriveného £asopriestoru.

Za£nime metrikou plochého euklidovského 3D priestoru: Kvadrát vzdialenosti dvoch bodov nezávisí
od výberu súradnicovej sústavy,

ds2 = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 →

(
D∑
µ

D∑
ν

)
gµνdx

µdxν = g′µνdx
′µdx′ν

kde gµν je metrika (metrický tenzor, xµ a x′µ odpovedajú rovnakému bodu v rôznych súradnicových
sústavách, µ, ν = 1, 2, 3, ). Tá sa v²ak pri prechode medzi súradnicovými sústavamimení. V kartézskej
sústave gµν = δµν , v sférických súradniciach g11 = grr = 1, g22 = gθθ = r2, g33 = gϕϕ = r2 sin2 θ, a
ostatné nulové (prvky matice nemusia ma´ rovnaký rozmer, a diagonálnos´ je vecou praktickej vo©by).
Lineárna in�nitezimálna transformácia súradníc (kone£ná transformácia súradníc je vo v²eobecnosti
nelineárna) je

dx′µ =
∂x′µ

∂xν︸︷︷︸ dxν = Aµν(x)︸ ︷︷ ︸ dxν (µ - riadok, ν - st¨pec) dxµ =
∂xµ

∂x′ν︸︷︷︸ dx′ν = (A−1)µν(x
′)︸ ︷︷ ︸ dx′ν

V porovnaní napr. s maticou rotácie sa transforma£ná matica Aµν(x) vo v²eobecnosti mení s polohou,
a odpovedajúco sa mení aj metrika

g′σρ(x
′) = gµν(x) (A−1)µσ(A−1)νρ

Dá sa ukáza´, ºe invariantným vo£i transformácii súradníc vD-rozmernom priestore je jeho objemový
element v tvare

dDx
√
g = dDx′

√
g′

kde g je determinant matice metriky gµν . V kartézskych/sférických súradniciach 3D euklidovského
priestoru to znamená dxdydz = drdθdϕr2 sin θ, ke¤ºe gxyz = 1 a grθϕ = r4 sin2 θ.

Pri zakrivenom £asopriestore je z h©adiska v²eobecnej relativity podstatná len tzv. vnútorná kri-
vos´.5 Na rozdiel od Minkowského metriky (kap. I.3.1), v zakrivenom £asopriestore

c2dτ 2 6= c2dt2 − dx2 − dy2 − dz2

V predchádzajúcej kapitole V.1.1 sme videli, ako newtonovské gravita£né pole s potenciálom φ za-
krivuje (spoma©uje) £as. V ¤al²om texte ukáºeme zakrivenie priestoru týmto po©om. Ani metrika
newtonovskej gravitácie teda nie je metrikou plochého £asopriestoru. Nerelativistická limita ú£inku
pre (vo©nú) £asticu o hmotnosti m (kap. I.3.1) roz²írená o potenciálnu energiu v gravita£nom poten-
ciáli φ je

S = −mc
∫ b

a

ds →
∫ tb

ta

(
1

2
mv2 −mc2 −mφ

)
dt = −mc2

∫ tb

ta

(
1 +

φ

c2
− v2

2c2

)
dt

Porovnaním podintegrálnych výrazov dostávame v slabom gravita£nom poli a v limite v2

c2
→ 0 faktor

zmeny £asomiery z kap. V.1.1, dt
(
1 + φ

c2

) ∼= dt
√

1 + 2φ
c2
, ako aj newtonovskú metriku

ds2 =

(
1 +

2φ

c2

)
c2dt2 − dr2

5Napr. plá²´ cylindra má len vonkaj²iu krivos´ (rozstrihnutím dostaneme rovinu) - je to 2D plocha vloºená do 3D
euklidovského priestoru. Nedá sa to urobi´ s plá²´om gule - má aj vnútornú krivos´. Ke¤ºe nedokáºeme vystúpi´ z
ná²ho Vesmíru, vonkaj²ia krivos´ nás nezaujíma!
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V.1.3 Geodetika.

V Minkowského £asopriestore je (£asu-podobná) vzdialenos´ dvoch udalostí A,B daná vz´ahom

lAB = c

∫ B

A

dτ =

∫ B

A

√
(cdt)2 − (d~r)2 =

∫ 1

0

√(
c
dt

dξ

)2

−
(
~r

dξ

)2

dξ =

∫ 1

0

√
ηµν

dxµ

dξ

dxν

dξ
dξ

kde v posledných výrazoch sme sveto£iaru parametrizovali monotónne sa meniacou premennou ξ,
nadobúdajúcou v krajných bodoch A,B hodnoty 0,1. Ke¤ºe táto vzdialenos´ odpovedá extremálnemu
vlastnému £asu, povaºujme integrand za �lagrangián�, a ELR zapí²me v tvare

∂L̃

∂xµ
− d

dξ

(
∂L̃

∂(dxµ/dξ)

)
= 0 L̃

(
xµ,

dxµ

dξ

)
=

√
ηµν

dxµ

dξ

dxν

dξ
=
dτ

dξ

Po dosadení a úprave dostávame klasické pohybové rovnice pre vo©nú £asticu

d2xµ

dτ 2
=
duµ

dτ
= 0

Vo v²eobecnej relativite je £astica vo©nou, ak na ¬u nepôsobí ºiadna sila okrem gravita£nej (tá sa,
v zmysle princípu ekvivalencie, za silu nepovaºuje - je to vlastnos´ £asopriestoru). Sveto£iara vo©nej
£astice medzi dvomi udalos´ami (v £asu-podobnej vzdialenosti) odpovedajúca extremálnemu vlast-
nému £asu sa nazýva geodetikou. (Predpokladáme, ºe £astica samotná ku zakriveniu £asopriestoru
neprispieva.) V tomto prípade ηµν → gµν(x)

L̃

(
xµ,

dxµ

dξ

)
=

√
gµν

dxµ

dξ

dxν

dξ

a rovnica geodetiky (po analogickom odvodzovaní) nadobúda tvar

d2xσ

dτ 2
= −Γσµν(x)

dxµ

dτ

dxν

dτ
resp.

duσ

dτ
= −Γσµν(x)uµuν

kde
Γσµν(x) =

1

2
gσρ(x)[∂µgνρ(x) + ∂νgµρ(x)− ∂ρgµν(x)]

sú tzv. Christo�elove symboly (Γσµν = Γσνµ). Ide o relativistickú verziu Newtonovho gravita£ného
zákona

d2xj
dt2

= −∂φ(xj)

∂xj

pri£om klasická koncepcia gravita£ného potenciálu φ sa úplne premietla do zakrivenia metriky gµν
vyjadreného prostredníctvom Γµνσ. Zdrojom sily/zrýchlenia, nahrádzajúcim priestorové variácie new-
tonovského gravita£ného potenciálu, sú £asopriestorové variácie metriky, £iºe zakrivenie £asopries-
toru.

Svetelný lú£ sa takisto ²íri pozd¨º tzv. nulovej geodetiky6, ds2 = 0. V rámci newtonovskej mecha-
niky by gravita£né pôsobenie telesa o hmotnostiM spôsobilo prostredníctvom dostredivého zrýchlenia
svetla (ako nosite©a energie-hmotnosti) zmenu (smeru) rýchlosti ∆~v = −

∫ κNM~r(t)
r(t)3

dt = −
∫ t

0
κNM
cr2

dr

a odpovedajúci uhol ohybu svetla ∆ϕ ∼= ∆v
c
∼= 2κNM

c2r
= RS

r
. Po zapo£ítaní zakrivenia £asopries-

toru v²ak dostávame správny dvojnásobný uhol. Pre vzdialeného pozorovate©a toto zakrivenie dráhy
lú£a v prítomnosti hmotnosti znamená £asové oneskorenie - relatívne globálne spomalenie svetla (pri
kon²tantnej lokálnej rýchlosti c).

6Na nulovej geodetike vlastný £as τ stráca svoj význam, a nemoºno ním geodetiku parametrizova´. V rovnici
geodetiky preto τ → ξ, a uµ = dxµ

dξ je jednotkový tangenciálny vektor.
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V.1.4 Kovariantná derivácia.

V zakrivenom (£aso)priestore je vektor v danom bode trajektórie de�novate©ný len v tangenciálnom
plochom priestore - akomsi lokálnom laboratóriu - len tam sa vektory riadia obvyklou algebrou.
Vektory de�nované v rôznych bodoch teda ºijú v rôznych tangenciálnych priestoroch - polohový
vektor a vektor kone£ného posunutia nemajú zmysel. Takéto lokálne laboratórium sa posúva po
trajektórii, pri£om kaºdému bodu prira¤ujeme vlastnú ortonormálnu (²tvor)vektorovú bázu ~eµ(xν),
v ktorej �ºijú� experimentálne merate©né veli£iny.

Zmeny vektorov pozd¨º (£aso)priestorovej trajektórie - a teda aj ich derivácie - kon²truujeme pomo-
cou paralelného posuvu (obr. a). V plochom (£aso)priestore sa paralelným posuvom smer vektora
zachová, £o vidíme aj pri uzavretej trajektórii na 2D euklidovskej ploche (obr. b). Paralelným posu-
vom po uzavretej trajektórii na gu©ovej ploche (obr. c) sa v²ak do východiskového bodu vektor vráti
so zmeneným smerom.

Uvaºujme vnútorne zakrivenú 2D plochu povrchu gule, vnorenú do 3D euklidovského priestoru.7 Sú-
radnice bodu P na tejto ploche v jej súradnicovej sústave sú xµ, µ = 1, 2, kým v 3D súradniciach
sú Xj, j = 1, 2, 3. Z poh©adu 3D súradníc de�nujme dvojicu bázových
(3-zloºkových) vektorov ~eµ =

∂Xj
∂xµ

= ∂µXj leºiacich v 2D zakrive-
nej ploche (resp. v rovine tangenciálnej k bodu P), ur£ujúcich polohu
kaºdého bodu zakrivenej plochy. Ke¤ºe dXj =

∂Xj
∂xµ

dxµ = ~eµdx
µ, pre

kvadrát vzdialenosti dvoch in�nitezimálne blízkych bodov platí

ds2 = dX2
j = ~eµ · ~eν dxµdxν

!
= gµνdx

µdxν

£iºe pre metriku platí gµν = ~eµ · ~eν . Posúvaním bodu P po zakrivenej ploche sa bázové vektory budú
meni´ ako

∂ν~eµ =
∂~eµ
∂xν

=
∂

∂xν
∂Xj

∂xµ
= ∂ν∂µXj

Takýto vektor obsahuje vo v²eobecnosti okrem tangenciálnej aj zloºku normálovú k povrchu, £o
môºeme zapísa´ v tvare

∂ν~eµ = Γσµν~eσ +Kµν~n

kde Γσµν (Christo�elove symboly) a Kµν sú symetrické vzh©adom na µν. De�nujme teraz na tejto
ploche (resp. v tangenciálnej rovine, z poh©adu 3D súradníc) vektorové pole ~v(x) = vµ(x)~eµ(x).
Ke¤ºe bázové vektory sa menia s posunom po zakrivenej ploche, odpovedajúca zmena vektorového
po©a je

∂ν~v(x) = [∂νv
µ(x)]~eµ(x) + ~v(x)∂ν~eµ(x) = [∂νv

µ(x)]~eµ(x) + vσ(x)Γµσν~eµ + vµ(x)Kµν~n

Pre pozorovate©a, ktorého �ºivotným priestorom� je zakrivená plocha, dimenzia kolmá na tento po-
vrch (posledný £len) neexistuje - na zakrivenej ploche teda de�nuje kovariantnú deriváciu pod©a
súradníc8

Dν~v = [∂νv
µ + Γµνσv

σ︸ ︷︷ ︸]~eµ = (Dνv
µ)︸ ︷︷ ︸~eµ Dνv

µ = ∂νv
µ + Γµνσv

σ

7Táto 2D plocha je zjednodu²ením 4D £asopriestoru.
8Index ν tu znamená deriva£nú premennú xν , nie index ²tvorvektorovej komponenty!
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ako mieru zmeny vektorového po©a, zahrnujúcu krivos´ plochy (resp. £asopriestoru, po roz²írení úvahy
na 4D). Prvá zloºka - tenzor 9 ∂νvµ - je mierou zmeny vektorového po©a, kým druhá zloºka zoh©ad¬uje
zmenu metriky.

Ak opä´ parametrizujeme trajektóriu monotónne sa meniacou premennou ξ, teda xµ = xµ(ξ), kova-
riantná derivácia (²tvor)vektoru pod©a ξ nadobudne tvar10

Dνv
µdx

ν

dξ
= (∂νv

µ + Γµνσv
σ)
dxν

dξ

Ak stotoºníme ξ s vlastným £asom τ , potom dxµ

dτ
= uµ je ²tvorvektor rýchlosti, a

uνDνv
µ = uν (∂νv

µ + Γµνσv
σ) =

dvµ

dτ
+ Γµνσu

νvσ
!

= Duv
µ

(
dvµ

dτ
=
dxν

dτ
∂νv

µ = uν∂νv
µ

)
Výraz Duv

µ má teda význam kovariantnej £asovej derivácie vektoru vµ pod©a vlastného £asu. Ak za
vektor vµ dosadíme samotné uµ, dostávame

Duu
µ =

duµ

dτ
+ Γµνσu

νuσ

Výraz na pravej strane je ale pod©a rovnice geodetiky (kap. V.1.3) nulový. Rovnicu geodetiky teda
môºeme zapísa´ v tvare

Duu
µ = 0

V.1.5 Tenzory krivosti.

Pozorovanie zakrivenia (£aso)priestoru je moºné pomocou merania vzájomnej vzdialenosti (najme-
nej) dvoch vo©ne padajúcich objektov. Predpokladajme teda vo©ný pád pozorovate©a a testovacieho
objektu pozd¨º svojich geodetík.

Nech okamºité súradnice pozorovate©a a (in�nitezimálne) blízkeho po-
zorovaného objektu sú xj(t) a xj(t)+ζj(t). V newtonovskej mechanike
v gravita£nom poli s potenciálom φ (obr.) platí

d2xj
dt2

= −∂φ(xj)

∂xj

d2(xj + ζj)

dt2
= −∂φ(xj + ζj)

∂xj
∼= −

∂

∂xj

(
φ(xj) +

∂φ(xj)

∂xk
ζk + ...

)
Od£ítaním oboch rovníc dostávame pre £asový vývoj vzájomnej vzdia-
lenosti

d2ζj
dt2

= − ∂2φ

∂xjxk
ζk

Tenzor ∂2φ
∂xjxk

je mierou tzv. slapovej sily - vzájomného pri´ahovania11 pozorovate©a a testovacieho

objektu, a výraz d2ζj
dt2

predstavuje zrýchlenie vektoru ζj, odpovedajúce tejto slapovej sile.

9Podobne ako gradientom skaláru je vektor, gradientom vektoru musí by´ tenzor, rozli²ujúci smer zloºiek vektoru
od smeru derivovania.

10Vyuºili sme pravidlo derivovania zloºenej funkcie.
11Ak by ζ bola vzdialenos´ou objektov pozd¨º pohybu (pádu), slapová sila by odpovedala ich odpudzovaniu. (Dô-

sledkom slapových síl je príliv-odliv morí.) V zmysle princípu ekvivalencie na zrých©ujúce teleso pôsobia rovnaké sily.
Ke¤ºe pôsobenie sily sa pozd¨º telesa prená²a kone£nou rýchlos´ou (spravidla rýchlos´ou zvuku), zrých©ujúce tuhé
teleso sa roztrhne.
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V zakrivenom (£aso)priestore treba £asové derivácie nahradi´ kovariantnými deriváciami (pod©a
vlastného £asu, kap. V.1.4), d

2ζj
dt2
→ DuDuζ

µ, £o po dosadení a úpravách dá tvar

DuDuζ
µ = −Rµ

νσρu
νζσuρ Rµ

νσρ =
∂Γµνρ
∂xσ

− ∂Γµνσ
∂xρ

+ ΓµσλΓ
λ
νρ − ΓµρλΓ

λ
νσ

kde Rµ
νσρ jeRiemannov tenzor krivosti, komplexne mapujúci krivos´ £asopriestoru.12 Táto rovnica

je relativistickým zov²eobecnením predchádzajúcej (newtonovskej) rovnice pre slapové sily. Slapové
sily sú teda prejavom zakrivenia £asopriestoru.

Alternatívnymi veli£inami úspornej²ie opisujúcimi krivos´ £asopriestoru (vyuºijúc symetrie Rieman-
novho tenzoru) sú symetrický Ricciho tenzor13

Rνρ = Rσ
νσρ = gµσRµνσρ Rνρ = Rρν

Ricciho skalár (skalárna krivos´)14

R = Rν
ν = gνρRνρ

a symetrický Einsteinov tenzor15

Gνρ = Rνρ −
1

2
gνρR Gνρ = Gρν

V²etky uvedené formy kvanti�kovania krivosti £asopriestoru sú nástrojmi na opis £asopriestorových
trajektórií hmoty-energie. Pojem gravita£ného po©a sa prevtelil do zakrivenosti £asopriestoru. O
zdrojoch tejto zakrivenosti pojednáva nasledujúca kapitola.

� � � � �

Dôleºité závery:

• Pod©a princípu ekvivalencie sústava v gravita£nom poli je lokálne ekvivalentná sústave so zrýchle-
ním.

• Gravita£né pole spôsobuje zakrivenie £asopriestoru. V silnej²om gravita£nom poli plynie £as po-
mal²ie. Pozorovate© zaznamená gravita£ný £erveny posuv signálov prichádzajúcich zo silnej²ieho gra-
vita£ného po©a. Svetlo sa ²íri rýchlos´ou c len lokálne. Prejavom zakrivenia priestoru sú slapové
sily.

• V gravita£nom poli sa vo©ná £astica pohybuje po geodetike.

• �asopriestorovú deriváciu ²tvorvektoru v zakrivenom £asopriestore nahrádzame kovarianou derivá-
ciou, zahr¬ujúcou aj £asopriestorovú zmenu metriky. Zmenu metriky vyjadrujeme prostredníctvom
Christo�elových symbolov.

• Zakrivenie £asopriestoru kvanti�kujeme (v závislosti od miery podrobnosti) Riemannovým tenzo-
rom, Ricciho tenzorom, Ricciho skalárom a Einsteinovým tenzorom.

12V¤aka viacerým symetriám má tento tenzor 4×4×4×4 len 20 nezávislých komponent.
13Predstavme si sférický oblak vo©ne padajúcich £astíc. Slapové sily splo²´ujú oblak v smere kolmom na pohyb a

roz´ahujú ho v smere pohybu. Objem oblaku sa pritom nemení. Ricciho tenzor opisuje tieto relatívne zmeny v rôznych
smeroch.

14V Einsteinovej konvencii ide o dvojitú sumu, £iºe skalár. Ricciho skalár vyjadruje akúsi spriemerovanú krivos´ cez
priestor aj £as.

15Einsteinov aj Ricciho tenzor majú v¤aka symetriám len 10 nezávislých zloºiek. Einsteinov tenzor obsahuje zloºky
úmerné Γ2 ∼ (∂g)2 a ∂Γ ∼ ∂2g.
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V.2 Rovnice gravita£ného po©a.

V.2.1 Zdroje zakrivenia £asopriestoru.

Pozorovaním Vesmíru vieme, ºe zdrojmi zakrivenia £asopriestoru sú ve©ké hmotnosti, a teda ve©ké
energie. Prirodzeným kandidátom na ich matematickú reprezentáciu je preto tenzor energie-hybnosti-
napätia (kap. I.3.4 a Dodatok D). V plochom £asopriestore ²peciálnej relativity platia zákony zacho-
vania

∂νT
µν = 0

Najjednoduch²ím (kozmologicky relevantným) modelom rozloºenia hmoty je ideálna tekutina16 v
pokoji s tenzorom T µν = diag(ρc2, P, P, P ), kde ρ a P sú jej hustota a tlak. Tento diagonálny tenzor
môºeme prepísa´ na tvar

T µν =

(
ρ+

P

c2

)
c
0
0
0

 (c 0 0 0)− Pηµν

Kde st¨pcový/riadkový vektor predstavuje vektor ²tvorrýchlosti v pokojovej sústave hmoty. Vo v²e-
obecnosti pre systém pohybujúci sa ²tvorrýchlos´ou uµ môºeme písa´17

T µν =

(
ρ+

P

c2

)
uµuν − ηµνP

Hustota energie a tlak v²ak vo v²eobecnosti nie sú nezávislé - súvis medzi nimi upravuje modelová
stavová rovnica v tvare

P = wρc2

kde w je koe�cient závislý od druhu energie. Rozli²ujeme tri základné prípady:

Prípad w = 0, £iºe P = 0, opisuje hmotný �prach� - hmotné £asti látky - telesá. Ná² modelový tenzor
energie-hybnosti sa redukuje na tvar T µν = diag(ρc2, 0, 0, 0).

Iným typom energie je ºiarenie. Pre elektromagnetické ºiarenie má tenzor energie-hybnosti pod©a
teórie tvar T µν = ε0c

2[F µρFνρ − 1
4
δµνF

ρσFρσ] (F µν je elektromagnetický tenzor, kap. III.3.3), £o je
tenzor s nulovou stopou. Na základe toho poºadujeme nulovú stopu aj pre ná² modelový tenzor
T µν = T µρηρν = diag(ρc2,−P,−P,−P ) pre prípad ºiarenia, £o vedie na ρc2 = 3P , a teda w = 1

3
pre

ºiarenie.

�peciálnym je prípad w = −1, £iºe P = −ρc2 a T µν = ρc2δµν . Týmto £lenom modelujeme energiu
vákua - tzv. temnú energiu18 - o objemovej hustote (konven£ne vyjadrenej ako)

ρvacc
2 =

c4Λ

8πκN
T µνvac = ρvacc

2ηµν =
c4Λ

8πκN
ηµν

kde Λ je tzv. kozmologická kon²tanta (s rozmerom m−2). Pod©a sú£asných predstáv zostáva
táto hustota ko²tantnou (pozostáva s kon²tánt) aj pri rozpínaní Vesmíru (na rozdiel od hustoty
látky). Fyzikálny význam kozmologickej kon²tanty podrobnej²ie rozoberieme v kap. V.3.2.19 Výraz
Pvac = −ρvacc2 interpretujeme ako záporný tlak. Ako uvidíme neskôr, tento záporný tlak je zdrojom
gravita£ného odpudzovania (rozpínania Vesmíru).

16Atribútmi ideálnej tekutiny sú ideálna tepelná vodivos´ a zanedbate©ná viskozita/dissipácia.
17Otázkou referen£nej sústavy, vzh©adom na ktorú túto rýchlos´ ur£ujeme, sa budeme zaobera´ v kap. V.3.1.
18angl. dark energy
19Fyzikálna podstata temnej energie je v²ak v sú£asnosti nevyjasnená.
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Prechod ku metrike zakriveného £asopristoru znamená nielen ηµν → gµν , ale aj prechod ku kova-
riantným deriváciám. Vy²²ie uvedené zákony zachovania prejdú na tvar

DνT
µν = 0

V.2.2 Einsteinova rovnica.

Pri h©adaní súvisu tenzoru energie-hybnosti, ako zdroja £asopriestorového zakrivenia, s tenzormi
opisujúcimi toto zakrivenie (kap. V.1.5) vychádzame zo zákonov zachovania DνT

µν = 0. Dá sa
ukáza´, ºe práve Einsteinov tenzor Gµν (kap. V.1.5) sp¨¬a pre ©ubovo©nú metriku tzv. Bianchiho
identitu

DνG
µν = Dν

(
Rµν − 1

2
gµνR

)
= 0

Je teda namieste formulova´ tzv. Einsteinovu rovnicu (ER) v tvare

Gµν = Rµν − 1

2
gµνR =

8πκN
c4

(T µν + T µνvac) resp.20 Rµ
σ −

1

2
gµσR− Λgµσ =

8πκN
c4

T µσ

ER je fundamentálnou rovnicou fyziky, a ako taká je postulovaná. Koe�cient úmernosti na pravej
strane je zvolený tak, aby zabezpe£il správnu newtonovskú limitu. Energia vákua, £iºe pridanie
kozmologickej kon²tanty Λ, pritom nemá vplyv na zákony zachovania,21 a je tieº vecou postulovania.
ER predstavuje 10 nelineárnych diferenciálnych rovníc pre metriku gµν ako pole, tieto rovnice v²ak
nie sú nezávislé - sú zviazané 4 Bianchiho identitami. Ostáva teda 6 nezávislých rovníc.

Ak v ER poloºíme σ = µ, dostávame22

R− 4

2
R + 4Λ =

8πκN
c4

T ⇒ R = 4Λ− 8πκN
c4

T T = gµνTµν = T µµ

a po dosadení R do pôvodného tvaru ER jej alternatívny tvar

Rµν =
8πκN
c4

(
T µν − 1

2
gµνT

)
+ gµνΛ

V prázdnom priestore, teda pri absencii zdrojov zakrivenia, Tµν = 0, Λ→ 0, má ER tvar

Rµν = 0

K ER sa dopracujeme aj spôsobom obvyklým z predchádzajúcich £astí textu - zo správne zostaveného
lagrangiánu a princípu extremálneho ú£inku (resp. z ELR). Lagrangián zakriveného £asopriestoru za
prítomnosti zdrojov zakrivenia musí pozostáva´ zo skaláru opisujúceho zakrivenie - Ricciho skaláru
R, lagrangiánu hmoty Lm a kozmologickej kon²tanty Λ, a jeho integrál - ú£inok - musí obsahova´
invariantný £asopriestorový element d4x

√
g (kap. V.1.2). Tzv. Einsteinov-Hilbertov ú£inok má

tvar

S =

∫ [
c4

16πκN
(R− 2Λ) + Lm

]
√
gd4x

Po ur£itej námahe, a s vyuºitím de�ni£ného vz´ahu pre T µν pri danom Lm (kap. I.3.4), dostaneme
napokon ER. Princíp extremálneho (minimálneho) ú£inku nám v tomto prípade napovedá, ºe

priestor a pohyb hmoty v ¬om sa vyvíja v £ase tak, aby sa minimalizovalo jeho zakrivenie.23

20po vynásobení gνσ
21Pre metriku platí Dνg

µν = 0.
22Výrazy Xµ

µ v Einsteinovej konvencii znamenajú stopu tenzoru - skalár. Navy²e gµµ = δµµ =Tr(diag[1,1,1,1])=4.
23Analogicky ako v ²peciálnej relativite sa hmota pohybuje tak aby minimalizovala svoje �stárnutie�.
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V.2.3 Linearizovaná Einsteinova rovnica.

ER môºeme linearizova´ v prípade malej poruchy plochej metriky £asopriestoru

gµν(x
σ) = ηµν + hµν(x

σ) |hµν(xσ)| � 1

Ricciho tenzor a skalár v lineárnom priblíºení poruchy (£leny kvadratické v Γ zanedbávame, a pre
samotné ηµν je Rµν = 0) a po dosadení metriky majú tvar

Rµν =
∂Γσµν
∂xσ

−
∂Γσµσ
∂xν

= ... =
1

2
(�hµν + Ωµν) R = ∂µ∂νh

µν + �h

kde24 � = ηµν∂µ∂ν = ∂µ∂
µ je d'Alembertov (vlnový) operátor, a

Ωµν = ∂µ∂σh
σ
µ + ∂ν∂σh

σ
ν − ∂ν∂µh (hσµ = ησνhνµ , h

µ
µ = h )

ER s takýmito £lenmi je uº lineárnou diferenciálnou rovnicou pre poruchu metriky h. Navy²e, £lena
Ωµν vo výraze pre Rµν sa môºeme zbavi´ vhodnou kalibráciou25 - malou transformáciou súradníc
xµ → xµ + ξµ tak aby

h′µν = hµν −
1

2
hηµν a ∂µh′µν = 0

V tejto - tzv. lorenzovskej kalibrácii nadobudne linearizovaná ER tvar26

�h′µν = 2Rµν =
16πκN
c4

Tµν

a je analógiou nehomogénnej MXR pri lorenzovskej kalibrácii27 (kap. I.3.1)

�Aµ = µ0jµ ∂µA
µ = 0

V.2.4 Gravita£né vlny.

Hmota-energia zakrivuje £asopriestor, a pohyb hmoty-energie spôsobuje pohyb zakrivenia £asopries-
toru. Predpokladajme opä´ malé zakrivenie ako poruchu plochého £asopriestoru

gµν(x
σ) = ηµν + hµν(x

σ) |hµν(xσ)| � 1

V lorenzovskej kalibrácii nadobudne linearizovaná ER vo vákuu (v neprítomnosti hmoty) tvar

Rµν = �h′µν = 0

24V tomto lineárnom priblíºení zvy²ujeme/zniºujeme indexy pomocou Minkowského metriky.
25Po£et rovníc (10) totiº neposta£uje na úplné ur£enie v²etkých zloºiek hµν , máme teda kalibra£nú vo©nos´, ktorá

nám umoº¬uje zjednodu²i´ úlohu. Inak povedané, metrika nemá význam sama osebe, ale len v kontexte daného súrad-
nicového systému - pasívnou transformáciou súradníc teda meníme metriku, pri zachovaní kovariantnosti fyzikálnych
zákonov. Pre malé ξ platí

∂x′µ

∂xν
∼= δµν + ∂νξ

µ ∂xµ

∂x′ν
∼= δµν − ∂νξµ g′µν

∼= gµν − ∂µξν − ∂νξµ h′µν
∼= hµν − ∂µξν − ∂νξµ

26Linearizácia ER je podmienená dostato£ne malými hodnotami Tµν .
27Preto sa aj uvedená kalibrácia pre metriku nazýva lorenzovskou.
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Táto homogénna vlnová rovnica pre metriku (ako pole) je analógiou homogénnej MXR pre elektro-
magnetické pole Aµ pri lorenzovskej kalibrácii

�Aµ = ∂ν∂
νAµ = 0

Jej rie²eniami sú teda vlny zakrivenia metriky - gravita£né vlny - ²íriace sa plochým £asopriestorom
ako superpozícia harmonických rovinných v¨n

h′µν(x
σ) = εµνe

ikσxσ

kde εµν je symetrický tenzor polarizácie vlny. Dosadením do linearizovanej homogénnej ER dostá-
vame

kσk
σεµνe

ikσxσ = 0 ⇒
(ω
c

)2

− (~k)2 = 0

£o znamená, ºe gravita£né vlny sa ²íria rýchlos´ou c. Sú£asne lorenzovská kalibrácia ∂µh′µν = 0 vedie
na

kµεµν = 0

£o odpovedá prie£nej polarizácii. Z 10 nezávislých prvkov symetrickej (4 × 4) matice εµν táto pod-
mienka �xuje 4. Dá sa ukáza´, ºe dodato£nou transformáciou súradníc (pri dodrºaní lorentzovskej
podmienky) môºeme dosiahnú´

εµµ = 0 a sú£asne ε0µ = εµ0 = 0

£ím �xujeme ¤al²ie 4 stupne vo©nosti. Ostávajú teda dva nezávislé polariza£né stupne vo©nosti.

Predpokladajme (pre ilustráciu) vlnu postupujúcu v smere osi z, kµ =
(
ω
c
, 0, 0, ω

c

)
, £o dodato£ne

znamená ε3µ = εµ3 = 0, a dve nezávislé prie£ne polarizované vlny s amplitúdami h+, h× potom sú

h′µν+ (z, t) = h+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 eiω(z−ct)/c h′µν× (z, t) = h×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 eiω(z−ct)/c

Ú£inok slapových síl takýchto v¨n na sférický �testovací hmotný oblak� by sa prejavil v jeho prie£nom
deformovaní do elipsoidu, a to v smeroch x, y pre vlnu h+ a v diagonálnych smeroch pre vlnu h×, bez
zmeny v pozd¨ºnom smere osi z (obr.).

Z charakteru polarizácie gravita£nej vlny (a porovnania s elektromagnetickou vlnou) môºeme vy-
dedukova´ jej zdroje: Kým na generovanie elektromagnetickej vlny (vektoru) posta£uje oscilujúci
dipólový moment (vektor), na generovanie gravita£nej vlny (tenzoru) je potrebný oscilujúci kvadru-
pólový moment (tenzor).28

28Takým je napr. �£inka� rotujúca okolo inej neº pozd¨ºnej osi. Rotujúca sféricky symetrická hmota gravita£né
vlny nevyºaruje (zákon zachovania momentu hybnosti). Taktieº nevyºaruje hmota v rovnomernom pohybe (zákon
zachovania hybnosti).
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V.2.5 Spin 2.

Z predchádajúceho textu vidíme, ºe gravita£né pole je reprezentované tenzorom krivosti 4×4. Lo-
rentzovská transformácia generického tenzoru Xµν je

Xµν → Λµ
σΛν

ρX
σρ

Táto 16-zloºková reprezentácia je v²ak reducibilná: �ubovo©ný tenzor môºeme rozloºi´ na symetrický
a antisymetrický tenzor na základe identity

Xµν =
1

2
(Xµν +Xνµ) +

1

2
(Xµν −Xνµ) = Sµν +Aµν

pri£om symetrickos´/antisymetrickos´ sa pri lorentzovskej transformácii zachováva. (Znamená to, ºe
zloºky Sµν a Aµν sa medzi sebou nemie²ajú.) Rovnako sa pri lorentzovskej transformácii zachováva
stopa (symetrického) tenzoru S = ηµνSµν , £iºe pôvodná 16-rozmerná reprezentácia sa redukuje na
9-rozmernú (symetrickú s nulovou stopou), 6-rozmernú (antisymetrickú) a 1-rozmernú (stopu),

4⊗ 4 = 9⊕ 6⊕ 1

Ke¤ºe tenzor energie-hybnosti T µν je symetrický, pod©a ER musia by´ symetrickými aj tenzory
zakrivenia, pracujeme teda v 9-rozmernej reprezentácii.29 Pod©a kap. II.4.3 tomu odpovedá

9 = (2j+ + 1)(2j− + 1) j = j+ + j− = 1 + 1 = 2

£iºe spin 2. V podgrupe £isto priestorových rotácií sa táto reprezentácia opä´ redukuje na

3⊗ 3 = 5⊕ 3⊕ 1

kde 5-rozmerná reprezentácia odpovedá práve hodnote j = 2 (5 moºných priemetov spinu).

Tak ako v prípade nehmotného vektorového po©a (spin 1) je identitou priestorová rotácia o 360◦ a
uhol medzi dvoma prie£nymi polarizáciami 90◦, v prípade gravita£ného po©a (spin 2) je identitou
priestorová rotácia o 180◦ a uhol medzi dvoma prie£nymi polarizáciami 45◦ (kap. V.2.4).

V.2.6 Energia gravita£nej vlny.

V newtonovskej fyzike de�nujeme hustotu energie gravita£ného po©a

wg = − 1

8πκN
(∇φ(~r)2) = − 1

8πκN
ρ2(~r)

(záporné znamienko sved£í o prí´aºlivej sile). V zmysle princípu ekvivalencie vo v²eobecnej relativite
v²ak vo©bou lokálnej inerciálnej sústavy (lokálne plochý £asopriestor vo vo©ne padajúcej kabine) do-
káºeme gravita£né pole eliminova´ (∇φ(~r) odpovedá lokálnemu zakriveniu £asopriestoru). Koncept
lokálnej hustoty gravita£nej energie teda stráca zmysel.30 Vo©né hmotné objekty sa pohybujú po
geodetikách daných zakrivením £asopriestoru, sú£asne v²ak £asopriestor zakrivujú (pod©a ER). Gra-
vita£ný potenciál je teda len nerelativistickou aproximáciou - pre ve©ké alebo rýchlo sa pohybujúce

29Antisymetrickými sú napr. tenzor lorentzovských rotácií Jµν z kap. II.4.2 alebo tenzor elektromagnetického po©a
Fµν z kap. III.3.3.

30Kon²tantná energia je dôsledkom symetrie Minkowského £asopriestoru vo£i £asovej translácii, a to pri meniacej sa
metrike zakriveného £asopriestoru neplatí.
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hmotnosti ho nevieme dobre de�nova´. Zakrivenie £asopriestoru generované hmotnos´ou sa pohybuje
spolu s ¬ou.

Napriek tomu v²ak môºeme gravita£nej vlne v kone£nom objeme (dostato£ne ve©kom vzh©adom
na relevantné vlnové d¨ºky) prostredníctvom ER priradi´ tenzor energie-hybnosti31 spriemerovaním
zakrivenia v tomto objeme,

tµν =
c4

8πκN

(
〈Rµν〉 −

1

2
ηµν〈R〉

)
Ricciho tenzor a skalár vypo£ítame dosadením linearizovaných vlnových rie²ení h′µν+ (z, t) a h′µν× (z, t)
z kap. V.2.4 do naru²enej plochej metriky gµν(x

σ) = ηµν + h′µν(x
σ), a pre hustotu energie vlny

dostaneme potom výraz32

wg = t00 =
c4

16πκN
〈(∂0h

′
+)2 + (∂0h

′
×)2〉 = ... ∼ c2

κN
〈∂th′jk∂th′jk〉

Opä´ vidíme analógiu s elektromagnetickou vlnou s hustotou energie wem = ε0|E|2 = ε0|∂tA|2 vo
vákuu (|E| = c|B|). Ve©kos´ toku energie elektromagnetickej vlny (daného Poyntingovým vektorom)
je cwem = cε0|∂tA|2, a analogicky tok energie gravita£nej vlny je ∼ c3

κN
〈∂th′jk∂th′jk〉. Obrovská hodnota

c3

κN
≈ 1035Js/m2 napovedá, ºe na nepatrné zakrivenie £asopriestoru je potrebná gigantická hodnota

toku energie.33

V.2.7 Gravitomagnetizmus.

Analógie medzi linearizovanými rovnicami gravita£ného a elektromagnetického po©a majú svoj pôvod
v poºiadavke lorentzovskej kovariantnosti v priblíºení plochého £asopriestoru. Preskúmajme ju hlb²ie
na príklade dvoch paralelných (nekone£ne) dlhých homogénnych hmotných ty£í A,B s (pokojovými)
d¨ºkovými hustotami ρ̄A, ρ̄B vo vzájomnom pozd¨ºnom pohybe kon²tantnou rýchlos´ou ~v, a testo-
vacieho objektu hmotnosti m, umiestneného symetricky medzi ty£ami a v k©ude vo£i ty£i B (obr.).
Predpokladajme, ºe gravita£né pôsobenie oboch ty£í na testovací objekt je vzájomne vykompenzo-
vané.

V sústave S (spojenej s ty£ou B a testovacím objektom) rovnováha síl ~FA = −~FB znamená ρ̄B = γρ̄A
(γ > 1), kvôli relativistickej kontrakcii d¨ºky pohybujúcej sa ty£e A. (Pokojová hustota ty£e A teda
musí by´ γ-krát men²ia oproti ty£i B.) V sústave S' spojenej s ty£ou A potom platí

FA ∼ ρ̄A =
ρ̄B
γ

FB ∼ γρ̄B = γ2ρ̄A ⇒ FB 6= FA

31V nerelativistickej fyzike hovoríme, ºe gravita£né pole koná prácu.
32S£ítavame cez opakujúce sa indexy.
33To je prí£inou extrémnej vzácnosti pozorovania gravita£ných v¨n.
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Rovnováha síl teda musí by´ �zabezpe£ená� dodato£nou silou ~F ∗ závislou od rýchlosti ~v. Kvôli analógii
s elektromagnetizmom34 túto silu nazývame gravitomagnetickou. Gravita£ná sila má teda dva
zdroje - gravitoelektrické pole o intenzite ~Eg = ~g (�²tandardné� pole newtonovskej gravitácie)
generované hmotnos´ou, a gravitomagnetické pole Bg generované pohybujúcou sa hmotnos´ou
(ako analóg magnetickej indukcie ~B).35

Kombinovaním lorentzovských vz´ahov pre transformácie síl a rýchlostí vieme celkovú gravita£nú
silu pôsobiacu na objekt o hmotnosti m, pohybujúci sa (v danej referen£nej sústave) rýchlos´ou ~u v
gravita£nom poli tvorenom hmotou pohybujúcou sa rýchlos´ou ~v, vyjadri´ v lorentzovskom tvare

~F = m( ~Eg + ~u× 4 ~Bg) ~Bg =
~v

c2
× ~Eg ~Eg = ~g =

~FNewton
m

kde faktor 4 je korekcia na malé zakrivenie £asopriestoru, ktoré ²peciálna relativita nezahr¬uje.36 Lo-
rentzovským boostom gravita£ného po©a tvoreného statickým rozloºením hmoty, sp¨¬ajúcim rovnice

∇ · ~Eg = −4πκNρ ∇× ~Eg = 0 ∂t ~Eg = 0

dostávame rovnice pre gravita£né pole tvorené hmotou pohybujúcou sa rýchlos´ou ~v - tzv. gravita£né
MXR

∇ · ~Eg = −4πκNρ ∇ · ~Bg = 0 ∇× ~Eg = −∂t ~Bg

∇× ~Bg = −4πκN
c2

~j +
1

c2
∂t ~Eg kde ~j = ρ~v

Od rovníc elektromagnetického po©a sa lí²ia len37 záporným znamienkom pred zdrojmi ρ,~j, £o odzr-
kad©uje vzájomné pri´ahovanie hmotností (na rozdiel od odpudzovania nábojov rovnakej polarity).
Prostredníctvom vektorov ~Eg, ~Bg môºeme zostroji´ tenzor F µν

g analogický F µν z kap. III.3.3 a ²tvor-
vektor jµ = (cρ,~j), a nehomogénne gravita£né MXR vyjadri´ v tvare

∂µF
µν
g = −4π

c2
jν ( analogicky ako ∂µF µν = µ0j

ν pre elektromagnetické pole)

Rovnako ako v elektromagnetickom prípade, kombináciou MXR dostávame vlnové rovnice

� ~Eg = −4κN

(
∇ρ+

1

c2
∂t~j

)
� ~Bg =

4κN
c2

(
∇×~j

)
£o pri absencii zdrojov ρ,~j vedie na homogénne rovnice s rie²eniami v tvare gravita£ných v¨n s
gravita£ným Poyntingovým vektorom, hustotou energie vlny a zákonom zachovania celkovej energie
hmoty a po©a/vlny38

~Sg = − c2

4πκN
( ~Eg × ~Bg) wg = − 1

8πκN
(E2

g + c2B2
g) ∂twg +∇ · ~Sg = − ~Eg ·~j

Rovnica kontinuity pre hybnos´ vlny je zákonom zachovania celkovej hybnosti hmoty a po©a/vlny

∂t

(
~Sg
c2

)
+∇·M = −(ρ ~Eg +~j× ~Bg) M = − 1

8πκG

[
(E2

g + c2B2
g)1− 2( ~Eg ⊗ ~Eg + c2 ~Bg ⊗ ~Bg)

]
34Analogicky v prípade elektricky nabitých ty£í a testovacieho náboja odvodzujeme magnetickú Lorentzovu silu ako

relativistický efekt elektrickej sily.
35Jedným z dôsledkov gravitomagnetizmu je absencia vzájomného pri´ahovania paralelných svetelných lú£ov - gra-

vitomagnetická sila (pri rýchlosti c) presne kompenzuje vzájomné (gravitoelektrické) pri´ahovanie energie. Naopak,
dráhy antiparalelných lú£ov sa navzájom ovplyv¬ujú.

36Tieto vz´ahy sa dajú odvodi´ z linearizovanej ER v príslusnej limite a kalibrácii.
37Táto zhoda napovedá, ºe tvar MXR je daný výlu£ne lorentzovskou kovariantnos´ou vektorových polí, resp. plat-

nos´ou rovnice kontinuity pre ρ a ~j.
38Záporné znamienka na pravých stranách odráºajú gravita£né pri´ahovanie a poºiadavku nulovej potenciálnej

energie v nekone£nej vzdialenosti od zdrojov. Vo©ne padajúce teleso ju stráca v prospech energie kinetickej.
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kde39 M je 3×3 Maxwellov tenzor napätia po©a (vlny) - jeho zloºky sú tjk-zloºkami tenzoru energie-
hybnosti po©a

tµν =

(
wg ~Sg/c
~Sg/c M

)
V tenzorovom zápise tieto rovnice kontinuity nadobudnú tvar

∂νt
µν = −jνF µν

g

kde pravú stranu interpretujeme ako interakciu gravita£ného po©a s hmotou. Súhrnne sa teda zacho-
váva celková energia-hybnos´ po©a (tµν) a hmoty (T µν),

∂µ (tµν + T µν) = 0

Na záver treba znovu pripomenú´, ºe maxwellovská limita je limitou plochého £asopriestoru. V²e-
obecná teória relativity premieta energiu gravita£ného po©a/vlny do zakrivenia £asopriestoru, a si-
lovú interakciu s hmotou do vo©ného pohybu hmoty po geodetikách. V tomto zmysle nedochádza
k transféru energie-hybnosti medzi po©om a hmotou - gravita£ná sila neexistuje, a teda tµν = 0.
Môºeme to interpretova´ tak, ºe energia-hybnos´ po©a/vlny tµν = 0, vystupujúca v scenári s plochým
£asopriestorom, sa spotrebuje na jeho zakrivenie.

V.2.8 Newtonovská limita.

Newtonovskú limitu Einsteinovej rovnice dostaneme ak obe jej strany - tenzor krivosti i tenzor energie
- vyjadríme v limite malých rýchlostí a hustôt energie. Predpokladajme teda, ºe metrika £asopriestoru
sa len málo lí²i od Minkowského metriky, a nezávisí od £asu

gµν(~r) = ηµν + hµν(~r) |hµν(~r)| � 1

Potom

ds2 = (cdτ)2 = gµνdx
µdxν ⇒

(
ds

cdt

)2

=

(
dτ

dt

)2

= [ηµν + hµν(~r)]
dxµ

cdt

dxν

cdt

a v limite v/c→ 0 len zloºky µ = ν = 0 dávajú nezanedbate©ný príspevok (dx0 = cdt), a teda(
dτ

dt

)2

∼= 1 + h00(~r)

Tomu odpovedá práve newtonovská metrika diag(1+2φ
c2
,-1,-1,-1) z kap. V.1.2 s h00 = 2φ

c2
. Dosadením

do výrazov kvanti�kujúcich krivos´ dostávame

nenulové Christo�elove symboly Γj00 = ... =
∂jφ

c2

rovnicu geodetiky (dt ∼= dτ , u0 = c) d2xj
dt2

= −∂jφ (£o je Newtonova pohybová rovnica)

Ricciho tenzor R00 = ... = 1
c2
∇2φ

Einsteinov tenzor G00 = ... = 2
c2
∇2φ

Tenzor energie pre hmotu v pokoji je daný výlu£ne pokojovou hmotnos´ou, £iºe T00 = ρc2, a Ein-
steinova rovnica nadobudne správny newtonovský tvar

∇2φ(~r) = 4πκNρ(~r)

39Vyuºili sme tenzorovú identitu (∇ · ~a)~a+ (~a · ∇)~a = ∇ · (~a⊗ ~a).
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Dôleºité závery:

• Fundamentálnou rovnicou v²eobecnej relativity je Einsteinova rovnica (ER). Pod©a nej hmota/energia
zakrivuje £asopriestor, a zakrivenie £asopriestoru ur£uje pohyb hmoty/energie. Priestor a pohyb
hmoty v ¬om sa v £ase vyvíjajú tak, aby sa minimalizovalo jeho zakrivenie.

• Pre malé zdroje zakrivenia sa ER dá linearizova´ do podoby vlnovej rovnice pre poruchu plochej
metriky ako pole, v analógii s elektromagnetickým po©om. Jej rie²ením sú gravita£né vlny - vlny
zakrivenia metriky, ²íriace sa rýchlos´ou c.

•Gravita£ná vlna je prie£ne polarizovaná, s dvoma nezávislými polarizáciami, navzájom pooto£enými
o 45◦. Takejto rota£nej priestorovej symetrii (identitou je pooto£enie o 180◦) odpovedá spin 2.

• Klasický koncept gravita£ného po©a nahrádzame zakriveným £asopriestorom, ktorému energiu ne-
prira¤ujeme. Lokálne v²ak môºeme hovori´ o energii gravita£nej vlny, resp. práci ¬ou konanej.

• Pohyb hmoty/energie má dodato£ný gravita£ný ú£inok - gravitomagnetizmus, analogicky magne-
tizmu (ako silovému ú£inku pohybujúceho sa náboja). V lineárnom priblíºení pre gravitoelektrické
(t.j. �²tandardné� gravita£né) a gravitomagnetické pole platia Maxwellove rovnice analogické elek-
tromagnetickým.

V.3 Expandujúci Vesmír.

V.3.1 Metrika expandujúceho £asopriestoru.

Táto £as´ textu je venovaná fyzike Vesmíru ako celku, na priestorových ²kálach rádovo prevy²ujúcich
rozmery vesmírnych telies £i galaxií. Pozorovania Vesmíru nás vedú k postulovaniu tzv. kozmolo-
gického princípu:

Na kozmických ²kálach je Vesmír homogénny a izotropný - v²etky miesta a smery sú rovnocenné.

Pozorujeme v²ak jeho £asový vývoj - priestorovú expanziu40 kaºdého rozmeru s daným bázovým
vektorom ~ej → α(t)~ej, a to s rýchlos´ou danou empirickým Hubbleovým zákonom

v = Hr =
α̇(t)

α(t)
r

kde v je rýchlos´ vz¤a©ovania sa vesmírneho objektu v radiálnej vzdialenosti r (od pozorovate©a v
©ubovo©nom mieste Vesmíru), a H je tzv. Hubbleov parameter (kon²tanta).

40Expanziou Vesmíru rozumieme zvä£²ovanie vzdialeností medzi hmotnými objektami pri zachovaní ve©kosti týchto
objektov (v dôsledku síl ich súdrºnosti) . Ak by sa totiº meradlá vzdialenosti zvä£²ovali sú£asne s expanziou Vesmíru,
ºiadnu expanziu by sme nepozorovali!
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Poºiadavke priestorovej homogenity a izotropnosti, £iºe rovnoprávnosti
v²etkých bodov na (jednoducho súvislej) ploche (bez �dier�) vyhovujú tri
triedy zakrivených plôch (obr.) - plochá, sférická (kladná krivos´) a hyper-
bolická (záporná krivos´). Bod v plochom 3D priestore je parametrizovaný
sférickými súradnicami χ, θ, ϕ (χ vo význame tradi£ného r). Zakrivené 3D
priestory odpovedajú zakriveným 3-plochám vnoreným v 4D, a bod na ta-
kejto 3-ploche je ur£ený obdobnou trojicou premenných. Priestorové £asti
jednotlivých metrík sú41 1 0 0

0 χ2 0
0 0 χ2 sin2 θ

 Ω2

 1 0 0
0 sin2 χ 0
0 0 sin2 χ sin2 θ

 Ω2

 1 0 0
0 sinh2 χ 0
0 0 sinh2 χ sin2 θ


(Ricciho skalár je pre v²etky prípady kon²tantou, v súlade s kozmologickým princípom.) Ke¤ºe pre
prvky metrického tenzoru vo v²eobecnosti platí gµν = ~eµ ·~eν (kap. V.1.4), nenulové priestorové prvky
expandujúcej metriky budú navy²e vynásobené faktorom α2(t).42 Jednotný tvar metriky pre v²etky
tri druhy zakrivenia získame prechodom k novej premennej r = χ resp. r = sinχ resp. r = sinhχ
pre plochý/sférický/hyperbolický priestor. Pre zmenu bázy vo v²eobecnosti platí ~eχ = ∂r

∂χ
~er, a teda

gχχ =
(
∂r
∂χ

)2

grr, £o pre jednotlivé priestory dáva odpovedajúco
(
∂r
∂χ

)2

= 1, 1 − r2, 1 + r2, alebo

zjednotene 1 − kr2, kde k = 0,±1. Parameter k je teda akousi mierou (kon²tantnej) vnútornej
krivosti priestoru - nulovej pre plochý, kladnej pre sférický a zápornej pre hyperbolický priestor. V
premennej r (v rôznych významoch pre jednotlivé krivosti - obr.) dostávame teda jednotný zápis
expandujúcich £asopriestorových metrík - tzv. FLRW metriku43

gµν =


1 0 0 0

0 − α2(t)
1−kr2 0 0

0 0 −α2(t)r2 0
0 0 0 −α2(t)r2 sin2 θ



Dôsledkom expanzie priestoru je £asový nárast fyzikálnej vzdialenosti
medzi bodmi s kon²tantnými priestorovými súradnicami (r, θ, ϕ).
Ak pre t = 0 je táto vzdialenos´ L(0) = r0, jej £asový vývoj bude
L(t) = α(t)r0, resp. L(t) = α(t) arcsin r0, resp. L(t) = α(t)arsinh r0.

Svetlo sa ²íri lokálne rýchlos´ou c. Vzh©adom na expandujúcu súrad-
nicu r napr. v plochom priestore je v²ak rýchlos´ svetla cr = dr

dt
= c

α(t)
.

Ke¤ºe cr nezávisí od miesta (v homogénnom priestore závisí len od £asu), susedné maximá sa ²íria
rovnakou rýchlos´ou v²ade. Ich fyzikálna (t.j. merate©ná) vzdialenos´, ur£ujúca vlnovú d¨ºku λ, sa
v²ak mení v £ase ako λ(t) = α(t)λ0 (λ0 je vzdialenos´ nemeniaca sa v FLRW súradniciach). V
expandujúcom Vesmíre teda vlnové d¨ºky ²íriacich sa elektromagnetických v¨n postupne narastajú
(ich frekvencie sa zniºujú) - hovoríme o kozmologickom £ervenom posuve.

Pozorovaný Vesmír je vyplnený homogénnym tepelným ºiarením - kozmickým mikrovlnným po-

41Pre gu©ovú (2-)plochu v 3D platí x2 +y2 +z2 = χ2, kde x = χ cos θ, y = χ sin θ cosϕ, z = χ sin θ sinϕ. Pre gu©ovú
3-plochu o polomere Ω v 4D platí x2 + y2 + z2 + w2 = Ω2, kde x = Ω cos θ, y = Ω sin θ cosϕ, z = Ω sin θ sinϕ cosχ,
w = Ω sin θ sinϕ sinχ.
Pre (2-)plochu rota£ného hyperboloidu v 3D platí x2 + y2 − q2 = Ω2, kde x = Ω sinhχ cos θ, y = Ω sinhχ sin θ,
q = Ω coshχ. Roz²írením na 3-plochu x2 + y2 + z2 − q2 = Ω2 sa y zmení na y = Ω sinhχ sin θ cosϕ a pribudne
z = Ω sinhχ sin θ sinϕ.

42Faktor Ω2 moºeme bez újmy na v²eobecnosti zahrnú´ do α2(t).
43Friedmann, Lemaitre, Robertson, Walker
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zadím (CMB),44 ktorého teplota v dôsledku kozmologického £erveného posuvu po£as expanzie pries-
toru klesla aº na sú£asných asi 2,7K. Pri jeho meraní sa v²ak prejavuje slabá smerová závislos´ -
£ervený/modrý dopplerovský posuv jeho spektra v navzájom opa£ných smeroch, sved£iaci o pohybe
detektorov (druºica, Zem, Galaxia,...) vo£i CMB. To nám umoº¬uje pomocou CMB de�nova´ (v
kaºdom bode priestoru) univerzálnu vesmírnu pokojovú vz´aºnú sústavu - takú, v ktorej má
CMB nulový dopplerovský posuv.45 �asová súradnica FLRW metriky odpovedá práve tejto sústave.

V.3.2 Friedmannove rovnice.

Predpokladajme model homogénneho izotropného Vesmíru ako ideálnej tekutiny s kon²tantnou stred-
nou hodnotou hustoty hmoty ρ a tlaku P , s tenzorom energie-hybnosti Tµν z kap. V.2.1, a FLRW
metrikou z kap. V.3.1. Dosadením týchto predpokladov do ER (a po vypo£ítaní v²etkých nenulových
prvkov tenzoru krivosti) dostávame tzv. Friedmannove rovnice (FR) pre rýchlos´ a zrýchlenie
expanzie46

α̇2(t) + kc2

α2(t)
=

8πκNρ+ Λc2

3

α̈(t)

α(t)
= −4πκN

3

(
ρ+

3P

c2

)
+

Λc2

3

�asový vývoj expanzie Vesmíru teda závisí od ²tvorice parametrov ρ, P, k,Λ. Analyzujme jednotlivé
scenáre:

Za£nime statickým Vesmírom.47 Podmienky α̇ = α̈ = 0, (α kon²tantné) vedú na

Λ =
4πκN
c2

(
ρ+

3P

c2

)
k

α2
=

4πκN
c2

(
ρ+

P

c2

)
V prípade �prachovej� látkovej hmoty (kap. V.2.1) navy²e P = 0, a teda Λ = 4πκN

c2
ρ = k

α2 > 0 (ke¤ºe
ρ > 0). To ale odpovedá sférickému Vesmíru s k = +1, a teda Λ = 1

α2 .

Uvaºujme teraz zdanlivo kuriózny prípad prázdneho Vesmíru,48 ρ, P = 0, navy²e pre jednoduchos´
plochého,49 k = 0. FR v tomto prípade vedú na dif. rovnicu

α̇

α
=

√
Λc2

3
= H (Hubbleov parameter) s rie²ením α(t) = α(0) exp

{√
Λc2

3
t

}
Ide o expandujúci vesmír. Temná energia Λ je teda generátorom expanzie, a to aj pri ρ 6= 0. Navy²e,
pri ρ 6= 0 expanzia priestoru vedie k neustálemu poklesu ρ, v limite ρ → 0 teda ide o realistický
model.

Uvaºujme napokon prípad Λ = 0. Teraz môºeme 1.FR prepísa´ do tvaru

8πκNρ

3H2
− 1 =

kc2

α2H2

z ktorého je zrejmé, ºe k bude kladné len ak ρ > 3H2

8πκN
= ρkrit. Hustota hmoty/energie teda rozhoduje

o krivosti Vesmíru: Pre ρ > ρkrit bude Vesmír sférický (uzavretý do seba), a pre ρ < ρkrit bude
hyperbolický (otvorený). Hrani£ná hodnota ρ = ρkrit odpovedá plochému Vesmíru, k = 0.

44angl. Cosmic Microwave Background
45Môºeme ju interpretova´ ako sústavu s nulovou priemernou rýchlos´ou hmoty rozloºenej na kozmických ²kálach.
46Prvú z rovníc dostaneme z 00-komponenty ER a druhú z jej stopy.
47Tento model je v rozpore s pozorovaniami. Ide o pôvodný Einsteinov model Vesmíru. Na zabezpe£enie jeho

statickosti Einstein ad hoc zaviedol kozmologickú kon²tantu Λ.
48Ide o tzv. de Sitterov model.
49Nenulová krivos´ k = ±1 neovplyvní kvalitatívne prezentované závery. Navy²e, astronomické pozorovania hovoria

v prospech plochého Vesmíru.
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Krivos´ Vesmíru zas rozhoduje o osude expanzie: Z 2.FR totiº v
prípade Λ = 0 vyplýva, ºe α̈ < 0 - expanzia Vesmíru sa spoma©uje.
Ako ukáºeme neskôr, sú£in ρα2 → 0 pre α→∞, a teda pod©a 1.FR

α̇2 −→
α→∞

−kc2

Pre hyperbolický Vesmír (k = −1) to znamená α̇→ c, pre plochý
Vesmír (k = 0) α̇, α̈ → 0 (ustálenie ve©kosti Vesmíru), a pre uzavretý sférický Vesmír (k = +1)
preklopenie do zmr²´ovania.50

�Vidite©ná� hmota/energia (látka a ºiarenie) teda, pod©a o£akávania, svojím gravita£ným ú£inkom
brzdí expanziu, a pri jej dostato£nej hustote spôsobuje zmr²´ovanie a kladné zakrivenie Vesmíru.
Naopak, kladná temná energia vákua (kozmologická kon²tanta Λ > 0) vyvoláva jeho expanziu. Ak
Λ 6= 0, hrani£ná podmienka medzi nepretrºitou expanziou a prechodom ku zmr²´ovaniu je

ρ+
Λc2

8πκN
=

3H2

8πκN

Pre Λ > 0 len dostato£ná hustota hmoty/energie dokáºe zvráti´ expanziu. FR v²ak vo v²eobecnosti
pripú²´ajú aj zápornú energiu vákua, Λ < 0.51 V takomto prípade expanzia nevyhnutne prejde do
zmr²´ovania.

Pod©a sú£asných astronomických pozorovaní sa Vesmír javí ako tak-
mer plochý, k ∼= 0, a jeho expanzia sa zrých©uje, £o sved£í o (malej)
kladnej hodnote Λ. Po£iato£né spoma©ovanie expanzie v minulosti v
dôsledku dostato£nej hustoty hmoty/energie sa jej sústavným zrie¤o-
vaním zmenilo na zrých©ovanie v¤aka dominantnému vplyvu Λ.

V.3.3 Zachovanie energie v nestacionárnom Vesmíre.

Nepretrºitá expanzia Vesmíru prirodzenie vedie na zmeny hustoty hmoty/energie, av²ak odli²ne pre
jednotlivé jej formy. Pod©a 1. vety termodynamickej pre objem Vesmíru V ≈ α3 ako uzavretého
systému v termodynamickej rovnováhe (bez moºnosti výmeny tepla a látky) platí52

c2∂t(ρV ) = ∂tE = −P∂tV ⇔ c2∂t(ρα
3) = −P∂tα3 → ρ̇ = −3

α̇

α

(
ρ+

P

c2

)
Pre α̇ > 0 hustota energie klesá s £asom. Dosadením modelovej stavovej rovnice Vesmíru P = wρc2

(kap. V.2.1) dostávame dif. rovnicu

ρ̇

ρ
= −3

α̇

α
(1 + w) s rie²ením ρ(α) = Cα−3(1+w)

(C zahr¬uje v²etky kon²tanty pri integrácii.) Parameter w pritom závisí od konkrétnej formy energie
(kap. V.2.1):

50Tieto scenáre neodpovedajú sú£asným pozorovaniam.
51Pod©a jednej z neoverených predstáv je hodnota Λ daná sú£tom príspevkov ±~ω

2 od v²etkých bozóno-
vých/fermiónových módov (kap. I.3.8, III.2.8).

52Tento £asový vývoj hustoty energie sa dá odvodi´ aj z FR (kap. V.3.2) £i lokálneho zákona zachovania energie
(kap. V.2.1).
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Pre látkovú hmotu (�prach�) w = 0, a teda ρ(α) ∼ α−3, £o prirodzene odpovedá expanzii priestoru v
3 rozmeroch.

Pre ºiarenie w = 1
3
, a teda ρ(α) ∼ α−4. Sú£asne s expanziou priestoru dochádza ku kozmologickému

£ervenému posuvu ºiarenia (kap. V.3.1) - narastaniu vlnových d¨ºok λ→ αλ, a teda E = ~c
λ
→ Eα−1

- odtia© dodato£ný �rozmer�.

Pre temnú energiu w = −1, a teda ρ = konst. Hustota temnej energie sa expanziou Vesmíru nemení!

Tieto závery majú zásadný dopad na na²e chápania zákona zachovania energie:

Pri expanzii Vesmíru sa globálne zachováva len energia látky!
Celková energia ºiarenia sa v expandujúcom Vesmíre stráca, kým celková temná energia pribúda.

Pod©a Noetherovej teorémy (kap. I.1.2) sa energia Vesmíru globálne zachováva ak je Vesmír trans-
la£ne symetrický v £ase. Expandujúci vesmír v²eobecnej relativity takým v²ak nie je. Lokálny zákon
zachovania DµT

µν = 0 síce ostáva v platnosti (ako lokálne rovnice kontinuity), nemoºno ho v²ak
roz²íri´ na integrálny zákon.

Univerzálna vesmírna pokojová sústava (kap. V.3.1) je súborom súradni-
cových sústav v kaºdom bode priestoru (obr.). Porovnávanie energií medzi
jednotlivými bodmi/sústavami na kone£ných vzdialenostiach v zakrivenom
(£aso)priestore nie je moºné - potrebujeme totiº paralelný posuv (vektorov,
kap. V.1.4), a ten pre rôzne zvolené dráhy vedie k rôznym výsledkom.

� � � � �

Dôleºité závery:

• Na kozmických ²kálach je Vesmír homogénny a izotropný. Jeho rozpínanie pozorujeme prostred-
níctvom kozmologického £erveného posuvu.

• �asový vývoj Vesmíru opisujú FR. Vidite©ná hmota/energia vo Vesmíre spoma©uje expanziu, temná
hmota (kladná hodnota kozmologickej kon²tanty) ju naopak zrých©uje.

• Hustota temnej energie sa expanziou Vesmíru nemení - energia Vesmíru sa globálne nezachováva
(zachováva sa len lokálne).

V.4 Fyzika pri horizonte udalostí.

V.4.1 Rovnomerne zrých©ujúca sústava.

Princíp ekvivalencie (kap. V.1.1) lokálne zrovnopráv¬uje stacionárneho pozorovate©a v gravita£ne
zakrivenom £asopriestore s kon²tantne zrých©ujúcim pozorovate©om (so zrýchlením ~a = ~g) v plochom
Minkowského £asopriestore. Aké sú v²ak transforma£né vz´ahy medzi pozorovate©om v laboratórnej
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sústave S (�v pokoji�) a zrých©ujúcim pozorovate©om P s
okamºitou rýchlos´ou u(t) a zrýchlením a = du

dt
(vzh©a-

dom na S)? Ke¤ºe ²tandardné lorentzovské transforma£né
vz´ahy platia len medzi inerciálnymi sústavami, potrebu-
jeme �pomocnú� inerciálnu sústavu S', ktorá sa v danom
okamihu t pohybuje (v smere pohybu P) kon²tantnou rých-
los´ou v = u(t) - (len a len) pre tento daný okamih je to
okamºitá pokojová sústava pre P, a v nej u′(t) = 0. (Kaº-
dému £asu t odpovedá iná sústava S'.) V takejto sústave S'
de�nujeme pre P kon²tantné vlastné zrýchlenie53 a′ = du′

dτ
(derivujeme pod©a vlastného £asu τ = t′).

Teraz môºeme pouºi´ lorentzovské transforma£né vz´ahy medzi S a S' a vz´ahy pre relativistické
skladanie rýchlostí, u′ = u−v

1−uv
c2
, z ktorých pre prípad u = v vyplynie

a′ =
du′

dτ
= ... =

γ2du

dτ
= γ2du

dt

dt

dτ
= γ3a

Pre kon²tantné (z poh©adu P) vlastné zrýchlenie a′ > 0 rýchlosti v (momentálne odpovedajúcich
inerciálnych sústav S') pre laboratórneho pozorovate©a S narastajú s £asom, a teda zrýchlenie P musí
klesa´ (a→ 0 pre v → c). Integrovaním dostávame pre rýchlos´ a trajektóriu (vzh©adom na S)54

v(t) =
a′t√

1 + a′2t2

c2

(
resp. t(v) =

γv

a′

)
x(t) =

c2

a′

√
1 +

a′2t2

c2

kde pre jednoduchos´ pri t = 0 kladieme u(0) = 0, x(0) = c2

a′
= x0 (a′ v úlohe volite©ného parametra)

Dostávame správne limity v(t) → at, x(t) → x0 + at2

2
, resp. v(t) → c, x(t) → ct. Túto trajektóriu

vieme parametrizova´ vlastným £asom τ pozorovate©a P (dt = γdτ)

x(τ) = x0 cosh
a′τ

c
t(τ) =

x0

c
sinh

a′τ

c

Sveto£iara zrých©ujúceho pozorovate©a P v Minkowského £aso-
priestore sústavy S sa dá prepísa´ do tvaru

(x(t))2 − (ct)2 = x2
0 =

(
c2

a′

)2

Z poh©adu S sa teda pozorovate© P pohybuje po hyperbole pri-
slúchajúcej danému x0 (£iºe a′): Prichádza z x → ∞ spoma-
©ujúc z v = −ct na nulu v t = 0, a následne zrýchlene sme-
ruje naspä´ do x = ∞. Príslu²nou vo©bou a′ > 0 je pre P
dostupné ©ubovo©né x > c|t|. Pozorovate© P meria vzdiale-
nosti a £as vlastnými súradnicami ξ a τ , pri£om jeho poloha je
ξ = 0. Kaºdá z hyperbol na obr. odpovedá z poh©adu P ur£itej kon²tantnej vzdialenosti ξ, a poloha
na tejto hyperbole ur£uje τ (τ = 0 pre t = 0). �iary sú£asnosti pre dané τ sú priamky prechádzajuce
bodom x = 0, t = 0 (po£iatkom v S).

53Pozorovate© P, sediaci v smere zrýchlenia, vníma/meria toto zrýchlenie ako kon²tantnú zotrva£nú (pseudo)silu,
ktorú reálne poci´uje od operadla stoli£ky. Jeho vlastná okamºitá rýchlos´ (meraná v S') je pritom stále nulová.

54Súradnice y, z sa pochopite©ne netransformujú.
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Rozdielnos´ opisov v sústavách S a P navádza k tzv.
Bellovmu �rakerovému� paradoxu: Predpokla-
dajme pozorovate©a P v prednej £asti rovnomerne
zrých©ujúcej rakety (hyperbola ξ = 0) a ©ubovo©ný
bod A v jej zadnej £asti (hyperbola ξ < 0, proti smeru
zrýchlenia). Z poh©adu P je v kaºdom okamihu τ vzdia-
lenos´ |PA|= ξ kon²tantná (obr. a) a okamºité rýchlosti
vA(τ) = vP (τ) (obr. b, doty£nice k hyperbolám).

V sústave S je v²ak pre rôzne £asy t vzdialenos´ |PA| rôzna (obr. c), a vA(t) 6= vP (t) (obr. d) - raketa
sa deformuje (zmr²´uje). Rigidnos´ rakety z poh©adu S vyºaduje kon²tantné zrýchlenie v tejto sústave
(obr. e), £o v²ak pre P znamená roztrhnutie rakety (obr. f).

Rie²ením tohto paradoxu je (prirodzene) rigidnos´ rakety pre P (obr. a) a jej postupná relativistická
kontrakcia z poh©adu S (obr. c). Z poh©adu laboratórnej sústavy to ale znamená, ºe

rozne £asti rigidného telesa majú rôzne zrýchlenie.

V.4.2 Horizont udalostí, rýchlos´ svetla a £ierne diery.

Zo vz´ahov z predchádzajúcej kapitoly vieme odvodi´ transforma£né vz´ahy medzi vlastnými súrad-
nicami (τ, ξ) v zrých©ujúcej sústave P (S') a laboratórnymi súradnicami (t, x) v S v tvare

t(τ, ξ) =
x0 + ξ

c
sinh

a′τ

c
x(τ, ξ) = (x0 + ξ) cosh

a′τ

c

τ(t, x) =
x0

2c
ln
x+ ct

x− ct
ξ(t, x) = −x0 +

√
x2 − c2t2

Z týchto vz´ahov vidíme, ºe pre pozorovate©a P existujú reálne hodnoty vlastných súradníc v interva-
loch −∞ < τ <∞ a −x0 < ξ <∞. Znamená to, ºe v opa£nom smere vo£i zrýchleniu (znamienko
-) pozorovate© P nemôºe zmera´55 vzdialenosti vä£²ie neº x0! Zrých©ujúci pozorovate© P vníma ho-
rizont udalostí daný £iarami56

55V relativite akt merania vzdialenosti predpokladá rozmiestnenie a synchronizáciu hodín. Synchronizácia v²ak
vyºaduje obojstranný prenos signálov.

56Pre jednoduchos´ tu uvaºujeme 2D £asopriestor t− x. V 4D £asopriestore horizonty predstavujú 3-plochy (plochy
v priestore).
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ξ = −c
2

a′
(x2 = c2t2)

pre ktoré τ → ±∞. Môºe prija´ signál vyslaný z R (obr.), vníma ho v²ak ako
vyslaný z horizontu v τ → −∞. Podobne P môºe vysla´ signál do Q (nemôºe v²ak
prija´ signál z Q). Pozorovate© S vidí ako sa P neustále vz¤a©uje (s klesajúcim
zrýchlením). Pozorovate© P tieº spo£iatku vidí ako sa S vz¤a©uje, ale napokon
postupne �zam¯za� na vzdialenosti −x0 = − c2

a′
.

Kaºdý akcelerujúci objekt vytvára horizont udalostí v smere opa£nom
vo£i zrýchleniu.

Znamená to, ºe rozmer kaºdého (rovnomerne) zrých©ujúceho kompaktného objektu je v smere pohybu
limitovaný57 jeho vlastným zrýchlením a′,58

lmax =
c2

a′

Invariantnos´ £asopriestorového intervalu vedie na

(ds)2 = (cdt)2 − (dx)2 = ... =

(
1 +

ξ

x0

)2

(cdτ)2 − (dξ)2

Pre svetelný lú£ platí (pre v²etkých pozorovate©ov) ds = 0. V laboratórnej sústave S a pre ná²ho
zrých©ujúceho pozorovate©a P je rýchlos´ svetla

dx

dt
= ... = c ale

dξ

dτ
= ... =

(
1 +

ξ

x0

)
c

Znamená to, ºe

pre pozorovate©a v neinerciálnej sústave je rýchlos´ svetla (vo vákuu) rovná c len lokálne,

t.j. pre ξ → 0, vo v²eobecnosti je ©ubovo©ná (v závislosti od smeru a ve©kosti a′ a ξ)!! Z kone£nej
vzdialenosti ξ = −x0 na horizonte obdrºí P signál v τ →∞.

V zmysle princípu ekvivalencie je zrýchlený pozorovate© (v plochom £asopriestore) rovnocenný sta-
cionárnemu pozorovate©ovi v gravita£nom poli, ~a′ = −~g. V²etky doteraj²ie závery tejto £asti teda
platia aj v gravita£nom poli: Prepisom faktoru pri £asovej zloºke metriky do newtonovského tvaru(

1 +
ξ

x0

)
=

(
1 +

a′ξ

c2

)
→
(

1− gh

c2

)
=

(
1 +

φ

c2

)
dostávame výrazy z kap. V.1.1, resp. V.1.2. Z poh©adu stacionárneho pozorovate©a �vzná²ajúceho
sa� nad povrchom hmotného telesa (napr. stojaceho na podlahe rozh©adne) vytvára gravita£né
pole/zrýchlenie v h¨bke pod jeho nohami horizont udalostí. V okolí (homogénnej nerotujúcej) sféric-
kej hmotnosti M je adekvátna tzv. Schwarzschildova metrika

ds2 =

(
1− RS

r

)
c2dt2 −

(
1− RS

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 RS =
2κNM

c2

57Pre beºné zrýchlenia je to gigantická ve©kos´. V tuhých látkach sa v²ak ´aºná sila prená²a pozd¨º telesa rýchlos´ou
zvuku cz � c, teda na d¨ºke l za £as tl ≈ l

cz
. Ak sa teleso nemá roztrhnú´, nesmie jeho predná £as´ akcelerova´

rýchlej²ie neº a′max = 2l
t2l
≈ c2z

l . Odtia© d¨ºkové obmedzenie pri danom zrýchlení, l < c2z
a′ .

58Ak by sme namiesto tuhého telesa uvaºovali zrých©ujúci vlnový balík s rozptylom frekvencií ∆f o rozmere ∆l ∼= c
∆f

a s rozptylom zrýchlení ∆a ∼= c
∆t , potom vz´ah ∆l∆a < c2 je ekvivalentný fourierovskému princípu neur£itosti

∆f∆t > 1.
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Faktor
(
1− RS

r

)
je mierou korekcie vzh©adom na metriku plochého £asopriestoru pre r > RS, a tzv.

Schwarzschildov polomer Rs de�nuje práve gu©ovú plochu horizontu udalostí (pre r → RS £asová
metrika zaniká a radiálna £as´ metriky diverguje).59 Pre beºné telesá vo Vesmíre o hmotnostiach
M a polomeroch R platí60 RS � R. Telesá, ktorých celá hmotnos´ je stla£ená do gule o polomere
R < RS sú £ierne diery (korekcie metriky sú záporné61). Radiálna rýchlos´ svetla dr

dt
→ 0 na

horizonte, ºiadne svetlo (signál/hmota/energia) teda z oblasti r ≤ RS neprenikne k vonkaj²iemu
pozorovate©ovi.62 Svetlo prichádzajúce z oblastí r > RS sa posúva do £ervenej £asti spektra - hovoríme
o gravita£nom £ervenom posuve.63

Vonkaj²í pozorovate© P nad horizontom teda sleduje, ako sa vo©ný pád pozorovate©a Q do £iernej
diery postupne spoma©uje, aº kým sa jeho obraz (asymptoticky) nezastaví na horizonte. Sú£asne sa
v²ak (z poh©adu P) spoma©uje £as v Q, svetlo vysielané z Q sa sfarbuje do £ervena a mizne z vidite©nej
£asti spektra. Naproti tomu, pozorovate© Q preletom cez horizont nepozoruje ni£ neobvyklé, aº kým
ho slapové sily nezdeformujú.64 Pozorovate© P sa mu stráca z doh©adu ako v beºnom ºivote (ºiaden
horizont), dopplerovský £ervený posuv v²ak registruje.

V.4.3 Unruhov jav a Hawkingovo ºiarenie.

V blízkosti horizontu £iernych dier si uº nevysta£íme s klasickou relativistickou fyzikou, ale musíme
uvaºova´ aj relativistické kvantové javy, ako ich opisuje kvantová teória po©a. Základom tejto teórie
je fourierovská dekompozícia polí do vlnových módov fk(t, ~r) = e−i(ωkt−

~k·~r) a kánonické kvantovanie
polí, v podobe (pre jednoduchos´ uvaºujme skalárne pole, kap. III.1.2)

φ̂(t, ~r) ∼
∫ [

âkfk(t, ~r) + â†kf
∗
k (t, ~r)

]
d3k

teda ako lineárna superpozícia anihila£ných a krea£ných operátorov vlnových módov fk(t, ~r), f ∗k (t, ~r).
Hoci samotné (skalárne) pole je invariantné vo£i zmene pozorovate©a, zrých©ujúci pozorovate© s vlast-
nými súradnicami (τ, ~ξ) rozkladá toto pole do bázy iných módov gk′(τ, ~ξ), g∗k′(τ, ~ξ) a im odpovedajú-
cich koe�cientov/operátorov b̂k′ , b̂

†
k′ . Kaºdý z bázových módov jednej bázy je pritom vyjadrite©ný ako

lineárna kombinácia bázových v¨n druhej bázy, a medzi operátormi oboch báz existujú transforma£né
vz´ahy65

b̂k′ =

∫
[αkk′ âk + βkk′ â

†
k]d

3k âk =

∫
[α∗kk′ b̂k′ − βkk′ b̂

†
k′ ]d

3k′

Operátory po£tu/hustoty £astíc pre oboch pozorovate©ov sú â†kâk, resp. b̂
†
k′ b̂k′ . Predpokladajme, ºe

pozorovate© A v inerciálnej sústave detektorom £astíc zmeria stav bez £astíc - vákuum |0A〉. Znamená
to, ºe pre stredný po£et £astíc platí 〈0A|â†kâk|0A〉 = 0. Ak v²ak tento istý stav |0A〉 meria zrých©ujúci

59Paradoxne, k správnemu odhadu polomeru £iernej diery dospejeme aj pomocou �nepresných� newtonovských
argumentov: Gravita£ná potenciálna energia telesa o hmotnosti m na povrchu objektu o polomere R a hmotnosti M
je Ep = −κN mM

R . Na únik z povrchu objektu potrebuje prinajmen²om rovnakú kinetickú energiu, £o dáva únikovú

rýchlos´ vmin =
√

2κNM
R . Maximálna moºná rýchlos´ je c, ak teda R < 2κNM

c2 , objekt je £iernou dierou.
60Napr. RS < 1 cm pre Zem a RS ∼= 3 km pre Slnko. Pre biliardovú gu©u RS ≈ 10−10m.
61Dá sa to interpretova´ tak, ºe £as a priestor si �vymie¬ajú úlohy� - oblasti r < RS sú mimo chápania sú£asnej

fyziky.
62Majme na pamäti, ºe vonkaj²í pozorovate© �vzná²ajúci sa� nad horizontom udalostí je neinerciálny - pre neho

rýchlos´ svetla (v predchádzajúcom texte ju ozna£ujeme dξ
dτ ) v okolí horizontu nie je kon²tantná.

63V zmysle princípu ekvivalencie môºeme gravita£ný £ervený posuv interpretova´ aj ako dopplerovský posuv.
64Pre extrémne masívne £ierne diery je RS ve©mi ve©ké, a zbiehavos´ geodetík v oblasti RS je e²te zanedbate©ná.

Slapové sily sa teda prejavia aº pre r � RS .
65tzv. Bogo©ubovove transformácie
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pozorovate© B, jeho stredný po£et £astíc je

〈0A|b̂†k′ b̂k′|0A〉 = ... =

∫
|βkk′|2d3k ≥ 0 (vo v²eobecnosti)

Nenulovos´ tohto výsledku znamená, ºe

po£et £astíc nie je relativistickým invariantom - £astica66 je relativistický jav.

�Generovanie� £astíc zrých©ujúcim pozorovate©om sa nazýva Unruhov jav67. Kvalitatívne vysvet-
lenie je nasledovné: V kvantovej teórii polí vákuum je vyplnené �uktuujúcimi po©ami - neustále
vznikajúcimi a zanikajúcimi pármi £astica-anti£astica, s dobou ºivota ∆t ≤ ~/∆E. Pre inerciálneho
pozorovate©a sa tieto �uktuácie vykompenzujú na nulový stredný po£et £astíc. Dostato£ne zrých-
©ujúci pozorovate© v²ak po dobu medzi vznikom a zánikom £astíc zmení svoju okamºitú pokojovú
sústavu (S', kap. V.4.1), t.j. príslu²né pole sa lorentzovsky transformuje, vznik a zánik £astíc teda
nie sú vykompenzované. 68

Dá sa spo£íta´, ºe stredný po£et takto �generovaných� (nehmotných skalárnych) £astíc s energiou E
je

〈N(E)〉 =
1

exp
(

2πcE
a′~

)
− 1

v £om spoznáme Boseho-Einsteinovo69 rozdelenie pri teplote

TU =
a′~

2πckB

- tzv. Unruhovej teplote. Zrých©ujúci pozorovate© sa teda nachádza akoby v tepelnom kúpeli o
teplote TU ∼ a′. Energia £astíc kúpe©a pochádza zo zdroja zrýchlenia.70

Komplementárny efekt nastáva v gravita£nom poli na horizonte £iernych dier: Pri �uktuáciách virtu-
álnych párov £astica-anti£astica môºe nasta´ situácia, ºe jedna z £astíc sa ocitne pod horizontom (t.j.
spadne do £iernej diery) a druhá nad horizontom s nenulovou pravdepodobnos´ou uniknú´ a sta´ sa
reálnou £asticou detekovate©nou pozorovate©om (nad horizontom). Vo£i nej je (z poh©adu pozorova-
te©a) pohltená (virtuálna) £astica anti£asticou s formálne zápornou energiou, zniºujúcou hmotnos´
£iernej diery (energia sa zachováva). Tento jav nazývame Hawkingovo ºiarenie, a £ierna diera sa
prostredníctvom neho �vyparuje�.

V zmysle princípu ekvivalencie je stacionárny pozorovate© nad horizontom zrých©ujúci so zrýchlením
~a′ = −~g (inak by sa neudrºal nad horizontom), a £astice ºiarenia detekuje v dôsledku Unruhovho
javu. Ak teda vo výraze pre TU zameníme zrýchlenia71

a′ → g(RS) ≈ κNM

R2
S

=
c4

4κNM

dostávame teplotu Hawkingovho ºiarenia - Hawkingovu teplotu

TH =
~c3

8πkBκNM
=

~c
4πkBRS

66£astica, ako ju chápe kvantová teória polí
67tieº Fullingov-Daviesov-Unruhov jav
68Dekompozícia vákua na zloºky s kladnými a zápornými frekvenciami - £astice a anti£astice - je odli²ná pre po-

zorovate©ov s odli²ným zrýchlením. Rovnako by sme mohli �pripravi´� vákuum |0B〉 v zrých©ujúcej sustave B, a v
inerciálnej sústave A by sme pozorovali £astice. Takto pripravený stav pre A nie je stavom s najniº²ou energiou.

69V prípade Diracovho po©a (bispinorov) výpo£et povedie na Fermiho-Diracovo rozdelenie.
70Vyjadrené v £íslach, ide o extrémne neefektívny spôsob generovania £astíc.
71Pouºitý newtonovský vz´ah pre g nemá v prvom priblíºení vplyv na výsledok.
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Hawkingovo ºiarenie má charakter ºiarenia absolútne £ierneho telesa. Ke¤ºe TH ∼M−1, masívnej²ie
£ierne diery sa vyparujú pomal²ie. Navy²e, gravita£ným pohltením okolitej hmoty a ºiarenia môºu
svoju hmotnos´ zvy²ova´.72 So stratou hmotnosti sa rýchlos´ vyparovania prudko vy²uje.

Hawkingovu teplotu teda prira¤ujeme horizontu £iernej diery - sférickej ploche o polomere RS a
obsahu A = 4πR2

S. Z termodynamickej vety dS = dE/T vieme ur£i´ entropiu £iernej diery, ak
poloºíme T = TH a E = Mc2. Preintegrovaním dostávame

S =... =
4πkBκNM

2

~c
=

kBc
3

4~κN
A

Entropia £iernej diery je teda daná výlu£ne plochou horizontu.

V.4.4 Horizont a Planckova ²kála.

Einsteinov-Hilbertov ú£inok a v²etky tvary ER (kap. V.2.2), ako aj výrazy pre energiu gravita£nej
vlny (kap. V.2.6) obsahujú prefaktor c4

κN
, ktorý má fyzikálny rozmer sily/£asovej zmeny hybnosti, a

jeho fyzikálny význam pochopíme z nasledovnej úvahy: �ierne diery predstavujú najhustej²ie objekty
vo Vesmíre, a ich �objem� (∼ R3

S) je daný výlu£ne hmotnos´ou M v nich sústredenou. Existuje teda
hrani£ná hustota hmoty, a tým aj hrani£ná sila Fmax, ktorá dokáºe hmotu stla£i´. Táto sila je daná
prácou, £iºe transférom energie E = Mc2 do objemu ≈ R3

S cez plochu horizontu ≈ R2
S na vzdialenos´

≈ RS maximálnou rýchlos´ou c. Z rovnice kontinuity vyplynie práve

Fmax = (∂tp)max ≈
E

RS

≈ c4

κN
resp. (∂tE)max ≈

c5

κN

Tak ako ²peciálna teória relativity je vybudovaná na (experimentálne overenom) fakte kone£nej a
invariantnej maximálnej rýchlosti ²írenia hmoty-energie, vmax = c, pri formulovaní73 v²eobecnej teórie
relativity môºeme vychádza´ z postulátu o

kone£nom a invariantnom maximálnom toku hybnosti/energie.74

Plo²ná hustota hrani£nej energie pretekajúcej elementom plochy horizontu δA je (daná pomerom
celkovej energie ku celkovej ploche)

δEmax
δA

≈ c4RS

κN

1

R2
S

⇒ δEmax ≈
c4

κNRS

δA

Dá sa ukáza´, ºe pre v²eobecnú geometriu horizontu aj súradnicový systém odpovedá ©avá strana
poslednej rovnosti plo²nému integrálu tenzoru energie-hybnosti Tµν , a pravá strana rovnakému integ-
rálu Ricciho tenzoru Rµν (vyjadrujúceho krivos´ horizontu75), £o nás privádza (s uváºením zákona
zachovania energie, kap. V.2.2) k ER, s faktorom úmernosti ≈ c4

κN
, vyjadrujúcim �elasticitu� £aso-

priestoru.76

72Pre ilustráciu, £ierna diera hmotnosti Slnka má TH ≈ 10−8K, naproti tomu pohlcované reliktné ºiarenie má 2,7K
(£o by odpovedalo £iernej diere hmotnosti Mesiaca).

73Prezentujeme tu alternatívnu cestu k ER.
74Tieto extremélne hodnoty sa realizujú na horizontoch udalostí, na rozdiel od priamych meraní maximálnej rých-

losti teda priame merania uvedených limitov neexistujú (resp. sú nedostupné, c4

κN
≈ 1043N). Sú v²ak konzistentné s

výstavbou teórie vychádzajúcou z alternatívnych princípov, a ºiadne dostupné experimenty týmto tvrdeniam neproti-
re£ia. Prípadné pridanie £íselného faktoru nemá hlb²í fyzikálny význam, zabezpe£uje len správnu newtonovskú limitu.
Horný limit pre výtok energie/hmoty môºeme my²lienkovo manifestova´ na príklade reaktívneho pohonu, ke¤ limitné
mnoºstvo emitovaných spalín gravita£ným pôsobením ohrani£í ¤al²í nárast rýchlosti.

75Horizont £iernej diery je plochou s maximálnou moºnou krivos´ou.
76Dôsledkom existencie hrani£nej deformovate©nosti/krivosti £asopriestoru je neexistencia bodových hmotných ob-

jektov. Pre Newtonov gravita£ný zákon musí plati´ obmedzenie F = κNMn
l4 ≤ Fmax, a odtia© l ≥ RS . Princíp, pod©a

ktorého musí by´ kaºdá £asopriestorová singularita pred vonkaj²ím pozorovate©om �zahalená� oblas´ou pod horizontom
udalostí, nazývame kozmickou cenzúrou.
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Hrani£ná sila de�novaná ako FP = c4

κN
-Planckova sila - je sú£as´ou tzv.Planckovej ²kály, tvorenej

�prirodzenými � jednotkami, zostavenými výlu£ne z fundamentálnych kon²tánt c, ~, κN , kB. Jej základ
tvorí Planckova d¨ºka a Planckov £as

lP =

√
~κN
c3

(≈ 10−35m) tP =
lP
c

=

√
~κN
c5

(≈ 10−44s)

Vzdialenosti ∆l ≤ lP a £asové úseky ∆t ≤ tP sú principiálne nemerate©né. Musí totiº plati´77

∆l > RS ≈ κNm
c2

a sú£asne ∆l > λ̄C = ~
mc
, a pre presnos´ hodín o rozmere l zase ∆t > l

c
. Pre

Planckovu silu potom dostávame

FP =
~

lP tP
(≈ 1044N)

�al²ími prirodzenými jednotkami sú Planckova hmotnos´ (daná podmienkou λ̄c ≥ lP ) a Planc-
kova hustota

mP =

√
c~
κN

(≈ 10−8kg) ρP =
mP

l3P
=

c5

~κ2
N

(≈ 1096kgm−3)

Pre £iernu dieru o hmotnosti mP platí RS ≈ lP , a ρP je hrani£ná hustota. Obdobným spôsobom
de�nujeme Planckovu teplotu

TP =
mP c

2

kB
=

√
c5~
κNk2

B

(≈ 1032K)

ktorej odpovedá tepelné ºiarenie o vlnovej d¨ºke ≈ lP .

Tieto jednotky de�nujú hranice sú£asného fyzikálneho chápania sveta.78 Posunutie týchto hraníc
predpokladá dobudovanie kvantovej gravitácie - kvantovej teórie £asopriestoru.

� � � � �

Dôleºité závery:

• Miesta s rovnakým zrýchlením z poh©adu svojej pokojovej sústavy majú rôzne zrýchlenia v la-
boratórnej sústave. Pozorovate© v zrých©ujúcej sústave vníma horizont udalostí - udalosti za týmto
horizontom sú pre¬ho nedostupné.

• Horizont udalostí existuje aj pre stacionárneho pozorovate©a v gravita£nom poli, pozorovate©ný je
v²ak len v okolí £iernych dier. �as na horizonte £iernej diery sa zastavuje.

• Stav vákua pre laboratórneho pozorovate©a je tepelným kúpe©om £astíc pre zrých©ujúceho pozoro-
vate©a, s teplotou úmernou jeho zrýchleniu (Unruhov jav). Stacionárny pozorovate© nad horizontom
(ekvivalentný zrých©ujúcemu pozorovate©ovi) pozoruje tepelné ºiarenie - Hawkingovo ºiarenie, pro-
stredníctvom ktorého sa £ierna diera zbavuje hmoty.

• �iernej diere prira¤ujeme entropiu, úmernú ploche jej horizontu.

77Meradlo nesmie by´ £iernou dierou, a pri jeho d¨ºke ∆l ≤ λ̄C generujeme z vákua nové meradlo. Pre rozmer
meradla musí plati´ mc > ∆p > ~

∆l .
78Planckova ²kála predstavuje prirodzenú energetickú hranicu platnosti ²tandardného modelu (£as´ IV). Dnes do-

stupná energerická hranica je v²ak stále o nieko©ko rádov niº²ia, existuje tu teda e²te dostato£ný priestor pre �novú
fyziku�.
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DODATKY

A Aktívna a pasívna transformácia.

Uvaºujme skalárnu funkciu φ(x). Aktívnou transformáciou T je napr. posunutie funkcie doprava,

φ(x)→
T
φ′(x) = Tφ(x) = φ(T−1x)

Pasívnou transformáciou je posunutie súradnicového
systému do©ava, pri£om funkcia sa nemení

x→
T
x′ = Tx φ(x)→

T
φ′(x′) = φ(x) = φ(T−1x′)

Premenovaním premenných dostávame v oboch prípadoch transforma£ný vz´ah φ′(y) = φ(T−1y).
Obe transformácie sú teda formálne ekvivalentné.

Platí to aj v kvantovomechanickom formalizme pre unitáru transformáciu, T † = T−1, a stavovú
funkciu φ(x) = 〈x|φ〉,

Tφ(x) = 〈x|T |φ〉 = 〈T †x|φ〉 = 〈T−1x|φ〉 = φ(T−1x)

B Kánonická hybnos´ hmotného telesa.

Preskúmajme de�ni£ný vz´ah pre kánonickú hybnos´ pj =
∂L (qj ,q̇j)

∂q̇j
pre niektoré dôleºité prípady.

Pre teleso v poli konzervatívnej sily v kartézskych súradniciach qj = xj platí

L = K(ẋj)− V (xj) =
∑
j

mẋ2
j

2
− V (xj) pj =

∂K(ẋj)

∂ẋj
= mẋj

Kánonická hybnos´ tu splýva s newtonovskou kinematickou hybnos´ou. Pre pohyb v polárnych sú-
radniciach qj = r, ϑ v²ak platí

L = K(r, ṙ, ϑ̇)− V (r, ϑ) =
m
(
ṙ2 + r2ϑ̇2

)
2

− V (r, ϑ)
pr = mṙ

pϑ = mr2ϑ̇
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Zloºka kánonickej hybnosti pϑ tu odpovedá momentu hybnosti.

Dôleºitým je prípad nekonzervatívnej elektromagnetickej Lorentzovej sily pôsobiacej na £asticu
nabitú elektrickým nábojom79 q, pohybujúcu sa v poli rýchlos´ou ~v,

Fj = q( ~E + ~v × ~B)j = q
(
−∇ϕ− ∂t ~A+ ~v × (∇× ~A)

)
j

S pouºitím rovností ~v × (∇× ~A) = ∇(~v · ~A)− (~v · ∇) ~A a d ~A
dt

= ∂ ~A
∂t

+ (~v · ∇) ~A (pohybujúca sa
£astica �cíti� zmenu po©a ak sa pole mení v £ase a/alebo pozd¨º dráhy pohybu) dostávame (vj = q̇j)

Fj = q

[
−∂(ϕ− q̇jAj)

∂qj
+
d

dt

∂ (ϕ− q̇jAj)
∂q̇j

]
De�nujeme zov²eobecnenú (kánonickú) silu

Fj = −∂V (qj, q̇j, t)

∂qj
+
d

dt

∂V (qj, q̇j, t)

∂q̇j

Porovnaním výrazov dostávame zov²eobecnenú potenciálnu energiu (vyhovujúcu ELR) a lagrangián

V (qj, q̇j, t) = q [ϕ(qj, t)− q̇jAj(qj, t)] L(qj, q̇j, t) =
1

2
mq̇2

j − q [ϕ(qj, t)− q̇jAj(qj, t)]

Kánonická hybnos´ prislúchajúca j-temu stup¬u vo©nosti je potom

pj =
∂L(qj, q̇j, t)

∂q̇j
= mq̇j + qAj(qj, t) resp. ~p = m~v + q ~A(~r, t)

a Newtonova pohybová rovnica má tvar

d

dt
(m~v + q ~A) = −q∇(ϕ− ~v · ~A)

Zov²eobecnený potenciál v lagrangeovskom formalizme je potenciál, ktorý �cíti� pohybujúci sa náboj
(pre pohybujúceho pozorovate©a sa elektromagnetické pole transformuje), a pravá strana je teda
akousi konzervatívnou silou. Interpretácia kánonickej hybnosti je nasledovná: Predpokladajme £asticu
v k©ude v nulovom poli, teda ~p = m~v = 0 ( ~A = 0). Pri zapnutí po©a z 0 na hodnotu B0 po dobu ∆t

je ∂ ~B
∂t
6= 0 ⇒ ∂ ~A

∂t
6= 0 (z 0 na A0) ⇒ ~E = −∂ ~A

∂t
6= 0. Toto elektrické pole udelí nabitej £astici hybnos´

∆~p = q ~E∆t = −q∂
~A

∂t
∆t ≈ −q ~A0

Kánonická hybnos´ sústavy £astica-pole je zachovávajúcou sa veli£inou, tento prírastok kinematickej
hybnosti je kompenzovaný opa£nou elektromagnetickou hybnos´ou q ~A. (Iným príkladom zachovania
kánonickej hybnosti zakrivenie dráhy náboja pri vlietnutí do oblasti s magnetickým po©om.)

C Vz´ah Poissonových zátvoriek a komutátorov.

Pre Poissonove zátvorky dvoch párov funkcií na fázovom priestore platí (s vyuºitím Leibnizovho
pravidla)

{F1F2, G1G2} = {F1, G1G2}F2 + F1{F2, G1G2} = ... =

79Kvôli rozlí²eniu elektrického náboja od zov²eobecnenej súradnice v tomto dodatku pouºívame symbol q.
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= {F1, G1}G2F2 +G1{F1, G2}F2 + F1{F2, G1}G2 + F1G1{F2, G2}

Pri alternatívnom postupe v²ak dostávame

{F1F2, G1G2} = {F1F2, G1}G2 +G1{F1F2, G2} = ... =

= {F1, G1}F2G2 + F1{F2, G1}G2 +G1{F1, G2}F2 +G1F1{F2, G2}

Oba koncové výrazy sú nevyhnutne ekvivalentné, £o znamená

(F2G2 −G2F2){F1, G1} = (F1G1 −G1F1){F2, G2}

alebo tieº
(F1G1 −G1F1)

{F1, G1}
=

(F2G2 −G2F2)

{F2, G2}
!

= λ (reálne £íslo)

£o sa dá v²eobecne formulova´ ako
{F,G} =

1

λ
[F,G]

D Tenzor napätia-energie-hybnosti.

Predpokladajme pole s energiou-hybnos´ou cδpµ = c(δp0, δpx, δpy, δpz) v objeme δxδyδz. Nultý
st¨pec (ν = 0) tenzora T µν pozostáva pod©a kap. I.3.4 z objemových hustôt ²tvorvektora cδpµ, teda
cδpµ/δxδyδz. Z tam uvedeného de�ni£ného vz´ahu pre tento tenzor, a s uváºením ∂jφ = φ̇/ẋj, pre
¤al²ie st¨pce tenzora platí T µj = ẋjT

µ0/c, £iºe

T µν =


T tt T tx T ty T tz

T xt T xx T xy T xz

T yt T yx T yy T yz

T zt T zx T zy T zz

 = c


δp0

δxδyδz
δp0

cδtδyδz
δp0

cδtδxδz
δp0

cδtδxδy
δpx

δxδyδz
δpx

cδtδyδz
δpx

cδtδxδz
δpx

cδtδxδy
δpy

δxδyδz
δpy

cδtδyδz
δpy

cδtδxδz
δpy

cδtδxδy
δpz

δxδyδz
δpz

cδtδyδz
δpz

cδtδxδz
δpz

cδtδxδy


Fyzikálny význam prvkov týchto st¨pcov je nasledovný:
�leny T tj vyjadrujú tok energie δp0 plô²kou kolmou na smer j za £as δt.
Diagonálne £leny T jj vyjadrujú tok zloºky hybnosti δpj plô²kou kolmou na smer j za £as δt (obr. a).
Mimodiagonálne £leny T jk vyjadrujú tok zloºky hybnosti δpj plô²kou kolmou na smer k za £as δt
(obr. b).
Symetrickos´ tenzora T µν je zrejmá z jeho de�nície.

Nulová divergencia 0-tého riadku tenzora predstavuje zákon zachovania energie

∂T tt

c∂t
+
∂T tx

∂x
+
∂T ty

∂y
+
∂T tz

∂z
=

∂T tt

c∂t
+∇ · ~T t = ∂νT

tν = 0
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a nulové divergencie ostatných riadkov zákony zachovania j-tej zloºky hybnosti

∂T jt

c∂t
+
∂T jx

∂x
+
∂T jy

∂y
+
∂T jz

∂z
=

∂T jt

c∂t
+∇ · ~T j = ∂νT

jν = 0

Naopak, j-tý st¨pec tenzora predstavuje tok ²tvorvektora pµ v smere j.

�leny T jk sa dajú prepísa´ do tvaru 1
Σk

δpj
δt
, kde δpj

δt
je sila pôsobiaca v smere j na plô²ku Σk kolmú

na smer k. Samotný 3×3 tenzor T jk je teda tenzorom napätia. Pre j = k ide o napätie v tlaku,
pre j 6= k o napätie v ²myku.

E Kvantový harmonický operátor.

Hamiltonián harmonického oscilátora (£astice v parabolickej jame) v operátorovom tvare je

Ĥ =
p̂2

2m
+
mω2x̂2

2

Operátory x̂, p̂ môºeme vyjadri´ prostredníctvom nových operátorov â, â†

x̂ =

√
~

2mω
(â+ â†) p̂ = −i

√
~mω

2
(â− â†)

â =

√
mω

2~
x̂+ i

√
1

2mω~
p̂ â† =

√
mω

2~
x̂− i

√
1

2mω~
p̂

Hamiltonián teda môºeme vyjadri´ ako kvadratickú formu operátorov â, â†, a pomocou kánonického
komuta£ného vz´ahu [x̂, p̂] = i~ dostaneme

ââ† =
1

~ω

(
Ĥ +

1

2
~ω
)

â†â =
1

~ω

(
Ĥ − 1

2
~ω
)

a teda
[â, â†] = 1 [Ĥ, â] = −~ωâ [Ĥ, â†] = ~ωâ†

Odtia© okrem vz´ahu

Ĥ =
~ω
2

(â†â+ ââ†)... = ~ω
(
â†â+

1

2

)
vyplýva aj funkcia operátorov â, â† ako operátorov zniºovania/zvy²ovania energie stavu o kvantum
~ω.

V kvantovej teórii polí rozkladáme vo©né polia do fourierovského spektra rovinných v¨n s koe�cien-
tami a~k, a

∗
~k
, ktoré prejdú na operátory â~k, â

†
~k

odoberajúce/pridávajúce kaºdej spektrálnej zloºke
energetické kvantum - £asticu,

â~k|n〉~k =
√
n |n− 1〉~k â†~k|n〉~k =

√
n+ 1 |n+ 1〉~k ( â~k|0〉~k = 0 )

Kaºdá spektrálna zloºka hamiltoniánu po©a je potom tieº kvadratickou formou operátorov â~k, â
†
~k
.

V tom (a len v tom) je £isto formálna zhoda s kvantovomechanickým harmonickým operátorom.

Je v²ak zjavné, ºe takáto schéma platí len ak stavy s ostrou hodnotou ~k môºu by´ obsadené viacerými
£asticami, £iºe len pre bozóny. Pre fermiónové stavy je v dôsledku Pauliho vylu£ovacieho princípu
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moºná len obsadenos´ |0〉~k a |1〉~k. Pre fermiónové anihila£né/krea£né operátory b̂~k, b̂
†
~k
musí preto

plati´

b̂†~kb̂
†
~k
|0〉~k = b̂†~k|1〉~k = 0 £iºe

(
b̂†~k

)2

= 0 (!)

Tieto poºiadavky môºeme vyjadri´ vz´ahmi

b̂~k|n〉~k = n|1− n〉~k b̂†~k|n〉~k = (1− n)|1− n〉~k n = 0, 1

b̂†~kb̂~k|n〉~k = n|n〉~k b̂~kb̂
†
~k
|n〉~k = (1− n)|n〉~k b̂~kb̂~k|n〉~k = b̂†~kb̂

†
~k
|n〉~k = 0

odkia© pre samotné operátory dostávame

b̂†~kb̂~k + b̂~kb̂
†
~k

= 1 b̂2
~k

= (b̂†~k)
2 = 0

£o sa dá vyjadri´ v tvare antikomutátorov80

{b̂~k, b̂
†
~k
} = (2π)3δ(~k − ~k′) {b̂~k, b̂~k} = {b̂†~k, b̂

†
~k
} = 0

F Sférické harmonické funkcie.

Uvaºujme tzv. harmonické polynómy l-tého stup¬a v tvare lineárnych (vo v²eobecnosti komplex-
ných) kombinácii xiyjzk, kde i, j, k sú celé nezáporné £ísla, a l = i+ j + k,

fl(x, y, z) =
∑
i,j,k

cijkx
iyjzk (cijk - komplexné £ísla)

ktoré sú rie²eniami Laplaceovej rovnice ∆fl = 0. V sférických súradniciach majú tieto rie²enia tvar

fl(r, ϑ, ϕ) = rlYl(ϑ, ϕ)

kde funkcie Yl(ϑ, ϕ) sú sférické harmonické funkcie, sp¨¬ajúce podmienku r2∆Yl = −l(l + 1)Yl.
Pre dané l existuje 2l + 1 nezávislých rie²ení Ylm(ϑ, ϕ), kde m je celé £íslo −l < m < l, a teda
vo v²eobecnosti

Yl(ϑ, ϕ) =
l∑

m=−l

almYlm(ϑ, ϕ) (alm - komplexné £ísla)

�ubovo©ná (rozumná) funkcia de�novaná na jednotkovej (r = 1) dvojsfére sa potom dá zapísa´ ako

ψ(ϑ, ϕ) =
∑
l

alYl(ϑ, ϕ) =
∑
l

∑
m

almYlm(ϑ, ϕ)

Pre ilustráciu, najniº²ie sférické harmonické funkcie majú tvar Y00(ϑ, ϕ) =
√

1
4π

Y11(ϑ, ϕ) = −
√

3

8π
sinϑeiϕ Y10(ϑ, ϕ) =

√
3

4π
cosϑ Y1−1(ϑ, ϕ) =

√
3

8π
sinϑe−iϕ

80V tejto úvahe sme, tak ako je zvykom v kvantovej mechanike, ad hoc uplatnili Pauliho vylu£ovací princíp, a dospeli
sme k formulovaniu antikomuta£ných vz´ahov. V kvantovej teórii polí je logická argumentácia obrátená: Antikomuta£né
vz´ahy súvisia s rota£nými vlastnos´ami spinorov (kap. II.3.3, III.2.8 a Dodatok I), a Pauliho vylu£ovací princíp je ich
dôsledkom. Poºiadavka b̂†~k b̂

†
~k
|0〉~k = 0 priamo vyplýva z antikomutátora {b̂†~k b̂

†
~k
} = 0.
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�ahko nahliadneme, ºe v kartézskych súradniciach Y1m odpovedajú (ignorujúc normovací koe�cient√
3

4π
) polynómom 1. stup¬a

Y11(ϑ, ϕ)→ − 1√
2

(x+ iy) Y10(ϑ, ϕ)→ z Y1−1 →
1√
2

(x− iy)

£iºe podpriestor funkcií na dvojsfére pre l = 1 má bázu Y 1
1

Y 1
0

Y 1
−1

 ↔

 − 1√
2
(x+ iy)

z
1√
2
(x− iy)


Aplikovaním operátora z-ovej zloºky momentu hybnosti (ako generátora rotácii okolo osi z, ~ = 1)
L̂z = −i

(
x ∂
∂y
− y ∂

∂x

)
na tieto bázové vektory/funkcie dostávame

L̂z(x+ iy) = (x+ iy) L̂zz = 0 L̂z(x− iy) = −(x− iy)

Bázové funkcie sú teda vlastnými funkciami (s vlastnými hodnotami m = 1, 0,−1) operátora L̂z,
ktorý v tejto 3-rozmernej sférickej reprezentácii nadobúda tvar diagonálnej matice

L̂z|l=1 =

 1 0 0
0 0 0
0 0 −1


£o je odli²ný tvar od kartézskej reprezentácie (kap. II.2.2), kde L̂zx = iy, L̂zy = −ix, L̂zz = 0,
a teda

L̂z|xyz =

 0 −i 0
i 0 0
0 0 0


Rovnako pre l = 2 bude plati´

Y20 ∼ z2 Y2±1 ∼ (x± iy)z Y2±2 ∼ (x± iy)2

a takto vieme ukáza´, ºe sférické harmoniky Ylm sú vlastnými funkciami operátora L̂z pre kaºdé l,
teda v kaºdej sférickej (2l + 1)-rozmernej reprezentácii.

Lineárnymi kombináciami komplexne zdruºených funkcií Ylm ± Yl−m pre |m| > 0 vieme vytvori´
reálne sférické harmoniky81

Y11 − Y1−1 → Ypx ∼ x Y11 + Y1−1 → Ypy ∼ y Y10 → Ypz ∼ z

Analogicky pre l = 2 (m = ±2,±1, 0) dostávame reálne funkcie

Ydx2−y2 ∼ x2 − y2 Ydxy ∼ xy Ydxz ∼ xz Ydyz ∼ yz Ydz2 ∼ z2

Tieto reálne funkcie, po doplnení o radiálnu závislos´ (ako rie²enie SCHR), opisujú orbitály v atóme
vodíka (obr.)82

81Postupujeme analogicky ako pri komplexných/reálnych harmonických e±iϕ ↔ cosϕ, sinϕ. Pouºívame pritom ob-
vyklú symboliku s, p, d, ... pre l = 0, 1, 2, ....

82Nejde tu o 3D zobrazenie! Vzdialenos´ od po£iatku súradníc je mierou ve©kosti hodnoty príslu²nej sférickej funkcie
na jednotkovej kruhovej ploche. Kladné a záporné znamienko je rozlí²ené farebne.
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G Stereogra�cká projekcia a priestorové zobrazenie spinoru.

V tomto dodatku ukáºeme spôsob projekcie medzi reálnym a komplexným priestorom.

Predpokladajme najprv jednotkový vektor ~v = (1, ϑ, θ) v sférických súradniciach (ϑ - uhol vo£i osi z,
θ - uhol v rovine xy). Mnoºina takýchto vektorov vo v²etkých moºných smerov tvorí jednotkovú
gu©ovú plochu. Kaºdému bodu P na tejto ploche môºeme jednozna£ne priradi´ komplexné £íslo Q
ako bod v komplexnej rovine z = 0 - priese£ník tejto
roviny s priamkouNP kdeN = (1, 0, θ) (�severný pól�
jednotkovej gu©ovej plochy). Body �severnej/juºnej�
£asti sa premietajú mimo/dovnútra jednotkovej kruº-
nice v komplexnej rovine (xy). Odpovedajúce kom-
plexné £íslo je (z podobnosti trojuholníkov NQO a
NPPz, dodrºujúc ©avoto£ivú konvenciu)

Q(ϑ, θ) = |Q(ϑ)|eiθ =
sinϑ

1− cosϑ
eiθ = ... = cot

ϑ

2
eiθ

Samotnému bodu N odpovedá |Q(0)| = cot(0)→∞.

Uvedené zobrazenie premieta dva stupne vo©nosti
reálneho priestoru do dvoch stup¬ov vo©nosti kom-
plexnej roviny. Na projekciu v²eobecného vektora
~v = (v, ϑ, θ), v 6= 1, potrebujeme ¤al²í stupe¬ vo©-
nosti: Je zrejmé, ºe so zmenou v (polomeru gu©ovej
plochy) sa bude ²kálova´ aj |Q|. Rovnaký ²kálovací
efekt v²ak dosiahneme aj vertikálnym posuvom kom-
plexnej roviny do vzdialenosti δ od bodu N . Nové
komplexné £íslo v posunutej rovine bude

ψ1(δ, ϑ, θ) = δQ(ϑ, θ) = δ cot
ϑ

2
eiθ

156



Ak by sme namiesto reálneho £ísla δ pouºili komplexné £íslo ψ2 = δeiϕ, znamenalo by to otá£anie
komplexnej roviny okolo osi z, a teda dodato£ný fázový posuv ψ1 o ϕ

ψ1 = ψ2Q = δ cot
ϑ

2
ei(ϕ+θ)

Týmto spôsobom sme vektor ~v v reálnom 3D priestore projektovali (s jedným prebyto£ným stup¬om
vo©nosti ϕ) do dvojice komplexných £ísel ψ1, ψ2, ktoré môºeme vníma´ ako zloºky komplexného
dvojkomponentného �vektora� - spinora

ψ =

(
ψ1

ψ2

)
Ak de�nujeme (v analógii s vektormi) ve©kos´ spinora |ψ| :=

√
|ψ1|2 + |ψ2|2 , a poºadujeme priradenie

|ψ|2 !
= |~v| = v, dostaneme

δ =
√
v sin

ϑ

2
Sú£asne substitúciou α := 2ϕ+ θ �symetrizujeme� zloºky spinora do kone£ného tvaru

ψ =

(
ψ1

ψ2

)
=

( √
v cos ϑ

2
ei(α+θ)/2

√
v sin ϑ

2
ei(α−θ)/2

)
Spinor v tomto zápise je de�novaný ²tyrmi parametrami (v, ϑ, θ, α), pri£om odpovedajúci vektor
~v(v, ϑ, θ) je de�novaný len tromi z nich. Kartézske súradnice tohto vektora sú

vx = v sinϑ cos θ = ... = ψ1ψ
∗
2 + ψ∗1ψ2

vy = −v sinϑ sin θ = ... = i(ψ1ψ
∗
2 − ψ∗1ψ2)

vz = v cosϑ = ... = |ψ1|2 − |ψ2|2

V smeroch osi z (ϑ = 0, resp. π) sa ~v projektuje do spinora ψ ako 0
0
v

↔ ( √
v ei(α+θ)/2

0

)  0
0
−v

↔ (
0√

v ei(α−θ)/2

)

Parameter α je pre vektor ©ubovo©ný. Do reálneho 3D priestoru ho v²ak mô-
ºeme projektova´ ako ¤al²í stupe¬ vo©nosti - orientáciu plochy �vlajky� pevne
pripnutej na vektor ~v (otá£ajúcej sa spolu s ním) vzh©adom na referen£nú
rovinu (napr zvislú).

Zmenou uhla θ o 360◦ sa vektor ~v úplne oto£í okolo osi z, a zmenou uhla α o 360◦ sa úplne oto£í
aj s �vlajkou� okolo svojej osi. V oboch prípadoch sa komplexná rovina oto£í o 180◦, a obe zloºky
spinora zmenia znamienko (eiπ = −1). Znamená to, ºe spinory ψ aj −ψ sa do reálneho 3D priestoru
premietajú rovnako, táto projekcia je teda 2:1.

H Taylorov rozvoj maticových exponenciál.

Generátor boostu v smere x je (v blokovej schéme)

K̂x = −i
(
kx

0

)
kx =

(
0 1
1 0

)
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Pre �aktívnu� £as´ matice, kx, platí k2n
x = 1 a k2n+1

x = kx. Potom matica tejto transformácie je

Bx(φ) = eiφK̂x = eφkx =
∞∑
0

φn

n!
knx =

∞∑
0

φ2n

(2n)!
1 +

∞∑
0

φ2n+1

(2n+ 1)!
kx =

= 1 cosh θ + kx sinh θ =

(
coshφ sinhφ
sinhφ coshφ

)
Analogicky, generátor rotácie v rovine xy je

Ĵz = −i

 0
jz

0

 jz =

(
0 1
−1 0

)

Pre �aktívnu� £as´ matice, jz, platí j2n
z = (−1)n1 a j2n+1

z = (−1)njz. Potom matica transformácie je

Rz(θ) = eiθĴz = eθjz =
∞∑
0

θn

n!
jnz =

∞∑
0

(−1)nθ2n

(2n)!
1 +

∞∑
0

(−1)nθ2n+1

(2n+ 1)!
jz =

= 1 cos θ + jz sin θ =

(
cos θ sin θ
− sin θ cos θ

)

I Spinorová metrika a symbolika.

Skalárny sú£in ²tvorvektorov je lorentzovským invariantom - lorentzovzkým skalárom, a rovnakú
poºiadavku kladieme na skalárny sú£in spinorov. Túto invariantnos´ zabezpe£uje príslu²ná metrika.
Pre ²tvorvektory Minkowského £asopriestoru je touto metrikou ηµν = ηµν = diag(1,−1,−1,−1),
a skalárny sú£in je

uµvµ = uµηµνv
ν = uνv

ν = uνη
νµvµ

(£o je lorentzovský invariant v¤aka de�ni£nej podmienke lorentzovkej grupy η = ΛTηΛ z kap. II.4.1).
Metrika vymie¬a kovariantný a kontravariantný tvar ²tvorvektorov (zvy²uje/zniºuje indexy). Aj v prí-
pade Weylových spinorov de�nujeme ich kontra- a kovariantný tvar, spinorovú metriku ε plniacu
úlohu analogickú metrike η,

χa =

(
χ1

χ2

)
= εabχb χa =

(
χ1

χ2

)
= εabχ

b a, b = 1, 2

a skalárny sú£in spinorov
χξ = χaξa = χaεabξ

b

Ak má tento sú£in (z de�nície) by´ lorentzovským skalárom, £iºe83 χaεabξ
b = (Λa

cχ
c)T εab(Λ

b
dξ
d),

spinorová metrika musí ma´ tvar84

εab =

(
0 1
−1 0

)
= ε εab =

(
0 −1
1 0

)
= ε−1

83Prvý £len skalárneho sú£inu musí by´ transponovaný (riadkový spinor namiesto st¨pcového).
84Dôkaz dostaneme dosadením matíc Λ = Rj ,Bj z kap. II.4.1.
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Vidíme, ºe (na rozdiel od diagonálnej matice η) matica ε je antisymetrická! Znamená to, ºe85

χa =

(
χ1

χ2

)
= εabχ

b =

(
−χ2

χ1

)
χaξa = χ1ε1bξ

b + χ2ε2bξ
b = −χ1ξ2 + χ2ξ1 = −χaξa χaξa = −χaξa

Najpozoruhodnej²ou vlastnos´ou spinorov je v²ak antikomutatívnos´ sú£inu spinorových zloºiek,86

χaξa = −ξaχa

To znamená, ºe skalárny sú£in spinorov (ako celkov) je komutatívny, χξ = ξχ, v zhode s kap. I.3.7.

Chirálne ©avoruké spinory (kap. II.4.3) konven£ne vyjadrujeme v kovariantnom tvare (index dole),
a lorentzovsky ich transformujeme v reprezentácii Λ( 1

2
,0),

χL = χa →
Λ
χ′a =

(
ei
~θ·~σ/2+~φ·~σ/2

)b
a
χb

Ke¤ºe zloºky spinorov sú komplexné £ísla, de�nujme spinor komplexne zdruºený ku χL a jeho trans-
formáciu, pri£om bodka nad indexom vyjadruje komplexné zdruºenie87

χ∗L = χȧ →
Λ
χ′ȧ = (χ′a)

∗ =

((
ei
~θ·~σ/2+~φ·~σ/2

)b
a︸ ︷︷ ︸
)

Λ
( 12 ,0)

∗

χ∗b =
(
e−i

~θ·~σ∗/2+~φ·~σ∗/2
)ḃ
ȧ
χḃ

kde ~σ∗ = (σ1,−σ2, σ3). Zmenu kovariantného tvaru spinora na kontravariantý dosiahneme jeho
vynásobením metrikou ε,

ε(χL)∗ = χ̃L = εȧḃχḃ = χȧ = (χa)∗ (εȧḃ = εab = ε , εȧḃ = εab = ε−1)

a s vyuºitím rovností εΛ(~ω)ε−1 = Λ(ε~ωε−1) a ε~σ∗ε−1 = −~σ ho transformujeme ako

χ̃L →
Λ
εȧḃ
(
e−i

~θ·~σ∗/2+~φ·~σ∗/2
)ḃ
ȧ
εḃċε

ḃċ︸ ︷︷ ︸
1

χḃ = ... =
(
ei
~θ·~σ/2−~φ·~σ/2

)ḃ
ċ︸ ︷︷ ︸χċ

v £om spoznáme reprezentáciu Λ(0, 1
2

)(~ω) = ei~ω
∗·~σ/2. Znamená to, ºe spinor χ̃L sa transformuje ako -

a teda je - chirálne pravoruký, χ̃L = χȧ = χR (konven£ne s bodkovaným indexom hore). Analogicky,
spinor komplexne zdruºený k chirálne pravorukému spinoru sa transformuje ako

χ∗R = (χȧ)∗ = χa →
Λ
χ′a = (χ′ȧ)∗ =

((
ei
~θ·~σ/2−~φ·~σ/2

)ȧ
ḃ︸ ︷︷ ︸
)

Λ
(0, 12 )

∗ (
χḃ
)∗

=
(
e−i

~θ·~σ∗/2−~φ·~σ∗/2
)a
b
χb

a jeho kovariantný tvar (dostaneme ho vynásobením kontravariantného tvaru metrikou ε−1)

χ̃R = εab(χR)∗ = εab(χ
ḃ)∗ = χa

85Skalárny sú£in je konvenciou de�novaný ako χaξa. Ak by sme ho (v inej konvencii) de�novali ako χaξa, museli by
sme zmeni´ aj metriku, ε→ −ε.

86Zloºky spinorov sú tzv. Grassmannove £ísla, ktorých de�ni£nou vlastnos´ou je

α2 = 0 (α 6= 0) αα = −αα ⇒ αβ = −βα

87Ide o tzv. van der Waerdenovo zna£enie.
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bude chirálne ©avoruký. V tomto zmysle sú chirálne ©avo- a pravoruké spinory navzájom komplexne
zdruºené. Platí teda

χ∗L = χ∗a = χȧ εabχL = εabχb = χa χ∗R = (χȧ)∗ = χa εabχR = εȧḃχ
ḃ = χȧ

χ̃L = εabχ∗L = εabχ∗b = χȧ = χR alebo
(

0 1
−1 0

)(
χ∗L1

χ∗L2

)
=

(
χ∗L2

−χ∗L1

)
=

(
χR1

χR2

)
χ̃R = εabχ

∗
R = εab(χ

ḃ)∗ = χa = χL alebo
(

0 −1
1 0

)(
χ∗R1

χ∗R2

)
=

(
−χ∗R2

χ∗R1

)
=

(
χL1

χL2

)
a súvis medzi spinorovými reprezentáciami je

ε
(

Λ( 1
2
,0)(~ω)

)∗
ε−1 = Λ(0, 1

2
)(~ω
∗)

Pri lorentzovskej transformácií sa zachováva skalárny sú£in spinorov rovnakej reprezentácie,88

(χR)†χL = (χ∗R)TχL = (χa)Tχa →
Λ

((
e−i

~θ·~σ∗/2−~φ·~σ∗/2
)a
b
χb
)T (

ei
~θ·~σ/2+~φ·~σ/2

)c
a
χc =

=
(
χb
)T (

e−i
~θ·~σ/2−~φ·~σ/2

)a
b

(
ei
~θ·~σ/2+~φ·~σ/2

)c
a
χc = (χa)T χa

a rovnako pre (χL)†χR.

Výraz Vaḃ z kap. II.4.3 sa transformuje v reprezentácii Λ( 1
2
,0)⊗(0, 1

2
) ako

Vaḃ → V ′
aḃ

= ε−1V ′ḃa = ε−1
[
Λ( 1

2
,0)Λ(0, 1

2
)V

ḃ
a

]
=

= ε−1Λ( 1
2
,0)

[
εΛ∗

( 1
2
,0)
ε−1
]
V ḃ
a = Λ( 1

2
,0)

[
ε−1ε

]
Λ∗

( 1
2
,0)

[
ε−1V ḃ

a

]
= Λ( 1

2
,0)Λ

∗
( 1
2
,0)
Vaḃ =

=
(
ei
~θ·~σ/2+~φ·~σ/2

)a
c
Vaḃ

((
e−i

~θ·~σ∗/+~φ·~σ∗/2
)ḃ
ḋ

)T
=

(σ∗)T=σ†=σ

(
ei
~θ·~σ/2+~φ·~σ/2

)a
c
Vaḃ

(
e−i

~θ·~σ/+~φ·~σ/2
)ḃ
ḋ

∼=

∼=
(

1 + i~θ · ~σ/2 + ~φ · ~σ/2
)a
c
Vaḃ

(
1− i~θ · ~σ/2 + ~φ · ~σ/2

)ḃ
ḋ

=

=

(
1 + (iθ3 + φ3)/2 (iθ1 + θ2 + φ1 − iφ2)/2

(iθ1 − θ2 + φ1 + iφ2)/2 1− (iθ3 + φ3)/2

)(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
×

×
(

1− (iθ3 − φ3)/2 (−iθ1 + θ2 − φ1 − iφ2)/2
(−iθ1 + θ2 + φ1 + iφ2)/2 1 + (iθ3 − φ3)/2

)
=

(
v′0 + v′3 v′1 − iv′2
v′1 + iv′2 v′0 − v′3

)

88V ozna£ení (χa)
T
χa sa symbol T zvykne vynecha´, ak v²ak spinor (χa)

T transformujeme, musíme transponova´
transforma£ný predpis. Platí pritom (σ∗)T = σ† = σ.
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J Relativistické normovanie.

Reálne skalárne pole ako fyzikálne rie²enie KGR, sp¨¬ajúce disperzný vz´ah kµkµ = k2
0 − ~k2 = m̃2

£iºe ω = ω~k = c
√
~k2 + m̃2, má pre kladné frekvencie (Θ(k0) = 1 pre k0 = ω/c > 0, inak Θ(k0) = 0)

tvar
φ(xµ) =

Rφ

(2π)4

∫
δ(kµk

µ − m̃2) Θ(k0)
[
a(kµ)e−ikµx

µ

+ a∗(kµ)eikµx
µ]
d4k

pri£om
δ(kµk

µ − m̃2) Θ(k0) = ... = δ(k2
0 − (ω~k/c)

2) Θ(k0)

Na základe vlastnosti zloºenej δ-funkcie

δ(f(α)) =
∑
j

δ(α− αj)∣∣∣df(α)
dα

∣∣∣
α=αj

pre f(αj) = 0

dostávame lorentzovsky invariantný tvar89∫
δ(kµk

µ − m̃2) Θ(k0)d4k =

∫
δ(k0 − ω~k/c)

2k0

dk0d
3k =

∫
c

2ω~k
d3k

Fourierovské koe�cienty a(kµ), a∗(kµ) potom vyjadrujeme ako funkcie ~k, pri£om do nich £iasto£ne
zahr¬ujeme uvedené relativistické normovanie,

a(~k) =
a(kµ)√
2ω~k/c

a∗(~k) =
a∗(kµ)√

2ω~k/c

v¤aka £omu majú nenulové komuta£né vz´ahy (pre operátory, kap. III.1.3) jednoduch²í (rozmerovo
správny) tvar

[â(~k), â†(~k′)] = (2π)3δ(~k − ~k′)

Výsledný tvar reálneho skalárneho po©a je potom

φ(xµ) =

∫
Rφ

(2π)3
√

2ω~k/c

[
a(~k)e−ikµx

µ

+ a∗(~k)eikµx
µ
]
d3k

K Kvantovanie skalárneho hamiltoniánu.

Jednotlivé £leny hamiltoniánu reálneho skalárneho po©a z kap. III.1.3

H =
m̃~
2

∫ [
(∂0φ)2 + (∂jφ)2 + m̃2φ2

]
d3x

po dosadení operátorového tvaru skalárneho po©a

φ̂(xµ) =

∫
1

(2π)3

√
~

2mω̃~k

[
â(~k)e−ikµx

µ

+ â†(~k)eikµx
µ
]
d3k

89Samotné skalárne pole je lorentzovzkým invariantom.
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a s vyuºitím vlastností δ-funkcií nadobudnú tvar

m̃~
2

∫
(∂0φ̂)2d3x =

−~
4

∫ ∫ ∫ √
ω~kω~k′

(2π)6

[
â(~k)â(~k′)e−i(kµ+k′µ)xµ − â(~k)â†(~k′)e−i(kµ−k

′
µ)xµ−

−â†(~k)â(~k′)ei(kµ−k
′
µ)xµ + â†(~k)â†(~k′)ei(kµ+k′µ)xµ

]
d3k d3k′ d3x =

ortogonálnos´

=
−~
4

∫ ∫ √
ω~kω~k′

(2π)3

[
â(~k)â(~k′)δ(~k + ~k′)e−i(ω~k+ω~k′ )t − â(~k)â†(~k′)δ(~k − ~k′)e−i(ω~k−ω~k′ )t−

−â†(~k)â(~k′)δ(~k − ~k′)ei(ω~k−ω~k′ )t + â†(~k)â†(~k′)δ(~k + ~k′)ei(ω~k+ω~k′ )t
]
d3k d3k′ =

(ω−~k =ω~k)

=
−~
4

∫
ω~k

(2π)3

[
â(~k)â(−~k)e−i2ω~kt − â(~k)â†(~k)− â†(~k)â(~k) + â†(~k)â†(−~k′)ei2ω~kt

]
d3k

m̃~
2

∫
(∂jφ̂)2d3x = ...

=
~
4

∫
c2~k2

(2π)3 ω~k

[
â(~k)â(−~k)e−i2ω~kt + â(~k)â†(~k) + â†(~k)â(~k) + â†(~k)â†(−~k′)ei2ω~kt

]
d3k

m̃~
2

∫
m̃2φ2d3x = ...

=
~
4

∫
c2m̃2

(2π)3 ω~k

[
â(~k)â(−~k)e−i2ω~kt + â(~k)â†(~k) + â†(~k)â(~k) + â†(~k)â†(−~k′)ei2ω~kt

]
d3k

S£ítaním týchto £lenov a s uváºením disperzného vz´ahu ω̃2
~k

= ~k2 + m̃2 dostaneme napokon výraz

Ĥ =
~
2

∫
ω~k

(2π)3

[
â†(~k)â(~k) + â(~k)â†(~k)

]
d3k

L Cesta k Diracovej rovnici.

Relativistické diferenciálne (vlnové) rovnice 2. rádu (akou je KGR) nepodporujú pravdepodobnostnú
interpretáciu vlnových funkcií (výrazy a²pirujúce na hustotu pravdepodobnosti nie sú pozitívne de-
�nitné). Rie²enie tohto problému (zachovanie pravdepodobnostnej interpretácie) spo£íva v nájdení
relativistickej diferenciálnej rovnice 1. rádu, ktorá v²ak sp¨¬a relativistický vz´ah (z ktorého vychádza
aj KGR)

E2

c2
= p2 +m2c2 resp. pµpµ = m2c2

Vyuºijeme skuto£nos´, ºe pomocou Pauliho matíc, sp¨¬ajúcich anti-komuta£né podmienky

{σj, σk} = σjσk + σkσj = 2δjk

dokáºeme pre ©ubovo©ný vektor, a teda aj vektor ~p, napísa´90

(~σ · ~p)(~σ · ~p) = (~p · ~p)1 = ~p · ~p
90Výraz ~σ · ~p je skalárom vo fyzickom priestore ale maticou 2 × 2 v spinorovom priestore. Môºe vyvsta´ otázka,

pre£o potrebujeme na faktorizáciu takýto výraz namiesto ~p · ~p = p2. Faktorizácia p2 by viedla na skalár p, ktorému
nedokáºeme priradi´ operátor (operátor hybnosti je generátorom priestorového posunutia, a teda vyºaduje zadaný
smer). Uvedenému problému sa poloºartom hovorí �h©adanie odmocniny z operátora�.
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Pre nehmotné pole (m = 0), t.j. v ultrarelativistickej limite, potom platí

pµpµ =
E2

c2
− ~p · ~p =

E2

c2
− (~σ · ~p)2 =

(
E

c
+ ~σ · ~p

)(
E

c
− ~σ · ~p

)
= 0

s rie²eniami ~σ·~p = ±E
c
. Prechodom k operátorom dostávame dve samostatné rovnice pre dvojkomponentné

Weylove spinory opa£nej chirality/helicity (kap. III.2.4).

Pre hmotné polia v²ak faktorizácia výrazu pµpµ−m2c2 uº nie je moºná pomocou σ-matíc 2× 2, ale
pomocou matíc γ-matíc 4× 4, sp¨¬ajúcich podmienky

{γµ, γν} = γµγν + γνγµ = 2ηµν

a pomocou ktorých vieme zapísa´ ve©kos´ ²tvorvektora ako

pµpµ = γµpµγ
νpν

Potom
pµpµ −m2c2 = (γµpµ +mc)(γµpµ −mc) = 0

a prechodom k operátorom hybnosti dostávame DIR pre ²tvorkomponentné bispinory ψ a ψ̄ (kap.
III.2.1).

M Lorentzovský boost Diracových spinorov.

Lorentzovský boost Diracových bispinorov (bez £asopriestorových stup¬ov vo©nosti) v chirálnej re-
prezentácii sa riadi pravidlom (kap. II.4.3, pre pasívnu transformáciu, £iºe boost pozorovate©a)

ψ′(W ) = Λsψ
(W ) =

(
e~σ·

~θ/2 0

0 e−~σ·
~θ/2

)
ψ(W ) ψ(W ) =

(
χL
ξR

)
kde boostová rýchlos´ je ~v = c ~θ 0 tanh θ. Nás v²ak zaujíma pohybujúci sa bispinor (£iºe aktívna
transformácia), a teda ~v → −~v a θ → −θ. Odpovedajúce bispinory v hmotnostnej reprezentácii sú
(kap. III.2.3)

ψ(D) = Uψ(W ) ψ′(D) = Uψ′(W ) = UΛsψ
(W ) = UΛsU−1ψ(D) U =

1√
2

(
1 1

−1 1

)
a po dosadení dostávame maticu lorentzovského boostu (bispinora) v hmotnostnej reprezentácii,

ψ′(D) = ... =

(
cosh θ

2
~θ 0 · ~σ sinh θ

2
~θ 0 · ~σ sinh θ

2
cosh θ

2

)
ψ(D)

Boostová rýchlos´ bispinora je jeho grupovou rýchlos´ou, £o pre disperzný vz´ah ω~k = c
√
k2 + m̃2

znamená ~v = c2~p
E

= ~p
m
, a teda tanh2 θ = k2

ω2
~k

. S vyuºitím identít

cosh θ =
1√

1− tanh2 θ
cosh

θ

2
=

√
cosh θ + 1

2
sinh

θ

2
=

√
cosh θ − 1

2

dostávame napokon pre transforma£nú maticu boostu v hmotnostnej reprezentácii kone£ný tvar

1√
2m̃

 √
ω̃~k + m̃

~k·~σ√
ω̃~k+m̃

~k·~σ√
ω̃~k+m̃

√
ω̃~k + m̃


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N Kvantovanie Diracovho hamiltoniánu.

Hamiltonián Diracovho po©a H = ~
∫
iψ̄γ0∂tψ d

3x z kap. III.2.8 nadobudne po dosadení polí ψ(xµ)
a ψ̄(xµ) a prechodom k ich operátorom tvar

Ĥ =
~

(2π)6

2∑
s,s′=1

∫ ∫ ∫
ic

2
√
ω~kω~k′

[(
b̂†s′(

~k′)ū
(s′)
~k′
eik
′
µx
µ

+ ĉs′(~k
′)v̄

(s′)
~k′
e−ik

′
µx
µ
)
×

× (−iω~kγ
0)
(
b̂s(~k)u

(s)
~k
e−ikµx

µ − ĉ†s(~k)v
(s)
~k
eikµx

µ
)]
d3k d3k′ d3x =

=
~c

2(2π)6

2∑
s,s′=1

∫ ∫ ∫ √
ω~k
ω~k′

[
b̂†s′(

~k′)b̂s(~k)ū
(s′)
~k′
γ0u

(s)
~k
ei(k

′
µ−kµ)xµ − b̂†s′(~k

′)ĉ†s(
~k)ū

(s′)
~k′
γ0v

(s)
~k
ei(k

′
µ+kµ)xµ+

+ĉs′(~k
′)b̂s(~k)v̄

(s′)
~k′
γ0u

(s)
~k
e−i(k

′
µ+kµ)xµ − ĉs′(~k′)ĉ†s(~k)v̄

(s′)
~k′
γ0v

(s)
~k
e−i(k

′
µ−kµ)xµ

]
d3k d3k′ d3x

S uváºením ortogonálnosti rovinných v¨n (analogicky ako v Dodatku K) dostávame

Ĥ = ... =
~c

2(2π)3

2∑
s,s′=1

∫ [
b̂†s′(

~k)b̂s(~k)ū
(s′)
~k
γ0u

(s)
~k
− b̂†s′(−~k)ĉ†s(

~k)ū
(s′)

−~k
γ0v

(s)
~k
ei2kµx

µ

+

+ĉs′(−~k)b̂s(~k)v̄
(s′)

−~k
γ0u

(s)
~k
e−i2kµx

µ − ĉs′(~k)ĉ†s(
~k)v̄

(s′)
~k
γ0v

(s)
~k

]
d3k

Teraz treba vyhodnoti´ skalárne sú£iny (transponovaných) bispinorov ū resp. v̄ s bispinormi γ0u resp.
γ0v. Z bázových rie²ení z kap. III.2.3 (v hmotnostnej báze, kde γ0 je diagonálna) okamºite vidíme,
ºe

ū~kv~k = v̄~ku~k = 0 ū~kγ
0v~k = u†~kv~k = 0 v̄~kγ

0u~k = v†~ku~k = 0

ū
(s)
~k
γ0u

(s′)
~k

= u
†(s)
~k
u

(s′)
~k

= ... = 2ω̃~kδss′ v̄
(s)
~k
γ0v

(s′)
~k

= v
†(s)
~k

v
(s′)
~k

= ... = 2ω̃~kδss′

a teda hamiltonián nadobudne tvar

Ĥ =
2∑
s=1

∫ ~ω~k
(2π)3

[
b̂†s(
~k)b̂s(~k)− ĉs(~k)ĉ†s(

~k)
]
d3k

O Výpo£et (anti)komutátorov spinových polí.

Postup pri odvodení komuta£ných £i antikomuta£ných vz´ahov pre operátory spinorových polí je
analogický ako pri odvodzovaní hamiltoniánu v Dodatku N. Okrem výpo£tu bispinorových skalárnych
sú£inov, ktorých nenulovými výsledkami sú skaláry (£ísla),

u
†(s)
~k
u

(s′)
~k

= 2ω̃~kδss′ v
†(s)
~k

v
(s′)
~k

= 2ω̃~kδss′ ū
(s)
~k
u

(s′)
~k

= 2m̃δss′ v̄
(s)
~k
v

(s′)
~k

= −2m̃δss′

v²ak v komutátoroch/antikomutátoroch musíme spo£íta´ aj sú£iny typu u(s)
~k
ū

(s′)
~k

, £o sú matice. Uva-
ºujme výraz  2∑

s′=1

u
(s′)
~k
ū

(s′)
~k︸ ︷︷ ︸


Ξ

u
(s)
~k

=
2∑

s′=1

u
(s′)
~k
ū

(s′)
~k
u

(s)
~k︸ ︷︷ ︸

2m̃δs′s

= u
(s)
~k

2m̃ = [2m̃]︸︷︷︸
Ξ

u
(s)
~k
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Výraz Ξ na oboch stranách rovnice je matica, a maticový zápis DIR pre bispinor u(s)
~k

z kap. III.2.3 je

(γµkµ − m̃)u
(s)
~k

= 0 ⇒ γµkµ = m̃ (14×4) ⇒ 2m̃u
(s)
~k
→ (γµkµ + m̃)u

(s)
~k

Platí teda91

2∑
s=1

u
(s)
~k
ū

(s)
~k

= γµkµ + m̃ a analogicky
2∑
s=1

v
(s)
~k
v̄

(s)
~k

= γµkµ − m̃

Pomocou týchto výrazov dostaneme kone£né tvary komutátorov/antikomutátorov operátorov Dira-
cových polí.

P Odvodenie Procovej rovnice.

De�nujeme tenzor F µν = ∂µAν − ∂νAµ a výraz F µνFµν môºeme rozpísa´ ako

F µνFµν = (∂µAν − ∂νAµ)(∂µAν − ∂νAµ) = ∂µAν∂µAν − ∂µAν∂νAµ − ∂νAµ∂µAν︸ ︷︷ ︸
µ↔ν

+ ∂νAµ∂νAµ︸ ︷︷ ︸
µ↔ν

=

= 2(∂µAν∂µAν − ∂µAν∂νAµ)

Procov lagrangián z kap. III.3.1 má potom tvar

L = −1

4
F µνFµν +

m̃2

2
AµAµ = −1

2

(
∂µAν∂µAν − ∂µAν∂νAµ − m̃2AµAµ

)
Tento výraz dosadíme do ELR

∂L
∂Aρ

= ∂σ

(
∂L

∂(∂σAρ)

)
pri£om pre jednotlivé £leny platí

∂

∂Aρ
(m̃2AµAµ) = 2m̃2Aρ

∂σ

[
∂

∂(∂σAρ)
(∂µAν∂µAν)

]
= ∂σ

[
∂(∂µAν)

∂(∂σAρ)
(∂µAν) + (∂µAν)

∂(∂µAν)

∂(∂σAρ)

]
=

= ∂σ

[
ηµκηνλ

∂(∂κAλ)

∂(∂σAρ)
(∂µAν) + (∂µAν)

∂(∂µAν)

∂(∂σAρ)

]
= ∂σ

[
ηµκηνλδσκδ

ρ
λ(∂µAν) + δσµδ

ρ
ν(∂

µAν)
]

=

= ∂σ [ ∂σAρ + ∂σAρ ] = 2∂σ∂
σAρ

∂σ

[
∂

∂(∂σAρ)
(∂µAν∂νAµ)

]
= ... = 2∂ρ∂σA

σ

Výsledná pohybová - Procova rovnica je potom

∂σ(∂σAρ − ∂ρAσ) + m̃2Aρ = ∂σF
σρ + m̃2Aρ = 0

91Ide o rovnosti matíc, a overi´ sa dajú dosadením po zloºkách, ako rovnosti zloºiek matíc 4× 4.
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Q Kalibra£ná transformácia.

Transformácia Aν(xµ) → A′ν(xµ) = Aν(xµ) + ∂µΛ(xµ) pre Procov lagrangián nehmotného po©a
znamená

L → L′ = −1

2
[ ∂µA′ν∂µA

′
ν − ∂µA′ν∂νA′µ ] =

−1

2
[ ∂µ(Aν + ∂νΛ)∂µ(Aν + ∂νΛ)− ∂µ(Aν + ∂νΛ)∂ν(Aµ + ∂µΛ ] = ...

... = −1

2
[ ∂µAν∂µAν + ∂µ∂νΛ∂µAν + ∂µAν∂µ∂νΛ + ∂µ∂νΛ∂µ∂νΛ ]+

+
1

2
[ ∂µAν∂νAµ + ∂µ∂ν

=∂ν∂µ
Λ∂νAµ
µ↔ν

+ ∂µAν ∂ν∂µ
=∂µ∂ν

Λ + ∂µ∂νΛ∂ν∂µ
=∂µ∂ν

Λ ] =

= −1

2
[ ∂µAν∂µAν − ∂µAν∂νAµ ] = L

R Odvodenie Maxwellových rovníc.

Nehomogénne MXR bez zdrojov v najznámej²om tvare odvodíme z PCR (kap. III.3.2) pre elek-
tromagnetický tenzor F µν

∂µ(∂µAν − ∂νAµ) = ∂µF
µν = ∂0F

0ν + ∂jF
jν = 0 F µν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0


ν = k : ∂0F

0k + ∂jF
jk = −∂0Ek/c+ εkjl∂jBl = 0 ⇔ ∇× ~B − ∂t ~E/c2 = 0

ν = 0 : ∂0F
00 + ∂jF

j0 = 0 + ∂jEj/c = 0 ⇔ ∇ · ~E = 0

V prítomnosti zdrojov jµ = (cρ,~j) by pravé strany obsahovali zloºky ²tvorprúdu µ0j
µ (viac o tom

v kap. IV.2.1).

De�nujme teraz duálny elektromagnetický tenzor

Gµν =
1

2
εµνσρFσρ =


0 −B1 −B2 −B3

B1 0 E3/c −E2/c
B2 −E3/c 0 E1/c
B3 E2/c −E1/c 0


pre ktorý platia homogénne MXR

∂µG
µν =

1

2
∂µε

µνσρ(∂ρAσ − ∂σAρ) = ... = 0

ν = k : ∂0G
0k + ∂jG

jk = −∂0Bk − εkjl∂jEl = 0 ⇔ ∇× ~E + ∂t ~B = 0

ν = 0 : ∂0G
00 + ∂jG

j0 = 0 + ∂jBj = 0 ⇔ ∇ · ~B = 0
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S Hra£kársky model �nan£ného kalibra£ného po©a.

Uvaºujme kruhovú zmenu pe¬azí (peniaze za peniaze) pod©a nasledujúcej schémy: Majme 4 krajiny
(súradnice) s rôznou menou α, β, γ, δ

δ : (x, y + dy) ← γ : (x+ dx, y + dy)
↓ ↑

α : (x, y) → β : (x+ dx, y)

a v nich 4 zmenárne so zmenami mien v daných kurzoch Z→(x, y) = β
α
, at¤.

Z↓(x, y + dy) ← Z←(x+ dx, y + dy)
↓ ↑

Z→(x, y) → Z↑(x+ dx, y)

Bilancia v (x, y) po uzavretí kruhu α→ β → γ → δ → α je

B(x, y) = Z→(x, y) · Z↑(x+ dx, y) · Z←(x+ dx, y + dy) · Z↓(x, y + dy)

Upravmeme ozna£enia zmenných kurzov pod©a smeru osí:

Z→(x, y) = Zx(x, y) Z←(x+ dx, y + dy) = Z−x(x+ dx, y + dy) =
1

Zx(x, y + dy)

Z↑(x+ dx, y) = Zy(x+ dx, y) Z↓(x, y + dy) = Z−y(x, y + dy) =
1

Zy(x, y)

B(x, y) =
Zx(x, y) · Zy(x+ dx, y)

Zx(x, y + dy) · Zy(x, y)

Ak by táto bilancia bola rovná 1, úloha zmenární by bola £isto pasívnou. Z praxe v²ak vieme, ºe to
tak nie je.

De�nujme logaritmy:

A = lnZ (Z = eA) F = lnB (B = eF )

F (x, y) = ... = [Ay(x+ dx, y)− Ay(x, y)]− [Ax(x, y + dy)− Ax(x, y)]

£o prechodom od 2D mrieºky ku spojitej 2D resp. 4D limite prejde na

F (x, y) = ∂xAy − ∂yAx Fµν = ∂µAν − ∂νAµ

(Nulté zloºky ²tvorvektorov tu znamenajú obchodovanie v £ase - nákup a predaj v rôznych £asoch
na rovnakom mieste.)

Pripus´me lokálnu kalibráciu (devalváciu/revalváciu) meny v jednotlivých krajinách (napr. ²krtanie
núl):

α→ G(x, y)α β → G(x+ dx, y)β γ, δ analogicky

Zmenné kurzy po kalibráciách prejdú na

Zx(x, y) =
β

α
→ G(x+ dx, y)

G(x, y)
Zx(x, y) at¤.

De�nujme logaritmus Λ = lnG (G = eΛ) :

Ax(x, y)→ Ax(x, y) + Λ(x+ dx, y)− Λ(x, y) → Ax(x, y) + ∂xΛ(x, y)
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Lokálna kalibrácia mien nemôºe ovplyvni´ bilanciu po uzavretí kruhu (
∮
∇Λ · ~dl = 0) - B a F sú

kalibra£ne invariantné (fyzikálne), a nenulovos´ F je dôsledkom aktívnej úlohy zmenární.

Uvaºujme teraz obchodovanie tovaru. Ak T je zmena tovaru na peniaze (predaj komodity), potom 1
T

je zmena pe¬azí na tovar (nákup komodity). Predpokladajme nákup v krajine (x, y) v mene α, jej
predaj v krajine (x+ dx, y) v mene β a spätnú konverziu meny β → α:

Výsledná bilancia je

B′(x, y) =
T (x+ dx, y)

T (x, y)Zx(x, y)

Opä´ zave¤me logaritmy

ϕ = lnT (T = eϕ) F ′ = lnB′ (F ′ = eB
′
)

F ′x(x, y) = ϕ(x+ dx, y)− ϕ(x, y)− Ax(x, y) → ∂xϕ(x, y)− Ax(x, y)

Aj keby by ²lo o nákup a predaj v tej istej mene, tj. Ax = 0, potom by F ′x 6= 0 nepochybne
znamenalo vznik gradientu danej komodity (ϕ) - tovar by sa hromadil na miestach výnosnej²ej
obchodovate©nosti. F ′ má teda vo v²eobecnosti (A 6= 0) fyzikálny význam gradientu ϕ pri aktívnej
ú£asti zmenární, s novým ozna£ením

F ′ → Dµϕ = ∂µϕ− Aµ
Ak by sa ktoráko©vek centrálna banka rozhodla pre kalibráciu meny, prejavilo by sa to na oboch
£lenoch výrazu rovnako,

Dµϕ→ (∂µϕ+ ∂µΛ)− (Aµ + ∂µΛ) = Dµϕ

Takto de�novaný gradient po©a ϕ je teda kalibra£ne invariantný.

T Metóda Greenových funkcií.

Základom tejto metódy je fakt, ºe ©ubovo©nú skalárnu funkciu Γ(xµ) na pravej strane lineárnej
diferenciálnej rovnice pre skalárne pole φ(xµ)

Dφ(xµ) = Γ(xµ)

vieme vyjadri´ pomocou Diracovej δ-funkcie ako

Γ(xµ) =

∫
Γ(x′µ)δ(xµ − x′µ)d4x′

£iºe ©ubovo©ný priebeh funkcie vieme rozloºi´ a spätne �skomponova´� pomocou δ-píkov s �váhou�
Γ(x′µ). Linearita pohybovej rovnice zaru£í, ºe jej rie²enie je superpozíciou £iastkových rie²ení pre
pravé strany v podobe jednotlivých δ-píkov,

DφG(xµ, x
′
µ) = δ(xµ − x′µ)

Tieto £iastkové - fundamentálne - rie²enia φG(xµ, x
′
µ) nazývame Greenovými funkciami príslu²nej

diferenciálnej rovnice. Rie²enie rovnice s pravou stranou Γ(xµ) je potom

φ(xµ) =

∫
Γ(x′µ)φG(xµ, x

′
µ)d4x′

Ako príklad uve¤me Greenovu funkciu KGR

φG(xµ, x
′
µ) =

1

(2π)4

∫
1

m∗φ
2 − kµkµ

e−ik
µ(xµ−x′µ)d4k
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