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ZAKLADNE VZTAHY OPISUJUCE
ELEKTROMAGNETICKE JAVY

V tejto kapitole si zopakujeme tie veci z prvych dvoch semestrov zakladného
kurzu fyziky (mechanika, elektrina a magnetizmus), ktoré su zdkladom prednésky
z tedrie elmag pola. Pri tomto opakovani a potom v celej predniske budeme vo
velkej miere pouzivat zdklady vektorovej analyzy (gradient, rotdcia, divergencia,
Gaussova a Stokesova veta, ...), kto v nich nemd celkom jasno, musi to ¢im skor
napravit. Bez tychto matematickych zdkladov neméd zmysel éitat dalej. Nastastie
toho nie je az tak vela, uplne stacia dve kapitoly z Feynmanovych prednisok z
fyziky, venované diferencidlnemu a integralnemu poctu vektorovych poli (kapitoly
2 a 3 tretieho dielu slovenského vydania).

1. Zakladné vzfahy elektrodynamiky vo vakuu

Vzéjomné posobenie elektrickych nabojov a elmag poli opisuje jednak Newto-
nova pohybové rovnica s Lorentzovou silou a jednak Maxwellove rovnice. Newto-
nova rovnica urc¢uje pohyb nédbojov pri zadanych elmag poliach a Maxwellove rov-
nice urcuju ¢asovy vyvoj elmag poli pri zadanom pohybe nabojov.

Casovy vyvoj poloh ¢astic teda opisuje rovnica

—

mi = F kde ﬁ:qE—&—q.ﬁxé

a Casovy vyvoj elmag poli opisuju rovnice

divD =p
- 0B
tEh=——
ro 5
divB =
= oD
tH = —
ro 7+ It
pricom vo vakuu plati
5 = EoE_: a é = ,U,()I‘_j

(Veliciny p, 5, E, 15, H a B st funkciami premennych 7 a t, ¢o sme, kvoli
prehladnosti zdpisov, explicitne nevypisovali.)
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2 1. ZAKLADNE VZTAHY OPISUJUCE ELEKTROMAGNETICKE JAVY

Vo v8eobecnosti predstavuji Maxwellove rovnice a Newtonova rovnica stustavu
viazanych diferencialnych rovnic pre ¢asovy vyvoj elmag poli a pohyb castic. Riese-
nie tejto stistavy je z matematického hladiska mimoriadne komplikovany problém,
ktory skoro nikdy nevieme presne vyriesit. Nagtastie st véak v mnohych pripadoch
bud elmag polia alebo pohyb elektrickych nabojov dané zvonku a vtedy ich ¢asovy
priebeh dopredu pozndme, ¢ize ho nemusime hladat.

PozNAMKA. (ktort nie je nutné ¢itat). Zadanie veci zvonku spoéiva v prvom
rade v tom, Ze si svet rozdelime na uvazovany systém a zvysok sveta, pricom o tomto
zvysku sveta predpokladdme, Ze o fiom vieme vsetko, ¢o potrebujeme (z experi-
mentalneho hladiska ide o delenie na merany systém a experimentalnu aparatiru,
o ktorej by sme v dobrom experimente naozaj mali vedief vietko, ¢o potrebujeme).
Samotné toto delenie vsak nestac¢i, v druhom rade je nutné, aby vonkajsie sily
t.j. sily, ktorymi posobi na ¢astice systému zvysok sveta, boli ovela viésie ako sily,
ktorymi na seba posobia Castice systému navzdajom. Ak nas v takom pripade zaujima
pohyb ¢astic systému, potom mozno ich vzajomné podsobenie zanedbat vzhladom
k posobeniu vonkajsich sil a tym padom vsSetky silové polia, Cize aj elektromag-
netické, povazovat za zadané zvonku. (Priklad: pohyb niekolkych slabo nabitych
guliciek v poli silno nabitého predmetu alebo v poli silného magnetu.) Elektromag-
netické polia budené systémom st v uvazovanom pripade v rdmci systému ovela
mensie ako vonkajsie polia, ale mimo systému to uz tak byt nemust, vonkajsie polia
mézu s rasticou vzdialenostou klesat rychlejsie ako polia budené systémom. Daleko
od systému mozu byt naopak zanedbatelné vonkajsie polia a ur¢ujice sa stant po-
lia budené pohybom ¢astic systému. Tento pohyb je v nami uvazovanom pripade
uréeny vonkajsimi silami, ¢ize ho mozno povazovat za zadany zvonku. (Priklad: pole
ziarenia pohybujtcich sa guli¢iek z predchadzajiceho prikladu, alebo pohybujtcich
sa elektrénov v anténe. Iny priklad: pole nabitej pali¢ky, ktorou mavam v ruke.)

V tejto predniske sa budeme takmer vyluéne zaoberat pripadmi, kedy je mozné
povazovat pohyb nébojov za zadany zvonku. (Pripady zvonku zadanych elmag polf
patria do mechaniky a pripady, kedy nie je zvonku zadané ani jedno ani druhé su
pre tivodnii prednasku z teérie elmag pola prilis zlozité.)! Zadanie pohybu ndbojov
je vlastne zadanim funkeil p(7,t), j( t) a Maxwellove rovnice v tomto pripade
predstavuju dlferenaalne rovnlce pre nezname funkcie E D HaB pri zadanych
funkcidch p a j. Funkcie p a j pritom nemoézu byt zadané lubovolne, ale musia
splnat tzv. rovnicu kontinuity

%erivfzo

Ked uz je rec o sustave viazanych rovnic Maxwellovych a Newtonovych, poznamenajme, ze
polohy ¢astic si v tychto rovniciach opisané rozne, v Maxwellovych rovniciach cez p(7, t), 3’(7”, t) a
v Newtonovej rovnici cez polohové vektory 7;(t). Aby sme mali opis konzistentny, mali by sme v
Newtonovej rovnici prejst k hustotdm tak, ako sa to robf v hydrodynamike. Newtonova pohybova
rovnica zapisand v tvare ;tﬁ =F by pritom presla na tvar d ;hustota hybnosti = hustota sily,
pI‘lCOIIl VyJadreme hustoty Lorentzovej sily f (r t) cez hustoty elektnckeho naboja a pridu by bolo
f =p- E+ ] x B. Takyto postup sa naozaj pouziva v tzv. magnetohydrodynamike a vo fyzike
plazmy, kde treba skutocne riesit viazané pohybové rovnice pre naboje a polia. Vzhladom k tomu,
7e v tychto predndskach sa uvedenymi dvomi oblastami klasickej elektrodynamiky nemienime
zaoberat, nebudeme explicitne prepisovat Newtonove rovnice do hydrodynamického jazyka.



1. ZAKLADNE VZTAHY ELEKTRODYNAMIKY VO VAKUU 3

1.1. Co je vlastne zaSifrované v Maxwellovych rovniciach a v rovnici
kontinuity. (stru¢né opakovanie)

divD = p Coulombov zakon + princip superpozicie
Coulombov zdkon (elektrostatické pole bodového ndboja sediaceho v bode 7')
-
qg T-—r
E’ —
@ dmeq |7 — 7|3

princip superpozicie  (elektrostatické pole viacerych nédbojov)
pre diskrétne rozlozenie bodovych nédbojov v bodoch 7/ resp. spojité rozlozenie
néboja s hustotou p:

. G -7 ) 1 /‘ L F—F
E(@) = i E(F) = — )= d’r
v T dmeo [T TP 0= Treo Sy T

Cesta od Coulombovho zakona a principu superpozicie k prvej Maxwellovej rov-
nici vedie cez vypocet toku elektrického pola uzavretou plochou. Za¢nime vypoétom
tohto toku pre plochu obopinajicu jeden bodovy nabOJ q, a pre jednoduchost zépisu
uvazujme najprv naboj sediaci v pociatku t.j. 7 = 0.

- V- q q
E.dS = —dS = dQ) = —
f 47‘(60 j{ r3 47’1’60 ]{g €0

kde sme vyuzili = . dS = 245 _ 45, _
A ’I”

vtedy, ked' si ich nakresh)

Celkom analogicky, len s dlh&fmi z&pismi, dostaneme vztah fs E.dS = % aj
pre 7' # 0. (V skutocnosti netreba vypocet pre 7/ # 0 vobec robit, staéi si uvedo-
mit, Ze tok elektrického pola plochou neméze zavisief od toho, kde madme umiest-
neny pociatok siradnicovej stistavy.) Pre niekolko ndbojov nachddzajiicich sa v ob-
jeme obopnutom uvazovanou plochou dostaneme na zaklade principu superpozicie

§S E.dS = > g—; a pre spojité rozlozenie ndboja s hustotou p

S o 1 .
%sz— p(Fd3r
S €0 Jv

Teraz pride k slovu Gaussova veta fs i.dS = fv divd dV, ktord nam da
o, 1 - 1
/ divEdV =— [ p.dV tj. / (divE — —p)dV =0
v o Jv v €0
a ked’ze toto m4 platif pre lubovolny objem V, musi byt
dvE =2 Cize divD = p
€0

Ukéazali sme teda, ze z Coulombovho zdkona a principu superpozicie vyplyva
prva Maxwellova rovnica. Pozrime sa teraz na opa¢nu implikaciu.
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Rovnica divD = p je linearna parcidlna diferencidlna rovnica s pravou stra-
nou. Pre linedrne diferencidlne rovnice plati princip superpozicie, t.j. superpozicia
(linedrna kombindcia) rieseni je tiez riesenim (dokaz je elementérny, zaloZeny len na
tom, zZe derivécia suctu je stucet derivécii). Cize princip superpozicie z uvazovanej
rovnice vyplyva.

Coulombov zédkon ovSem z tejto rovnice nevyplyva, a to v tom zmysle, Ze nie
je jej nevyhnutnym doésledkom. Otézka, ¢i tento zdkon je nevyhnutnym dosledkom
danej rovnice, je vlastne otazkou, ¢i pole ﬁ(F) = # je jej jedinym rieSenim
pre p(7) zodpovedajice jednotkovému bodovému ndboju sediacemu v pociatku.
Odpoved je, Ze rieSenim samozrejme je (ved rovnicu sme ziskali ako vztah, ktory
prave toto pole Spifla)2, ale nie rieSenim jedinym. VSeobecné riesenie rovnice s
pravou stranou je totiz rovné suctu jednoho partikularneho riesenia tejto rovnice
(napr. Coulomba) a vieobecného rieSenia rovnice bez pravej strany.®

rot £ = — 98 Faradayov zakon elektromagnetickej indukcie

Faradayov zdkon:
tzv. elektromotorické napitie = — rychlost zmeny magnetického toku

%E-dfz—i/é-dg
dt /g

Tentoraz pride k slovu Stokesova veta § @ - drf = |, gTot U - ds , ktord nam da

. . d [ - .
/ vot B, t)-a§ = —L [ Bty - ag
s dt Js

Zapisané formalne:

kde sme explicitne vypisali argumenty 7 a t, aby sme si uvedomili, ze [ B (7, ) .dS
je z matematického hladiska parametricky integrdl s parametrom t. Pre takéto
integrdly plati, Ze ak E(F, t) a %é(f’, t) si spojité funkcie, potom % fs é(f’, t) -
ds = s %E(F, t)-dS, t.j. mozmo zamenit poradie integrovania a derivovania podla

parametra.

PozNAMKA. (O hladkosti elmag poli.) Jednym zo standardnych predpokladov
tedrie elmag pola je, Ze vietky elmag polia sti funkcie dostatoéne hladké (t.j. spojité
aj s potrebnym poc¢tom svojich derivécii) na to, aby bolo oprdvnené prehadzovanie
Iubovolnych derivacii a integralov. Na zaklade tohto predpokladu budeme takéto
prehadzovania robit vzdy, ked’ to bude potrebné, pricom nie vzdy budeme explicitne
znovu zdoraznovat predpokladani hladkost poli.

20 tom, &i nejaka funkcia je rieSenim uréitej rovnice sa mozno najpriamejsie presvedéit tak,
ze ju do tejto rovnice dosadime. V naSom pripade by sme vSak pri tom narazili na isté technické
problémy spojené s tym, ze na vyjadrenie hustoty bodového nédboja je potrebnda tzv. Diracova
6—funkcia, ktord si zavedieme az neskor. Skutoénost, ze vzhladom k tomu, ako sme k uvazovanej
rovnici dospeli, vieme dopredu, ze Coulombovské pole je jej riesenim, ndm umozituje vyhnit sa
tymto problémom.

3V uvedenom zmysle je teda rovnica divD = p viac, nez len Coulombov zakon a princip
superpozicie. Mohlo by sa zdat, Ze to je nevyhoda a Ze rovnica div D= p obsahuje okrem fyziky,
ktort sme v nej chceli mat, aj nejaké nefyzikélne rieSenia. Avsak ako uvidime napr. v kapitole o
elektrostatike, bude to, ¢o tato rovnica obsahuje navyse, velmi uzitoéné.
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Dostavame teda

. 0B, .
rotE+—)-dS=0
R
a ked’ze toto musi platif pre lubovolni plochu S s uzavretou hranicou, musi byt

- 0B

ot E+ — =0
R

Tym sme ukazali, ze z Faradayovho zdkona vyplyva rot E = —%—Jf a ked'ze

véetky uvazované implikdcie st vlastne ekvivalencie, plati aj obratend implikacia.*

divB = neexistencia magnetickych nabojov

rot H = f—l— ab Ampérov zakon + Maxwellov posuvny prid

Zakladné vlastnosti magnetostatického pola mozno zhrnit do dvoch bodov:

e magnetostatické pole nemad, na rozdiel od elektrického, zdroje; inymi slovami tok
magnetostatického pola kazdou uzavretou plochou je nulovy

e integrdl intenzity magnetostatického pola po kazdej uzavretej krivke je rovny
toku elektrického pridu plochou, ktorej hranicou je tato krivka.

fé-dgzo
fﬁ-dﬁ:/}ﬁ

a postupom analogickym ako v pripade elektrostatického pola, dostaneme pomocou
Gaussovej a Stokesovej vety vzfahy

Zapisané formalne:

divB =0 rotﬁ:f

PozZNAMKA. Amperove poznatky o magnetostatickom poli sa daji zhrnif do
vztahu analogického Coulombovmu zdkonu

/

Gy =HO [ Fiy ST
B =12 [

z ktorého sa daju rovnice div B=0arotB = o j ziskat podobne, ako sme ziskali

rovnicu div D = p zo vatahu E(7F) = 47350 [ p(F") - % -d3r'" | ale je to technicky

nérocnejsie (kvoli vektorovému sicinu), tak to nebudeme robit.

1K Faradayovmu zakonu elmag indukcie eSte poznamenajme, ze znamienko minus v iom ma
svoje Specidlne meno a vold sa Lenzovo pravidlo.



6 1. ZAKLADNE VZTAHY OPISUJUCE ELEKTROMAGNETICKE JAVY

Najpriamociarejsi prechod od rovnic elektrostatiky a magnetostatiky k rovni-
ciam platnym aj pre ¢asovo premenné polia spociva v jednoduchom pridani pre-
mennej t k argumentom poli, t.j. v prechode od rovnic

div D(7) = p(7) div B(7) = 0 rot H () = j(7)
k rovniciam
div D(7,t) = p(7,1) div B(7,t) =0 rot H(7,t) = j(7,1)

Avsak takyto priamociary prechod vedie k rozporu s rovnicou kontinuity Ide o
to, ze v dosledku identity divrot =0 vyplyva z rovnice rot H = j vztah div ] =0,
pricom podla rovnice kontinuity div j =—-%-

Maxwell nasiel jednoduché zovSeobecnenie rovnic magnetostatiky, ktoré tento
rozpor odstranovalo. Toto zovseobecnenie vychéddza z rovnice div D = p, z ktorej
dostavame

dp O oD
E EdVD leE

¢o v spojeni s rovnicou kontinuity dava

Y]

div(j + 5 —)=0

Ak teda pridame v uvazovanej magnetostatickej rovnici k pridu j ¢len 2 W
(tzv. Maxwellov posuvny prid), dostaneme rovnicu, ktord je v pripade ¢asovo ne-
mennych poli totoznd s poévodnou rovnicou a v pripade casovo premennych poli
je konzistentna s rovnicou kontinuity. Maxwellove zovSeobecnenie magnetostatickej
rovnice sa ukdzalo byt tym sprdvnym zovSeobecnenim, ktoré bolo neskér mno-
hondsobne experimentalne potvrdené (prakticky kazdé experimentdlne potvrdenie

elektrodynamiky je potvrdenim tohto Maxwellovho zovseobecnenia).

% +divj =0 zakon zachovania elektrického ndboja

zakon zachovania elektrického nédboja:

Rychlost zmeny elektrického ndboja v objeme uzavretom danou plochou je rovna
toku elektrického pridu touto plochou (t.j. ndboj nemoze v danom objeme vznik-
nit ani zaniknit a moéZe sa menit len tym, Ze pritecie alebo odtecie cez plochu,
ohrani¢ujiicu tento objem). Zapisané formdlne

iQ [+

kde znamienko — je kvoli standardnej konvencii, podla ktorej sa za kladny povazuje
tok smerom von (premysliet si, Ze to naozaj vedie na znamienko — ).
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PozNAMKA. Takto sformulovanému zdkonu zachovania sa hovor{ zdkon zacho-
vania v lokdlnom tvare, na rozdiel od zakona zachovania v globdlnom tvare, ktory
pozaduje celkové zachovanie danej veli¢iny na celom svete. Zakon zachovania v
lokalnom tvare je silnejsi v tom zmysle, ze globalny zdkon zachovania z lokalneho
vyplyva (ak je prid “na konci sveta” t.j. v nekonecéne nulovy), ale opacne to pravda
nie je. Ak totiz nejaky naboj v istej ¢asti priestoru zmizne a sti¢asne sa v inej ¢asti
priestoru rovnaky néboj objavi, potom sa globélne zachovava, ale lokalne nie.®

Ak teraz zapiSeme néboj Q ako fv p - dV a ak o hustote p predpokladame, ze
je dostatoéne hladk4 na to, aby sme mohli prehodif derivovanie s integrovanim,

dostaneme 5
/ Pav = - 7{ 7-ds
v ot s

ap -,

odkial cez Gaussovu vetu

a ked'ze toto ma platit pre kazdy objem V, tak % +div j = 0. Vzhladom k tomu, ze
vietky uvazované implikécie si vlastne ekvivalencie moézeme konstatovat, ze rovnica
kontinuity je ekvivalentna lokdlnemu zakonu zachovania.

P0OzZNAMKA. V celej dvahe nehralo nijaki tlohu to, Ze zachovdvajticou sa
veli¢inou bol prave elektricky naboj. Cize sme vlastne ukézali, Ze pre kazdu lokalne
sa zachovavajucu veli¢inu plati

— (hustota zachovavajicej sa veli¢iny)+ div (hustota pridu tejto veliciny) = 0

ot

Maxwellove rovnice a rovnica kontinuity si teda zhrnutim zakladnych expe-
rimentélnych faktov tykajucich sa elektriny a magnetizmu. Samotné Maxwellove
rovnice su vlastne:

e rovnice elektrostatiky a magnetostatiky, o ktorych sa predpoklada, ze
platia aj pre ¢asovo premenné polia

e jedna naozaj elektrodynamickd rovnica vyjadrujica Faradayov zakon

e jedno doplnenie statickej rovnice ¢lenom odstrafiujicim nekonzistentnost
vznikajuicu pri prechode od statického pripadu k dynamickému (Maxwel-
lov posuvny prid)

Do styroch kratkych Maxwellovych rovnic je teda vlozené pomerne vela in-
formécie. Vyznam tychto rovnic vSak nespo¢iva ani zd'aleka len v tom, Ze umoziuji
struény zdpis tejto informdcie. Maxwellove rovnice totiz obsahuju ovela viac in-
formacie, nez bolo do nich vlozené.

5Poznamenajme, ze s nelokdlnym zdkonom zachovania (zmiznutie a sti¢asné objavenie sa nie-
kde inde) st problémy, akondhle vstipi do hry tedria relativity. Pri takomto nelokdlnom zachovani
je totiz podstatna sticasnost a t4 je pre nestimiestne udalosti relativna; ¢o je v jednej inercidlnej
vztaznej stistave sticasné, v inej uz sic¢asné byt nemusi.
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1.2. Co este je zasifrované v Maxwellovych rovniciach.

V podstate celd predniska z tedrie elmag pola bude venovana najdolezitejsim
informéciam ukrytym v Maxwellovych rovniciach a metédam deSifrovania tychto
informacii zo samotnych rovnic. Aby sme si vSak uvedomili, nakolko obsazné si
Maxwellove rovnice, pripomenme si uz v tomto tvodnom paragrafe aspon jeden
priklad informécie v Maxwellovych rovniciach obsiahnutej, hoci do nich nevlozene;j.

Uvazujme Maxwellove rovnice bez nabojov a prudov a pomocou istého triku
upravme tieto rovnice na tvar, z ktorého bude jasne vidietf charakter ich rieSeni. Trik

spoc¢iva v tom, Ze na rovnice rot E = f%—? arot H = er %—? aplikujeme operaciu
rot a vyuzijeme identitu rot rot = grad div —/\. Dostaneme
. , o - . . .
—AE—I—graddivE:—%rotB a —AH—i—graddivH:rotj—&—arotD
¢o sa vywzitim vzfahov divE = £ = 0, j = 0 (nulovost ndbojov a pridov) a

€0

divH = ,ugl divB =0 zjednodusi na —AE = —% rot B a —AH = %rotﬁ, a

ked dalej eSte raz vyuzijeme rovnice rot B = porot H = Mo%ﬁ = ,LLOEO%E a

rot D = €0 rot E = —EO%E = —M0€0%ﬁ, dostavame nakoniec
. 82 - . 2
—AFE = —pupeg=5FE a — AH = —pupeg=—5H
Ho 052 Ho 052

¢o su tzv. vlnové rovnice.

PozNAMKA. Rovnica A% — U%g—;ﬁ = 0 je trojrozmernym zovseobecnenim jed-
noduchsej, a zo zakladného kurzu fyziky zndmejsej, jednorozmernej vlnovej rovnice
aa—;f(x, t) — J—zg—; (z,t) = 0. Pripomenme si, preco sa tato rovnica vold vinova.

Pod postupnymi vinami rozumieme funkcie dvoch premennych z, ¢, ktoré si v
skutoénosti funkcie iba jednej premennej «, pricom o = x +v-t. Funkcie f(ztv-t)
naozaj zodpovedaju intuitivnemu chapaniu postupnej viny ako niecoho, ¢o “ne-
men{ svoj profil a pritom sa hybe rychlostou v jednym alebo druhym smerom”
(odporiéame poriadne si premysliet obsah tejto vety, pricom zrejme nezaskod{ na-
kreslit si nejaki konkrétnu funkciu f(z 4+ v - ¢) v niekolkych roéznych ¢asoch t).
Priamym dosadenim a vyuzitim $tandardnych vztahov pre derivécie zlozenej fun-

. 2
kcie a% () = %g—‘;‘ = % a %f(oz) = %%—‘f = % - (£v) dostaneme %f(a) -

2 2 2 ’ ~ ~ ’ ’ .
v%%f(a) = % - U%% - (£v)? = 0. To znamens, ze kazda postupnd vlna je
rieSenfm danej rovnice a preto je prirodzené hovorit tejto rovnici vlnova.

Ukazuje sa teda, ze elmag polia majui v pripade nulovych hustot naboja a pridu
charakter vin. Ak za konstanty &g a 1o dosadime ich ¢iselné hodnoty 8.8 x 10712 F -
m~! a12.6 x 107"N - A~!, dostaneme pre rychlost tychto vin

= 300000 km - s !

V=

Ho€o

¢o je prave rychlost svetla. A viny pohybujtce sa rychlostou svetla predsa pozndme,
svetlo samo je takymito vlnami. Vsetko teda nasvedcuje tomu, ze svetlo nie je nic
iné ako elmag viny.
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Dalsie teoretické a experimentalne skiimanie tejto viac nez prirodzenej hypotézy
ju v plnej miere potvrdilo. Ukazalo sa, ze v Maxwellovych rovniciach je obsiahnuta,
hoci do nich explicitne nevlozend, celda optika. Zavisenim zjednotenia elektriny a
magnetizmu s nimi teda Maxwell znenazdajky zjednotil aj optiku. Toto zjednotenie
dovtedy navzajom nijako nesuvisiacich veci patri nesporne k najkrajsim a najvac¢sim
momentom v celej histérii fyziky.

Priklady

1. Niektoré uzitoéné identity vektorovej analyzy

(Precvicenie zdkladného matematického aparatu na odvodeni niektorych neskor
pouzivanych identit.)

Dokézte nasledovné vzfahy:

rotgrad f =0

divrota =0

rotrot @ = graddiva — Aa
div(f-ad)=d-grad f + f - divd

rot(f - @) = (grad f) x d+ f -rotd

div(@ x b) =b-rotd@ — a-rot b

rot(@x b) =a-divb—b-divi+ (b-v)d— (@- )b

(Ndvod: vektorovy sucin pisat cez e, derivaciu podla i-tej suradnice ako 9;,
pouzivat Einsteinovu sumaéni konvenciu t.j. cez opakovany index automaticky
scitovat a kde treba tam vyuzit tzv. DC identitu €;x€mnk = Gim0jn — Oindjm-)

2. Mazwellove rovnice v ”obrdtenom garde”
(Maxwellove rovnice budeme v celej tejto predndske chapat ako rovnice pre nezndme
polia pri zadanych hustotach naboja a priudu. Ak v8ak pozname polia, potom nam
Maxwellove rovnice samozrejme umoziiuji vypo&itat naboje a prudy.)
Zistite, ¢i mozu existovat nasledujice elmag polia a ak 4no, akymi nabojmi a pradmi
si budené a) E = (@-7)a B=adxr

b) E—oatr BB,

¢) E=(Fxad)x7 B=arF
Aké musia byt rozmery konstdnt « a @, aby boli tieto vzfahy rozmerovo spravne?

3. Elmag polia v niektorych symetrickych situdcidch

(Niekolko jednoduchych tloh, ktoré sa riesia vyuzitim Maxwellovych rovnic a pred-
pokladom, Ze rieSenie m4 rovnaki symetriu ako zadanie)

a) Néjdite elektrické pole homogénne nabitej priamky a homogénne nabitej roviny.
b) N4jdite magnetické pole nekone¢ne dlhého drotu, ktorym pretekd prid 1.

¢) Prid v cievke s hustym vinutim méZeme v rozumnom pribliZen{ povazovat za
plosny prud. Uvazujme nekone¢ne dlhi valcovi cievku s n zavitmi na 1 m, pricom
kazdym zavitom preteka prud I. Uréte magnetické pole vnitri cievky aj mimo nej.

6Pre zaujimavost dodajme, e viésina klGéovych momentov v dejindch fyziky stvisf s ne-
jakym zjednotenim veci, ktoré sa dovtedy povazovali za celkom odlisné. Spomenme asponn Newto-
novo zjednotenie pozemskej a nebeskej mechaniky, ktoré sa stalo zakladom celej klasickej fyziky,
alebo Einsteinovo zjednotenie graviticie a geometrie (vo vSeobecnej tedrii relativity), ktoré je
povazované za vyvrcholenie klasickej fyziky. Najvyznamnejsim momentom medzi tymto zdkladom
a vyvrcholenim bolo prave Maxwellovo zjednotenie elektriny, magnetizmu a optiky.



10 1. ZAKLADNE VZTAHY OPISUJUCE ELEKTROMAGNETICKE JAVY

4. Vyjadrenie roznych fyzikdlnych zdkonov v lokdlnom diferencidlnom tvare
(Maxwellove rovnice st vlastne zépisom zdkladnych zdkonov elektriny a magne-
tizmu v lokdlnom diferencidlnom tvare. Aby sme si precviéili tento sposob zdpisu
fyzikalnych zdkonov, pozrime sa na niekolko d'alsich oblasti fyziky, v ktorych sa
takyto zdpis velmi ¢asto pouziva.)

a) rovnica difiizie

Pri nerovnomernom rozlozeni koncentracie nejakych castic v urcitom objeme do-
chadza s rasticim casom k vyrovnaniu koncentrécie, ¢astice prechadzaji z oblasti
s vyssou koncentraciou do oblasti s koncentraciou nizsou.” Podla tzv. Fickovho
zékona mé tok castic f(f’, t) smer najvicsicho poklesu koncentricie p(7,t) a velkost
toku je priamo umernd rychlosti zmeny koncentrécie v tomto smere (koeficient
tmernosti sa zvykne oznacovat D a hovori sa mu koeficient diftzie).

Vyjadrite tok pomocou gradientu koncentracie a spojenim takto ziskaného vztahu
s rovnicou kontinuity vyjadrujicou zachovanie poétu Eastic odvod’te tzv. rovnicu
difuzie 0sp — D - Ap = 0.

(Uvedend rovnica plati len v homogénnom prostredi, v ktorom D nezavisi od 7.
Ako vyzera rovnica difuzie v nehomogénnom prostredi charakterizovanom funkciou

D(7)?)

b) rovnica vedenia tepla

Podla tzv. Fourierovho zdkona mé tok tepla v telese s nerovnomerne rozdelenou
teplotou v kazdom mieste smer najviésieho poklesu teploty a velkost tohto toku
je priamo umernd rychlosti zmeny teploty v tomto smere (koeficient timernosti sa
zvykne oznacovat x a hovori sa mu koeficient tepelnej vodivosti). Z vyjadrenia
toku tepla cez gradient teploty a z kalorimetrickej rovnice (vyjadrenej v lokdlnom
diferencidlnom tvare) ukdzte, Ze rovnica vedenia tepla je forméalne zhodnd s rovnicou
difizie.

7Poznamenajme, 7e tato skutoénost je désledkom “slepého” pohybu éastic a nie nejakej ich
“vedome;j” snahy dostat sa na miesta s nizSou koncentraciou. Pod “slepym” pohybom rozumieme
to, Ze ¢astice sa z daného miesta hybu s rovnakou pravdepodobnostou vo véetkych smeroch, pricom
¢im je v danom mieste vyssia koncentracia, tym viac ich z tohto miesta odchddza. Ak je teda v
mieste 1 vysSia koncentracia ako v susednom mieste 2, potom z 1 odchadza v smere do 2 viac
Castic ako z 2 v smere do 1 (z 1 odchddza vo vSetkych smeroch viac ¢astic ako z 2), ¢o v stucte
dava vysledny tok z 1 do 2.
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2. Zakladné vztahy elektrodynamiky v latkach

2.1. Rozna zavislost D(E) a H(B) v réznych latkach.

Elektrodynamika v mnohych latkach (vzduch a bezné plyny, voda a bezné
kvapaliny, véicsina tuhych latok) vyzerd rovnako ako elektrodynamika vo vakuu,
s tym jedinym rozdielom, Ze konstanty € a pu, vystupujice vo vztahoch D = ¢E
a B = uﬁ , si pre kazdu z tychto latok iné. Existuju vsak aj latky, v ktorych
je situdcia zlozitejsia. Aj v tychto pripadoch je elektrodynamika v latke opisand
Maxwelovymi rovnicami formélne zhodnymi s Maxwellovymi rovnicami, ktoré sme
si uviedli pre vakuum, zloZitejsimi sa vSak stdvaji vzfahy medzi poliami 5, H a
poliami E, B.

P0ozNAMKA. Vsade dalej budeme za “primarne” povazovat polia Ea §7 ktoré
mozu byt definované pomocou Lorentzovej sily, a polia D a H budeme povazovat
za ich funkcie.

Anizotropia. Prvym typom komplikovanejsicho vztahu medzi poliami 57 Ha po-
liami E, B je zovieobecnenie linedrnej zdvislosti na veobecnt linedrnu zévislost v
trojrozmernom priestore, ktori vykazujui tzv. anizotropné latky (viicsina krystélov).
V tychto latkach maja polia D a E vo vieobecnosti rozny smer, pricom ale plati, ze
ked sa zviacsi E n-nasobne, zvacsi sa n-nasobne aj prislusné D. Okrem toho plati,
7e ked polu E; prislicha pole D; a polu Es prislicha pole Dy, potom polu E; + Es
prislicha pole Dy + Ds. Zobrazeniu, ktoré méa uvedené dve vlastnosti, sa hovori
linedrne a linedrnemu zobrazeniu, ktoré vektoru prirad'uje vektor, sa hovori tenzor.
V anizotropnych latkach je teda prirodzené povazovat permitivitu za tenzor a pisaft

D=¢E

[l

a pre magnetické polia analogicky

Nelinedrnost. Anizotropia viak este nie je az takd velka komplikécia, ovela vaznejsia
je nelinedrnost. Existuji totiz latky, v ktorych D nie je linedrnou funkciou E , Tesp.
H nie je linedarnou funkciou B. Takymito latkami su napriklad tzv. ferroelektrika
a ferromagnetika, ale pri dostatocne silnych poliach sa stdvaji nelinearnymi prak-
ticky vSetky latky (takéto dostatoéne silné polia sa vSak pre viiésinu ldtok dosahuji
len v laserovych licoch, takze v beznych situdcidch sa tieto latky chovaji linedrne).
Elektrické a magnetické vlastnosti nelinearnych latok nie je mozné charakterizovat
dvoma ¢islami resp. tenzormi (permitivitou a permeabilitou), na ich charakterizo-
vanie treba dve funkcie D(E) a H(B)?

8Poznamenajme, ze vo v8eobecnosti moze pole D zavisiet nielen od E, ale aj od é, a podobne
pole H moze zavisiet od B aj od E. Avsak zavislost D od B resp. H od E byva vigsinou
zanedbatelna.
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POZNAMKA. Akonahle si uvedomime, 7e zavislost D(E) resp. H(B) moze byt
vo vSeobecnosti nelinedrna, vznika otézka, preco je tak casto linedrna. Cesta k
porozumeniu castej linedrnej zavislosti veli¢in vo fyzike vedie cez rozvoj funkcii do
Taylorovho radu. Rozvojom funkcie D(E), t.j. troch funkcif D;(Ey, Es, E3), okolo
bodu E = 0 dostaneme

0D;(0,0,0) :(0,0,0)
Di(El,EQ,E3)=D(000+§;7 Z aE T e
Pre dostato¢ne malé E st ¢leny kvadratické a vyssie zanedbatelne malé vzhladom k
¢lenom nizsieho rddu a vtedy prechadza vieobecn nelinedrna z4vislost na linedrnu.
Z praktického hladiska je pritom dodleZité, Ze beine dosiahnutelné polia F si ¢asto
z uvedendho hladiska dostatoéne malé.

PozNAMKA. (K predchadzajicej poznémke.) Latkam, pre ktoré D( ) £ 0, sa

hovori tvrdé dielekrikd, latkam, pre ktoré 5(6) = 07 mikké dielektrikd. Devit éisiel
9D, (0) (i, ] 9D, (0)

OF; ’ oE; -
Pokial st tieto &fsla nulové pre i # j a rovnaké pre i = j, (i = 1,2,3), t.j. pokial
€;; = € - J;;, potom dostdvame najjednoduchsi pripad zavislosti 5(5) =¢-E. Pre
magnetické polia st dvahy dplne analogické.”

= 1,2,3) predstavuje devit zloziek tenzora permitivity €;; =

Pamit a nelokdlnost. Dalsou komplikdciou je pamiif niektorych litok. Existuji
totiz latky, v ktorych nie je hodnota D'(F, t) dané len hodnotou E(F, t) v tom istom
Case, ale aj hodnotami E v skorsich ¢asoch. Analogické tvrdenie plati pre polia
H a B. Typickym prikladom paméti je jav hysterézie ferromagnetik, ale pri do-
stato¢ne rychlych zmenach E a Bsa prakticky vSetky latky chovaju tak, ako keby
mali uréiti pamét (napr. kovy pri vysokofrekvenénych napétiach, niektoré dielek-
trikd pri frekvencidch viditeného svetla a pod). Okrem pamiiti sa v niektorych
pripadoch stretdvame s tzv. nelokdlnosfou, kedy hodnota 5(?, t) nie je dand len

hodnotou E (7,t) v tom istom mieste, ale aj hodnotami Ev inych miestach, a ana-
logickd vec plati pre H a B. (Nelokalnost sa prejavuje napr. pri Sirenf elmag vin s
malou vlnovou dlzkou v kovoch.)

POZNAMKA. A znova otdzka: ak moze byt zévislost D(E) resp. H(B) vieobecnosti
nelokdlna (¢i uz v ¢ase alebo v priestore), preco je tak ¢asto lokdlna? A odpoved
je znova ukrytd v Taylorovom rade, jej deSifrovanie je vSsak v tomto pripade o
nieco narocnejsie, preto ho odlozime do jednej z neskorsich kapitol. Uz teraz vsak
mozeme prezradit, ze lokalnost zodpovedd Taylorovmu radu v ktorom s zaned-
batelné vietky ¢leny okrem élena nultého rddu a najjednoduchsia nelokélnost zod-
povedd Taylorovmu radu v ktorom je nezanedbatelny aj linedrny ¢len. Pre takito
linedrnu nelokdlnost (ktorej v pripade nelokalnosti v éase hovorime linedrna pamit)
sa d4 rozumne definovat pojem akejsi zovieobecnej permitivity resp. permeability.
Este sa k tomu vratime.

gPoznamenajme, %e pomocou istych termodynamickych tivah sa d4 nahliadnut, Ze v pripade
anizotropnych latok musi byt tenzor permitivity resp. permeability symetricky.
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V stvislosti s réznorodou zavislostou poli DaH od poli EaBsa vynara otazka,
kolko je vlastne elektrodynamik. Tieto zdvislosti totiz uréuju teériu v rovnakej
miere ako Maxwellove rovnice, takze ak aj Maxwellove rovnice vyzerajui vo vSetkych
latkach rovnako, tak to vobec neznamena, ze elektrodynamika je vo vSetkych latkach
rovnaké. Otézka teda je, ¢i je prirodzenejsie povaZzovat elektrodynamiky v réznych
latkach za rézne (a mat ich potom tolko, kolko je réznych 14tok), alebo ich povazovat
v istom zmysle vSetky za prejav jednej elektrodynamiky, ale potom v akom zmysle
a ktorej.

Roznorods zévislost poli D a H od poli E aB prinasa so sebou este jednu,
este vaznejsiu otdzku: Co si vlastne polia DaH?V pripade elektrodynamiky vo
vakuu boli tieto polia jasne definované ako urcité ndsobky poli E a B a tieto mozno
v principe definovat pomocou Lorentzovej sily, meranej pomocou pohybu nejakych
testovacich nabojov. V latkach sa vSak tento jednoduchy sivis medzi poliami 5,
H na jednej a E, B na druhej strane straca a tym padom prestava byt celkom
jasné, ¢o su vlastne polia DaH.Je samozrejme mozné povazovat tieto polia len za
akési pomocné velic¢iny, sliziace na formulaciu rovnic urcujicich ¢asovy vyvoj poli
EaB (a takyto pristup je tiplne korektny), predsa by vSak bolo dobré mat nejaki
prirodzeni interpreticiu poli D a H. Otézka teda stoji tak, ¢i neexistuje nejaka
prirodzena interpretacia tychto poli, a ak dno, tak aka.

Odpoved na otézky z predchadzajtcich dvoch odstavcov déva tzv. Lorentzova
mikroskopicks tedria elmag pola v latkach. Zakladnd idea je velmi jednoduché:
latky sa skladaju z elektrénov, jadier a vakua medzi nimi a elektrodynamika v
latkach je teda elektrodynamikou vo vékuu, do ktorej ale treba zahrnif naboje
a prudy elektronov a jadier latky. Praktické pouzitie tejto myslienky, t.j. prechod
od takychto tzv. mikroskopickych poli vo vakuu k tzv. makroskopickym poliam v
latkach, uz az také jednoduché nie je. Aby sme zbyto¢ne nezafazovali nas vyklad
technickymi podrobnostami, ktoré nie st nevyhnutné pre chépanie d'alsich kapi-
tol, nebudeme sa Lorentzovej mikroskopickej tedrii venovat na tomto mieste, ale
presunieme ju do dodatku.

P0ozNAMKA. Lorentzova mikroskopickd tedria nielenze umozituje chapaft elek-
trodynamiku v réznych latkach ako rozne prejavy jednej fundamentalnej elektro-
dynamiky vo vakuu, ale Ze umoziuje v principe vypoéitat ako bude vyzerat elek-
trodynamika v danej latke, ak pozname mikroskopické viastnosti tejto latky a elek-
trodynamiku vo vakuu.

Treba si viak uvedomit, Ze tzv. mikroskopické vlastnosti latok st vlastne vlast-
nostami jej atémov a molekil, takze adekvatnym prostriedkom na opis tychto
vlastnosti nebude klasicka, ale kvantovd mechanika. Okrem toho, v pripade mak-
roskopickych latok mame samozrejme doc¢inenia s obrovskym mnozZstvom atémov a
molekil, takze opis bude nevyhnutne opisom v ramci Statistickej fyziky. Kvantova
Statisticka fyzika zjavne presahuje moznosti tejto prednasky, takze aj v spominanom
dodatku sa budeme musiet zastavit niekde na pol cesty.'°

10P0znamenajme, 7e existuju pripady, kedy sa d4 namiesto kvantovej mechaniky pouzit jej
klasické priblizenie a namiesto Statistickej fyziky jej najjednoduchsie verzie, napr. kineticka tedria
idedlneho plynu. Tieto pripady sa ¢asto spominajui v ivodnych kurzoch, prave pre svoju relativnu
jednoduchost. Ak sa viak ¢lovek zozndmi len s tymito zjednodusenymi situdciami, je na najlepsej
ceste vytvorit si o celej problematike neadekvatnu predstavu.



14 1. ZAKLADNE VZTAHY OPISUJUCE ELEKTROMAGNETICKE JAVY
2.2. Ohmov zakon.

Ako sme uz povedali na zaéiatku, v tejto prednaske sa budeme zaoberat situdciami,
v ktorych st hustoty nédboja a pridu zadané. Jedinou (délezitou) vynimkou bude
hustota prudu tzv. vodivostnych elektrénov v kovoch. Medzi touto hustotou a elek-
trickym polom plati v beznych situdcidch jednoduchy lokdlny linedrny vztah

j=0-E

Tomuto vztahu sa hovori Ohmov zdkon v lokdlnom tvare. Stvis s bezne zndmym
Ohmovym zdkonom je zjavny ak uvazujeme priid volnych nabojov v kove, v ktorom
je homogénne elektrické pole E. Ak je dlzka kovu v smere pola [, potom napétie
medzi koncami je U = E.l a ak je prierez vodi¢a v smere kolmom na smer pola S,
potom celkovy prid tymto prierezom je dany vztahom

oS
I:j-S’:a~E~S:T~U

L

¢o nie je ni¢ iné, ako bezny Ohmov zdkon s R = —5

—z (z coho zaroven vidime, ze
koeficient o je rovny mernej vodivosti daného kovu).

POZNAMKA. Vzfah medzi j a E moze byt komplikovanejsf ako Ohmov zékon,
pricom zloZitejsie vzfahy st analogické zloZitejsim vztahom medzi vektormi D a
E, o ktorych bola re¢ v tivode tejto ¢asti. Pre anizotropné latky zostdva vztah
linedrny, ale mernd vodivost sa stava tenzorom, pre silné polia moéze byt vztah
nelinedrny, pre rychlo sa meniace elektrické pole vykazuje zavislost j(E) pamét a
stdva sa nelokalnou. V polovodi¢och sa navyse stdva nezanedbatelnou zavislost ;
od B (Hallov jav).

Pre hustotu volného néboja plati v kovoch velmi jednoduchy vztah
p=0

Ze je tomu naozaj tak lahko nahliadneme ak v rovnici kontinuity vyuzijeme najprv
Ohmov a potom Coulombov zdkon.

%p: —divj = —o-divE = fg - p
Pre hustotu p sme takto dostali jednoduchi diferencidlnu rovnicu, ktorej rieSenim
je
p(ﬁ t) = ,0(7:’, 0) et

Ak teda mame na zaciatku nenulovi hustotu naboja, tato s ¢asom exponencialne
klesd, pricom za cas £ klesne e-ndsobne. Pre typické hodnoty vodivosti a permiti-
vity kovov o ~ 108Q " tm ™1, e ~ 1072 F-m~! dostdvame ¢as 10717 s, &o je doba aj z
mikroskopického hladiska velmi kratka. To ale znamen4, ze kazd4d redlne dosiahnu-
telna hustota naboja v kove klesne za mikroskopicky maly ¢as prakticky na nulovi
hodnotu. Hodnoty ustrednené cez mikroskopicky velky ¢as st potom prirodzene

nulové. !

Y tejto sivislosti moéze vzniknit prirodzend otdzka, kam mizne elektricky nédboj, ak v celom
vodi¢i s ¢asom exponencidlne klesa? Jedind mozné odpoved je, ze naboj sa hromadi na povrchu
vodi¢a (dvahy vedice k exponencidlnemu poklesu sa totiz tykali len vnitra vodic¢a). Tento zdver
je skutocne spravny a potvrdeny experimentom.
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2.3. Ostré rozhranie dvoch materidlov a hrani¢né podmienky.

Zdanlivo vdazny problém: V suvislosti s Maxwellovymi rovnicami v latkach vznika
takyto problém: Predstavme si ostré rozhranie dvoch materialov charakterizovanych
roznymi vztahmi medzi poliami D, H a E, B, napriklad rovinu oddelujticu dva
polpriestory vyplnené latkami s permitivitami a permeablhtaml €1, [1 & €2, M2,
pricom €1 # €9 a 1 # p2. MoZu byt vietky styri poha E B D H spojité v mieste
rozhrania? Nemoézu. Ak je totiz napriklad spojité E potom D je automaticky ne-
Spojité, pretoze D=c-Ea spojite sa meniace E je nasobené e-nom nespojite sa
meniacim z hodnoty €1 na hodnotu €. Ak je naopak spojité D potom analogicky
dostaneme nespojitost Eas poliami BaH je to rovnaké. Avsak pre nespojité polia
nemdzu platit Maxwellove rovnice (to je ten problém), pretoZe v tychto rovniciach
vystupuji derivécie vietkych poli podla vietkych siradnic a nutnym predpokladom
existencie derivécie je spojitost funkcie.

V skutoc¢nosti vsak nejde o vazny problém. Pojem ostrého rozhrania dvoch latok
je totiz pojem makroskopicky, z mikroskopického hladiska nie je nijaké rozhranie
ostré, jedno prostredie prechddza do druhého postupne na vzdialenosti radove nano-
metrov. Nespojitosti poli suvisiace s ostrym rozhranim teda vznikaju len pri makro-
skopickom pohlade, z mikroskopického hladiska dochadza sice k prudkej, ale spojitej
zmene. Mikroskopické Maxwellove rovnice platia aj na makroskopicky ostrom roz-
hrani. To, o tu neplati si menej fundamentélne, aj ked technicky velmi uZito¢né,
makroskopické Maxwellove rovnice. Nejde teda o nijaky hlboky problém skutoénych
mikroskopickych Maxwellovych rovnic, ale len o technicky problém, é¢im nahradit
makroskopické Maxwellove rovnice na ostrom rozhrani.

Vztahy, ktoré nahradzaji na ostrom rozhrani Maxwellove rovnice s tzv. hraniéné
vzfahy pre elmag polia a odvadzaji sa nasledovne. Uvazuje sa integrdlny tvar mak-
roskopickych Maxwellovych rovnic t.j. tvar, ktory dostaneme preintegrovanim cez
uzavrety objem resp. plochu natiahnutd na uzavreti krivku a naslednym vyuzitim
Gaussovej resp. Stokesovej vety.

j{D ds = /,0 av

]é.E-dl: —a—B.dfs*

ot
%BwiS:O

8 -
fH dl = / =) 8

Za oblast integrovania sa berie v pripade uzavretej plochy povrch kvadra s dvomi
stenami rovnobeznymi s rozhranim, pricom rozhranie je medzi nimi, v pripade uzav-
retej krivky obvod obdiznika s dvomi stranami rovnobeznymi s rozhranim, pricom
rozhranie je medzi nimi (odporti¢came nakreslif si). Zdkladn4 finta pri odvodzovani
hrani¢nych podmienok pre elmag polia spoc¢iva v tom, zZe steny kvadra resp. strany
obdlznika rovnobezné s rozhranim uvazujeme natolko malé, aby sa hodnoty poli
na nich prakticky nemenili a steny resp. strany kolmé na rozhranie infinitezimélne
malé, takze ich prispevky do integrdlov si zanedbatelné. Integrily na lavej strane
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rovnic tak budu dané hodnotami kolmych zloziek poli na oboch stranich rozhra-
nia ndsobenymi plochou rovnobeznych stien, resp. hodnotami rovnobeznych zloziek
poli ndsobenymi dizkou rovnobeznych stran (mysli sa kolmost a rovnobeZnost s roz-
hranim). Integraly na pravej strane s za uvazovanych okolnosti integralmi cez infi-
nitezimalne oblasti a pokial by boli podintegralne funkcie ohrani¢ené, boli by tieto
integraly nulové. Avsak makroskopické hustoty nédboja a prudu vzdy ohranic¢ené
nie sti. Na povrchu ldtok (najméi kovov) moze totiz nastat situdcia, kedy je v mak-
roskopicky infinitezimélnej povrchovej oblasti ststredeny makroskopicky nenulovy
naboj a prud. Integral na pravej strane prvej rovnice je v takom pripade dany tzv.
povrchovou hustotou naboja 1 ndsobenou plochou stien rovnobeznych s rozhranim.
Integral na pravej strane Stvrtej rovnice je dany tzv. povrchovou hustotou prudu E,
a sice jej zlozkou kolmou na plochu obdlznika nasobenou dizkou stran rovnobeznych
s rozhranim. Celkove teda dostavame

Dy — D1 =1
Eyy— E1; =0

Bs, — B1, =0
Hy — Hyp = ky

Indexy 1 a 2 zodpovedaji roznym prostrediam po oboch strandch rozhrania, index n
znamend norméalové (vzhladom k rozhraniu) zlozky vektorov, indexy ¢, ¢’ navzajom
kolmé tangencidlne zlozky. Uvedenym vzfahom sa hovor{ hraniéné podmienky pre
elmag polia a prave tieto vzfahy nahrddzaji makroskopické Maxwellove rovnice na
ostrom rozhrani dvoch prostredi.

Hraniéné podmienky sa ¢asto zvyknu zapisovat v kompaktnejsej forme pomo-
cou jednotkového vektora 7i, kolmého na rozhranie a smerujiiceho z prostredia 1 do
prostredia 2:

D) =n
fix (Ey—E)) =0
ii-(By—B)=0
i x (Hy— Hy)) =Fk

P0OzZNAMKA. Standardné odvodenie hraniénych podmienok, ktoré sme prave
predviedli, skryva v sebe jednu zdludnost, ktoré sa vo viésine knih prejde mléanim.
Ide o to, Ze infinitezim&lne veli¢iny uvazované v tomto odvodeni nie s v skutocnosti
infinitezimalne, t.j. lubovolne malé. Samotné rozhranie totiz nie je nekoneéne tenké,
ale meria, ako sme uz povedali, rddove nanometre. Ak mé kvader resp. obdlznik
uvazovany v standardnom odvoden{ zasahovat do oboch prostredi (a to m4), potom
infinitezimalne velkosti v tomto odvodeni nemézu klesniif pod hribku rozhrania.
Alebo inymi slovami: celé Standardné odvodenie sa deje na makroskopickej tirovni
a na tejto tirovni “infinitezimalny” neznamend Tubovolne blizky nule (zhora), ale
Tubovolne blizky nanometrom (zhora). Z toho oviem vyplyva, zZe treba byt opatrny
pri zanedbévani ¢lenov v dosledku tejto infinitezimalnosti. Zanedbavané ¢leny nie si
nulové a je otdzne, & st vo vietkych pripadoch zanedbatelné. Tato otdzka prestava
byt len akademickou otézkou v pripade, ak st aj ostatné vzdialenosti v standardnom
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odvodeni na tirovni nanometrov alebo desiatok nanometrov. A takato situdcia moze
nastaf pri poliach vyrazne sa meniacich na maljch vzdialenostiach (napr. v elmag
vlne s vlnovou dizkou radove stoviek nanometrov), pretoze vsetky vzdialenosti v
standardnom odvodeni musia byt dostatoéne malé na to, aby sa na nich elmag
polia prakticky nemenili. V takychto pripadoch teda nemozno povazovat standardné
odvodenie hrani¢nych podmienok za skutoéné odvodenie a hrani¢né podmienky
treba v takychto pripadoch bud’ odvodit inak, alebo ich povazovat skor za nezavislé
postulaty. “Odvodenie” ma v takychto pripadoch funkciu akejsi rozumnej motivacie
pre postulovanie takychto hrani¢nych podmienok.

Priklady

1. Rovnice pre elmag viny v roznych materidloch

(Tlustrécia toho, ze rovnaké Maxwellove rovnice a rozne materidlové vzfahy mozu
viest k podstatne odlisnym fyzikdlnym javom.)

Postupom podobnym ako sme pouzili pri odvodzovani vlnovej rovnice pre elmag
polia vo vdkuu bez ndbojov a pridov odvodte analogické rovnice pre elmag polia
bez nabojov a prudov v

a) homogénnom kove

b) supravodiéi prvého druhu, kde namiesto Ohmovho zdkona platia tzv. rovnice
bratov Londonovcov

d -

at’

¢) homogénnom anizotropnom dielektriku
d) homogénnom nelinedrnom dielektriku, pre ktoré D= (e+a-E?). E

E=A\- Ez—y'AQ'rotj

komentar:

a) Rovnica, ktort dostaneme, obsahuje oproti vlnovej rovnici navyse ¢len s prvou
casovou derivaciou. Tento ¢len sposobuje exponencidlny itlm elmag vin v kovoch.
b) Rovnica, ktori dostaneme pre B obsahuje oproti vlnovej rovnici navyse c¢len
imerny B. Tento ¢len sposobuje, ze ¢asovo nepremenné magnetické pole v supra-
vodi€i prvého druhu smerom od hranic do vnitra exponencialne klesd a vo vnutri
supravodic¢a je nulové — tzv. Meissnerov jav. (Pre elektrické pole platia rovnaké
tvahy — elektrické pole v supravodici je v statickom pripade nulové, rovnako ako v
obyc¢ajnom vodiéi.)

¢) Rovnica, ktord dostaneme, sa od vlnovej rovnice lisi tym, Ze v nej vystupujd aj
¢leny typu grad div a navySe sa v nej vyskytuju tenzory. S vlnovou rovnicou ma
spolo¢né to, ze rovinné viny t.j. funkcie typu f (F£U-t) su jej rieSeniami, avsak len
pre uréité ¥, pricom pre rézne smery @ je velkost v rozna. To znamend, ze rychlost
Sirenia vin je pre rozne smery Sirenia rozna ¢o ma medziinym za nésledok dvojlom
svetla v niektorych krystaloch.

d) Rovnica, ktorti dostaneme je pomerne komplikovand. Ak sa vsak velkost pola
E menf{ v priestore aj ¢ase dost pomaly na to, aby boli ¢leny obsahujice derivacie
§tvorca E? zanedbatelné oproti ostatnym ¢lenom (¢o je napr. splnené v pripade
Sirenia sa rovinnej viny v danom prostredi), potom oproti oby¢ajnej vlnovej rovnici
zostane navyse len ¢len p-a- E2- g—;ﬁ, ktory sposobuje také veci, ako samofokuséciu
a vznik vlny s dvojndsobnou frekvenciou pri prechode laserového Ziarenia latkou.



18 1. ZAKLADNE VZTAHY OPISUJUCE ELEKTROMAGNETICKE JAVY

2. VyuZitie hraniénych podmienok pre elmag polia v elektrostatickych a magneto-
statickych ulohdch

(Niekolko jednoduchych tloh, ktoré sa rieSia vyuZitim symetrie, materidlovych
vztahov a hraniénych podmienok pre elmag polia.)

a) Homogénne nabitd (celkovy ndboj Q) dielektricka gula (polomer R, permitivita
1) sa nachddza v dielektriku s permitivitou e5. Urcte elektrické pole v guli aj mimo
nej a plosnu hustotu naboja na povrchu gule.

b) Nabitd (celkovy nédboj Q) kovova gula (polomer R, permitivita €1) sa nachédza
v dielektriku s permitivitou €. Uréte elektrické pole v guli aj mimo nej a plosnu
hustotu naboja na povrchu gule.

¢) Nekoneéne dlhym valcovym vodi¢om (polomer R, merné vodivost o) preteka
prid I. Urcte elmag polia vo valci aj mimo neho.

3. Odraz a lom rovinnej elmag viny

(Tip na samostatné stidium. Jedno z vyznamnych pouziti hraniénych podmienok
pre elmag polia.)

Prestudujte si v niektorej knihe z optiky alebo teérie elmag pola kapitolu o od-
raze a lome rovinnej elmag vlny na rozhrani dvoch dielektrik. Analyza tychto javov
spociva na predpoklade, ze rieSenie Maxwellovych rovnic mé tvar superpozicie troch
rovinnych vin - jednej dopadajticej, jednej odrazenej a jednej “prejdenej”. Z tohto
predpokladu a z hraniénych podmienok pre elmag polia sa daji odvodit také veci
ako zdkon odrazu, zdkon lomu a Fresnelove vzfahy pre intenzity odrazeného a lo-
meného svetla roznej polarizacie.
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3. Zakony zachovania pre elmag pole
Motivacia

Zacneme s jednoduchym myslienkovym experimentom, ktory nas dovedie k potrebe
zaviest energiu, hybnost a moment hybnosti elmag pola. Nepojde o nejakt rigoréznu
uvahu, z ktorej nutnost zavedenia tychto veli¢in nevyhnutne vyplynie, ale skor o
uvahu intuitivnu, ktord m4 sluzit ako motivacia d'alsich, formalnejsich postupov.

Predstavme si vysielaciu anténu obklopent prijimacimi anténami rozlozenymi
po povrchu gule so stredom vo vysielacej anténe a s polomerom tri miliény kilo-
metrov. Predstavme si d'alej, ze v uréitom momente vyvoldme vo vysielacej anténe
pohyb volnych elektrénov t.j. doddme do systému isté mnozstvo energie vo forme
kinetickej energie volnych elektrénov. Po jednej sekunde nech tento pohyb ustane
t.j. kineticka energia elektrénov sa premeni na iné formy energie. Na aké?

V prvom rade zrejme na vndtornu (tepelni) energiu vysielacej antény. To vSak
nie je vSetko. Pohyb elektréonov vo vysielacej anténe meni elektromagnetické pole
v priestore a zmenené elmag polia vyvolaji pohyb voInych elekténov v prijimacich
anténach. Tento pohyb zas po nejakom ¢ase (pre jednoduchost predpokladajme
tiez jednu sekundu) ustane a kinetickd energia elektrénov prijimacich antén sa pre-
men{ na vnitornu (tepelni) energiu prijimacich antén. Pre jednoduchost predpo-
kladajme, Ze celd povodna kineticks energia E volnych elektrénov vysielacej antény
sa takto nakoniec premenila na zvySenie vnutornej energie antén o 0F; a dFs. Z
hladiska zachovania energie je takto vsetko nakoniec v poriadku. Nakoniec! Nie vSak
medzi zaciatkom a koncom.

Ide o to, ze ak sa elmag polia &iria rychlostou svetla, potom elektrény v prijima-
cich anténach sa zaénii pohybovat v dosledku pohybu elektrénov vysielacej antény
az po desiatich sekundach. Medzi prvou a desiatou sekundou méame teda z pévodne;j
energie E ¢ast premeneni na 6F; a ¢ast “nie je nikde”. Ak sa ndm to nepidi a
trvdme na tom, Ze zvysna energia musi niekde byt aj v éase medzi prvou a desia-
tou sekundou, neostdva ndm pravdepodobne ni¢ iné, ako priznat nejaki energiu
samotnému elektromagnetickému polu. Otdzka je, ako to urobit, aby sme sa po-
dobnym paradoxom vyhli nielen v tomto pripade, ale vo vsetkych situaciach.

Ak si uvedomime, ze uvedenie elektrénov prijimacej antény do pohybu znameng
zmenu ich hybnosti a momentu hybnosti , prideme analogicky k zaveru, ze elmag
polu treba zrejme pripisat aj urciti hybnost a moment hybnosti. (Iny myslienkovy
experiment vediici k potrebe zaviest moment hybnosti elmag pola mozno najst vo
Feynmanovych prednédskach z fyziky, treti diel slovenského vydania, paragraf 17.4).

Cielom tejto ¢asti bude néjst véeobecné vyjadrenia pre energiu, hybnost a mo-
ment hybnosti elmag pola a sformulovat pre elmag pole prislusné zakony zachova-
nia. Obmedzime sa pritom na elmag polia vo vakuu, ¢o je technicky najjednoduchsi
a principidlne najdolezitejsi pripad. Formulacia zakonov zachovania pre elmag pole
v latkovych prostrediach je komplikovanejsia a to éasto v miere d’aleko presahujicej
moznosti ivodného kurzu. V pripade latkovych prostredi sa preto obmedzime len
na struéni poznamku, z ktorej by malo byt aspoii zhruba jasné preco a v akom
zmysle su zdkony zachovania pre elmag pole v latkach zlozitejsie nez analogické
zédkony vo vakuu.
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3.1. Zakon zachovania energie.

Pri odvoden{ zdkona zachovania energie pre elmag pole budeme postupovaf
tplne formdlne a cely postup zdovodnime az na konci. Vychddzame z dvoch Max-
wellovych rovnic

OB oD

tE=—"" tH =
TO ot ro j+ ot

Ak prvi z nich vynasobime skaldrne vektorom H , druht skaldrne vektorom E a
druhi od prvej odé¢itame, dostaneme
~ - = ~ . . - 9D . OB
H-rotFE—F-rotH=-F-j—FE-— — H-
ot ot
Tavé strana tejto rovnice nie je ni¢ iné ako div(E x H) (pozri priklad 1.1.1).
Cleny obsahujice ¢asovi derivdciu mozno v pripade védkua upravit nasledovne
d=0E  ~ OugH 0

1 — —
. _ = . E2 H2
o T ot ot 2 (oF FmeH)

E.
takze dostavame
0 1
ot 2
¢o po zavedeni oznacenia

-

. (60E2 +,u0]‘.72) +le(E X I?_i) E

u=1(coE? + po H?)

S=ExH

prepiSeme na tvar

%u—kdivgz—ﬁj

Ak chceme pochopit, ¢o sme to vlastne dostali, uvazujme najprv pripad bez
vonkajsich pridov. V tomto pripade je prava strana poslednej rovnice nulova a rov-
nica vlastne predstavuje rovnicu kontinuity pre nejaki hustotu w a nejaky prad S,
Ako vieme z prvej prednasky, rovnica kontinuity je lokdlnym vyjadrenim nejakého
zékona zachovania.

Aby sme si teraz uvedomili, o aky zdkon zachovania ide, vrafme sa k ¢lenu E- ;
Ukazeme, ze tento ¢len predstavuje vykon Lorentzovej sily pri pohybe nabOJov
Vykon sily F je pri pohybe ¢astice rychlostou ¢ dany skaldrnym stcinom F. U, €o
v pripade Lorentzovej sily dava

P=q-E-T+q-(GxB)-7
pricom druhy ¢len je nulovy (skaldrny stc¢in dvoch kolmych vektorov). Vydelenim
tejto rovnice objemom a poslanim tohto objemu do nuly dostaneme rovnicu pre
hustoty
hustota vykonu Lorentzovej sily = p - E.-¢
a suU¢n hustoty ndboja s rychlostou hmoty v danom mieste nie je ni¢ iné ako
hustota pridu v danom mieste. Prava strana ziskanej rovnice je teda rovna minus

hustote vykonu Lorentzovej sily, t.j. rychlosti tbytku hustoty kinetickej energie
pohybujicich sa nabojov.
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Vo v8eobecnosti teda u nie je hustotou zachovéavajicej sa veli¢iny, jej prirastok
je dany vyrazom, ktory je rovny ubytku hustoty energie pohybujicich sa nabojov.
To, ¢o sa zachovava je teda stucet veliciny u s hustotou energie nédbojov, Cize nie
je ni¢ prirodzenejsie nez interpretovat veli¢inu v ako hustotu energie elmag pola a
veli¢inu S tym padom ako hustotu toku energie elmag pola (vektoru S sa zvykne
hovorit Poyntingov vektor).

Zakon zachovania energie elmag pola v lokdlnom tvare sme teda dostali ako
rovnicu kontinuity s nenulovou pravou stranou, zodpovedajicou tubytku hustoty
energie nadbojov. Ak by sme si dopredu vyjasnili, Ze hladdme prave toto, mohli sme
postupovat tak, Ze by sme sa takito rovnicu pokusali ziskat nejakymi dpravami
z Maxwellovych rovnic. Na§ formdalny postup nebol vlastne ni¢ iné, nez takyto
(Gspesny) pokus.

3.2. Zakon zachovania hybnosti.

Pouéeni postupom pri hladani zdkona zachovania energie budeme sa snazit
ziskat z Maxwellovych rovnic rovnicu kontinuity s nenulovou pravou stranou, ktora
by tentoraz zodpovedala rychlosti ibytku hustoty hybnosti ndbojov, t.j. minus hus-
tote Lorentzovej sily. Najprirodzenejsi postup je zobraf rovnice

div D = P
-~ - 0D
rot H =354+ —
T o
prvi vyndsobit skaldrne vektorom E, druhi vektorovo vektorom B a séitat. Dosta-
neme

0D = . = 5 s R F .7y B
E><B—|—B><rotH—E-divD=—(p-E+j><B)

Casovu derivéciu, potrebnu v rovnici kontinuity, ziskame zrejme z Clena %—? x B

a najjednoduchsie by to islo, keby sme tam mali aj ¢len D x %If. Je preto priro-
B

dzené pripoéitat k nagej rovnici eSte rovnicu rot £ = —%¢ vyndsobenu vektorovo

vektorom D, ¢im dostaneme

85 — — aé — — — — — — — — —
v x B+ D x E—l—BxrotH—l—DxrotE—E-divD:—(p~E—|—j><B)
prvé dva cleny davaju %(ﬁ X E) Ak sa nadm podari upravit zvysné ¢leny na
divergenciu ¢ohosi, potom bude zrejme D x B hustota hybnosti a to ¢osi bude

hustotou toku hybnosti elmag pola.

Kym sa pustime do uprav zostavajucich ¢lenov, vyjasnime si, aky charakter
bude maf hustota toku hybnosti. Doteraz sme sa stretli iba s rovnicami kontinuity,
v ktorych zachovavajica sa veli¢ina bola skaldrna a jej tok bol vektor. Teraz vsak
mame vektorovi zachovavajicu sa veli¢inu a vznika otazka, ¢o je hustota toku vek-
torovej veliciny. V prvom rade si uvedomime, Ze hustota toku ndm vlastne hovori,
kolko danej veli¢iny pretecie za jednotku éasu danou infinitezimalnou plogkou. In-
finitezimalna ploska je pritom dand svojou velkostou a orientdciou, ktoré st obe
zaifrované vo vektore d9 prislichajicom tejto ploske. Hustota toku teda priradi
vektoru dS mnozstvo pretecenej veli¢iny, Cize ak je tato veli¢ina vektor, hustota
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toku priradi vektoru vektor. Toto zobrazenie je navySe vdaka infinitezimdlnosti
dS linedrne. Kazdé zobrazenie, ktoré nieco prirad uje infinitezimalnym veli¢indm, je
totiz linedrne, ¢o sa okamzite nahliadne rozvojom daného zobrazenia do Taylorovho
radu a zanedbanim vsetkych ¢lenov vyssich ako linedrnych (ktoré st zanedbatelné
prave vdaka infinitezimélnosti argumentu). Hustota toku je teda v nasom pripade
linedrne zobrazenie, ktoré priraduje vektoru vektor, o nie je ni¢ iné ako definicia
tenzora (druhého rddu). Vyjasnili sme si teda, ze hustota toku hybnosti bude tenzor
a teraz sa pustime do hladania zloZiek tohto tenzora.

Najprv este upravime éleny, z ktorych chceme vyrobif divergenciu ¢ohosi, na
symetrickejsi tvar pripo¢itanim nuly v tvare, ktory dostaneme vynasobenim rovnice
div B = 0 vektorom H (keby sme to neurobili teraz, d'al§i postup by nds doviedol
k tomu, Ze by sme to museli urobit neskor). Chceme teda zistit, ¢i je mozné pisat

BxrotH+ D xrot E — E -divD — H - div B = div ¢ohosi
¢leny obsahujiice elektrické polia upravime takto (kvoli prehladnosti pouZijeme
oznacenie 0; = %)
(ﬁ X rotE — E - div ﬁ) = EijkeklijalEm — EZ(?JDJ
= (0i0jm — 0im9;1) DO, By, — E;0; D,

1
= 8j (5 . €0E2 . 5ij — EiDj)
pricom na konci sme vyuzili D; = o = D;0;E; = o E;0:E; = % 00 B E;.

Ak rovnaké tpravy urobime s ¢lenmi obsahujicimi magnetické polia, dosta-
neme, ze sucet vSetkych styroch ¢lenov sa rovna vyrazu

]. — —
aj (2 . (€0E2 + M0H2) . 51’]’ — EZDJ — HZBJ)
a kedze divergencia tenzora mé v kartézskych siradniciach tvar 9;T;; vidime,

7e hladany tenzor (nazyvany tenzorom hustoty toku hybnosti elmag pola) m4
sturadnice

Ty = $(e0E? + poH?)8;; — E;D; — H;B;

Samotna hustota hybnosti je dand vyrazom

gzﬁxﬁ

a zdkon zachovania hybnosti méZeme teda pisat v kompaktnom tvare
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3.3. Zakon zachovania momentu hybnosti.

Zakon zachovania momentu hybnosti dostaneme jednoducho zo zédkona zacho-
vania hybnosti a to vynasobenim vektorovo vektorom 7
L0 . Lz . 5 - =
7 X ag+r><d1vT:—fr>< (p-E+jxB)
Na pravej strane stoji hustota momentu Lorentzovej sily, t.j. to, ¢o tam chceme
mat. Clen s derivaciou podla ¢asu upravime jednoducho na zaklade toho, Ze t a
7 sU nezavislé premenné a preto 7 X %g‘ = %(F x §), takze ¥ X ¢ bude zrejme
hraf tlohu hustoty momentu hybnosti elmag pola. Ostéva upravit zostdvajici ¢len
na divergenciu nie¢oho, ¢o bude hraf tlohu hustoty toku momentu hybnosti. Na
zédklade argumenticie rovnakej ako v pripade hybnosti méZeme ocakavat, Ze tento
tok bude tenzor.
(FX leT) = EijkxjalTkl = éijk(alfbkal — Tklall'j)
K3
= €017 Thy — €k Trio1; = O(€ijuriThi) — €ijiThj
= Oi(€ijir;Thi)

kde sme vyuzili nulovost €;;;Tk;, vyplyvajicu z antisymetrie €;;; a symetrie Tj;.
Vidime teda, Ze hladany tenzor (nazyvany tenzorom hustoty toku momentu hyb-
nosti elmag pola) ma stradnice

‘Mil = €111

Samotnd hustota momentu hybnosti je dana vyrazom

—

f:Fxg

a zdkon zachovania momentu hybnosti mézeme teda pisat v kompaktnom tvare

%f+divﬂz/:—Fx (pE—k]’x E)

Jeden priklad uzitoénosti zdkonov zachovania

Zakony zachovania nie su nezavislé zakony elektrodynamiky, st to dosledky
Maxwellovych rovnic. Ich vyznam teda nespoéiva v tom, Ze by ndm odhalovali
nejaké nové vlastnosti prirody, ktoré by neboli implicitne zahrnuté v tom, ¢o sme
uz poznali, ale v tom, zZe pri niektorych vseobecnych uvahéch, rovnako ako pri rieseni
niektorych konkrétnych tloh, je vyhodnejsie vychddzaf nie priamo z Maxwellovych
rovnic, ale z niektorého zo zdkonov zachovania. Ako priklad si uvedieme vypocet
sily posobiacej na teleso v elmag poli pomocou zakona zachovania hybnosti.

Napisme zdkon zachovania hybnosti v tvare
. N 9 . . =
hustota rychlosti zmeny hybnosti ndbojov = ~7 g—divT

a preintegrujme cez nejaky objem V ohrani¢eny uzavretou plochou S. Vysledok
moZeme zapisat v tvare

rychlost zmeny hybnosti ndbojov a pola v objeme V = — / divT dV
v
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Uvazujme teraz situdciu, v ktorej sa hybnost elmag pola v danom objeme ne-
meni. Moze to byt napr. pripad elektrostatického pola alebo pripad periodicky sa
meniaceho pola (napr. elmag vlna), v ktorom je narast hybnosti pola v nejakom
mieste vzdy vykompenzovany jej poklesom v inom mieste. Vtedy ostane na lavej
strane rovnice len rychlost zmeny hybnosti ndbojov, o nie je ni¢ iné ako celkova
sila posobiaca na ndboje v uvazovanom objeme. Ak eSte upravime pravi stranu
pomocou Gaussovej vety (pre tenzory plati rovnako ako pre vektory, ¢o sa Tahko
nahliadne rozpisanim do zloziek) dostaneme

ﬁ:_f
S

Fzzf]{TUdS]:f%Twnde
S S

Vidime, ze na vypocet sily posobiacej napr. na nejaké teleso v elmag poli je
vo vyssie spominanych pripadoch dostatoéné poznaf tenzor toku hybnosti pola na
nejakej ploche obobinajicej teleso (pri¢om tato plocha nemusf lezat na hranici tohto
telesa, moze lezaf aj mimo teleso a to aj hodne d'aleko). Na prvy pohlad to nemusi
vyzerat ako nejaké velkd vyhra, ale skiisme pouvazovat, ako by sme poéitali tiito silu
inak. Priamociara cesta by bola jednoduchym integrovanim Lorentzovej sily, ale na
to treba poznat polia a hustotu (volného a polarizovaného) ndboja v celom objeme
telesa a polia a plosni hustotu (volného a polarizovaného) ndboja na povrchu telesa,
¢o rozhodne nemusi byt vidy jednoduché. Dobri ilustraciu uzitoénosti vypoctu sily
zo zékona zachovania hybnosti predstavuje vypocet tzv. svetelného tlaku — pozri
priklad 3.

—

d

]

resp. v zlozkach

Analogické tivahy, aké sme urobili pre teleso ako celok, mozeme urobit aj pre
jeho ¢ast a vyjadrit tak (objemové) elmag sily posobiace na tito ¢ast cez plosné
sily posobiace na povrch tejto casti. Toto je vyhodné najmé pri skiimani elmag
vlastnosti pruznych telies a kvapalin — elmag sily sa vezmu do tvahy jednoducho
pridanim tenzora toku hybnosti elmag pola k tenzoru napéti v pohybovych rovni-
ciach kontinua (z tohto dévodu sa tenzoru toku hybnosti elmag pola ¢asto hovorf
Maxwellov tenzor napiiti). Poznamenajme vsak, ze pri praktickych vypoctoch sa v
latkovych prostrediach uvazuji isté modifikované hustoty energie a toku hybnosti
(pozri nasledujicu poznamku 3), ktoré si na prvy pohlad komplikovanejsie ako
priamociare zovSeobecnenia hustét vo védkuu, v skutoénosti vsak vypocty (ktoré
ovSem presahuji troveii tivodnej predndsky) ulahéuju.

Tri poznamky

PozNAMKA. Analégia tenzoru toku hybnosti s tenzorom napét{ v mechanike
kontinua viedla Maxwella k myslienke, Ze tenzor toku hybnosti je naozaj tenzo-
rom napéti v nejakom vsadepritomnom kontinuu a toto kontinuum nazval éterom.
Zbytotnost a nevhodnost tohto pojmu v elektrodynamike ukézala az tedria relati-
vity.

PozNAMKA. V niektorych knihdch sa fakt, ze elmag pole mé svoju vlastni
energiu, hybnost a moment hybnosti, interpretuje ako dékaz toho, Ze elmag pole
”je nieco skutocné”, ze to nie je len akasi abstraktnd matematicka konstrukcia.
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Nemysli sa tym dokaz v zmysle matematickom, ale skor v zmysle psychologickom
— mnoho Tudi je zrejme ochotnych povazovat za "nie¢o skutoéné” skér to, o mé
energiu, hybnost a moment hybnosti, ako to, o tieto veci nema.

Na druhej strane samotné pojmy energie, hybnosti a momentu hybnosti su
vlastne abstraktné konstrukcie, takze ich ”dokazova sila” je diskutabilnd, resp. bola
by diskutabilna, keby sa o tychto veciach oplatilo diskutovat. To sa ale asi neoplati
— & sa niekomu myslienka ”dokazu” redlnosti elmag pola cez jeho energiu, hybnost
a moment hybnosti p4¢i alebo nie, nie je az tak velmi vecou logiky ako skor vecou
vkusu.

PozNAMKA. Na zdkonoch zachovania pre elmag pole v latkovych prostrediach
je komplikované to, ze v makroskopickych poliach si v istom zmysle zahrnuté aj
naboje a priudy castic latky, a teda ¢o je mechanické a ¢o elektromagnetické nie
je ostro odlisené. Hranicu medzi mechanickym a elektromagnetickym mozno do
istej miery postivat tak, ako je to vyhodné. Na prvy pohlad by sa mohlo zdat,
Ze najvyhodnejsie bude jednoducho zopakovat postup z vdkua, pricom za polia sa
budi braf makroskopické polia a za naboje len vonkajsie naboje. Takto dostaneme
napr. pre miakké homogénne izotropné dielektrikum bez paméite a nelokalnosti to
isté, ¢o pre vakuum, akurat s konstantami e, p namiesto eg, uo.

Avsak pri vysetrovani stuvisu elektromagnetickych vlastnosti 1atok s vlastnostami
termodynamickymi a deformaénymi je vyhodnejsie definovat hustotu energie elmag
pola nasledovne

hustota energia pola = hustota energie systému pole a latka

— hustota energie len latky pri tej istej teplote a hustote

a analogicky pre ostatné elmag veli¢iny. Takato definicia vedie k vyrazom pre hus-
totu energie a hustotu toku hybnosti odlisSnym od jednoduchych zovseobecneni z
vakua. Tieto vyrazy teraz uvedieme bez odvodenia, len pre ilustraciu, aby sme
mali predstavu o tom, nakolko sa liSia veli¢iny ¢asto pouzivané pri vypoctoch v
elektrodynamike latok od toho, ¢o sa ziska jednoduchym zovSeobecnenim postupov
z vékua.

U= % ((e+T [g;]p)EQ +p+T [(?;L)HZ)
Tij = % ((e—p B;]T)EQ +(n—p [g’;]T)HQ) ~0ij — EiDj — H,B,;

Priklady

1. Elektrostaticka energia sustavy ndbojov

(Priklad na vyjasnenie si vzfahu medzi potencidlnou energiou a energiou pola v
elektrostatike.)

a) Vzdjomnd potencidlna energia statickej sustavy diskrétnych nabojov je % Zij a5 (T)
(preco jedna polovica?), kde ¢,;(7;) je potencial od j-teho ndboja v mieste 7;. Ener-

gia elektrostatického pola danej sistavy nabojov je % i 60E2(f) d3r. Je celkova
energia systému dand prvym vyrazom (potencidlnou energiou), druhym vyrazom
(energiou pola), alebo ich sti¢tom?
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b) Pre spojité rozloZenie ndboja prejde vztah pre potencidlnu energiu nédbojov na
%fp(f*')ga(f’) d?r, kde ¢ je celkovy potencidl t.j. potencil od celkového rozlozenia
néboja. Ukazte, ze tento vyraz sa rovnd vyrazu pre energiu prislusného elektrosta-
tického pola. Premyslite si v tejto stvislosti este raz odpoved na otézku a.
(Spravna odpoved’ na otdzku a je: bud potencidlna energia ndbojov alebo energia
pola — je jedno ktora z nich, pretoZe sa rovnajii) — ale rozhodne nie ich sticet.
Zdbdvodnite preco.)

2. Energia, hybnost a moment hybnosti elmag pola v niektorych beinijch situdcidch
(Niekolko standardnych prikladov na precviéenie novych pojmov)

N4jdite celkovii energiu, hybnost a moment hybnosti elmag pola

a) stojaceho bodového ndboja g

b) stojacej gule s polomerom r homogénne nabitej ndbojom q

¢) nekone¢ne dlhého vodic¢a s polomerom r, ktorym pretekd prad I.

V pripadoch, v ktorych dostavate nekonecné vysledky prediskutujte, ¢o je zdrojom
tychto nekonecien.

3. Rovinnd elmag vina a jej dopad na ciernu rovinu.

(Jedna ilustrécia uzito¢nosti vypoctu sil a momentov sil pomocou zdkonov zacho-
vania.)

a) Pre rovinnt linedrne polarizovant elmag vinu E(7,t) = E - e, - sin(kz — wt),
B(Ft) = B- ey - sin(kz — wt), kde e, e, si jednotkové vektory v smere osi x a y,
néajdite hustoty a hustoty toku energie, hybnosti a momentu hybnosti.

b) Vlna uvazovana v pripade a) dopadd na dokonale ¢iernu rovinu xy. Kolko energie
pohlcuje ¢ierna rovina na 1m? za 1s, akym tlakom pésobi vina na tito rovinu a
akym momentom sily vlna rovinu roztaca.

¢) To isté €o vyssie pre kruhovo polarizovant vinu E(7,t) = E - e, - sin(kz — wt) +

—

E -ey - cos(kz —wt), B(F,t) = B - e, - sin(kz — wt) — B - e, - cos(kz — wt).

4. Dalsie nepovinné priklady na vyuZitie zdkonov zachovania.

(Niekolko prikladov, ktoré sa daji riesit aj pomocou zékonov zachovania aj inak,
vysledky sa potom daji porovnat a celé to moze byt pomerne uzitoéné cvicenie.)
a) Pre nekonecny valcovy vodi¢ s prudom I vypocitajte tok energie povrchom vodica
a vysledok porovnajte s vyrazom pre Jouleov vykon U - I.

b) Vypocitajte silu, ktorou sa odpudzuji dve polovice homogénne nabitej gule raz
priamo pomocou Coulombovho zdkona a raz pomocou tenzora toku hybnosti.

¢) To isté ¢o v predchddzajicom pripade, tentoraz pre homogénne nabity nekoneény
valec (myslia sa polovice, ktoré vznikni rezom rovinou obsahujicou os valca).

5. Minkowského vyrazy pre hustoty a hustoty toku energie, hybnosti a momentu
hybnosti.

(Priklad na precvicenie odvodenia zdkonov zachovania pre elmag pole.)

Aj ked je v 1dtkovych prostrediach uzitoénejsie uvazovat pri odvoden{ zékonov za-
chovania namiesto priameho zovSeobecnenia postupu z vakua trochu rafinovanejsi
postup (pozri pozndmku na predchddzajicej strane) predsa len sa niekedy pouzivaji
tzv. Minkowského vyrazy ziskané priamym zovSeobecnenim. Najdite tieto Minko-
wského vyrazy pre linedrne anizotropné nehomogénne prostredie (bez pamiti a
nelokalnosti), t.j. zopakujte postup z vakua pre takéto prostredie.
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4. Elektromagnetické potencialy

Akondhle mame sformulované zakladné rovnice elektrodynamiky vo vékuu a
v latkach, méZzeme pristtpif k ich rieseniu. RieSenie Maxwellovych rovnic je vSak
znaéne komplikovand zdlezitost a ak je mozné rovnice este pred ich rieSenim ne-
jako zjednodusit, rieSenie sa tym moze podstatne ulahcit. Velmi vyznamné zjed-
nodusenie Maxwellovych rovnic umoznuje zavedenie tzv. elektromagnetickych po-
tencidlov.

Matematickd pozndmka (niekolko uzitoénych tvrdeni)

Turdenie 1. Pre Tubovolntd “slusnt” funkciu f(7) existuje funkcia P(7) také, ze

f(7) = —div P(7)

Dékaz urobime explicitnym najdenim funkcie P(7), t.j. najdenfm funkcif P, (z,y, 2),

Py(z,y,z), P.(z,y, z), pre ktoré bude platit

0 0 0

Pt P+ P =—

oxr " oy Y 0z~ /
(Poznamenajme, Ze znamienko minus je vo formuldcii tvrdenia len z istych formdlnych
dévodov a nemd nijaky hlbs{ vyznam.) Polozme napr.

P, =0 P,.=0

¢fm dostaneme B‘ZP (x,y,2) = —f(x,y, 2), odkial

Py(x,y,2) /fwy,

(“Slusnost” funkcie f je v tomto pripade dand existenciou integrélu [ fdz. Funkcie,
pre ktoré tento integral existuje, ¢o st medziinym vsetky spojité funkcie, si “slusné”
v zmysle dokazovaného tvrdenia.) Uvedené funkcie P, P,, P, spiﬁajﬁ vztah f =
—div P, éim dokaz konéf.

7 konstrukcie P(7) vidno, Ze pre dané f(7) existuje viac P(7) (rovnako dobre
sme totiz mohli zacat s P, = 0, P, = 0 alebo P, = 0, P, = 0). Funkeif P(7)
splitajicich pre dané f(7) rovnicu div P(¥) = —f je v skutoénosti nekonecne vela,
¢o Tahko nahliadneme, ak si uvedomime, Ze divrot = 0, z ¢oho vyplyva, ze ak ]3(77')
Spiﬁa uvazovant rovnicu, potom pre lubovolni hladkd funkciu ff(f') Spiﬁa tuto
rovnicu aj funkcia

P(7) 4 rot A(F)

Rézne P sa teda mozu 1t o rotéciu lubovolnej hladkej funkcie. Ukdzeme, ze
viac sa uz ligif nemozu, t.j. Ze ak PaP spfﬁajﬁ rovnicu pre dané f, potom ich
rozdiel je rotaciou nejakej vektorovej funkcie. Ak totiz div 16(7") = —f() a sicasne
div P'(7) = — f(7), potom div(P(7) — P'(7)) = 0 a pre kazdd vektorovi funkciu s
nulovou divergenciou existuje (podla tvrdenia 2) tak4 vektorovd funkcia, ktorej je
povodna funkcia rotaciou.
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Tordenie 2. Nech div B(7) = 0. Potom existuje A(7) také, ze
B(7) = rot A(7)

Dékaz urobime znovu explicitnym najdenim ff(r"), t.j. ndjdenim funkeif A, (x,y, 2),
Ay(x,y,2), As(x,y,z), pre ktoré bude platit

0 0 0 0 0 0

Op-%a -8, Za,-%a-B ZLa-2

Oy 0z 0z oz Y oY Oy

Polozme napr.

A, =B,

A, =0

&m dostaneme f%Ay(x,y, 2) = By, %Am(x, y,z) = By, a odtial dalej
Ay(l‘;yvz) = _/B;C(I7yaz)dz Aa(mayvz) = /By(z,y,z)dz

Ostéva este ukazat, ze tieto funkcie spiﬁajﬁ aj tretiu rovnicu %Ay — %Az =B,.

0 0 0 0 0 0

0
/62 Ldz -~

kde sme predpokladali spojitost funkcii A;, B; (aby sme mohli menit poradie de-
rivécif a integralov) a vyuzili sme predpoklad div B = Z B, + %By +ZB. =0.
Uvedené funkcie A,, Ay, A, teda spiﬁajﬁ vztah B = rot ff, ¢im dokaz konéi.

PozNAMKA. V skutoénosti dokaz este celkom nekonéi, pretoZe zatial je v fiom
drobny podvod — nepisali sme sprivne integracné konstanty. Spravne ma byt napr.
[ ZB.dz = B.+c(z,y) (c je konstanta vzhladom k premennej z, t.j. moze fubovne
zavisief od premennych x,y). Premyslite si, Ze vhodnym vyberom integraénych
konstant v integraloch definujtcich 4, a A,, mozeme vzdy tito ”konstantu” znicit,
t.j. dosiahnut aby c(z,y) =0

7 konstrukcie A(7) vidno, ze pre dané B(7) existuje viac A(7) (rovnako dobre sme
totiz mohli zacat s A, = 0 alebo 4, = 0). Funkeif A(7) spinajicich pre dané B(7)
rovnicu rot /T(F) = B je v skutotnosti nekonecne vela, ¢o Tahko nahliadneme, ak si
uvedomime, Ze rot grad = 0, z ¢oho vyplyva, ze ak fT(F’) Spiﬁa tuto rovnicu, potom
pre Tubovolni hladkud funkciu A(7) spfﬁa tito rovnicu aj funkcia

A(7) + grad A(7)

Rozne A sa teda mézu lisit o gradient Tubovolnej hladkej funkcie. Ukdzeme, Ze viac
sa uz 1isif nemozu, t.j. 7e ak A a A’ spliiajti rovnicu pre dané B, potom ich rozdiel je
gradientom nejakej funkcie. Ak totiz rot A(¥) = B a sticasne rot A’(7) = B, potom

rot(A(7) — A’(7)) = 0 a pre kazdd vektorovi funkciu s nulovou rotdciou existuje
(podla tvrdenia 3) také funkcia, ktorej je povodna funkcia gradientom.
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Tordenie 3. Nech rot F(7) = 0. Potom existuje U(F) také, Ze
F(7) = — grad U(?)

Dékaz nebudeme robif podrobne, odvoldme sa na veci zndme z mechaniky. Pre
konzervativne silové pole F'(7) je mozné korektne definovat potencialnu energiu

U :Uo—/ B - di
)
pre ktord plati F=-— grad U. Pole je konzervativne prave vtedy, ked pre kazdu
uzavretd krivku plati § - di = 0. Ak pre nejaké pole F'(7) v kazdom bode plati
rot F (7) = 0, potom podla Stokesovej vety plati pre kazdd uzavrett krivku § Fdr =

frotﬁ -dS =0, t.j. pole je konzervativne.

Poznamka. Z konstrukcie U vidno, ze pre dané F existuje viac roznych U, pretoze
konstantu Uy modzeme vybrat Tubovolne. Rézne U sa teda mozu ligit o konstantu
a viac sa uz lisit nemézu, pretoze ak F(7) = —gradU(7) a F(7) = —grad U'(7),
potom grad(U — U’) = 0 a jedind funkcia s nulovym gradientom je konstantnd
funkcia.

4.1. Skalarny a vektorovy potencial.

Z Maxwellovej rovnice divB = 0 a z tvrdenia 2 matematickej poznamky
vyplyva existencia funkcie A(7,t) takej, ze

B(F) = rot A(F)

7, Maxwellovej rovnice rot E = f%—? upravenej na tvar rot E + %rot/_f =
rot(E_" + %—‘?) = 0 a z tvrdenia 3 matematickej poznamky vyplyva existencia funkcie

(7, t) takej, ze E + %—‘f = — grad ¢ resp.

E = —grad ¢ — %ff

Funkcia fT(F , 1) sa nazyva vektorovy elektromagneticky potenciél, funkcia ¢(7, t)
skalarny elektromagneticky potencidl.

Skalarny a vektorovy potencidl si uréené hustotami elektrického naboja a pridu
prostrednictvom rovnic, ktoré dostaneme zo zvysnych dvoch Maxwellovych rovnic
dosadenim vyjadrenia elmag poli cez elmag potencidly. V principidlne najdolezitejsom
pripade vdkua a v prakticky beznom pripade homogénnej izotropnej latky (ktoré
su formdlne zhodné) vyzerajui tieto rovnice nasledovne

-,

divle(—grade — 2. A)] = p

e - 0 0 -
rotrot A = puj + o [ue(—gradp — = A)]

Odkial dostdvame (divgrad = A, rot rot = grad div —A\)
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0 PP
A —divAd=-=
<,0+atd1v 5

2
AA— au%A — grad(div A + au%@) =—u-j

Prvou vyhodou tychto rovnic v porovnani s péovodnymi Maxwellovymi rovni-
cami je nizsi pocet rovnic (dve namiesto Styroch) a nizsi pocet neznamych funkcii.
Kym v pévodnych rovniciach vystupuje 6 nezndmych funkcii (dve vektorové fun-
keie E a é), v novych rovniciach sd to len 4 nezndme funkcie (jedna vektorova A
a jedna skaldrna ¢). Ak ndjdeme pre dané hustoty naboja a pridu tieto 4 funkcie,
ziskame z nich polia EaB jednoduchym derivovanim z definiénych vztahov.

Druhou vyhodou novych rovnic je moznost ich d’alsieho formalneho zjednodugenia
tzv. kalibra¢nymi transforméciami.

4.2. Kalibrac¢né transformaécie.

Elmag potencidly /T © totiz nie su urc¢ené elmag poliami E B jednoznacne.
Ako vyplyva zo spominanej matematickej poznamky, rézne A prisliuchajice tomu
istému B sa mozu it o gradient Tubovolnej funkcie. To znamend, Ze od daného
A(7,t) mozno prejst k novému vektorovému potenciglu transforméciou

g—)/f—i—gradA

kde A(7,t) je lubovolnd hladkd funkcia. Takato transformécia nezmeni magnetické
pole, ale ak funkcia A zévis{ od ¢asu (¢o vo vieobecnosti zdvis{), zmenf{ sa elektrické
pole E=— grad p— %ff — % grad A. Ak vsak sicasne s transforméciou vektorového
potencidlu transformujeme aj skalarny potenciél a to nasledovne

p—p—ZA

potom sa nezmeni ani magnetické ani elektrické pole.

Uvedend transformécia elmag potencidlov (oboch sicasne!) sa nazyva (z istych
hlstorlckych dévodov) kalibracnd transformécia. Pre kazdi dVOJlCIl elmag poli E
B méme teda nekonecne vela dvojic elmag potencidlov ¢, A, viazanych navzajom
kalibracnymi transforméciami s roznymi funkciami A. Konkrétnemu vyberu po-
tencialov ¢, A sa zvykne hovoritf “fixovanie kalibrdcie "a tento konkrétny vyber je
mozné urobit tak, aby sa ndm zjednodusili rovnice pre elmag potencialy.

Jednym z velmi uzitoénych spoésobov vyberu kalibricie elmag potencidlov je
tzv. Lorenzova kalibracia t.j. taky vyber ¢, A, aby platila

div A + eu%go =0

Uk4zme si najpry, ze pre lubovolné polia E, B sa naozaj daji vybrat elmag po-
tencialy spliiajice Lorenzovu kalibraénii podmienku. Uvazujme lIubovolni dvojicu
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©, A prislichajicu danej dvojici E, é, pricom ¢, A nemusia spfﬁat’ Lorenzovu ka-
libracnt podmienku. Teraz tieto potencidly kalibracne transformujme a od trans-
formovanych potencidlov pozadujme splnenie Lorenzovej kalibra¢nej podmienky t.j.
pozadujme aby

2,0,

- 3}
div(A + grad A) + Eua(go ~ 5

£.j.
0? .o 0
AN — euwA =—divA - euago

Otédzka je, ¢ existuje funkcia A spiﬁajﬁca poslednti rovnicu. Odpoved je kladnd,
pretoze sa jednd o vlnovi rovnicu (s nenulovou pravou stranou), ktord mé nekoneéne
vela riefeni. Od Iubovolnej dvojice elmag potencidlov sa teda d4 prejst vhodnou
kalibra¢nou transforméaciou k dvojici spiﬁajﬁcej Lorenzovu kalibra¢nii podmienku.

A teraz naco je to dobré. Ak vyuzijeme Lorenzovu kalibra¢ni podmienku v
rovniciach pre elmag potencidly dostaneme
0? p
Dp—epgzp=—"
- 0% - -
AA—E/L@AZ —p-j
Tieto rovnice majui tri velmi prijemné vlastnosti. Po prvé si to dekuplované
rovnice pre ¢ a /T t.j. na rozdiel od v8eobecnych rovnic pre elmag potencidly mame
nezavislé rovnice pre ¢ a A. Po druhé méme rovnakd rovnicu pre ¢ a pre At g
ak sa nauéime riesit rovnicu pre ¢, vieme automaticky riesit aj rovnicu pre A A
po tretie sa jedna o vlnovi rovnicu, takze vSetko ¢o vieme o vlnovej rovnici nam
tu bude uzitocné, a vSetko nové, ¢o sa tu naucime, bude uzitoéné vsade, kde sa
stretneme s vinovou rovnicou. (Nové veci sa viak o vinovej rovnici nebudeme uéit
teraz, ale az v tretej kapitole.)

Inym uzitoénym vyberom kalibrédcie elmag potencidlov je tzv. Coulombova ka-
librdcia t.j. taky vyber ¢, A, aby platila

divA =0
Znova si najprv ukdzme, Ze pre lubovolné polia E, B sa naozaj daji vybraf el-
mag potencidly splnaJuce Coulombovu kalibra¢ni podmlenku Uvazujme znovu
lubovolnt dvojicu ¢, A prislichajicu danej dvojici E B pricom ¢, A nemusia
bplnat Coulombovu kalibraé¢nii podmienku a tieto potencialy kalibracne transfor-
mujme, pricom od transformovanych potencidlov pozadujme splnenie Coulombovej
kalibra¢nej podmienky t.j. pozadujme aby
div(A + grad A) = 0
t.j.
AN =—divA

Otédzka je, ¢ existuje funkcia A spiﬁajﬁca poslednti rovnicu. Odpoved je kladnd,
pretoze sa jedna o tzv. Poissonovu rovnicu, ktord ma nekoneéne vela rieSeni. Od

lubovolnej dvojice elmag potencidlov sa teda d4 prejst vhodnou kalibra¢nou trans-
formdciou k dvojici spliajucej Coulombovu kalibraénii podmienku.
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Ak teraz vyuzijeme Coulombovu kalibraénii podmienku v rovniciach pre po-
tencidly dostaneme

Ap = —

(OB Iast

- 0% - - 0
AA— EH@A =—p-j+ Sl grad

Tieto rovnice nie si dekuplované, pretoze v rovnici pre A vystupuje ¢, ale
rovnica pre ¢ je nezavisld od /Y, takZe najprv mozeme vyrieSif rovnicu pre ¢ a
potom toto riesenie dosadif do rovnice pre A. Na rozdiel od vSeobecnych rovnic pre
elmag potencidly mozeme teda riesit tieto rovnice nie sti¢asne, ale jednu po druhe;.
Rovnica pre ¢ je Poissonova rovnica, ktora v sebe zahfna celi elektrostatiku vratane
Coulombovho zakona — odtial nazov kalibracie. Vietko, o sa o Poissonovej rovnici
nau¢ime v elektrostatike (ktorej bude venovand celd druhd kapitola) bude teda
uzitoéné aj v elektrodynamike, pokial budeme pracovat v Coulombovej kalibracii.
Rovnica pre A je znova vlnova rovnica, ktorej bude venovana tretia kapitola.

Preco skalarny a vektorovy potencial

Na zaver si polozme otazku, ¢i sa naozaj oplati zavadzat nové pojmy ako elmag
potencidly a kalibraéné transformécie, ¢i by sme nevystaéili v tedrii elmag pola s
elmag poliami. Odpoved je takd, Ze v mnohom by sme naozaj vysta&ili bez tychto
novych pojmov, ale inde (napr. pri vySetrovani elmag Ziarenia) si elmag potencidly
velmi uZitoéné a bez nich by sme sa natrapili ovela viac ako s nimi. Okrem toho
sa elmag potencidly ukazuji byt vhodnej$imi nez elmag polia v mnohych d’alsich
oblastiach fyziky. Uved'me si aspoii niekolko prikladov:

V tedrii relativity tvoria elmag potencidly tzv. Stvorvektor, zatial ¢o elmag
polia tzv. stvortenzor. Manipulédcia s elmag potencidlmi je teda v teorii relativity
v porovnani s elmag poliami jednoduchsia asi natolko, nakolko je vo vSeobecnosti
jednoduchsia manipulédcia s vektormi v porovnani s tenzormi.

Kvantovd mechanika Castice v elmag poli je opisand Schrédingerovou rovni-
cou, v ktorej vystupuju elmag potencidly a nie elmag polia. Nahradenie elmag
potencidlov elmag poliami by tu bolo zna¢ne komplikované a neprirodzené.

Kvantovd teéria samotného elmag pola, tzv. kvantovd elektrodynamika, je
zalozend na tzv. kvantovani klasickej tedérie. K tomuto kvantovaniu je potrebné
mat sformulovani klasicki elektrodynamiku v lagrangeovskom alebo hamiltonov-
skom formalizme (analégy tychto formuldcii pre mechanické systémy pozndme z
teoretickej mechaniky). Pre oba tieto formalizmy sd elmag potencidly ovela vhod-
nejsie a prirodzenejsie ako elmag polia.

Skor ¢i neskor sa teda ¢lovek vo fyzike s elmag potencidlmi urcite stretne a
preto nemd zmysel toto stretnutie odkladat.
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Priklady

1. Urcenie elmag poli z elmag potencidlov

(Mustricia toho, Ze jednoduchym poliam moézu prislichat na prvy pohlad zlozité
potencidly.)

Je elmag pole urc¢ené nasledovnymi elmag potencialmi elektrostatické, magnetosta-
tické, ¢asovo premenné elektrické, ¢asovo premenné magnetické alebo iné?

a) p(r,t)=0

b) ¢ (7 t) = —ate
¢) ¢ (Ft) = —at sin® (wt) A7 1) = afy (1+ 45 sin (2wt))

w

2. Urcéenie elmag potencidlov z elmag poli

(Niekolko jednoduchych prikladov, ktoré sa riesia bud uhddnutim alebo syste-
matickym postupom podla dékazov tvrdeni z matematickej poznamky, vratane
pozndmky pod ¢iarou v dokaze tvrdenia 2)

Néjdite elmag potencidly

a) pre homogénne elektrostatické pole tak, aby ¢ = 0 resp. A=0

b) pre homogénne magnetostatické pole tak, aby ¢ = 0 resp. A=0

c) pre magnetostatické pole B = (zy, —1y? 22 + y?)

d) pre pole nekone¢ne dlhého vodica, ktorym preteka prud I.

3. Kalibracné transformdcie

(Elementarne priklady na precvic¢enie novych pojmov.)

a)Potencialy ¢(7,t) = r - sin® wt, A(7,t) = 7- cos?wt prejdi po kalibraénej trans-
formécii na o' (7,t), A'(7,t). Uréte o/ (7,t) ak A'(F,t) = 7.

b) Pre elmag potencidly o(7, t) = r-t, A(7,t) = 7t najdite kalibraénu transforméaciu,
po ktorej sa ¢ zmeni na dvojnasobné a kalibra¢nu transformaciu, po ktorej sa E
zmeni na dvojnésobné.

c) Zistite, ktoré z elmag potencidlov uvazovanych v tomto priklade spfﬁajﬁ Loren-
zovu a ktoré Coulombovu kalibra¢ni podmienku.






POISSONOVA A LAPLACEOVA ROVNICA
(ELEKTROSTATIKA)

V tejto kapitole zacneme s desifrovanim informécie obsiahnutej v Maxwellovych
rovniciach, t.j. zaéneme sa zaoberat riesenim tychto rovnic v réznych situdcidch.
Najprv sa prirodzene pozrieme na situdciu najjednoduchsiu — na elektrostatiku.
Pojmy, ktoré si zavedieme pri vySetrovani tejto jednoduchej situdcie, sa neskor
ukdzu byt znaéne uzitotné aj v situacidch zlozitejsich a svojim vyznamom d’aleko
presahuju nielen elektrostatiku, ale aj celu elektrodynamiku. Ide totiz o zakladné
nastroje na rieSenie linearnych parcidlnych diferencialnych rovnic, a tie tvoria pri-
rodzeny jazyk velmi sirokych oblasti fyziky.*

1. Poissonova rovnica a jednoznaénost jej riesenia

Zagnime tym, Ze si elektrostatické tilohy rozdelime na velmi l'ahké a fazsie. Pod
velmi lahkymi budeme rozumiet tilohy, v ktorych je zadané nejaké rozloZenie nédboja
vo vakuu alebo homogénnom izotropnom dielektriku a mé sa néjst elektrické pole
prislichajice tomuto rozlozeniu naboja. Velmi lahké su tieto ulohy preto, lebo ich
rieenie vieme napisat okamzite, a to pomocou Coulombovho zdkona a principu
superpozicie

S, 1 o =T 5,

e
Pod taz§imi tlohami budeme rozumietf dlohy ostatné. Sem patria napr. dlohy v
ktorych nie je cely priestor vyplneny vakuom alebo jednym homogénnym izotrop-
nym dielektrikom, ale v ktorom si rozne casti priestoru vyplnené roéznymi dielektri-
kami (vo vSeobecnosti tilohy v nehomogénnom prostredi). Okrem toho sem patria
ulohy, v ktorych je okrem rozloZenia ndbojov zadané aj rozlozenie nejakych vodicov,
pricom je dany aj celkovy naboj kazdého vodica alebo potencial, na ktorom je tento
vodi¢ drzany.?

1I’Jprimne povedané, elektrostatika asi patri k najmenej vzruSujicim aplikdcidm tedrie
linedrnych diferencidlnych rovnic. Ale na druhej strane je zo vSetkych fyzikalnych aplikacii asi
najjednoduchsia.

Elektrostatikou sa teda budeme zaoberat pomerne podrobne ani nie tak pre nu samotni,
skor ju budeme chépat ako idedlne ihrisko na nauéenie sa mnozstva uzitoénych veci.

2Ak je vodi¢ vodivo spojeny s inym, ovela v&#&sim vodiéom, ktorého potencidl je ¢, potom
hovorime, ze povodny vodic je drzany na potenciale ¢. Napriklad o uzemnenom vodici, t.j. o vodici
vodivo spojenom so zemou, hovorime, ze je drzany na potencidle zeme (ktory obvykle definujeme
ako nulovy).

35
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Problém s tazifmi tlohami je v tom, Ze okrem nabojov, ktorych rozlozenie
je zadané, vzniks v kovoch a dielektrikach d'alsie rozloZenie nédboja, ktoré dopredu
znéme nie je. Tym paddom sa stdvaji Coulombov zdkon a princip superpozicie ovela
menej uzitoénymi (napriek tomu, ze stale zostdvaji v platnosti) pretoze nepozndme
vietky hustoty naboja, ktoré treba do nich dosadit. Pri rieSeni tychto tloh je preto
ovela vyhodnejsie startovat z nie¢oho iného ako z Coulombovho zikona, a sice z
Maxwellovych rovnic pre elektrické polia v statickom pripade

divﬁzp rot E =0

kde D, E aj p su funkcie polohového vektora 7, ale nie funkcie ¢asu t, pretoze v
statickom pripade si vsetky veli¢iny od ¢asu nezdvislé (toto je tiez déovod nulo-
vosti pravej strany druhej rovnice, vo vieobecnosti tam patri —22 ¢o je oviem v

ot
statickom pripade nula).

V pripade latkového prostredia musia byt uvedené dve rovnice este doplnené
vztahom B(E), ktory $pecifikuje vlastnosti prostredia. Tym sa dostdvame k d alsie-
mu, podrobnejsiemu, deleniu elektrostatickych tloh a sice k deleniu fazsich tloh na
tlohy, ktorymi sa budeme zaoberaf a na tlohy, ktorymi sa zaoberat nebudeme. Do
prvej kategérie patria tlohy s najjednoduchsim vzfahom medzi DakE

D(E) = ¢E

t.j. tlohy v homogénnom izotropnom dielektriku (v ktorom je zadané rozloZzenie
ndbojov a vodi¢ov). K tlohdm, ktorymi sa zaoberat nebudeme, poznamenajme
aspon tolko, Ze st to az na malé vynimky tlohy naozaj tazké, ktoré sa bud riesia
niektorymi nie prave najjednoduchsimi metédami matematickej fyziky, alebo (a to
byva Castejsie) roznymi pribliznymi a numerickymi metédami. Dovody, pre ktoré
sa tymito tilohami nebudeme zaoberat, teda nespoéivaji v ich mensej dolezitosti,
ale v ich zlozitosti, presahujicej troven zakladnej prednasky.

Ulohou elektrostatiky je najst pre dané p(7) vektorovi funkeciu E () vyhovu-
jiicu uvedenym rovniciam. Néjst vektorovt funkciu E(7) znamena néjst tri funkcie
E.(z,y,2), Ey(z,y,2) a E,(z,y, z). Maxwellova rovnica rot E = 0 ndm umoziiuje
zredukovat poéet nezndmych funkcif z troch na jednu. Ak je totiZ rotdcia nejakej
vektorovej funkcie nulovd, potom existuje skalarna funkcia taka, ze dana vektorova
funkcia je gradientom tejto skalarnej funkcie (tvrdenie 3 z matematickej pozndmky z
paragrafu 1.4). V pripade funkcie E (7) je zvykom ozna¢ovat tito skaldrnu funkciu
—(7) (pricom znamienko minus nemd nijaky hlboky vyznam, je to jednoducho
stcast standardnej konvencie), a nazyvat ju potencidlom. Méme teda

B(7) = — grad p(7)
a ak toto dosadime do rovnice pre div D t.j. pre div EE, dostaneme

divgrad ¢ = P
€

Np=—2L

kde A je tzv. Laplaceov operdtor (domécke meno laplacidn) A = 8‘9—; + 66—;2 88—;.
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Rovnica Ap = —£ sa vold Poissonova rovnica a bude zdkladom celého nésho
vySetrovania elektrostatiky, ¢o znamen4, Ze k £azsim tilohdm elektrostatiky, ktorymi
sa budeme zaoberat, budeme pristupovat tak, Ze rieSenim Poissonovej rovnice néj-
deme ¢ a z neho potom E. Okrem redukcie poctu neznamych funkcii mé Poissonova
rovnica oproti pévodnym rovniciam ti vyhodu, Ze sa pre fiu velmi prirodzene formu-
lujd ulohy s vodi¢mi drzanymi na urc¢itych potencidloch — jednoducho sa pozaduje
aby tam, kde st umiestnené dané vodice, mal potencial ¢ dopredu zadant hodnotu.?

Pri kazdej diferencidlnej rovnici, s ktorou sa vo fyzike stretneme, je dobré do-
predu si vyjasnif otdzky existencie a jednoznacnosti jej riesenia. Dovody pre to
st jednak takpovediac hlboké a jednak celkom pragmatické. K tym hlbsim patria
napr. otazky korektnosti opisu daného fyzikalneho javu uvazovanou rovnicou. Ak
7 experimentov vieme, Ze za istych okolnosti je nejaka fyzikalna veli¢ina urcend
jednoznaéne, potom by rovnica pre tito veli¢inu mala mat za tychto okolnosti
jednozna¢né riesenie. Ak tomu tak nie je, potom je opis danej fyzikalnej situdcie
uvazovanou rovnicou zrejme nekorektny (nieco z tejto situdcie nie je v rovnici po-
stihnuté, hoci nie¢o iné v nej mdze byt postihnuté velmi dobre). Z pragmatickych
dovodov spomenime asponi moznost povysenia hiddania na velmi uZitoéni metédu
rieSenia rovnice. Ak totiz vieme dopredu, Ze za danych okolnosti méa rovnica jediné
rieSenie, potom nech ho ndjdeme akymkolvek spdsobom (a v mnohych spésoboch
hrd uhddnutie podstatni tlohu), tak vieme, Ze sme nasli vsetko, ¢o sa dalo, zZe
nijaké iné rieSenia uz neexistuju.

Dékaz existencie rieSenia Poissonovej rovnice nebudeme vo vieobecnosti robit,
v tych konkrétnych pripadoch, ktorymi sa budeme zaoberat, dokdZeme existenciu
rieSenia vzdy tym, Ze ho explicitne nidjdeme. Dokaz jednoznacnosti urobime v dvoch
délezitych pripadoch. (Podrobnejsie stidium tychto otdzok je predmetom $pecidlnej
predndsky z matematickej fyziky venovanej parcidlnym diferencidlnym rovniciam.)

Prvym pripadom, v ktorom dokéZeme jednoznaénost riesenia Poissonovej rovni-
ce, bude pripad tloh s vodi¢mi drzanymi na urc¢itych potencialoch. Vo VOdlCOCh jev
statickom pripade elektrické pole nulové, ¢o vyplyva z Ohmovho zdkona j =o-Ea
z toho, ze pod statickymi pripadmi rozumieme pripady s nulovou hustotou prudu.
Takze potencidl v kazdom vodici je konstantny a dopredu zadany, t.j. vo vnutri
vodicov je vSetko jasné. Pre potencidl v oblasti mimo vodicov mame k dispozicii
Poissonovu rovnicu a dopredu zadané hodnoty potencidlu na hranici tejto oblasti
(tato hranica je totiz tvorend prave povrchom vodicov).

Teraz trochu matematickej terminolégie. Ak mame riesit nejakd parcidlnu di-
ferencidlnu rovnicu v urcitej oblasti a mame pritom zadané, ako sa ma rieSenie
chovat na hranici tejto oblasti, hovorime, Ze st zadané okrajové podmienky pre

3Poznamenajme, ze Poissonova rovnica hré dolezitd dlohu nielen v elektrostatike, ale aj v
inych oblastiach fyziky. Napr. vedenie tepla alebo diftizia st opisané rovnicou %f —a.Af = p,
kde f je v pripade vedenia tepla teplota a v pripade difizie koncentracia difundujicej latky. V
mnohych pripadoch je ddlezité poznat tzv. staciondrny rezim vedenia tepla resp. difizie, t.j. také
rozdelenie teploty resp. koncentracie, ktoré sa s ¢asom nemeni. Pre ¢asovo nemenné funkcie je
oviem parcidlna derivécia podla éasu nulova a rovnica vedenia tepla &i diftzie prechidza na
Poissonovu rovnicu. Hladanie staciondrnych rezimov vedenia tepla a difizie teda vedie na rieSenie
Poissonovej rovnice. Podobne vedie na Poissonovu rovnicu hladanie staciondrnych rieseni vinovej

rovnice a.Af + g—;f =p.
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tiato rovnicu. Okrajové podmienky, ktoré priamo hovoria, aké hodnoty mé riesenie
na hranici nadobiidat, sa nazyvaju Dirichletove okrajové podmienky. Uloha riesit
danu diferencidlnu rovnicu s Dirichletovymi okrajovymi podmienkami sa nazyva
Dirichletovou tilohou pre tito rovnicu. Dirichletove okrajové podmienky pre funkciu
 Specifikované funkciou f zadanou na ploche S zapisujeme obvykle ako

o(F)s = f()

Veta o jednoznacnosti riesenia Dirichletovej tilohy pre Poissonovu rovnicu

Dirichletova tloha pre Poissonovu rovnicu v oblasti ohranicenej
uzavretou plochou S mé najviac jedno rieSenie, t.j. ak rieSenie
existuje, tak je jednoznaé¢né.

Dékaz je zalozeny na tzv. Greenovej identite
/ (pAY + Ve - Vih)dV = f @O dS
v s

ktort dostaneme z Gaussovej vety [, V- a@dV = §41 - dS, ak polozime @ = oV
a vyuzijeme 7 - Vi) = a%w = Op, Co je derivédcia v smere kolmom na plochu S (v
danom bode).

Nech teda 1 a @9 st dve riesenia uvazovanej Dirichletovej tlohy. Ich rozdiel ¢ =
V1 — P2 Spiﬁa v oblasti ohrani¢enej plochou S rovnicu A¢p =0 (A¢ = Ap1 —Dps =
—£2+£2 =0) ana hranici S ma ¢ nulovii hodnotu (¢[s = ¢1|s —2|ls = f— f =0).
Z Greenovej identity pre ¢ = 1 = ¢ dostaneme

[ @20+ 96-Veav = § 60,005
1% s
odkial vzhladom na nulovost A¢ v oblasti a ¢ na hranici dostdvame
/ |Vo[?dV =0
v

Ak je integrdl z nezdpornej funkcie cez nejaki oblast nulovy, musi byt této funkcia
v danej oblasti vSade nulova. To znamend |V¢|? = 0, ¢ize Vo = 0. To ale znamens,
7e ¢ = const, a ked'Ze na hranici ¢ = 0, tak tdto konstanta musi byt nulovi, t.j.
¢ = 0 vsade, a teda ¢ = o.

Vsimnime si, Ze podstatnt ilohu v dokaze hrala skuto¢nost, Ze integral fs ¢g—ZdS
bol nulovy vd'aka nulovosti funkcie ¢ na hranici S. Rovnako nulovy je tento integral
pre nenulové ¢ a nulové g—i. To ale znamend (premyslite si to), Ze cely ddkaz mozeme
prakticky bez zmeny zopakovat aj v pripade, Ze nie je zadans hodnota funkcie ¢ na
hranici, ale je zadana hodnota jej normélovej derivacie g—ﬁ na tejto hranici. Jediny
rozdiel bude na konci dokazu, kde mozeme konstatovat konstantnost funkcie ¢ v
celej oblasti, ale nie jej nulovost. Potencial ¢ teda nie je v takomto pripade uréeny
jednoznaéne, rozne rieenia sa vSak nemozu liSif viac ako o konstantu a elektrické
pole urcené takymito potencidlmi je jednoznacné.
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Okrajové podmienky, ktoré hovoria aké hodnoty ma nadobtdaf na hranici
normalové derivacia rieSenia, sa nazyvaji Neumannove okrajové podmienky a ob-
vykle ich zapisujeme ako

dp(7)

——| =g(7)

on g

Uloha riesit Poissonovu rovnicu s Neumannovymi okrajovymi podmienkami sa
nazyva Neumannova tloha pre Poissonovu rovnicu. Dokaz jednoznac¢nosti rieSenia
Dirichletovej tlohy bol teda dokazom aj nasledovnej vety:

Veta o jednoznaénosti riesenia Neumannovej tlohy pre Poissonovu rovnicu

Rozne riesenia Neumannovej tlohy pre Poissonovu rovnicu v
oblasti ohrani¢enej uzavretou plochou S sa lisia maximéalne o
konstantu t.j. ak rieSenie (potenciél) existuje, tak nim urcené
elektrické pole je jednoznacné.

Druhym pripadom, v ktorom sme dokédzali jednoznacnost riesenia Poissonovej
rovnice, je teda pripad uloh, v ktorych je na hranici uvazovanej oblasti zadana
normalova derivacia potencialu, ¢o nie je ni¢ iné ako minus normalova zlozka elek-
trického pola. (Z praktického hladiska je v elektrostatike Neumannova tloha o dost
menej dolezitd ako Dirichletova tloha, ale v inych oblastiach fyziky, v ktorych sa
vyskytuje Poissonova rovnica, uz to tak byt nemusi, a ked'ze sme dokaz mali tiplne
zadarmo, bola by §koda neuviest si k nemu vetu.)

PozNAMKA. (O priestoroch ohrani¢enych uzavretymi plochami). Pod priesto-
rom ohrani¢enym uzavretou plochou si clovek najskor predstavi vnttro nejakého
uzavretého vreca. Je asi dobré explicitne si uvedomit, ze za uzavrett plochu (jednu)
je mozné povazovat aj dve oddelené vrecia. Takéto oddelené vrecia totiz mézeme do-
stat z jedného vreca “delenim & la delenie buniek”, t.j. dve vrecia mozno povazovat
za limitny pripad jedného vreca typu Cinka, v limite v ktorej hribka spajajicej
casti ide do nuly. Plocha tvorena dvoma oddelenymi vrecami je sice nesivisla, ale
v zmysle vySsie uvedenych viet je to plocha tiplne plnohodnotnd a tieto vety pre fiu
platia.

Analogicky moZno za uzavretd plochu povaZovat dve vrecia jedno v druhom
a za priestor ohrani¢eny touto plochou povazovat vnitro véésSieho a vonkajsok
mensieho z nich (nakreslite si proces “delenia vreca” vediceho k takejto konfi-
gurdcii). Zaujimavu vec dostaneme, ak teraz posleme vonkajsie vrece do nekoneéna.
V takomto pripade mozno za priestor ohrani¢eny uzavretou plochou povazovat von-
kajsok vreca, ¢o je asi na prvy pohlad prekvapujice. Treba si véak uvedomit, ze
ak ¢ast uvazovanej uzavretej plochy lez{ v nekoneéne, potom integraly vystupujice
v dokaze vety su nevlastné integraly a dokaz je korektny len v pripade, ze tieto
integraly si konvergentné. Na zarucenie konvergencie tychto integralov vsak staci
pozadovat, aby potenciél klesal v nekone¢ne dostatoéne rychlo.

Vsetky tvahy, ktoré sa tu tykali dvoch vriec, mozno samozrejme urobit pre
lubovolny poéet navzijom oddelenych vriec.
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Niekolko fyzikalnych désledkov vety o jednoznaénosti

Veta o jednoznacnosti rieSenia Dirichletovej tlohy pre Poissonovu rovnicu bude
pre nas velmi uzitoéna z matematického hladiska pri konkrétnych metédach riesenia
Poissonovej rovnice. Tieto totiz budi (ako sme uz spominali) vzdy zalozené ¢iastocne
na uhadnuti, takze bez vety o jednoznacnosti by sme nikdy nevedeli, ¢i sme pri
hadani nejaké rieSenia nestratili. Veta o jednoznacnosti riesSenia Dirichletovej tilohy
pre Poissonovu rovnicu m4 viak aj niekolko d’alsich délezitych fyzikalnych désledkov,
pri ktorych sa teraz na chvilu pristavime. Nepojde o tiplne nové veci, vietky si do
istej miery zname zo zakladného kurzu elektriny a magnetizmu. Ich suvis s prave
dokézanou vetou viak umozni tieto veci pochopif o nieco lepsie a hlbsie a prave
to je jednym zo zmyslov prednasky z tedrie elmag pola — okrem nauéenia novych
veci, prehibit’ porozumenie veciam starym.

Faradayova klietka

Tvrdenie: Ak v priestore ohrani¢enom uzavretou vodivou plochou nie su nijaké
naboje a mimo tohto priestoru je (statické) rozloZenie ndboja lubovolné, potom
elektrické pole v tomto priestore je nulové. (Uzavretej vodivej ploche, ktord takto
“brani elektrostatickému polu preniknit” do uvazovaného priestoru sa hovori Fa-
radayova klietka.)

V zékladnom kurze elektriny a magnetizmu sa toto tvrdenie zvykne zdovodiiovaft
nulovostou krivkového integralu elektrického pola po uzavretej krivke, ktord pre-
chadza ¢iasto¢ne vnutrom vodica a Ciastotne uvazovanym ohrani¢enym priestorom
(pozri napr. Feynmanove prednasky z fyziky, kap. 5 tretieho dielu slovenského vy-
dania). Pritom sa z nulovosti integralu usudzuje na nulovost podintegralnej funkcie,
Co je samozrejme vo vSeobecnosti nepripustné, ale je to opravnené ak je napriklad
uvaZovany integral nulovy pre lubovolni krivku. V nasom pripade je integral nulovy
pre nekonecne vela kriviek (pre vSetky krivky v uvaZzovanom ohrani¢enom pries-
tore, ktoré za¢inajd a koncia na hranici tohto priestoru), ale nie pre vsetky krivky.
Opravnenost usudzovania na nulovost elektrického pola z nulovosti integralov je
teda znac¢ne diskutabilnd a preto mozno spominani tivahu povazovat za akési ro-
zumné zdévodnenie prijatelnosti uvedeného tvrdenia, ale fazko za jeho naozajstny
dokaz.

Pozrime sa teraz, ako sa uvedené tvrdenie pomocou vety o jednoznacnosti na-
ozaj dokaze. V prvom rade si uvedomime, ze elektrické pole vo vodi¢i je v elektro-
statickom pripade nulové (v elektrostatike si pridy nulové z definicie a z Ohmovho
zékona odtial okamZite vyplyva nulovost elektrického pola vo vodi¢och). Potencisl
vo vnutri vodica je teda konstatny. Pre nami uvazovany priestor, ohraniceny uzav-
retym vodicom, to znamen4, e potencidl na hranici je konstatny. Mame teda néjst
rieSenie rovnice Ay = 0 s okrajovou podmienkou ¢|s = const. Jedno rieSenie tejto
tilohy vieme ovem napisaf okamzite: () = const je rieSenfm rovnice a spliia okra-
jovi podmienku. Tym je ale celd tiloha kompletne vyrieSend, pretoze podla vety o
jednoznac¢nosti je toto rieSenie jediné. Elektrické pole zodpovedajice konstatnému
potencialu je nulové, ¢im dokaz konéi.
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Kapacita vodicov

Zo zékladného kurzu elektriny a magnetizmu je zname, ze medzi ndbojom na
uzavretej vodivej ploche a potencidlom na tejto ploche je v pripade, ze ndboj je
viade mimo vodi¢a nulovy, jednoduchy linedrny vztah

Q=C-V

Tento vzfah byva odvodeny v niektorych jednoduchych pripadoch, napriklad pre
gulovy vodic, ale nie je ukdzané, ze plati iplne veobecne. To ukédzeme teraz.

Nech je potencidl na danom uzavretom vodi¢i rovny V. Podla vety o jedno-
znacnosti je tymto V (a tym, ze p(¥) = 0) jednoznacne dany potencidl ¢ vsade.
To znamena, Ze je jednoznacne dand aj norméalova derivécia g—i na hranici daného
vodica. Tato normdlova derivacia nie je ni¢ iné, ako minus normaélova zlozka elek-
trického pola. Touto zlozkou elektrického pola (spolu s tym, Ze vnitri vo vodiéi je
elektrické pole v elektrostatickom pripade nulové), je zas vdaka jednej z hrani¢nych
podmienok pre elmag polia (pozri €asf 1.2) jednoznaéne uréend plosnd hustota
néboja na povrchu vodica. Dalej si uvedomime, ze hustota naboja vo vnitri vodica
musi byt v elektrostatickom pripade nulové (nenulové p by kvoli Gaussovej vete
viedlo na nenulové E vo vnutri vodica, ¢o by zas cez Ohmov zdkon viedlo na nenu-
lové f, v spore s predpokladom o elektrostaticnosti). Celkovy ndboj vodica je teda
jednoznaéne urceny ploSnou hustotou povrchového naboja. Schematicky znazornené
to vyzera takto:

V = ¢(F) = Onpls > 05 = Q
kde kazda sipka znamena “jednoznacne urcuje”.

Nech sa teraz potencidl na danom vodi¢i zmeni k-krat. Ak zmenime k-krat
potencidl ¢ vSade, bude tento novy potencial Spiﬁat’ ako Laplaceovu rovnicu, tak
aj okrajové podmienky. Tento potencial bude podla vyssie uvedenej schémy jedno-
znaéne urcovat celkovy naboj na vodiéi, ktory bude k-nasobny.

kV — ko(T) = kOnpls — kos — kQ

To ale znamen4, Ze vzfah medzi nap#tim na vodiéi a celkovym ndbojom na fiom je
naozaj linedrny Q = C - V. Bez akéhokolvek vypoctu sme teda ukézali, Ze kapacita
vodica je naozaj dobre definovany pojem. Na vypocet kapacity konkrétneho vodica
viak treba vyriesif Laplaceovu rovnicu s konstantnym potencidlom na vodiéi a
nulovym v nekonec¢ne.

Veta o jednoznaénosti ndm teraz umoziiuje rozsirit pojem kapacity na sistavu
viacerych vodic¢ov. Uvazujme n vodicov, na j-tom z nich nech je potencidl V;, na os-
tatnych nulovy potencial. Rovnakou ivahou ako predtym prideme k tomu, ze ndboj
na [ubovolnom i-tom vodici je v takomto pripade jednoznacne zadany hodnotou V;
a 7e od tejto hodnoty zavisi linedrne. V tejto situdcii teda mozeme pisat

Qi=Ci -V

pricom v tomto vyraze sa nemysli suma cez opakovany index j. Ak vsak teraz
uvazujeme vieobecn situdciu, v ktorej st vSetky V; nenulové, mozeme si ju rozdelit
na n uz uvazovanych pripadov s jedinym V; nenulovym a tieto potom na zdklade
principu superpozicie séitat. Dostaneme presne to isté, ¢o predtym, akurat tentoraz
uZ sa bude myslief suma cez opakovany index j. (Premysliet si, Ze je to naozaj tak.)
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Matica C;; ndm teda umoznuje lahko vypocitat ndboje na vodicoch, pokial je
zadany potencidl na kazdom z nich. Ak je tdto matica nesinguldrna, t.j. ak existuje
matica k nej inverzna, tak tdto umoziuje rovnako lahko vypocitat potencidly zo
zadanych néabojov.

PozNAMKA. (Ddlezitd.) Filozofia, ktori sme pouzili pri analyze pojmu kapacity
vodi¢a, umoziuje riesit cez Dirichletove okrajové podmienky elektrostatické tlohy,
v ktorych nie si zadané potencidly na vodi¢och (t.j. priamo Dirichletove okrajové
podmienky), ale celkovy ndboj na jednotlivych vodic¢och. Jednoducho vyriesime
Poissonovu rovnicu s konstantnymi, ale konkrétne nespecifikovanymi potencidlmi
na jednotlivych vodi¢och (konstantnymi preto, lebo v elektrostatike musi byt po-
tencidl vo vodici konstantny), potom vypocitame ndboje na jednotlivych vodicoch
ako funkcie napéti na vSetkych vodi¢och a nakoniec vyberieme konkrétne hodnoty
tychto napéti tak, aby sme dostali predpisané hodnoty nabojov.

PozNAMKA. (Menej dolezitd.) V elektrotechnike sa asto vyskytuje systém
dvoch vodic¢ov (kondenzétor), ktory je charakterizovany len jednou kapacitou a nie
§tyrmi, ako by to malo byt podla nasich tvah. Nejde tu v8ak o nijaky rozpor, to o
sa uvazuje tam je len jeden Specidlny pripad z toho, ¢o sme uvazovali tu. Konkrétne
sa uvazuje naboj na oboch vodi¢och presne opac¢ny, t.j. @1 = —Q2 = Q a pod
napétim sa mysli rozdiel potencidlov na oboch vodic¢och, t.j. V = V; — V5. Vyjadrif
kapacitu C' = % cez kapacity C11, Ci2, Ca1 a Cas je jednoduchym algebraickym
cvicenim.

metdda imagindrnych ndbojov (elektrickych zrkadiel)

Uloha néjst elektrické pole bodového nédboja pri uzemnenej vodivej rovine sa
standardne riesi (ako je zrejme zndme zo zdkladného kurzu) tym, ze sa za ro-
vinu umiestni d’alsi vhodny naboj a pole sa vypoéita ako superpozicia poli danych
Coulombovym zdkonom od pévodného a doplneného néboja. (Doplneny ndboj nie
je skutocny a predstavuje v istom zmysle zrkadlovy obraz pévodného naboja —
odtial ndzvy metddy.) Otdzky, ktoré sa v zdkladnom kurze viiésinou nie tplne zod-
povedaju, su: Je toto naozaj korektnd metdda, je pole, ktoré takto dostaneme na-
ozaj totozné s polom, ktoré mame dostat? Je tdto metéda pouzitelna aj v inych
situdcidch, ak ano v akych a ako?

Veta o jednozna¢nosti ndm umozni jednoducho odpovedat na tieto otdzky.
Predstavme si, Ze mame néjst pole nejakého konkrétneho rozlozenia nabojov na-
chidzajiceho sa v priestore ohrani¢enom uzavretou vodivou plochou, na ktorej
je zadana konkrétna hodnota potencidlu. Predstavme si d’alej, Ze namiesto tejto
tlohy vyriesime ind ulohu s tym istym rozlozenim naboja v danom ohrani¢enom
priestore, bez danej vodivej plochy a s nejakym dodatoénym rozlozenim naboja v
priestore mimo uvazovany ohranic¢eny priestor. RieSenie takejto tlohy je trividlne
— je okamzite dané Coulombovym zdkonom a principom superpozicie. Zaujimavé
z nasho hladiska za¢ne byt rieSenie tejto inej tlohy vtedy, ak potencial na ploche
ohranicujicej povodne uvazovany objem (na ktorej bol v povodnej tilohe vodic a
v novej tlohe tam nie je ni¢) je prave taky, ako bol predpisany v povodnej tlohe.
V takomto pripade je totiz v pévodnom ohrani¢enom priestore rieSenie novej dlohy
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totozné s rieSenim povodnej tlohy. Naozaj obe riesenia spfﬁajﬁ v tejto Casti pries-
toru rovnakd Poissonovu rovnicu (pretoze rozlozenie ndboja v tejto ¢asti priestoru
je v oboch ulohdch rovnaké) a na hranici tejto Casti priestoru spiflajﬁ obe rov-
naké okrajové podmienky. Z vety o jednoznacnosti teda vyplyva, ze rieSenia sa v
uvazovanej ¢asti priestoru musia rovnat.

Na prvy pohlad to teraz vyzerd tak, Ze sme nasli vynikajicu metédu, ktord
prevedie pomerne fazki tilohu na tlohu velmi Tahkid. Tak jednoduché to vsak nie
je, pretoze kli¢ovym momentom je najst vhodné rozlozenie ndboja mimo pévodne
uvaZovany priestor a to je vo vSeobecnosti tiloha rovnako tazka, ako povodna tloha.
Standardny postup je preto nasledovny: ak pri skimani réznych rozlozeni néboja
(bez vodivych pléch) narazim na nejaké rozlozenie s geometricky zaujimavou plo-
chou so zaujimavo rozlozenym potencidlom (¢o je zaujimavé je z ndsho hladiska
dané tym, ¢o je prakticky realizovatené pomocou vodivych ploch, ¢ize napr. ekvipo-
tencialne plochy st obzvlast zaujimavé) tak si toto rozloZenie naboja zapamétam.
Ak niekedy v budicnosti narazim na tlohu v nejakej ¢asti priestoru ohranicenej
prave zapamétanou plochou, na ktorej je zadany prave taky potencidl, ako som si
zapamétal a rozlozenie ndboja v tejto Casti priestoru je prave totozné s tym, co
som si zapamsétal, potom viem, ¢im doplnit toto rozlozenie mimo tento priestor t.j.
viem, ako vybrat imagindrne naboje.

Vzhladom k tomu, nakolko je rieSenie Poissonovej rovnice vo vseobecnosti
tazké, je metéda imagindrnych ndbojov velmi uzitoénd vsade tam, kde je pouzitelna.
V nasledujucich prikladoch uvadzame ilustraciu metédy pre sféru.

Priklady

1. Faradayova klietka

(niekolko prikladov na precvi¢enie pouZitia vety o jednoznaénosti)

a) Ukézte, ze elektrostatické pole v dutine vodica je jednozna¢ne dané rozlozenim
néboja v dutine a nezavisi od rozlozenia naboja vo vonkajSom priestore.

b) Ukédzte, ze predchadzajice tvrdenie “naruby” neplati — rozlozenie ndbojov v
dutine ovplyvituje elektrostatické pole vo vonkajsom priestore. (Nahliadne sa hned
pomocou Gaussovej vety, ale stoji za to este chvilku porozmyslat a uvedomit si,
preco dvaha, ktord presla vnutri, neprejde vonku.)

c¢) Ukdzte, ze elektrostatické pole vo vonkajSom priestore je ovplyvnené len celkovou
hodnotou naboja v dutine a nie jeho detailnym rozlozenim.

d) V predchédzajicich pripadoch sme uvazovali izolovany vodi¢. Ako sa zmenia
predchddzajice tvrdenia pre vodi¢ drzany na konstantnej hodnote potencidlu (napr.
uzemneny)?
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2. Kondenzdtor

(jednoduchy priklad na stvis kapacity vodica s kapacitou kondenzatora)

Pre sistavu dvoch vodicov plati, ze ak je napétie na oboch z nich 1V, potom néboj
na prvom je 3C a na druhom 5C. Ak napétie na prvom zdvojndsobime, narastie
néaboj na nom na 4C a naboj na druhom vodici na 7C.

a) Aké budi néboje na vodic¢och, ak na prvom z nich bude napiitie 1V a na druhom
2V?

b) Aké budi napétia na tychto vodi¢och, ak bude na kazdom z nich nédboj 1C?

¢) Ak4 je kapacita kondenzatora tvoreného tymito vodi¢mi?

3. Sustavy ndbojov so sférickymi ekvipotencidlnymi hladinami

(delostreleckd priprava pre nasledujici priklad)

a) Ukézte, ze ak m4 elektrostatické pole dvoch bodovych ndbojov ¢; a ¢o s polohami
71 a 75 nulovi ekvipotencidlnu hladinu ¢ = 0 aj inde ako v nekone¢ne, potom je
tato hladina sférickd alebo rovinna. Néjdite stred a polomer tejto sféry resp. polohu
tejto roviny. Ukazte dalej, ze pre vzdialenosti l1, I nabojov od stredu sféry plati
lLilb=R?aq = —%ql kde R je polomer sféry.

b) N4jdite také rozloZenie ndbojov, ktoré bude mat sféricki ekvipotencidlnu hladinu
s potencidlom V.

4. Bodovy nadboj a vodivd sféra

(ilustrdcia pouzitia metédy imagindrnych ndbojov)

Uvazujme vodivi sféru so stredom v pociatku a polomerom R a bodovy naboj ¢
leziaci na osi x vo vzdialenosti [ od pociatku. Najdite plosni hustotu naboja na
stére, celkovy naboj sféry, celkovi silu posobiacu na naboj a celkovi silu pdsobiacu
na sféru v pripade, ze

a) sféra je uzemnend

b) sféra m4 konstantny potencial V/

c) sféra je izolovand, elektricky neutrdlna

d) sféra je izolovand, nabitd celkovym nabojom Q.

Treba rozlisovat pripady [ > R a | < R (v druhom pripade nemézeme klast ima-
gindrne ndboje dovnitra). Plosnd hustota naboja sa ur¢i z hraniénych podmnienok
pre elektrické pole, ostatné veci sa daji vypoéitat z plosnej hustoty vhodnou in-
tegraciou, ale daju sa najst aj jednoduchsie.)

5. Vodivd sféra v homogénnom elektrickom poli

(d'alsia netrividlna aplikacia metédy imagindrnych nabojov.)

a) Uvazujme dva bodové nédboje +q umiestnené na osi z vo vzdialenostiach FI od
pociatku. Vzdialenost [ teraz postupne zviésujme a sicasne zvicSujme ¢ tak, aby
# = const. Ukdzte, ze v limite I — oo prejde pole tychto ndbojov na homogénne
elektrické pole. N4jdite smer a intenzitu tohto pola.

b) Uvazujme teraz uzemnenu sféru s polomerom R vloZeni do homogénneho elek-
trického pola. Na zdklade vysledku a) néjdite vysledné elektrické pole.

¢) To isté ¢o b) pre izolovanu sféru.
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2. Jedna metdda rieSenia Poissonovej rovnice
(metéda separdcie premennych)

Poissonova rovnica je linedrna parcidlna diferencidlna rovnica (kazdé derivécia,
ktord sa v rovnici vyskytuje, sa v nej vyskytuje v prvej mocnine) a ako pre vietky
linearne diferencidlne rovnice pre nu plati princip superpozicie: ak je ¢ rieSenim
rovnice s pravou stranou p; a o rieSenim rovnice s pravou stranou ps potom
€11 + Cap2 je rieSenim rovnice s pravou stranou cip; + copa. (Dokaz je trividlny,
zalozeny len na tom, ze derivacia linedrnej kombinacie je linedrna kombinacia de-
rivacii.) Jednym z désledkov principu superpozicie je Standardny sposob rieenia
rovnic s nenulovou pravou stranou: vSeobecné rieSenie rovnice s nenulovou pravou
stranou je dané sic¢tom jedného konkrétneho (partikuldrneho) rieSenia tejto rovnice
a vSeobecného riesenia tejto rovnice s nulovou pravou stranou. Poissonova rovnica s
nulovou pravou stranou sa vyskytuje vo fyzike tak ¢asto, ze ma svoje vlastné meno,
vola sa Laplaceova rovnica. Vlastné meno maju dokonca aj rieSenia tejto rovnice,
volaji sa harmonické funkcie.

Matematicka loha, s ktorou sa vo fyzike bezne stretavame, nespociva len v
rieSeni istej parcidlnej diferencidlnej rovnice, ale v rieSeni tejto rovnice aj s urcitymi
okrajovymi podmienkami (podobne ako v mechanike vi¢sina tiloh nespociva len v
rieSeni pohybovej rovnice, ale v rieSeni tejto rovnice s urcitymi pociato¢nymi pod-
mienkami). Pri rieSen{ okrajovej tilohy sa ukazuje byt velmi uZitoéné nasledovné
rozdelenie okrajovych podmienok: od partikuldarneho rieSenia Poissonovej rovnice
pozadujeme splnenie nulovych okrajovych podmienok a od rieSenia Laplaceovej rov-
nice potom pozadujeme splnenie zadanych okrajovych podmienok. (T.j. fazsiu rov-
nicu, Poissonovu, riesime s ¢o najjednoduchsimi okrajovymi podmienkami a vetky
problémy so zadanymi okrajovymi podmienkami prestivame do rieSenia l'ahsej rov-
nice, Laplaceovej.)

Zapisané formélne: rieSenie ulohy

P
Do =—= e()|g = f(7)
je dané suctom
Y =¢p+yL
kde p
Dop=—= ep(M)]g =0
Ao =0 (Mg = f(7)

Na jednoduchom konkrétnom priklade si teraz ukazeme jednu Standardni metédu
hladania rieSenia Laplaceovej rovnice so zadanymi okrajovymi podmienkami a jednu
standardni metédu hladania rieSenia Poissonovej rovnice s nulovymi okrajovymi
podmienkami. Techniky, ktoré sa tu nauc¢ime, sa ¢asto vyuzivaju nielen pri rieSeni
Poissonovej rovnice, ale aj pri rieseni inych rovnic matematickej fyziky. 4

4Hojne budeme tieto techniky (metédu separécie premennych) vyuzivat v kapitole venovanej
elmag vlndm. Okrem toho sa s touto metédou student fyziky stretne eSte prinajmensom pri rieSeni
Schrédingerovej rovnice a rovnice vedenia tepla (pri rieSenf ktorej Fourier objavil ako metédu, tak
aj Fourierove rady).
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2.1. RieSenie Laplaceovej rovnice separaciou premennych.

Vseobecni metddu sa nauc¢ime na konkrétnom priklade. Uvazujme Laplaceovu
rovnicu v dvoch rozmeroch t.j.
2 82
= ez, y) + = e(z,y) =0
52 Pl y) oy o(z,y)

vntitri obdlznika 0 <x < Lg, 0 <y < Ly, pricom na strandch tohto obdlznika st
zadané okrajové podmienky

e(x,0)=0 o, Ly) = fx)  ¢0,9)=0  @(Ls,y) =0

N&s konkrétny priklad obsahuje oproti vseobecnému pripadu niekolko zjed-
noduseni. Prvym je, ze rovnicu uvazujeme v dvoch rozmeroch. Toto nie je pod-
statné zjednodusenie a robime ho vlastne len kvoli jednoduchosti a prehladnosti
zépisov, trojrozmerny problém v kvadri by sa riesil dplne analogicky.® Druhym
zjednodusenim, tentoraz velmi podstatnym, je uvazovanie hranatej oblasti namiesto
oblasti vieobecnej. K otdzkam ¢ a ako sa bude dat nasledovng metéda pouzit v
pripade nehranatych oblasti sa este vratime. Tretim zjednodusenim, znovu nie prilis
podstatnym, je ze uvazujeme okrajové podmienky na troch stranach obdl#nika
nulové. Tym ni¢ neuberame na vSeobecnosti nasho postupu, pretoze problém s
lubovolne zadanymi okrajovymi podmienkami si mézeme rozdelit na §tyri problémy
s troma nulovymi okrajovymi podmienkami a potom rieSenie povodného problému
ziskat superpoziciou §tyroch jednoduchsich problémov. Ku vetkym tymto zjed-
nodusSeniam resp. k ich zovSeobecneniam sa eSte vratime.

Dohodnime sa este, Ze v dalsom budeme uvazovat len pripady, kedy funkcia
f(z) nie je identicky rovnd nule. Ak totiz f(x) = 0, potom vieme okamzZite napisat
rieSenie Laplaceovej rovnice ¢(x) = 0 a z vety o jednozna¢nosti vieme, ze je to
rieSenie jediné. Ked'ze o tomto rieseni od zaciatku vieme, nebudeme sa mu v d’alsom
venovat, aj ak sa v priebehu nasich d'alsich tivah niekedy objavi.

Jadrom metédy separdcie premennych je nasledovny recept: riesenie hladaj v
tvare sucinu funkcii, z ktorych kazda zavisi iba od jednej premennej. V nasom
pripade to znamend, Ze rieSenie budeme hladat v tvare

o(r,y) = X(z)-Y(y)
Poznamenajme, Ze tym drasticky obmedzujeme “okruh podozrivych”, pretoze zd'a-
leka nie vietky funkcie dvoch premennych sa daji napisat v takomto tvare (skiste
napriklad funkciu ¢(z,y) = x + y). Neskdr vsak uvidime, Ze napriek tomuto dras-
tickému obmedzeniu (funkcif, ktoré sa daji napisaf v takomto tvare je v istom
zmysle ovela menej ako tych, ktoré sa takto napisat nedaji) sa ndm podar{ najst
vSeobecné riesenie.

Dosadenim do Laplaceovej rovnice dostaneme
02X 0%y

5Poznamenajme, ze aj nasa dvojrozmernd tloha ma dobry fyzikdlny zmysel. Ak totiz
uvazujeme trojrozmernu ulohu v kvadri nekone¢nom v smere osi z a okrajové podmienky nezavislé
od stradnice z, potom z dévodov symetrie je E, = 0, t.j. ¢ nezavisi od z. Trojrozmerna iloha sa
teda zredukuje na nasu dvojrozmernd.
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a po vydeleni tejto rovnice si¢inom XY
10°X  10%Y
XoZ TV a7 "
Poznamenajme, Ze vydelit rovnicu moZeme len pre XY # 0. Situdciu v bodoch, v
ktorych X = 0 resp. Y = 0, oSetrime o chvilku.

0

Teraz pride kli¢ovy moment metédy. Rovnica, ktord sme dostali, je stic¢tom
dvoch c¢lenov, z ktorych kazdy zavisi len od jednej premennej. Rovnica pritom
plati pre kazdu dvojicu premennych z, y. To ale znamend, ze ak vyberieme nejaki
konkrétnu hodnotu napr. premennej y, potom ¢len zavisiaci len od y nadobudne
tiez nejakt konkrétnu hodnotu, a €len zavisiaci len od x sa musi rovnat minus tejto
konstante pre Iubovolné z. Podobne ak vyberieme nejaki konkrétnu hodnotu pre-
mennej z nahliadneme kongtantnost ¢lena zavisiaceho od y pre lubovolné y. Spolu
teda dostavame

1 0°X 1 0%Y

X 022 © Y 0y2
Povodnd parcidlna diferencidlna rovnica sa ndm rozdelila (separovala) na dve oby-
¢ajné diferencidlne rovnice (odtial ndzov metédy), éim sa cely problém zna¢ne
zjednodusil. Kym pojdeme d'alej, pristavme sa eSte pri nulovych bodoch funkeif
X(x) a Y(y), v ktorych nie je prechod od pévodnej rovnice k separovanym rovni-
ciam korektny (delenie nulou). Ak si tieto nulové body izolované, nepredstavuji
v skutoénosti nijaky problém. Funkcie X (x) a Y (y) si totiZ spojité (ked'Ze maji
druhi derivdciu) a preto rovnice sta¢i vyriesit v danej oblasti okrem uréitych izo-
lovanych bodov a v tychto bodoch riesenia doplnit tak, aby vysledné funkcie boli
spojité. Funkcie s neizolovanymi nulovymi bodmi (napr. funkcie nulové na nejakom
intervale) jednoducho z nasich ivah vyhodime. Vzhladom k tomu, kolko funkcif sme
uz vyhodili tym, Ze uvazujeme len funkcie typu X (x)Y (y) je toto pomerne nevinny
krok. A vSetky tieto kroky budi ospravedlnené, ak sa nam na konci podari néjst
rieSenie (o ktorom dopredu vieme, zZe je jediné).

=4 a+p=0

Pozrime sa este, ako sa prejavia okrajové podmienky pre funkciu ¢(x,y) na
funkcidch X (z) a Y(y). Ak neuvazujeme moznosti X(xz) =0 a Y (y) = 0, ktoré by
viedli na ¢(x,y) = 0, dostaneme z troch nulovych okrajovych podmienok pre ¢ tri

jednoduché okrajové podmienky pre funkcie X, Y
X0)Y(y)=0 = X(0)=0

X(L)Y(y) =0 = X(Lg)=0

X(x)Y(0)=0 = Y(0)=0

Stvrt4 (nenulovd) okrajovd podmienka pre ¢ nevedie priamo na nejaki okrajovi
podmienku pre X alebo Y. K tejto okrajovej podmienke sa este vratime. Povodnu
tlohu sme teda previedli na lohu

X"=aX X(0)=0 X(L,)=0
Y"=8Y  Y(0)=0

pricom
a+ =0
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Tiito tlohu teraz lahko vyrieSsime Eulerovym receptom: riesenie hladaj v tvare
e resp. €"¥. Pre k < 0 dostdvame pre X (x) rieSenie

X(z) =asinkx + b coskx k=+/|x|
a z okrajovych podmienok
X(0)=0 = b=0 X(Ly)=0 = k-:’zl
t.j. - '
X(x) = a sin I

Pre k = 0 je riesenim X (z) = azx + b, okrajové podmienky vedi na a = b = 0. Pre
k > 0 je riesenim X (x) = ae*® + be™** okrajové podmienky vedi na a = b = 0.
Nenulové rieSenie sme teda dostali len pre k = —(Z—:)2 < 0. Pre Y(y) dostdvame
pre takéto
Y(y) =cet¥ +de v

a z okrajovej podmienky

Y(0)=0 = c=—d
£.j.
nmy
L,

Y(y) =c(e" — ") = ¢/ sinh

Jednotlivé riesenia typu X (z)Y (y) maji teda tvar

. NTT ., Ny
sin sinh
L, L,
a vd'aka principu superpozicie je rieSenim aj kazd4 linedrna kombinécia
. nwT . nmy
o(z,y) = g ayp, sin sinh
R L, L,

Toto rieSenie je rieSenim Laplaceovej rovnice, Spiflajﬁce tri zo Styroch okrajovych
podmienok. Otézka teraz stoji tak, ¢ sa daju vybrat koeficienty a,, tak, aby bola
splnend aj stvrta okrajova podmienka, t.j. aby platilo

o(z, Ly) = Z ap sin
n

Takéto koeficienty a,, skutoéne existuji, pretoze posledny vzfah vlastne nepred-
stavuje ni¢ iné ako Fourierov rozvoj funkcie f(z). A zo znamych vzfahov® pre
koeficenty Fourierovho radu dostdvame

1 2 / Lz . nmx
Uy = ———— — f(x) sin
sinh nzLy Ly Jo ( ) L

L
n]jrf sinh nzr Y = f(SC)

dzr

xT

Posledné tri vzfahy predstavuji (jediné) rieSenie nasej lohy. Pripomefime si
este raz logiku celého postupu: na zaciatku sme uhéadli sikovny typ funkeii (sicin
X (2)Y (y)), pre ktory sme rovnicu vedeli lahko vyriesit. Z rieSen{ tohto typu sme
potom vedeli poskladat Tubovolné riegenie (v podstate Fourierov rad). A ked'Ze sme
mali uz dopredu dokazanu vetu o jednoznacCnosti, vieme ze takto najdené rieSenie
je jediné. V nasledovnej sérii pozndmok teraz rozsirime tento postup na niekolko
vSeobecnejsich (v roznom zmysle) pripadov.

6Ak tieto vztahy nie st zndme, pozri poznamku o Fourierovych radoch na konci ¢asti 3.1.
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PozNAMKA. (Vseobecné okrajové podmienky.) RieSenie tdlohy s okrajovymi
podmienkami nulovymi, okrem podmienky o(z,0) = f(z) dostaneme z vyssie uve-
deného rieSenia zémenou y — L, — y (premyslite si, Ze je to naozaj tak). RieSenia
tlohy s nenulovymi okrajovymi podmienkami na ”zvislych” strandch dostaneme
zamenou z <> y. RieSenie tlohy s okrajovymi podmienkami nenulovymi na vsetkych
Styroch strandch, ale nulovymi vo vsetkych Styroch vrcholoch, dostaneme ako super-
poziciu rieseni doteraz uvazenych tloh. A nakoniec nenulové okrajové podmienky
vo vrcholoch je mozné splnif tak, Ze k doteraz uvazenému rieSeniu pripoéitame
funkciu

A+ Bx+Cy+ Dy
ktora zjavne spfﬁa Laplaceovu rovnicu. (Této funkcia vznikne z linedrnych rieseni,
ktoré sme dostali pre k = 0. Tieto riesenia boli identicky rovné nule pri doteraz
uvazovanych okrajovych podmienkach, ale znovu oziji ako nenulové pri vseobecnych
okrajovych podmienkach, nenulovych vo vrcholoch.)

PozZNAMKA. (Trojrozmerna hranaté oblast.) RieSenie v kvadri je tiplne ana-
logické rieSeniu v obdlzniku, analogicky je aj vysledok pre okrajovii podmienku
nenulovi iba na jednej stene ¢(x,y, L,) = f(x,y)

2 2

. MTT . NIy . n
T,Y,2) = Amp SIN sin —= sinh [ — + — 7z
O(T,9,2) = Y Gmn I T, 't

m,n

Jedind mierna komplikicia oproti dvojrozmernému pripadu méze byt v tom, Ze
na uréenie koeficientov a,,, z okrajovej podmienky treba vediet najst koeficienty
Fourierovho radu v dvoch premennych, ¢o je vec, ktort sa nauéime o chvilku (v
skuto¢nosti to nie je ni¢ iné, ako ndjst dvakrat koeficienty oby¢ajného Fourierovho
radu v jednej premennej.

PozNAMKA. (Nehranatd oblast.) Vo vieobecnosti metéda nefunguje a ak ne-
funguje separacia premennych, vé¢sinou nefunguje ni¢ jednoduché a sme odkazani
na rozne priblizné a numerické metdédy. Funguje vSak v dvoch dolezitych pripadoch,
v sférickych a cylindrickych siradniciach. Riesenie hladdme v tvare o(r,¢,0) =
R(r).®(¢).0(0) resp. ¢(r,¢,z) = R(r).®(¢).Z(z). Ak méme sférickd alebo val-
covu hranicu, potom sa v prislusnych suradniciach jednoducho formuluji okrajové
podmienky pre ¢(7) (prave preto je pouzitie tychto siradnic vyhodné) a z nich
dostaneme priamo nejaké okrajové podmienky pre R(r), ®(¢), ©(6) resp. Z(z).
Poznamenajme, ze ilohu, ktord hrali v kartézskych siradniciach sinusy, hraji vo
sférickych a cylindrickych sturadniciach niektoré zndme tzv. Specidlne funkcie. Vo
sférickych siradniciach v premennej 9 s to tzv. Legendreove polynémy a v cylin-
drickych sturadniciach v premennej r tzv. Besselove funkcie.

PozNAMKA. (Neumannova iloha.) Vsade kosinusy namiesto sinusov.
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2.2. Vyjadrenie partikularneho rieSenia Poissonovej rovnice cez
vlastné funkcie laplacidnu a ich hl'adanie metédou separacie premennych.

Pod'me sa teraz pozrie na druhu ¢ast ulohy, t.j. na hladanie partikuldrneho
rieSenia Poissonovej rovnice s nulovymi okrajovymi podmienkami. Uvidime, ze tato
tloha sa d4 previest (a naozaj sa velmi Easto prevadza) na ind tlohu, a sice
na hladanie vlastnych funkcii a vlastnych hodnét laplacidnu, ¢o st d'alsie dva z
uzitocnych a doélezitych pojmov, s ktorymi sa zoznamime v elektrostatike, ale stret-
neme sa s nimi v mnohych dalsich oblastiach fyziky. Pojmy vlastnej funkcie a
vlastnej hodnoty st doélezité v tedrii linedrnych diferencialnych rovnic a mozno ich
preto stretniit skoro vsade tam, kde sa vyskytujui linedrne diferencidlne rovnice” a
okrem toho st to ustredné pojmy matematického aparatu kvantovej mechaniky.

Vlastné funkcie laplacidnu (s Dirichletovymi® okrajovymi podmienkami) st de-

finované vztahom?

Ap(r) = A o(7) p(M)lg =0
kde X je Tubovolné, vo vieobecnosti komplexné, &slo a ¢ je Iubovolnd funkcia nie
identicky rovna nule. Vlastné funkcie existuju véc¢sinou len pre urcité konkrétne
hodnoty A, ktoré sa nazyvaji vlastnymi hodnotami laplacidnu.

Vlastné hodnoty laplacidnu maji niekolko velmi délezitych a uzitoénych vlast-
nosti, ktoré su prirodzenymi zovseobecneniami znamych vlastnosti vlastnych vek-
torov a vlastnych hodnot symetrickych matic. Vlastnosti uvedieme bez dokazov, s
dokazmi sa Citatel stretne v prednéske z kvantovej mechaniky. *°

e Vlastné hodnoty laplacidnu si redlne, zaporné ¢isla, a v kone¢nej uzavretej
oblasti si diskrétne, t.j. mozno ich éfslovat indexom n = 1,2, ...

A@"(’F):)‘n@n(m QOn|S:0 0>\, €R
e Vlastné funkcie laplacidnu tvoria tplny ortonormélny systém.

Pod systémom funkcii myslime nejaki mnozinu funkcif ¢, (7). Systém funkeif
nazyvame uplnym (pre nejaky priestor funkcif) ak sa d& lubovolnd funkcia f(7) (z
tohto priestoru) vyjadrit ako linedrna kombindcia funkcif systému, t.j. ak pre kazdd
f(7) existuji koeficienty ¢,, také, ze

£ =3 npn
n
Ortonormalnym nazyvame systém funkcii vtedy, ak pre kazdé dve jeho funkcie plati

/ () pn(7) & = by

"Tde o analégy pojmov vlastného vektora a vlastnej hodnoty z linearnej algebry. Mnohé ilohy
linedrnej algebry (napr. riesenie linedrnych rovnic alebo diagonalizcia matic) sa robia velmi ti¢inne
pomocou vlastnych vektorov matice.

8Analogicky, akurdt s nulovou Neumannovou okrajovou podmienkou, st definované vlastné
funkcie laplacidnu vhodné pre Neumannovu tlohu.

9Pozor, tento vztfah nie je Poissonovou rovnicou, pretoZe obsahuje nezndmu funkciu ¢(7) na
oboch stranach rovnice.

1OPoznamenajrne, ze ani dokazy v beznych ucebniciach kvantovej mechaniky nie st rigoréz-
nymi matematickymi dokazmi. Problém je v tom, Ze uz len presnd formulécia, a nieto este dokazy,
by si vyzadovali §pecidlnu, minimdalne semestrélnu, predndsku z tzv. funkciondlnej analyzy.
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kde pod integralom sa mysli uréity integral cez oblast, na ktorej st funkcie defi-
nované (aj ked to nie je explicitne vyznaéené) a hviezdicka znamend komplexné
zdruzenie. (Pri praci s Fourierovymi radmi a integralmi, ktoré sd Specidlnym, ale
velmi délezitym pripadom rozvoja do tplného systému ortonormdalnych funkcii,
sa Casto pouzivaju zapisy pomocou komplexnych exponent. Preto sme si uviedli
definiciu ortonormalnosti v komplexnom baleni, aby sme mali zahrnuty aj tento
pripad, ktory budeme potrebovat napriklad v kapitole venovanej elmag vindm. Po-
znamenajme, ze uvedeny integral hra v priestoroch funkcii dlohu, aki hrd bezny
skaldrny suéin vo vektorovych priestoroch.)

Ak teraz vyndsobime podmienku tplnosti funkciou %, (7), preintegrujeme (cez
defini¢ny obor uvazovaného priestoru funkeif) a vyuzijeme podmienku ortonormdl-
nosti, dostaneme

[ @ =Y e [ 0Denl) dr = 3 ean = o

t.j. koeficienty rozvoja funkcie do daného systému ortonormalnych funkcii si dané
uvedenymi integralmi.

Z hladiska riesenia Poissonovej rovnice hrajt vlastné funkcie laplacianu doéleziti
tlohu preto, lebo riesenie Poissonovej rovnice, ktord ma na pravej strane vlastni
funkciu laplacianu, t.j. rovnice

Ap(F) = on(7) ()]s =0
s nezndmou funkciou ¢ a so zadanou funkciou ¢, je trividlne (dosadim—vidim):

¢m=i%®

Poissonovu rovnicu s Tubovolnou (slusnou) pravou stranou —p(7)/e teraz mo-
7eme rieit tak, Ze rozvinieme pravii stranu do 1plného systému vlastnych funkcif
laplacianu, pre kazdu z nich rieSenie pozname a celkové riesenie poskladame z tychto
znamych rieSeni pomocou principu superpozicie. Vysledok je

S, 1 w2 P
A=Y e = [a@ LD
n n
(premyslite si, Ze je to naozaj tak).

Ak teda pozname vlastné funkcie a hodnoty laplacidnu pre nejaki oblast, vieme
napisat okam#ite partikuldrne rieSenie Poissonovej rovnice pre tiito oblast v tvare
nekone¢ného radu, s koeficientami vyjadrenymi cez urc¢ité integraly. Ostdva ndm
naucit sa hladat vlastné funkcie a hodnoty laplacidnu. Toto je vo vSeobecnosti
velmi fazkd tloha, ale v niektorych pripadoch sa d4 riesit nAm uz zndmou metédou
separacie premennych. Ilustrujeme si to na nasom konkrétnom priklade dvojrozmer-
nej obdiZnikovej oblasti 0 <z < L,, 0 <y < L,. Kedze jednotlivé kroky su velmi
podobné tomu, ¢o sme robili v pripade Laplaceovej rovnice, budeme postupovaf
menej podrobne.
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RieSenie rovnice
9? 0?
5.2 P y) + a7 o(z,y) = Ap(z,y)

hladdme v tvare
oz, y) = X(x).Y(y)
¢o nés po standarnych krokoch privedie k dvom (separovanym) rovniciam
0?X 0%y
RieSenim tychto oby¢ajnych diferencidlnych rovnic a zohladnenim nulovych okra-
jovych podmienok dostaneme

X () = sin = V(y) = sin 7
¢ize vlastné funkcie a hodnoty (éislované teraz dvojicou indexov) su
. mmxr . nmy m2m2 n272
SDmn(ﬂc,y) = sin . smL—y Amn = — (L% + Li)

Partikuldrne riesenie Poissonovej rovnice s hustotou naboja p(7) v danej oblasti je

teda
2.2

B m2mT n2r2\ . mmx | nmy
o(z,y) = Z Cmn T Tf, sin sin —=

m,n Yy

pricom koeficienty ¢, st dané vztahom

1 . mmr . nmy
fgp(;z;,y) :Zcmn sin L. smL—y

m,n

Takéto koeficienty c,,,, skutoéne existuji, pretoze posledny vztah vlastne nepred-
stavuje ni¢ iné ako dvojity Fourierov rozvoj funkcie % p(x,y). Takyto Fourierov rad
mozeme chépat ako dva Fourierove rady, najprv rozlozime p(z,y) v premennej y,
pricom z chdpeme ako parameter, koeficienty tohto rozvoja (zévislé od parametra
x) su
L’y
w>1;0mmwf@

a potom rozlozime koeficienty ¢, (z) do dalgieho Fourierovho radu (v premennej )
s koeficientami
mnx

L,
2 .
Conn, = — cn () sin dx
L, Jo L,
Tym sme nasli partikuldrne rieSenie Poissonovej rovnice v obdlzniku a spolu s

predchadzajicim rieSenim Laplaceovej rovnice v obdlzniku mame pre tito oblast
vlastne vyrieSené vSetky mozné elektrostatické tlohy.

P0OzNAMKA. Pre zovSeobecnenia uvedeného postupu hladania vlastnych fun-
kecii a hodnoét laplacidanu platia analogické poznamky, aké sme uviedli za rieSenim
Laplaceovej rovnice v dvojrozmernej hranatej oblasti (tri rozmery, nehranaté ob-
lasti, Neumann).
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Priklady

1. Potencidl v dvojrozmernej hranatej oblasti

(Priklad na zdkladné precvicenie novych pojmov, s ¢o najjednoduchsimi Fourie-

rovymi radmi)

Néjdite potencidl vo vnutri obdlznika 0 < o < Ly, 0 <y < Ly, ak

a) Je potencidl nenulovy len na jednej strane hranice, a sice: ¢(z, L,) = sin Z—f
2ry

b) To isté ¢o v pripade a), plus navyse p(L,,y) = sin S
¢) To isté ¢o v pripade b), plus navyse ¢(x,0) = sin 3L”

d) To isté ¢o v pripade c), plus navyse vnuitri obdlznika néboj s hustotou p(x,y) =
sin 472 gin 57

Lo T,
2. Potencidl v dvojrozmernej hranatej oblasti 11
(Pokracovanie s trochu menej trividlnymi Fourierovymi radmi)
N4ajdite potencial vo vnutri obdlzmika 0 <2 <L;,0<y<L,, ak
a) o(z,0) = z, p(x,Ly) = z, ¢(0,y) = 0 a p(Ly,y) = V (pozri pozndmku o
vSeobecnych okrajovych podmienkach, najmé okrajovych podmienkach nenulovych
vo vrcholoch).
b) To isté ¢o v pripade a), plus navyse vniitri obdiznika néboj s hustotou p(z, y) = y

3. Potencidl v trojrozmernej hranatej oblasti

(Jednoduchy priklad na precvicenie zovseobecnenia z dvoch na tri rozmery.)
Néjdite potencidl vo vnutri kvadra 0 <ax < L, 0<y<L,,0<2 <L, ak

a) Je potencidl nenulovy len na jednej stene hranice, a sice: p(,y, L.) = sin 7% sin 25—;/

b) To isté ¢o v pripade a), plus navyse ¢(0,y, z) = sin 3LL

yy sin 4LL:

4. Potencidl v trojrozmernej cylindrickej a sférickej oblasti

(Nepovinny priklad na separdciu premennych v inych nez kartézskych stradniciach.)
a) Napiste explicitne vztah medzi cylindrickymi a kartézskymi stiradnicami, expli-
citne vyjadrite derivdcie (prvii a druhi) podla kartézskych stradnic cez derivécie
podla cylindrickych stradnic (nevyZzaduje ni¢ iné nez vypoéitat derivécie zloZenej
funkcie) a napiste explicitne laplacidn v cylindrickych sdradniciach (t.j. tak, aby
obsahoval len sdradnice r, ¢, z a derivdcie podla nich). Metédou separicie pre-
mennych preved'te potom Laplaceovu rovnicu v cylindrickych stradniciach na tri
obycajné diferencidlne rovnice.

b) To isté v sférickych stradniciach. (Kontrola: toto sa da najst v lIubovolnej
ucebnici kvantovej mechaniky, v kapitole o atéme vodika, alebo niekde okolo.)
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3. Ina metdda rieSenia Poissonovej rovnice
(metéda Greenovej funkcie)

Dalsie dva velmi uzitotné pojmy, s ktorymi sa zozndmime pri nasom stidiu
elektrostatiky a ktoré svojim vyznamom elektrostatiku d'aleko presahuji, st pojmy
0-funkcie a Greenovej funkcie. Oba tieto pojmy patria medzi zdkladnu vyzbroj
modernej teoretickej fyziky a kazdy student fyziky sa s nimi eSte mnohokrat stretne.
Aj v nasej predndske sa s nimi este stretneme (aj po prechode od elektrostatiky k
elektrodynamike) a to pri vySetrovani elmag Ziarenia.

3.1. Diracova é-funkcia.

Elektrostatika je vhodnym ihriskom pre zavedenie d-funkcie, pretoze d-funkcia
nie je vlastne ni¢ iné, ako formadlne vyjadrenie hustoty bodového ndboja. Doteraz
sme vSetky rovnice pisali bud v jazyku bodovych nabojov, alebo v jazyku spojite
rozlozenej hustoty naboja. Prechod od jedného jazyka k druhému nebol nijako
zlozity, spocival v jednoduchom nahradeni sim integralmi. Napriek tomu bude
prijemné, ak budeme vediet zapisat aj bodové ndboje cez hustotu niboja t.j. ak
jazyk hustoty ndboja v sebe bude zahfiat aj bodové ndboje.

d(z) Zacnime s intuitivnou ”definicion” hustoty jednotkového bodového ndboja
sediaceho v pociatku. Takito hustotu budeme oznacovat §(x) a malo by pre fiu
platit

d(x)=0 Va # 0

/_O;é(x)dle

€
O(x)de =1
—e
(vzhladom na prvi vlastnost — nulovost viade okrem pociatku — je to ekvivalentné
s [0 6(x) do =1).

a sucasne

¢o sa niekedy piSe aj v tvare

Problém s touto intuitivnou ”definiciou” je v tom, ze funkcia s uvedenymi
dvoma vlastnostami neexistuje. Kazd4 funkcia, nenulové len v jedinom bode, m4
totiz nulovy integral. ! Napriek tomu sa nechajme este chvilku viest nasou ”de-
finiciou” a odvod'me si zakladnu vlastnost é-funkcie, ktord sa ¢asto pouziva ako
definicia d-funkcie (namiesto nasej doterajsej ”definicie”)

/ " f(@) 8(a) de = £(0)

"Dékaz” spociva v nasledovnej identite f(x) d(z) = f(0) d(z), ktord je zjavne
pravdivd pre x = 0 (na oboch strandch rovnice je to isté), aj pre « # 0 (na oboch
strandch rovnice je nula). Dosadenim tejto identity do integrdlu a vytiahnutim
konstanty f(0) pred integrdl dostaneme okamzite uvedené tvrdenie.

17e §-funkcia nie je funkcia mozeme nahliadnut aj z toho, Ze hustota bodového naboja v
mieste, kde sa tento ndboj nachddza je nekoneénd. Zapisané formdlne 6(0) = co. Redlna funkcia
je ovSem zobrazenie z redlnych cisiel do redlnych cisiel a co nie je redlne ¢islo.
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0(x —a) Hustotu jednotkového bodového ndboja sediaceho v nejakom bode a
mimo poéiatok mézeme vyjadrif pomocou hustoty jednotkového bodového naboja
sediaceho v pociatku jednoducho posunutim argumentu z z do z — a. Pod §(z — a)
budeme teda rozumiet hustotu jednotkového bodového naboja v bode a. Zdkladnou
(defini¢nou) vlastnostou §(z — a) je

[2o f(@)d(x — a)dz = f(a)

"Dokaz” z intuitivnej ”definicie” analogicky ako pre 6(z).

POZNAMKA. (ijlne nepovinnd). d-funkciu zaviedol P.M.A.Dirac niekedy v
tridsiatych rokoch a mnoho rokov ju fyzici pouzivali ako velmi ti¢inny néstroj na-
priek tomu, Ze sa jednalo o matematicky nekorektne definovany objekt. Matema-
ticky korektnd definicia sa objavila az v pracach L.Schwartza v ramci tzv. tedrie
distribucii. A hoci celd tato tedria je technicky trochu naroénd, zdkladnd idea je
velmi jednoduchd, takze si o nej par slov povieme.

KTtiéovym pojmom je pojem linedrneho funkciondlu, ¢o je zobrazenie, ktoré
priraduje funkcidm é&fsla a robi to linedrne, t.j. linedrnej kombindcii funkeif priradi
tak istu linedrnu kombindciu ¢isiel priradenych jednotlivym funkcidm. Typickym
linearnym funkcionalom je napriklad urcity integral. Ukazuje sa dokonca, ze skoro
kazdy linedrny funkcional sa d4 napisat ako uréity integral zo stc¢inu danej funkcie
f(x) s nejakou konkrétnou funkciou g(z) t.j. ze skoro pre kazdy linedrny funkciondl
existuje funkcia g(x) taka, Ze dany funkcionél sa d4 zapisaf ako zobrazenie f(x) —

[ F@)g(z)dz.

Existuji vsak aj linedrne funkciondly, ktoré sa nedaji vyjadrif pomocou uréitého
integralu. Typickym prikladom je linedrny funkciondl f(z) — f(a), ktory priradf
funkcii f(x) jej hodnotu v konkrétnom bode. Tomuto funkcionédlu sa hovori §, a
jeho pdsobenie na funkciu f(z) zapisujeme ako d,[f(z)] = f(a). Toto oznacenie je
celkom prirodzené, pretoze uvazovany funkcional robi presne to, ¢o by mal robif
integral z d-funkcie, ale neexistuje pren nijakd funkcia g(x) (ktord ak by existovala,
by sme radi volali §(x)) pomocou ktorej by sa dal zapisat ako urcity integral.

Ak sa ndm vsak velmi pa¢i zdpis linearnych funkciondlov pomocou uréitych
integralov a chceme ho pouzivat silou-mocou aj pre J-funkciondl, modzeme na-
miesto 8,[f(z)] pisat [~ 6(z —a) f(z) dz. Podstatné je, ze v tomto pripade ne-
povazujeme symbol 0(z) za samostatny symbol oznacujiici funkciu a symbol ffooo dx
za samostatny symbol oznacujici urcity integral, ale dobry zmysel méa len symbol
[5 6(z — a) dz oznacujici funkciondl 4.

Mravné ponaucenie: Vztfahy, v ktorych vystupuje d-funkcia pod integrélom, si
vicsinou korektné vtahy, ktoré maji dobry zmysel aj v matematicky rigoréznej
teérii J-funkcie. Vzfahy v ktorych vystupuje d-funkcia sama bez integrdlu maji
vécsinou len vyznam mnemotechnickych pomécok.

Koniec pozndmky (iplne nepovinnej).
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0(ax) Motivaciou k definicii §-funkcie argumentu nédsobeného konstantou bude
pre nas celkom prirodzena poziadavka, aby sa v integrdloch s d-funkciou dala ro-
bit substiticia (¢o nie je vlastne ni¢ iné ako poziadavka, aby sa pri "rozfahovani
sveta” menila é-funkcia rovnako ako iné hustoty). Napr. pre o > 0 jednoduchou
substiticiou y = ax dostaneme

| swsteaao= [~ sy L =2 s

(%

Pre o < 0 si treba dat pozor a urobif spravne substitiiciu aj v integra¢nych hrani-
ciach, ¢o vedie k

| swsten o= [ sy L=~ 5o
Spolu teda .
| 1@ doz) do = = f0)

resp. v mnemotechnickom baleni

0(ax) = ﬁé(m)

Poznamenajme, 7e §pecidlnym pripadom tohto vzfahu je vzfah 6(—z) = §(x).

5(g(z)) Definiciu §-funkcie teraz jednoducho rozsirime aj na pripady, ked je
jej argumentom nejakd "rozumnd” funkcia premennej x. Prvym znakom rozumnosti
funkcie g(z) bude, Zze m4 diskrétne nulové body, ktoré budeme oznacovat z,,. Pre
infinitezimalne ¢ potom moézeme pisaf

Tn+e

| s@ i@y =Y [ @) stgte) s

V e-ovom okoli kazdého bodu xz,, teraz rozlozime funkciu g(x) do Taylorovho radu

9(x) = g(zn) + g'(xn) (v — 20) + ...

cv s

motivécia k nasledovnej definicii

| 1@t =3 /

resp. zapisané mnemotechnicky
8(g(@)) = X iy — )

Z tejto definicie je jasné, ze silnejsim znakom ”rozumnosti” funkcie g(z) je
nenulovost prvej derivécie v nulovych bodoch funkcie. Otdzkou ¢&i a ako sa dé de-
finovaf J-funkcia z nerozumnej funkcie sa tu zaoberat nebudeme. Uspokojime sa
s konStatovanim, Ze vo vSetkych beznych pripadoch sa stretdvame s d-funkciou,
argumentom ktorej je "rozumnd” funkcia.

Tnte

f(2) 89/ () (@ — ) dz = 3 mﬂm

n—¢€
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”reprezenticie” J-funkcie

Nasa definicia J-funkcie resp. motivacia tejto definicie bola zalozend na pred-
stave hustoty bodového naboja. Ak sa niekomu takato predstava nepéci, moéze
uvazovat rozne slusnejsie rozlozenia naboja a zobrat nejakd ich postupnost takd,
7e jej ¢leny sa ¢oraz viac bliZia k bodovému naboju. MdZeme napriklad uvazovat
obdeniky s jednotkovym obsahom, ktorych zakladina je coraz uzsia a tym padom
s ¢oraz vyssie. Pod d-funkciou potom mézeme mysliet limitu takejto postupnosti,
pricom této limita sa zvykne nazyvat reprezentdciou é-funkcie.

Problém s takymto pristupom je samozrejme v tom, ze uvazovand limita ne-
existuje. Forméalne teda mozeme pisat

. 1
obdlznikové reprezentécia: 0(x) = lim — 19(7 —|z|)
e=0 ¢ 2

kde tzv. ¥-funkcia je definovand nasledovne: 9(x) = 0 pre < 0 ; J(x) = 1 pre
x > 0, ale z matematického hladiska sa jednd o prdzdny zhluk pismen. V skuto¢nosti
je treba tento vzfah chdpat len ako mnemotechnicki pomécku pre nasledovné ko-
rektné tvrdenie (dokaz vid priklady)

. 1

lim [ = 0(5 — |2]) f(x) dz = £(0)

e=0 ) _ € 2

Akt vyhodu ma takyto pristup k definicii d-funkcie? Nuz pravdu povediac asi
nijaki (okrem moznej psychologickej vyhody v pripade, ze pévodny pristup ne-
bol z nejakych dovodov dobre stravitelny). Naco sa teda reprezentdciami §-funkcie
vobec zaoberame? Pretoze niektoré z beznych reprezentdcii d-funkcie sa obc¢as vo
fyzike vyskytuji a ak na ne narazime, je vzdy uzitoéné rozpoznat v nich J-funkciu.
Uvedieme si teraz niekolko zndmych reprezentécii J-funkcie, pri¢om vzdy budeme
uvddzat len mnemotechnicki verziu formuliek (korektné formuldcie a ich dokazy
tvoria jeden z prikladov k tejto kapitole)

.. 2.2
Gaussova reprezentéicia §(z) = lim. 0 . 17r =z /e
’ . 1 €
Lorentzova reprezentécia d(x) = lime ¢ T e
Dirichletova reprezentéacia d(z) = lim. ¢ H Smf
Fourierova reprezentacia §(z) = limp o0 o 5 f_ K etk d;

pricom Fourierova reprezentdcia je ¢asto uvddzana v este neporiadnejsom (ale velmi

uzitoénom tvare) ako
1 R
o(x) = %/ e*rdk
—0o0

Fourierova reprezentéacia je Specialnym pripadom este jednej dolezitej reprezentacie
J-funkcie a to reprezentécie pomocou I'ubovolného tiplného systému ortonormélnych
funkcii. S tymto pojmom sme sa uz stretli pri diskusii vlastnych funkecii laplacianu
(Cast 2.2), takZe si len pripomeiime, Ze akykolvek systém funkcii ¢, (x) (vo vieobec-
nosti komplexnych) nazyvame uplnym (pre nejakd mnozinu funkcii), ak sa da
kazda funkcia f(z) (z tejto mnoziny) napisat ako f(z) = Y, chpn(x). Orto-
normélnym nazyvame tento systém funkcii vtedy, ak pre kazdd dvojicu m,n plati
[k (z xz)dx = Omp (hviezdicka znamend komplexné zdruZenie, uvedeny in-
tegral hra ulohu skaldrneho sué¢inu v priestore komplexnych funkeif).
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Z podmienok uplnosti a ortonormality vyplyva, ze koeficienty rozkladu funk-
cie f(z) do funkeif ¢, (z) sa daji napisat ako ¢, = [ ¢%(z)f(z) dz (podmienku
uplnosti vynasobime funkciou ¢, (x), preintegrujeme cez x a nakoniec premenujeme
m na n). Ak do podmienky tdplnosti (zapisanej v premennej z’) dosadime toto
vyjadrenie koeficientov a ak potom prehodime poradie sumy a integrdlu (bez toho,
aby sme sa starali o matematickd korektnost tohto kroku — matematické jemnosti
mé zmysel Studovaf a7 v rdmci poriadnej tedrie distribicif), dostaneme

COEDS /cpfl(w)f(w)dw wn(w’)Z/ Y eh@)enla’) flz)de

Integral zo sumy Y. ¢k (z)pn(2’) sa teda chovd presne tak, ako sa méd chovat
integral z d-funkcie. Inymi slovami, kazdy iplny ortonormaélny systém funkcii pred-
stavuje istu reprezentéciu d-funkcie, zapisani mnemotechnicky ako

reprezentacia cez Uplny systém ortonormalnych funkcif:
Sz —a') = wn(a)pn(a)
n

Fourierova reprezentéacia je §pecialnym pripadom takejto reprezentécie. Uplnym Sys-
témom ortonormdlnych funkcii (na celej redlnej osi) si v tomto pripade imagindrne
exponenty ﬁe_ik“. Jednotlivé funkcie tohto systému nie si ¢islované diskrétnym
indexom n, ale spojitym indexom k, preto suma cez n mé tvar integrélu cez k

1 [~ . -
Sz —1a') = 2—/ ehe etk g,
m

— 0o

Vyssie uvedené vyjadrenie pre §(x) dostaneme, ak polozime 2’ = 0 (e~ = 1).

Struc¢ny komentar k uvedenym reprezentaciam: Gaussova a Lorentzova st vlastne
variaciami na tému obdfinikovej reprezentacie — v oboch pripadoch ide o nahra-
denie ”hranatych kopcov” z obdiinikovej metody nejakymi kraj$imi kopcami. Vo
vsetkych pripadoch sa kopce zuzuja a zvySuju, pricom ich plocha ostava stéle rovna
jednej a vSade okrem bodu x = 0 klesajui s klesajicim ¢ k nule. Gaussova krivka sa
vyskytuje vo fyzike ¢asto, medziinym sa beZne pouZziva na vySetrovanie vlnovych
balikov vo vSetkych oblastiach fyziky, v ktorych hraju viny doélezitu ulohu. Limita
e — 0 zodpoved4 najlokalizovanejsiemu (bodovému) objektu vo vlnovom svete. Lo-
rentzova (rezonanénd) krivka opisuje napr. zdvislost amplitiidy tlmeného linedrneho
harmonického oscilatora od frekvencie vynucujicej sily a limita ¢ — 0 zodpoveda
ur¢itym (nie prili§ zaujimavym) limitnym hodnotdm parametrov oscildtora. Di-
richletova reprezentacia je trochu odlisnd. Pre ¢ — 0 neklesaju jednotlivé funkcie
pre vsetky x # 0 k nule, ale namiesto toho ¢oraz rychlejsie osciluju a integraly z
rychlo oscilujicich funkcif st podla Dirichletovej vety nulové. Funkcie z Dirichleto-
vej reprezentacie sa objavuju napr. ako difrakéné krivky v optike a limita ¢ — 0
zodpovedd prechodu ku geometrickej optike. Iné dolezité miesto vyskytu takejto
krivky je tzv. nestacionarna poruchova tedria v kvantovej mechanike a limita e — 0
tu vysvetluje diskrétne spektrum Ziarenia atémov. Fourierova reprezenticia je zo
vSetkych najdolezitejsia, vyskytuje sa naozaj Casto, najméa v suvislosti s Fourie-
rovym integrdlom. Je to v podstate zamaskovana Dirichletova reprezentécia, ¢o je
vidno okamzite ak naozaj preintegrujeme cez k a polozime e = 1/K.
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derivacia J-funkcie

Derivécia §-funkcie je definované na zaklade integracie per partes sic¢inu funkcii.
Ak je R(x) niektora z reprezentdcii J-funkcie, potom per partes integracia hovori,
ze [ f(@)R(z —a)dz = [f(z)R(z — a)]* — [*_ f'(x)R(z — a)dz. Toto je
motivaciou definicie [%_ f(2)d'(z — a)dz = — [*_ f/()0(z — a) dz (prvy ¢len na
pravej strane neprispieva, pretoze d-funkcia je v nekoneéne nulovd), a teda

[0 f(@)d' (x — a) dz = —f'(a)

trojrozmerna é-funkcia

Zovieobecnenie zdkladného definiéného vzfahu é-funkcie na tri rozmery je cel-
kom priamociare

1)) dir = ()]

kde pod integralom sa mysli urcity integral cez cely priestor.

Pri praktickom poéitani sa ¢asto pouziva nasledovny vztah

’(5(77—77’)zé(a:—x’)é(y—y’)é(z—z')

ktory vyzera ako celkom oc¢ividny, napriek tomu si vSak ddme ti namahu, aby sme
naozaj ukazali jeho platnost. To, ¢o by sme mali ukézat, je

///f(x,y, 2) 0z —a').0(y —y').6(z — 2') dw dy dz = f(2', ¢/, %)

a to je naozaj pravda, ¢o nahliadneme okamZite, ak robime integraly podla z, v a
z jeden po druhom, na zéklade definicie jednorozmernej é-funkcie.

Naco je dobry taky opatrny postup? To bude jasné hned, ked si povieme, ze
rovnako prirodzene vyzerajuci vzfah v sférickych stradniciach neplati, t.j. Ze

S(r—7") £ 5(r—1").0(p—¢").0(0 =)

Aby sme to nahliadli, postupujme rovnako ako v pripade kartézskych suradnic a
vypocitajme

/// flr,p,9) 6(r—1").6(p—¢').0(9 =) r?sind dr dp d = r*sind’ f(r', o, 9)

Je jasné, ze problémy sposobuje objavenie sa jakobidnu J = r?sind a rovnaké
problémy sa vyskytnu pre kazdé suradnice s jakobidnom réznym od jednej. Zaroven
je viak vidiet aj lick na tieto problémy: staéi dostat jakobidn aj do menovatela, t.j.
polozit

o(F—7") = §(r—1").0(p— )00 —)

Rovnako sa postupuje v pripade Iubovolnych krivociarych stiradnic. Napriklad v
cylindrickych siradniciach dostavame

o(F—7") = %(5(7‘ —1").8(p — ¢').0(z —2')

72 sin
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3.2. Greenova funkcia.

Pripomenime si, ako sme hladali partikuldrne riesenie Poissonovej rovnice s ne-
nulovou pravou stranou v predchadzajicej kapitole. Nasli sme rieSenie pre urcité
konkrétne funkcie na pravej strane (vlastné funkcie laplacidnu) a potom uz len
stacilo rozlozit dant pravi stranu do tychto konkrétnych funkcii a vyuzit princip
superpozicie. Rozklad danej pravej strany do uréitych konkrétnych funkcii pred-
stavoval prakticky poéitanie uréitych integralov, ¢o moze byt niekedy dost tazka
vec. Greenova funkcia Poissonovej rovnice je rieSenim Poissonovej rovnice s tak
sikovne vybranou konkrétnou funkciou na pravej strane, ze pri rozklade Tubovolnej
funkcie do takychto konkrétnych funkcii netreba poéitat nijaké integrdly. Takouto
gikovnou pravou stranou (nielen pre Poissonovu rovnicu, ale pre lubovolni linedrnu
diferencialnu rovnicu) je d-funkcia. Na definiciu §-funkcie, ktord mézeme zapisat
ako [ f(7")8(F —7')d*" = f(F), sa totiz mozno pozerat ako na rozklad funkcie
f(7) do é-funkeif (premennej 7, indexovanych spojitym indexom 7'), pricom koefi-
cienty tohto rozkladu st hodnoty samotnej funkcie v jednotlivych bodoch.

Este raz a pomaly: Funkciu na pravej strane Poissonovej rovnice mozeme po-
vazovaf za superpoziciu d-funkcif (pricom koeficienty tejto superpozicie sa poéitaji
trividlne — s to priamo hodnoty pravej strany v prislusnych bodoch)

1 1
o) =1 [ o8- )
€ €
Ak budeme poznat Greenovu funkciu (rieSenie rovnice s §-funkciou na pravej strane)
AG(F, 7Y = 6(F —7)

potom z principu superpozicie dostaneme okamzite rieSenie rovnice s Iubovolnou
pravou stranou (ako prislusni superpoziciu Greenovych funkcif)

o) = ¢ [ )G

Toto riesenie je viak len jedno z mnohych rieseni. Zatial sme totiz nijako nespecifikovali
okrajové podmienky a nasa uloha preto nemd jednoznacné rieSenie.

Nasa doterajsia ”definicia” Greenovej funkcie nie je Gplna. Skutoénd definicia
obsahuje okrem rovnice aj okrajovii podmienku, ktortd ma Greenova funkcia spiﬁaut7 .
Kym pristipime k tejto definicii, pripomenme si, ze od partikularneho riesenia Po-
issonovej rovnice sme v minulej kapitole pozadovali (z celkom rozumnych dévodov)
splnenie nulovych okrajovych podmienok. To isté budeme ziadat aj od Greenovej
funkcie. Greenovou funkciou G(7,7") Dirichletovej tlohy pre Poissonovu rovnicu
nazyvame teda rieSenie nasledovnej okrajovej tlohy:

|AG(7) = 87— )| G )]s =0

pricom 7 hré tilohu nezdvislej premennej a 7/ lohu parametra, odlisujiceho jed-
notlivé §-funkcie.'?

12Poznamenajme, ze v definicii Greenovej funkcie pre Neumannovu dlohu sa z istych dévodov
pozaduje splnenie sice konstatnej, ale nie nulovej okrajovej podmienky. Neumannovej tlohe sa tu
nebudeme venovat (z ¢asovych a priestorovych dévodov), skonstatujeme len, ze vietko je velmi
podobné ako v Dirichletovej tilohe, ale zas nie tuplne, prave kvoli nenulovej okrajovej podmienke.
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Partikuldrne riesenie Poissonovej rovnice s lubovolnou pravou stranou —p(7)
a s nulovou okrajovou podmienkou sa d4 zjavne napisat pomocou Greenovej funkcie
a principu superpozicie ako

op(F) = ! /p(F/)G(F, 7Y 3.

€

Vyplyva to priamo z nasho postupu, ale ak by sme aj o tomto postupe ni¢ nevedeli,
mozeme sa o tom presvedéif priamym dosadenim do rovnice. Za takto jednoducho
vyjadrené partikuldrne rieSenie sa oviem musi nie¢im platit a naozaj sa plati — nijst
Greenovu funkciu je vo véeobecnosti velmi tazka tloha.'?

PozZNAMKA. V tejto sivislosti je zaujimavé, ze ak by sme od Greenovej funkcie
pozadovali iba splnenie rovnice, bez okrajovych podmienok, potom by sme ju nasli
velmi Tahko: Coulombov potencidl ¢(7) = — 4%5 ﬁ je predsa rieSenim Poissonovej
rovnice pre jednotkovy bodovy nédboj a Greenova funkcia nie je vlastne ni¢ iné, ako
prave takéto rieSenie (akurdt z formalnych dévodov nie pre jednotkovy néboj, ale
pre ndboj velkosti —¢). Coulombov potencidl nespfﬂa nulové okrajové podmienky na
nijakej kone¢nej hranici, otazka ovsem stoji tak, ¢i sa neoplati tieto nulové okrajové
podmienky obetovat, ak mozeme tak lacno ziskat Greenovu funkciu. Odpoved’ znie:
neoplati. Greenova funkcia (s nulovymi okrajovymi podmienkami) je totiz, ako este

uvidime, iZasnd vec a bez nich by ani zd'aleka taks tiZzasnd nebola.

Zopakujme si, ¢o je také dobré na nulovych okrajovych podmienkach. Ak mam
riesit nejakd okrajovd tlohu pre vela réznych rozloZeni naboja, ale pri stale rov-
nakych okrajovych podmienkach, potom ”Greenova funkcia” s nenulovymi okra-
jovymi podmienkami by davala pre rozne rozlozenia naboja partikularne rieSenia s
roznymi nenulovymi hodnotami na hranici. Pre kazdé takéto partikuldrne riesenie
by bolo treba znovu riesit Laplaceovu rovnicu, aby sme splnili predpisané (stale
rovnaké) okrajové podmienky. Na rozdiel od toho Greenova funkcia s nulovymi
okrajovymi podmienkami dédva partikularne rieSenia s nulovymi hodnotami na hra-
nici, takze Laplaceovu rovnicu staéi riesit raz pre vietky pripady. Na Greenovej
funkeii (s nulovymi okrajovymi podmienkami) je teda dobré to, ze prislusni Lap-
laceovu rovnicu netreba riesit velakrat, ale len raz. To je na nej dobré, to este nie
je uzasné. Uzasné je, Ze ju netreba riesit ani raz.

Ide o to, Ze pomocou Greenovej funkcie sa d4 vyjadrif nielen partikuldrne
rieSenie s nulovymi okrajovymi podmienkami, ale priamo riesenie rovnice aj so
zadanymi okrajovymi podmienkami. Zakladom tohto tvrdenia je nasledovné

Greenova veta
| (etsv—vapats = § (@00~ voe)as

Dékaz je velmi jednoduchy, staci zobrat Greenovu identitu (pozri ¢ast 2.1.) pre
funkcie ¢, ¥ a odéitat od nej Greenovu identitu pre funkcie 9, .

13Poznamenajme, ze v definicii Greenovej funkcie sa vyskytuje §-funkcia bez integralu, ¢o je
podozriva vec. Uz len poriadna definicia Greenovej funkcie, nieto este jej rieSenie, je netrividlna
zalezitost, vyzadujica prisne vzaté tedriu distribicii. Napriek tomu sa vsak nau¢ime s Greenovou
funkciou celkom dobre narabat a v niektorych pripadoch ju aj ndjdeme. Matematicka rigoréznost
tejto casti je ovSsem, povedzme to jemne, nie prave najvyssia
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magic rule

Uvazujme teraz Greenovu vetu, v ktorej je funkcia o(7) rieSenim Dirichleto-
vej tlohy pre Poissonovu rovnicu Ay = —p/e, so zadanou okrajovou podmienkou
()| g = f(7) a 9 (r) nech je Greenova funkcia G(,7") (pre nejaké konkrétne 7).
Greenova veta mé v takomto pripade tvar

/V (so(r“)é(r“ —7') + %G(F, F’)p(?)) Br = ]{S o(7)0,G(F, ) dS

Po integracii cez d-funkciu, dosadeni okrajovych podmienok pre G(7,7’) resp. ¢(7)
a po preznaceni 7 < 7 (aby sa vysledny vztah lepsie ¢ital)
1 ]
o) =1 [ GEIIR) '+ § F0LG ) S
€Jv S
V prvom z integralov na pravej strane sa eSte zvykne vyuZit symetria Greenovej
funkcie!® G(7,7) = G(7,7") ¢im dostaneme

o) =+ [ GEF) &+ § H710,GF) ds'
€Jv S

Pozrime sa teraz trochu lepsie, ¢o sme to vlastne dostali. Na pravej strane rov-
nice je jednak objemovy integrédl zodpovedajici partikuldrnemu rieseniu Poissonove;j
rovnice, ktory sme tam ocakavali, a jednak plosny integrél, ktory je prekvapenim.
Funkcia o(7) na lavej strane rovnice pritom splita nielen Poissonovu rovnicu, ale aj
predpisané okrajové podmienky. Prekvapujici ploSny integral teda nie je ni¢ iné,
ako vseobecné riesenie Laplaceovej rovnice, spfﬁajﬁce dané okrajové podmienky.
Akymsi matematickym kiizlom sa ndm podarilo vyjadrif pomocou Greenovej funk-
cie nielen partikuldrne rieSenie Poissonovej rovnice, ale aj vSeobecné rieSenie Lapla-
ceovej rovnice. Tato vec je naozaj taka prekvapujuca, ze uvedené vyjadrenie kom-
pletného rieSenia Dirichletovej tlohy pre Poissonovu rovnicu pomocou Greenovej
funkcie sa v matematickej literatire casto oficidlne nazyva magic rule.

Poznat Greenovu funkciu pre dant ohrani¢eni oblast teda znamend vediet
v nej okamzite riesif vSetky mozné elektrostatické 1ilohy (eSte ostdva samozrejme
vypoéitat integraly vystupujice v magic rule, ale vypoéet integralov je vieobecne
povazovany za ulohu podstatne jednoduchsiu, nez je rieSenie diferencialnych rovnic,
takze ked je rieSenie rovnice prevedené na vypocet integralov, povazuje sa rovnica

MKedze v rovnici pre Greenovu funkciu AG(7,7') = §(F — 7') zavisf é-funkcia na pravej
strane len od rozdielu 7 — 7/, €lovek by mohol Tahko (a chybne) usidit, Ze aj Greenova funkcia
bude zévisiet len od tohto rozdielu. Podobne z toho, e §-funkcia na pravej strane sa nezmeni pri
zdmene 7 <> 7', by ¢lovek mohol lahko (a sprdvne) ustdit, Ze ani Greenova funkcia sa pri tejto
zdmene nezmeni, a teda ze G(7/,7) = G(7,7").

Preco je prvd uvaha zlad? Pretoze spravna tvaha tohto typu je zalozend na transla¢nej symetrii
a ked'ze okrajové podmienky translaént symetriu pokazia, sprdvna tivaha neprejde (prejde vsak v
pripade neohrani¢eného priestoru, kde je Greenova funkcia dand Coulombovym zdkonom a naozaj
je funkciou rozdielu ¥ — 7).

Preco je druhd dvaha dobrd? No, ona sama o sebe dobrd nie je, ale symetria Greenovej
funkcie vzhladom na zdmenu premennej a parametra sa lahko dokdZe pomocou Greenovej vety.
Naozaj, ak v Greenovej vete polozime p(7) = G(7,7") a ¢(7) = G(7,7""), potom na pravej strane
dostaneme nulu (kvéli nulovym okrajovym podmienkam) a na lavej strane integraly cez §-funkciu,

—

takze celkove dostaneme G(7/,7"") = G(#",7’), q.e.d.
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za vyrieSent). Je preto prirodzené, Ze ludia maji Greenove funkcie radi a hojne ich
pouzivaji (a to zd'aleka nielen v elektrostatike!®). A rovnako prirodzené je, ze Gre-
enove funkcie sa hladaji tazko. Hladaniu Greenovej funkcie v réznych situacidch sa
tu venovat nebudeme. Uvedieme si len Greenovu funkciu v jednom velmi §pecidlnom
pripade, a okrem toho sa nauéime jedno velmi vieobecné vyjadrenie Greenovej fun-
kcie (cez vlastné funkcie a vlastné hodnoty laplacidnu), ktoré vSak problém neriesi,
len ho prevadza na problém iny (a sice hladanie vlastnych funkcii a vlastnych
hodnét laplacidnu).

Specidlnou, ale pomerne dolezitou oblastou, pre ktori vieme najst explicitny
tvar Greenovej funkcie je oblast so sférickou hranicou. Greenova funkcia je vlastne
potencial bodového naboja (velkosti —¢), ktory spfﬁa nulovi okrajovi podmienku.
Takyto potencidl vieme néjst metédou imaginarnych ndbojov (priklad 4 v casti
2.1.), vysledok je

1 1 R

A

kde R je polomer sféry. Poznamenajme, Ze zatial sme pomocou metédy imagindrnych
nabojov vedeli riesit 1ilohy pre sféru s konstatnym potencidlom, teraz to pomocou
magic rule a Greenovej funkcie vieme pre lubovolné rozloZenie potencidlu na sfére.

Okrem $pecialneho pripadu Greenovej funkcie pre vnitro gule spomenme este
jedno vSeobecné, aj ked nie explicitné vyjadrenie Greenovej funkcie. Reprezentécia
0-funkcie cez uplny systém ortonormélnych funkcii 6(7 — ) = Y @k (7" )pn(7) a
linedrnost Poissonovej rovnice umoziujt univerzalne a éasto pouzivané vyjadrenie
Greenovej funkcie cez vlastné funkcie a vlastné hodnoty laplacidnu. K jeho ziskaniu
si sta¢i uvedomit, Ze riesenim Poissonovej rovnice s pravou stranou ¢ (7')p,, (7)
je ﬁ(pfl(f' Non(7), kde A, je prislusnd vlastnd hodnota (vidno okamzite z toho,
ze o (7") je z hladiska laplacidnu konstanta). Riesenie pre linedrnu kombindciu
pravych stran dostaneme ako rovnaku linedrnu kombindaciu rieSeni, t.j.

- Lo
G, 7) = 3 5 )n(®)

PozNAMKA. Greenova funkcia a magic rule sa ¢asto pouzivaji v naozaj tazkych
ulohach, kde v niektorej etape, alebo dokonca vo viacerych, pouzivame nie presné,
ale iba priblizné metédy. V mnohych pripadoch napriklad pozndme vlastné funkcie
a vlastné hodnoty laplacidnu len v rdmeci urcitého priblizenia. Dalej nekoneény
rad vo vyjadreni Greenovej funkcie vii¢sinou nevieme explicitne spocitat, takze z
neho berieme len koneéne vela élenov, a nakoniec integraly v magic rule tiez asto
vyzaduju priblizné, numerické vypoéty. Dolezité je pritom uvedomif si, Ze samotnd,
metdda je iplne presnd, a vietky tri pribliZenia je moZne drzat pod kontrolou (t.j.
za cenu viicSej namahy dosiahnuf teoreticky Tubovolnt presnost).

15Greenove funkcie pouzivané v rbéznych oblastiach fyziky nie si vzdy a vSade tuplne ana-
logické Greenovym funkcidm z elektrostatiky. Clovek sa teda méze lahko stretnif s niecim, ¢o
sa tiez vold Greenova funkcia, a pritom sa nezanedbatelne lisi od toho, ¢o sme my tu nazyvali
Greenovou funkciou. Prakticky vsetky Greenove funkcie si vsak takym alebo onakym sposobom
definované cez §-funkciu a vsetky umoznuji pomerne jednoduché vyjadrenie v§eobecného riesenia
danej ulohy. Greenove funkcie v elektrostatike teda nie si jednoznaénym prototypom vsetkych
Greenovych funkcii, ale rozhodne si typickym prikladom
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Priklady

1. integrovanie s 0-funkciou
(niekolko jednoduchych ilustraénych prikladov)

a) flg (22 — 1) cos2z 6(z) da b) flg (22 — 1) cosx §(2x) dx
c) [ cos2x §(22 — 1) da d) [12 (2% — 1) §(cos 2z) dz
e) [ exp(—3r?) §(7 — 261) d3r f) [exp(—3r?) 6(x — 2) d®r

g) [ cos(p — 9) 8(7 —2ef) d®r  h) [exp(—3r2) 6(r —2) d*r

2. reprezentdcie 0-funkcie

(neprilis dolezity priklad, ktory je tu len pre akisi tiplnost)

Ukazte, ze Gaussova, Lorentzova, Dirichletova a Fourierova reprezentécia d-funkcie
naozaj konverguju k d-funkcii, t.j. ukdzte, ze ak r(x,e) je prislusné reprezenticia,
potom lim. o [*_ f(z)r(z,e)dz = f(0).

(Navod: substiticia  — ey, pri Dirichletovi sa zide aj ffo
je Dirichlet s e = 1/K.)

bm(z) dx = 7, a Fourie

3. magic rule v guli

(priklad na pouzitie explicitne zndmej Greenovej funkcie)

a) Ukazte, ze normalovd derivicia Greenovej funkcie vystupujiica v magic rule, je
v pripade oblasti so sférickou hranicou s polomerom R rovna %.

b) Vodivd sféra s polomerom R je na rovniku rozdelend izolujicou vrstvou na
dve polsféry. Potencial hornej polsféry je V', potenciadl dolnej —V. V strede gule
ohranicenej touto sférou je homogénne nabitd gulicka (polomer a, nédboj ¢). Najdite
potencidl v guli v tvare integrélu (integral v magic rule pocitat netreba, v skutoénosti
sa v tomto pripade nedd vyjadrit v elementdrnych funkciéch).

4. magic Tule v polpriestore

(dalsi priklad na pouzitie Greenovej funkcie explicitne najdenej metédou ima-
gindrnych nédbojov)

a) Metédou imagindrnych ndbojov néjdite Greenovu funkciu pre polpriestor.

b) Priestor je rozdeleny rovinou na dva polpriestory. V rovine je Stvorec so stra-
nou a, oddeleny od zvysku roviny tenkou izolacnou vrstvou. Stvorec je drzany na
potencidle V', zvySok roviny je uzemneny. V jednom polpriestore je homogénne na-
bita kocka (hrana b, ndboj ¢, poloha stredu R. N4jdite potencidl v celom priestore
v tvare integrdlu (integraly pocitat netreba).

5. Greenova funkcia pre Stvorec

(priklad na numericki suméciu Greenovej funkcie v tvare nekone¢ného radu)

a) Napiste vyjadrenie 2-rozmernej Greenovej funkcie pre stvorec cez vlastné funkcie
a vlastné hodnoty laplacidnu (ktoré sme explicitne nasli v ¢asti 2.2).

b) Pre stvorec 0 < z,y < 7 ndjdite G pre ¥ = (w/4,7/4) a 7' = (3w/4,37/4) s
presnostou na jedno percento a na jednu desatinu percenta. Porovnajte poéet élenov
radu, ktoré treba zobrat v tychto dvoch pripadoch. (Po&itaé je tvoj kamarat.)
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Po prepisani Maxwellovych rovnic do rovnic pre elmag potencidly (v casti 1.4)
sme videli, ze v bezne pouzivanych kalibraciach hra pri opise elektromagnetickych
javov kli¢ovi tlohu vlnova rovnica. V Lorentzovej kalibricii st rovnicami pre elmag
potencialy vlnové rovnice, v Coulombovej kalibracii je to Poissonova rovnica a vl-
novéa rovnica. O Poissonovej rovnici sme hovorili v kapitole venovanej elektrostatike.
A podobne, ako pomaha porozumenie Poissonovej rovnici chapaniu elektrostatiky
a rieSeniu jej iloh, pomaha porozumenie vlnovej rovnici chapaniu elektrodynamiky
a rieseniu jej tloh. Preto sa teraz budeme podrobnejsie venovat vlnovej rovnici.

VInové rovnica je linedrna parcialna diferencidlna rovnica a plati pre fiu, ako pre
vSetky linedrne rovnice, princip superpozicie. To medziinym znamend, ze vSeobecné
rieSenie rovnice s nenulovou pravou stranou je rovné vSeobecnému rieSeniu rovnice
s nulovou pravou stranou plus jednomu konkrétnemu (partikuldrnemu) rieseniu
rovnice s nenulovou pravou stranou. Pri vySetrovani vlnovej rovnice budeme po-
stupovat tak, Ze najprv sa budeme venovat vSeobecnému rieSeniu rovnice s nulo-
vou pravou stranou a potom, v nasledujicej kapitole, partikularnemu rieseniu rov-
nice s nenulovou pravou stranou. Dévodom takéhoto postupu je fyzikalny vyznam
tychto dvoch rieseni, prvé z nich predstavuje elmag vlny, druhé tzko sivisi s el-
mag Ziarenim. Vzhladom na mimoriadnu déleZitost oboch tychto veci im radsej
venujeme dve samostatné kapitoly, ktoré ovéem navzdjom velmi tizko sivisia.

VInova rovnica sa v zasade riesi spésobom, ktory sme sa naucili pri Poissonovej
rovnici — rieSenie sa uhddne. A podobne ako pri Poissonovej rovnici sa uhddne nie
celé riesenie na prvy Sup, uhadne sa len jeho tvar a detaily sa potom dopocitaju.
RieSenie zalozené na ¢iasto¢nom uhadnuti je vSak dplnym riesenim len vtedy, ak
mame dokazanu vetu o jednoznac¢nosti riesenia. Takato veta naozaj plati aj pre
vlnovu rovnicu a my ju sformulujeme a dokdzeme, ale az v nasledujucej kapitole.
Dovod je jednoduchy: veta plati aj pre vilnovd rovnicu s nenulovou pravou stranou,
nielen pre $pecidlny pripad nulovej pravej strany. Preto je prirodzené ju dokézaf
v kapitole venovanej vieobecnému pripadu rovnice s nenulovou pravou stranou. A
z nej potom vyplynie aj jednoznaénost rieSeni rovnice s nulovou pravou stranou,
najdenych v tejto kapitole.

Vlnové rovnica opisuje este jednu velkd éast fyziky, ktord z nejakych dévodov
vypadla z mnohych zdkladnych kurzov fyziky. Re¢ je o akustike. A aby sa akustika
necitila uplne ako od macochy, venujeme jej v tejto kapitole kde-tu aspon zmienku.

65
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1. Vlny v jednom rozmere (opakovanie)

Elektromagnetické viny s trojrozmerné v dvoch zmysloch. Jednak su to viny
v trojrozmernom priestore a jednak veli¢iny ”ktoré sa vlnia” (polia E, B resp.
vektorovy potencial /_1') su vektorové veliciny. Napriek tejto dvojakej trojrozmer-
nosti maji elmag vlny vela vlastnosti spolo¢nych so svojimi jednorozmernymi ses-
trami. Na druhej strane, napriek tejto pribuznosti prindsa dvojakd trojrozmernost
vela $pecifickych noviniek. Aby sme si jasne uvedomili, ¢o st vieobecné vlastnosti
vSetkych typov vin a ¢o nové so sebou prinasaju tri rozmery, zopakujeme si strucne
zname veci z jednorozmerného pripadu t.j. z kmitov struny. Potom prejdeme ku
skalarnym vindm v trojrozmernom pripade a nakoniec k vektorovym vlnam v troj-
rozmernom pripade.

Toto opakovanie jednorozmerného pripadu mozno samozrejme preskoécit. Jed-
noduchym testom ¢i je takéto preskocenie vhodné alebo nie, je nasledovnd otézka:
Aké viny sa "vinia” na gitarovej strune — postupné alebo stojaté? Kym budete &itaf
dalej, naozaj sa zamyslite na touto otdzkou a sformulujte (stac{ sdm pre seba) jasni
a jednoznaént odpoved.

Nie, nie, nie — neméte &tat dalej, kym neméate sformulovant jasnt odpoved
(¢i uz s rozmyslanim alebo bez neho). Takze ak4 je vasa odpoved?

No dobre, tak podme éitat d'alej. Beind odpoved ”stojaté!” nie je sice ne-
spravna, ale rozhodne to nie je t4 najlepsia odpoved. Ovela spravnejsiou odpo-
vedou je mierny smiech, asi taky, aky by v nds vyvolala otdzka ¢&i plati 4 = 2 + 2
alebo 4 = 3 + 17 Samozrejme, ze platia obe tieto rovnosti, rovnako ako plati, ze na
gitarovej strune sa ”vlnia” stojaté aj postupné viny.

Stojaté a postupné viny nie st dve rdzne veci, ale skor dva rozne jazyky
pouzivané na opis tych istych veci. Kazdd stojatd vlnu mozno napisat ako su-
perpoziciu postupnych vin a naopak. Ak vadm toto nie je celkom jasné, radsej nic
nepreskakujte.

TakZe podme na tie viny v jednom rozmere, ¢o s napriklad viny na strune.
Kmity (pozdfine aj priecne) struny, na ktord neposobia nijaké vonkajsie sily, si
opisané vlnovou rovnicou (pripomenme, ze tato rovnica je dosledkom Newtonovej
pohybovej rovnice a Hookovho zdkona)

0? 1 92

preRlC e
kde u predstavuje vychylku struny (¢ uz pozdfinu alebo prie¢nu) v mieste = a
v Case t. Na rieSenie tejto rovnice sa pouzivaju dva zdkladné pristupy, ktorym
budeme hovorit d’Alambertov a Fourierov. Prvy z nich vedie prirodzene k pojmu
postupnych an, druhy k pojmu stojatych vin. v pripade elmag vin sa ukéze byt
omnoho vhodnejsim Fourierov pristup, takze opakovanie d’Alambertovho pristupu
je tu len kvoli istej tiplnosti a moze sa preskoéit.

u(z,t) =0
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d’Alambertov pristup je zalozeny na zisteni, ze funkcie typu u(x + v - t) si
rieSeniami vlnovej rovnice na priamke t.j. neohranicenej strune. Tieto rieSenia sa
nazyvajd postupné viny (pozri pozndmku na str. 8). Avsak nie kazdé riesenie vinovej
rovnice na priamke je postupnou vlnou. Napriklad stcet dvoch postupnych vin
postupujicich opaénym smerom je rieSenim vlnovej rovnice (princip superpozicie),
ale nie je postupnou vlnou. Vyznam postupnych vin nespociva v tom, ze by to
boli jediné rieSenia vlnovej rovnice, ale v tom, ze vSetky rieSenia vlnovej rovnice sa
daju pisat ako superpozicie postupnych vin. Vyjadrenie rieSenia vlnovej rovnice s
danymi pociatoénymi podmienkami cez superpoziciu postupnych vin sa dd pomerne
lahko uhadnuf. (Uhddnutie a jeho jednoduché preverenie je zdkladnou technikou
d’Alambertovho pristupu.)

Ak je pociatoénd vychylka zadand lubovolnou funkciou f(z) a po€iatoénd rychlost

zmeny vychylky o = % je nulova, t.j. ak
u(,0) = f(z).
(x,0) =0

potom

uwt) =5 (flatv )+ flz—v-1))

pociatocéna vychylka sa rozdeli napoly a kazdé polovica sa rozbehne svojim smerom.
Z principu superpozicie je jasné, ze u(x,t) je rieSenim vlnovej rovnice a priamym
dosadenim sa d4 okamzite presvedéit, Ze spliia uvedené po¢iatoéné podmienky.
Ak je pociatoénd vychylka nulovd a pociatotnd rychlost zmeny vychylky je
zadand Iubovolnou funkciou h(z), t.j. ak
u(z,0) =0
(x,0) = h(z)

potom
u(x,t):%(H(ervot)fH(mfvot)) kde H(m):l/h(x)dx

(“primitivna funkcia k rychlosti zmeny pociatoénej vychylky sa rozdeli napoly, a
kazdéd polovica sa rozbehne so svojim znamienkom svojim smerom”). Znova je z
principu superpozicie jasné, ze u(x,t) je rieSenim vlnovej rovnice a znova sa pria-
mym dosadenim dé okamZite presvedéit, Ze spiﬁa uvedené pociatotné podmienky.

Princip superpozicie a priame dosadenie ndm d& rieSenie aj vo vSeobecnom

pripade pociatoénych podmienok
u(z,0) = f(x)
U(z,0) = h(x)

a sice

1
u(z,t) = 3 (fz+v-t)+ flz—v-t)+ Hx+v-t)—Hx—v-t))
A tym je tdloha na priamke raz a navzdy uplne vyrieSend v tvare superpozicie

Styroch postupnych vin. (Co ale neznamens, Ze neexistuje aj iny uzitoény zapis
toho riesenia, ktory m4 podstatne iny tvar.)
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Z rieSenia vlnovej rovnice na priamke sa d4 jednoduchymi trikmi najst (uhddnut)
rieSenie rovnice na polpriamke s pevnym alebo volnym koncom. Pevnému koncu v
bode = = 0 zodpovedd okrajovd podmienka u(0,%) = 0, volnému koncu podmienka

uw'(0,t) = 8"6(,2 ) — 0 (volny koniec totiz zodpoved4 nulovej pruznej sile a t4 je dand
podla Hookovho zdkona derivéciou vychylky podla x). Trik spoé¢iva vo vhodnom
roz§ireni problému z polpriamky na celt priamku. Nech st napriklad na polpriamke

x > 0 zadané pociatotné podmienky

u(@,0) = f(=)
4(z,0) =0

Dopliime tieto pociatoéné podmienky na celi priamku tak, aby vyslednd funkcia
bola nepdrna pre pevny a parna pre volny koniec t.j. definujme funkciu f(z) takto

fo) = f@) prex>0

—  _f(=2) preaz<0 pevny koniec

f@) = f(@) pre w = 0 volny koniec
=  f(-z) prez<O0

Riesenie vlnovej rovnice na priamke s poc¢iatoénymi podmienkami danymi funkciou
f(x) a nulovou po¢iatoénou rychlostou uz pozndme a toto riesenie je riesenim rov-
nice aj na polprlamke pricom na nej splna poc1atocne podmienky. Ostava teda len
zistit, ¢i splna aj okrajovi podmienku a to Splna ako sa znovu lahko presvedéime
priamym dosadenim. Ind moznost je nerobit mechanické dosadenie, ale predstavit
si, ¢o daju v bode x = 0 dve oproti sebe beziace polovice parnej resp. neparnej
pociatoénej podmienky. Takéto predstavenie si riesenia umozni uvidiet, Ze dolava
beziaca polovica, ktord v bode z = 0 “opusta” polpriamku, sa v tomto bode streté s
doprava beziacou polovicou, ktord na polpriamku “prichddza”. Obe polovice maju
pritom v tomto bode presne rovnaki alebo presne opa¢ni hodnotu, takZe z hladiska
polpriamky to vyzerd tak, ako keby sa dolava idiica vlna odrazala od pevného resp.
volného konca s opaénou resp. rovnakou fazou.

Nech st teraz na polpriamke z > 0 zadané pociatoéné podmienky
u(x,0) =0
w(z,0) = h(z)
Znovu doplnime tieto pociatotné podmienky na celd priamku tak, aby vyslednda
funkcia bola nepérna pre pevny a parna pre volny koniec.

hiz) = h(z) prex >0

—  _R(-2) prea<0 pevny koniec

hz) = hz)  prex>0 volny koniec
= h(-z) prex<0
RieSenie vlnovej rovnice na priamke je znova rieSenim rovnice aj na polpriamke a
znovu sa mozno lahko presvedéit, Ze na nej spifla pociato¢né podmienky aj okrajovi
podmienku. Riesenie rovnice s vSeobecnymi pociatoénymi podmienkami u(z,0) =
f(z), 4(x,0) = h(x) je dané sictom rieseni dvoch predchadzajiicich pripadov.
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Analogickymi trikmi sa d4 z postupnych vin poskladaf riesenie vlnovej rovnice
na tsecke s pevnymi alebo volnymi koncami. Tentoraz treba rozsirit pociatoéné
podmienky z dsecky na vhodnu periodicku funkciu na priamke. Ak si na usecke
0 < z <l zadané pociatoéné podmienky

u(z,0) = f()
a(x,0) = h(z)

definujeme funkcie f(z), h(z) periodické s periédou 2 nasledovne

fl@) = fl@) pre 0<z<I
= —f(-x) pre —1<x<0 )

hz) = _71(33) pre 0<z <1 pevné konce
= —h(-z) pre —1<x<0

flz) = f(z) pre 0 <z <l
=  f(=z) pre —1<z<0 »

hz) = Zb(l‘) pre 0<z <1 volné konce

h(—z) pre —1<z<0

Znova sa priamym dosadenim alebo spravnym predstavenim si rieSenia presvedc¢ime,
7Ze rieSenia na priamke s pociatoénymi podmienkami f(z), h(z) st rieSeniami na
usecke s danymi pociatotnymi a okrajovymi podmienkami a znova ich mozeme
interpretovat ako odraz s opa¢nou fazou na pevnom a rovnakou na volnom konci.

Vyhodou d’Alambertovho pristupu je jednoduché vyjadrenie rieSenia pomo-
cou pociatoénych podmienok a jasné nahliadnutie niektorych vseobecne znamych
vlastnost{ vin (napriklad odrazu vin na pevnych a volnych koncoch alebo toho,
ze postupné vlny tvoria vhodny jazyk na opis vSetkych vin, t.j. vSetkych rieSeni
vlnovej rovnice). Nevyhodou je, Ze tento postup sa neda dobre zovseobecnit na
viacrozmerné pripady. Vo viacerych rozmeroch s v podstate dva problémy: jednak
pociatoéni podmienku by tu bolo treba rozdelif na nekoneéne vela ¢asti a poslat ich
nekoneéne vela smermi (ale ked rozdelime koneénii poéiatoénti podmienku na ne-
koneéne vela ¢asti, budi tieto ¢asti nulové) a jednak vobec nie je jasné, ako dopl,ﬁat7
(v duchu triku s useckou v jednom rozmere) poc¢iatoéni podmienku v nejakej ne-
pravidelnej ohranic¢enej oblasti na cely priestor. To neznamend, ze d’Alambertov
pristup nehrd vo viacerych rozmeroch nijaki tlohu (d’Alambertovo riesenie na pol-
priamke sa d4 vyuzitf pre riadidlnu premenni v sférickych siradniciach), ale v po-
rovnani s Fourierovym pristupom hra d’Alambertov pristup vo viacerych rozmeroch
v podstate zanedbatelni tlohu.
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Fourierov pristup nie je ni¢ iné ako metdda separédcie premennych znama z
druhej kapitoly (East 2.2) a spociva v hladani rieSenia v Specidlnom tvare a to v
tvare suc¢inu dvoch funkcii, z ktorych jedna zavisi len od x a druhé len od t. Nie
kazdé riesenie vlnovej rovnice sa véak d4 napisat v takomto tvare a preto to, ¢o
takto ndjdeme budu len urcité Specialne rieSenia. Tieto Specidlne rieSenia su ovSem
vyznamné tym, Ze sa z nich d4 poskladat (v tvare superpozicie) vieobecné riesenie.

Dosadenim funkcie u(x,t) = X (z) - T(t) do vlnovej rovnice dostaneme

1" 1

X (@) T(t) - — - X(2) “T(t)=0

a predelenim tejto rovnice funkciou © = X - T' dostaneme

X'(x) 1 T@) 0

X(z) v T(t)

l'av4 strana je sti¢tom dvoch €lenov, z ktorych kazdy zavis{ len od jednej premenne;j.
Ak teraz fixujeme jednu z nich t.j. ak polozime napr. t = gy, stane sa ¢len zavisly
len od tejto premennej konstantou (nazvime ju «) a z celej rovnice potom vyplyva,
7e tejto konstante musi byt rovny aj druhy élen a to pre lubovolni hodnotu druhej
premennej t.j. ze

1 T(tax)
X(x) v2 T(tax)
Ak naopak fixujeme premennt x, dostaneme analogicky

1"

1 T@) X' (zax)

2T X))

Pre funkcie X (z) a T'(t) tak dostdvame rovnice

"

X =a-X
T=a 02T

Pévodna parcidlna diferencidlna rovnica sa ndm takto rozdelila (separovala) na dve
obyc¢ajné diferencidlne rovnice, ktorych riesenie je uz pomerne jednoduché.

Ak uvaZujeme rieenie vlnovej rovnice na tisecke s pevnymi resp. volnymi kon-
cami, potom sa okrajové podmienky u(0,t) = wu(l,t) = 0 (pevné konce) resp.
u'(0,t) = u/(I,t) = 0 (volné konce) prejavia na funkcii X (z). Ak totiz funkcia
T'(t) nie je identicky rovnd nule, potom z okrajovych podmienok vyplyva

X0)=X({)=0 pevné konce
X'(0)=X'(l)=0  volné konce

Ak je funkcia T(t) identicky rovnd nule, potom je identicky rovné nule celé riesenie
u(x, t). Toto je skutocne rieSenim nasej dlohy pre trividlny pripad nulovych pociatoc-
nych podmienok a len pre tento pripad. Aby sme sa nemuseli k tomuto trividlnemu
pripadu stale vracaf (v pozndmkach podobnych tejto), explicitne ho vyli¢ime z
nagich d'alsich ivah, vedomi si toho, Ze toto trividlne riesenie existuje.

V pripade rieSenia vlnovej rovnice na priamke sa nepozaduje splnenie nijakych
okrajovych podmienok t.j. nijakych podmienok pre wu(z,¢) v limite x — oo,
pozaduje sa zatial len ohrani¢enost rieSenia na celej priamke. Ohranicenost riegenia
je velmi prirodzens poziadavka, pretoze neohrani¢enost znamend nekoneéne velké
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vychylky a tie nemaji dobry fyzikalny zmysel, kedZe samotné vinovéa rovnica je
odvodend z predpokladu malych vychyliek (len pre ne totiz plati Hookov zdkon).
Neohrani¢ené riesenia teda povazujeme za nefyzikédlne a vzdy (nielen na priamke)
hladdme len ohrani¢ené rieSenia vlnovej rovnice. Ohrani¢enost funkcie u(z,t) sa pre-
javi na funkcidch X (x) a T'(t). Z ohranic¢enosti u(x,t) vyplyva pre T(t) nie vsade
rovné nule ohrani¢enost X (x) a pre X (x) nie viade rovné nule ohrani¢enost T'(¢).

Rieseniami rovnice pre funkciu X (z) si funkcie eVar e=Var nre o > (), funkcie
siny/—a - x, cosv/—a - x pre a < 0 a funkcia a-z+b pre @ = 0. Okrajové podmienky
v pripade tsecky a podmienka ohranicenosti v pripade priamky vylucuji spomedzi
rieSen{ exponenty a nekonstantni linedrnu funkciu (pre volné konce a pre priamku
prezije okrajové podmienky linedrna funkcia v podobe konstantnej funkcie X = b).
Uloha mé teda rieSenie len pre o < 0. Pre tisecku navyse okrajovd podmienka v
bode x = 0 vyluc¢uje spomedzi rieSeni cosinus v pripade pevného a sinus v pripade
volného konca. Okrajovd podmienka v bode = [ okrem toho uréuje, pre aké o
m4 vobec tiloha rieSenie. Aby mohla byt této tloha splnend, musi byt /—a rovna
celociselnému ndsobku 7. Celkove teda mame

nm

X(z)=sin (k-z) kde k= T pevné konce

X(z) =cos (k-z) kde k= T volné konce

X(z)=sin (k- x)
X(z) =cos (k-x) kde k je lubovolné Ziadne konce (priamka)

a v pripade volnych koncov je riesenim tlohy este aj konstantna funkcia X (z) = b

Rieseniami rovnice pre funkciu T'(¢) si pre a < 0 funkcie

T(t) =sin (w-t) a T(t) = cos (w-t) kde w=vV—-a-v2=%k-v
Pre a = 0 je rieSenim linedrna funkcia, ktora ak nie je konstantna, tak vedie na s
¢asom neohranicene rasttiice resp. klesajuce, t.j. nefyzikdlne riesenie u(x, t). Jedinym

.....

u(z,t) = c.

Rieseniami vlnovej rovnice v hladanom tvare si teda funkcie
u(z,t) =sin (k- z) sin (w-t) u(z,t) =sin (k- z) cos (w-1)
u(z,t) = cos (k- x) sin (w-1t) u(x,t) = cos (k-x) cos (w-t)
ktorym sa hovori stojaté vlny, ndzov pochadza z toho, ze celkovy profil viny sa

nehybe, len sa s ¢asom periodicky zviiuje a zmensuje. (V pripade volnych koncov
je rieSenim ulohy eSte aj konstantnd funkcia u(z,t) = c.)

Nie kazdé riesenie vlnovej rovnice je ovSem stojatou vlnou. Superpozicia sto-
jatych vin je rieSenim vlnovej rovnice (princip superpozicie), ale nie je stojatou
vlnou. Vyznam stojatych vin nespociva v tom, ze by to boli jediné rieSenia vlnovej
rovnice, ale v tom, Ze vietky rieSenia vlnovej rovnice sa dajui pisat ako superpozicie
stojatych vin. Ukézeme, ze je tomu naozaj tak.
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Superpozicia vsetkych moznych stojatych vin ndm déva

pevné konce:

u(z,t) = Z cn sin (ky, - x) cos (wy -t) + ¢, sin (k, -x) sin (w, -t)
n=1
volné konce:
u(z,t) = ¢ + Z cn cos (ky -x) cos (wy -t) + ¢, cos (ky-x) sin (w, -t)
n=1

ziadne konce (priamka):
u(z,t) = /000 c(k) sin (k-z) cos (w-t) + (k) sin (k-x) sin (w-t) +
+ ¢(k) cos (k-x) cos (w-t) + ¢ (k) cos (k-z) sin (w-t) dk

kde k, =", w, =" a w(k)==Fk-v (pricom argument k sa v w(k)

casto kvoli viicsej prehladnosti zdpisov vynechdva).

Po dosadeni pociatocnych podmienok do tychto superpozicii dostaneme

pevné konce:

:L'):Z cn sin (ky, - x) Z ¢ wy sin (ky - x)
n=1

n=1

volné konce:
flx) = ¢ + i cn cos (ky, - x) h(z) = i e, wy cos (ky - x)
n=1 n=1
ziadne konce (priamka):
flx) = /000 c(k) sin (k-z) + ¢(k) cos (k-x) dk

hiz) = /000 (k) w(k) sin (k-x) + & (k) w(k) cos (k-z) dk

Uvedené rady a integraly vSak nie sd ni¢ iné ako Fourierove rady resp. Fourie-
rove integraly pre funkcie f(z) a h(x). A kedze kazd4 slugnd funkcia sa d4 rozvinit
do Fourierovho radu resp. integralu, znamené to, ze superpoziciou stojatych vin
sme schopni splnit Tubovolné slusné pociatoéné podmienky (slusnost funkcie je tu
dand predpokladmi vety o Fourierovom rade resp. integréle).

Koeficienty v nasich superpoziciach stojatych vin st pritom dané znamymi vztahmi

pevné konce:

!
/ f(x) sin(k, - z) dx c,=— = / h(x) sin(ky, - z) dx
0

volné konce (pri oznaceni ¢ = ¢):

—
~| N

—_
~| N

Cn = % /0 f(x) cos(ky, - z) dx = — /Ol h(z) cos(ky - ) dx
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ziadne konce (priamka):

/: f(x) sin(k - z) dzx

i A

/_Oo f(z) cos(k-x) dx

=L 1 - z) sin(k - z) dx
c(k)—w(k)ﬁﬁmh()s (k-2)d

dy = — 1 z) cos(k-z) dz
)= < 7 [ ha) costhw) d

™

V pripade rieSenia na priamke je ovela prehladnejs{ zapis pomocou komplexnej
exponenty. Ak zapiSeme Fourierov integral vo vyjadreni pociatoénych podmienok
v komplexnom tvare, dostaneme

u(z,t) = /_00 C(k) e cos(wt) 4+ C'(k) e™** sin(wt) dk

¢o v dosledku cos(wt) = §(e™! + e a sin(wt) = —%(e™! — ") prejde na

u(z,t) = / a(k) e'®rmet) 4 g(k) elheten g,
kde (k) = $(C(k) +1iC’'(k)), B(k) = 3(C(k) —iC'(k)). Explicitné vyjadrenie
koeficientov (k) a (k) je (pozri nasledovnii matematicki pozndmku)

/_ Z <f(x) + w(ik)h(xg .
| (1@ - St} e as

Superpozicie stojatych vin® s uvedenymi koeficientami si rieSeniami vlnovej
rovnice s danymi pociatoénymi podmienkami. Fourierov postup nés teda doviedol k
rieSeniu vlnovej rovnice s danymi okrajovymi podmienkami pre Iubovolné (slugné)
pociatoéné podmienky. Nevyhodou Fourierovho riesenia je, Ze rieSenie je v tvare
nekone¢ného radu, ktory nevieme vzdy explicitne séitat (takze sme ¢asto odkdzani
na to, ze séitame len niekolko prvych ¢Elenov tohto radu a dostaneme tak urcité
priblizné riesenie). Dalsou nevyhodou je, Ze koeficienty tohto nekoneéného radu si
dané v tvare integrdlov, ktoré mozu byt zna¢ne komplikované. Vyhodou (z hladiska
elektrodynamiky rozhodujiicou) je moznost pomerne jednoduchého a prirodzeného
zovSeobecnenia na viacrozmerné pripady.

Q
—

™
~

|

N~ N
¥~ ¥~

1Stojaté viny maji podobne ako postupné vlny ti vlastnost, Ze sa z nich d4 poskladat
lubovolné riesenie vlnovej rovnice. Mozno nebude na skodu v tejto stvislosti explicitne zdéraznit,
ze stojaté a postupné vlny nie st dve rézne veci, ale dva rozne jazyky vhodné na opis tych
istych veci. Prekladovy slovnik medzi tymito dvomi jazykmi, t.j. vyjadrenie stojatych vin cez
postupné a naopak, poskytuji sictové vzorce pre sinus a cosinus, Cize jednym smerom napriklad
sin(kz) sin(wt) = %(cos(k‘z — w t) — cos(kz + wt)) a druhym smerom napriklad cos(kx — wt) =
cos(kz) cos(wt) 4 sin(kx) sin(wt) V pripade zépisu cez komplexné exponenty je prekladovy slovnik
medzi stojatymi a postupnymi vinami este jednoduchsi: e?(kz+wt) — gikegiwt Preto m4 vyjadrenie
ziskané ako superpozicia stojatych vin zjavne tvar superpozicie postupnych vin.
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Matematicka poznamka — koeficienty Fourierovho radu a integralu

Fourierov pristup redukuje riesenie vinovej rovnice na vypocet koeficientov Fou-
rierovho radu resp. integralu. Pre tplnost si pripomeiime, ako sa tieto koeficienty
pocitajai.

Fourierov rad pre funkciu f(x) definovanii na intervale (0, 1) dostaneme doplnenim
na periodicku funkciu s periédou {

fl@) = u +Z ayp, Sin (277“3) + by, cos <27rlnm>

n=1

1 1
_ %/0 f(z) sin (277”) dx by, = %/0 f(x) cos (27rlnx> dz

doplnenim na neparnu periodickd funkciu s periédou 2! Fourierov rad cez sinusy

o0

™ ! . (TNT
f(z) = zjl ap, sin (T) an = %/0 f(z)sin (T) dx

n=

a doplnenim na parnu periodickd funkciu s periédou 2! Fourierov rad cez cosinusy

bo > ﬂ'na: 2 [ ™
f(a:)—f +Z by, cos( i bnzj/of(x)cos(T> dx
Fourierov integral dostaneme z Fourierovho radu pre funkciu definovand na (—1,1)

+Z ansm( )—i—b cos (mlw:)
ap, = %/_lf(ac)sin (Zﬂ) bn, l/ f(z cos ) dz

v limite I — oo. Najjasnejsie to vidno ak jednotlivé ¢leny radu vynasobl'me sikovne
zapisanou jednotkou v tvare 1 =n— (n—1) = dn = % 0™ a oznacime ¢, = % o,

_ <2
Cn = 7 by, ¢im dostaneme

flx) = % +n§::1 Cn sin(?xmnl7T + ¢y cos(ﬂl )(5T
= % + c(kn) sin(k,x) 0k, + c(ky) cos(knx) ok,
n=1
kde sme dalej oznatili k, = T, cn = c(kn), ¢y = ¢(ky,). Ak by uvedend suma

nesla do nekonecna, ale len do nejakého konecného N, bol by to N-ty integrilny
sucet funkcie c(k) cos(k-x) 4 ¢(k) sin(k - z). Ak suma ide do nekonecéna a ak stcasne
ide 0k, do nuly (¢o pre I — oo ide) potom je tdto suma (pokial existuje) rovna
ur¢itému integralu z danej funkcie t.j.

flz) = % + /000 c(k) sin(kzx) + ¢(k) cos(kz) dk
kde
l l
c(k) = Tim L2 [ @)sinka)de (k) = Jim 11 [ (@) cos(he) do
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Uvedené limity nemusia existovat pre lubovolnd funkciu f(x), ale pokial je tato
funkcia absoltitne integrovatelns, t.j. pokial existuje koneény integrél [* | f(z)| dz,
potom tieto limity existujd. Fourierov integral sa preto definuje len pre absolitne
integrovatelné funkcie. Pre také funkcie je ag = lliglo 1 fi , f(z) dz = 0, takze celkove

flx) = /OO c(k) sin(kz) + ¢(k) cos(kz) dk
0
kde | |
c(k) = ;[ f(z) sin(kx) dx c(k) = ;[ f(x) cos(kz) dx

Fourierov integral vyjadreny cez imaginarne exponenty ziskame, ak vo vyjadreni

it 7 533 _ 1( ik —ikx : _ __ i tkx —ikx
cez sinusy a kosinusy pouzijeme cos kx = 5 (e +e7'") asinkr = —5 (e —e™"")

f(l‘) — /OO —C(k) %(eikx _e—ik:c) 4 E(k) %(eilm +e—ikx) dk

0
= / C(k) e™** dk

kde C(k) = 3 (¢(k) —ic(k)) pre k > 0 a C(k) = % (¢(—k) +ic(—k)) pre k < 0.
Vsimnime si, ze C(—k) = C*(k). T4dto podmienka sivisi s redlnostou funkcie f(z)
(ktort sme doteraz nezdoéraznovali, ale cely ¢as sme ju implicitne predpokladali).
Vyjadrenie C'(k) cez imagindrnu exponentu ziskame dosadenim vyjadreni c(k) a
¢(k) cez sinusy a cosinusy:

Ck) = %% /_00 f(z) cos(kx) — i f(x) sin(kz) dz

_ 1 > —ikx
= %/700 fl@)e dx

Fourierova transformécia je uzitoéné (ako este uvidime) zobrazenie, ktoré priradf

funkcii f(x) funkciu C(k), ktorti v tejto sivislosti oznacujeme symbolom f(k) a
voldme ju Fourierovym obrazom funkcie f(z). Inverzné zobrazenie, ktoré priradf

funkeii f(k) funkciu f(x) voldme spétnou Fourierovou transformdciou. Fourierova
transformdcia (tam a spiit) je teda definovand ako

f(x) < f(k)
kde?

fm:[fﬂmwwk

O

1
27

[ e I T B
f(z)—m[wf<k> dk f(k)—m/wf() d

Niekedy sui v definicii vymenené znamienka v exponentdch. Okrem toho sa pomerne ¢asto nepiSe
vlnovka nad f(k) a medzi funkciou a jej Fourier obrazom sa rozlisuje na zdklade toho, ¢i je
premennou x alebo k.

2Casto sa pouziva definicia, v ktorej sa faktor rozdeli medzi funkciou a jej Fourier obraz
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Priklady

1. d’Alambertovo riesenie

(Elementarny priklad, nevyzadujici ni¢ viac nez bezduché dosadenie do vzorca.)

a) Pociatocné podmienky pre kmity nekonecnej struny si u (z,0) = exp (—x2 / a2),
u(z,0) =2 (1+ z2/a2)71. Néjdite u (a, 3a/v)

b) Pociatotné podmienky pre kmity polpriamky « > 0 st wu (z,0) = 1—exp (fxz/a2),
u(z,0) = 2 [1 — (1 + x2/a2)_1] Néjdite u (a,3a/v) (a to ako v pripade pevného,
tak aj volného konca).

¢) Pociatotné podmienky pre kmity konecnej struny 0 < z < 2a st u(z,0) =
1 —exp(—2?/a?), u(z,0) =2 [% -(1 +x2/a2)71}. Néjdite u (a,3a/v) ak je

koniec z = 0 pevny a koniec z = 2a volny.

2. Fourierovo riesenie

(Elementarny priklad, vyzadujici poéitanie jednoduchych integrélov.)

a) Néjdite Fourierovo rieSenie vinovej rovnice na tsecke 0 < x < L s pociatoénou
podmienkou u (z,0) = x(z — L) /L?, wu(x,0) = v/Lsinwx/L. (Konce bud oba
pevné, alebo oba volné).

b) N4jdite Fourierovo riesenie vlnovej rovnice na priamke s pociatoénou podmien-

kou u (z,0) = exp —22/a?, u(z,0) = 0.

3. Casovo premenné okrajové podmienky

(Délezité rozsirenie prikladov uvddzanych v texte.)

a) Separdciou premennych rieste vlnovi rovnicu na tsecke 0 < z < L, s nulovymi
pociatoénymi podmienkami a s okrajovymi podmienkami w (0,¢t) =0, wu(L,t) =
sin Qt. Ukazte, ze pre Q — w, = nmv/L dostdvame rieSenie s neobmedzene rasticim
koeficientom (rezonancia). (Navod: rieSenie = superpozicia danej okrajovej tilohy
s lubovolnymi poé. podm. a tilohy s pevnymi koncami a vhodnymi po¢. podm.)
b) To isté pre u(0,t) =0, wu(L,t)=g(¢)

¢) Toisté pre o (0,t) =~ (), u(L,t)=g(t)

4. Dve spojené struny

(Délezité rozsirenie prikladov uvddzanych v texte.)

a) Uvazujme dve spojené struny s roéznou rychlostou vin v kazdej z nich, t.j.
uvazujme rovnicu v? u” (x,t) —u(z,t) =0 pre 0 <z <1, a v3 u"(x,t)—u(z,t) =0
pre | <z < L. N4jdite rieSenie tejto tlohy pre pevné konce w (0,t) =u(L,t) = 0.
(Ndvod: hladké zogitie rieSeni v jednotlivych strundch, pricom hladkost znamena
spojitost funkcie aj derivécie.)

b) Ukézte, ze v limitnom pripade v; = vy dostaneme rieSenie pre strunu dfzky L.
c) Ukézte, ze v limitnom pripade v; > vy su frekvencie kmitov systému zhodné s
frekvenciami kmitov prvej struny (nédvod: rovnicu pre w riesit iterdciami, nahliadnut
7e nulta je casto dobrd, vd'aka tomu ze tangens je velky len v tizkych intervaloch)?

37 tohto prikladu plynd dve poucenia, po prvé frekvencie systému pozostavajiceho z dvoch
podsystémov nemusia mat vobec nié spolo¢né s frekvenciami tychto podsystémov, a po druhé za
istych $pecialnych okolnosti mézu mat predsa len vela spolo¢ného. Typickym prikladom takychto
§pecidlnych okolnosti st strunové hudobné néstroje, kde frekvencie nédstroja st v podstate dané
frekvenciami kmitov struny.
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2. Vlny v troch rozmeroch

2.1. Skalarne viny v troch rozmeroch.

Ako sme uz spomenuli, elmag viny si trojrozmerné jednak tym, Ze ide o vilny
v trojrozmernom priestore a jednak tym, ze ide o vlny vektorové. Obe tieto troj-
rozmernosti so sebou prindsaju nové javy a aby sme jasne videli, ktoré javy su
sposobované jednou a ktoré druhou trojrozmernostou, vysetrime ich postupne.

Skalarne vlny v troch rozmeroch si opisané vlnovou rovnicou

. 19> .
A@(Tvt) - ﬁ @@(T,t) = p(r,t)

pricom ¢ je neznama funkcia (ktorej sa hovorf vlna) a p je nejakd zadand funkcia
(ktorej sa hovori hustota zdrojov). Podobne ako v jednorozmernom pripade sa v
tejto ¢asti budeme zaoberaf najmi pripadom p(7,¢) = 0, t.j. vinovou rovnicou s
nulovou pravou stranou, resp. homogénnou vlnovou rovnicou.

PozNAMKA. (O akustike.) Skaldrna vinovd rovnica je zdkladnou rovnicou akus-
tiky. Veli¢ina ¢ sa v tomto pripade nazyva akusticky potencial. Rychlost @ vzduchu
(resp. inej latky) a zmena tlaku dp (vzhladom k rovnovdZznemu tlaku pg) st dané
vzfahmi

w = —grad ¢
0

6 = —_—

p poatsp

kde po je rovnovéazna hustota vzduchu. (Pozri priklady.)

PozNAMKA. (O okrajovych podmienkach v akustike.) Okrajové podmienky
méame v akustike pod kontrolou prostrednictvom rychlosti alebo tlaku na hranici.
Ak pozname rychlost stien, tak normélové zlozka tejto rychlosti w, = — (grad ¢),,
ur¢uje Neumannove okrajové podmienky pre ¢. Ak pozndme tlak na hranici (v
Tubovolnom ¢ase), tak integréciou vztahu 6p = po2 ¢ dostaneme hodnotu ¢ na
hranici, ¢o zodpoveda Dirichletovym okrajovym podmienkam.

Dirichletove okrajové podmienky dobre vystihujd napr. pomery na otvorenych
koncoch pistal, kde je tlak podstatne nizsi ako vo vnutri pistaly a len mélo sa lisi
od atmosférického tlaku, takze tu s rozumnou presnostou mézeme uvazovat dp = 0,
¢o vedie na nulovi Dirichletovu podmienku na otvorenom konci*. Poznamenajme,
7e na rozdiel od struny, volnému koncu v akustike zodpovedaji nulové Dirichletove
okrajové podmienky a pevnym nehybnym stendm nulové Neumannove podmienky.

4Ak uvazujeme Sirenie sa zvuku z pistaly, potom otvoreny koniec pistaly predstavuje hranicu
ulohy pre vonkajsi priestor a v tomto pripade je podmienka ép = 0 neadekvédtna, pretoze dp uz
nie je zanedbatelné vzhladom k typickym tlakom vo vonkajSom prostredi.
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Riesenie vlnovej rovnice separaciou premennych

V pripade struny sme si uviedli dve zédkladné stratégie riesenia — d’Alambertovu
a Fourierovu. Prvé z nich viedla na jednoduché riesenie typu “pociatocna vychylka
sa rozdeli napoly, a kazda polovica sa rozbehne svojim smerom”. Akondhle vsak
prejdeme k vy$$im dimenzidm, prestdva tato stratégia vo vieobecnosti fungovaf
(hoci funguje v istych Specidlnych stvislostiach, napr. vo sférickych siradniciach
funguje pre tzv. radidlnu ¢ast). Problém je, zhruba povedané, v tom, Ze vo viac ako
jednom rozmere je nekone¢ne vela smerov a teda pociatocni podmienku by bolo
treba rozdelif na nekoneéne vela rovnakych (a teda nulovych, to je ten problém)
casti a kazdud poslat svojim smerom.

Na druhej strane Fourierova stratégia prechod k vys$sim dimenziam prezije
veelku v dobrom zdravi, aj ked ani ona nie celkom bez problémov. Bezproblémové
¢ast je odseparovanie ¢asovej premennej od priestorovych premennych. Problémy
st v separacii priestorovych premennych.

Za¢neme s bezproblémovou casfou. Separécia ¢asovych a priestorovych pre-
mennych znamend hladanie rieSenia v tvare

p(r,t) = R(F)T (t)
¢o po dosadeni do homogénnej vlnovej rovnice a vykonani standardnych povinnych
cvikov met6dy separacie premennych® vedie na

AR(F) = aR(7)
T (t) = v?aT (t)

Prva z tychto rovnic je pre a = 0 Laplaceovou rovnicou, ktorou sme sa zaobe-
rali v elektrostatike. A podobne ako tam, aj tu slizia rieSenia Laplaceovej rovnice
na splnenie okrajovych podmienok, ak tieto nezdvisia od ¢asu. Na rozdiel od elek-
trostatiky sa vSak teraz mozu okrajové podmienky menif s asom, ale to nie je
podstatna komplikdcia, vid priklady.

Pre a # 0 a pre nulové okrajové podmienky (ktoré si modzeme dovolif ak
”ukojime” zadané okrajové podmienky rieseniami Laplaceovej rovnice) je prvé rov-
nicou pre vlastné funkcie a vlastné hodnoty laplacidnu. Aj o tejto rovnici bola rec¢
v kapitole o elektrostatike, kde sme si uviedli (hoci nedokdzali) dve velmi délezité
skuto¢nosti: 1. Vlastné hodnoty laplacidnu su redlne zaporné ¢isla. 2. Vlastné fun-
kcie laplacianu tvoria tplny ortonormalny systém.

Z prvej z nich vyplyva, Ze rieSeniami rovnice pre T () st pre a # 0

T(t) = sin(w - t) a  T(t) =cos(w-t) kde w=vV—-«

Z druhej potom vyplyva, Ze vieobecné rieseniec moézeme napisat ako superpoziciu
vlastnych funkcif laplacidnu nasobenych harmonickymi ¢asovymi zavislostami sin wt
a cos wt, pricom koeficienty tejto superpozicie uréime z pociatoénych podmienok®.

Separdcia ¢asovej premennej ndm teda previedla problém riesenia vlnovej rov-
nice na problém hladania vlastnych funkcii a vlastnych hodnét laplacidnu v danej
oblasti.

5Pozri riesenie Poissonovej rovnice v kapitole o elektrostatike alebo jednorozmernej vlnovej
rovnice v predchddzajicej Casti.

6Pozri riesenie Poissonovej rovnice v kapitole o elektrostatike a jednorozmernej vlnovej rov-
nice v predchadzajuicej casti.



2. VLNY V TROCH ROZMEROCH 79
Konkrétne priklady

N4jst vlastné funkcie laplacidnu pre nejaki konkrétnu oblast je vo vSeobecnosti
velmi azk4 dloha, ktord pre viicsinu oblast{ vieme zvlddnut len réznymi pribliznymi
metodami. V pripade hranatych oblasti nam vsak Fourierova metdda, t.j. metoda
separdcie premennych, vyriesi aj ttito tlohu. Tym ziskame niekolko konkrétnych
prikladov, ktoré nam poslizia ako ilustracia vSseobecnych vlastnosti rieSeni skalarnej
vlnovej rovnice v troch rozmeroch.

Vzhladom na to, Ze postup je prakticky totozny s postupom v elektrostatike,
nebudeme ho opakovat, ale uvedieme rovno vysledky. Tieto vysledky by mali byt
na zéklade naSej doterajSej skiisenosti s elektrostatikou a jednorozmernou vlno-
vou rovnicou oéividné. Ak nie si, vrelo odporti¢ame precvicit si metédu separicie
premennych eSte raz a naozaj k tymto vysledkom dospiet.

neohraniceny priestor
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Bk) = % 5/ <f <f*>> R

kde f(7) = ¢(7,0) a h(F) = (7, 0) st zadané pociatotné podmienky.

POZNAMKA. Riesenie je superpoziciou funkcii e!(* 7#«-1) ktorym sa hovori ro-
vinné monochromatické viny. Tento ndzov pochddza z toho, Ze uvedené funkcie
maji jednoznacni frekvenciu w (ktord v pripade svetla uréuje jednoznacénu farbu,
odtial monochromatické) a z toho, Ze ich hodnota je vo vetkych rovinach kolmych
na vektor & konstantné (odtial rovinné). Tito posledni vlastnost vidno okamzite
z toho, ze podmienke k74 w.t = const vyhovuju pre Tubovolny dany ¢as ¢ prave
polohové vektory 7 zodpovedajice bodom v takychto rovinach.

POzZNAMKA. V neohrani¢enom priestore sa ¢asto pouZiva aj rieSenie v tvare
tzv. (monochromatickych) sférickgch vin %ei(k"i”‘t), kde r je radidlna premennd
sférickych siradnic, pricom koeficienty rozvoja do tychto sférickych vin st funkciami
uhlovych sférickych premennych ¢ a 9. Riesenie v tomto tvare dostaneme separaciou
premennych v sférickych suradniciach, ¢o je vec ktord v tychto prednaskach ne-
robime, ale vrele odporiéame pokusif sa urobif si ju samostatne a postup aj
vysledky porovnaf s knihami (napr. z tedrie elmag pola, z kvantovej mechaniky, z
matematickej fyziky alebo parcidlnych diferencidlnych rovnic).



80 3. ELEKTROMAGNETICKE VLNY

hranaty vlnovod

oblast v smeroch z, y ohraniend obdlZnikom a v smere z neohranic¢ens
nulové Dirichletove okrajové podmienky”

nﬂ-y i(kz—wt) i(kz4wt)
= (mn (k). + Bon (k). )

2 2
Winn (k) = v\/<7z7r) + (T) + k2
@ y
O () /LL / / d*r ! ——h(7) | sin L i DY ik
mn\t = Lyﬂ' wmn(k‘) L, L,
MTL . NTY i,

LLyﬂ/Ll/ / & ( mn() (7’)> ST

m,n=1

Brn (k)

Sl ——e€

PozNAMKA. Pre kazdd dvojicu prirodzenych &fsiel (m,n) existuje minimélna

frekvencia wilt = vmy/m?/L% +n?/L2. Vinovodom sa teda nemozu sirif viny

Tubovolne nizkej frekvencie. Konkrétny tvar w™? sa tyka hranatého vinovodu, ale

existencia minimdlnej frekvencie je véeobecnd vlastnost vinovodov.

hranaty rezondtor
oblast ohrani¢end kvddrom, nulové Dirichletove okrajové podmienky (ako priklad)

o0
. lmx | ommy . nmz , .
E sin — sin sin — (clmn COS Wimnt + €y SIN Wimnt)

L. L, L.

o=y () + (1) + ()

mmy . NTZ
sin
Ly L,

l,m,n=1

Clmn = 17 /dgrf 7) sm—bln

h(r) Ilrx | mmy . nmz
= dr sin — sin sin
lmn V / Wimn Lx Ly Lz

P0zZNAMKA. Spektrum frekvencii rezondtora je diskrétne. Konkrétny tvar wimn
sa tyka hranatého rezondtora, ale diskrétnost spektra frekvencii je véeobecna vlast-
nost rezondtorov.

"Nulové Neumannove okrajové podmienky — cosinusy namiesto sinusov. Nenulové okrajové
podmienky — pozri priklady.
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Nepovinna poznamka o hudobnych nastrojoch

Rezondatory vd'adia za svoje meno javu rezonancie, o ktorom zatial nebola reé.
Re¢ nebola preto, lebo v tejto kapitole sa zaoberame rieSeniami vlnovej rovnice s
nulovou pravou stranou a k rezonancii treba nenulovii pravi stranu. Ked uz sme
viak na rezondtory narazili, je lakavé povedat si o nich nie¢o viac. Tomuto ldkaniu
teraz na chvilku podlahneme.

Ak je casova zdvislost pravej strany harmonickd (t.j. sinusovd resp. cosinusova)
s frekvenciou 2 rovnou niektorej z vlastnych frekvencii wy,,, rezondtora, potom
dostaneme riesenia vlnovej rovnice s formélne nekone¢énou amplitidou (ze je to tak,
nahliadneme neskor, nateraz sa uspokojime analégiou s linedrnym harmonickym
oscildtorom). V realistickych pripadoch nie je rezonanénd amplitida nekoneénd,
ale je relativne velkd (znova sa zatial uspokojime s analégiou, tentoraz s tlmenym
LHO). Ak ¢asové zavislost pravej strany nie je harmonickd, mézeme ju rozvinit
do Fourierovho radu a na zdklade principu superpozicie zlozit celkové rieSenie z
rieSeni pre jednotlivé Fourierove komponenty pravej strany. V tomto rieSeni budu
vo vicSine pripadov dominantné prave komponenty s rezonanénymi frekvenciami

wmnr .

A teraz k hudobnym néastrojom. Celd hudba je, zhruba povedané, zalozend na
fakte, Ze Tudskému uchu resp. mozgu si prijemné zvuky s jednoznaénymi frekven-
ciami, hovori sa im ¢isté tony. Prijemné su tiez suzvuky ¢istych ténov pre ktoré je
pomer frekvencii rovny pomeru malych prirodzenych éisiel. Pomeru 1/2 hovorime
oktdva, pomeru 2/3 kvinta, pomeru 3/4 kvarta.

Vytvorenie &istého ténu v lubovolnom rezondtore vyzaduje §pecidlne nastave-
nie poc¢iatoénych podmienok. Pri beznych pociatoénych podmienkach je rieSenie
superpoziciou viacerych vlastnych frekvencii, t.j. viacerych ¢istych tonov. Suzvuk
tychto vlastnych frekvencii uréuje tzv. farbu zvuku daného rezondtora. Ak su po-
mery vlastnych frekvencii celé ¢isla, viimame farbu zvuku ako prijemni. V opa¢nom
pripade ako menej prijemni.

Z hladiska farby zvuku je teda struna s frekvenciami w, = nmv/L idedlny
hudobny néstroj. Nevyhodou struny je ”mald déinnost prenosu pohybu struny na
pohyb vzduchu”. Preto sa struna casto pripdja k nejakému inému rezonatoru, ako je
napriklad telo gitary ¢i husli, a to tak, aby vlastné frekvencie celkovej sustavy boli
v podstate dané vlastnymi frekvenciami samotnej struny (v tejto sivislosti pozri
priklad o dvoch spojenych strundch). Tak vznikd celd rodina strunovych nédstrojov.

Hranaté rezonatory si ako hudobné nastroje vo vSeobecnosti nevhodné, pretoze

pomery frekvencii wy,n, = mr\/mz/L% +n?/LZ +r?/L2 sa pre rozne m,n,r moézu
znaéne 1isit od celo¢iselnych pomerov. Ak je vSak jeden rozmer rezondtora ovela
vics! ako dalsie dva, napr. L, > L,,L, potom niekolko najnizsich vlastnych
frekvencii zodpoved4 trojiciam (m,0,0) a teda pokial nie st ”vybudené” vyssie
frekvencie, cely ”dlhy rezondtor” sa chova analogicky ako struna. Takymto dlhym
rezonatorom hovorime pistaly. Vyssie frekvencie samozrejme obsahuji "neprijemné
primesi” od nenulovych n, r. Tieto neprijemné primesy sa trochu zredukuji ak budu
namiesto dvojice n,r charakterizované len jednym c¢islom, ¢o sa dosahuje vo val-
covych pisfalach (redukcia poctu parametrov z dvoch na jeden je tu dosledkom
zvySenia symetrie). Tak vznikd celd rodina dychovych ndstrojov.
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2.2. Vektorové viny v trojrozmernom pripade.

neohraniceny priestor

Prechod od skaldrnych k vektorovym vindm je v mnohych pripadoch trividlne
jednoduchy a spociva len v dopisani Sipiek na patricné miesta. Napriklad rieSenie
vlnovej rovnice pre nejaki vektorovd funkciu /T(ﬁ t) (ktora nemusi byt nutne vek-
torovym elmag potencidlom)

1 o2
02 2
je dané vzfahmi tiplne analogickymi vztahom pre skaldrne viny

AA(F 1) — A1) =0

A(7,t) :/&'(E).ei(ﬁ.rtw.t) +E(E).ei(E'F+W't) Bk

w=vk =vy/kZ + k2 + k2
&(E) = %(27103 / (f(F) + w(ZE) H(ﬂ) e Ry
1 i g | emiRE g,
27)° / <f " w(z;')h(q)> !

kde f(7) = A(70) a h(F) = 9,A(F,0) si zadané pociatocné podmienky. Uplne
analogicky je aj postup odvodenia tychto vztahov, preto ho tu nebudeme opakovat.

—

B(k) =

N |

To nové, &o so sebou prinasa vektorovost vin, sa d4 vlastne zhrnit do jedného
slova — polarizdcia. VSeobecné rieSenie vlnovej rovnice je superpoziciou rovinnych
monochromatickych vin s roznymi polarizdciami, ktoré si dané vektormi a(k) a

- =

B(k). Na elmag vlndch si v tejto suvislosti pozoruhodné dve skutoénosti:
1. elmag viny v neohrani¢enom priestore su transverzalne
2. elmag vlny vo vlnovodoch a rezonatoroch vo vSeobecnosti nie si transverzalne

Transverzalnost (prie¢nost) vin je casto dosledkom nulovosti divergencie uvazovanej
veliciny. Naozaj, ak plati div A = 0 v lubovolnom é&ase, potom zo vztahu

div A = / ik - A(R).e R 4k B(R). FrHwt) g
a z jeho ¢asovej derivacie dostaneme pre ¢t =0
div f = / (E a(k)+ k- E(E)) i€ Bk =0
div i = [ (F-a() ~ F - 50) we™ ' =0
a ked'Ze identicky nulovd funkcia m4 vietky Fourierove komponenty nulové, dostdvame
k-ak)y=k-B(k)=0

¢o nie je ni¢ iné ako vyjadrenie transverzalnosti (kolmosti na k) vektorov @(k) a (k).
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Pre elektromagnetické polia vo vakuu bez ndbojov a pridov platia vlnové rov-
nice a navyse plati div B=0 (vzdy) a div E=0 (v uvazovanom pripade). Cize
elektrické a magnetické pole vo vdkuu bez nabojov a prudov méa charakter su-
perpozicie prieéne polarizovanych rovinnych monochromatickych vin. To je koniec
koncov stéastou bezného fyzikalneho folkléru, rovnako ako fakt, Ze v rovinnej el-
mag vlne su aj polia EaB navzdjom kolmé. Tito poslednii vlastnost najlahsie
nahliadneme pomocou elmag potencidlov. V Coulombovej kalibracii div A=0 je
(jednozna¢nym) rieSenim rovnice pre skaldrny potencial Ag = 0 (pre p = 0) nulovd
funkcia ¢ = 0. Pre identicky nulové ¢ prejde rovnica pre A na vlnovi rovnicu,
ktorej rieSenim je superpozicia transverzalnych (vd'aka kalibraénej podmienke) vin.
Pri nulovom ¢ d’alej plati

E = —% A= /iw&(k’).ei(g"tw‘” — W ﬂ(l‘f‘).ei(g'ﬂrw‘t) d*k

B=rot A= /zlg X &(E).e“’?'r‘wﬂ + ik x E(E),gi(E'F+w't) Bk

¢ize pre jednotlivé monochromatické rovinné elmag vlny mame
BB la) BR)IF x ak) FLa(R)

E(k)|15(k) B(k)||k x B(F) kLA(k

~—

—

t.j. E(k), B(k) a @(k) resp. A(k) s navzéjom kolmé.

vinovody a rezondtory

Sirenie elmag vin vo vinovodoch a rezonatoroch predstavuje rozsiahlu oblast s
mnohymi velmi doélezitymi elektrotechnickymi aplikdciami. My sa tejto problema-
tiky dotkneme iba velmi zbezne, v podstate ndm pojde len o naznacenie zakladnych
problémov a o velmi hrubé naértnutie spésobov ich rieSenia.

Prvym problémom je realizacia okrajovych podmienok pre elmag polia vo vl-
novode (rezondtore) ktorého steny su tvorené vodi¢om. Tieto okrajové podmienky
st pomerne jednoduché pre idedlny vodié, t.j. vodi¢ s nekoneénou vodivostou. Pre
takyto vodi¢ je rozumné predpokladat nulové elektrické pole v jeho vnitri, pretoze
lubovolné nenulové pole by na zdklade Ohmovho zdkona viedlo k nekoneénym
pridom. Je vSak treba mat na pamiiti, Ze toto je znaéna idealizacia, ktora byva
vhodn4d pri opise realistickej situdcie len ako akési nulté pribliZenie.

Nulovost elektrického pola v idedlnom vodiéi a hrani¢néd podmienka pre tan-
gencidlne zlozky elektrického pola daji pre vnttro vlnovodu nulové okrajové pod-
mienky pre niektoré zlozky E. Pre vlnovod nekonec¢ny v smere osi z dostdvame
vSade na hranici okrajovi podmienku E, = 0, plus eSte jednu podmienku, kto-
rej konkrétny tvar zavisi od prierezu vlnovodu. Napriklad pre hranaty vlnovod
0<zx<L,, 0<y<L, mitdto podmienka tvar

E,(x,0,z)=0 E;(z,Ly,2z)=0
Ey (O,y,z) :0 Ey (Lm,y,Z) :0
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VInova rovnica a okrajové podmienky pre E, v hranatom vlnovode si zhodné s
pripadom uvazovanym v Casti venovanej skalarnym vlnam a tam uvadzané rieSenie
je teda aj rieSenfm pre E,. Doélezitou skutoénostou zasluhujiicou zdoraznenie je
nenulovost vieobecného riesenia pre E,, ¢o znamend, Ze elmag vina $iriaca sa vo
vlnovode méze mat nenulovi zlozku aj v smere vinovodu, t.j. v smere irenia sa
vlny. Vidime, Ze elmag vlny vo vlnovode nemusia byt priecne.®

Pre E, a E, méame trochu odlisnu situdciu — okrajové podmienky (nulové Di-
richletove) mame zadané len na Casti hranice. Avsak akondhle pozndme riesenie pre
E,, mame v skutoc¢nosti okrajové podmienky zadané vsade. Skuto¢ne z podmienky
divE =0 vyplyva

ﬁEy (2,0,2) = —QEZ (2,0,z) QE,/ (,Ly,z) = —%Ez (@, Ly, 2)

0 0 0 0
%Em (0, Y, Z) - _EEZ (ana Z) %Ew (Lw7y7 Z) - _EEZ (Lw7y7 Z)

¢o nie je ni¢ iné, ako nulové Neumannove okrajové podmienky pre E, a E, na
zvysku hranice. Pre E,; a E, méame teda kombinované okrajové podmienky (nie-
kde Dirichletove, niekde Neumannove), to vSak nepredstavuje nijaky novy problém
— takéto tlohy sa riesia analogicky ako tlohy s ¢isto Dirichletovymi alebo ¢isto
Neumannovymi okrajovymi podmienkami (pozri priklady).

Ked uz mame vyrieSent ulohu pre elektrické pole vo vlnovode, dostaneme zo
zndmeho E na hranici a z Maxwellovych rovnic hodnoty derivacii B na hranici.
Tym padom pozndme Neumannove okrajové podmienky pre vlnové rovnice pre é,
takZe mozeme napisat rieSenie pre jednotlivé zlozky B. Nakoniec teda pozname
kompletné elmag pole vo vlnovode.

Uvedeny postup je technicky pomerne pracny. D4 sa sice trochu zjednodusit
(napr. Fourierovou transformdciou rovnic, ¢o je technika, s ktorou sa zozndmime v
d'alsej casti), ale zjednodusenie nie je dramatické. A to si eSte musime uvedomit,
ze sa jedna o najjednoduchsi pripad hranatého vinovodu so stenami z idedlneho
vodi¢a. Nehranatost so sebou prindsa d'alsie problémy, realistické vodice vyzaduji
riesit rovnice nielen vo vlnovode, ale aj vo vodiéi a rieSenia potom ”zosivat” v stlade
s hrani¢nymi podmienkami, ¢o je zjavne obrovské mnozstvo roboty.

Tomuto vietkému sa vyhneme dost brutdlnym sposobom — cell problematiku
elmag vlnovodov a rezonatorov jednoducho preskoé¢ime. Dovodom nie je neddlezitost
tejto oblasti, ale skor jej rozlahlost a technickd naroénost, ktoré by nas odviedli od
inych, tiez dolezitych veci, ktoré nas este ¢akaju.

8Tento jav sa vyuziva napr. v urychlova¢och elementarnych ¢astic na rychlosti blizke rychlosti
svetla. Ak sa nabita Gastica s rychlostou takmer ¢ dostane vo vhodnom momente do vlnovodu,
v ktorom sa $iri elmag vIna rychlostou ¢, a tato vlna méa nenulovii pozdfinu zlozku elektrického
pola, potom je ¢astica pocas “spoloéného behu” cely ¢as urychlovana (pricom sa jej rychlost uz
moc nemeni, ale zvy3uje sa jej energia).
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Priklady

1. Pistaly
()
a) kvader: okrajové podmienky 5 stien uzavreté, 1 koniec otvoreny - explicitné
rieSenie
b) valec (nepovinné)
komentdr: dierky na pistale

2. ndzov

)

3. ndzov

)

—~ Uy
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3. Elektromagnetické vlny v disperznom prostredi
Motivacia

Medzi tym, ¢o sme si o elmag vinach doteraz povedali a medzi tym, ¢o je o nich
vieobecne zndme, je jeden vyznamny rozpor. Cielom tohto motivaéného paragrafu
je na tento rozpor upozornit. Cielom celej tejto ¢asti je explicitne ukdzat, ze v
skutoc¢nosti rozpor neexistuje.

Sucastou vieobecného fyzikalneho folkléru je vysvetlenie rozkladu bieleho svetla,
(sklenenym hranolom alebo vodnou kvapkou) zdvislostou indexu lomu od vlnovej
diiky resp. frekvencie svetla. Sti¢astou folkléru je tiez stivis indexu lomu s rychlostou
svetla danej vlnovej diiky resp. frekvencie v uvazovanom prostredi. Inymi slovami,
vela beznych optickych javov stvisi s tym, Ze v niektorych latkach zavisi rychlost
svetla od frekvencie — tomuto javu sa hovori disperzia.

Na druhej strane rieSenia vinovej rovnice maju tvar superpozicie rovinnych
monochromatickych an, ktoré sa vsetky $iria rovnakou rychlostou v. Skutocne,
rychlost &renia sa postupnej viny f(E 7—w.t) = f(k(i-7—wv.t)) je dand prave pa-
rametrom v vystupujicim vo vlnovej rovnici a je pre vSetky postupné viny rovnakd.
A to je ten rozpor. Pre vysvetlenie mnohych zndmych javov potrebujeme disperziu
an, ale vo vlnovej rovnici pre 1iu jednoducho nie je miesto. Kym budete &itat d’alej,
skuste chvilku porozmyslat o tom, ako tento rozpor odstranit.

Dobre, predpokladajme, Ze ste porozmyslali. Potom je dost mozné, Ze vam
napadlo &osi, ¢o je najéastejsie uvddzané ako prvé odpoved: a to, e k disperzii
dochadza ak je zavislost w od k ind ako linedrna. To je spravna odpoved, ale nie
na nasu otazku. Pre monochromatické rieSenia vlnovej rovnice totiz plati w = vk.
Rozpor (zdanlivy) spoéiva prave v tom, Ze aj ked potrebujeme nelinedrnu zéavislost
w od k, vlnova rovnica si vynucuje zévislost linedrnu. Takze este raz, kym budete
¢itaf d'alej, skiste chvilku porozmyslat o tom, ako tento rozpor odstranit.

Riegenie m4 prichut Kolumbovho vajca: Nie vietky vlny si rieSeniami vinovej
rovnice. Existuji aj iné rovnice, ktorych rieSeniami si rovinné monochromatické
viny. A nielenze existuju, ale niekedy tzko sivisia s Maxwellovymi rovnicami.

Maxwellove rovnice vo vakuu vedi na vlnovi rovnicu. Maxwellove rovnice v is-
tom $pecidlnom prostredi nevedi na vlnovi rovnicu, napriek tomu si ich rieSeniami
rovinné monochromatické vlny, a to s nelindrnou zévislostou w od k. Takymto
§pecidlnym prostredim st latky s tzv. linedrnou paméitfou. Vzhladom na dolezitost
javu disperzie sa teraz budeme elektrodynamike takychto latok venovat trochu pod-
robnejsie. Najprv si objasnime, ¢o sa vlastne mysli pod linedrnou pamétfou, potom
si ukdzeme Ze v latkach s takouto pamitfou Maxwellove rovnice naozaj nevedi na
vlnovi rovnicu a nakoniec sa nauéime Maxwellove rovnice v tomto pripade riesit.
A pritom si ukézeme, Ze ich rieSenia st naozaj monochromatické viny s nelinedrnou
zévislostou w od k.
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Linedrna, stile rovnaka pamit

Linearna skalarna funkcia jednej skaldrnej premennej vyzera takto: y = ax + b.
Linedrna vektorova funkcia jednej vektorovej premennej vyzerd takto: ¢ = AT+ b
kde A j je tenzor. V kartézskych stradniciach m4 tdto zévislost tvar y; = A;;x; + b;.
Ak budeme uvazovat vektory so spojitym indexom ¢ € (t;,ts) namiesto diskrétne-
ho i, potom suma A;jz; = 3 Ajjz; prejde na integral a linedrna zévislost bude
mat tvar

y(t) = /ttf At ) z (') dt + b(t)

A presne takto vyzers linedrna pamit. V izotropnom prostredi s linedrnou pamitou
(a priestorovou lokdlnostou) zavisi vektor D(7,t) od vektora E(7,¢') nasledovne

t

B(#, 1) = / e(t, ') B )dt

— 00
Doln4 hranica integrdlu znamend, Ze priptistame nekoneéne dobrt pamit (¢ize do
lubovolne vzdialenej minulosti). Hornd hranica znamens, Ze ide naozaj o pamét
(takze hodnotu D v ¢ase t ur¢uji len hodnoty E v skorsich ¢asoch). Niekedy sa
pouziva zapis s hornou hranicou rovnou nekoneénu, ale potom musime pozadovat,
aby €(t,t') = 0 pre t < t’ (inak by neslo len o pamét, ale aj o vestenie). V pripade
takzvanych tvrdych dielektrik by sme k integrdlu mali eSte pripoc¢itaf nejaky clen
cf(F, t) nezavisly od E, ale také specialitky tu teraz nebudeme uvazovat.

Ak 14tka nemeni s ¢asom svoje vlastnosti, potom by jej pamif mala byt stéle
rovnaka. To znamend, Ze o druhej by si mala pamitat to, ¢o bolo pred piatimi
mintdtami rovnako, ako si pamétala o pol jednej, ¢o bolo pred piatimi minitami. To
ale znamend, Ze funkcia dvoch premennych e(¢,#') by mala zavisief len od rozdielu
tychto premennych. Pre 14tku s linedrnou, stale rovnakou pamétou teda dostdvame

t
D(7,1) :/ e(t—t) B t)dt
—00
pricom horni hranicu integralu moZzeme posuniit do oo, ak (1) = 0 pre 7 < 0.
Klebeta: Integralu ffooo f&—1t)g(¥')dt' sa hovori konvoliicia funkcif f a g.

Tvrdenie: Fourier obraz konvolicie je 27 x su¢in Fourier obrazov obidvoch funkcii.

Dokaz: Nech K(t) = [ f(t—t')g(t")dt’

) 1 o oo .
= —/ K(t)e "™tdt = —/ / ft —t)g(t)e “dtdt
27'[' —0 27T —0o0 J —0o0

~ 7 . 7’ 7 —1 ! 7 / 7z . 7 .
Teraz vlozime jednotku napisant ako e~ ¢! a urobime substiticiu 7 =t — ¢/,

¢im sa dvojity integral rozlozi na sic¢in dvoch jednoduchych integralov
1 ) ) o) ., B
@ =5 [ foemar [ gere i =2nfw))
271— — 00 — 00
Este jedno tvrdenie, ktoré budeme neskor potrebovat: Ak je funkcia f(t ) reélna, po-

tom pre jej Fourier obraz plati f* (w) = f( ) Dokaz f_ t)e~idt,
cize f*(w) = = [0 f(t)e™tdt a zéroven f(—w) = = f_ Wtdt
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Co to znamend pre elektrodynamiku? Ak urobime Fourierovu transforméciu vo
vietkych premennych (7 aj t) a ak prestaneme pisat vinovku (&i sa jednd o funkciu
alebo o jej Fourier obraz spozndme podla premennych), dostaneme

— —

. 1 o e .
D(k,w) = 7/ D(7,t)e” "k T+ g3 dt = ome(w) E(k, w)
2m)* J oo
Analogicky dostaneme pre magnetické polia H(7,t) = fioo pL(t—t') B(F t)dt
a odtial tiplne rovnakym postupom
. 1
H(k,w)=
(F.) = o

Zaver: Po Fourierovej transformécii vyzera ldtka so stdle rovnakou linedrnou pamitou
ako vakuum (konvoliicia presla na sticin). Akurdt ze € a p~! zavisia od w.

-

/ H(F, t)e_i(E'm'“’t)dgr dt = 27p " (W) B(k,w)

Fourierova transformécia mé este jednu déleziti vlastnost: prevddza derivicie
na nieco jednoduchsie. Vezmime si napriklad Fourierov obraz casovej derivécie
= [7 (L f(t))e**tdt. Metédou per partes to prevedieme na sticet dvoch integralov
= [ L (f)em ) dt — o [ f(t)Lemldt. Prvy z nich je 5= [f(t)e ™
a ak ide f(t) k nule pre ¢ — 400, potom je tento prispevok nulovy. Druhy integral
(aj so znamienkom minus) je £ [* f(t)e"™“!dt = iwf(w), takze celkove mozeme
konstatovat, Ze pre funkcie nulové v nekoneéne prevadza Fourierova tranformacia
derivéciu podla ¢asu na nasobenie faktorom iw

() = iwf(w)
Uplne rovnako nahliadneme, ze pre vyssie derivacie
g [ () = (iw)" f(w)
Ak méme v hre derivécie podla ¢asu aj podla priestorovych stradnic, potom
5 s , -
szf(’f',t) — ij f(k7w)

—

div f(7t) — i
N

k- f(k,w)
F k

rot f(7,t)

ik x f(k,w)

Zaver: Fourierova transformécia prevdadza derivovanie na nasobenie a diferencidlne
rovnice na algebraické. A kedZe algebraické rovnice sa dost ¢asto riesia jedno-
duchsie ako diferencidlne, Fourierova transformécia je d’alou vitanou metédou
rieSenia diferencialnych rovnic. Tito metédu sme mohli pouzit uz aj v niektorych
predchddzajicich pripadoch (napriklad pri rieseni Maxwellovych rovnic vo vékuu
bez ndbojov a pridov), ale tam by to bolo vzdy len alternativa k inej dostatocne
jednoduchej metode. Pripad linedrnej, stale rovnakej pamaéte, je dobrou a prakticky
doélezitou ilustraciou sily tejto metédy tam, kde iné metddy az tak dobre nefunguji.
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Fourierova transformacia Maxwellovych rovnic

Spomenme si, ako sme riesili Maxwellove rovnice vo vakuu bez nédbojov a
prudov. Zobrali sme dve Maxwellove rovnice s rotdciami, urobili sme z nich rotéciu,
vyuzili sme vzfah pre rotéciu rotécie, vyuzili sme zvysné dve Maxwellove rovnice a
"materidlové” vzfahy vo vakuu, éfm sme dostali pre elektrické aj magnetické pole
vlnovi rovnicu. A tito diferencidlnu rovnicu vieme v neohrani¢enom priestore riesit
celkom jednoducho.

Ak by sme tento postup skusili pre prostredie s linedarnou, stdle rovnakou
pamiitou, nedostali by sme vinové rovnice, ale komplikovanejsie integro-diferencidlne
rovnice (odvod'te si ich, nech viete, o ¢om je re¢), ktoré sme sa riesif neucili. Je
preto milym prekvapenim, ze ak najprv urobime Fourierovu transforméaciu rovnic
(¢o znamens prechod k rovniciam pre Fourierove transformécie poli)? stary postup
bez problémov prejde.

Maxwellove rovnice prejdu po Fourierovej transformaécii na

ik - D(k,w) = p(k,w)
ik x E(k,w) = —iwB(k,w)
ik - B(k,w) =0
ik x H(k,w) = j(k,w) + iwD(k,w)

a materidlové vzfahy budd
D(k,w) = 27 e(w) E(k,w)
(R, w) = 27 5 ) BF )

V takejto latke a s nulovymi vonkajsimi hustotami naboja a pridu teda dostaneme
(w) k-E(k
kx E(k
k-B(k,w
kx B(k,w) = we(w) p(w) E(k,w)

w

-

)
) = —wB(k,w)
) —

“E

Bt

Teraz urobime analogicki vec, ako bolo posobenie rotaciou na rovnice obsahujiice
rotdciu. Rotdcii zodpovedd po Fourierovej transformécii ndsobenie (vektorovy sicin)

vektorom ik. Vezmeme teda rovnice s takymto suc¢inom, vyndsobime ich (vektorovo)
zlava vektorom ik a vyuzijeme @ X (bx &) =b(a-c) —c(@-b), ¢im dostaneme
[k — o e(w) p(w)] E(k,w) = 0
[k — w? e(w) p(w)] B(k,w) = 0

9Zovieobecnenie Fourierovej transformdcie na funkcie viac premennych: f(a‘:’, t) < f(E,w),
kde f(z,t) = [ f(k,w) ciFT+et) Brdy a f(kw) = Wf F(Z 1) emitk-Etwt) g3 gy

(nad vektorom f(k,w) mé byt este vinovka, ale tii kvoli vécsej prehladnosti radsej nepiseme).
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Riesenie vyslednych rovnic je tplne jednoduché. Ak je vyraz k? — w? e(w) p(w)
nenulovy, polia musia byf nulové. A ak je tento vyraz nulovy, polia mozu byt
akékolvek. Tieto dve vety sa dajui elegantne zapisat pomocou é-funkcie ako

E(k,w) = &(k,w)d (K — w? e(w) p(w))

kde &(k,w) je Tubovolnd vektorovd funkcie premennych k a w. (Pre B(k,w) plati
analogicky zdpis).

Spétnd Fourierova transforméacia ndm da

E(7t) = /é’(l;;, w) 8 (k* — w? e(w) p(w)) e Tt B

a podobne pre B. Jedna z integracii sa urobi ahko pomocou J-funkcie. Ktora?
Nulové body J-funkcie nédjdeme velmi lahko vtedy, ak povazujeme k za premennti a
w za parameter. Vtedy k = wy/e(w) u(w) a cez k mozeme okamzite preintegrovat v
sférickych stradniciach'® A to je vietko, zvysné tri integraly cez dva uhly v k-pries-
tore a cez w nevieme urobit bez explicitnej znalosti funkeif €(w) a p(w). Vysledok
v tejto forme vsak nie je velmi prehladny, preto sa zvycajne postupuje inak.

Iny postup spociva v tom, ze d-funkcie sa zbavime integraciou cez premennt w.

To znamend, Ze najprv integrujeme cez w pricom v argumente d-funkcie povazujeme
S(w—w;(k))

~ g (wik)]

kde w;(k) st (explicitne nezndme) nulové body funkcie gz(w) = k? — w? e(w) p(w).

Integricia cez w da E(7,t) = [, @ ( ik (B)) Bk kde & (k) = M@ﬁ

w za premennd a k za parameter, pricom vyuZijeme vztah & (gp(w)) = >

sti Tubovolné funkcie premennej k (ti lubovolnost’ zdedili po funkcii &(k,w)).

Kolko nulovych bodov mé funkecia gz(w)? V prvom rade si treba uvedomit,
7e ak je nejaké w rieSenfm rovnice k? — w?€(w)p(w) = 0 pre dané k, potom
je rieSenfm aj —w. Naozaj, pre redlne funkcie f(t) plati f*(w) = f(—w), takze
(—w)? e(~w) p(~w) = W? e (W) p* (W) = (W?e(w) pu(w))* = (k*)* = k2 Nic viac
vo vieobecnosti povedat nevieme. Ak ale budeme predpokladat (a v konkrétnych
pripadoch to potom musime overit), Ze aZ na znamienko je w uréené hodnotou k
jednoznaé¢ne, potom dostaneme

E(F, t) :/ (E) (k- rw(k)t) +ﬂ( ) i(k-P—w(k)t) Bk

— 00

A to je superpozicia rovinnych monochromatickych vin so vSeobecnou, nie nutne
linedrnou zavislostou w(k). Za uvedeného predpokladu sme teda dostali, Ze riesenie
Maxwellovych rovnic bez nabojov a pridov v prostredi s linearnou, stale rovnakou
pamiitou, vyzerd az na jeden rozdiel rovnako, ako riesenie vo vakuu. Obe riesenia
maju tvar superpozicie rovinnych monochromatickych an, rozdiel spoc¢iva v roznej
zévislosti w od k.

10Ak poloZime os z v smere vektora 7, potom

27
/ dw/ dcosﬂ/ d<p/ dké(k, ¢, 9, w)5(k —w e(w) ,u(w)) gi(kr cos B+wt)
27 .
=/ dw/ dcosﬁ/ de @ (p,9,w) ei(wv/e(w) p(w)r cos 9+wt)
—00 —1 0

kde @ (p,9,w) = €(wy/e(w) p(w), p,¥,w) je lubovolnd funkcia premennych ¢, 9, w.
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Grupova rychlost vlnového balika

Vseobecné riesenie Maxwellovych rovnic bez ndbojov a pridov v neohrani¢enom
prostredi s linedrnou, stale rovnakou pamitou, vyzerd takmer rovnako, ako ich
rieSenie vo vakuu. V obidvoch pripadoch ide o superpoziciu rovinnych monochroma-
tickych prie¢ne polarizovanych an, ktoré sa &iria rychlostou @ (vsetky tieto veci
sa nahliadnu rovnakym spésobom ako v pripade vékua a toto je vhodna chvila na
zopakovanie si prislugnych argumentov, k ¢omu je ¢itatel dost néstojéivo vyzyvany).
Jediny rozdiel je vo funkcii w(k). Pre vakuum je této funkcia linedrna w(k) = ck
a rychlost vietkych rovinnych monochromatickych vin je teda rovnakd (rovnd c).
Pre viny v disperznom prostredi to uz pravda nie je. Kazdd monochromatickd vina
sa §iri svojou vlastnou rychlostou wTk), ktorej hovorime fazova rychlost.

Stretnif skutoénti monochromatickd rovinni vlnu, ktora vyzera rovnako v ce-
lom vesmire, je prakticky nemozné. To, ¢o sa v svete okolo nas naozaj vyskytuje,
st rozne superpozicie monochromatickych vin. Superpoziciam, ktoré si nezanedba-
telne velké len v uréitej ohranicenej oblasti priestoru (a to aj v premennych 7t aj v
premennych E, w) hovorime vlnové baliky. Predstavme si teraz vinovy balik zlozeny
iba z monochromatickych vin z malého okolia nejakého Ko. Vsetky tieto mono-
chromatické vlny majii fazovii rychlost blizku k <4 Akd bude rychlost celého
vlnového balika?

Ak by sa nejednalo o vlnovy balik, ale povedzme o kidel husi, z ktorych kazd4,
leti rychlostou priblizne i, potom aj cely kidel leti priblizne takouto rychlostou.
V pripade vin je to inak. Vlnovy balik sa moze pohybovat rychlostou, ktord je
rédovo ind ako rychlost jednotlivych monochromatickych vin. Tento pozoruhodny
a na prvy pohlad prekvapujtci jav sa teraz pokisime aspon do istej miery pochopit.
Sustredime sa pritom na jednorozmerny pripad, ktory je formalne jednoduchsi a
vidno na nom vsetko podstatné. Uvazujme teda jednorozmerny vlnovy balik

u(z,t) :/ a(k) eikz+w(k)t) + B(k) giltkz—w(R)t) g1

— 0

a(k) #0 len na malom intervale (ko — ok, ko + 0k)
B(k) =0 vsade

Rozvinme teraz funkciu w(k) do Taylorovho radu v okoli kg a predpokladajme, ze
5k je natolko malé, aby boli vietky ¢leny vyssie ako linedrne zanedbatelné

w(k) = w(ko) + w/(ko)(k — ko) + ...

kde w'(k) = dolk) Dosadenim a zanedbanim zanedbatelného dostaneme

dk
ko+0k
u(z, t) = / (k) ek ko)t () (b—ka))
ko—6k
ko+0k
— ei(w(ko)*w/(ko)ko)t/ Oé(k) ei(k‘z+wl(ko)kt) dk
ko—0k

¢o je (nejakym periodickym fazovym faktorom zdvislym len od casu vyndsobend)
superpozicia monochromatickych vln, ktoré sa vsetky $iria rovnakou rychlostou
% = w' (ko). Této spoloénd rychlost je zaroveii rychlostou celého balika (preco?)

a hovorime jej grupové rychlost vlnového balika.
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Priklady

1. Precvic¢enie novej metody na starom priklade.
N4jdite rieSenie pre Maxwellove rovnice vo vdkuu bez nédbojov a pridov metédou
Fourierovej transformécie rovnic.

2. Elementdrna ilustrdcia grupovej rychlosti.

Notoricky znéamy priklad, na ktorom je dobre vidief rozdiel medzi grupovou a
fazovou rychlostou, aj ked z neho vébec nie je jasnd univerzalnost tychto pojmov.
Uvazujme superpoziciu dvoch vin u(z, t) = cos(kaz+wt)+cos((k+Ak)z+(w+Aw)t),

pricom Ak < k a ¢ # %122’ Pomocou suctovych vzorcov pre kosinus ukazte, ze
A

superpozicia sa pohybuje grupovou rychlostou A%. (Odporticanie: vysledok si na-
kreslite, najlepsie na pocitaci ako animéciu.)

3. Gaussouvsky balik.



ELEKTROMAGNETICKE ZIARENIE

Cielom tejto kapitoly je preskiimat jeden dolezity fyzikdlny jav, ktory mozno
v struénosti sformulovat nasledovne: Elektricky ndboj pohybujtici sa so zrychlenfm
nevyhnutne straca ¢ast svojej energie. Deje sa to tak, Ze Cast kinetickej energie
ndboja sa premeni na energiu elmag pola a tdto energia "odide do nekonecéna”.
KIiéovym slovnym spojenim predchddzajicej vety nie je spojenie ”premeni sa na
energiu elmag pola” (to este nie je Ziarenie), ale spojenie "odide do nekonec¢na” (az
tomuto hovorime ziarenie). Pod elektromagnetickym ziarenim totiz rozumieme prave
ti ¢ast elemag poli, ktord sa tplne ”oslobodi”od naboja a putuje si priestorom
nezivisle od nidboja. Zmyslom tejto kapitoly je vysvetlit si, ako je existencia tejto
¢asti elmag poli zasifrovand v Maxwellovych rovniciach a ako ju odtial desifrovat.

V pripade vékua bez ndbojov a pridov bolo vyhodné pracovat v Coulombove;
kalibrécii, v ktorej sa Tahko nahliadla transverzdlnost (prie¢na polarizdcia) elmag
vin. Vv pripade nenulovych hustét ndboja a/alebo pridu je vyhodnejsia Lorenzova
kalibracia, v ktorej maja rovnice pre skalarny aj vektorovy potenciél tvar vlnovych
rovnic s nenulovou pravou stranou

. 1 0% 1,
Ap(F,t) — g@@(ﬂt) = —;P(ht)
1 0% -

NA(F,t) — E@A(T»t) = —10j (7, 1)

Tieto rovnice sa teraz nauéime riesif metédou Greenovej funkcie. Podobne ako v
pripade Poissonovej rovnice, aj v pripade vlnovej rovnice bude Greenova funkcia
definovand ako rieSenie rovnice s d-funkciou na pravej strane — akurat, ze tentoraz
to nebude len §(7—7"), ale §(F— ") 6(t —t'). Zékladnd idea metddy spociva v tom,
ze Tubovolni pravi stranu vieme velmi lahko zapisat ako superpoziciu J-funkcii a
rieSenie linedrnej diferencidlnej rovnice vieme potom podla principu superpozicie
okamzite napisat ako rovnaki superpoziciu Greenovych funkcii. (Predchadzajica
veta by mala byt po tom, ¢o sme sa o Greenovej funkcii nauéili pri Poissonovej
rovnici, iplne zrozumitelna. Ak nebola, treba si ju poriadne premyslief a pochopit.)

PozNAMKA. (O zdrojoch v akustike.) Rovnica pre skaldrny elmag potencidl je
prakticky zhodnd s rovnicou pre akusticky potencidl (rozdiel je len v pritomnosti
alebo nepritomnosti faktora —1/¢y). Mnohé zavery tejto kapitoly sa preto budu
tykat aj akustiky. Funkcia p(7,t) sivisi v akustike so zvonku pridanou hustotou
hmotnosti, jej fyzikalna interpretédcia a prakticka realizdcia st teda komplikovanejsie
ako v pripade elektrodynamiky.

93
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1. Jednoznaénost rieSenia vinovej rovnice

Ako sme uz spominali v kapitole o elektrostatike, pri akejkolvek diferencidlnej
rovnici je uzitoéné vyjasnit si hned na zaciatku otdzky existencie a jednoznacénosti
rieSenia. Podobne ako v pripade Poissonovej rovnice, aj pri vlnovej rovnici existenciu
riesenia dokazovat nebudeme (v konkrétnych pripadoch vyplynie z toho, Ze riesenie
explicitne ndjdeme), ale vetu o jednoznacnosti riesenia sformulujeme a dokdzeme
(bez tejto vety by sme nemohli pouzivat uhadnutie ako korektnit metédu riesenia).
Hlavny rozdiel oproti Poissonovej rovnici je, ze v pripade vlnovej rovnice mame
okrem okrajovych podmienok (Dirichletovych resp. Neumannovych)

0
—p(Ft)| =g(Ft
5, P 1) . g(7,t)
v typickej situdcii zadané aj pociatotné podmienky (Cauchyho)

@(7,0) = @o(7) a  @(r,0) = vo(7)

@(Fv t)IS = f(’Fa t) resp.

Veta o jednoznacnosti riesenia pre skaldrnu vlnovu rovnicu
Dirichletova resp. Neumannova okrajova loha (s Cauchyho po-
Glatoénymi podmienkami) pre skaldrnu vlnovi rovnicu v oblasti
ohranicenej uzavretou plochou S ma najviac jedno rieSenie, t.j.
ak rieSenie existuje, tak je jednoznacné.

Dékaz je podobne ako v pripade Poissonovej rovnice zalozeny na Greenovej identite
[ (o104 Vo volav = § po,vds
1% s

(pripomenme, Ze ide o priamy dosledok Gaussovej vety pre vektorové pole pV)).
Nech ¢ a @y st dve riesenia uvazovanej ulohy. Ich rozdiel ¢ = @1 — @9 splna v
2
oblasti ohrani¢enej plochou S rovnicu A¢ — U%%(b = 0 a na hranici S mé ¢ resp.

On® nulovi hodnotu. Ak v Greenovej identite polozime ¢ = %(b a 1) = ¢ dostaneme

o¢ o¢
YA = dv =
/V(at ¢+Vat Vcb) V=0
kde sme vyuzili nulové okrajové podmienky (¢(7,t)|s = 0 = 2 ¢(,t)|s = 0). Dalej
vyuzijeme vlnovd rovnicu
1 0¢ 8%¢ 0¢ B
/V<v28t8t2+v8t'v¢ dV =0

a toto prepiseme do tvaru

d ¢\>
$%A (1}12 (a‘f) + (v¢)2> v =0

Hodnota tohto integralu sa teda v ¢ase nemeni a ked'Ze na pociatku bola nulovd, je
nulovd navzdy. To ale znamend, Ze nulovd je aj podintegrélna funkcia (vzhladom
na to, Ze je viade nezdpornd). A to d'alej znamen4, Ze
oo
5 =
Z nulovosti gradientu vyplyva, ze ¢ = const, a z nulovosti ¢asovej derivéacie vyplyva,
ze tato konstanta je takd ako na pociatku t.j. nulova. Takze ¢ =0 a teda 1 = ps.

0 A Vé=0
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2. Greenova funkcia vlnovej rovnice

VlInovi rovnicu s lubovolnou pravou stranou budeme riesit metédou Greenovej
funkcie, pricom Greenova funkcia je definovand ako riesenie rovnice s é-funkciou (vo
vetkych premennych) na pravej strane. Takdto pravd strana zodpovedd bodovému
naboju, ktory sa objavi v mieste 7/ v jedinom momente #'.

2

AG(F 7' 4,1 — %%G(ﬁ ot t) =86(F—7")o(t —t')
Okrem splnenia rovnice pozadujeme splnenie nulovej okrajovej podmienky (Dirich-
letovej alebo Neumannovej) na hranici a namiesto po¢iatoénej podmienky je v kraji
zvykom pozadovat nulovost funkcie pred objavenim sa zdroja (aby Greenova fun-
kcia opisovala len polia, ktoré vznikli v dosledku objavenia sa bodového zdroja na
pravej strane rovnice)

lim G(7, 7' t,t') =0 G(F, 7' t,t')=0pret <t

r—>00

Takejto Greenovej funkcii sa hovori retardovana, ¢ize opozden4.

Pociatocné podmienky pre retardovani Greenovu funkciu si zaslizia komentar.
Su sice dobre fyzikalne motivované, ale nie su to standardné Cauchyho pociatoéné
podmienky, aké sa vyskytuju napriklad v predpokladoch vety o jednoznacnosti.
Nebude to sposobovat problémy napriklad vtedy, ak budeme chciet najst Greenovu
funkciu ¢iatoénym uhddnutim? Nebude. Po prvé, Greenovu funkciu ndjdeme tento-
raz bez hadania, a po druhé, z podmienky pre retardovani Greenovu funkciu sa
daju relativne Tahko odvodit Cauchyho poéiatoéné podmienky pre tiito funkciu.!

Ak méme riesif vlnovii rovnicu s pravou stranou —é p(7,t), potom tito pravi

Ay faad 1 21 IN\S(7 2 N\ g3, g4+ % A~ L af

stranu mozeme napisat ako —_- [ p(F' )8 (F—7")(t—t') d3r' dt’, co mdzeme chépat

ako superpoziciu d-funkcii. Princip superpozicie ndm hned d4 partikuldrne riesenie
tejto rovnice ako rovnakiu superpoziciu retardovanych Greenovych funkeif

(7 t) = —i/,o(FQt’)G(F, 7ot d3r dt!

€o

Avsak podobne ako v pripade Poissonovej rovnice, aj tu vieme dostat z Greeno-
vej funkcie nielen partikuldrne, ale kompletné vSeobecné rieSenie. Inymi slovami,
aj pre vlnovi rovnicu plati magic rule, podobné tomu, ktoré plati pre Poissonovu
rovnicu. Z Casopriestorovych dévodov sa mu vSak v tomto texte nebudeme veno-
vat a vyslovene zvedavého éEitatela odkdZeme napriklad na velmi peknd knihu G.
Bartona FElements of Green’s Functions and Propagation — Potentials, Diffusion
and Waves. Na porozumenie javu elektromagnetického ziarenia — ¢o je nas hlavny
ciel — ndm totiz bude stacit partikuldrne rieSenie v jednom konkrétnom pripade,
a to v pripade neohrani¢eného priestoru. Nasim najbliz§im cielom je preto najst
retardovanu Greenovu funkciu pre tento pripad.

LAk integrujeme diferencidlnu rovnicu pre Greenovu funkciu podla ¢asu t od t' —e do t/ +¢,

dostaneme ftt,/j: dt AG(7, 7', t,t') — %%G(ﬁ 7't +¢e,t') = 6(F—7'), kde sme v druhom élene
vyuzili pociatocni podmienku pre retardovani Greenovu funkciu, z ktorej jednoducho vyplyva
%G(F, 7/, —e,t') = 0. Pre ¢ — 0 ide prvy integral do nuly, ¢im dostdvame Cauchyho podmienku
v t =t/ pre prvi derivéciu %G(F, 7, t') = —c25(F—7"). Dalsou takouto integraciou dostaneme
Cauchyho podmienku pre samotnt funkciu G(7,77,t',t') = 0.
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Retardovana Greenova funkcia pre neohraniéeny priestor

Uvazujme neohraniceny priestor, v ktorom nie je translacna symetria vlnovej
rovnice pokazend existenciou hranice. Z toho, ze prava strana rovnice pre Greenovu
funkciu zavisi len od rozdielov ¥ — 7/ a t — t' je intuitivne jasné, ze aj Greenova
funkcia by mala zdvisiet len od tychto rozdielov (ak pozndme riesenie pre bodovy
zdroj, ktory sa objavil tu a teraz, prenesenim tohto rieSenia v priestore a v case
dostaneme rieSenie pre bodovy zdroj, ktory sa objavil hocikedy a hocikde). Ak je
teda funkcia g(R,T) rieSenfm rovnice

2

Ag(R,7) — Cﬁﬁg(Ra ) = 0(R)é(7)
s podmienkami limpg_, g(ﬁ, 7)=0a g(]%, 7) = 0 pre 7 < 0, potom retardovand
Greenovu funkciu vlnovej rovnice dostaneme ako G(7, 7', t,t') = g(F — 7', t — t') .

Rovnicu pre g(R, ) riesime technikou, ktori sme sa naucili v ¢asti o vlnach v
disperznom prostredi, ¢ize Fourierovou transforméciou

] ~(7 1 > 3 —1 k-R wT
g(R,T) _)g(kyw) = W/ g(R,T)e (k-B+wr) g3 i dr

Této transformacia prevedie diferencidlnu rovnicu na rovnicu algebraicku

2
w - 1
B+ =)g kw)=
(2455 ) tfe) =
ktorej riesenie je trividlne (pre k%c? — w? # 0)

- c? 1
gkw)= ——=
gk, w) (2m)* w? — k2c2

Netrividlna je integracia pri spétnej Fourierovej transformécii

- o o 2 oo 1 P
g(R,T) :/ g(k,w) !B RHer) B3 duy = (; 7 / T2 etk BAwT) i3 e iy
m)4 o w? — k2c

— 00

— 00

Integracia cez w sa najjednoduchsie robi trikom, ktorym sa integral prevedie na
integral v komplexnej rovine a ten sa potom velmi jednoducho vypoéita pomocou
reziduovej vety. Ale ked'Ze tento trik predbieha prednisku z matematiky, uvedieme
len vysledok? . Pre 7 < 0 mame z ”pociatoénej podmienky”g(é, T)=0apreT >0

_ c °° sinkerT ii s
g(R,T) = BE [m P d’k

2Pre tych, ktori integrovanie v komplexnej rovine a reziduovi vetu poznaju, stru¢ne naznacme
postup. Integral po redlnej osi (n4s integral) doplnime nekone¢ne velkym oblikom v hornej alebo
dolnej polrovine tak, aby sme dostali integral po uzavretej krivke v komplexnej rovine. Ak doplnime
horny oblik v pripade kladného 7, respektive dolny oblik v pripade zadporného 7, potom integral
po tychto oblikoch bude nulovy a v takom pripade sa nas pévodny integrdl po redlnej osi rovna
integralu po prislusnej uzavretej krivke. Pély podintegralnej funkcie vSak lezia na redlnej osi
a preto na vypocet integrdlu nemoézeme priamo pouzit reziduovi vetu. Stcastou triku je preto
mierna deformécia krivky tak, aby sme pély obisli po malych oblacikoch leziacich v dolnej polrovine
(pre¢o v dolnej, uvidime hned’). Teraz mdzeme pouzit reziduovi vetu, ktord ndm d4 pre zdporné
7 automaticky nulu (nijaké pély v oblasti ohranic¢enej krivkou v dolnej polrovine). Presne takyto
vysledok sme pre zdporné T potrebovali (a preto sme malé obliciky umiestnili do dolnej polroviny).
Teraz uz staci pouzit reziduovi vetu aj pre kladné 7. Pély st dva w = ke, rezidud v nich st

:tzikcei(k'Rik”) a 2mi-nasobok sictu rezidui je teda —i—zei kEgin ker.
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Pre d'alie integricie je vyhodné prejst do sférickych siradnic, kde je integral cez
jeden uhol trividlny, cez druhy uhol jednoduchy a integral cez radidlnu premennt sa
ukaze byt jednym zo znédmych vyjadreni d-funkcie. V sférickych stiradniciach mame

e} 1 2 :
B — _L 2 w ik R cos 0
g(R,T) = (27r)3/0 k dk/_1d0059/0 d¢ €

o0 1
_%/ dk k sin kCT/ dcosaeikRCOSO
(2m)2 Jo 1
c ikR _ ,—ikR

%) ' e
——W/O dk k sin ket R

Teraz este vyjadrime sinus cez imaginarne exponenty sin ket = i(e’k” — e iker)

a tym prevedieme integral na zndmy tvar reprezentujici Diracovu d-funkciu

g(ﬁ ) = c 1 /oo " (eik(cr+R) 4 e—ik(er+R) _ gik(eT—R) _ e—ik‘(CT—R))
’ (27)2 2R J,

1 o0 . .
_ - dk ( ik(ct+R) _ l}{)(CTfR))
(2r)2 2R / © €

=R (6(ct+ R) —6(ct — R))

o

— 00

>~
:UQ

Nakoniec si uz len uvedomime, ze ak 7 > 0 alebo R > 0, potom é(ct + R) = 0,
takze pre takéto hodnoty argumentov dostavame

, c
g(R,T) = IR d(et — R)

A ak este vyuzijeme, ze pre kladnt konstantu c plati §(cz) = 1(z), tak mozeme

vysledok zapisat ako
(Ror) =~ 6 (7 =
ST = 4R g c

Tym sme nasli vyjadrenie Greenovej funkcie vsade okrem bodu 7 =0 A R = 0,
ktory by este potreboval jemnejsiu diskusiu. Tej sa vSak vyhneme, pretoze poznat
Greenovu funkciu v tomto bode nebudeme v d’alsom potrebovat.

PozNAMKA. N4jdend Greenova funkcia m4 tvar Coulombovského potencidlu,
ktory sa &iri od zdroja rychlostou svetla a je nenulovy prave len tam, kam stihne
dorazit svetlo za ¢as 7. Na prvy pohlad by sa mohlo zdaf, Ze ide o trojrozmernt
analégiu kruhov na vode, ¢o si vlny na dvojrozmernej hladine. Ale tak to nie je.
Pri tejto prilezitosti je asi vhodné explicitne zdoraznit, Ze zatial o riesenia vinovej
rovnice s nulovou pravou stranou v réoznych dimenzidch sa na seba velmi podobajt,
Greenove funkcie st pre rézne dimenzie vyrazne rozne. Greenova funkcia pre 2D a
1D sa pocita rovnako ako v 3D, ale pri spéatnej Fourierovej transformacii dostavame
iné priestorové integrély. Vo vSetkych dimenziich je retardovand Greenova funkcia
nulovd viade tam, kam este svetlo nestihlo dorazit. Ale za svetelnym frontom (to je
t4 oblast, kam svetlo préve stihlo dorazit) je to v roznych dimenziach rézne. V 3D
je to nula, v 2D funkcia rychlo klesajica od svetelného frontu smerom ku stredu (to
sti, zhruba povedané, tie kruhy na vode) a v 1D je to konstanta. Kto chce vediet
viac, nech si pozrie napriklad uz spominanti Bartonovu knihu.
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3. Elektromagnetické ziarenie bodového naboja

Maxwellove rovnice pre elmag potencialy vo vakuu maju v Lorenzovej kalibracii
tvar vlnovych rovnic s nenulovou pravou stranou
2
Bli0) - 5 gelitt) =~ (1)
nA ) - L2 ) = i
bl 02 atQ ) k)
V dalsom nds bude zaujimat rieSenie tychto rovnic v neohrani¢enom priestore,
pretoze prave v tomto pripade vidno cely jav elektromagnetického Ziarenia najlepsie.

Akonshle pozndme Greenovu funkciu, vieme riesit dand rovnicu s lubovolnou
pravou stranou. Z linedrnosti vlnovej rovnice vyplyva, ze vSeobecné riesenie rovnic
pre elmag potencidly v Lorenzovej kalibrécii sa d4 napisaf v tvare

1
(7 t) = —— /g(F— 7ot —t") p(F )3 dt
€0

A7 t) = —uo/g(r — 7=t JF ) dt

Pocitanie elmag potencialov pre dané rozlozenie naboja a pridu v priestore a v ¢ase
sme teda previedli na poé&itanie prislusnych integralov a tie moézeme teraz pocitat vo
fyzikalne zaujimavych pripadoch. Mimoriadne délezitym pripadom je pritom pripad
hustét naboja a priudu zodpovedajicich pohybujicemu sa bodovému ndboju. Prave
tento pripad teraz pomerne podrobne preskiimame.

Predstavme si pohybujtci sa bodovy naboj e. Pohyb je opisany zavislostou
polohového vektora od ¢asu. Ak oznacime tento polohovy vektor gréckym pismenom
ksi (malé aj velké r uz pouZivame na oznacenie stiradnic), potom je pohyb naboja
dany funciou £(t). Ako vyzers prislusné hustota naboja? To predsa vieme — hustota
bodového naboja je dané é-funkciou, ¢ize

pl7 1) = e8(7 — £(1))
A ako vyzera hustota pridu pohybujtceho sa bodového naboja? Ako sic¢in naboja
a rychlosti, ¢ize )
Ft) = e €lt) 67 - €11)

Elmag potenciély takto sa pohybujﬁceho naboja su teda dané integralmi

— r— _’/ . .
gﬁ(r 47T€O / |T—77/‘ (t—t — | - |) 5(7“/_§(t/))d3r/dtl

R 1 S 2N\ - .
Ay = 37 |TT/|5<t—t’—|r T') () 6(7" — £(t')) d*' dt’

c

Integracia cez d3r’ je trividlna a vedie na

1 7P — £t
Sy i T (R S
471'60 |7 — &) c
1

T eNO / |ng(t/)| N,
A7 t) = /Tﬂtl (ttc> (') dt




3. ELEKTROMAGNETICKE ZIARENIE BODOVEHO NABOJA 99

Posledn4 integracia obsahuje §-funkciu, ktorej argumentom je ind funkcia, konkrétne
g(t') =t —1 - =<

Ak chceme vypocitat prislusny integral, potrebujeme poznatf nulové body tejto

funkcie a jej derivacie v tychto nulovych bodoch. To prvé sa nam nepodari, rovnicu

g(t') = 0 nedokazeme vyriesit pre vieobecne zadané £(t'). To druhé je jednoduché

— -

dg(t 17— &t - it - €t

) _ 180 g )
@ ¢l €0) ‘

kde jednotkovy vektor 7i(t') je definovany vzfahom 7i(t') = —— ()

F=E(t)]

Teraz pride klticovy moment celého vypoctu. Kedze ndboje sa hybu podsvetelnymi

rychlostami, mame |£(t')] < ¢, ¢ize M < 1 a teda g(¢') < 0. To znamen4,
ze funkcia g(t') je vsade klesajuca. Ak je navySe pohyb ndboja obmedzeny len na
nejaki kone¢ént oblast priestoru, potom g(Foo) = +oo. Funkcia ¢ teda zaéina v
kladnych é&islach, konéi v zapornych a cely ¢as klesd. Takd funkcia, ked'Ze je spojité,
mé pre kazdu dvojicu 7, ¢ prave jeden nulovy bod. Nevieme, kde je, ale vieme, ze je
préave jeden. A tato informécia bude dostatotna na vyvodenie zdsadnych fyzikalnych
dosledkov.

Oznagme c¢as, v ktorom funkcia g(¢') nadobida nulovi hodnotu, symbolom et
Tento cas, ktorému hovorime retardovany (oneskoreny), nepozname — vieme len, ze
je jednoznaénou funkciou parametrov 7,¢. Pomocou tohto ¢asu vSak mozeme Iahko

zapisat d(g(t")) ako mé(t’ — tret), CiZe

5Gt,w—5wn>_ L s

1 — 7iltret) E(tret)
c

A teraz uz lahko mozeme napisat vyrazy pre elmag potencialy
e 1 1

p(7t) = — .
dmeo |T - f(trct)| 1— 7 (tret)-E(tret)
(&
1 1 1 N
A7) = O - Eltrd)

AT |7 — E(tret)| 1 — %ﬁﬁ(tt)

Tymto potencidlom sa hovori Liénard-Wiechertove potencidly. Ak pre lepsiu ¢itatelnost
vysledkov este zavedieme oznacenie

—

E(tret) =7 — g(tret)
ﬁ(tret) = g(tret)

potom Liénard-Wiechertove potencidly nadobudnu prekvapujico jednoduchy tvar

(_, t) e 1
7, t) = _
P dmeg p _ RY
C
o epo 0]
Aft) = — ———
=2

kde R a ¥ su chapané v retardovanom c¢ase tyet.
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Na vypocet elmag poli (E = —% —grad ¢ a B = rot A) potrebujeme vypotitat
derivicie potencidlov podla z; a t. Potencidly zavisia od retardovaného ¢asu tyet,
ktory je (implicitne zadanou) funkciou premennych 7 a t, takze ide o derivécie
zlozenej funkcie, pricom niektoré derivécie musime poéitat ako derivacie implicitne
zadanej funkcie. Vypocet je dlhy a nudny, presunieme ho do prikladov, tu uvedieme
len vysledok

e sy

—

i x E(7,t)

B(7,t) =

ol

kde 77 = % a @ je zrychlenie pohybujiceho sa ndboja (brané v retardovanom ¢ase).

Najzaujimavejsie na tychto poliach je, ako sa chovaji pri R — oo, kde dominuji
najpomalsie klesajice ¢leny timerné 1/R. Tymto ¢lenom sa hovor{ radia¢né polia
. e 1ix[(@-%) xa

Erad(""at) = 47T€0 R 02 (1 _ M)S

N . 1 . = N
Biaa(Ft) = - 7i X Eyad(7,t)

Ako vyzera tok energic d’aleko od naboja? Je dany Poyntingovym vektorom

1!

—

_, 1 = . _
rad = Frad X Hyaq = u cErad X (n X Erad)
0

akedze Ax (BxC)=B(A-C)—C(A-B)adalej@i-Epq =7 -(ix...)=0
- 1 .
Srad:@Efadn

Kolko energie pretecie za jednu sekundu plochou s prislichajicou na sfére s
velkym polomerom R priestorovému uhlu dQ2? Ak je pohyb ndboja obmedzeny
na nejaki koneénti oblast priestoru a ak nas zaujima velkd sféra daleko od tejto
oblasti, potom moézZeme cel tiito oblast povazovat za umiestnent v strede sféry, a
vtedy ds = nR2dS), ¢ize intenzita vysielania energie do priestorového uhla df) je

2 | = —»_Q 712
dI:grad-dizl( ¢ ) [ [ = 2) xa]l e,
woc \ 4meg ol (1_%)

Absolitne klticovou vlastnostou tohto vztahu je jeho nezévislost od polomeru sféry.
Mnozstvo energie, ktoré pretecie sférou, je rovnaké pre sféry s Coraz va¢sim polo-
merom. Tato energia teda odteka do nekonecna. Préave tomuto odtekaniu energie
do nekone¢na hovorime elektromagnetické ziarenie. Vsimnime si, ze radia¢né polia
su umerné zrychleniu naboja. To znamenad, ze k vyzarovaniu energie dochadza len v
pripade nabojov pohybujtcich sa s nenulovym zrychlenim pricom energia vyziarend
(nendvratne stratend) za jednu sekundu do priestorového uhla dSQ je

di et 1 Jix [(i-2) xd|
dQ  4weg Ame3 (1 _ ﬁ-z‘;‘)6
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PozNAMKA. (Cerenkovovo Ziarenie)
PozNAMKA. (Einsteinov faktor)

PozNAMKA. (Rutherfordov model)
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Jednoduché specidlne pripady

Ziarenie nerelativistického ndboja. Ak sa naboj pohybuje rychlostou ovela mensou
ako rychlost svetla, t.j. ak v < ¢, ¢leny imerné 2 mozeme zanedbaf a pre vykon
vyziareny do priestorového uhla df) dostaneme

dl ez 1 L L9 e2 a2

d—Q:EHMX(nXaﬂ
kde 0 je uhol mezi zrychlenim @ a smerom 7. Vidime, ze uhlové rozlozenie ziarenia
nerelativistického naboja je také, ze najviac vyzaruje v smere kolmom na svoje
zrychlenie (Eize oscilujici ndboj v smere kolmom na smer oscildcii, ndboj pohybujici
sa po kruznici v smere svojej rychlosti, a to dopredu aj dozadu). Celkovy vykon
ziarenia je dany tzv. Larmorovou formulou

2 2 2m 1 2 2
2

— / d(b/ dcosf (1 —cos?6) = = S
0 —1 3

4dmeg 4med 4meg 3

. 2
= — sin“ 0
4meq 43

Ziarenie ultrarelativistického ndboja. Ak sa ndboj pohybuje takmer rychlostou svetla,
t.j. ak v & ¢, potom rozhodujica je Siesta mocnina v menovateli, ¢o je pre 77 v smere
blizkom smeru ¥ Siesta mocnina velmi malého é&isla. Vidime, Ze uhlové rozloZenie
ziarenia ultrarelativistického nédboja je také, ze suverénne najviac vyzaruje pred
seba (dopredu v smere rychlosti). Takto vyzera typické Ziarenie v urychlovacoch
Castic na relativistické energie (tzv. synchrotrénové ziarenie). Cfm blizsie je rychlost
castice k rychlosti svetla, tym viac energie vyziari (jednak kvoli Siestej mocnice v
menovateli, ale aj kvoli rastticemu dostredivému zrychleniu). Znaéna ¢ast energie
vlozenej do urychlovania ultrarelativistickej astice v kruhovom urychlovaéi sa preto
nevyuzije na zvySovanie jej energie, ale sa vyziari vo forme elmag energie.

Rozptyl svetla na volnom bodovom ndboji. Rozptyl svetla je délezitym fyzikalnym
javom, ktory spoc¢iva v tom, Ze rovinnd elmag vlna dopadne na nejaky naboj,
ten sa zaéne v dosledku Lorentzovej sily pohybovat s nejakym zrychlenim a tym
padom vyzarovat energiu aj do smerov inych, nez bol smer povodnej dopadajicej
elmag vIny. Kolko energie sa vyziari do jednotlivych smerov? Ako ilustrdciu urobime
vypocet pre rozptyl svetla s velkou vlnovou dizkou na volnom bodovom naboji.
Pohybova rovnica pre hmotny bod s hmotnostou m andbojom e je vo vieobecnosti

mi(t) = eE(F,t) + et x B(F,t). V elektromagnetickej vine je B = E/c, takze pre
nerelativistické ndboje mozeme magnetickii silu zanedbat (je o-krat slabsia ako
elektrickd sila). Ak sa ndboj pohybuje v oblasti, ktorej rozmery st ovela mensie
ako vlnova dizka dopadajiicej viny, potom moéZeme elektrické pole povazovat za
priestorovo konstantné a ¢asovo sinusové resp. kosinusové, cize mi(t) = eEq coswt.
Tito rovnicu nemusime riesit, pretoze jediné, éo potrebujeme, je zrychlenie, a to
ndm t4 rovnica priamo ddva. Dosadenim do vzfahu pre vyZiareny vykon dostaneme

dI e? 1 e?E3cos’wt . ,

— = sin“ 0

dQ  4meg 4ncd m2
a vydelenfm hustotou vykonu dopadajicej viny dI = ceqE? cos? w ziskame tGéinny
prierez pre tzv. Thompsonov rozptyl (volny nédboj, dostatoéne velkd vinova dfika)

do e? 2 9
(5 ) «in20
aQ <47r60mc2 > S
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Priklady

1. Polia prislichagice Liénard- Wiechertovym potencidlom. (Nudné, pracné, dolezité.)

Uloha: Vypocitajte EaB pre Liénard-Wiechertove potencidly.
890 atret

Postup:
0 0A; Oyt Op
E=——A —grad,p=————7 — — — — ——
T RN T ok Ot 01 Ot Om
B 0AL 0Ay Otret
e _
TR Oy Otyer Oy
Budeme potrebovat derivdciu vyrazu z L-W potencidlov (vypocitajte ju)
Rv _ v | Ra
d ! Rt °F
R-@ 5.2 2
et R85 (R A1)
a derivécie funkcie t,c4 (7, t) danej implicitne vzfahom t—t .o (7 ) — =& ‘Zt(m))l =0
(vypocitajte ich)
Oty R
ot  p_ R
(&
atret _ _1 Rz
or; ¢ R_ R
(&
Pomocou tychto derivacii (a s vyuzitim eguo = c%) dostaneme
oi_ 1 ma  Epowifs
ot 471eg c? R 2 Rv 3
(r-f2)  (r-%2)
BrCY = e f.) 2 Ra\° ¢
"\(r-£1)" (R £
i 1 1 S
rot A = = rot(p ¥) = g(@rotv — U x grad ¢)
1 e ax R .
— U x grad ¢
_ R

-2 2
c 47eg c ( R )
c
¢o d4 vysledok zo strany 100 (vidno po rozpisani vektorovych sic¢inov v tom vysledku).
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4. Multipdlovy rozvoj potencialov

Této ¢ast nie je prepisand do TeXu, nebola odpredndsans a netreba z nej nié
vediet na skusku.



