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1

ZÁKLADNÉ VZŤAHY OPISUJÚCE
ELEKTROMAGNETICKÉ JAVY

V tejto kapitole si zopakujeme tie veci z prvých dvoch semestrov základného
kurzu fyziky (mechanika, elektrina a magnetizmus), ktoré sú základom prednášky
z teórie elmag pol’a. Pri tomto opakovańı a potom v celej prednáške budeme vo
vel’kej miere použ́ıvat’ základy vektorovej analýzy (gradient, rotácia, divergencia,
Gaussova a Stokesova veta, ...), kto v nich nemá celkom jasno, muśı to č́ım skôr
napravit’. Bez týchto matematických základov nemá zmysel č́ıtat’ d’alej. Našt’astie
toho nie je až tak vel’a, úplne stačia dve kapitoly z Feynmanových prednášok z
fyziky, venované diferenciálnemu a integrálnemu počtu vektorových poĺı (kapitoly
2 a 3 tretieho dielu slovenského vydania).

1. Základné vzt’ahy elektrodynamiky vo vákuu

Vzájomné pôsobenie elektrických nábojov a elmag poĺı opisuje jednak Newto-
nova pohybová rovnica s Lorentzovou silou a jednak Maxwellove rovnice. Newto-
nova rovnica určuje pohyb nábojov pri zadaných elmag poliach a Maxwellove rov-
nice určujú časový vývoj elmag poĺı pri zadanom pohybe nábojov.

Časový vývoj polôh čast́ıc teda opisuje rovnica

m
..

~r = ~F kde ~F = q ~E + q.~v × ~B

a časový vývoj elmag poĺı opisujú rovnice

div ~D = ρ

rot ~E = −∂
~B

∂t

div ~B = 0

rot ~H = ~j +
∂ ~D

∂t

pričom vo vákuu plat́ı

~D = ε0 ~E a ~B = µ0
~H

(Veličiny ρ, ~j, ~E, ~D, ~H a ~B sú funkciami premenných ~r a t, čo sme, kvôli
prehl’adnosti zápisov, explicitne nevypisovali.)

1
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Vo všeobecnosti predstavujú Maxwellove rovnice a Newtonova rovnica sústavu
viazaných diferenciálnych rovńıc pre časový vývoj elmag poĺı a pohyb čast́ıc. Rieše-
nie tejto sústavy je z matematického hl’adiska mimoriadne komplikovaný problém,
ktorý skoro nikdy nevieme presne vyriešit’. Našt’astie sú však v mnohých pŕıpadoch
bud’ elmag polia alebo pohyb elektrických nábojov dané zvonku a vtedy ich časový
priebeh dopredu poznáme, čiže ho nemuśıme hl’adat’.

Poznámka. (ktorú nie je nutné č́ıtat’). Zadanie većı zvonku spoč́ıva v prvom
rade v tom, že si svet rozdeĺıme na uvažovaný systém a zvyšok sveta, pričom o tomto
zvyšku sveta predpokladáme, že o ňom vieme všetko, čo potrebujeme (z experi-
mentálneho hl’adiska ide o delenie na meraný systém a experimentálnu aparatúru,
o ktorej by sme v dobrom experimente naozaj mali vediet’ všetko, čo potrebujeme).
Samotné toto delenie však nestač́ı, v druhom rade je nutné, aby vonkaǰsie sily
t.j. sily, ktorými pôsob́ı na častice systému zvyšok sveta, boli ovel’a väčšie ako sily,
ktorými na seba pôsobia častice systému navzájom. Ak nás v takom pŕıpade zauj́ıma
pohyb čast́ıc systému, potom možno ich vzájomné pôsobenie zanedbat’ vzhl’adom
k pôsobeniu vonkaǰśıch śıl a tým pádom všetky silové polia, čiže aj elektromag-
netické, považovat’ za zadané zvonku. (Pŕıklad: pohyb niekol’kých slabo nabitých
guličiek v poli silno nabitého predmetu alebo v poli silného magnetu.) Elektromag-
netické polia budené systémom sú v uvažovanom pŕıpade v rámci systému ovel’a
menšie ako vonkaǰsie polia, ale mimo systému to už tak byt’ nemuśı, vonkaǰsie polia
môžu s rastúcou vzdialenost’ou klesat’ rýchleǰsie ako polia budené systémom. Ďaleko
od systému môžu byt’ naopak zanedbatel’né vonkaǰsie polia a určujúce sa stanú po-
lia budené pohybom čast́ıc systému. Tento pohyb je v nami uvažovanom pŕıpade
určený vonkaǰśımi silami, čiže ho možno považovat’ za zadaný zvonku. (Pŕıklad: pole
žiarenia pohybujúcich sa guličiek z predchádzajúceho pŕıkladu, alebo pohybujúcich
sa elektrónov v anténe. Iný pŕıklad: pole nabitej paličky, ktorou mávam v ruke.)

V tejto prednáške sa budeme takmer výlučne zaoberat’ pŕıpadmi, kedy je možné
považovat’ pohyb nábojov za zadaný zvonku. (Pŕıpady zvonku zadaných elmag poĺı
patria do mechaniky a pŕıpady, kedy nie je zvonku zadané ani jedno ani druhé sú
pre úvodnú prednášku z teórie elmag pol’a pŕılǐs zložité.)1 Zadanie pohybu nábojov

je vlastne zadańım funkcíı ρ(~r, t), ~j(~r, t) a Maxwellove rovnice v tomto pŕıpade

predstavujú diferenciálne rovnice pre neznáme funkcie ~E, ~D, ~H a ~B pri zadaných
funkciách ρ a ~j. Funkcie ρ a ~j pritom nemôžu byt’ zadané l’ubovol’ne, ale musia

sṕlňat’ tzv. rovnicu kontinuity

∂ρ

∂t
+ div~j = 0

1Ked’ už je reč o sústave viazaných rovńıc Maxwellových a Newtonových, poznamenajme, že

polohy čast́ıc sú v týchto rovniciach oṕısané rôzne, v Maxwellových rovniciach cez ρ(~r, t), ~j(~r, t) a
v Newtonovej rovnici cez polohové vektory ~ri(t). Aby sme mali opis konzistentný, mali by sme v

Newtonovej rovnici prejst’ k hustotám tak, ako sa to rob́ı v hydrodynamike. Newtonova pohybová

rovnica zaṕısaná v tvare d
dt
~p = ~F by pritom prešla na tvar d

dt
hustota hybnosti = hustota sily,

pričom vyjadrenie hustoty Lorentzovej sily ~f(~r, t) cez hustoty elektrického náboja a prúdu by bolo
~f = ρ · ~E + ~j × ~B. Takýto postup sa naozaj použ́ıva v tzv. magnetohydrodynamike a vo fyzike

plazmy, kde treba skutočne riešit’ viazané pohybové rovnice pre náboje a polia. Vzhl’adom k tomu,
že v týchto prednáškach sa uvedenými dvomi oblast’ami klasickej elektrodynamiky nemienime

zaoberat’, nebudeme explicitne prepisovat’ Newtonove rovnice do hydrodynamického jazyka.
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1.1. Čo je vlastne zašifrované v Maxwellových rovniciach a v rovnici
kontinuity. (stručné opakovanie)

div ~D = ρ Coulombov zákon + prinćıp superpoźıcie

Coulombov zákon (elektrostatické pole bodového náboja sediaceho v bode ~r ′)

~E(~r) =
q

4πε0

~r − ~r ′

|~r − ~r ′|3

prinćıp superpoźıcie (elektrostatické pole viacerých nábojov)
pre diskrétne rozloženie bodových nábojov v bodoch ~r ′i resp. spojité rozloženie
náboja s hustotou ρ:

~E(~r) =
∑
i

qi
4πε0

~r − ~r ′i
|~r − ~r ′i |3

~E(~r) =
1

4πε0

∫
V

ρ(~r ′)
~r − ~r ′

|~r − ~r ′|3
d3r′

Cesta od Coulombovho zákona a prinćıpu superpoźıcie k prvej Maxwellovej rov-
nici vedie cez výpočet toku elektrického pol’a uzavretou plochou. Začnime výpočtom
tohto toku pre plochu oboṕınajúcu jeden bodový náboj q, a pre jednoduchost’ zápisu
uvažujme najprv náboj sediaci v počiatku t.j. ~r ′ = ~0.∮

S

~E.d~S =
q

4πε0

∮
S

~r

r3
d~S =

q

4πε0

∮
S

dΩ =
q

ε0

kde sme využili ~r.d
~S

r3 = ~n.d~S
r2 = dS⊥

r2 = dΩ (tieto vzt’ahy človek najrýchleǰsie pochoṕı
vtedy, ked’ si ich nakresĺı).

Celkom analogicky, len s dlhš́ımi zápismi, dostaneme vzt’ah
∮
S
~E.d~S = q

ε0
aj

pre ~r ′ 6= ~0. (V skutočnosti netreba výpočet pre ~r ′ 6= ~0 vôbec robit’, stač́ı si uvedo-
mit’, že tok elektrického pol’a plochou nemôže závisiet’ od toho, kde máme umiest-
nený počiatok súradnicovej sústavy.) Pre niekol’ko nábojov nachádzajúcich sa v ob-
jeme obopnutom uvažovanou plochou dostaneme na základe prinćıpu superpoźıcie∮
S
~E.d~S =

∑ qi
ε0

a pre spojité rozloženie náboja s hustotou ρ∮
S

~E.d~S =
1

ε0

∫
V

ρ(~r ′)d3r′

Teraz pŕıde k slovu Gaussova veta
∮
S
~u.d~S =

∫
V

div ~u dV , ktorá nám dá∫
V

div ~E.dV =
1

ε0

∫
V

ρ.dV t.j.

∫
V

(div ~E − 1

ε0
ρ)dV = 0

a ked’že toto má platit’ pre l’ubovol’ný objem V, muśı byt’

div ~E =
ρ

ε0
čiže div ~D = ρ

Ukázali sme teda, že z Coulombovho zákona a prinćıpu superpoźıcie vyplýva
prvá Maxwellova rovnica. Pozrime sa teraz na opačnú implikáciu.
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Rovnica div ~D = ρ je lineárna parciálna diferenciálna rovnica s pravou stra-
nou. Pre lineárne diferenciálne rovnice plat́ı prinćıp superpoźıcie, t.j. superpoźıcia
(lineárna kombinácia) riešeńı je tiež riešeńım (dôkaz je elementárny, založený len na
tom, že derivácia súčtu je súčet derivácíı). Čiže prinćıp superpoźıcie z uvažovanej
rovnice vyplýva.

Coulombov zákon ovšem z tejto rovnice nevyplýva, a to v tom zmysle, že nie
je jej nevyhnutným dôsledkom. Otázka, či tento zákon je nevyhnutným dôsledkom

danej rovnice, je vlastne otázkou, či pole ~D(~r) = ~r
4πr3 je jej jediným riešeńım

pre ρ(~r) zodpovedajúce jednotkovému bodovému náboju sediacemu v počiatku.
Odpoved’ je, že riešeńım samozrejme je (ved’ rovnicu sme źıskali ako vzt’ah, ktorý

práve toto pole sṕlňa)2, ale nie riešeńım jediným. Všeobecné riešenie rovnice s
pravou stranou je totiž rovné súčtu jednoho partikulárneho riešenia tejto rovnice
(napr. Coulomba) a všeobecného riešenia rovnice bez pravej strany.3

rot ~E = −∂ ~B∂t Faradayov zákon elektromagnetickej indukcie

Faradayov zákon:

tzv. elektromotorické napätie = – rýchlost’ zmeny magnetického toku

Zaṕısané formálne: ∮
~E · d~r = − d

dt

∫
S

~B · d~S

Tentoraz pŕıde k slovu Stokesova veta
∮
~u · d~r =

∫
S

rot ~u · d~S, ktorá nám dá∫
S

rot ~E(~r, t) · d~S = − d

dt

∫
S

~B(~r, t) · d~S

kde sme explicitne vyṕısali argumenty ~r a t, aby sme si uvedomili, že
∫
S
~B(~r, t) ·d~S

je z matematického hl’adiska parametrický integrál s parametrom t. Pre takéto

integrály plat́ı, že ak ~B(~r, t) a ∂
∂t
~B(~r, t) sú spojité funkcie, potom d

dt

∫
S
~B(~r, t) ·

d~S =
∫
S
∂
∂t
~B(~r, t) ·d~S, t.j. možno zamenit’ poradie integrovania a derivovania podl’a

parametra.

Poznámka. (O hladkosti elmag poĺı.) Jedným zo štandardných predpokladov
teórie elmag pol’a je, že všetky elmag polia sú funkcie dostatočne hladké (t.j. spojité
aj s potrebným počtom svojich derivácíı) na to, aby bolo oprávnené prehadzovanie
l’ubovol’ných derivácíı a integrálov. Na základe tohto predpokladu budeme takéto
prehadzovania robit’ vždy, ked’ to bude potrebné, pričom nie vždy budeme explicitne
znovu zdôrazňovat’ predpokladanú hladkost’ poĺı.

2O tom, či nejaká funkcia je riešeńım určitej rovnice sa možno najpriameǰsie presvedčit’ tak,

že ju do tejto rovnice dosad́ıme. V našom pŕıpade by sme však pri tom narazili na isté technické
problémy spojené s tým, že na vyjadrenie hustoty bodového náboja je potrebná tzv. Diracova

δ–funkcia, ktorú si zavedieme až neskôr. Skutočnost’, že vzhl’adom k tomu, ako sme k uvažovanej
rovnici dospeli, vieme dopredu, že Coulombovské pole je jej riešeńım, nám umožňuje vyhnút’ sa
týmto problémom.

3V uvedenom zmysle je teda rovnica div ~D = ρ viac, než len Coulombov zákon a prinćıp

superpoźıcie. Mohlo by sa zdat’, že to je nevýhoda a že rovnica div ~D = ρ obsahuje okrem fyziky,
ktorú sme v nej chceli mat’, aj nejaké nefyzikálne riešenia. Avšak ako uvid́ıme napr. v kapitole o

elektrostatike, bude to, čo táto rovnica obsahuje navyše, vel’mi užitočné.
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Dostávame teda ∫
S

(rot ~E +
∂ ~B

∂t
) · d~S = 0

a ked’že toto muśı platit’ pre l’ubovol’nú plochu S s uzavretou hranicou, muśı byt’

rot ~E +
∂ ~B

∂t
= 0

Tým sme ukázali, že z Faradayovho zákona vyplýva rot ~E = −∂ ~B∂t a ked’že

všetky uvažované implikácie sú vlastne ekvivalencie, plat́ı aj obrátená implikácia.4

div ~B = 0 neexistencia magnetických nábojov

rot ~H = ~j + ∂ ~D
∂t Ampèrov zákon + Maxwellov posuvný prúd

Základné vlastnosti magnetostatického pol’a možno zhrnút’ do dvoch bodov:

• magnetostatické pole nemá, na rozdiel od elektrického, zdroje; inými slovami tok
magnetostatického pol’a každou uzavretou plochou je nulový
• integrál intenzity magnetostatického pol’a po každej uzavretej krivke je rovný
toku elektrického prúdu plochou, ktorej hranicou je táto krivka.

Zaṕısané formálne: ∮
~B · d~S = 0∮

~H · d~r =

∫
~jd~S

a postupom analogickým ako v pŕıpade elektrostatického pol’a, dostaneme pomocou
Gaussovej a Stokesovej vety vzt’ahy

div ~B = 0 rot ~H = ~j

Poznámka. Ampèrove poznatky o magnetostatickom poli sa dajú zhrnút’ do
vzt’ahu analogického Coulombovmu zákonu

~B(~r) =
µ0

4π

∫
~j(~r
′
)× ~r − ~r ′

|~r − ~r ′|3
·d3r′

z ktorého sa dajú rovnice div ~B = 0 a rot ~B = µ0 ·~j źıskat’ podobne, ako sme źıskali

rovnicu div ~D = ρ zo vzt’ahu ~E(~r) = 1
4πε0

∫
ρ(~r ′) · ~r−~r ′

|~r−~r ′|3 · d
3r′ , ale je to technicky

náročneǰsie (kvôli vektorovému súčinu), tak to nebudeme robit’.

4K Faradayovmu zákonu elmag indukcie ešte poznamenajme, že znamienko mı́nus v ňom má
svoje špeciálne meno a volá sa Lenzovo pravidlo.
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Najpriamočiareǰśı prechod od rovńıc elektrostatiky a magnetostatiky k rovni-
ciam platným aj pre časovo premenné polia spoč́ıva v jednoduchom pridańı pre-
mennej t k argumentom poĺı, t.j. v prechode od rovńıc

div ~D(~r) = ρ(~r) div ~B(~r) = 0 rot ~H(~r) = ~j(~r)

k rovniciam

div ~D(~r, t) = ρ(~r, t) div ~B(~r, t) = 0 rot ~H(~r, t) = ~j(~r, t)

Avšak takýto priamočiary prechod vedie k rozporu s rovnicou kontinuity. Ide o

to, že v dôsledku identity div rot ≡ 0 vyplýva z rovnice rot ~H = ~j vzt’ah div~j = 0,
pričom podl’a rovnice kontinuity div~j = −∂ρ∂t .

Maxwell našiel jednoduché zovšeobecnenie rovńıc magnetostatiky, ktoré tento

rozpor odstraňovalo. Toto zovšeobecnenie vychádza z rovnice div ~D = ρ, z ktorej
dostávame

∂ρ

∂t
=

∂

∂t
div ~D = div

∂ ~D

∂t

čo v spojeńı s rovnicou kontinuity dáva

div(~j +
∂ ~D

∂t
) = 0

Ak teda pridáme v uvažovanej magnetostatickej rovnici k prúdu ~j člen ∂ ~D
∂t

(tzv. Maxwellov posuvný prúd), dostaneme rovnicu, ktorá je v pŕıpade časovo ne-
menných poĺı totožná s pôvodnou rovnicou a v pŕıpade časovo premenných poĺı
je konzistentná s rovnicou kontinuity. Maxwellove zovšeobecnenie magnetostatickej
rovnice sa ukázalo byt’ tým správnym zovšeobecneńım, ktoré bolo neskôr mno-
honásobne experimentálne potvrdené (prakticky každé experimentálne potvrdenie
elektrodynamiky je potvrdeńım tohto Maxwellovho zovšeobecnenia).

∂ρ
∂t + div~j = 0 zákon zachovania elektrického náboja

zákon zachovania elektrického náboja:
Rýchlost’ zmeny elektrického náboja v objeme uzavretom danou plochou je rovná
toku elektrického prúdu touto plochou (t.j. náboj nemôže v danom objeme vznik-
nút’ ani zaniknút’ a môže sa menit’ len tým, že pritečie alebo odtečie cez plochu,
ohraničujúcu tento objem). Zaṕısané formálne

dQ

dt
= −

∮
S

~j · d~S

kde znamienko − je kvôli štandardnej konvencii, podl’a ktorej sa za kladný považuje
tok smerom von (premysliet’ si, že to naozaj vedie na znamienko − ).
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Poznámka. Takto sformulovanému zákonu zachovania sa hovoŕı zákon zacho-
vania v lokálnom tvare, na rozdiel od zákona zachovania v globálnom tvare, ktorý
požaduje celkové zachovanie danej veličiny na celom svete. Zákon zachovania v
lokálnom tvare je silneǰśı v tom zmysle, že globálny zákon zachovania z lokálneho
vyplýva (ak je prúd “na konci sveta” t.j. v nekonečne nulový), ale opačne to pravda
nie je. Ak totiž nejaký náboj v istej časti priestoru zmizne a súčasne sa v inej časti
priestoru rovnaký náboj objav́ı, potom sa globálne zachováva, ale lokálne nie.5

Ak teraz zaṕı̌seme náboj Q ako
∫
V
ρ · dV a ak o hustote ρ predpokladáme, že

je dostatočne hladká na to, aby sme mohli prehodit’ derivovanie s integrovańım,
dostaneme ∫

V

∂ρ

∂t
dV = −

∮
S

~j · d~S

odkial’ cez Gaussovu vetu ∫
V

(
∂ρ

∂t
+ div~j) · dV = 0

a ked’že toto má platit’ pre každý objem V, tak ∂ρ
∂t +div~j = 0. Vzhl’adom k tomu, že

všetky uvažované implikácie sú vlastne ekvivalencie môžeme konštatovat’, že rovnica
kontinuity je ekvivalentná lokálnemu zákonu zachovania.

Poznámka. V celej úvahe nehralo nijakú úlohu to, že zachovávajúcou sa
veličinou bol práve elektrický náboj. Čiže sme vlastne ukázali, že pre každú lokálne
sa zachovávajúcu veličinu plat́ı

∂

∂t
(hustota zachovávajúcej sa veličiny)+ div (hustota prúdu tejto veličiny) = 0

Maxwellove rovnice a rovnica kontinuity sú teda zhrnut́ım základných expe-
rimentálnych faktov týkajúcich sa elektriny a magnetizmu. Samotné Maxwellove
rovnice sú vlastne:

• rovnice elektrostatiky a magnetostatiky, o ktorých sa predpokladá, že
platia aj pre časovo premenné polia

• jedna naozaj elektrodynamická rovnica vyjadrujúca Faradayov zákon
• jedno doplnenie statickej rovnice členom odstraňujúcim nekonzistentnost’

vznikajúcu pri prechode od statického pŕıpadu k dynamickému (Maxwel-
lov posuvný prúd)

Do štyroch krátkych Maxwellových rovńıc je teda vložené pomerne vel’a in-
formácie. Význam týchto rovńıc však nespoč́ıva ani zd’aleka len v tom, že umožňujú
stručný zápis tejto informácie. Maxwellove rovnice totiž obsahujú ovel’a viac in-
formácie, než bolo do nich vložené.

5Poznamenajme, že s nelokálnym zákonom zachovania (zmiznutie a súčasné objavenie sa nie-

kde inde) sú problémy, akonáhle vstúpi do hry teória relativity. Pri takomto nelokálnom zachovańı
je totiž podstatná súčasnost’ a tá je pre nesúmiestne udalosti relat́ıvna; čo je v jednej inerciálnej

vzt’ažnej sústave súčasné, v inej už súčasné byt’ nemuśı.
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1.2. Čo ešte je zašifrované v Maxwellových rovniciach.

V podstate celá prednáška z teórie elmag pol’a bude venovaná najdôležiteǰśım
informáciám ukrytým v Maxwellových rovniciach a metódam dešifrovania týchto
informácíı zo samotných rovńıc. Aby sme si však uvedomili, nakol’ko obsažné sú
Maxwellove rovnice, pripomeňme si už v tomto úvodnom paragrafe aspoň jeden
pŕıklad informácie v Maxwellových rovniciach obsiahnutej, hoci do nich nevloženej.

Uvažujme Maxwellove rovnice bez nábojov a prúdov a pomocou istého triku
upravme tieto rovnice na tvar, z ktorého bude jasne vidiet’ charakter ich riešeńı. Trik

spoč́ıva v tom, že na rovnice rot ~E = −∂ ~B∂t a rot ~H = ~j + ∂ ~D
∂t aplikujeme operáciu

rot a využijeme identitu rot rot = grad div−4. Dostaneme

−4 ~E + grad div ~E = − ∂

∂t
rot ~B a −4 ~H + grad div ~H = rot~j +

∂

∂t
rot ~D

čo sa využit́ım vzt’ahov div ~E = ρ
ε0

= 0, ~j = 0 (nulovost’ nábojov a prúdov) a

div ~H = µ−1
0 div ~B = 0 zjednoduš́ı na −4 ~E = − ∂

∂t rot ~B a −4 ~H = ∂
∂t rot ~D, a

ked’ d’alej ešte raz využijeme rovnice rot ~B = µ0 rot ~H = µ0
∂
∂t
~D = µ0ε0

∂
∂t
~E a

rot ~D = ε0 rot ~E = −ε0
∂
∂t
~B = −µ0ε0

∂
∂t
~H, dostávame nakoniec

−4 ~E = −µ0ε0
∂2

∂t2
~E a −4 ~H = −µ0ε0

∂2

∂t2
~H

čo sú tzv. vlnové rovnice.

Poznámka. Rovnica 4~u− 1
v2

∂2

∂t2 ~u = 0 je trojrozmerným zovšeobecneńım jed-
noduchšej, a zo základného kurzu fyziky známeǰsej, jednorozmernej vlnovej rovnice
∂2

∂x2 f(x, t)− 1
v2

∂2

∂t2 f(x, t) = 0. Pripomeňme si, prečo sa táto rovnica volá vlnová.
Pod postupnými vlnami rozumieme funkcie dvoch premenných x, t, ktoré sú v

skutočnosti funkcie iba jednej premennej α, pričom α = x±v · t. Funkcie f(x±v · t)
naozaj zodpovedajú intuit́ıvnemu chápaniu postupnej vlny ako niečoho, čo “ne-
meńı svoj profil a pritom sa hýbe rýchlost’ou v jedným alebo druhým smerom”
(odporúčame poriadne si premysliet’ obsah tejto vety, pričom zrejme nezaškod́ı na-
kreslit’ si nejakú konkrétnu funkciu f(x ± v · t) v niekol’kých rôznych časoch t).
Priamym dosadeńım a využit́ım štandardných vzt’ahov pre derivácie zloženej fun-

kcie ∂
∂xf(α) = df

dα
∂α
∂x = df

dα a ∂
∂tf(α) = df

dα
∂α
∂t = df

dα · (±v) dostaneme ∂2

∂x2 f(α) −
1
v2

∂2

∂t2 f(α) = d2f
dα2 − 1

v2
d2f
dα2 · (±v)2 = 0. To znamená, že každá postupná vlna je

riešeńım danej rovnice a preto je prirodzené hovorit’ tejto rovnici vlnová.

Ukazuje sa teda, že elmag polia majú v pŕıpade nulových hustôt náboja a prúdu

charakter v́ln. Ak za konštanty ε0 a µ0 dosad́ıme ich č́ıselné hodnoty 8.8×10−12F ·
m−1 a 12.6× 10−7N ·A−1, dostaneme pre rýchlost’ týchto v́ln

v =
1

√
µ0ε0

.
= 300000 km · s−1

čo je práve rýchlost’ svetla. A vlny pohybujúce sa rýchlost’ou svetla predsa poznáme,
svetlo samo je takýmito vlnami. Všetko teda nasvedčuje tomu, že svetlo nie je nič
iné ako elmag vlny.
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Ďaľsie teoretické a experimentálne skúmanie tejto viac než prirodzenej hypotézy
ju v plnej miere potvrdilo. Ukázalo sa, že v Maxwellových rovniciach je obsiahnutá,
hoci do nich explicitne nevložená, celá optika. Zavŕšeńım zjednotenia elektriny a
magnetizmu s nimi teda Maxwell znenazdajky zjednotil aj optiku. Toto zjednotenie
dovtedy navzájom nijako nesúvisiacich većı patŕı nesporne k najkraǰśım a najväčš́ım
momentom v celej histórii fyziky.6

Pŕıklady

1. Niektoré užitočné identity vektorovej analýzy
(Precvičenie základného matematického aparátu na odvodeńı niektorých neskôr
použ́ıvaných ident́ıt.)
Dokážte nasledovné vzt’ahy:
rot grad f = 0
div rot~a = 0
rot rot~a = grad div~a−4~a
div(f · ~a) = ~a · grad f + f · div~a
rot(f · ~a) = (grad f)× ~a+ f · rot~a

div(~a×~b) = ~b · rot~a− ~a · rot~b

rot(~a×~b) = ~a · div~b−~b · div~a+ (~b · 5)~a− (~a · 5)~b
(Návod: vektorový súčin ṕısat’ cez εijk, deriváciu podl’a i-tej súradnice ako ∂i,
použ́ıvat’ Einsteinovu sumačnú konvenciu t.j. cez opakovaný index automaticky
sčitovat’ a kde treba tam využit’ tzv. DC identitu εijkεmnk = δimδjn − δinδjm.)

2. Maxwellove rovnice v ”obrátenom garde”
(Maxwellove rovnice budeme v celej tejto prednáške chápat’ ako rovnice pre neznáme
polia pri zadaných hustotách náboja a prúdu. Ak však poznáme polia, potom nám
Maxwellove rovnice samozrejme umožňujú vypoč́ıtat’ náboje a prúdy.)
Zistite, či môžu existovat’ nasledujúce elmag polia a ak áno, akými nábojmi a prúdmi

sú budené a) ~E = (~a · ~r)~a ~B = α.~a× ~r
b) ~E = α.t.~r ~B = ~B0

c) ~E = (~r × ~a)× ~r ~B = α~r

Aké musia byt’ rozmery konštánt α a ~a, aby boli tieto vzt’ahy rozmerovo správne?

3. Elmag polia v niektorých symetrických situáciách
(Niekol’ko jednoduchých úloh, ktoré sa riešia využit́ım Maxwellových rovńıc a pred-
pokladom, že riešenie má rovnakú symetriu ako zadanie)
a) Nájdite elektrické pole homogénne nabitej priamky a homogénne nabitej roviny.
b) Nájdite magnetické pole nekonečne dlhého drôtu, ktorým preteká prúd I.
c) Prúd v cievke s hustým vinut́ım môžeme v rozumnom pribĺıžeńı považovat’ za
plošný prúd. Uvažujme nekonečne dlhú valcovú cievku s n závitmi na 1 m, pričom
každým závitom preteká prúd I. Určte magnetické pole vnútri cievky aj mimo nej.

6Pre zauj́ımavost’ dodajme, že väčšina kl’́učových momentov v dejinách fyziky súviśı s ne-
jakým zjednoteńım većı, ktoré sa dovtedy považovali za celkom odlǐsné. Spomeňme aspoň Newto-
novo zjednotenie pozemskej a nebeskej mechaniky, ktoré sa stalo základom celej klasickej fyziky,

alebo Einsteinovo zjednotenie gravitácie a geometrie (vo všeobecnej teórii relativity), ktoré je
považované za vyvrcholenie klasickej fyziky. Najvýznamneǰśım momentom medzi týmto základom
a vyvrcholeńım bolo práve Maxwellovo zjednotenie elektriny, magnetizmu a optiky.
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4. Vyjadrenie rôznych fyzikálnych zákonov v lokálnom diferenciálnom tvare
(Maxwellove rovnice sú vlastne zápisom základných zákonov elektriny a magne-
tizmu v lokálnom diferenciálnom tvare. Aby sme si precvičili tento spôsob zápisu
fyzikálnych zákonov, pozrime sa na niekol’ko d’aľśıch oblast́ı fyziky, v ktorých sa
takýto zápis vel’mi často použ́ıva.)

a) rovnica difúzie
Pri nerovnomernom rozložeńı koncentrácie nejakých čast́ıc v určitom objeme do-
chádza s rastúcim časom k vyrovnaniu koncentrácie, častice prechádzajú z oblast́ı
s vyššou koncentráciou do oblast́ı s koncentráciou nižšou.7 Podl’a tzv. Fickovho
zákona má tok čast́ıc ~j(~r, t) smer najväčšieho poklesu koncentrácie ρ(~r, t) a vel’kost’

toku je priamo umerná rýchlosti zmeny koncentrácie v tomto smere (koeficient
úmernosti sa zvykne označovat’ D a hovoŕı sa mu koeficient difúzie).
Vyjadrite tok pomocou gradientu koncentrácie a spojeńım takto źıskaného vzt’ahu
s rovnicou kontinuity vyjadrujúcou zachovanie počtu čast́ıc odvod’te tzv. rovnicu
difúzie ∂tρ−D · 4ρ = 0.
(Uvedená rovnica plat́ı len v homogénnom prostred́ı, v ktorom D nezáviśı od ~r.
Ako vyzerá rovnica difúzie v nehomogénnom prostred́ı charakterizovanom funkciou
D(~r)?)

b) rovnica vedenia tepla
Podl’a tzv. Fourierovho zákona má tok tepla v telese s nerovnomerne rozdelenou
teplotou v každom mieste smer najväčšieho poklesu teploty a vel’kost’ tohto toku
je priamo umerná rýchlosti zmeny teploty v tomto smere (koeficient úmernosti sa
zvykne označovat’ κ a hovoŕı sa mu koeficient tepelnej vodivosti). Z vyjadrenia
toku tepla cez gradient teploty a z kalorimetrickej rovnice (vyjadrenej v lokálnom
diferenciálnom tvare) ukážte, že rovnica vedenia tepla je formálne zhodná s rovnicou
difúzie.

7Poznamenajme, že táto skutočnost’ je dôsledkom “slepého” pohybu čast́ıc a nie nejakej ich

“vedomej” snahy dostat’ sa na miesta s nižšou koncentráciou. Pod “slepým” pohybom rozumieme
to, že častice sa z daného miesta hýbu s rovnakou pravdepodobnost’ou vo všetkých smeroch, pričom

č́ım je v danom mieste vyššia koncentrácia, tým viac ich z tohto miesta odchádza. Ak je teda v

mieste 1 vyššia koncentrácia ako v susednom mieste 2, potom z 1 odchádza v smere do 2 viac
čast́ıc ako z 2 v smere do 1 (z 1 odchádza vo všetkých smeroch viac čast́ıc ako z 2), čo v súčte

dáva výsledný tok z 1 do 2.
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2. Základné vzt’ahy elektrodynamiky v látkach

2.1. Rôzna závislost’ ~D(~E) a ~H( ~B) v rôznych látkach.

Elektrodynamika v mnohých látkach (vzduch a bežné plyny, voda a bežné
kvapaliny, väčšina tuhých látok) vyzerá rovnako ako elektrodynamika vo vákuu,

s tým jediným rozdielom, že konštanty ε a µ, vystupujúce vo vzt’ahoch ~D = ε ~E

a ~B = µ ~H, sú pre každú z týchto látok iné. Existujú však aj látky, v ktorých
je situácia zložiteǰsia. Aj v týchto pŕıpadoch je elektrodynamika v látke oṕısaná
Maxwelovými rovnicami formálne zhodnými s Maxwellovými rovnicami, ktoré sme

si uviedli pre vákuum, zložiteǰśımi sa však stávajú vzt’ahy medzi poliami ~D, ~H a

poliami ~E, ~B.

Poznámka. Všade d’alej budeme za “primárne” považovat’ polia ~E a ~B, ktoré

môžu byt’ definované pomocou Lorentzovej sily, a polia ~D a ~H budeme považovat’

za ich funkcie.

Anizotropia. Prvým typom komplikovaneǰsieho vzt’ahu medzi poliami ~D, ~H a po-

liami ~E, ~B je zovšeobecnenie lineárnej závislosti na všeobecnú lineárnu závislost’ v
trojrozmernom priestore, ktorú vykazujú tzv. anizotropné látky (väčšina kryštálov).

V týchto látkach majú polia ~D a ~E vo všeobecnosti rôzny smer, pričom ale plat́ı, že

ked’ sa zväčš́ı ~E n-násobne, zväčš́ı sa n-násobne aj pŕıslušné ~D. Okrem toho plat́ı,

že ked’ pol’u ~E1 prislúcha pole ~D1 a pol’u ~E2 prislúcha pole ~D2, potom pol’u ~E1 + ~E2

prislúcha pole ~D1 + ~D2. Zobrazeniu, ktoré má uvedené dve vlastnosti, sa hovoŕı
lineárne a lineárnemu zobrazeniu, ktoré vektoru prirad’uje vektor, sa hovoŕı tenzor.
V anizotropných látkach je teda prirodzené považovat’ permitivitu za tenzor a ṕısat’

~D = ¯̄ε · ~E

a pre magnetické polia analogicky

~H = ¯̄µ−1 · ~B

Nelineárnost’. Anizotropia však ešte nie je až taká vel’ká komplikácia, ovel’a vážneǰsia

je nelineárnost’. Existujú totiž látky, v ktorých ~D nie je lineárnou funkciou ~E, resp.
~H nie je lineárnou funkciou ~B. Takýmito látkami sú napŕıklad tzv. ferroelektriká
a ferromagnetiká, ale pri dostatočne silných poliach sa stávajú nelineárnymi prak-
ticky všetky látky (takéto dostatočne silné polia sa však pre väčšinu látok dosahujú
len v laserových lúčoch, takže v bežných situáciách sa tieto látky chovajú lineárne).
Elektrické a magnetické vlastnosti nelineárnych látok nie je možné charakterizovat’

dvoma č́ıslami resp. tenzormi (permitivitou a permeabilitou), na ich charakterizo-

vanie treba dve funkcie ~D( ~E) a ~H( ~B)8

8Poznamenajme, že vo všeobecnosti môže pole ~D závisiet’ nielen od ~E, ale aj od ~B, a podobne

pole ~H môže závisiet’ od ~B aj od ~E. Avšak závislost’ ~D od ~B resp. ~H od ~E býva väčšinou
zanedbatel’ná.
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Poznámka. Akonáhle si uvedomı́me, že závislost’ ~D( ~E) resp. ~H( ~B) môže byt’

vo všeobecnosti nelineárna, vzniká otázka, prečo je tak často lineárna. Cesta k
porozumeniu častej lineárnej závislosti velič́ın vo fyzike vedie cez rozvoj funkcíı do

Taylorovho radu. Rozvojom funkcie ~D( ~E), t.j. troch funkcíı Di(E1, E2, E3), okolo

bodu ~E = ~0 dostaneme

Di(E1, E2, E3) = Di(0, 0, 0)+
∑
j

∂Di(0, 0, 0)

∂Ej
·Ej+

1

2

∑
j,k

∂2Di(0, 0, 0)

∂Ej∂Ek
·Ej ·Ek+ . . .

Pre dostatočne malé ~E sú členy kvadratické a vyššie zanedbatel’ne malé vzhl’adom k
členom nižšieho rádu a vtedy prechádza všeobecná nelineárna závislost’ na lineárnu.

Z praktického hl’adiska je pritom dôležité, že bežne dosiahnutel’né polia ~E sú často
z uvedeného hl’adiska dostatočne malé.

Poznámka. (K predchádzajúcej poznámke.) Látkam, pre ktoré ~D(~0) 6= ~0, sa

hovoŕı tvrdé dielekriká, látkam, pre ktoré ~D(~0) = ~0, mäkké dielektriká. Devät’ č́ısiel
∂Di(~0)
∂Ej

(i, j = 1, 2, 3) predstavuje devät’ zložiek tenzora permitivity εij = ∂Di(~0)
∂Ej

.

Pokial’ sú tieto č́ısla nulové pre i 6= j a rovnaké pre i = j, (i = 1, 2, 3), t.j. pokial’

εij = ε · δij , potom dostávame najjednoduchš́ı pŕıpad závislosti ~D( ~E) = ε · ~E. Pre
magnetické polia sú úvahy úplne analogické.9

Pamät’ a nelokálnost’. Ďaľsou komplikáciou je pamät’ niektorých látok. Existujú

totiž látky, v ktorých nie je hodnota ~D(~r, t) daná len hodnotou ~E(~r, t) v tom istom

čase, ale aj hodnotami ~E v skorš́ıch časoch. Analogické tvrdenie plat́ı pre polia
~H a ~B. Typickým pŕıkladom pamäti je jav hysterézie ferromagnet́ık, ale pri do-

statočne rýchlych zmenách ~E a ~B sa prakticky všetky látky chovajú tak, ako keby
mali určitú pamät’ (napr. kovy pri vysokofrekvenčných napätiach, niektoré dielek-
triká pri frekvenciách viditel’ného svetla a pod). Okrem pamäti sa v niektorých

pŕıpadoch stretávame s tzv. nelokálnost’ou, kedy hodnota ~D(~r, t) nie je daná len

hodnotou ~E(~r, t) v tom istom mieste, ale aj hodnotami ~E v iných miestach, a ana-

logická vec plat́ı pre ~H a ~B. (Nelokálnost’ sa prejavuje napr. pri šireńı elmag v́ln s

malou vlnovou d́lžkou v kovoch.)

Poznámka. A znova otázka: ak môže byt’ závislost’ ~D( ~E) resp. ~H( ~B) všeobecnosti
nelokálna (či už v čase alebo v priestore), prečo je tak často lokálna? A odpoved’

je znova ukrytá v Taylorovom rade, jej dešifrovanie je však v tomto pŕıpade o
niečo náročneǰsie, preto ho odlož́ıme do jednej z neskorš́ıch kapitol. Už teraz však
môžeme prezradit’, že lokálnost’ zodpovedá Taylorovmu radu v ktorom sú zaned-
batel’né všetky členy okrem člena nultého rádu a najjednoduchšia nelokálnost’ zod-
povedá Taylorovmu radu v ktorom je nezanedbatel’ný aj lineárny člen. Pre takúto
lineárnu nelokálnost’ (ktorej v pŕıpade nelokálnosti v čase hovoŕıme lineárna pamät’)
sa dá rozumne definovat’ pojem akejsi zovšeobecnej permitivity resp. permeability.
Ešte sa k tomu vrátime.

9Poznamenajme, že pomocou istých termodynamických úvah sa dá nahliadnut’, že v pŕıpade
anizotropných látok muśı byt’ tenzor permitivity resp. permeability symetrický.
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V súvislosti s rôznorodou závislost’ou poĺı ~D a ~H od poĺı ~E a ~B sa vynára otázka,
kol’ko je vlastne elektrodynamı́k. Tieto závislosti totiž určujú teóriu v rovnakej
miere ako Maxwellove rovnice, takže ak aj Maxwellove rovnice vyzerajú vo všetkých
látkach rovnako, tak to vôbec neznamená, že elektrodynamika je vo všetkých látkach
rovnaká. Otázka teda je, či je prirodzeneǰsie považovat’ elektrodynamiky v rôznych
látkach za rôzne (a mat’ ich potom tol’ko, kol’ko je rôznych látok), alebo ich považovat’

v istom zmysle všetky za prejav jednej elektrodynamiky, ale potom v akom zmysle
a ktorej.

Rôznorodá závislost’ poĺı ~D a ~H od poĺı ~E a ~B prináša so sebou ešte jednu,

ešte vážneǰsiu otázku: Čo sú vlastne polia ~D a ~H? V pŕıpade elektrodynamiky vo

vákuu boli tieto polia jasne definované ako určité násobky poĺı ~E a ~B a tieto možno
v prinćıpe definovat’ pomocou Lorentzovej sily, meranej pomocou pohybu nejakých

testovaćıch nábojov. V látkach sa však tento jednoduchý súvis medzi poliami ~D,
~H na jednej a ~E, ~B na druhej strane stráca a tým pádom prestáva byt’ celkom

jasné, čo sú vlastne polia ~D a ~H. Je samozrejme možné považovat’ tieto polia len za
akési pomocné veličiny, slúžiace na formuláciu rovńıc určujúcich časový vývoj poĺı
~E a ~B (a takýto pŕıstup je úplne korektný), predsa by však bolo dobré mat’ nejakú

prirodzenú interpretáciu poĺı ~D a ~H. Otázka teda stoj́ı tak, či neexistuje nejaká
prirodzená interpretácia týchto poĺı, a ak áno, tak aká.

Odpoved’ na otázky z predchádzajúcich dvoch odstavcov dáva tzv. Lorentzova
mikroskopická teória elmag pol’a v látkach. Základná idea je vel’mi jednoduchá:
látky sa skladajú z elektrónov, jadier a vákua medzi nimi a elektrodynamika v
látkach je teda elektrodynamikou vo vákuu, do ktorej ale treba zahrnút’ náboje
a prúdy elektrónov a jadier látky. Praktické použitie tejto myšlienky, t.j. prechod
od takýchto tzv. mikroskopických poĺı vo vákuu k tzv. makroskopickým poliam v
látkach, už až také jednoduché nie je. Aby sme zbytočne nezat’ažovali náš výklad
technickými podrobnost’ami, ktoré nie sú nevyhnutné pre chápanie d’aľśıch kapi-
tol, nebudeme sa Lorentzovej mikroskopickej teórii venovat’ na tomto mieste, ale
presunieme ju do dodatku.

Poznámka. Lorentzova mikroskopická teória nielenže umožňuje chápat’ elek-
trodynamiku v rôznych látkach ako rôzne prejavy jednej fundamentálnej elektro-
dynamiky vo vákuu, ale že umožňuje v prinćıpe vypoč́ıtat’ ako bude vyzerat’ elek-
trodynamika v danej látke, ak poznáme mikroskopické vlastnosti tejto látky a elek-
trodynamiku vo vákuu.

Treba si však uvedomit’, že tzv. mikroskopické vlastnosti látok sú vlastne vlast-
nost’ami jej atómov a molekúl, takže adekvátnym prostriedkom na opis týchto
vlastnost́ı nebude klasická, ale kvantová mechanika. Okrem toho, v pŕıpade mak-
roskopických látok máme samozrejme dočinenia s obrovským množstvom atómov a
molekúl, takže opis bude nevyhnutne opisom v rámci štatistickej fyziky. Kvantová
štatistická fyzika zjavne presahuje možnosti tejto prednášky, takže aj v spomı́nanom
dodatku sa budeme musiet’ zastavit’ niekde na pol cesty.10

10Poznamenajme, že existujú pŕıpady, kedy sa dá namiesto kvantovej mechaniky použit’ jej

klasické pribĺıženie a namiesto štatistickej fyziky jej najjednoduchšie verzie, napr. kinetická teória

ideálneho plynu. Tieto pŕıpady sa často spomı́najú v úvodných kurzoch, práve pre svoju relat́ıvnu
jednoduchost’. Ak sa však človek zoznámi len s týmito zjednodušenými situáciami, je na najlepšej

ceste vytvorit’ si o celej problematike neadekvátnu predstavu.
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2.2. Ohmov zákon.

Ako sme už povedali na začiatku, v tejto prednáške sa budeme zaoberat’ situáciami,
v ktorých sú hustoty náboja a prúdu zadané. Jedinou (dôležitou) výnimkou bude
hustota prúdu tzv. vodivostných elektrónov v kovoch. Medzi touto hustotou a elek-
trickým pol’om plat́ı v bežných situáciách jednoduchý lokálny lineárny vzt’ah

~j = σ · ~E

Tomuto vzt’ahu sa hovoŕı Ohmov zákon v lokálnom tvare. Súvis s bežne známym
Ohmovým zákonom je zjavný ak uvažujeme prúd vol’ných nábojov v kove, v ktorom

je homogénne elektrické pole ~E. Ak je d́lžka kovu v smere pol’a l, potom napätie
medzi koncami je U = E.l a ak je prierez vodiča v smere kolmom na smer pol’a S,
potom celkový prúd týmto prierezom je daný vzt’ahom

I = j · S = σ · E · S =
σ · S
l
· U

čo nie je nič iné, ako bežný Ohmov zákon s R = l
σ·S (z čoho zároveň vid́ıme, že

koeficient σ je rovný mernej vodivosti daného kovu).

Poznámka. Vzt’ah medzi ~j a ~E môže byt’ komplikovaneǰśı ako Ohmov zákon,

pričom zložiteǰsie vzt’ahy sú analogické zložiteǰśım vzt’ahom medzi vektormi ~D a
~E, o ktorých bola reč v úvode tejto časti. Pre anizotropné látky zostáva vzt’ah
lineárny, ale merná vodivost’ sa stáva tenzorom, pre silné polia môže byt’ vzt’ah

nelineárny, pre rýchlo sa meniace elektrické pole vykazuje závislost’ ~j( ~E) pamät’ a

stáva sa nelokálnou. V polovodičoch sa navyše stáva nezanedbatel’nou závislost’ ~j

od ~B (Hallov jav).

Pre hustotu vol’ného náboja plat́ı v kovoch vel’mi jednoduchý vzt’ah

ρ = 0

Že je tomu naozaj tak l’ahko nahliadneme ak v rovnici kontinuity využijeme najprv
Ohmov a potom Coulombov zákon.

∂

∂t
ρ = −div~j = −σ · div ~E = −σ

ε
· ρ

Pre hustotu ρ sme takto dostali jednoduchú diferenciálnu rovnicu, ktorej riešeńım
je

ρ(~r, t) = ρ(~r, 0) · e−σε ·t

Ak teda máme na začiatku nenulovú hustotu náboja, táto s časom exponenciálne
klesá, pričom za čas ε

σ klesne e-násobne. Pre typické hodnoty vodivosti a permiti-

vity kovov σ ' 108Ω−1m−1, ε ' 10−9F ·m−1 dostávame čas 10−17 s, čo je doba aj z
mikroskopického hl’adiska vel’mi krátka. To ale znamená, že každá reálne dosiahnu-
tel’ná hustota náboja v kove klesne za mikroskopicky malý čas prakticky na nulovú
hodnotu. Hodnoty ustrednené cez mikroskopicky vel’ký čas sú potom prirodzene
nulové.11

11V tejto súvislosti môže vzniknút’ prirodzená otázka, kam mizne elektrický náboj, ak v celom

vodiči s časom exponenciálne klesá? Jediná možná odpoved’ je, že náboj sa hromad́ı na povrchu
vodiča (úvahy vedúce k exponenciálnemu poklesu sa totiž týkali len vnútra vodiča). Tento záver

je skutočne správny a potvrdený experimentom.
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2.3. Ostré rozhranie dvoch materiálov a hraničné podmienky.

Zdanlivo vážny problém: V súvislosti s Maxwellovými rovnicami v látkach vzniká
takýto problém: Predstavme si ostré rozhranie dvoch materiálov charakterizovaných

rôznymi vzt’ahmi medzi poliami ~D, ~H a ~E, ~B, napŕıklad rovinu oddel’ujúcu dva
polpriestory vyplnené látkami s permitivitami a permeabilitami ε1, µ1 a ε2, µ2,

pričom ε1 6= ε2 a µ1 6= µ2. Môžu byt’ všetky štyri polia ~E, ~B, ~D, ~H spojité v mieste

rozhrania? Nemôžu. Ak je totiž napŕıklad spojité ~E, potom ~D je automaticky ne-

spojité, pretože ~D = ε · ~E a spojite sa meniace ~E je násobené ε-nom nespojite sa

meniacim z hodnoty ε1 na hodnotu ε2. Ak je naopak spojité ~D potom analogicky

dostaneme nespojitost’ ~E a s poliami ~B a ~H je to rovnaké. Avšak pre nespojité polia
nemôžu platit’ Maxwellove rovnice (to je ten problém), pretože v týchto rovniciach
vystupujú derivácie všetkých poĺı podl’a všetkých súradńıc a nutným predpokladom
existencie derivácie je spojitost’ funkcie.

V skutočnosti však nejde o vážny problém. Pojem ostrého rozhrania dvoch látok
je totiž pojem makroskopický, z mikroskopického hl’adiska nie je nijaké rozhranie
ostré, jedno prostredie prechádza do druhého postupne na vzdialenosti rádove nano-
metrov. Nespojitosti poĺı súvisiace s ostrým rozhrańım teda vznikajú len pri makro-
skopickom pohl’ade, z mikroskopického hl’adiska dochádza śıce k prudkej, ale spojitej
zmene. Mikroskopické Maxwellove rovnice platia aj na makroskopicky ostrom roz-
hrańı. To, čo tu neplat́ı sú menej fundamentálne, aj ked’ technicky vel’mi užitočné,
makroskopické Maxwellove rovnice. Nejde teda o nijaký hlboký problém skutočných
mikroskopických Maxwellových rovńıc, ale len o technický problém, č́ım nahradit’

makroskopické Maxwellove rovnice na ostrom rozhrańı.

Vzt’ahy, ktoré nahrádzajú na ostrom rozhrańı Maxwellove rovnice sú tzv. hraničné
vzt’ahy pre elmag polia a odvádzajú sa nasledovne. Uvažuje sa integrálny tvar mak-
roskopických Maxwellových rovńıc t.j. tvar, ktorý dostaneme preintegrovańım cez
uzavretý objem resp. plochu natiahnutú na uzavretú krivku a následným využit́ım
Gaussovej resp. Stokesovej vety.∮

~D · ~dS =

∫
ρ · dV∮

~E · ~dl =

∫
−∂

~B

∂t
· ~dS∮

~B · ~dS = 0∮
~H · ~dl =

∫
(~j +

∂ ~D

∂t
) · ~dS

Za oblast’ integrovania sa berie v pŕıpade uzavretej plochy povrch kvádra s dvomi
stenami rovnobežnými s rozhrańım, pričom rozhranie je medzi nimi, v pŕıpade uzav-

retej krivky obvod obd́lžnika s dvomi stranami rovnobežnými s rozhrańım, pričom
rozhranie je medzi nimi (odporúčame nakreslit’ si). Základná finta pri odvodzovańı
hraničných podmienok pre elmag polia spoč́ıva v tom, že steny kvádra resp. strany

obd́lžnika rovnobežné s rozhrańım uvažujeme natol’ko malé, aby sa hodnoty poĺı
na nich prakticky nemenili a steny resp. strany kolmé na rozhranie infinitezimálne
malé, takže ich pŕıspevky do integrálov sú zanedbatel’né. Integrály na l’avej strane
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rovńıc tak budú dané hodnotami kolmých zložiek poĺı na oboch stranách rozhra-
nia násobenými plochou rovnobežných stien, resp. hodnotami rovnobežných zložiek

poĺı násobenými d́lžkou rovnobežných strán (mysĺı sa kolmost’ a rovnobežnost’ s roz-
hrańım). Integrály na pravej strane sú za uvažovaných okolnost́ı integrálmi cez infi-
nitezimálne oblasti a pokial’ by boli podintegrálne funkcie ohraničené, boli by tieto
integrály nulové. Avšak makroskopické hustoty náboja a prúdu vždy ohraničené
nie sú. Na povrchu látok (najmä kovov) môže totiž nastat’ situácia, kedy je v mak-
roskopicky infinitezimálnej povrchovej oblasti sústredený makroskopicky nenulový
náboj a prúd. Integrál na pravej strane prvej rovnice je v takom pŕıpade daný tzv.
povrchovou hustotou náboja η násobenou plochou stien rovnobežných s rozhrańım.

Integrál na pravej strane štvrtej rovnice je daný tzv. povrchovou hustotou prúdu ~k,

a śıce jej zložkou kolmou na plochu obd́lžnika násobenou d́lžkou strán rovnobežných
s rozhrańım. Celkove teda dostávame

D2n −D1n = η

E2t − E1t = 0

B2n −B1n = 0

H2t −H1t = kt′

Indexy 1 a 2 zodpovedajú rôznym prostrediam po oboch stranách rozhrania, index n
znamená normálové (vzhl’adom k rozhraniu) zložky vektorov, indexy t, t′ navzájom
kolmé tangenciálne zložky. Uvedeným vzt’ahom sa hovoŕı hraničné podmienky pre
elmag polia a práve tieto vzt’ahy nahrádzajú makroskopické Maxwellove rovnice na
ostrom rozhrańı dvoch prostred́ı.

Hraničné podmienky sa často zvyknú zapisovat’ v kompaktneǰsej forme pomo-
cou jednotkového vektora ~n, kolmého na rozhranie a smerujúceho z prostredia 1 do
prostredia 2:

~n · ( ~D2 − ~D1) = η

~n× ( ~E2 − ~E1) = 0

~n · ( ~B2 − ~B1) = 0

~n× ( ~H2 − ~H1) = ~k

Poznámka. Štandardné odvodenie hraničných podmienok, ktoré sme práve
predviedli, skrýva v sebe jednu záludnost’, ktorá sa vo väčšine kńıh prejde mlčańım.
Ide o to, že infinitezimálne veličiny uvažované v tomto odvodeńı nie sú v skutočnosti
infinitezimálne, t.j. l’ubovol’ne malé. Samotné rozhranie totiž nie je nekonečne tenké,

ale meria, ako sme už povedali, rádove nanometre. Ak má kváder resp. obd́lžnik
uvažovaný v štandardnom odvodeńı zasahovat’ do oboch prostred́ı (a to má), potom
infinitezimálne vel’kosti v tomto odvodeńı nemôžu klesnút’ pod hrúbku rozhrania.
Alebo inými slovami: celé štandardné odvodenie sa deje na makroskopickej úrovni
a na tejto úrovni “infinitezimálny” neznamená l’ubovol’ne bĺızky nule (zhora), ale
l’ubovol’ne bĺızky nanometrom (zhora). Z toho ovšem vyplýva, že treba byt’ opatrný
pri zanedbávańı členov v dôsledku tejto infinitezimálnosti. Zanedbávané členy nie sú
nulové a je otázne, či sú vo všetkých pŕıpadoch zanedbatel’né. Táto otázka prestáva
byt’ len akademickou otázkou v pŕıpade, ak sú aj ostatné vzdialenosti v štandardnom
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odvodeńı na úrovni nanometrov alebo desiatok nanometrov. A takáto situácia môže
nastat’ pri poliach výrazne sa meniacich na malých vzdialenostiach (napr. v elmag

vlne s vlnovou d́lžkou rádove stoviek nanometrov), pretože všetky vzdialenosti v
štandardnom odvodeńı musia byt’ dostatočne malé na to, aby sa na nich elmag
polia prakticky nemenili. V takýchto pŕıpadoch teda nemožno považovat’ štandardné
odvodenie hraničných podmienok za skutočné odvodenie a hraničné podmienky
treba v takýchto pŕıpadoch bud’ odvodit’ inak, alebo ich považovat’ skôr za nezávislé
postuláty. “Odvodenie” má v takýchto pŕıpadoch funkciu akejsi rozumnej motivácie
pre postulovanie takýchto hraničných podmienok.

Pŕıklady

1. Rovnice pre elmag vlny v rôznych materiáloch
(Ilustrácia toho, že rovnaké Maxwellove rovnice a rôzne materiálové vzt’ahy môžu
viest’ k podstatne odlǐsným fyzikálnym javom.)
Postupom podobným ako sme použili pri odvodzovańı vlnovej rovnice pre elmag
polia vo vákuu bez nábojov a prúdov odvod’te analogické rovnice pre elmag polia
bez nábojov a prúdov v
a) homogénnom kove
b) supravodiči prvého druhu, kde namiesto Ohmovho zákona platia tzv. rovnice
bratov Londonovcov

~E = Λ · ∂
∂t
~j ~B = −µ · λ2 · rot~j

c) homogénnom anizotropnom dielektriku

d) homogénnom nelineárnom dielektriku, pre ktoré ~D = (ε+ α · E2) · ~E

komentár:
a) Rovnica, ktorú dostaneme, obsahuje oproti vlnovej rovnici navyše člen s prvou

časovou deriváciou. Tento člen spôsobuje exponenciálny útlm elmag v́ln v kovoch.

b) Rovnica, ktorú dostaneme pre ~B obsahuje oproti vlnovej rovnici navyše člen

úmerný ~B. Tento člen spôsobuje, že časovo nepremenné magnetické pole v supra-
vodiči prvého druhu smerom od hrańıc do vnútra exponenciálne klesá a vo vnútri
supravodiča je nulové – tzv. Meissnerov jav. (Pre elektrické pole platia rovnaké
úvahy – elektrické pole v supravodiči je v statickom pŕıpade nulové, rovnako ako v
obyčajnom vodiči.)
c) Rovnica, ktorú dostaneme, sa od vlnovej rovnice ĺı̌si tým, že v nej vystupujú aj
členy typu grad div a navyše sa v nej vyskytujú tenzory. S vlnovou rovnicou má

spoločné to, že rovinné vlny t.j. funkcie typu ~f(~r±~v · t) sú jej riešeniami, avšak len
pre určité ~v, pričom pre rôzne smery ~v je vel’kost’ v rôzna. To znamená, že rýchlost’

š́ırenia v́ln je pre rôzne smery š́ırenia rôzna čo má medziiným za následok dvojlom
svetla v niektorých kryštáloch.
d) Rovnica, ktorú dostaneme je pomerne komplikovaná. Ak sa však vel’kost’ pol’a
E meńı v priestore aj čase dost’ pomaly na to, aby boli členy obsahujúce derivácie
štvorca E2 zanedbatel’né oproti ostatným členom (čo je napr. splnené v pŕıpade
š́ırenia sa rovinnej vlny v danom prostred́ı), potom oproti obyčajnej vlnovej rovnici

zostane navyše len člen µ·α·E2 · ∂
2

∂t2
~E, ktorý spôsobuje také veci, ako samofokusáciu

a vznik vlny s dvojnásobnou frekvenciou pri prechode laserového žiarenia látkou.



18 1. ZÁKLADNÉ VZŤAHY OPISUJÚCE ELEKTROMAGNETICKÉ JAVY

2. Využitie hraničných podmienok pre elmag polia v elektrostatických a magneto-
statických úlohách
(Niekol’ko jednoduchých úloh, ktoré sa riešia využit́ım symetrie, materiálových
vzt’ahov a hraničných podmienok pre elmag polia.)
a) Homogénne nabitá (celkový náboj Q) dielektrická gul’a (polomer R, permitivita
ε1) sa nachádza v dielektriku s permitivitou ε2. Určte elektrické pole v guli aj mimo
nej a plošnú hustotu náboja na povrchu gule.
b) Nabitá (celkový náboj Q) kovová gul’a (polomer R, permitivita ε1) sa nachádza
v dielektriku s permitivitou ε2. Určte elektrické pole v guli aj mimo nej a plošnú
hustotu náboja na povrchu gule.
c) Nekonečne dlhým valcovým vodičom (polomer R, merná vodivost’ σ) preteká
prúd I. Určte elmag polia vo valci aj mimo neho.

3. Odraz a lom rovinnej elmag vlny
(Tip na samostatné štúdium. Jedno z významných použit́ı hraničných podmienok
pre elmag polia.)
Preštudujte si v niektorej knihe z optiky alebo teórie elmag pol’a kapitolu o od-
raze a lome rovinnej elmag vlny na rozhrańı dvoch dielektŕık. Analýza týchto javov
spoč́ıva na predpoklade, že riešenie Maxwellových rovńıc má tvar superpoźıcie troch

rovinných v́ln – jednej dopadajúcej, jednej odrazenej a jednej “prejdenej”. Z tohto
predpokladu a z hraničných podmienok pre elmag polia sa dajú odvodit’ také veci
ako zákon odrazu, zákon lomu a Fresnelove vzt’ahy pre intenzity odrazeného a lo-
meného svetla rôznej polarizácie.
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3. Zákony zachovania pre elmag pole

Motivácia

Začneme s jednoduchým myšlienkovým experimentom, ktorý nás dovedie k potrebe
zaviest’ energiu, hybnost’ a moment hybnosti elmag pol’a. Nepôjde o nejakú rigoróznu
úvahu, z ktorej nutnost’ zavedenia týchto velič́ın nevyhnutne vyplynie, ale skôr o
úvahu intuit́ıvnu, ktorá má slúžit’ ako motivácia d’aľśıch, formálneǰśıch postupov.

Predstavme si vysielaciu anténu obklopenú prij́ımaćımi anténami rozloženými
po povrchu gule so stredom vo vysielacej anténe a s polomerom tri milióny kilo-
metrov. Predstavme si d’alej, že v určitom momente vyvoláme vo vysielacej anténe
pohyb vol’ných elektrónov t.j. dodáme do systému isté množstvo energie vo forme
kinetickej energie vol’ných elektrónov. Po jednej sekunde nech tento pohyb ustane
t.j. kinetická energia elektrónov sa premeńı na iné formy energie. Na aké?

V prvom rade zrejme na vnútornú (tepelnú) energiu vysielacej antény. To však
nie je všetko. Pohyb elektrónov vo vysielacej anténe meńı elektromagnetické pole
v priestore a zmenené elmag polia vyvolajú pohyb vol’ných elektónov v prij́ımaćıch
anténach. Tento pohyb zas po nejakom čase (pre jednoduchost’ predpokladajme
tiež jednu sekundu) ustane a kinetická energia elektrónov prij́ımaćıch antén sa pre-
meńı na vnútornú (tepelnú) energiu prij́ımaćıch antén. Pre jednoduchost’ predpo-
kladajme, že celá pôvodná kinetická energia E vol’ných elektrónov vysielacej antény
sa takto nakoniec premenila na zvýšenie vnútornej energie antén o δE1 a δE2. Z
hl’adiska zachovania energie je takto všetko nakoniec v poriadku. Nakoniec! Nie však
medzi začiatkom a koncom.

Ide o to, že ak sa elmag polia š́ıria rýchlost’ou svetla, potom elektróny v prij́ıma-
ćıch anténach sa začnú pohybovat’ v dôsledku pohybu elektrónov vysielacej antény
až po desiatich sekundách. Medzi prvou a desiatou sekundou máme teda z pôvodnej
energie E čast’ premenenú na δE1 a čast’ “nie je nikde”. Ak sa nám to nepáči a
trváme na tom, že zvyšná energia muśı niekde byt’ aj v čase medzi prvou a desia-
tou sekundou, neostáva nám pravdepodobne nič iné, ako priznat’ nejakú energiu
samotnému elektromagnetickému pol’u. Otázka je, ako to urobit’, aby sme sa po-
dobným paradoxom vyhli nielen v tomto pŕıpade, ale vo všetkých situáciách.

Ak si uvedomı́me, že uvedenie elektrónov prij́ımacej antény do pohybu znamená
zmenu ich hybnosti a momentu hybnosti , pŕıdeme analogicky k záveru, že elmag
pol’u treba zrejme priṕısat’ aj určitú hybnost’ a moment hybnosti. (Iný myšlienkový
experiment vedúci k potrebe zaviest’ moment hybnosti elmag pol’a možno nájst’ vo
Feynmanových prednáškach z fyziky, tret́ı diel slovenského vydania, paragraf 17.4).

Ciel’om tejto časti bude nájst’ všeobecné vyjadrenia pre energiu, hybnost’ a mo-
ment hybnosti elmag pol’a a sformulovat’ pre elmag pole pŕıslušné zákony zachova-
nia. Obmedźıme sa pritom na elmag polia vo vákuu, čo je technicky najjednoduchš́ı
a principiálne najdôležiteǰśı pŕıpad. Formulácia zákonov zachovania pre elmag pole
v látkových prostrediach je komplikovaneǰsia a to často v miere d’aleko presahujúcej
možnosti úvodného kurzu. V pŕıpade látkových prostred́ı sa preto obmedźıme len
na stručnú poznámku, z ktorej by malo byt’ aspoň zhruba jasné prečo a v akom
zmysle sú zákony zachovania pre elmag pole v látkach zložiteǰsie než analogické
zákony vo vákuu.
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3.1. Zákon zachovania energie.

Pri odvodeńı zákona zachovania energie pre elmag pole budeme postupovat’

úplne formálne a celý postup zdôvodńıme až na konci. Vychádzame z dvoch Max-
wellových rovńıc

rot ~E = −∂
~B

∂t
rot ~H = ~j +

∂ ~D

∂t

Ak prvú z nich vynásob́ıme skalárne vektorom ~H, druhú skalárne vektorom ~E a
druhú od prvej odč́ıtame, dostaneme

~H · rot ~E − ~E · rot ~H = − ~E ·~j − ~E · ∂
~D

∂t
− ~H · ∂

~B

∂t

l’avá strana tejto rovnice nie je nič iné ako div( ~E × ~H) (pozri pŕıklad I.1.1).
Členy obsahujúce časovú deriváciu možno v pŕıpade vákua upravit’ nasledovne

~E · ∂ε0
~E

∂t
+ ~H · ∂µ0

~H

∂t
=

∂

∂t

1

2
· (ε0

~E2 + µ0
~H2)

takže dostávame

∂

∂t

1

2
· (ε0

~E2 + µ0
~H2) + div( ~E × ~H) = − ~E ·~j

čo po zavedeńı označenia

u = 1
2 (ε0

~E2 + µ0
~H2)

a

~S = ~E × ~H

preṕı̌seme na tvar

∂
∂tu+ div ~S = − ~E ·~j

Ak chceme pochopit’, čo sme to vlastne dostali, uvažujme najprv pŕıpad bez
vonkaǰśıch prúdov. V tomto pŕıpade je pravá strana poslednej rovnice nulová a rov-

nica vlastne predstavuje rovnicu kontinuity pre nejakú hustotu u a nejaký prúd ~S.
Ako vieme z prvej prednášky, rovnica kontinuity je lokálnym vyjadreńım nejakého
zákona zachovania.

Aby sme si teraz uvedomili, o aký zákon zachovania ide, vrát’me sa k členu ~E ·~j.
Ukážeme, že tento člen predstavuje výkon Lorentzovej sily pri pohybe nábojov.

Výkon sily ~F je pri pohybe častice rýchlost’ou ~v daný skalárnym súčinom ~F · ~v, čo
v pŕıpade Lorentzovej sily dáva

P = q · ~E · ~v + q · (~v × ~B) · ~v

pričom druhý člen je nulový (skalárny súčin dvoch kolmých vektorov). Vydeleńım
tejto rovnice objemom a poslańım tohto objemu do nuly dostaneme rovnicu pre
hustoty

hustota výkonu Lorentzovej sily = ρ · ~E · ~v
a súčin hustoty náboja s rýchlost’ou hmoty v danom mieste nie je nič iné ako
hustota prúdu v danom mieste. Pravá strana źıskanej rovnice je teda rovná mı́nus
hustote výkonu Lorentzovej sily, t.j. rýchlosti úbytku hustoty kinetickej energie
pohybujúcich sa nábojov.
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Vo všeobecnosti teda u nie je hustotou zachovávajúcej sa veličiny, jej pŕırastok
je daný výrazom, ktorý je rovný úbytku hustoty energie pohybujúcich sa nábojov.
To, čo sa zachováva je teda súčet veličiny u s hustotou energie nábojov, čiže nie
je nič prirodzeneǰsie než interpretovat’ veličinu u ako hustotu energie elmag pol’a a

veličinu ~S tým pádom ako hustotu toku energie elmag pol’a (vektoru ~S sa zvykne
hovorit’ Poyntingov vektor).

Zákon zachovania energie elmag pol’a v lokálnom tvare sme teda dostali ako
rovnicu kontinuity s nenulovou pravou stranou, zodpovedajúcou úbytku hustoty
energie nábojov. Ak by sme si dopredu vyjasnili, že hl’adáme práve toto, mohli sme
postupovat’ tak, že by sme sa takúto rovnicu pokúšali źıskat’ nejakými úpravami
z Maxwellových rovńıc. Náš formálny postup nebol vlastne nič iné, než takýto
(úspešný) pokus.

3.2. Zákon zachovania hybnosti.

Poučeńı postupom pri hl’adańı zákona zachovania energie budeme sa snažit’

źıskat’ z Maxwellových rovńıc rovnicu kontinuity s nenulovou pravou stranou, ktorá
by tentoraz zodpovedala rýchlosti úbytku hustoty hybnosti nábojov, t.j. mı́nus hus-
tote Lorentzovej sily. Najprirodzeneǰśı postup je zobrat’ rovnice

div ~D = ρ

rot ~H = ~j +
∂ ~D

∂t

prvú vynásobit’ skalárne vektorom ~E, druhú vektorovo vektorom ~B a sč́ıtat’. Dosta-
neme

∂ ~D

∂t
× ~B + ~B × rot ~H − ~E · div ~D = −(ρ · ~E +~j × ~B)

Časovú deriváciu, potrebnú v rovnici kontinuity, źıskame zrejme z člena ∂ ~D
∂t × ~B

a najjednoduchšie by to ǐslo, keby sme tam mali aj člen ~D × ∂ ~B
∂t . Je preto priro-

dzené pripoč́ıtat’ k našej rovnici ešte rovnicu rot ~E = −∂ ~B∂t vynásobenú vektorovo

vektorom ~D, č́ım dostaneme

∂ ~D

∂t
× ~B + ~D × ∂ ~B

∂t
+ ~B × rot ~H + ~D × rot ~E − ~E · div ~D = −(ρ · ~E +~j × ~B)

prvé dva členy dávajú ∂
∂t (

~D × ~B). Ak sa nám podaŕı upravit’ zvyšné členy na

divergenciu čohosi, potom bude zrejme ~D × ~B hustota hybnosti a to čosi bude
hustotou toku hybnosti elmag pol’a.

Kým sa pust́ıme do úprav zostávajúcich členov, vyjasńıme si, aký charakter
bude mat’ hustota toku hybnosti. Doteraz sme sa stretli iba s rovnicami kontinuity,
v ktorých zachovávajúca sa veličina bola skalárna a jej tok bol vektor. Teraz však
máme vektorovú zachovávajúcu sa veličinu a vzniká otázka, čo je hustota toku vek-
torovej veličiny. V prvom rade si uvedomı́me, že hustota toku nám vlastne hovoŕı,
kol’ko danej veličiny pretečie za jednotku času danou infinitezimálnou plôškou. In-
finitezimálna plôška je pritom daná svojou vel’kost’ou a orientáciou, ktoré sú obe

zašifrované vo vektore ~dS prislúchajúcom tejto plôške. Hustota toku teda prirad́ı

vektoru ~dS množstvo pretečenej veličiny, čiže ak je táto veličina vektor, hustota
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toku prirad́ı vektoru vektor. Toto zobrazenie je navyše vd’aka infinitezimálnosti
~dS lineárne. Každé zobrazenie, ktoré niečo prirad’uje infinitezimálnym veličinám, je
totiž lineárne, čo sa okamžite nahliadne rozvojom daného zobrazenia do Taylorovho
radu a zanedbańım všetkých členov vyšš́ıch ako lineárnych (ktoré sú zanedbatel’né
práve vd’aka infinitezimálnosti argumentu). Hustota toku je teda v našom pŕıpade
lineárne zobrazenie, ktoré prirad’uje vektoru vektor, čo nie je nič iné ako defińıcia
tenzora (druhého rádu). Vyjasnili sme si teda, že hustota toku hybnosti bude tenzor
a teraz sa pust́ıme do hl’adania zložiek tohto tenzora.

Najprv ešte uprav́ıme členy, z ktorých chceme vyrobit’ divergenciu čohosi, na
symetrickeǰśı tvar pripoč́ıtańım nuly v tvare, ktorý dostaneme vynásobeńım rovnice

div ~B = 0 vektorom ~H (keby sme to neurobili teraz, d’aľśı postup by nás doviedol
k tomu, že by sme to museli urobit’ neskôr). Chceme teda zistit’, či je možné ṕısat’

~B × rot ~H + ~D × rot ~E − ~E · div ~D − ~H · div ~B = div čohosi

členy obsahujúce elektrické polia uprav́ıme takto (kvôli prehl’adnosti použijeme
označenie ∂i = ∂

∂xi
)(

~D × rot ~E − ~E · div ~D
)
i

= εijkεklmDj∂lEm − Ei∂jDj

= (δilδjm − δimδjl)Dj∂lEm − Ei∂jDj

= Dj∂iEj −Dj∂jEi − Ei∂jDj = Dj∂iEj − ∂j(EiDj)

= ∂j (
1

2
· ε0E

2 · δij − EiDj)

pričom na konci sme využili Dj = ε0Ej ⇒ Dj∂iEj = ε0Ej∂iEj = 1
2 · ε0∂iEjEj .

Ak rovnaké úpravy urob́ıme s členmi obsahujúcimi magnetické polia, dosta-
neme, že súčet všetkých štyroch členov sa rovná výrazu

∂j

(
1

2
· (ε0

~E 2 + µ0
~H2) · δij − EiDj −HiBj

)
a ked’že divergencia tenzora má v kartézskych súradniciach tvar ∂jTij vid́ıme,
že hl’adaný tenzor (nazývaný tenzorom hustoty toku hybnosti elmag pol’a) má
súradnice

Tij = 1
2 (ε0

~E2 + µ0
~H2)δij − EiDj −HiBj

Samotná hustota hybnosti je daná výrazom

~g = ~D × ~B

a zákon zachovania hybnosti môžeme teda ṕısat’ v kompaktnom tvare

∂
∂t~g + div ¯̄T = −

(
ρ ~E +~j × ~B

)
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3.3. Zákon zachovania momentu hybnosti.

Zákon zachovania momentu hybnosti dostaneme jednoducho zo zákona zacho-
vania hybnosti a to vynásobeńım vektorovo vektorom ~r

~r × ∂

∂t
~g + ~r × div ¯̄T = −~r × (ρ · ~E +~j × ~B)

Na pravej strane stoj́ı hustota momentu Lorentzovej sily, t.j. to, čo tam chceme
mat’. Člen s deriváciou podl’a času uprav́ıme jednoducho na základe toho, že t a
~r sú nezávislé premenné a preto ~r × ∂

∂t~g = ∂
∂t (~r × ~g), takže ~r × ~g bude zrejme

hrat’ úlohu hustoty momentu hybnosti elmag pol’a. Ostáva upravit’ zostávajúci člen
na divergenciu niečoho, čo bude hrat’ úlohu hustoty toku momentu hybnosti. Na
základe argumentácie rovnakej ako v pŕıpade hybnosti môžeme očakávat’, že tento
tok bude tenzor.(

~r × div ¯̄T
)
i

= εijkxj∂lTkl = εijk(∂lxjTkl − Tkl∂lxj)

= εijk∂lxjTkl − εijkTklδlj = ∂l(εijkxjTkl)− εijkTkj
= ∂l(εijkxjTkl)

kde sme využili nulovost’ εijkTkj , vyplývajúcu z antisymetrie εijk a symetrie Tkl.
Vid́ıme teda, že hl’adaný tenzor (nazývaný tenzorom hustoty toku momentu hyb-
nosti elmag pol’a) má súradnice

Mil = εijkxjTkl

Samotná hustota momentu hybnosti je daná výrazom

~l = ~r × ~g

a zákon zachovania momentu hybnosti môžeme teda ṕısat’ v kompaktnom tvare

∂
∂t
~l + div ¯̄M = −~r ×

(
ρ ~E +~j × ~B

)

Jeden pŕıklad užitočnosti zákonov zachovania

Zákony zachovania nie sú nezávislé zákony elektrodynamiky, sú to dôsledky
Maxwellových rovńıc. Ich význam teda nespoč́ıva v tom, že by nám odhal’ovali
nejaké nové vlastnosti pŕırody, ktoré by neboli implicitne zahrnuté v tom, čo sme
už poznali, ale v tom, že pri niektorých všeobecných úvahách, rovnako ako pri riešeńı
niektorých konkrétnych úloh, je výhodneǰsie vychádzat’ nie priamo z Maxwellových
rovńıc, ale z niektorého zo zákonov zachovania. Ako pŕıklad si uvedieme výpočet
sily pôsobiacej na teleso v elmag poli pomocou zákona zachovania hybnosti.

Naṕı̌sme zákon zachovania hybnosti v tvare

hustota rýchlosti zmeny hybnosti nábojov = − ∂

∂t
~g − div ¯̄T

a preintegrujme cez nejaký objem V ohraničený uzavretou plochou S. Výsledok
môžeme zaṕısat’ v tvare

rýchlost’ zmeny hybnosti nábojov a pol’a v objeme V = −
∫
V

div ¯̄T dV
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Uvažujme teraz situáciu, v ktorej sa hybnost’ elmag pol’a v danom objeme ne-
meńı. Môže to byt’ napr. pŕıpad elektrostatického pol’a alebo pŕıpad periodicky sa
meniaceho pol’a (napr. elmag vlna), v ktorom je nárast hybnosti pol’a v nejakom
mieste vždy vykompenzovaný jej poklesom v inom mieste. Vtedy ostane na l’avej
strane rovnice len rýchlost’ zmeny hybnosti nábojov, čo nie je nič iné ako celková
sila pôsobiaca na náboje v uvažovanom objeme. Ak ešte uprav́ıme pravú stranu
pomocou Gaussovej vety (pre tenzory plat́ı rovnako ako pre vektory, čo sa l’ahko
nahliadne rozṕısańım do zložiek) dostaneme

~F = −
∮
S

¯̄T ~dS

resp. v zložkách

Fi = −
∮
S

Tij dSj = −
∮
S

Tij nj dS

Vid́ıme, že na výpočet sily pôsobiacej napr. na nejaké teleso v elmag poli je
vo vyššie spomı́naných pŕıpadoch dostatočné poznat’ tenzor toku hybnosti pol’a na
nejakej ploche obob́ınajúcej teleso (pričom táto plocha nemuśı ležat’ na hranici tohto
telesa, môže ležat’ aj mimo teleso a to aj hodne d’aleko). Na prvý pohl’ad to nemuśı
vyzerat’ ako nejaká vel’ká výhra, ale skúsme pouvažovat’, ako by sme poč́ıtali túto silu
inak. Priamočiara cesta by bola jednoduchým integrovańım Lorentzovej sily, ale na
to treba poznat’ polia a hustotu (vol’ného a polarizovaného) náboja v celom objeme
telesa a polia a plošnú hustotu (vol’ného a polarizovaného) náboja na povrchu telesa,
čo rozhodne nemuśı byt’ vždy jednoduché. Dobrú ilustráciu užitočnosti výpočtu sily
zo zákona zachovania hybnosti predstavuje výpočet tzv. svetelného tlaku – pozri
pŕıklad 3.

Analogické úvahy, aké sme urobili pre teleso ako celok, môžeme urobit’ aj pre
jeho čast’ a vyjadrit’ tak (objemové) elmag sily pôsobiace na túto čast’ cez plošné
sily pôsobiace na povrch tejto časti. Toto je výhodné najmä pri skúmańı elmag
vlastnost́ı pružných telies a kvapaĺın – elmag sily sa vezmú do úvahy jednoducho
pridańım tenzora toku hybnosti elmag pol’a k tenzoru napät́ı v pohybových rovni-
ciach kontinua (z tohto dôvodu sa tenzoru toku hybnosti elmag pol’a často hovoŕı
Maxwellov tenzor napät́ı). Poznamenajme však, že pri praktických výpočtoch sa v
látkových prostrediach uvažujú isté modifikované hustoty energie a toku hybnosti
(pozri nasledujúcu poznámku 3), ktoré sú na prvý pohl’ad komplikovaneǰsie ako
priamočiare zovšeobecnenia hustôt vo vákuu, v skutočnosti však výpočty (ktoré
ovšem presahujú úroveň úvodnej prednášky) ul’ahčujú.

Tri poznámky

Poznámka. Analógia tenzoru toku hybnosti s tenzorom napät́ı v mechanike
kontinua viedla Maxwella k myšlienke, že tenzor toku hybnosti je naozaj tenzo-
rom napät́ı v nejakom všadepŕıtomnom kontinuu a toto kontinuum nazval éterom.
Zbytočnost’ a nevhodnost’ tohto pojmu v elektrodynamike ukázala až teória relati-
vity.

Poznámka. V niektorých knihách sa fakt, že elmag pole má svoju vlastnú
energiu, hybnost’ a moment hybnosti, interpretuje ako dôkaz toho, že elmag pole
”je niečo skutočné”, že to nie je len akási abstraktná matematická konštrukcia.
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Nemysĺı sa tým dôkaz v zmysle matematickom, ale skôr v zmysle psychologickom
– mnoho l’ud́ı je zrejme ochotných považovat’ za ”niečo skutočné” skôr to, čo má
energiu, hybnost’ a moment hybnosti, ako to, čo tieto veci nemá.

Na druhej strane samotné pojmy energie, hybnosti a momentu hybnosti sú
vlastne abstraktné konštrukcie, takže ich ”dôkazová sila” je diskutabilná, resp. bola
by diskutabilná, keby sa o týchto veciach oplatilo diskutovat’. To sa ale asi neoplat́ı
– či sa niekomu myšlienka ”dôkazu” reálnosti elmag pol’a cez jeho energiu, hybnost’

a moment hybnosti páči alebo nie, nie je až tak vel’mi vecou logiky ako skôr vecou
vkusu.

Poznámka. Na zákonoch zachovania pre elmag pole v látkových prostrediach
je komplikované to, že v makroskopických poliach sú v istom zmysle zahrnuté aj
náboje a prúdy čast́ıc látky, a teda čo je mechanické a čo elektromagnetické nie
je ostro odĺı̌sené. Hranicu medzi mechanickým a elektromagnetickým možno do
istej miery posúvat’ tak, ako je to výhodné. Na prvý pohl’ad by sa mohlo zdat’,
že najvýhodneǰsie bude jednoducho zopakovat’ postup z vákua, pričom za polia sa
budú brat’ makroskopické polia a za náboje len vonkaǰsie náboje. Takto dostaneme
napr. pre mäkké homogénne izotropné dielektrikum bez pamäte a nelokálnosti to
isté, čo pre vákuum, akurát s konštantami ε, µ namiesto ε0, µ0.

Avšak pri vyšetrovańı súvisu elektromagnetických vlastnost́ı látok s vlastnost’ami
termodynamickými a deformačnými je výhodneǰsie definovat’ hustotu energie elmag
pol’a nasledovne

hustota energia pol’a = hustota energie systému pole a látka

− hustota energie len látky pri tej istej teplote a hustote

a analogicky pre ostatné elmag veličiny. Takáto def́ınicia vedie k výrazom pre hus-
totu energie a hustotu toku hybnosti odlǐsným od jednoduchých zovšeobecneńı z
vákua. Tieto výrazy teraz uvedieme bez odvodenia, len pre ilustráciu, aby sme
mali predstavu o tom, nakol’ko sa ĺı̌sia veličiny často použ́ıvané pri výpočtoch v
elektrodynamike látok od toho, čo sa źıska jednoduchým zovšeobecneńım postupov
z vákua.

u =
1

2
· ((ε+ T

[
∂ε

∂T

]
ρ

)E2 + (µ+ T

[
∂µ

∂T

]
ρ

)H2)

Tij =
1

2
· ((ε− ρ

[
∂ε

∂ρ

]
T

)E2 + (µ− ρ
[
∂µ

∂ρ

]
T

)H2) · δij − EiDj −HiBj

Pŕıklady

1. Elektrostatická energia sústavy nábojov
(Pŕıklad na vyjasnenie si vzt’ahu medzi potenciálnou energiou a energiou pol’a v
elektrostatike.)
a) Vzájomná potenciálna energia statickej sústavy diskrétnych nábojov je 1

2

∑
ij qiϕj(~ri)

(prečo jedna polovica?), kde ϕj(~ri) je potenciál od j-teho náboja v mieste ~ri. Ener-

gia elektrostatického pol’a danej sústavy nábojov je 1
2

∫
ε0
~E2(~r) d3r. Je celková

energia systému daná prvým výrazom (potenciálnou energiou), druhým výrazom
(energiou pol’a), alebo ich súčtom?
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b) Pre spojité rozloženie náboja prejde vzt’ah pre potenciálnu energiu nábojov na
1
2

∫
ρ(~r)ϕ(~r) d3r, kde ϕ je celkový potenciál t.j. potenciál od celkového rozloženia

náboja. Ukážte, že tento výraz sa rovná výrazu pre energiu pŕıslušného elektrosta-
tického pol’a. Premyslite si v tejto súvislosti ešte raz odpoved’ na otázku a.
(Správna odpoved’ na otázku a je: bud’ potenciálna energia nábojov alebo energia
pol’a – je jedno ktorá z nich, pretože sa rovnajú) – ale rozhodne nie ich súčet.
Zdôvodnite prečo.)

2. Energia, hybnost’ a moment hybnosti elmag pol’a v niektorých bežných situáciách
(Niekol’ko štandardných pŕıkladov na precvičenie nových pojmov)
Nájdite celkovú energiu, hybnost’ a moment hybnosti elmag pol’a
a) stojaceho bodového náboja q
b) stojacej gule s polomerom r homogénne nabitej nábojom q
c) nekonečne dlhého vodiča s polomerom r, ktorým preteká prúd I.
V pŕıpadoch, v ktorých dostávate nekonečné výsledky prediskutujte, čo je zdrojom
týchto nekonečien.

3. Rovinná elmag vlna a jej dopad na čiernu rovinu.
(Jedna ilustrácia užitočnosti výpočtu śıl a momentov śıl pomocou zákonov zacho-
vania.)

a) Pre rovinnú lineárne polarizovanú elmag vlnu ~E(~r, t) = E · ex · sin(kz − ωt),
~B(~r, t) = B · ey · sin(kz − ωt), kde ex, ey sú jednotkové vektory v smere ośı x a y,
nájdite hustoty a hustoty toku energie, hybnosti a momentu hybnosti.
b) Vlna uvažovaná v pŕıpade a) dopadá na dokonale čiernu rovinu xy. Kol’ko energie
pohlcuje čierna rovina na 1m2 za 1s, akým tlakom pôsob́ı vlna na túto rovinu a
akým momentom sily vlna rovinu roztáča.

c) To isté čo vyššie pre kruhovo polarizovanú vlnu ~E(~r, t) = E · ex · sin(kz − ωt) +

E · ey · cos(kz − ωt), ~B(~r, t) = B · ey · sin(kz − ωt)−B · ex · cos(kz − ωt).

4. Ďaľsie nepovinné pŕıklady na využitie zákonov zachovania.
(Niekol’ko pŕıkladov, ktoré sa dajú riešit’ aj pomocou zákonov zachovania aj inak,
výsledky sa potom dajú porovnat’ a celé to môže byt’ pomerne užitočné cvičenie.)
a) Pre nekonečný valcový vodič s prúdom I vypoč́ıtajte tok energie povrchom vodiča
a výsledok porovnajte s výrazom pre Jouleov výkon U · I.
b) Vypoč́ıtajte silu, ktorou sa odpudzujú dve polovice homogénne nabitej gule raz
priamo pomocou Coulombovho zákona a raz pomocou tenzora toku hybnosti.
c) To isté čo v predchádzajúcom pŕıpade, tentoraz pre homogénne nabitý nekonečný
valec (myslia sa polovice, ktoré vzniknú rezom rovinou obsahujúcou os valca).

5. Minkowského výrazy pre hustoty a hustoty toku energie, hybnosti a momentu
hybnosti.
(Pŕıklad na precvičenie odvodenia zákonov zachovania pre elmag pole.)
Aj ked’ je v látkových prostrediach užitočneǰsie uvažovat’ pri odvodeńı zákonov za-
chovania namiesto priameho zovšeobecnenia postupu z vákua trochu rafinovaneǰśı
postup (pozri poznámku na predchádzajúcej strane) predsa len sa niekedy použ́ıvajú
tzv. Minkowského výrazy źıskané priamym zovšeobecneńım. Nájdite tieto Minko-
wského výrazy pre lineárne anizotropné nehomogénne prostredie (bez pamäti a
nelokálnosti), t.j. zopakujte postup z vákua pre takéto prostredie.
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4. Elektromagnetické potenciály

Akonáhle máme sformulované základné rovnice elektrodynamiky vo vákuu a
v látkach, môžeme pristúpit’ k ich riešeniu. Riešenie Maxwellových rovńıc je však
značne komplikovaná záležitost’ a ak je možné rovnice ešte pred ich riešeńım ne-
jako zjednodušit’, riešenie sa tým môže podstatne ul’ahčit’. Vel’mi významné zjed-
nodušenie Maxwellových rovńıc umožnuje zavedenie tzv. elektromagnetických po-
tenciálov.

Matematická poznámka (niekol’ko užitočných tvrdeńı)

Tvrdenie 1. Pre l’ubovol’nú “slušnú” funkciu f(~r) existuje funkcia ~P (~r) taká, že

f(~r) = −div ~P (~r)

Dôkaz urob́ıme explicitným nájdeńım funkcie ~P (~r), t.j. nájdeńım funkcíı Px(x, y, z),

Py(x, y, z), Pz(x, y, z), pre ktoré bude platit’

∂

∂x
Px +

∂

∂y
Py +

∂

∂z
Pz = −f

(Poznamenajme, že znamienko mı́nus je vo formulácii tvrdenia len z istých formálnych
dôvodov a nemá nijaký hlbš́ı význam.) Položme napr.

Py ≡ 0 Pz ≡ 0

č́ım dostaneme ∂
∂xPx(x, y, z) = −f(x, y, z), odkial’

Px(x, y, z) = −
∫
f(x, y, z)dx

(“Slušnost’” funkcie f je v tomto pŕıpade daná existenciou integrálu
∫
fdx. Funkcie,

pre ktoré tento integrál existuje, čo sú medziiným všetky spojité funkcie, sú “slušné”

v zmysle dokazovaného tvrdenia.) Uvedené funkcie Px, Py, Pz sṕlňajú vzt’ah f =

− div ~P , č́ım dôkaz konč́ı.

Z konštrukcie ~P (~r) vidno, že pre dané f(~r) existuje viac ~P (~r) (rovnako dobre

sme totiž mohli začat’ s Px ≡ 0, Py ≡ 0 alebo Px ≡ 0, Pz ≡ 0). Funkcíı ~P (~r)

sṕlňajúcich pre dané f(~r) rovnicu div ~P (~r) = −f je v skutočnosti nekonečne vel’a,

čo l’ahko nahliadneme, ak si uvedomı́me, že div rot ≡ 0, z čoho vyplýva, že ak ~P (~r)

sṕlňa uvažovanú rovnicu, potom pre l’ubovol’nú hladkú funkciu ~A(~r) sṕlňa túto
rovnicu aj funkcia

~P (~r) + rot ~A(~r)

Rôzne ~P sa teda môžu ĺı̌sit’ o rotáciu l’ubovol’nej hladkej funkcie. Ukážeme, že

viac sa už ĺı̌sit’ nemôžu, t.j. že ak ~P a ~P ′ sṕlňajú rovnicu pre dané f , potom ich

rozdiel je rotáciou nejakej vektorovej funkcie. Ak totiž div ~P (~r) = −f(~r) a súčasne

div ~P ′(~r) = −f(~r), potom div(~P (~r) − ~P ′(~r)) = 0 a pre každú vektorovú funkciu s
nulovou divergenciou existuje (podl’a tvrdenia 2) taká vektorová funkcia, ktorej je
pôvodná funkcia rotáciou.
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Tvrdenie 2. Nech div ~B(~r) = 0. Potom existuje ~A(~r) také, že

~B(~r) = rot ~A(~r)

Dôkaz urob́ıme znovu explicitným nájdeńım ~A(~r), t.j. nájdeńım funkcíı Ax(x, y, z),
Ay(x, y, z), Az(x, y, z), pre ktoré bude platit’

∂

∂y
Az −

∂

∂z
Ay = Bx

∂

∂z
Ax −

∂

∂x
Az = By

∂

∂x
Ay −

∂

∂y
Ax = Bz

Položme napr.

Az ≡ 0

č́ım dostaneme − ∂
∂zAy(x, y, z) = Bx, ∂

∂zAx(x, y, z) = By, a odtial’ d’alej

Ay(x, y, z) = −
∫
Bx(x, y, z)dz Ax(x, y, z) =

∫
By(x, y, z)dz

Ostáva ešte ukázat’, že tieto funkcie sṕlňajú aj tretiu rovnicu ∂
∂xAy −

∂
∂yAx = Bz.

∂

∂x
Ay −

∂

∂y
Ax = − ∂

∂x

∫
Bxdz −

∂

∂y

∫
Bydz = −

∫ (
∂

∂x
Bx +

∂

∂y
By

)
dz

=

∫
∂

∂z
Bzdz = Bz

kde sme predpokladali spojitost’ funkcíı Ai, Bi (aby sme mohli menit’ poradie de-

rivácíı a integrálov) a využili sme predpoklad div ~B = ∂
∂xBx + ∂

∂yBy + ∂
∂zBz = 0.

Uvedené funkcie Ax, Ay, Az teda sṕlňajú vzt’ah ~B = rot ~A, č́ım dôkaz konč́ı.

Poznámka. V skutočnosti dôkaz ešte celkom nekonč́ı, pretože zatial’ je v ňom
drobný podvod – neṕısali sme správne integračné konštanty. Správne má byt’ napr.∫

∂
∂zBzdz = Bz+c(x, y) (c je konštanta vzhl’adom k premennej z, t.j. môže l’ubovne

zavisiet’ od premenných x, y). Premyslite si, že vhodným výberom integračných
konštánt v integráloch definujúcich Ax a Ay, môžeme vždy túto ”konštantu” zničit’,
t.j. dosiahnut’ aby c(x, y) = 0

Z konštrukcie ~A(~r) vidno, že pre dané ~B(~r) existuje viac ~A(~r) (rovnako dobre sme

totiž mohli začat’ s Ax ≡ 0 alebo Ay ≡ 0). Funkcíı ~A(~r) sṕlňajúcich pre dané ~B(~r)

rovnicu rot ~A(~r) = ~B je v skutočnosti nekonečne vel’a, čo l’ahko nahliadneme, ak si

uvedomı́me, že rot grad ≡ 0, z čoho vyplýva, že ak ~A(~r) sṕlňa túto rovnicu, potom

pre l’ubovol’nú hladkú funkciu Λ(~r) sṕlňa túto rovnicu aj funkcia

~A(~r) + grad Λ(~r)

Rôzne ~A sa teda môžu ĺı̌sit’ o gradient l’ubovol’nej hladkej funkcie. Ukážeme, že viac

sa už ĺı̌sit’ nemôžu, t.j. že ak ~A a ~A ′ sṕlňajú rovnicu pre dané ~B, potom ich rozdiel je

gradientom nejakej funkcie. Ak totiž rot ~A(~r) = ~B a súčasne rot ~A ′(~r) = ~B, potom

rot( ~A(~r) − ~A ′(~r)) = 0 a pre každú vektorovú funkciu s nulovou rotáciou existuje
(podl’a tvrdenia 3) taká funkcia, ktorej je pôvodná funkcia gradientom.
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Tvrdenie 3. Nech rot ~F (~r) = 0. Potom existuje U(~r) také, že

~F (~r) = − gradU(~r)

Dôkaz nebudeme robit’ podrobne, odvoláme sa na veci známe z mechaniky. Pre

konzervat́ıvne silové pole ~F (~r) je možné korektne definovat’ potenciálnu energiu

U(~r) = U0 −
∫ ~r

~r0

~F (~r) · d~r

pre ktorú plat́ı ~F = − gradU . Pole je konzervat́ıvne práve vtedy, ked’ pre každú

uzavretú krivku plat́ı
∮
~F · d~r = 0. Ak pre nejaké pole ~F (~r) v každom bode plat́ı

rot ~F (~r) = 0, potom podl’a Stokesovej vety plat́ı pre každú uzavretú krivku
∮
~F ·d~r =∫

rot ~F · d~S = 0, t.j. pole je konzervat́ıvne.

Poznámka. Z konštrukcie U vidno, že pre dané ~F existuje viac rôznych U , pretože
konštantu U0 môžeme vybrat’ l’ubovol’ne. Rôzne U sa teda môžu ĺı̌sit’ o konštantu

a viac sa už ĺı̌sit’ nemôžu, pretože ak ~F (~r) = − gradU(~r) a ~F (~r) = − gradU ′(~r),
potom grad(U − U ′) = 0 a jediná funkcia s nulovým gradientom je konštantná
funkcia.

4.1. Skalárny a vektorový potenciál.

Z Maxwellovej rovnice div ~B = 0 a z tvrdenia 2 matematickej poznámky

vyplýva existencia funkcie ~A(~r, t) takej, že

~B(~r) = rot ~A(~r)

Z Maxwellovej rovnice rot ~E = −∂ ~B∂t upravenej na tvar rot ~E + ∂
∂t rot ~A =

rot( ~E+ ∂ ~A
∂t ) = 0 a z tvrdenia 3 matematickej poznámky vyplýva existencia funkcie

ϕ(~r, t) takej, že ~E + ∂ ~A
∂t = − gradϕ resp.

~E = − gradϕ− ∂
∂t
~A

Funkcia ~A(~r, t) sa nazýva vektorový elektromagnetický potenciál, funkcia ϕ(~r, t)
skalárny elektromagnetický potenciál.

Skalárny a vektorový potenciál sú určené hustotami elektrického náboja a prúdu
prostredńıctvom rovńıc, ktoré dostaneme zo zvyšných dvoch Maxwellových rovńıc
dosadeńım vyjadrenia elmag poĺı cez elmag potenciály. V principiálne najdôležiteǰsom
pŕıpade vákua a v prakticky bežnom pŕıpade homogénnej izotropnej látky (ktoré
sú formálne zhodné) vyzerajú tieto rovnice nasledovne

div[ε(− gradϕ− ∂

∂t
~A)] = ρ

rot rot ~A = µ~j +
∂

∂t
[µε(− gradϕ− ∂

∂t
~A)]

Odkial’ dostávame (div grad = 4, rot rot = grad div−4)
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4ϕ+
∂

∂t
div ~A = −ρ

ε

4 ~A− εµ ∂
2

∂t2
~A− grad(div ~A+ εµ

∂

∂t
ϕ) = −µ ·~j

Prvou výhodou týchto rovńıc v porovnańı s pôvodnými Maxwellovými rovni-
cami je nižš́ı počet rovńıc (dve namiesto štyroch) a nižš́ı počet neznámych funkcíı.
Kým v pôvodných rovniciach vystupuje 6 neznámych funkcíı (dve vektorové fun-

kcie ~E a ~B), v nových rovniciach sú to len 4 neznáme funkcie (jedna vektorová ~A
a jedna skalárna ϕ). Ak nájdeme pre dané hustoty náboja a prúdu tieto 4 funkcie,

źıskame z nich polia ~E a ~B jednoduchým derivovańım z definičných vzt’ahov.

Druhou výhodou nových rovńıc je možnost’ ich d’aľsieho formálneho zjednodušenia
tzv. kalibračnými transformáciami.

4.2. Kalibračné transformácie.

Elmag potenciály ~A, ϕ totiž nie sú určené elmag poliami ~E, ~B jednoznačne.

Ako vyplýva zo spomı́nanej matematickej poznámky, rôzne ~A prislúchajúce tomu

istému ~B sa môžu ĺı̌sit’ o gradient l’ubovol’nej funkcie. To znamená, že od daného
~A(~r, t) možno prejst’ k novému vektorovému potenciálu transformáciou

~A −→ ~A+ grad Λ

kde Λ(~r, t) je l’ubovol’ná hladká funkcia. Takáto transformácia nezmeńı magnetické
pole, ale ak funkcia Λ záviśı od času (čo vo všeobecnosti záviśı), zmeńı sa elektrické

pole ~E = − gradϕ− ∂
∂t
~A− ∂

∂t grad Λ. Ak však súčasne s transformáciou vektorového
potenciálu transformujeme aj skalárny potenciál a to nasledovne

ϕ −→ ϕ− ∂
∂tΛ

potom sa nezmeńı ani magnetické ani elektrické pole.

Uvedená transformácia elmag potenciálov (oboch súčasne!) sa nazýva (z istých

historických dôvodov) kalibračná transformácia. Pre každú dvojicu elmag poĺı ~E,
~B máme teda nekonečne vel’a dvoj́ıc elmag potenciálov ϕ, ~A, viazaných navzájom
kalibračnými transformáciami s rôznymi funkciami Λ. Konkrétnemu výberu po-

tenciálov ϕ, ~A sa zvykne hovorit’ “fixovanie kalibrácie ”a tento konkrétny výber je
možné urobit’ tak, aby sa nám zjednodušili rovnice pre elmag potenciály.

Jedným z vel’mi užitočných spôsobov výberu kalibrácie elmag potenciálov je

tzv. Lorenzova kalibrácia t.j. taký výber ϕ, ~A, aby platila

div ~A+ εµ
∂

∂t
ϕ = 0

Ukážme si najprv, že pre l’ubovol’né polia ~E, ~B sa naozaj dajú vybrat’ elmag po-

tenciály sṕlňajúce Lorenzovu kalibračnú podmienku. Uvažujme l’ubovol’nú dvojicu
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ϕ, ~A prislúchajúcu danej dvojici ~E, ~B, pričom ϕ, ~A nemusia sṕlňat’ Lorenzovu ka-
libračnú podmienku. Teraz tieto potenciály kalibračne transformujme a od trans-
formovaných potenciálov požadujme splnenie Lorenzovej kalibračnej podmienky t.j.
požadujme aby

div( ~A+ grad Λ) + εµ
∂

∂t
(ϕ− ∂

∂t
Λ) = 0

t.j.

4Λ− εµ ∂
2

∂t2
Λ = −div ~A− εµ ∂

∂t
ϕ

Otázka je, či existuje funkcia Λ sṕlňajúca poslednú rovnicu. Odpoved’ je kladná,
pretože sa jedná o vlnovú rovnicu (s nenulovou pravou stranou), ktorá má nekonečne
vel’a riešeńı. Od l’ubovol’nej dvojice elmag potenciálov sa teda dá prejst’ vhodnou

kalibračnou transformáciou k dvojici sṕlňajúcej Lorenzovu kalibračnú podmienku.

A teraz načo je to dobré. Ak využijeme Lorenzovu kalibračnú podmienku v
rovniciach pre elmag potenciály dostaneme

4ϕ− εµ ∂
2

∂t2
ϕ = −ρ

ε

4 ~A− εµ ∂
2

∂t2
~A = −µ ·~j

Tieto rovnice majú tri vel’mi pŕıjemné vlastnosti. Po prvé sú to dekuplované

rovnice pre ϕ a ~A, t.j. na rozdiel od všeobecných rovńıc pre elmag potenciály máme

nezávislé rovnice pre ϕ a ~A. Po druhé máme rovnakú rovnicu pre ϕ a pre ~A t.j.

ak sa nauč́ıme riešit’ rovnicu pre ϕ, vieme automaticky riešit’ aj rovnicu pre ~A. A
po tretie sa jedná o vlnovú rovnicu, takže všetko čo vieme o vlnovej rovnici nám
tu bude užitočné, a všetko nové, čo sa tu nauč́ıme, bude užitočné všade, kde sa
stretneme s vlnovou rovnicou. (Nové veci sa však o vlnovej rovnici nebudeme učit’

teraz, ale až v tretej kapitole.)

Iným užitočným výberom kalibrácie elmag potenciálov je tzv. Coulombova ka-

librácia t.j. taký výber ϕ, ~A, aby platila

div ~A = 0

Znova si najprv ukážme, že pre l’ubovol’né polia ~E, ~B sa naozaj dajú vybrat’ el-

mag potenciály sṕlňajúce Coulombovu kalibračnú podmienku. Uvažujme znovu

l’ubovol’nú dvojicu ϕ, ~A prislúchajúcu danej dvojici ~E, ~B, pričom ϕ, ~A nemusia

sṕlňat’ Coulombovu kalibračnú podmienku a tieto potenciály kalibračne transfor-
mujme, pričom od transformovaných potenciálov požadujme splnenie Coulombovej
kalibračnej podmienky t.j. požadujme aby

div( ~A+ grad Λ) = 0

t.j.

4Λ = −div ~A

Otázka je, či existuje funkcia Λ sṕlňajúca poslednú rovnicu. Odpoved’ je kladná,
pretože sa jedná o tzv. Poissonovu rovnicu, ktorá má nekonečne vel’a riešeńı. Od
l’ubovol’nej dvojice elmag potenciálov sa teda dá prejst’ vhodnou kalibračnou trans-

formáciou k dvojici sṕlňajúcej Coulombovu kalibračnú podmienku.
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Ak teraz využijeme Coulombovu kalibračnú podmienku v rovniciach pre po-
tenciály dostaneme

4ϕ = −ρ
ε

4 ~A− εµ ∂
2

∂t2
~A = −µ ·~j + εµ

∂

∂t
gradϕ

Tieto rovnice nie sú dekuplované, pretože v rovnici pre ~A vystupuje ϕ, ale

rovnica pre ϕ je nezávislá od ~A, takže najprv môžeme vyriešit’ rovnicu pre ϕ a

potom toto riešenie dosadit’ do rovnice pre ~A. Na rozdiel od všeobecných rovńıc pre
elmag potenciály môžeme teda riešit’ tieto rovnice nie súčasne, ale jednu po druhej.
Rovnica pre ϕ je Poissonova rovnica, ktorá v sebe zahŕňa celú elektrostatiku vrátane
Coulombovho zákona – odtial’ názov kalibrácie. Všetko, čo sa o Poissonovej rovnici
nauč́ıme v elektrostatike (ktorej bude venovaná celá druhá kapitola) bude teda
užitočné aj v elektrodynamike, pokial’ budeme pracovat’ v Coulombovej kalibrácii.

Rovnica pre ~A je znova vlnová rovnica, ktorej bude venovaná tretia kapitola.

Prečo skalárny a vektorový potenciál

Na záver si položme otázku, či sa naozaj oplat́ı zavádzat’ nové pojmy ako elmag
potenciály a kalibračné transformácie, či by sme nevystačili v teórii elmag pol’a s
elmag poliami. Odpoved’ je taká, že v mnohom by sme naozaj vystačili bez týchto
nových pojmov, ale inde (napr. pri vyšetrovańı elmag žiarenia) sú elmag potenciály
vel’mi užitočné a bez nich by sme sa natrápili ovel’a viac ako s nimi. Okrem toho
sa elmag potenciály ukazujú byt’ vhodneǰśımi než elmag polia v mnohých d’aľśıch
oblastiach fyziky. Uved’me si aspoň niekol’ko pŕıkladov:

V teórii relativity tvoria elmag potenciály tzv. štvorvektor, zatial’ čo elmag
polia tzv. štvortenzor. Manipulácia s elmag potenciálmi je teda v teórii relativity
v porovnańı s elmag poliami jednoduchšia asi natol’ko, nakol’ko je vo všeobecnosti
jednoduchšia manipulácia s vektormi v porovnańı s tenzormi.

Kvantová mechanika častice v elmag poli je oṕısaná Schrödingerovou rovni-
cou, v ktorej vystupujú elmag potenciály a nie elmag polia. Nahradenie elmag
potenciálov elmag poliami by tu bolo značne komplikované a neprirodzené.

Kvantová teória samotného elmag pol’a, tzv. kvantová elektrodynamika, je
založená na tzv. kvantovańı klasickej teórie. K tomuto kvantovaniu je potrebné
mat’ sformulovanú klasickú elektrodynamiku v lagrangeovskom alebo hamiltonov-
skom formalizme (analógy týchto formulácíı pre mechanické systémy poznáme z
teoretickej mechaniky). Pre oba tieto formalizmy sú elmag potenciály ovel’a vhod-
neǰsie a prirodzeneǰsie ako elmag polia.

Skôr či neskôr sa teda človek vo fyzike s elmag potenciálmi určite stretne a
preto nemá zmysel toto stretnutie odkladat’.
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Pŕıklady

1. Určenie elmag poĺı z elmag potenciálov
(Ilustrácia toho, že jednoduchým poliam môžu prislúchat’ na prvý pohl’ad zložité
potenciály.)
Je elmag pole určené nasledovnými elmag potenciálmi elektrostatické, magnetosta-
tické, časovo premenné elektrické, časovo premenné magnetické alebo iné?

a) ϕ (~r, t) = 0 ~A (~r, t) = α ~r
r3

b) ϕ (~r, t) = −α 1
r e
−λt ~A (~r, t) = α ~r

r3
1
λe
−λt

c) ϕ (~r, t) = −α 1
r sin2 (ωt) ~A (~r, t) = α ~r

r3

(
1 + 1

4ω sin (2ωt)
)

2. Určenie elmag potenciálov z elmag poĺı
(Niekol’ko jednoduchých pŕıkladov, ktoré sa riešia bud’ uhádnut́ım alebo syste-
matickým postupom podl’a dôkazov tvrdeńı z matematickej poznámky, vrátane
poznámky pod čiarou v dôkaze tvrdenia 2)
Nájdite elmag potenciály

a) pre homogénne elektrostatické pole tak, aby ϕ = 0 resp. ~A = 0

b) pre homogénne magnetostatické pole tak, aby ϕ = 0 resp. ~A = 0

c) pre magnetostatické pole ~B = (xy,− 1
2y

2, x2 + y2)
d) pre pole nekonečne dlhého vodiča, ktorým preteká prúd I.

3. Kalibračné transformácie
(Elementárne pŕıklady na precvičenie nových pojmov.)

a)Potenciály ϕ(~r, t) = r · sin2 ωt, ~A(~r, t) = ~r · cos2 ωt prejdú po kalibračnej trans-

formácii na ϕ′(~r, t), ~A ′(~r, t). Určte ϕ′(~r, t) ak ~A ′(~r, t) = ~r.

b) Pre elmag potenciály ϕ(~r, t) = r·t, ~A(~r, t) = ~r·t nájdite kalibračnú transformáciu,

po ktorej sa ϕ zmeńı na dvojnásobné a kalibračnú transformáciu, po ktorej sa ~E
zmeńı na dvojnásobné.

c) Zistite, ktoré z elmag potenciálov uvažovaných v tomto pŕıklade sṕlňajú Loren-
zovu a ktoré Coulombovu kalibračnú podmienku.
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POISSONOVA A LAPLACEOVA ROVNICA
(ELEKTROSTATIKA)

V tejto kapitole začneme s dešifrovańım informácie obsiahnutej v Maxwellových
rovniciach, t.j. začneme sa zaoberat’ riešeńım týchto rovńıc v rôznych situáciách.
Najprv sa prirodzene pozrieme na situáciu najjednoduchšiu — na elektrostatiku.
Pojmy, ktoré si zavedieme pri vyšetrovańı tejto jednoduchej situácie, sa neskôr
ukážu byt’ značne užitočné aj v situáciách zložiteǰśıch a svojim významom d’aleko
presahujú nielen elektrostatiku, ale aj celú elektrodynamiku. Ide totiž o základné
nástroje na riešenie lineárnych parciálnych diferenciálnych rovńıc, a tie tvoria pri-
rodzený jazyk vel’mi širokých oblast́ı fyziky.1

1. Poissonova rovnica a jednoznačnost’ jej riešenia

Začnime tým, že si elektrostatické úlohy rozdeĺıme na vel’mi l’ahké a t’ažšie. Pod
vel’mi l’ahkými budeme rozumiet’ úlohy, v ktorých je zadané nejaké rozloženie náboja
vo vákuu alebo homogénnom izotropnom dielektriku a má sa nájst’ elektrické pole
prislúchajúce tomuto rozloženiu náboja. Vel’mi l’ahké sú tieto úlohy preto, lebo ich
riešenie vieme naṕısat’ okamžite, a to pomocou Coulombovho zákona a prinćıpu
superpoźıcie

~E(~r) =
1

4πε

∫
ρ(~r ′)

~r − ~r ′

|~r − ~r ′|3
d3r′

Pod t’ažš́ımi úlohami budeme rozumiet’ úlohy ostatné. Sem patria napr. úlohy v
ktorých nie je celý priestor vyplnený vákuom alebo jedným homogénnym izotrop-
ným dielektrikom, ale v ktorom sú rôzne časti priestoru vyplnené rôznymi dielektri-
kami (vo všeobecnosti úlohy v nehomogénnom prostred́ı). Okrem toho sem patria
úlohy, v ktorých je okrem rozloženia nábojov zadané aj rozloženie nejakých vodičov,
pričom je daný aj celkový náboj každého vodiča alebo potenciál, na ktorom je tento
vodič držaný.2

1Úprimne povedané, elektrostatika asi patŕı k najmenej vzrušujúcim aplikáciám teórie

lineárnych diferenciálnych rovńıc. Ale na druhej strane je zo všetkých fyzikálnych aplikácíı asi
najjednoduchšia.

Elektrostatikou sa teda budeme zaoberat’ pomerne podrobne ani nie tak pre ňu samotnú,

skôr ju budeme chápat’ ako ideálne ihrisko na naučenie sa množstva užitočných većı.
2Ak je vodič vodivo spojený s iným, ovel’a väčš́ım vodičom, ktorého potenciál je ϕ, potom

hovoŕıme, že pôvodný vodič je držaný na potenciále ϕ. Napŕıklad o uzemnenom vodiči, t.j. o vodiči
vodivo spojenom so zemou, hovoŕıme, že je držaný na potenciále zeme (ktorý obvykle definujeme

ako nulový).
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Problém s t’ažš́ımi úlohami je v tom, že okrem nábojov, ktorých rozloženie
je zadané, vzniká v kovoch a dielektrikách d’aľsie rozloženie náboja, ktoré dopredu
známe nie je. Tým pádom sa stávajú Coulombov zákon a prinćıp superpoźıcie ovel’a
menej užitočnými (napriek tomu, že stále zostávajú v platnosti) pretože nepoznáme
všetky hustoty náboja, ktoré treba do nich dosadit’. Pri riešeńı týchto úloh je preto
ovel’a výhodneǰsie štartovat’ z niečoho iného ako z Coulombovho zákona, a śıce z
Maxwellových rovńıc pre elektrické polia v statickom pŕıpade

div ~D = ρ rot ~E = ~0

kde ~D, ~E aj ρ sú funkcie polohového vektora ~r, ale nie funkcie času t, pretože v
statickom pŕıpade sú všetky veličiny od času nezávislé (toto je tiež dôvod nulo-

vosti pravej strany druhej rovnice, vo všeobecnosti tam patŕı −∂ ~B∂t , čo je ovšem v
statickom pŕıpade nula).

V pŕıpade látkového prostredia musia byt’ uvedené dve rovnice ešte doplnené

vzt’ahom ~D( ~E), ktorý špecifikuje vlastnosti prostredia. Tým sa dostávame k d’aľsie-
mu, podrobneǰsiemu, deleniu elektrostatických úloh a śıce k deleniu t’ažš́ıch úloh na
úlohy, ktorými sa budeme zaoberat’ a na úlohy, ktorými sa zaoberat’ nebudeme. Do

prvej kategórie patria úlohy s najjednoduchš́ım vzt’ahom medzi ~D a ~E

~D( ~E) = ε ~E

t.j. úlohy v homogénnom izotropnom dielektriku (v ktorom je zadané rozloženie
nábojov a vodičov). K úlohám, ktorými sa zaoberat’ nebudeme, poznamenajme
aspoň tol’ko, že sú to až na malé výnimky úlohy naozaj t’ažké, ktoré sa bud’ riešia
niektorými nie práve najjednoduchš́ımi metódami matematickej fyziky, alebo (a to
býva časteǰsie) rôznymi približnými a numerickými metódami. Dôvody, pre ktoré
sa týmito úlohami nebudeme zaoberat’, teda nespoč́ıvajú v ich menšej dôležitosti,
ale v ich zložitosti, presahujúcej úroveň základnej prednášky.

Úlohou elektrostatiky je nájst’ pre dané ρ(~r) vektorovú funkciu ~E(~r) vyhovu-

júcu uvedeným rovniciam. Nájst’ vektorovú funkciu ~E(~r) znamená nájst’ tri funkcie

Ex(x, y, z), Ey(x, y, z) a Ez(x, y, z). Maxwellova rovnica rot ~E = 0 nám umožňuje
zredukovat’ počet neznámych funkcíı z troch na jednu. Ak je totiž rotácia nejakej
vektorovej funkcie nulová, potom existuje skalárna funkcia taká, že daná vektorová
funkcia je gradientom tejto skalárnej funkcie (tvrdenie 3 z matematickej poznámky z

paragrafu 1.4). V pŕıpade funkcie ~E(~r) je zvykom označovat’ túto skalárnu funkciu
−ϕ(~r) (pričom znamienko mı́nus nemá nijaký hlboký význam, je to jednoducho
súčast’ štandardnej konvencie), a nazývat’ ju potenciálom. Máme teda

~E(~r) = − gradϕ(~r)

a ak toto dosad́ıme do rovnice pre div ~D t.j. pre div ε ~E, dostaneme

div gradϕ = −ρ
ε

čiže

4ϕ = −ρε

kde 4 je tzv. Laplaceov operátor (domácke meno laplacián) 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
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Rovnica 4ϕ = −ρε sa volá Poissonova rovnica a bude základom celého nášho
vyšetrovania elektrostatiky, čo znamená, že k t’ažš́ım úlohám elektrostatiky, ktorými
sa budeme zaoberat’, budeme pristupovat’ tak, že riešeńım Poissonovej rovnice náj-

deme ϕ a z neho potom ~E. Okrem redukcie počtu neznámych funkcíı má Poissonova
rovnica oproti pôvodným rovniciam tú výhodu, že sa pre ňu vel’mi prirodzene formu-
lujú úlohy s vodičmi držanými na určitých potenciáloch — jednoducho sa požaduje
aby tam, kde sú umiestnené dané vodiče, mal potenciál ϕ dopredu zadanú hodnotu.3

Pri každej diferenciálnej rovnici, s ktorou sa vo fyzike stretneme, je dobré do-
predu si vyjasnit’ otázky existencie a jednoznačnosti jej riešenia. Dôvody pre to
sú jednak takpovediac hlboké a jednak celkom pragmatické. K tým hlbš́ım patria
napr. otázky korektnosti opisu daného fyzikálneho javu uvažovanou rovnicou. Ak
z experimentov vieme, že za istých okolnost́ı je nejaká fyzikálna veličina určená
jednoznačne, potom by rovnica pre túto veličinu mala mat’ za týchto okolnost́ı
jednoznačné riešenie. Ak tomu tak nie je, potom je opis danej fyzikálnej situácie
uvažovanou rovnicou zrejme nekorektný (niečo z tejto situácie nie je v rovnici po-
stihnuté, hoci niečo iné v nej môže byt’ postihnuté vel’mi dobre). Z pragmatických
dôvodov spomeňme aspoň možnost’ povýšenia hádania na vel’mi užitočnú metódu
riešenia rovnice. Ak totiž vieme dopredu, že za daných okolnost́ı má rovnica jediné
riešenie, potom nech ho nájdeme akýmkol’vek spôsobom (a v mnohých spôsoboch
hrá uhádnutie podstatnú úlohu), tak vieme, že sme našli všetko, čo sa dalo, že
nijaké iné riešenia už neexistujú.

Dôkaz existencie riešenia Poissonovej rovnice nebudeme vo všeobecnosti robit’,
v tých konkrétnych pŕıpadoch, ktorými sa budeme zaoberat’, dokážeme existenciu
riešenia vždy tým, že ho explicitne nájdeme. Dôkaz jednoznačnosti urob́ıme v dvoch
dôležitých pŕıpadoch. (Podrobneǰsie štúdium týchto otázok je predmetom špeciálnej
prednášky z matematickej fyziky venovanej parciálnym diferenciálnym rovniciam.)

Prvým pŕıpadom, v ktorom dokážeme jednoznačnost’ riešenia Poissonovej rovni-
ce, bude pŕıpad úloh s vodičmi držanými na určitých potenciáloch. Vo vodičoch je v

statickom pŕıpade elektrické pole nulové, čo vyplýva z Ohmovho zákona ~j = σ · ~E a
z toho, že pod statickými pŕıpadmi rozumieme pŕıpady s nulovou hustotou prúdu.
Takže potenciál v každom vodiči je konštantný a dopredu zadaný, t.j. vo vnútri
vodičov je všetko jasné. Pre potenciál v oblasti mimo vodičov máme k dispoźıcii
Poissonovu rovnicu a dopredu zadané hodnoty potenciálu na hranici tejto oblasti
(táto hranica je totiž tvorená práve povrchom vodičov).

Teraz trochu matematickej terminológie. Ak máme riešit’ nejakú parciálnu di-
ferenciálnu rovnicu v určitej oblasti a máme pritom zadané, ako sa má riešenie
chovat’ na hranici tejto oblasti, hovoŕıme, že sú zadané okrajové podmienky pre

3Poznamenajme, že Poissonova rovnica hrá dôležitú úlohu nielen v elektrostatike, ale aj v
iných oblastiach fyziky. Napr. vedenie tepla alebo difúzia sú oṕısané rovnicou ∂

∂t
f − a.4f = ρ,

kde f je v pŕıpade vedenia tepla teplota a v pŕıpade difúzie koncentrácia difundujúcej látky. V
mnohých pŕıpadoch je dôležité poznat’ tzv. stacionárny režim vedenia tepla resp. difúzie, t.j. také

rozdelenie teploty resp. koncentrácie, ktoré sa s časom nemeńı. Pre časovo nemenné funkcie je
ovšem parciálna derivácia podl’a času nulová a rovnica vedenia tepla či difúzie prechádza na
Poissonovu rovnicu. Hl’adanie stacionárnych režimov vedenia tepla a difúzie teda vedie na riešenie
Poissonovej rovnice. Podobne vedie na Poissonovu rovnicu hl’adanie stacionárnych riešeńı vlnovej

rovnice a.4f + ∂2

∂t2
f = ρ.
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túto rovnicu. Okrajové podmienky, ktoré priamo hovoria, aké hodnoty má riešenie
na hranici nadobúdat’, sa nazývajú Dirichletove okrajové podmienky. Úloha riešit’

danú diferenciálnu rovnicu s Dirichletovými okrajovými podmienkami sa nazýva
Dirichletovou úlohou pre túto rovnicu. Dirichletove okrajové podmienky pre funkciu
ϕ špecifikované funkciou f zadanou na ploche S zapisujeme obvykle ako

ϕ(~r)|S = f(~r)

Veta o jednoznačnosti riešenia Dirichletovej úlohy pre Poissonovu rovnicu

Dirichletova úloha pre Poissonovu rovnicu v oblasti ohraničenej
uzavretou plochou S má najviac jedno riešenie, t.j. ak riešenie
existuje, tak je jednoznačné.

Dôkaz je založený na tzv. Greenovej identite∫
V

(ϕ4ψ +∇ϕ · ∇ψ)dV =

∮
S

ϕ∂nψdS

ktorú dostaneme z Gaussovej vety
∫
V
∇ · ~u dV =

∮
S
~u · d~S, ak polož́ıme ~u = ϕ∇ψ

a využijeme ~n · ∇ψ = ∂
∂nψ ≡ ∂nψ, čo je derivácia v smere kolmom na plochu S (v

danom bode).

Nech teda ϕ1 a ϕ2 sú dve riešenia uvažovanej Dirichletovej úlohy. Ich rozdiel φ =

ϕ1−ϕ2 sṕlňa v oblasti ohraničenej plochou S rovnicu 4φ = 0 (4φ = 4ϕ1−4ϕ2 =
−ρε + ρ

ε = 0) a na hranici S má φ nulovú hodnotu (φ|S = ϕ1|S −ϕ2|S = f − f = 0).
Z Greenovej identity pre ϕ = ψ = φ dostaneme∫

V

(φ4φ+∇φ · ∇φ)dV =

∮
S

φ∂nφdS

odkial’ vzhl’adom na nulovost’ 4φ v oblasti a φ na hranici dostávame∫
V

|∇φ|2dV = 0

Ak je integrál z nezápornej funkcie cez nejakú oblast’ nulový, muśı byt’ táto funkcia
v danej oblasti všade nulová. To znamená |∇φ|2 = 0, čiže ∇φ = ~0. To ale znamená,
že φ = const, a ked’že na hranici φ = 0, tak táto konštanta muśı byt’ nulová, t.j.
φ = 0 všade, a teda ϕ1 = ϕ2.

Všimnime si, že podstatnú úlohu v dôkaze hrala skutočnost’, že integrál
∮
S
φ∂φ∂ndS

bol nulový vd’aka nulovosti funkcie φ na hranici S. Rovnako nulový je tento integrál
pre nenulové φ a nulové ∂φ

∂n . To ale znamená (premyslite si to), že celý dôkaz môžeme
prakticky bez zmeny zopakovat’ aj v pŕıpade, že nie je zadaná hodnota funkcie ϕ na
hranici, ale je zadaná hodnota jej normálovej derivácie ∂ϕ

∂n na tejto hranici. Jediný
rozdiel bude na konci dôkazu, kde môžeme konštatovat’ konštantnost’ funkcie φ v
celej oblasti, ale nie jej nulovost’. Potenciál ϕ teda nie je v takomto pŕıpade určený
jednoznačne, rôzne riešenia sa však nemôžu ĺı̌sit’ viac ako o konštantu a elektrické
pole určené takýmito potenciálmi je jednoznačné.
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Okrajové podmienky, ktoré hovoria aké hodnoty má nadobúdat’ na hranici
normálová derivácia riešenia, sa nazývajú Neumannove okrajové podmienky a ob-
vykle ich zapisujeme ako

∂ϕ(~r)

∂n

∣∣∣∣
S

= g(~r)

Úloha riešit’ Poissonovu rovnicu s Neumannovými okrajovými podmienkami sa
nazýva Neumannova úloha pre Poissonovu rovnicu. Dôkaz jednoznačnosti riešenia
Dirichletovej úlohy bol teda dôkazom aj nasledovnej vety:

Veta o jednoznačnosti riešenia Neumannovej úlohy pre Poissonovu rovnicu

Rôzne riešenia Neumannovej úlohy pre Poissonovu rovnicu v
oblasti ohraničenej uzavretou plochou S sa ĺı̌sia maximálne o
konštantu t.j. ak riešenie (potenciál) existuje, tak ńım určené
elektrické pole je jednoznačné.

Druhým pŕıpadom, v ktorom sme dokázali jednoznačnost’ riešenia Poissonovej
rovnice, je teda pŕıpad úloh, v ktorých je na hranici uvažovanej oblasti zadaná
normálová derivácia potenciálu, čo nie je nič iné ako mı́nus normálová zložka elek-
trického pol’a. (Z praktického hl’adiska je v elektrostatike Neumannova úloha o dost’

menej dôležitá ako Dirichletova úloha, ale v iných oblastiach fyziky, v ktorých sa
vyskytuje Poissonova rovnica, už to tak byt’ nemuśı, a ked’že sme dôkaz mali úplne
zadarmo, bola by škoda neuviest’ si k nemu vetu.)

Poznámka. (O priestoroch ohraničených uzavretými plochami). Pod priesto-
rom ohraničeným uzavretou plochou si človek najskôr predstav́ı vnútro nejakého
uzavretého vreca. Je asi dobré explicitne si uvedomit’, že za uzavretú plochu (jednu)
je možné považovat’ aj dve oddelené vrecia. Takéto oddelené vrecia totiž môžeme do-
stat’ z jedného vreca “deleńım à la delenie buniek”, t.j. dve vrecia možno považovat’

za limitný pŕıpad jedného vreca typu činka, v limite v ktorej hrúbka spájajúcej
časti ide do nuly. Plocha tvorená dvoma oddelenými vrecami je śıce nesúvislá, ale
v zmysle vyššie uvedených viet je to plocha úplne plnohodnotná a tieto vety pre ňu
platia.

Analogicky možno za uzavretú plochu považovat’ dve vrecia jedno v druhom
a za priestor ohraničený touto plochou považovat’ vnútro väčšieho a vonkaǰsok
menšieho z nich (nakreslite si proces “delenia vreca” vedúceho k takejto konfi-
gurácii). Zauj́ımavú vec dostaneme, ak teraz pošleme vonkaǰsie vrece do nekonečna.
V takomto pŕıpade možno za priestor ohraničený uzavretou plochou považovat’ von-
kaǰsok vreca, čo je asi na prvý pohl’ad prekvapujúce. Treba si však uvedomit’, že
ak čast’ uvažovanej uzavretej plochy lež́ı v nekonečne, potom integrály vystupujúce
v dôkaze vety sú nevlastné integrály a dôkaz je korektný len v pŕıpade, že tieto
integrály sú konvergentné. Na zaručenie konvergencie týchto integrálov však stač́ı
požadovat’, aby potenciál klesal v nekonečne dostatočne rýchlo.

Všetky úvahy, ktoré sa tu týkali dvoch vriec, možno samozrejme urobit’ pre
l’ubovol’ný počet navzájom oddelených vriec.
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Niekol’ko fyzikálnych dôsledkov vety o jednoznačnosti

Veta o jednoznačnosti riešenia Dirichletovej úlohy pre Poissonovu rovnicu bude
pre nás vel’mi užitočná z matematického hl’adiska pri konkrétnych metódach riešenia
Poissonovej rovnice. Tieto totiž budú (ako sme už spomı́nali) vždy založené čiastočne
na uhádnut́ı, takže bez vety o jednoznačnosti by sme nikdy nevedeli, či sme pri
hádańı nejaké riešenia nestratili. Veta o jednoznačnosti riešenia Dirichletovej úlohy
pre Poissonovu rovnicu má však aj niekol’ko d’aľśıch dôležitých fyzikálnych dôsledkov,
pri ktorých sa teraz na chv́ıl’u pristav́ıme. Nepôjde o úplne nové veci, všetky sú do
istej miery známe zo základného kurzu elektriny a magnetizmu. Ich súvis s práve
dokázanou vetou však umožńı tieto veci pochopit’ o niečo lepšie a hlbšie a práve
to je jedným zo zmyslov prednášky z teórie elmag pol’a — okrem naučenia nových

većı, preh́lbit’ porozumenie veciam starým.

Faradayova klietka

Tvrdenie: Ak v priestore ohraničenom uzavretou vodivou plochou nie sú nijaké
náboje a mimo tohto priestoru je (statické) rozloženie náboja l’ubovol’né, potom
elektrické pole v tomto priestore je nulové. (Uzavretej vodivej ploche, ktorá takto
“bráni elektrostatickému pol’u preniknút’” do uvažovaného priestoru sa hovoŕı Fa-
radayova klietka.)

V základnom kurze elektriny a magnetizmu sa toto tvrdenie zvykne zdôvodňovat’

nulovost’ou krivkového integrálu elektrického pol’a po uzavretej krivke, ktorá pre-
chádza čiastočne vnútrom vodiča a čiastočne uvažovaným ohraničeným priestorom
(pozri napr. Feynmanove prednášky z fyziky, kap. 5 tretieho dielu slovenského vy-
dania). Pritom sa z nulovosti integrálu usudzuje na nulovost’ podintegrálnej funkcie,
čo je samozrejme vo všeobecnosti nepŕıpustné, ale je to oprávnené ak je napŕıklad
uvažovaný integrál nulový pre l’ubovol’nú krivku. V našom pŕıpade je integrál nulový
pre nekonečne vel’a kriviek (pre všetky krivky v uvažovanom ohraničenom pries-
tore, ktoré zač́ınajú a končia na hranici tohto priestoru), ale nie pre všetky krivky.
Oprávnenost’ usudzovania na nulovost’ elektrického pol’a z nulovosti integrálov je
teda značne diskutabilná a preto možno spomı́nanú úvahu považovat’ za akési ro-
zumné zdôvodnenie prijatel’nosti uvedeného tvrdenia, ale t’ažko za jeho naozajstný
dôkaz.

Pozrime sa teraz, ako sa uvedené tvrdenie pomocou vety o jednoznačnosti na-
ozaj dokáže. V prvom rade si uvedomı́me, že elektrické pole vo vodiči je v elektro-
statickom pŕıpade nulové (v elektrostatike sú prúdy nulové z defińıcie a z Ohmovho
zákona odtial’ okamžite vyplýva nulovost’ elektrického pol’a vo vodičoch). Potenciál
vo vnútri vodiča je teda konštatný. Pre nami uvažovaný priestor, ohraničený uzav-
retým vodičom, to znamená, že potenciál na hranici je konštatný. Máme teda nájst’

riešenie rovnice 4ϕ = 0 s okrajovou podmienkou ϕ|S = const. Jedno riešenie tejto

úlohy vieme ovšem naṕısat’ okamžite: ϕ(~r) = const je riešeńım rovnice a sṕlňa okra-
jovú podmienku. Tým je ale celá úloha kompletne vyriešená, pretože podl’a vety o
jednoznačnosti je toto riešenie jediné. Elektrické pole zodpovedajúce konštatnému
potenciálu je nulové, č́ım dôkaz konč́ı.
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Kapacita vodičov

Zo základného kurzu elektriny a magnetizmu je známe, že medzi nábojom na
uzavretej vodivej ploche a potenciálom na tejto ploche je v pŕıpade, že náboj je
všade mimo vodiča nulový, jednoduchý lineárny vzt’ah

Q = C · V
Tento vzt’ah býva odvodený v niektorých jednoduchých pŕıpadoch, napŕıklad pre
gul’ový vodič, ale nie je ukázané, že plat́ı úplne všeobecne. To ukážeme teraz.

Nech je potenciál na danom uzavretom vodiči rovný V. Podl’a vety o jedno-
značnosti je týmto V (a tým, že ρ(~r) = 0) jednoznačne daný potenciál ϕ všade.

To znamená, že je jednoznačne daná aj normálová derivácia ∂ϕ
∂n na hranici daného

vodiča. Táto normálová derivácia nie je nič iné, ako mı́nus normálová zložka elek-
trického pol’a. Touto zložkou elektrického pol’a (spolu s tým, že vnútri vo vodiči je
elektrické pole v elektrostatickom pŕıpade nulové), je zas vd’aka jednej z hraničných
podmienok pre elmag polia (pozri čast’ 1.2) jednoznačne určená plošná hustota
náboja na povrchu vodiča. Ďalej si uvedomı́me, že hustota náboja vo vnútri vodiča
muśı byt’ v elektrostatickom pŕıpade nulová (nenulové ρ by kvôli Gaussovej vete

viedlo na nenulové ~E vo vnútri vodiča, čo by zas cez Ohmov zákon viedlo na nenu-
lové ~j, v spore s predpokladom o elektrostatičnosti). Celkový náboj vodiča je teda
jednoznačne určený plošnou hustotou povrchového náboja. Schematicky znázornené
to vyzerá takto:

V → ϕ(~r)→ ∂nϕ|S → σS → Q

kde každá š́ıpka znamená “jednoznačne určuje”.

Nech sa teraz potenciál na danom vodiči zmeńı k-krát. Ak zmeńıme k-krát

potenciál ϕ všade, bude tento nový potenciál sṕlňat’ ako Laplaceovu rovnicu, tak
aj okrajové podmienky. Tento potenciál bude podl’a vyššie uvedenej schémy jedno-
značne určovat’ celkový náboj na vodiči, ktorý bude k-násobný.

kV → kϕ(~r)→ k∂nϕ|S → kσS → kQ

To ale znamená, že vzt’ah medzi napät́ım na vodiči a celkovým nábojom na ňom je
naozaj lineárny Q = C · V . Bez akéhokol’vek výpočtu sme teda ukázali, že kapacita
vodiča je naozaj dobre definovaný pojem. Na výpočet kapacity konkrétneho vodiča
však treba vyriešit’ Laplaceovu rovnicu s konštantným potenciálom na vodiči a
nulovým v nekonečne.

Veta o jednoznačnosti nám teraz umožňuje rozš́ırit’ pojem kapacity na sústavu
viacerých vodičov. Uvažujme n vodičov, na j-tom z nich nech je potenciál Vj , na os-
tatných nulový potenciál. Rovnakou úvahou ako predtým pŕıdeme k tomu, že náboj
na l’ubovol’nom i-tom vodiči je v takomto pŕıpade jednoznačne zadaný hodnotou Vj
a že od tejto hodnoty záviśı lineárne. V tejto situácii teda môžeme ṕısat’

Qi = Cij · Vj
pričom v tomto výraze sa nemysĺı suma cez opakovaný index j. Ak však teraz
uvažujeme všeobecnú situáciu, v ktorej sú všetky Vj nenulové, môžeme si ju rozdelit’

na n už uvažovaných pŕıpadov s jediným Vj nenulovým a tieto potom na základe
prinćıpu superpoźıcie sč́ıtat’. Dostaneme presne to isté, čo predtým, akurát tentoraz
už sa bude mysliet’ suma cez opakovaný index j. (Premysliet’ si, že je to naozaj tak.)
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Matica Cij nám teda umožňuje l’ahko vypoč́ıtat’ náboje na vodičoch, pokial’ je
zadaný potenciál na každom z nich. Ak je táto matica nesingulárna, t.j. ak existuje
matica k nej inverzná, tak táto umožňuje rovnako l’ahko vypoč́ıtat’ potenciály zo
zadaných nábojov.

Poznámka. (Dôležitá.) Filozofia, ktorú sme použili pri analýze pojmu kapacity
vodiča, umožňuje riešit’ cez Dirichletove okrajové podmienky elektrostatické úlohy,
v ktorých nie sú zadané potenciály na vodičoch (t.j. priamo Dirichletove okrajové
podmienky), ale celkový náboj na jednotlivých vodičoch. Jednoducho vyriešime
Poissonovu rovnicu s konštantnými, ale konkrétne nešpecifikovanými potenciálmi
na jednotlivých vodičoch (konštantnými preto, lebo v elektrostatike muśı byt’ po-
tenciál vo vodiči konštantný), potom vypoč́ıtame náboje na jednotlivých vodičoch
ako funkcie napät́ı na všetkých vodičoch a nakoniec vyberieme konkrétne hodnoty
týchto napät́ı tak, aby sme dostali predṕısané hodnoty nábojov.

Poznámka. (Menej dôležitá.) V elektrotechnike sa často vyskytuje systém
dvoch vodičov (kondenzátor), ktorý je charakterizovaný len jednou kapacitou a nie
štyrmi, ako by to malo byt’ podl’a našich úvah. Nejde tu však o nijaký rozpor, to čo
sa uvažuje tam je len jeden špeciálny pŕıpad z toho, čo sme uvažovali tu. Konkrétne
sa uvažuje náboj na oboch vodičoch presne opačný, t.j. Q1 = −Q2 = Q a pod
napät́ım sa mysĺı rozdiel potenciálov na oboch vodičoch, t.j. V = V1−V2. Vyjadrit’

kapacitu C = Q
V cez kapacity C11, C12, C21 a C22 je jednoduchým algebraickým

cvičeńım.

metóda imaginárnych nábojov (elektrických zrkadiel)

Úloha nájst’ elektrické pole bodového náboja pri uzemnenej vodivej rovine sa
štandardne rieši (ako je zrejme známe zo základného kurzu) tým, že sa za ro-
vinu umiestni d’aľśı vhodný náboj a pole sa vypoč́ıta ako superpoźıcia poĺı daných
Coulombovým zákonom od pôvodného a doplneného náboja. (Doplnený náboj nie
je skutočný a predstavuje v istom zmysle zrkadlový obraz pôvodného náboja —
odtial’ názvy metódy.) Otázky, ktoré sa v základnom kurze väčšinou nie úplne zod-
povedajú, sú: Je toto naozaj korektná metóda, je pole, ktoré takto dostaneme na-
ozaj totožné s pol’om, ktoré máme dostat’? Je táto metóda použitel’ná aj v iných
situáciách, ak áno v akých a ako?

Veta o jednoznačnosti nám umožńı jednoducho odpovedat’ na tieto otázky.
Predstavme si, že máme nájst’ pole nejakého konkrétneho rozloženia nábojov na-
chádzajúceho sa v priestore ohraničenom uzavretou vodivou plochou, na ktorej
je zadaná konkrétna hodnota potenciálu. Predstavme si d’alej, že namiesto tejto
úlohy vyriešime inú úlohu s tým istým rozložeńım náboja v danom ohraničenom
priestore, bez danej vodivej plochy a s nejakým dodatočným rozložeńım náboja v
priestore mimo uvažovaný ohraničený priestor. Riešenie takejto úlohy je triviálne
– je okamžite dané Coulombovým zákonom a prinćıpom superpoźıcie. Zauj́ımavé
z nášho hl’adiska začne byt’ riešenie tejto inej úlohy vtedy, ak potenciál na ploche
ohraničujúcej pôvodne uvažovaný objem (na ktorej bol v pôvodnej úlohe vodič a
v novej úlohe tam nie je nič) je práve taký, ako bol predṕısaný v pôvodnej úlohe.
V takomto pŕıpade je totiž v pôvodnom ohraničenom priestore riešenie novej úlohy
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totožné s riešeńım pôvodnej úlohy. Naozaj obe riešenia sṕlňajú v tejto časti pries-
toru rovnakú Poissonovu rovnicu (pretože rozloženie náboja v tejto časti priestoru

je v oboch úlohách rovnaké) a na hranici tejto časti priestoru sṕlňajú obe rov-
naké okrajové podmienky. Z vety o jednoznačnosti teda vyplýva, že riešenia sa v
uvažovanej časti priestoru musia rovnat’.

Na prvý pohl’ad to teraz vyzerá tak, že sme našli vynikajúcu metódu, ktorá
prevedie pomerne t’ažkú úlohu na úlohu vel’mi l’ahkú. Tak jednoduché to však nie
je, pretože kl’́učovým momentom je nájst’ vhodné rozloženie náboja mimo pôvodne
uvažovaný priestor a to je vo všeobecnosti úloha rovnako t’ažká, ako pôvodná úloha.
Štandardný postup je preto nasledovný: ak pri skúmańı rôznych rozložeńı náboja
(bez vodivých plôch) naraźım na nejaké rozloženie s geometricky zauj́ımavou plo-
chou so zauj́ımavo rozloženým potenciálom (čo je zauj́ımavé je z nášho hl’adiska
dané tým, čo je prakticky realizovatel’né pomocou vodivých plôch, čiže napr. ekvipo-
tenciálne plochy sú obzvlášt’ zauj́ımavé) tak si toto rozloženie náboja zapamätám.
Ak niekedy v budúcnosti naraźım na úlohu v nejakej časti priestoru ohraničenej
práve zapamätanou plochou, na ktorej je zadaný práve taký potenciál, ako som si
zapamätal a rozloženie náboja v tejto časti priestoru je práve totožné s tým, čo
som si zapamätal, potom viem, č́ım doplnit’ toto rozloženie mimo tento priestor t.j.
viem, ako vybrat’ imaginárne náboje.

Vzhl’adom k tomu, nakol’ko je riešenie Poissonovej rovnice vo všeobecnosti
t’ažké, je metóda imaginárnych nábojov vel’mi užitočná všade tam, kde je použitel’ná.
V nasledujúcich pŕıkladoch uvádzame ilustráciu metódy pre sféru.

Pŕıklady

1. Faradayova klietka
(niekol’ko pŕıkladov na precvičenie použitia vety o jednoznačnosti)
a) Ukážte, že elektrostatické pole v dutine vodiča je jednoznačne dané rozložeńım
náboja v dutine a nezáviśı od rozloženia náboja vo vonkaǰsom priestore.
b) Ukážte, že predchádzajúce tvrdenie “naruby” neplat́ı — rozloženie nábojov v
dutine ovplyvňuje elektrostatické pole vo vonkaǰsom priestore. (Nahliadne sa hned’

pomocou Gaussovej vety, ale stoj́ı za to ešte chv́ıl’ku porozmýšl’at’ a uvedomit’ si,
prečo úvaha, ktorá prešla vnútri, neprejde vonku.)
c) Ukážte, že elektrostatické pole vo vonkaǰsom priestore je ovplyvnené len celkovou
hodnotou náboja v dutine a nie jeho detailným rozložeńım.
d) V predchádzajúcich pŕıpadoch sme uvažovali izolovaný vodič. Ako sa zmenia
predchádzajúce tvrdenia pre vodič držaný na konštantnej hodnote potenciálu (napr.
uzemnený)?
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2. Kondenzátor
(jednoduchý pŕıklad na súvis kapacity vodiča s kapacitou kondenzátora)
Pre sústavu dvoch vodičov plat́ı, že ak je napätie na oboch z nich 1V, potom náboj
na prvom je 3C a na druhom 5C. Ak napätie na prvom zdvojnásob́ıme, narastie
náboj na ňom na 4C a náboj na druhom vodiči na 7C.
a) Aké budú náboje na vodičoch, ak na prvom z nich bude napätie 1V a na druhom
2V?
b) Aké budú napätia na týchto vodičoch, ak bude na každom z nich náboj 1C?
c) Aká je kapacita kondenzátora tvoreného týmito vodičmi?

3. Sústavy nábojov so sférickými ekvipotenciálnymi hladinami
(delostrelecká pŕıprava pre nasledujúci pŕıklad)
a) Ukážte, že ak má elektrostatické pole dvoch bodových nábojov q1 a q2 s polohami
~r1 a ~r2 nulovú ekvipotenciálnu hladinu ϕ = 0 aj inde ako v nekonečne, potom je
táto hladina sférická alebo rovinná. Nájdite stred a polomer tejto sféry resp. polohu
tejto roviny. Ukážte d’alej, že pre vzdialenosti l1, l2 nábojov od stredu sféry plat́ı
l1l2 = R2 a q2 = −R

l1
q1 kde R je polomer sféry.

b) Nájdite také rozloženie nábojov, ktoré bude mat’ sférickú ekvipotenciálnu hladinu
s potenciálom V .

4. Bodový náboj a vodivá sféra
(ilustrácia použitia metódy imaginárnych nábojov)
Uvažujme vodivú sféru so stredom v počiatku a polomerom R a bodový náboj q
ležiaci na osi x vo vzdialenosti l od počiatku. Nájdite plošnú hustotu náboja na
sfére, celkový náboj sféry, celkovú silu pôsobiacu na náboj a celkovú silu pôsobiacu
na sféru v pŕıpade, že
a) sféra je uzemnená
b) sféra má konštantný potenciál V
c) sféra je izolovaná, elektricky neutrálna
d) sféra je izolovaná, nabitá celkovým nábojom Q.
Treba rozlǐsovat’ pŕıpady l > R a l < R (v druhom pŕıpade nemôžeme klást’ ima-
ginárne náboje dovnútra). Plošná hustota náboja sa urč́ı z hraničných podmnienok
pre elektrické pole, ostatné veci sa dajú vypoč́ıtat’ z plošnej hustoty vhodnou in-
tegráciou, ale dajú sa nájst’ aj jednoduchšie.)

5. Vodivá sféra v homogénnom elektrickom poli
(d’aľsia netriviálna aplikácia metódy imaginárnych nábojov.)
a) Uvažujme dva bodové náboje ±q umiestnené na osi z vo vzdialenostiach ∓l od
počiatku. Vzdialenost’ l teraz postupne zväčšujme a súčasne zväčšujme q tak, aby
q
l2 = const. Ukážte, že v limite l → ∞ prejde pole týchto nábojov na homogénne
elektrické pole. Nájdite smer a intenzitu tohto pol’a.
b) Uvažujme teraz uzemnenú sféru s polomerom R vloženú do homogénneho elek-
trického pol’a. Na základe výsledku a) nájdite výsledné elektrické pole.
c) To isté čo b) pre izolovanú sféru.
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2. Jedna metóda riešenia Poissonovej rovnice
(metóda separácie premenných)

Poissonova rovnica je lineárna parciálna diferenciálna rovnica (každá derivácia,
ktorá sa v rovnici vyskytuje, sa v nej vyskytuje v prvej mocnine) a ako pre všetky
lineárne diferenciálne rovnice pre ňu plat́ı prinćıp superpoźıcie: ak je ϕ1 riešeńım
rovnice s pravou stranou ρ1 a ϕ2 riešeńım rovnice s pravou stranou ρ2 potom
c1ϕ1 + c2ϕ2 je riešeńım rovnice s pravou stranou c1ρ1 + c2ρ2. (Dôkaz je triviálny,
založený len na tom, že derivácia lineárnej kombinácie je lineárna kombinácia de-
rivácíı.) Jedným z dôsledkov prinćıpu superpoźıcie je štandardný spôsob riešenia
rovńıc s nenulovou pravou stranou: všeobecné riešenie rovnice s nenulovou pravou
stranou je dané súčtom jedného konkrétneho (partikulárneho) riešenia tejto rovnice
a všeobecného riešenia tejto rovnice s nulovou pravou stranou. Poissonova rovnica s
nulovou pravou stranou sa vyskytuje vo fyzike tak často, že má svoje vlastné meno,
volá sa Laplaceova rovnica. Vlastné meno majú dokonca aj riešenia tejto rovnice,
volajú sa harmonické funkcie.

Matematická úloha, s ktorou sa vo fyzike bežne stretávame, nespoč́ıva len v
riešeńı istej parciálnej diferenciálnej rovnice, ale v riešeńı tejto rovnice aj s určitými
okrajovými podmienkami (podobne ako v mechanike väčšina úloh nespoč́ıva len v
riešeńı pohybovej rovnice, ale v riešeńı tejto rovnice s určitými počiatočnými pod-
mienkami). Pri riešeńı okrajovej úlohy sa ukazuje byt’ vel’mi užitočné nasledovné
rozdelenie okrajových podmienok: od partikulárneho riešenia Poissonovej rovnice
požadujeme splnenie nulových okrajových podmienok a od riešenia Laplaceovej rov-

nice potom požadujeme splnenie zadaných okrajových podmienok. (T.j. t’ažšiu rov-
nicu, Poissonovu, riešime s čo najjednoduchš́ımi okrajovými podmienkami a všetky
problémy so zadanými okrajovými podmienkami presúvame do riešenia l’ahšej rov-
nice, Laplaceovej.)

Zaṕısané formálne: riešenie úlohy

4ϕ = −ρ
ε

ϕ(~r)|S = f(~r)

je dané súčtom

ϕ = ϕP + ϕL

kde

4ϕP = −ρ
ε

ϕP (~r)|S = 0

4ϕL = 0 ϕL(~r)|S = f(~r)

Na jednoduchom konkrétnom pŕıklade si teraz ukážeme jednu štandardnú metódu
hl’adania riešenia Laplaceovej rovnice so zadanými okrajovými podmienkami a jednu
štandardnú metódu hl’adania riešenia Poissonovej rovnice s nulovými okrajovými
podmienkami. Techniky, ktoré sa tu nauč́ıme, sa často využ́ıvajú nielen pri riešeńı
Poissonovej rovnice, ale aj pri riešeńı iných rovńıc matematickej fyziky. 4

4Hojne budeme tieto techniky (metódu separácie premenných) využ́ıvat’ v kapitole venovanej

elmag vlnám. Okrem toho sa s touto metódou študent fyziky stretne ešte prinajmenšom pri riešeńı
Schrödingerovej rovnice a rovnice vedenia tepla (pri riešeńı ktorej Fourier objavil ako metódu, tak

aj Fourierove rady).



46 2. POISSONOVA A LAPLACEOVA ROVNICA (ELEKTROSTATIKA)

2.1. Riešenie Laplaceovej rovnice separáciou premenných.

Všeobecnú metódu sa nauč́ıme na konkrétnom pŕıklade. Uvažujme Laplaceovu
rovnicu v dvoch rozmeroch t.j.

∂2

∂x2
ϕ(x, y) +

∂2

∂y2
ϕ(x, y) = 0

vnútri obd́lžnika 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, pričom na stranách tohto obd́lžnika sú
zadané okrajové podmienky

ϕ(x, 0) = 0 ϕ(x, Ly) = f(x) ϕ(0, y) = 0 ϕ(Lx, y) = 0

Náš konkrétny pŕıklad obsahuje oproti všeobecnému pŕıpadu niekol’ko zjed-
nodušeńı. Prvým je, že rovnicu uvažujeme v dvoch rozmeroch. Toto nie je pod-
statné zjednodušenie a rob́ıme ho vlastne len kvôli jednoduchosti a prehl’adnosti
zápisov, trojrozmerný problém v kvádri by sa riešil úplne analogicky.5 Druhým
zjednodušeńım, tentoraz vel’mi podstatným, je uvažovanie hranatej oblasti namiesto
oblasti všeobecnej. K otázkam či a ako sa bude dat’ nasledovná metóda použit’ v
pŕıpade nehranatých oblast́ı sa ešte vrátime. Tret́ım zjednodušeńım, znovu nie pŕılǐs

podstatným, je že uvažujeme okrajové podmienky na troch stranách obd́lžnika
nulové. Tým nič neuberáme na všeobecnosti nášho postupu, pretože problém s
l’ubovol’ne zadanými okrajovými podmienkami si môžeme rozdelit’ na štyri problémy
s troma nulovými okrajovými podmienkami a potom riešenie pôvodného problému
źıskat’ superpoźıciou štyroch jednoduchš́ıch problémov. Ku všetkým týmto zjed-
nodušeniam resp. k ich zovšeobecneniam sa ešte vrátime.

Dohodnime sa ešte, že v d’aľsom budeme uvažovat’ len pŕıpady, kedy funkcia
f(x) nie je identicky rovná nule. Ak totiž f(x) ≡ 0, potom vieme okamžite naṕısat’

riešenie Laplaceovej rovnice ϕ(x) ≡ 0 a z vety o jednoznačnosti vieme, že je to
riešenie jediné. Ked’že o tomto riešeńı od začiatku vieme, nebudeme sa mu v d’aľsom
venovat’, aj ak sa v priebehu našich d’aľśıch úvah niekedy objav́ı.

Jadrom metódy separácie premenných je nasledovný recept: riešenie hl’adaj v
tvare súčinu funkcíı, z ktorých každá záviśı iba od jednej premennej. V našom
pŕıpade to znamená, že riešenie budeme hl’adat’ v tvare

ϕ(x, y) = X(x) · Y (y)

Poznamenajme, že tým drasticky obmedzujeme “okruh podozrivých”, pretože zd’a-
leka nie všetky funkcie dvoch premenných sa dajú naṕısat’ v takomto tvare (skúste
napŕıklad funkciu ϕ(x, y) = x + y). Neskôr však uvid́ıme, že napriek tomuto dras-
tickému obmedzeniu (funkcíı, ktoré sa dajú naṕısat’ v takomto tvare je v istom
zmysle ovel’a menej ako tých, ktoré sa takto naṕısat’ nedajú) sa nám podaŕı nájst’

všeobecné riešenie.
Dosadeńım do Laplaceovej rovnice dostaneme

∂2X

∂x2
Y +X

∂2Y

∂y2
= 0

5Poznamenajme, že aj naša dvojrozmerná úloha má dobrý fyzikálny zmysel. Ak totiž

uvažujeme trojrozmernú úlohu v kvádri nekonečnom v smere osi z a okrajové podmienky nezávislé
od súradnice z, potom z dôvodov symetrie je Ez = 0, t.j. ϕ nezáviśı od z. Trojrozmerná úloha sa

teda zredukuje na našu dvojrozmernú.
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a po vydeleńı tejto rovnice súčinom XY

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
= 0

Poznamenajme, že vydelit’ rovnicu môžeme len pre XY 6= 0. Situáciu v bodoch, v
ktorých X = 0 resp. Y = 0, ošetŕıme o chv́ıl’ku.

Teraz pŕıde kl’́učový moment metódy. Rovnica, ktorú sme dostali, je súčtom
dvoch členov, z ktorých každý záviśı len od jednej premennej. Rovnica pritom
plat́ı pre každú dvojicu premenných x, y. To ale znamená, že ak vyberieme nejakú
konkrétnu hodnotu napr. premennej y, potom člen závisiaci len od y nadobudne
tiež nejakú konkrétnu hodnotu, a člen závisiaci len od x sa muśı rovnat’ mı́nus tejto
konštante pre l’ubovol’né x. Podobne ak vyberieme nejakú konkrétnu hodnotu pre-
mennej x nahliadneme konštantnost’ člena závisiaceho od y pre l’ubovol’né y. Spolu
teda dostávame

1

X

∂2X

∂x2
= α

1

Y

∂2Y

∂y2
= β α+ β = 0

Pôvodná parciálna diferenciálna rovnica sa nám rozdelila (separovala) na dve oby-
čajné diferenciálne rovnice (odtial’ názov metódy), č́ım sa celý problém značne
zjednodušil. Kým pôjdeme d’alej, pristavme sa ešte pri nulových bodoch funkcíı
X(x) a Y (y), v ktorých nie je prechod od pôvodnej rovnice k separovaným rovni-
ciam korektný (delenie nulou). Ak sú tieto nulové body izolované, nepredstavujú
v skutočnosti nijaký problém. Funkcie X(x) a Y (y) sú totiž spojité (ked’že majú
druhú deriváciu) a preto rovnice stač́ı vyriešit’ v danej oblasti okrem určitých izo-
lovaných bodov a v týchto bodoch riešenia doplnit’ tak, aby výsledné funkcie boli
spojité. Funkcie s neizolovanými nulovými bodmi (napr. funkcie nulové na nejakom
intervale) jednoducho z našich úvah vyhod́ıme. Vzhl’adom k tomu, kol’ko funkcíı sme
už vyhodili tým, že uvažujeme len funkcie typu X(x)Y (y) je toto pomerne nevinný
krok. A všetky tieto kroky budú ospravedlnené, ak sa nám na konci podaŕı nájst’

riešenie (o ktorom dopredu vieme, že je jediné).

Pozrime sa ešte, ako sa prejavia okrajové podmienky pre funkciu ϕ(x, y) na
funkciách X(x) a Y (y). Ak neuvažujeme možnosti X(x) ≡ 0 a Y (y) ≡ 0, ktoré by
viedli na ϕ(x, y) ≡ 0, dostaneme z troch nulových okrajových podmienok pre ϕ tri
jednoduché okrajové podmienky pre funkcie X, Y

X(0)Y (y) = 0 ⇒ X(0) = 0

X(Lx)Y (y) = 0 ⇒ X(Lx) = 0

X(x)Y (0) = 0 ⇒ Y (0) = 0

Štvrtá (nenulová) okrajová podmienka pre ϕ nevedie priamo na nejakú okrajovú
podmienku pre X alebo Y . K tejto okrajovej podmienke sa ešte vrátime. Pôvodnú
úlohu sme teda previedli na úlohu

X ′′ = αX X(0) = 0 X(Lx) = 0

Y ′′ = βY Y (0) = 0

pričom

α+ β = 0



48 2. POISSONOVA A LAPLACEOVA ROVNICA (ELEKTROSTATIKA)

Túto úlohu teraz l’ahko vyriešime Eulerovým receptom: riešenie hl’adaj v tvare
eκx resp. eκy. Pre κ < 0 dostávame pre X(x) riešenie

X(x) = a sin kx+ b cos kx k =
√
|κ|

a z okrajových podmienok

X(0) = 0 ⇒ b = 0 X(Lx) = 0 ⇒ k =
nπ

Lx
t.j.

X(x) = a sin
nπx

Lx
Pre κ = 0 je riešeńım X(x) = ax+ b, okrajové podmienky vedú na a = b = 0. Pre
κ > 0 je riešeńım X(x) = aekx + be−kx, okrajové podmienky vedú na a = b = 0.
Nenulové riešenie sme teda dostali len pre κ = −(nπLx )2 < 0. Pre Y (y) dostávame
pre takéto κ

Y (y) = c eky + d e−ky

a z okrajovej podmienky

Y (0) = 0 ⇒ c = −d
t.j.

Y (y) = c (eky − e−ky) = c′ sinh
nπy

Lx
Jednotlivé riešenia typu X(x)Y (y) majú teda tvar

sin
nπx

Lx
sinh

nπy

Lx

a vd’aka prinćıpu superpoźıcie je riešeńım aj každá lineárna kombinácia

ϕ(x, y) =
∑
n

an sin
nπx

Lx
sinh

nπy

Lx

Toto riešenie je riešeńım Laplaceovej rovnice, sṕlňajúce tri zo štyroch okrajových
podmienok. Otázka teraz stoj́ı tak, či sa dajú vybrat’ koeficienty an tak, aby bola
splnená aj štvrtá okrajová podmienka, t.j. aby platilo

ϕ(x, Ly) =
∑
n

an sin
nπx

Lx
sinh

nπLy
Lx

= f(x)

Takéto koeficienty an skutočne existujú, pretože posledný vzt’ah vlastne nepred-
stavuje nič iné ako Fourierov rozvoj funkcie f(x). A zo známych vzt’ahov6 pre
koeficenty Fourierovho radu dostávame

an =
1

sinh
nπLy
Lx

2

Lx

∫ Lx

0

f(x) sin
nπx

Lx
dx

Posledné tri vzt’ahy predstavujú (jediné) riešenie našej úlohy. Pripomeňme si
ešte raz logiku celého postupu: na začiatku sme uhádli šikovný typ funkcíı (súčin
X(x)Y (y)), pre ktorý sme rovnicu vedeli l’ahko vyriešit’. Z riešeńı tohto typu sme
potom vedeli poskladat’ l’ubovol’né riešenie (v podstate Fourierov rad). A ked’že sme
mali už dopredu dokázanú vetu o jednoznačnosti, vieme že takto nájdené riešenie
je jediné. V nasledovnej sérii poznámok teraz rozš́ırime tento postup na niekol’ko
všeobecneǰśıch (v rôznom zmysle) pŕıpadov.

6Ak tieto vzt’ahy nie sú známe, pozri poznámku o Fourierových radoch na konci časti 3.1.
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Poznámka. (Všeobecné okrajové podmienky.) Riešenie úlohy s okrajovými
podmienkami nulovými, okrem podmienky ϕ(x, 0) = f̄(x) dostaneme z vyššie uve-
deného riešenia zámenou y → Ly − y (premyslite si, že je to naozaj tak). Riešenia
úlohy s nenulovými okrajovými podmienkami na ”zvislých” stranách dostaneme
zámenou x↔ y. Riešenie úlohy s okrajovými podmienkami nenulovými na všetkých
štyroch stranách, ale nulovými vo všetkých štyroch vrcholoch, dostaneme ako super-
poźıciu riešeńı doteraz uvážených úloh. A nakoniec nenulové okrajové podmienky
vo vrcholoch je možné splnit’ tak, že k doteraz uváženému riešeniu pripoč́ıtame
funkciu

A+B.x+ C.y +D.x.y

ktorá zjavne sṕlňa Laplaceovu rovnicu. (Táto funkcia vznikne z lineárnych riešeńı,
ktoré sme dostali pre κ = 0. Tieto riešenia boli identicky rovné nule pri doteraz
uvažovaných okrajových podmienkach, ale znovu ožijú ako nenulové pri všeobecných
okrajových podmienkach, nenulových vo vrcholoch.)

Poznámka. (Trojrozmerná hranatá oblast’.) Riešenie v kvádri je úplne ana-

logické riešeniu v obd́lžniku, analogický je aj výsledok pre okrajovú podmienku
nenulovú iba na jednej stene ϕ(x, y, Lz) = f(x, y)

ϕ(x, y, z) =
∑
m,n

amn sin
mπx

Lx
sin

nπy

Ly
sinh

√
m2

L2
x

+
n2

L2
y

πz

Jediná mierna komplikácia oproti dvojrozmernému pŕıpadu môže byt’ v tom, že
na určenie koeficientov amn z okrajovej podmienky treba vediet’ nájst’ koeficienty
Fourierovho radu v dvoch premenných, čo je vec, ktorú sa nauč́ıme o chv́ıl’ku (v
skutočnosti to nie je nič iné, ako nájst’ dvakrát koeficienty obyčajného Fourierovho
radu v jednej premennej.

Poznámka. (Nehranatá oblast’.) Vo všeobecnosti metóda nefunguje a ak ne-
funguje separácia premenných, väčšinou nefunguje nič jednoduché a sme odkázańı
na rôzne približné a numerické metódy. Funguje však v dvoch dôležitých pŕıpadoch,
v sférických a cylindrických súradniciach. Riešenie hl’adáme v tvare ϕ(r, φ, θ) =
R(r).Φ(φ).Θ(θ) resp. ϕ(r, φ, z) = R(r).Φ(φ).Z(z). Ak máme sférickú alebo val-
covú hranicu, potom sa v pŕıslušných súradniciach jednoducho formulujú okrajové
podmienky pre ϕ(~r) (práve preto je použitie týchto súradńıc výhodné) a z nich
dostaneme priamo nejaké okrajové podmienky pre R(r), Φ(φ), Θ(θ) resp. Z(z).
Poznamenajme, že úlohu, ktorú hrali v kartézskych súradniciach śınusy, hrajú vo
sférických a cylindrických súradniciach niektoré známe tzv. špeciálne funkcie. Vo
sférických súradniciach v premennej ϑ sú to tzv. Legendreove polynómy a v cylin-
drických súradniciach v premennej r tzv. Besselove funkcie.

Poznámka. (Neumannova úloha.) Všade kośınusy namiesto śınusov.
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2.2. Vyjadrenie partikulárneho riešenia Poissonovej rovnice cez
vlastné funkcie laplaciánu a ich hl’adanie metódou separácie premenných.

Pod’me sa teraz pozriet’ na druhú čast’ úlohy, t.j. na hl’adanie partikulárneho
riešenia Poissonovej rovnice s nulovými okrajovými podmienkami. Uvid́ıme, že táto
úloha sa dá previest’ (a naozaj sa vel’mi často prevádza) na inú úlohu, a śıce
na hl’adanie vlastných funkcíı a vlastných hodnôt laplaciánu, čo sú d’aľsie dva z
užitočných a dôležitých pojmov, s ktorými sa zoznámime v elektrostatike, ale stret-
neme sa s nimi v mnohých d’aľśıch oblastiach fyziky. Pojmy vlastnej funkcie a
vlastnej hodnoty sú dôležité v teórii lineárnych diferenciálnych rovńıc a možno ich
preto stretnút’ skoro všade tam, kde sa vyskytujú lineárne diferenciálne rovnice7 a
okrem toho sú to ústredné pojmy matematického aparátu kvantovej mechaniky.

Vlastné funkcie laplaciánu (s Dirichletovými8 okrajovými podmienkami) sú de-
finované vzt’ahom9

4ϕ(~r) = λ ϕ(~r) ϕ(~r)|S = 0

kde λ je l’ubovol’né, vo všeobecnosti komplexné, č́ıslo a ϕ je l’ubovol’ná funkcia nie
identicky rovná nule. Vlastné funkcie existujú väčšinou len pre určité konkrétne
hodnoty λ, ktoré sa nazývajú vlastnými hodnotami laplaciánu.

Vlastné hodnoty laplaciánu majú niekol’ko vel’mi dôležitých a užitočných vlast-
nost́ı, ktoré sú prirodzenými zovšeobecneniami známych vlastnost́ı vlastných vek-
torov a vlastných hodnôt symetrických mat́ıc. Vlastnosti uvedieme bez dôkazov, s
dôkazmi sa čitatel’ stretne v prednáške z kvantovej mechaniky. 10

• Vlastné hodnoty laplaciánu sú reálne, záporné č́ısla, a v konečnej uzavretej
oblasti sú diskrétne, t.j. možno ich č́ıslovat’ indexom n = 1, 2, ...

4ϕn(~r) = λnϕn(~r) ϕn|S = 0 0 > λn ∈ R
• Vlastné funkcie laplaciánu tvoria úplný ortonormálny systém.

Pod systémom funkcíı mysĺıme nejakú množinu funkcíı ϕn(~r). Systém funkcíı
nazývame úplným (pre nejaký priestor funkcíı) ak sa dá l’ubovol’ná funkcia f(~r) (z
tohto priestoru) vyjadrit’ ako lineárna kombinácia funkcíı systému, t.j. ak pre každú
f(~r) existujú koeficienty cn také, že

f(~r) =
∑
n

cnϕn(~r)

Ortonormálnym nazývame systém funkcíı vtedy, ak pre každé dve jeho funkcie plat́ı∫
ϕ∗m(~r)ϕn(~r) d3r = δmn

7Ide o analógy pojmov vlastného vektora a vlastnej hodnoty z lineárnej algebry. Mnohé úlohy
lineárnej algebry (napr. riešenie lineárnych rovńıc alebo diagonalizácia mat́ıc) sa robia vel’mi účinne
pomocou vlastných vektorov matice.

8Analogicky, akurát s nulovou Neumannovou okrajovou podmienkou, sú definované vlastné

funkcie laplaciánu vhodné pre Neumannovu úlohu.
9Pozor, tento vzt’ah nie je Poissonovou rovnicou, pretože obsahuje neznámu funkciu ϕ(~r ) na

oboch stranách rovnice.
10Poznamenajme, že ani dôkazy v bežných učebniciach kvantovej mechaniky nie sú rigoróz-

nymi matematickými dôkazmi. Problém je v tom, že už len presná formulácia, a nieto ešte dôkazy,
by si vyžadovali špeciálnu, minimálne semestrálnu, prednášku z tzv. funkcionálnej analýzy.
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kde pod integrálom sa mysĺı určitý integrál cez oblast’, na ktorej sú funkcie defi-
nované (aj ked’ to nie je explicitne vyznačené) a hviezdička znamená komplexné
združenie. (Pri práci s Fourierovými radmi a integrálmi, ktoré sú špeciálnym, ale
vel’mi dôležitým pŕıpadom rozvoja do úplného systému ortonormálnych funkcíı,
sa často použ́ıvajú zápisy pomocou komplexných exponent. Preto sme si uviedli
defińıciu ortonormálnosti v komplexnom baleńı, aby sme mali zahrnutý aj tento
pŕıpad, ktorý budeme potrebovat’ napŕıklad v kapitole venovanej elmag vlnám. Po-
znamenajme, že uvedený integrál hrá v priestoroch funkcíı úlohu, akú hrá bežný
skalárny súčin vo vektorových priestoroch.)

Ak teraz vynásob́ıme podmienku úplnosti funkciou ϕ∗m(~r), preintegrujeme (cez
definičný obor uvažovaného priestoru funkcíı) a využijeme podmienku ortonormál-
nosti, dostaneme∫

ϕ∗m(~r)f(~r) d3r =
∑
n

cn

∫
ϕ∗m(~r)ϕn(~r) d3r =

∑
n

cnδmn = cm

t.j. koeficienty rozvoja funkcie do daného systému ortonormálnych funkcíı sú dané
uvedenými integrálmi.

Z hl’adiska riešenia Poissonovej rovnice hrajú vlastné funkcie laplaciánu dôležitú
úlohu preto, lebo riešenie Poissonovej rovnice, ktorá má na pravej strane vlastnú
funkciu laplaciánu, t.j. rovnice

4ϕ(~r) = ϕn(~r) ϕ(~r)|S = 0

s neznámou funkciou ϕ a so zadanou funkciou ϕn, je triviálne (dosad́ım–vid́ım):

ϕ(~r) =
1

λn
ϕn(~r)

Poissonovu rovnicu s l’ubovol’nou (slušnou) pravou stranou −ρ(~r)/ε teraz mô-
žeme riešit’ tak, že rozvinieme pravú stranu do úplného systému vlastných funkcíı
laplaciánu, pre každú z nich riešenie poznáme a celkové riešenie poskladáme z týchto
známych riešeńı pomocou prinćıpu superpoźıcie. Výsledok je

ϕ(~r) =
∑
n

cn
1

λn
ϕn(~r) cn =

∫
ϕ∗n(~r)

−ρ(~r)

ε
d3r

(premyslite si, že je to naozaj tak).

Ak teda poznáme vlastné funkcie a hodnoty laplaciánu pre nejakú oblast’, vieme
naṕısat’ okamžite partikulárne riešenie Poissonovej rovnice pre túto oblast’ v tvare
nekonečného radu, s koeficientami vyjadrenými cez určité integrály. Ostáva nám
naučit’ sa hl’adat’ vlastné funkcie a hodnoty laplaciánu. Toto je vo všeobecnosti
vel’mi t’ažká úloha, ale v niektorých pŕıpadoch sa dá riešit’ nám už známou metódou
separácie premenných. Ilustrujeme si to na našom konkrétnom pŕıklade dvojrozmer-

nej obd́lžnikovej oblasti 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. Ked’že jednotlivé kroky sú vel’mi
podobné tomu, čo sme robili v pŕıpade Laplaceovej rovnice, budeme postupovat’

menej podrobne.
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Riešenie rovnice

∂2

∂x2
ϕ(x, y) +

∂2

∂y2
ϕ(x, y) = λϕ(x, y)

hl’adáme v tvare
ϕ(x, y) = X(x).Y (y)

čo nás po štandarných krokoch privedie k dvom (separovaným) rovniciam

∂2X

∂x2
= αX

∂2Y

∂y2
= βY α+ β = λ

Riešeńım týchto obyčajných diferenciálnych rovńıc a zohl’adneńım nulových okra-
jových podmienok dostaneme

X(x) = sin
mπx

Lx
Y (y) = sin

nπy

Ly

čiže vlastné funkcie a hodnoty (č́ıslované teraz dvojicou indexov) sú

ϕmn(x, y) = sin
mπx

Lx
sin

nπy

Ly
λmn = −

(
m2π2

L2
x

+
n2π2

L2
y

)
Partikulárne riešenie Poissonovej rovnice s hustotou náboja ρ(~r) v danej oblasti je
teda

ϕ(x, y) =
∑
m,n

cmn

(
−m

2π2

L2
x

− n2π2

L2
y

)−1

sin
mπx

Lx
sin

nπy

Ly

pričom koeficienty cmn sú dané vzt’ahom

−1

ε
ρ(x, y) =

∑
m,n

cmn sin
mπx

Lx
sin

nπy

Ly

Takéto koeficienty cmn skutočne existujú, pretože posledný vzt’ah vlastne nepred-
stavuje nič iné ako dvojitý Fourierov rozvoj funkcie 1

ερ(x, y). Takýto Fourierov rad
môžeme chápat’ ako dva Fourierove rady, najprv rozlož́ıme ρ(x, y) v premennej y,
pričom x chápeme ako parameter, koeficienty tohto rozvoja (závislé od parametra
x) sú

cn(x) = −1

ε

2

Ly

∫ Ly

0

ρ(x, y) sin
nπy

Ly
dy

a potom rozlož́ıme koeficienty cn(x) do d’aľsieho Fourierovho radu (v premennej x)
s koeficientami

cmn =
2

Lx

∫ Lx

0

cn(x) sin
mπx

Lx
dx

Tým sme našli partikulárne riešenie Poissonovej rovnice v obd́lžniku a spolu s

predchádzajúcim riešeńım Laplaceovej rovnice v obd́lžniku máme pre túto oblast’

vlastne vyriešené všetky možné elektrostatické úlohy.

Poznámka. Pre zovšeobecnenia uvedeného postupu hl’adania vlastných fun-
kcíı a hodnôt laplaciánu platia analogické poznámky, aké sme uviedli za riešeńım
Laplaceovej rovnice v dvojrozmernej hranatej oblasti (tri rozmery, nehranaté ob-
lasti, Neumann).
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Pŕıklady

1. Potenciál v dvojrozmernej hranatej oblasti
(Pŕıklad na základné precvičenie nových pojmov, s čo najjednoduchš́ımi Fourie-
rovými radmi)

Nájdite potenciál vo vnútri obd́lžnika 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, ak
a) Je potenciál nenulový len na jednej strane hranice, a śıce: ϕ(x, Ly) = sin πx

Lx
.

b) To isté čo v pŕıpade a), plus navyše ϕ(Lx, y) = sin 2πy
Ly

c) To isté čo v pŕıpade b), plus navyše ϕ(x, 0) = sin 3πx
Lx

d) To isté čo v pŕıpade c), plus navyše vnútri obd́lžnika náboj s hustotou ρ(x, y) =
sin 4πx

Lx
sin 5πy

Ly

2. Potenciál v dvojrozmernej hranatej oblasti II
(Pokračovanie s trochu menej triviálnymi Fourierovými radmi)

Nájdite potenciál vo vnútri obd́lžnika 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, ak
a) ϕ(x, 0) = x, ϕ(x, Ly) = x, ϕ(0, y) = 0 a ϕ(Lx, y) = V (pozri poznámku o
všeobecných okrajových podmienkach, najmä okrajových podmienkach nenulových
vo vrcholoch).

b) To isté čo v pŕıpade a), plus navyše vnútri obd́lžnika náboj s hustotou ρ(x, y) = y

3. Potenciál v trojrozmernej hranatej oblasti
(Jednoduchý pŕıklad na precvičenie zovšeobecnenia z dvoch na tri rozmery.)
Nájdite potenciál vo vnútri kvádra 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz ak

a) Je potenciál nenulový len na jednej stene hranice, a śıce: ϕ(x, y, Lz) = sin πx
Lx

sin 2πy
Ly

b) To isté čo v pŕıpade a), plus navyše ϕ(0, y, z) = sin 3πy
Ly

sin 4πz
Lz

4. Potenciál v trojrozmernej cylindrickej a sférickej oblasti
(Nepovinný pŕıklad na separáciu premenných v iných než kartézskych súradniciach.)
a) Naṕı̌ste explicitne vzt’ah medzi cylindrickými a kartézskymi súradnicami, expli-
citne vyjadrite derivácie (prvú a druhú) podl’a kartézskych súradńıc cez derivácie
podl’a cylindrických súradńıc (nevyžaduje nič iné než vypoč́ıtat’ derivácie zloženej
funkcie) a naṕı̌ste explicitne laplacián v cylindrických súradniciach (t.j. tak, aby
obsahoval len súradnice r, φ, z a derivácie podl’a nich). Metódou separácie pre-
menných preved’te potom Laplaceovu rovnicu v cylindrických súradniciach na tri
obyčajné diferenciálne rovnice.
b) To isté v sférických súradniciach. (Kontrola: toto sa dá nájst’ v l’ubovol’nej
učebnici kvantovej mechaniky, v kapitole o atóme vod́ıka, alebo niekde okolo.)
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3. Iná metóda riešenia Poissonovej rovnice
(metóda Greenovej funkcie)

Ďaľsie dva vel’mi užitočné pojmy, s ktorými sa zoznámime pri našom štúdiu
elektrostatiky a ktoré svojim významom elektrostatiku d’aleko presahujú, sú pojmy
δ-funkcie a Greenovej funkcie. Oba tieto pojmy patria medzi základnú výzbroj
modernej teoretickej fyziky a každý študent fyziky sa s nimi ešte mnohokrát stretne.
Aj v našej prednáške sa s nimi ešte stretneme (aj po prechode od elektrostatiky k
elektrodynamike) a to pri vyšetrovańı elmag žiarenia.

3.1. Diracova δ-funkcia.

Elektrostatika je vhodným ihriskom pre zavedenie δ-funkcie, pretože δ-funkcia
nie je vlastne nič iné, ako formálne vyjadrenie hustoty bodového náboja. Doteraz
sme všetky rovnice ṕısali bud’ v jazyku bodových nábojov, alebo v jazyku spojite
rozloženej hustoty náboja. Prechod od jedného jazyka k druhému nebol nijako
zložitý, spoč́ıval v jednoduchom nahradeńı súm integrálmi. Napriek tomu bude
pŕıjemné, ak budeme vediet’ zaṕısat’ aj bodové náboje cez hustotu náboja t.j. ak
jazyk hustoty náboja v sebe bude zahŕňat’ aj bodové náboje.

δ(x) Začnime s intuit́ıvnou ”defińıciou” hustoty jednotkového bodového náboja

sediaceho v počiatku. Takúto hustotu budeme označovat’ δ(x) a malo by pre ňu
platit’

δ(x) = 0 ∀x 6= 0

a súčasne ∫ ∞
−∞

δ(x) dx = 1

čo sa niekedy ṕı̌se aj v tvare ∫ ε

−ε
δ(x) dx = 1

(vzhl’adom na prvú vlastnost’ – nulovost’ všade okrem počiatku – je to ekvivalentné
s
∫∞
−∞ δ(x) dx = 1).

Problém s touto intuit́ıvnou ”defińıciou” je v tom, že funkcia s uvedenými
dvoma vlastnost’ami neexistuje. Každá funkcia, nenulová len v jedinom bode, má
totiž nulový integrál. 11 Napriek tomu sa nechajme ešte chv́ıl’ku viest’ našou ”de-
fińıciou” a odvod’me si základnú vlastnost’ δ-funkcie, ktorá sa často použ́ıva ako
defińıcia δ-funkcie (namiesto našej doteraǰsej ”defińıcie”)∫ ∞

−∞
f(x) δ(x) dx = f(0)

”Dôkaz” spoč́ıva v nasledovnej identite f(x) δ(x) = f(0) δ(x), ktorá je zjavne
pravdivá pre x = 0 (na oboch stranách rovnice je to isté), aj pre x 6= 0 (na oboch
stranách rovnice je nula). Dosadeńım tejto identity do integrálu a vytiahnut́ım
konštanty f(0) pred integrál dostaneme okamžite uvedené tvrdenie.

11Že δ-funkcia nie je funkcia môžeme nahliadnut’ aj z toho, že hustota bodového náboja v
mieste, kde sa tento náboj nachádza je nekonečná. Zaṕısané formálne δ(0) = ∞. Reálna funkcia

je ovšem zobrazenie z reálnych č́ısiel do reálnych č́ısiel a ∞ nie je reálne č́ıslo.
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δ(x− a) Hustotu jednotkového bodového náboja sediaceho v nejakom bode a

mimo počiatok môžeme vyjadrit’ pomocou hustoty jednotkového bodového náboja
sediaceho v počiatku jednoducho posunut́ım argumentu z x do x− a. Pod δ(x− a)
budeme teda rozumiet’ hustotu jednotkového bodového náboja v bode a. Základnou
(definičnou) vlastnost’ou δ(x− a) je∫∞

−∞ f(x)δ(x− a)dx = f(a)

”Dôkaz” z intuit́ıvnej ”defińıcie” analogicky ako pre δ(x).

Poznámka. (Úplne nepovinná). δ-funkciu zaviedol P.M.A.Dirac niekedy v
tridsiatych rokoch a mnoho rokov ju fyzici použ́ıvali ako vel’mi účinný nástroj na-
priek tomu, že sa jednalo o matematicky nekorektne definovaný objekt. Matema-
ticky korektná defińıcia sa objavila až v prácach L.Schwartza v rámci tzv. teórie
distribúcíı. A hoci celá táto teória je technicky trochu náročná, základná idea je
vel’mi jednoduchá, takže si o nej pár slov povieme.

Kl’́učovým pojmom je pojem lineárneho funkcionálu, čo je zobrazenie, ktoré
prirad’uje funkciám č́ısla a rob́ı to lineárne, t.j. lineárnej kombinácii funkcíı prirad́ı
takú istú lineárnu kombináciu čisiel priradených jednotlivým funkciám. Typickým
lineárnym funkcionálom je napŕıklad určitý integrál. Ukazuje sa dokonca, že skoro
každý lineárny funkcionál sa dá naṕısat’ ako určitý integrál zo súčinu danej funkcie
f(x) s nejakou konkrétnou funkciou g(x) t.j. že skoro pre každý lineárny funkcionál
existuje funkcia g(x) taká, že daný funkcionál sa dá zaṕısat’ ako zobrazenie f(x)→∫∞
−∞ f(x)g(x)dx.

Existujú však aj lineárne funkcionály, ktoré sa nedajú vyjadrit’ pomocou určitého
integrálu. Typickým pŕıkladom je lineárny funkcionál f(x) → f(a), ktorý prirad́ı
funkcii f(x) jej hodnotu v konkrétnom bode. Tomuto funkcionálu sa hovoŕı δa a
jeho pôsobenie na funkciu f(x) zapisujeme ako δa[f(x)] = f(a). Toto označenie je
celkom prirodzené, pretože uvažovaný funkcionál rob́ı presne to, čo by mal robit’

integrál z δ-funkcie, ale neexistuje preň nijaká funkcia g(x) (ktorú ak by existovala,
by sme radi volali δ(x)) pomocou ktorej by sa dal zaṕısat’ ako určitý integrál.

Ak sa nám však vel’mi páči zápis lineárnych funkcionálov pomocou určitých
integrálov a chceme ho použ́ıvat’ silou-mocou aj pre δ-funkcionál, môžeme na-
miesto δa[f(x)] ṕısat’

∫∞
−∞ δ(x − a) f(x) dx. Podstatné je, že v tomto pŕıpade ne-

považujeme symbol δ(x) za samostatný symbol označujúci funkciu a symbol
∫∞
−∞ dx

za samostatný symbol označujúci určitý integrál, ale dobrý zmysel má len symbol∫∞
−∞ δ(x− a) dx označujúci funkcionál δa.

Mravné ponaučenie: Vzt’ahy, v ktorých vystupuje δ-funkcia pod integrálom, sú
väčšinou korektné vt’ahy, ktoré majú dobrý zmysel aj v matematicky rigoróznej
teórii δ-funkcie. Vzt’ahy v ktorých vystupuje δ-funkcia sama bez integrálu majú
väčšinou len význam mnemotechnických pomôcok.

Koniec poznámky (úplne nepovinnej).
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δ(αx) Motiváciou k defińıcii δ-funkcie argumentu násobeného konštantou bude
pre nás celkom prirodzená požiadavka, aby sa v integráloch s δ-funkciou dala ro-
bit’ substitúcia (čo nie je vlastne nič iné ako požiadavka, aby sa pri ”rozt’ahovańı
sveta” menila δ-funkcia rovnako ako iné hustoty). Napr. pre α > 0 jednoduchou
substitúciou y = αx dostaneme∫ ∞

−∞
f(x) δ(αx) dx =

∫ ∞
−∞

f(
y

α
) δ(y)

dy

α
=

1

α
f(0)

Pre α < 0 si treba dat’ pozor a urobit’ správne substitúciu aj v integračných hrani-
ciach, čo vedie k∫ ∞

−∞
f(x) δ(αx) dx =

∫ −∞
∞

f(
y

α
) δ(y)

dy

α
= − 1

α
f(0)

Spolu teda ∫ ∞
−∞

f(x) δ(αx) dx =
1

|α|
f(0)

resp. v mnemotechnickom baleńı

δ(αx) = 1
|α|δ(x)

Poznamenajme, že špeciálnym pŕıpadom tohto vzt’ahu je vzt’ah δ(−x) = δ(x).

δ(g(x)) Defińıciu δ-funkcie teraz jednoducho rozš́ırime aj na pŕıpady, ked’ je
jej argumentom nejaká ”rozumná” funkcia premennej x. Prvým znakom rozumnosti
funkcie g(x) bude, že má diskrétne nulové body, ktoré budeme označovat’ xn. Pre
infinitezimálne ε potom môžeme ṕısat’∫ ∞

−∞
f(x) δ(g(x)) dx =

∑
n

∫ xn+ε

xn−ε
f(x) δ(g(x)) dx

V ε-ovom okoĺı každého bodu xn teraz rozlož́ıme funkciu g(x) do Taylorovho radu

g(x) = g(xn) + g′(xn) (x− xn) + ...

z ktorého budeme v d’aľsom uvažovat’ iba najnižš́ı nenulový člen. Celé toto je vlastne
motivácia k nasledovnej defińıcii∫ ∞
−∞

f(x) δ(g(x)) dx =
∑
n

∫ xn+ε

xn−ε
f(x) δ(g′(xn)(x− xn)) dx =

∑
n

1

|g′(xn)|
f(xn)

resp. zaṕısané mnemotechnicky

δ(g(x)) =
∑
n

1
|g′(xn)|δ(x− xn)

Z tejto defińıcie je jasné, že silneǰśım znakom ”rozumnosti” funkcie g(x) je
nenulovost’ prvej derivácie v nulových bodoch funkcie. Otázkou či a ako sa dá de-
finovat’ δ-funkcia z nerozumnej funkcie sa tu zaoberat’ nebudeme. Uspokoj́ıme sa
s konštatovańım, že vo všetkých bežných pŕıpadoch sa stretávame s δ-funkciou,
argumentom ktorej je ”rozumná” funkcia.
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”reprezentácie” δ-funkcie

Naša defińıcia δ-funkcie resp. motivácia tejto defińıcie bola založená na pred-
stave hustoty bodového náboja. Ak sa niekomu takáto predstava nepáči, môže
uvažovat’ rôzne slušneǰsie rozloženia náboja a zobrat’ nejakú ich postupnost’ takú,
že jej členy sa čoraz viac bĺıžia k bodovému náboju. Môžeme napŕıklad uvažovat’

obd́lžniky s jednotkovým obsahom, ktorých základňa je čoraz užšia a tým pádom
sú čoraz vyššie. Pod δ-funkciou potom môžeme mysliet’ limitu takejto postupnosti,
pričom táto limita sa zvykne nazývat’ reprezentáciou δ-funkcie.

Problém s takýmto pŕıstupom je samozrejme v tom, že uvažovaná limita ne-
existuje. Formálne teda môžeme ṕısat’

obd́lžniková reprezentácia: δ(x) = lim
ε→0

1

ε
ϑ(
ε

2
− |x|)

kde tzv. ϑ-funkcia je definovaná nasledovne: ϑ(x) = 0 pre x < 0 ; ϑ(x) = 1 pre
x ≥ 0, ale z matematického hl’adiska sa jedná o prázdny zhluk ṕısmen. V skutočnosti
je treba tento vzt’ah chápat’ len ako mnemotechnickú pomôcku pre nasledovné ko-
rektné tvrdenie (dôkaz vid’ pŕıklady)

lim
ε→0

∫ ∞
−∞

1

ε
ϑ(
ε

2
− |x|) f(x) dx = f(0)

Akú výhodu má takýto pŕıstup k defińıcii δ-funkcie? Nuž pravdu povediac asi
nijakú (okrem možnej psychologickej výhody v pŕıpade, že pôvodný pŕıstup ne-
bol z nejakých dôvodov dobre strávitel’ný). Načo sa teda reprezentáciami δ-funkcie
vôbec zaoberáme? Pretože niektoré z bežných reprezentácíı δ-funkcie sa občas vo
fyzike vyskytujú a ak na ne naraźıme, je vždy užitočné rozpoznat’ v nich δ-funkciu.
Uvedieme si teraz niekol’ko známych reprezentácíı δ-funkcie, pričom vždy budeme
uvádzat’ len mnemotechnickú verziu formuliek (korektné formulácie a ich dôkazy
tvoria jeden z pŕıkladov k tejto kapitole)

Gaussova reprezentácia δ(x) = limε→0
1

ε
√
π
e−x

2/ε2

Lorentzova reprezentácia δ(x) = limε→0
1
π

ε
x2+ε2

Dirichletova reprezentácia δ(x) = limε→0
1
πx sin x

ε

Fourierova reprezentácia δ(x) = limK→∞
1

2π

∫K
−K e

ikxdk

pričom Fourierova reprezentácia je často uvádzaná v ešte neporiadneǰsom (ale vel’mi
užitočnom tvare) ako

δ(x) =
1

2π

∫ ∞
−∞

eikxdk

Fourierova reprezentácia je špeciálnym pŕıpadom ešte jednej dôležitej reprezentácie
δ-funkcie a to reprezentácie pomocou l’ubovol’ného úplného systému ortonormálnych
funkcíı. S týmto pojmom sme sa už stretli pri diskusii vlastných funkcíı laplaciánu
(čast’ 2.2), takže si len pripomeňme, že akýkol’vek systém funkcíı ϕn(x) (vo všeobec-
nosti komplexných) nazývame úplným (pre nejakú množinu funkcíı), ak sa dá
každá funkcia f(x) (z tejto množiny) naṕısat’ ako f(x) =

∑
n cnϕn(x). Orto-

normálnym nazývame tento systém funkcíı vtedy, ak pre každú dvojicu m,n plat́ı∫
ϕ∗m(x)ϕn(x) dx = δmn (hviezdička znamená komplexné združenie, uvedený in-

tegrál hrá úlohu skalárneho súčinu v priestore komplexných funkcíı).



58 2. POISSONOVA A LAPLACEOVA ROVNICA (ELEKTROSTATIKA)

Z podmienok úplnosti a ortonormality vyplýva, že koeficienty rozkladu funk-
cie f(x) do funkcíı ϕn(x) sa dajú naṕısat’ ako cn =

∫
ϕ∗n(x)f(x) dx (podmienku

úplnosti vynásob́ıme funkciou ϕ∗m(x), preintegrujeme cez x a nakoniec premenujeme
m na n). Ak do podmienky úplnosti (zaṕısanej v premennej x′) dosad́ıme toto
vyjadrenie koeficientov a ak potom prehod́ıme poradie sumy a integrálu (bez toho,
aby sme sa starali o matematickú korektnost’ tohto kroku – matematické jemnosti
má zmysel študovat’ až v rámci poriadnej teórie distribúcíı), dostaneme

f(x′) =
∑
n

∫
ϕ∗n(x)f(x)dx ϕn(x′) =

∫ ∑
n

ϕ∗n(x)ϕn(x′) f(x) dx

Integrál zo sumy
∑
n ϕ
∗
n(x)ϕn(x′) sa teda chová presne tak, ako sa má chovat’

integrál z δ-funkcie. Inými slovami, každý úplný ortonormálny systém funkcíı pred-
stavuje istú reprezentáciu δ-funkcie, zaṕısanú mnemotechnicky ako

reprezentácia cez úplný systém ortonormálnych funkcíı:

δ(x− x′) =
∑
n

ϕ∗n(x)ϕn(x′)

Fourierova reprezentácia je špeciálnym pŕıpadom takejto reprezentácie. Úplným sys-
témom ortonormálnych funkcíı (na celej reálnej osi) sú v tomto pŕıpade imaginárne
exponenty 1√

2π
e−ikx. Jednotlivé funkcie tohto systému nie sú č́ıslované diskrétnym

indexom n, ale spojitým indexom k, preto suma cez n má tvar integrálu cez k

δ(x− x′) =
1

2π

∫ ∞
−∞

eikxe−ikx
′
dk

Vyššie uvedené vyjadrenie pre δ(x) dostaneme, ak polož́ıme x′ = 0 (e−ik0 = 1).

Stručný komentár k uvedeným reprezentáciám: Gaussova a Lorentzova sú vlastne

variáciami na tému obd́lžnikovej reprezentácie – v oboch pŕıpadoch ide o nahra-

denie ”hranatých kopcov” z obd́lžnikovej metódy nejakými kraǰśımi kopcami. Vo
všetkých pŕıpadoch sa kopce zužujú a zvyšujú, pričom ich plocha ostáva stále rovná
jednej a všade okrem bodu x = 0 klesajú s klesajúcim ε k nule. Gaussova krivka sa
vyskytuje vo fyzike často, medziiným sa bežne použ́ıva na vyšetrovanie vlnových
baĺıkov vo všetkých oblastiach fyziky, v ktorých hrajú vlny dôležitú úlohu. Limita
ε→ 0 zodpovedá najlokalizovaneǰsiemu (bodovému) objektu vo vlnovom svete. Lo-
rentzova (rezonančná) krivka opisuje napr. závislost’ amplitúdy tlmeného lineárneho
harmonického oscilátora od frekvencie vynucujúcej sily a limita ε → 0 zodpovedá
určitým (nie pŕılǐs zauj́ımavým) limitným hodnotám parametrov oscilátora. Di-
richletova reprezentácia je trochu odlǐsná. Pre ε → 0 neklesajú jednotlivé funkcie
pre všetky x 6= 0 k nule, ale namiesto toho čoraz rýchleǰsie oscilujú a integrály z
rýchlo oscilujúcich funkcíı sú podl’a Dirichletovej vety nulové. Funkcie z Dirichleto-
vej reprezentácie sa objavujú napr. ako difrakčné krivky v optike a limita ε → 0
zodpovedá prechodu ku geometrickej optike. Iné dôležité miesto výskytu takejto
krivky je tzv. nestacionárna poruchová teória v kvantovej mechanike a limita ε→ 0
tu vysvetl’uje diskrétne spektrum žiarenia atómov. Fourierova reprezentácia je zo
všetkých najdôležiteǰsia, vyskytuje sa naozaj často, najmä v súvislosti s Fourie-
rovým integrálom. Je to v podstate zamaskovaná Dirichletova reprezentácia, čo je
vidno okamžite ak naozaj preintegrujeme cez k a polož́ıme ε = 1/K.
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derivácia δ-funkcie

Derivácia δ-funkcie je definovaná na základe integrácie per partes súčinu funkcíı.
Ak je R(x) niektorá z reprezentácíı δ-funkcie, potom per partes integrácia hovoŕı,
že
∫∞
−∞ f(x)R′(x − a) dx = [f(x)R(x − a)]∞−∞ −

∫∞
−∞ f ′(x)R(x − a) dx. Toto je

motiváciou defińıcie
∫∞
−∞ f(x)δ′(x− a) dx = −

∫∞
−∞ f ′(x)δ(x− a) dx (prvý člen na

pravej strane neprispieva, pretože δ-funkcia je v nekonečne nulová), a teda∫∞
−∞ f(x)δ′(x− a) dx = −f ′(a)

trojrozmerná δ-funkcia

Zovšeobecnenie základného definičného vzt’ahu δ-funkcie na tri rozmery je cel-
kom priamočiare ∫

f (~r ′) δ (~r − ~r ′) d3r′ = f (~r)

kde pod integrálom sa mysĺı určitý integrál cez celý priestor.

Pri praktickom poč́ıtańı sa často použ́ıva nasledovný vzt’ah

δ (~r − ~r ′) = δ (x− x′) δ (y − y′) δ (z − z′)

ktorý vyzerá ako celkom očividný, napriek tomu si však dáme tú námahu, aby sme
naozaj ukázali jeho platnost’. To, čo by sme mali ukázat’, je∫∫∫

f(x, y, z) δ(x− x′).δ(y − y′).δ(z − z′) dx dy dz = f(x′, y′, z′)

a to je naozaj pravda, čo nahliadneme okamžite, ak rob́ıme integrály podl’a x, y a
z jeden po druhom, na základe defińıcie jednorozmernej δ-funkcie.

Načo je dobrý taký opatrný postup? To bude jasné hned’, ked’ si povieme, že
rovnako prirodzene vyzerajúci vzt’ah v sférických súradniciach neplat́ı, t.j. že

δ(~r − ~r ′) 6= δ(r − r′).δ(ϕ− ϕ′).δ(ϑ− ϑ′)
Aby sme to nahliadli, postupujme rovnako ako v pŕıpade kartézskych súradńıc a
vypoč́ıtajme∫∫∫

f(r, ϕ, ϑ) δ(r− r′).δ(ϕ−ϕ′).δ(ϑ−ϑ′) r2 sinϑ dr dϕ dϑ = r′2 sinϑ′ f(r′, ϕ′, ϑ′)

Je jasné, že problémy spôsobuje objavenie sa jakobiánu J = r2 sinϑ a rovnaké
problémy sa vyskytnú pre každé súradnice s jakobiánom rôznym od jednej. Zároveň
je však vidiet’ aj liek na tieto problémy: stač́ı dostat’ jakobián aj do menovatel’a, t.j.
položit’

δ(~r − ~r ′) = 1
r2 sinϑδ(r − r

′).δ(ϕ− ϕ′).δ(ϑ− ϑ′)

Rovnako sa postupuje v pŕıpade l’ubovol’ných krivočiarych súradńıc. Napŕıklad v
cylindrických súradniciach dostávame

δ(~r − ~r ′) = 1
r δ(r − r

′).δ(ϕ− ϕ′).δ(z − z′)
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3.2. Greenova funkcia.

Pripomeňme si, ako sme hl’adali partikulárne riešenie Poissonovej rovnice s ne-
nulovou pravou stranou v predchádzajúcej kapitole. Našli sme riešenie pre určité
konkrétne funkcie na pravej strane (vlastné funkcie laplaciánu) a potom už len
stačilo rozložit’ danú pravú stranu do týchto konkrétnych funkcíı a využit’ prinćıp
superpoźıcie. Rozklad danej pravej strany do určitých konkrétnych funkcíı pred-
stavoval prakticky poč́ıtanie určitých integrálov, čo môže byt’ niekedy dost’ t’ažká
vec. Greenova funkcia Poissonovej rovnice je riešeńım Poissonovej rovnice s tak
šikovne vybranou konkrétnou funkciou na pravej strane, že pri rozklade l’ubovol’nej
funkcie do takýchto konkrétnych funkcíı netreba poč́ıtat’ nijaké integrály. Takouto
šikovnou pravou stranou (nielen pre Poissonovu rovnicu, ale pre l’ubovol’nú lineárnu
diferenciálnu rovnicu) je δ-funkcia. Na defińıciu δ-funkcie, ktorú môžeme zaṕısat’

ako
∫
f(~r ′) δ(~r − ~r ′) d3r′ = f(~r ), sa totiž možno pozerat’ ako na rozklad funkcie

f(~r) do δ-funkcíı (premennej ~r, indexovaných spojitým indexom ~r ′), pričom koefi-
cienty tohto rozkladu sú hodnoty samotnej funkcie v jednotlivých bodoch.

Ešte raz a pomaly: Funkciu na pravej strane Poissonovej rovnice môžeme po-
važovat’ za superpoźıciu δ-funkcíı (pričom koeficienty tejto superpoźıcie sa poč́ıtajú
triviálne – sú to priamo hodnoty pravej strany v pŕıslušných bodoch)

−1

ε
ρ(~r) = −1

ε

∫
ρ(~r ′) δ(~r − ~r ′) d3r′

Ak budeme poznat’ Greenovu funkciu (riešenie rovnice s δ-funkciou na pravej strane)

4G(~r, ~r ′) = δ(~r − ~r ′)

potom z prinćıpu superpoźıcie dostaneme okamžite riešenie rovnice s l’ubovol’nou
pravou stranou (ako pŕıslušnú superpoźıciu Greenových funkcíı)

ϕ(~r) = −1

ε

∫
ρ(~r ′)G(~r, ~r ′) d3r′.

Toto riešenie je však len jedno z mnohých riešeńı. Zatial’ sme totiž nijako nešpecifikovali
okrajové podmienky a naša úloha preto nemá jednoznačné riešenie.

Naša doteraǰsia ”defińıcia” Greenovej funkcie nie je úplná. Skutočná defińıcia

obsahuje okrem rovnice aj okrajovú podmienku, ktorú má Greenova funkcia sṕlňat’.
Kým pristúpime k tejto defińıcii, pripomeňme si, že od partikulárneho riešenia Po-
issonovej rovnice sme v minulej kapitole požadovali (z celkom rozumných dôvodov)
splnenie nulových okrajových podmienok. To isté budeme žiadat’ aj od Greenovej
funkcie. Greenovou funkciou G(~r, ~r ′) Dirichletovej úlohy pre Poissonovu rovnicu
nazývame teda riešenie nasledovnej okrajovej úlohy:

4G(~r, ~r ′) = δ(~r − ~r ′) G(~r, ~r ′)|S = 0

pričom ~r hrá úlohu nezávislej premennej a ~r ′ úlohu parametra, odlǐsujúceho jed-
notlivé δ-funkcie.12

12Poznamenajme, že v defińıcii Greenovej funkcie pre Neumannovu úlohu sa z istých dôvodov

požaduje splnenie śıce konštatnej, ale nie nulovej okrajovej podmienky. Neumannovej úlohe sa tu
nebudeme venovat’ (z časových a priestorových dôvodov), skonštatujeme len, že všetko je vel’mi

podobné ako v Dirichletovej úlohe, ale zas nie úplne, práve kvôli nenulovej okrajovej podmienke.
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Partikulárne riešenie Poissonovej rovnice s l’ubovol’nou pravou stranou − 1
ερ(~r)

a s nulovou okrajovou podmienkou sa dá zjavne naṕısat’ pomocou Greenovej funkcie
a prinćıpu superpoźıcie ako

ϕp(~r) = −1

ε

∫
ρ(~r ′)G(~r, ~r ′) d3r′.

Vyplýva to priamo z nášho postupu, ale ak by sme aj o tomto postupe nič nevedeli,
môžeme sa o tom presvedčit’ priamym dosadeńım do rovnice. Za takto jednoducho
vyjadrené partikulárne riešenie sa ovšem muśı nieč́ım platit’ a naozaj sa plat́ı – nájst’

Greenovu funkciu je vo všeobecnosti vel’mi t’ažká úloha.13

Poznámka. V tejto súvislosti je zauj́ımavé, že ak by sme od Greenovej funkcie
požadovali iba splnenie rovnice, bez okrajových podmienok, potom by sme ju našli
vel’mi l’ahko: Coulombov potenciál ϕ(~r) = − 1

4πε
1

|~r−~r ′| je predsa riešeńım Poissonovej

rovnice pre jednotkový bodový náboj a Greenova funkcia nie je vlastne nič iné, ako
práve takéto riešenie (akurát z formálnych dôvodov nie pre jednotkový náboj, ale

pre náboj vel’kosti−ε). Coulombov potenciál nesṕlňa nulové okrajové podmienky na
nijakej konečnej hranici, otázka ovšem stoj́ı tak, či sa neoplat́ı tieto nulové okrajové
podmienky obetovat’, ak môžeme tak lacno źıskat’ Greenovu funkciu. Odpoved’ znie:
neoplat́ı. Greenova funkcia (s nulovými okrajovými podmienkami) je totiž, ako ešte
uvid́ıme, úžasná vec a bez nich by ani zd’aleka taká úžasná nebola.

Zopakujme si, čo je také dobré na nulových okrajových podmienkach. Ak mám
riešit’ nejakú okrajovú úlohu pre vel’a rôznych rozložeńı náboja, ale pri stále rov-
nakých okrajových podmienkach, potom ”Greenova funkcia” s nenulovými okra-
jovými podmienkami by dávala pre rôzne rozloženia náboja partikulárne riešenia s
rôznymi nenulovými hodnotami na hranici. Pre každé takéto partikulárne riešenie
by bolo treba znovu riešit’ Laplaceovu rovnicu, aby sme splnili predṕısané (stále
rovnaké) okrajové podmienky. Na rozdiel od toho Greenova funkcia s nulovými
okrajovými podmienkami dáva partikulárne riešenia s nulovými hodnotami na hra-
nici, takže Laplaceovu rovnicu stač́ı riešit’ raz pre všetky pŕıpady. Na Greenovej
funkcii (s nulovými okrajovými podmienkami) je teda dobré to, že pŕıslušnú Lap-
laceovu rovnicu netreba riešit’ vel’akrát, ale len raz. To je na nej dobré, to ešte nie
je úžasné. Úžasné je, že ju netreba riešit’ ani raz.

Ide o to, že pomocou Greenovej funkcie sa dá vyjadrit’ nielen partikulárne
riešenie s nulovými okrajovými podmienkami, ale priamo riešenie rovnice aj so
zadanými okrajovými podmienkami. Základom tohto tvrdenia je nasledovná

Greenova veta ∫
V

(ϕ4ψ − ψ4ϕ)d3r =

∮
S

(ϕ∂nψ − ψ∂nϕ)dS

Dôkaz je vel’mi jednoduchý, stač́ı zobrat’ Greenovu identitu (pozri čast’ 2.1.) pre
funkcie ϕ, ψ a odč́ıtat’ od nej Greenovu identitu pre funkcie ψ, ϕ.

13Poznamenajme, že v defińıcii Greenovej funkcie sa vyskytuje δ-funkcia bez integrálu, čo je

podozrivá vec. Už len poriadna defińıcia Greenovej funkcie, nieto ešte jej riešenie, je netriviálna

záležitost’, vyžadujúca pŕısne vzaté teóriu distribúcíı. Napriek tomu sa však nauč́ıme s Greenovou
funkciou celkom dobre narábat’ a v niektorých pŕıpadoch ju aj nájdeme. Matematická rigoróznost’

tejto časti je ovšem, povedzme to jemne, nie práve najvyššia
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magic rule

Uvažujme teraz Greenovu vetu, v ktorej je funkcia ϕ(~r) riešeńım Dirichleto-
vej úlohy pre Poissonovu rovnicu 4ϕ = −ρ/ε, so zadanou okrajovou podmienkou
ϕ(~r)|S = f(~r) a ψ(~r) nech je Greenova funkcia G(~r, ~r ′) (pre nejaké konkrétne ~r ′).
Greenova veta má v takomto pŕıpade tvar∫

V

(
ϕ(~r )δ(~r − ~r ′) +

1

ε
G(~r, ~r ′)ρ(~r )

)
d3r =

∮
S

ϕ(~r )∂nG(~r, ~r ′) dS

Po integrácii cez δ-funkciu, dosadeńı okrajových podmienok pre G(~r, ~r ′) resp. ϕ(~r)
a po preznačeńı ~r ↔ ~r ′ (aby sa výsledný vzt’ah lepšie č́ıtal)

ϕ(~r ) = −1

ε

∫
V

G(~r ′, ~r )ρ(~r ′) d3r′ +

∮
S

f(~r ′)∂′nG(~r ′, ~r ) dS′

V prvom z integrálov na pravej strane sa ešte zvykne využit’ symetria Greenovej
funkcie14 G(~r ′, ~r ) = G(~r, ~r ′) č́ım dostaneme

ϕ (~r) = −1

ε

∫
V

G(~r, ~r ′)ρ(~r ′) d3r′ +

∮
S

f(~r ′)∂′nG(~r ′, ~r ) dS′

Pozrime sa teraz trochu lepšie, čo sme to vlastne dostali. Na pravej strane rov-
nice je jednak objemový integrál zodpovedajúci partikulárnemu riešeniu Poissonovej
rovnice, ktorý sme tam očakávali, a jednak plošný integrál, ktorý je prekvapeńım.

Funkcia ϕ(~r) na l’avej strane rovnice pritom sṕlňa nielen Poissonovu rovnicu, ale aj
predṕısané okrajové podmienky. Prekvapujúci plošný integrál teda nie je nič iné,

ako všeobecné riešenie Laplaceovej rovnice, sṕlňajúce dané okrajové podmienky.
Akýmsi matematickým kúzlom sa nám podarilo vyjadrit’ pomocou Greenovej funk-
cie nielen partikulárne riešenie Poissonovej rovnice, ale aj všeobecné riešenie Lapla-
ceovej rovnice. Táto vec je naozaj taká prekvapujúca, že uvedené vyjadrenie kom-
pletného riešenia Dirichletovej úlohy pre Poissonovu rovnicu pomocou Greenovej
funkcie sa v matematickej literatúre často oficiálne nazýva magic rule.

Poznat’ Greenovu funkciu pre danú ohraničenú oblast’ teda znamená vediet’

v nej okamžite riešit’ všetky možné elektrostatické úlohy (ešte ostáva samozrejme
vypoč́ıtat’ integrály vystupujúce v magic rule, ale výpočet integrálov je všeobecne
považovaný za úlohu podstatne jednoduchšiu, než je riešenie diferenciálnych rovńıc,
takže ked’ je riešenie rovnice prevedené na výpočet integrálov, považuje sa rovnica

14Ked’že v rovnici pre Greenovu funkciu 4G(~r, ~r ′) = δ(~r − ~r ′) záviśı δ-funkcia na pravej
strane len od rozdielu ~r − ~r ′, človek by mohol l’ahko (a chybne) usúdit’, že aj Greenova funkcia
bude závisiet’ len od tohto rozdielu. Podobne z toho, že δ-funkcia na pravej strane sa nezmeńı pri

zámene ~r ↔ ~r ′, by človek mohol l’ahko (a správne) usúdit’, že ani Greenova funkcia sa pri tejto
zámene nezmeńı, a teda že G(~r ′, ~r ) = G(~r, ~r ′).

Prečo je prvá úvaha zlá? Pretože správna úvaha tohto typu je založená na translačnej symetrii

a ked’že okrajové podmienky translačnú symetriu pokazia, správna úvaha neprejde (prejde však v
pŕıpade neohraničeného priestoru, kde je Greenova funkcia daná Coulombovým zákonom a naozaj
je funkciou rozdielu ~r − ~r ′).

Prečo je druhá úvaha dobrá? No, ona sama o sebe dobrá nie je, ale symetria Greenovej
funkcie vzhl’adom na zámenu premennej a parametra sa l’ahko dokáže pomocou Greenovej vety.

Naozaj, ak v Greenovej vete polož́ıme ϕ(~r ) = G(~r, ~r ′) a ψ(~r ) = G(~r, ~r ′′), potom na pravej strane
dostaneme nulu (kvôli nulovým okrajovým podmienkam) a na l’avej strane integrály cez δ-funkciu,
takže celkove dostaneme G(~r ′, ~r ′′) = G(~r ′′, ~r ′), q.e.d.
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za vyriešenú). Je preto prirodzené, že l’udia majú Greenove funkcie radi a hojne ich
použ́ıvajú (a to zd’aleka nielen v elektrostatike15). A rovnako prirodzené je, že Gre-
enove funkcie sa hl’adajú t’ažko. Hl’adaniu Greenovej funkcie v rôznych situáciách sa
tu venovat’ nebudeme. Uvedieme si len Greenovu funkciu v jednom vel’mi špeciálnom
pŕıpade, a okrem toho sa nauč́ıme jedno vel’mi všeobecné vyjadrenie Greenovej fun-
kcie (cez vlastné funkcie a vlastné hodnoty laplaciánu), ktoré však problém nerieši,
len ho prevádza na problém iný (a śıce hl’adanie vlastných funkcíı a vlastných
hodnôt laplaciánu).

Špeciálnou, ale pomerne dôležitou oblast’ou, pre ktorú vieme nájst’ explicitný
tvar Greenovej funkcie je oblast’ so sférickou hranicou. Greenova funkcia je vlastne

potenciál bodového náboja (vel’kosti −ε), ktorý sṕlňa nulovú okrajovú podmienku.
Takýto potenciál vieme nájst’ metódou imaginárnych nábojov (pŕıklad 4 v časti
2.1.), výsledok je

G(~r, ~r ′) = − 1

4π

(
1

|~r − ~r ′|
− R

r′
∣∣~r − R2

r′2
~r ′
∣∣
)

kdeR je polomer sféry. Poznamenajme, že zatial’ sme pomocou metódy imaginárnych
nábojov vedeli riešit’ úlohy pre sféru s konštatným potenciálom, teraz to pomocou
magic rule a Greenovej funkcie vieme pre l’ubovol’né rozloženie potenciálu na sfére.

Okrem špeciálneho pŕıpadu Greenovej funkcie pre vnútro gule spomeňme ešte
jedno všeobecné, aj ked’ nie explicitné vyjadrenie Greenovej funkcie. Reprezentácia
δ-funkcie cez úplný systém ortonormálnych funkcíı δ(~r − ~r ′) =

∑
n ϕ
∗
n(~r ′)ϕn(~r) a

lineárnost’ Poissonovej rovnice umožňujú univerzálne a často použ́ıvané vyjadrenie
Greenovej funkcie cez vlastné funkcie a vlastné hodnoty laplaciánu. K jeho źıskaniu
si stač́ı uvedomit’, že riešeńım Poissonovej rovnice s pravou stranou ϕ∗n(~r ′)ϕn(~r)
je 1

λn
ϕ∗n(~r ′)ϕn(~r), kde λn je pŕıslušná vlastná hodnota (vidno okamžite z toho,

že ϕ∗n(~r ′) je z hl’adiska laplaciánu konštanta). Riešenie pre lineárnu kombináciu
pravých strán dostaneme ako rovnakú lineárnu kombináciu riešeńı, t.j.

G(~r, ~r ′) =
∑
n

1

λn
ϕ∗n(~r ′)ϕn(~r)

Poznámka. Greenova funkcia a magic rule sa často použ́ıvajú v naozaj t’ažkých
úlohách, kde v niektorej etape, alebo dokonca vo viacerých, použ́ıvame nie presné,
ale iba približné metódy. V mnohých pŕıpadoch napŕıklad poznáme vlastné funkcie
a vlastné hodnoty laplaciánu len v rámci určitého pribĺıženia. Ďalej nekonečný
rad vo vyjadreńı Greenovej funkcie väčšinou nevieme explicitne spoč́ıtat’, takže z
neho berieme len konečne vel’a členov, a nakoniec integrály v magic rule tiež často
vyžadujú približné, numerické výpočty. Dôležité je pritom uvedomit’ si, že samotná
metóda je úplne presná, a všetky tri pribĺıženia je možne držat’ pod kontrolou (t.j.
za cenu väčšej námahy dosiahnut’ teoreticky l’ubovol’nú presnost’).

15Greenove funkcie použ́ıvané v rôznych oblastiach fyziky nie sú vždy a všade úplne ana-

logické Greenovým funkciám z elektrostatiky. Človek sa teda môže l’ahko stretnút’ s nieč́ım, čo
sa tiež volá Greenova funkcia, a pritom sa nezanedbatel’ne ĺı̌si od toho, čo sme my tu nazývali

Greenovou funkciou. Prakticky všetky Greenove funkcie sú však takým alebo onakým spôsobom

definované cez δ-funkciu a všetky umožňujú pomerne jednoduché vyjadrenie všeobecného riešenia
danej úlohy. Greenove funkcie v elektrostatike teda nie sú jednoznačným prototypom všetkých

Greenových funkcíı, ale rozhodne sú typickým pŕıkladom
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Pŕıklady

1. integrovanie s δ-funkciou
(niekol’ko jednoduchých ilustračných pŕıkladov)

a)
∫ 10

−5
(x2 − 1) cos 2x δ(x) dx b)

∫ 10

−5
(x2 − 1) cosx δ(2x) dx

c)
∫ 10

−5
cos 2x δ(x2 − 1) dx d)

∫ 10

−5
(x2 − 1) δ(cos 2x) dx

e)
∫

exp(−3r2) δ(−→r − 2−→e1) d3r f)
∫

exp(−3r2) δ(x− 2) d3r
g)
∫

cos(ϕ− θ) δ(−→r − 2−→e1) d3r h)
∫

exp(−3r2) δ(r − 2) d3r

2. reprezentácie δ-funkcie
(nepŕılǐs dôležitý pŕıklad, ktorý je tu len pre akúsi úplnost’)
Ukážte, že Gaussova, Lorentzova, Dirichletova a Fourierova reprezentácia δ-funkcie
naozaj konvergujú k δ-funkcii, t.j. ukážte, že ak r(x, ε) je pŕıslušná reprezentácia,
potom limε→0

∫∞
−∞ f(x)r(x, ε)dx = f(0).

(Návod: substitúcia x → εy, pri Dirichletovi sa źıde aj
∫∞
−∞

sin(x)
x dx = π, a Fourie

je Dirichlet s ε = 1/K.)

3. magic rule v guli
(pŕıklad na použitie explicitne známej Greenovej funkcie)
a) Ukážte, že normálová derivácia Greenovej funkcie vystupujúca v magic rule, je

v pŕıpade oblasti so sférickou hranicou s polomerom R rovná r′2−R2

4πR|~r−~r ′|3 .

b) Vodivá sféra s polomerom R je na rovńıku rozdelená izolujúcou vrstvou na
dve polsféry. Potenciál hornej polsféry je V , potenciál dolnej −V . V strede gule
ohraničenej touto sférou je homogénne nabitá gulička (polomer a, náboj q). Nájdite
potenciál v guli v tvare integrálu (integrál v magic rule poč́ıtat’ netreba, v skutočnosti
sa v tomto pŕıpade nedá vyjadrit’ v elementárnych funkciách).

4. magic rule v polpriestore
(d’aľśı pŕıklad na použitie Greenovej funkcie explicitne nájdenej metódou ima-
ginárnych nábojov)
a) Metódou imaginárnych nábojov nájdite Greenovu funkciu pre polpriestor.
b) Priestor je rozdelený rovinou na dva polpriestory. V rovine je štvorec so stra-
nou a, oddelený od zvyšku roviny tenkou izolačnou vrstvou. Štvorec je držaný na
potenciále V , zvyšok roviny je uzemnený. V jednom polpriestore je homogénne na-

bitá kocka (hrana b, náboj q, poloha stredu ~R. Nájdite potenciál v celom priestore
v tvare integrálu (integrály poč́ıtat’ netreba).

5. Greenova funkcia pre štvorec
(pŕıklad na numerickú sumáciu Greenovej funkcie v tvare nekonečného radu)
a) Naṕı̌ste vyjadrenie 2-rozmernej Greenovej funkcie pre štvorec cez vlastné funkcie
a vlastné hodnoty laplaciánu (ktoré sme explicitne našli v časti 2.2).
b) Pre štvorec 0 ≤ x, y ≤ π nájdite G pre ~r = (π/4, π/4) a ~r ′ = (3π/4, 3π/4) s
presnost’ou na jedno percento a na jednu desatinu percenta. Porovnajte počet členov
radu, ktoré treba zobrat’ v týchto dvoch pŕıpadoch. (Poč́ıtač je tvoj kamarát.)



3

ELEKTROMAGNETICKÉ VLNY

Po preṕısańı Maxwellových rovńıc do rovńıc pre elmag potenciály (v časti 1.4)
sme videli, že v bežne použ́ıvaných kalibráciách hrá pri opise elektromagnetických
javov kl’́učovú úlohu vlnová rovnica. V Lorentzovej kalibrácii sú rovnicami pre elmag
potenciály vlnové rovnice, v Coulombovej kalibrácii je to Poissonova rovnica a vl-
nová rovnica. O Poissonovej rovnici sme hovorili v kapitole venovanej elektrostatike.
A podobne, ako pomáha porozumenie Poissonovej rovnici chápaniu elektrostatiky
a riešeniu jej úloh, pomáha porozumenie vlnovej rovnici chápaniu elektrodynamiky
a riešeniu jej úloh. Preto sa teraz budeme podrobneǰsie venovat’ vlnovej rovnici.

Vlnová rovnica je lineárna parciálna diferenciálna rovnica a plat́ı pre ňu, ako pre
všetky lineárne rovnice, prinćıp superpoźıcie. To medziiným znamená, že všeobecné
riešenie rovnice s nenulovou pravou stranou je rovné všeobecnému riešeniu rovnice
s nulovou pravou stranou plus jednomu konkrétnemu (partikulárnemu) riešeniu
rovnice s nenulovou pravou stranou. Pri vyšetrovańı vlnovej rovnice budeme po-
stupovat’ tak, že najprv sa budeme venovat’ všeobecnému riešeniu rovnice s nulo-
vou pravou stranou a potom, v nasledujúcej kapitole, partikulárnemu riešeniu rov-
nice s nenulovou pravou stranou. Dôvodom takéhoto postupu je fyzikálny význam
týchto dvoch riešeńı, prvé z nich predstavuje elmag vlny, druhé úzko súviśı s el-
mag žiareńım. Vzhl’adom na mimoriadnu dôležitost’ oboch týchto većı im radšej
venujeme dve samostatné kapitoly, ktoré ovšem navzájom vel’mi úzko súvisia.

Vlnová rovnica sa v zásade rieši spôsobom, ktorý sme sa naučili pri Poissonovej
rovnici – riešenie sa uhádne. A podobne ako pri Poissonovej rovnici sa uhádne nie
celé riešenie na prvý šup, uhádne sa len jeho tvar a detaily sa potom dopoč́ıtajú.
Riešenie založené na čiastočnom uhádnut́ı je však úplným riešeńım len vtedy, ak
máme dokázanú vetu o jednoznačnosti riešenia. Takáto veta naozaj plat́ı aj pre
vlnovú rovnicu a my ju sformulujeme a dokážeme, ale až v nasledujúcej kapitole.
Dôvod je jednoduchý: veta plat́ı aj pre vlnovú rovnicu s nenulovou pravou stranou,
nielen pre špeciálny pŕıpad nulovej pravej strany. Preto je prirodzené ju dokázat’

v kapitole venovanej všeobecnému pŕıpadu rovnice s nenulovou pravou stranou. A
z nej potom vyplynie aj jednoznačnost’ riešeńı rovnice s nulovou pravou stranou,
nájdených v tejto kapitole.

Vlnová rovnica opisuje ešte jednu vel’kú čast’ fyziky, ktorá z nejakých dôvodov
vypadla z mnohých základných kurzov fyziky. Reč je o akustike. A aby sa akustika
nećıtila úplne ako od macochy, venujeme jej v tejto kapitole kde-tu aspoň zmienku.

65



66 3. ELEKTROMAGNETICKÉ VLNY

1. Vlny v jednom rozmere (opakovanie)

Elektromagnetické vlny sú trojrozmerné v dvoch zmysloch. Jednak sú to vlny

v trojrozmernom priestore a jednak veličiny ”ktoré sa vlnia” (polia ~E, ~B resp.

vektorový potenciál ~A) sú vektorové veličiny. Napriek tejto dvojakej trojrozmer-
nosti majú elmag vlny vel’a vlastnost́ı spoločných so svojimi jednorozmernými ses-
trami. Na druhej strane, napriek tejto pŕıbuznosti prináša dvojaká trojrozmernost’

vel’a špecifických noviniek. Aby sme si jasne uvedomili, čo sú všeobecné vlastnosti

všetkých typov v́ln a čo nové so sebou prinášajú tri rozmery, zopakujeme si stručne
známe veci z jednorozmerného pŕıpadu t.j. z kmitov struny. Potom prejdeme ku
skalárnym vlnám v trojrozmernom pŕıpade a nakoniec k vektorovým vlnám v troj-
rozmernom pŕıpade.

Toto opakovanie jednorozmerného pŕıpadu možno samozrejme preskočit’. Jed-
noduchým testom či je takéto preskočenie vhodné alebo nie, je nasledovná otázka:
Aké vlny sa ”vlnia” na gitarovej strune – postupné alebo stojaté? Kým budete č́ıtat’

d’alej, naozaj sa zamyslite na touto otázkou a sformulujte (stač́ı sám pre seba) jasnú
a jednoznačnú odpoved’.

Nie, nie, nie – nemáte č́ıtat’ d’alej, kým nemáte sformulovanú jasnú odpoved’

(či už s rozmýšl’ańım alebo bez neho). Takže aká je vaša odpoved’?

No dobre, tak pod’me č́ıtat’ d’alej. Bežná odpoved’ ”stojaté!” nie je śıce ne-
správna, ale rozhodne to nie je tá najlepšia odpoved’. Ovel’a správneǰsiou odpo-
ved’ou je mierny smiech, asi taký, aký by v nás vyvolala otázka či plat́ı 4 = 2 + 2
alebo 4 = 3 + 1? Samozrejme, že platia obe tieto rovnosti, rovnako ako plat́ı, že na
gitarovej strune sa ”vlnia” stojaté aj postupné vlny.

Stojaté a postupné vlny nie sú dve rôzne veci, ale skôr dva rôzne jazyky
použ́ıvané na opis tých istých većı. Každú stojatú vlnu možno naṕısat’ ako su-

perpoźıciu postupných v́ln a naopak. Ak vám toto nie je celkom jasné, radšej nič
nepreskakujte.

Takže pod’me na tie vlny v jednom rozmere, čo sú napŕıklad vlny na strune.

Kmity (pozd́lžne aj priečne) struny, na ktorú nepôsobia nijaké vonkaǰsie sily, sú
oṕısané vlnovou rovnicou (pripomeňme, že táto rovnica je dôsledkom Newtonovej
pohybovej rovnice a Hookovho zákona)

∂2

∂x2
u(x, t)− 1

v2
· ∂

2

∂t2
u(x, t) = 0

kde u predstavuje výchylku struny (či už pozd́lžnu alebo priečnu) v mieste x a
v čase t. Na riešenie tejto rovnice sa použ́ıvajú dva základné pŕıstupy, ktorým
budeme hovorit’ d’Alambertov a Fourierov. Prvý z nich vedie prirodzene k pojmu

postupných v́ln, druhý k pojmu stojatých v́ln. V pŕıpade elmag v́ln sa ukáže byt’

omnoho vhodneǰśım Fourierov pŕıstup, takže opakovanie d’Alambertovho pŕıstupu
je tu len kvôli istej úplnosti a môže sa preskočit’.
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d’Alambertov pŕıstup je založený na zisteńı, že funkcie typu u(x± v · t) sú
riešeniami vlnovej rovnice na priamke t.j. neohraničenej strune. Tieto riešenia sa
nazývajú postupné vlny (pozri poznámku na str. 8). Avšak nie každé riešenie vlnovej

rovnice na priamke je postupnou vlnou. Napŕıklad súčet dvoch postupných v́ln
postupujúcich opačným smerom je riešeńım vlnovej rovnice (prinćıp superpoźıcie),

ale nie je postupnou vlnou. Význam postupných v́ln nespoč́ıva v tom, že by to
boli jediné riešenia vlnovej rovnice, ale v tom, že všetky riešenia vlnovej rovnice sa

dajú ṕısat’ ako superpoźıcie postupných v́ln. Vyjadrenie riešenia vlnovej rovnice s

danými počiatočnými podmienkami cez superpoźıciu postupných v́ln sa dá pomerne
l’ahko uhádnut’. (Uhádnutie a jeho jednoduché preverenie je základnou technikou
d’Alambertovho pŕıstupu.)

Ak je počiatočná výchylka zadaná l’ubovol’nou funkciou f(x) a počiatočná rýchlost’

zmeny výchylky u̇ ≡ ∂u
∂t je nulová, t.j. ak

u(x, 0) = f(x).

u̇(x, 0) = 0

potom

u(x, t) =
1

2
( f(x+ v · t) + f(x− v · t) )

počiatočná výchylka sa rozdeĺı napoly a každá polovica sa rozbehne svojim smerom.
Z prinćıpu superpoźıcie je jasné, že u(x, t) je riešeńım vlnovej rovnice a priamym

dosadeńım sa dá okamžite presvedčit’, že sṕlňa uvedené počiatočné podmienky.

Ak je počiatočná výchylka nulová a počiatočná rýchlost’ zmeny výchylky je
zadaná l’ubovol’nou funkciou h(x), t.j. ak

u(x, 0) = 0

u̇(x, 0) = h(x)

potom

u(x, t) =
1

2
( H(x+ v · t)−H(x− v · t) ) kde H(x) =

1

v

∫
h(x) dx

(“primit́ıvna funkcia k rýchlosti zmeny počiatočnej výchylky sa rozdeĺı napoly, a
každá polovica sa rozbehne so svojim znamienkom svojim smerom”). Znova je z
prinćıpu superpoźıcie jasné, že u(x, t) je riešeńım vlnovej rovnice a znova sa pria-

mym dosadeńım dá okamžite presvedčit’, že sṕlňa uvedené počiatočné podmienky.

Prinćıp superpoźıcie a priame dosadenie nám dá riešenie aj vo všeobecnom
pŕıpade počiatočných podmienok

u(x, 0) = f(x)

u̇(x, 0) = h(x)

a śıce

u(x, t) =
1

2
( f(x+ v · t) + f(x− v · t) +H(x+ v · t)−H(x− v · t) )

A tým je úloha na priamke raz a navždy úplne vyriešená v tvare superpoźıcie

štyroch postupných v́ln. (Čo ale neznamená, že neexistuje aj iný užitočný zápis
toho riešenia, ktorý má podstatne iný tvar.)
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Z riešenia vlnovej rovnice na priamke sa dá jednoduchými trikmi nájst’ (uhádnut’)
riešenie rovnice na polpriamke s pevným alebo vol’ným koncom. Pevnému koncu v
bode x = 0 zodpovedá okrajová podmienka u(0, t) = 0, vol’nému koncu podmienka

u′(0, t) ≡ ∂u(0,t)
∂x = 0 (vol’ný koniec totiž zodpovedá nulovej pružnej sile a tá je daná

podl’a Hookovho zákona deriváciou výchylky podl’a x). Trik spoč́ıva vo vhodnom
rozš́ıreńı problému z polpriamky na celú priamku. Nech sú napŕıklad na polpriamke
x ≥ 0 zadané počiatočné podmienky

u(x, 0) = f̄(x)

u̇(x, 0) = 0

Doplňme tieto počiatočné podmienky na celú priamku tak, aby výsledná funkcia
bola nepárna pre pevný a párna pre vol’ný koniec t.j. definujme funkciu f(x) takto

f(x) = f̄(x) pre x ≥ 0
= −f̄(−x) pre x < 0

pevný koniec

f(x) = f̄(x) pre x ≥ 0
= f̄(−x) pre x < 0

vol’ný koniec

Riešenie vlnovej rovnice na priamke s počiatočnými podmienkami danými funkciou
f(x) a nulovou počiatočnou rýchlost’ou už poznáme a toto riešenie je riešeńım rov-

nice aj na polpriamke pričom na nej sṕlňa počiatočné podmienky. Ostáva teda len

zistit’, či sṕlňa aj okrajovú podmienku a to sṕlňa, ako sa znovu l’ahko presvedč́ıme
priamym dosadeńım. Iná možnost’ je nerobit’ mechanické dosadenie, ale predstavit’

si, čo dajú v bode x = 0 dve oproti sebe bežiace polovice párnej resp. nepárnej
počiatočnej podmienky. Takéto predstavenie si riešenia umožńı uvidiet’, že dol’ava
bežiaca polovica, ktorá v bode x = 0 “opúšt’a” polpriamku, sa v tomto bode stretá s
doprava bežiacou polovicou, ktorá na polpriamku “prichádza”. Obe polovice majú
pritom v tomto bode presne rovnakú alebo presne opačnú hodnotu, takže z hl’adiska
polpriamky to vyzerá tak, ako keby sa dol’ava idúca vlna odrážala od pevného resp.
vol’ného konca s opačnou resp. rovnakou fázou.

Nech sú teraz na polpriamke x ≥ 0 zadané počiatočné podmienky

u(x, 0) = 0

u̇(x, 0) = h̄(x)

Znovu doplńıme tieto počiatočné podmienky na celú priamku tak, aby výsledná
funkcia bola nepárna pre pevný a párna pre vol’ný koniec.

h(x) = h̄(x) pre x ≥ 0
= −h̄(−x) pre x < 0

pevný koniec

h(x) = h̄(x) pre x ≥ 0
= h̄(−x) pre x < 0

vol’ný koniec

Riešenie vlnovej rovnice na priamke je znova riešeńım rovnice aj na polpriamke a

znovu sa možno l’ahko presvedčit’, že na nej sṕlňa počiatočné podmienky aj okrajovú
podmienku. Riešenie rovnice s všeobecnými počiatočnými podmienkami u(x, 0) =
f̄(x), u̇(x, 0) = h̄(x) je dané súčtom riešeńı dvoch predchádzajúcich pŕıpadov.
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Analogickými trikmi sa dá z postupných v́ln poskladat’ riešenie vlnovej rovnice
na úsečke s pevnými alebo vol’nými koncami. Tentoraz treba rozš́ırit’ počiatočné
podmienky z úsečky na vhodnú periodickú funkciu na priamke. Ak sú na úsečke
0 ≤ x ≤ l zadané počiatočné podmienky

u(x, 0) = f̄(x)

u̇(x, 0) = h̄(x)

definujeme funkcie f(x), h(x) periodické s periódou 2l nasledovne

f(x) = f̄(x) pre 0 ≤ x ≤ l
= −f̄(−x) pre − l ≤ x < 0

h(x) = h̄(x) pre 0 ≤ x ≤ l
= −h̄(−x) pre − l ≤ x < 0

pevné konce

f(x) = f̄(x) pre 0 ≤ x ≤ l
= f̄(−x) pre − l ≤ x < 0

h(x) = h̄(x) pre 0 ≤ x ≤ l
h̄(−x) pre − l ≤ x < 0

vol’né konce

Znova sa priamym dosadeńım alebo správnym predstaveńım si riešenia presvedč́ıme,
že riešenia na priamke s počiatočnými podmienkami f(x), h(x) sú riešeniami na
úsečke s danými počiatočnými a okrajovými podmienkami a znova ich môžeme
interpretovat’ ako odraz s opačnou fázou na pevnom a rovnakou na vol’nom konci.

Výhodou d’Alambertovho pŕıstupu je jednoduché vyjadrenie riešenia pomo-
cou počiatočných podmienok a jasné nahliadnutie niektorých všeobecne známych

vlastnost́ı v́ln (napŕıklad odrazu v́ln na pevných a vol’ných koncoch alebo toho,

že postupné vlny tvoria vhodný jazyk na opis všetkých v́ln, t.j. všetkých riešeńı
vlnovej rovnice). Nevýhodou je, že tento postup sa nedá dobre zovšeobecnit’ na
viacrozmerné pŕıpady. Vo viacerých rozmeroch sú v podstate dva problémy: jednak
počiatočnú podmienku by tu bolo treba rozdelit’ na nekonečne vel’a čast́ı a poslat’ ich
nekonečne vel’a smermi (ale ked’ rozdeĺıme konečnú počiatočnú podmienku na ne-

konečne vel’a čast́ı, budú tieto časti nulové) a jednak vôbec nie je jasné, ako doṕlňat’

(v duchu triku s úsečkou v jednom rozmere) počiatočnú podmienku v nejakej ne-
pravidelnej ohraničenej oblasti na celý priestor. To neznamená, že d’Alambertov
pŕıstup nehrá vo viacerých rozmeroch nijakú úlohu (d’Alambertovo riešenie na pol-
priamke sa dá využit’ pre riadiálnu premennú v sférických súradniciach), ale v po-
rovnańı s Fourierovým pŕıstupom hrá d’Alambertov pŕıstup vo viacerých rozmeroch
v podstate zanedbatel’nú úlohu.
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Fourierov pŕıstup nie je nič iné ako metóda separácie premenných známa z
druhej kapitoly (čast’ 2.2) a spoč́ıva v hl’adańı riešenia v špeciálnom tvare a to v
tvare súčinu dvoch funkcíı, z ktorých jedna záviśı len od x a druhá len od t. Nie
každé riešenie vlnovej rovnice sa však dá naṕısat’ v takomto tvare a preto to, čo
takto nájdeme budú len určité špeciálne riešenia. Tieto špeciálne riešenia sú ovšem
významné tým, že sa z nich dá poskladat’ (v tvare superpoźıcie) všeobecné riešenie.

Dosadeńım funkcie u(x, t) = X(x) · T (t) do vlnovej rovnice dostaneme

X
′′
(x) · T (t)− 1

v2
·X(x) · T̈ (t) = 0

a predeleńım tejto rovnice funkciou u = X · T dostaneme

X
′′
(x)

X(x)
− 1

v2
· T̈ (t)

T (t)
= 0

l’avá strana je súčtom dvoch členov, z ktorých každý záviśı len od jednej premennej.
Ak teraz fixujeme jednu z nich t.j. ak polož́ıme napr. t = tfix, stane sa člen závislý
len od tejto premennej konštantou (nazvime ju α) a z celej rovnice potom vyplýva,
že tejto konštante muśı byt’ rovný aj druhý člen a to pre l’ubovol’nú hodnotu druhej
premennej t.j. že

X
′′
(x)

X(x)
= α ≡ 1

v2
· T̈ (tfix)

T (tfix)

Ak naopak fixujeme premennú x, dostaneme analogicky

1

v2
· T̈ (t)

T (t)
=
X

′′
(xfix)

X(xfix)
= α

Pre funkcie X(x) a T (t) tak dostávame rovnice

X
′′

= α ·X

T̈ = α · v2 · T
Pôvodná parciálna diferenciálna rovnica sa nám takto rozdelila (separovala) na dve
obyčajné diferenciálne rovnice, ktorých riešenie je už pomerne jednoduché.

Ak uvažujeme riešenie vlnovej rovnice na úsečke s pevnými resp. vol’nými kon-
cami, potom sa okrajové podmienky u(0, t) = u(l, t) = 0 (pevné konce) resp.
u′(0, t) = u′(l, t) = 0 (vol’né konce) prejavia na funkcii X(x). Ak totiž funkcia
T (t) nie je identicky rovná nule, potom z okrajových podmienok vyplýva

X(0) = X(l) = 0 pevné konce

X ′(0) = X ′(l) = 0 vol’né konce

Ak je funkcia T(t) identicky rovná nule, potom je identicky rovné nule celé riešenie
u(x, t). Toto je skutočne riešeńım našej úlohy pre triviálny pŕıpad nulových počiatoč-
ných podmienok a len pre tento pŕıpad. Aby sme sa nemuseli k tomuto triviálnemu
pŕıpadu stále vracat’ (v poznámkach podobných tejto), explicitne ho vylúčime z
našich d’aľśıch úvah, vedomı́ si toho, že toto triviálne riešenie existuje.

V pŕıpade riešenia vlnovej rovnice na priamke sa nepožaduje splnenie nijakých
okrajových podmienok t.j. nijakých podmienok pre u(x, t) v limite x → ±∞,
požaduje sa zatial’ len ohraničenost’ riešenia na celej priamke. Ohraničenost’ riešenia
je vel’mi prirodzená požiadavka, pretože neohraničenost’ znamená nekonečne vel’ké
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výchylky a tie nemajú dobrý fyzikálny zmysel, ked’že samotná vlnová rovnica je
odvodená z predpokladu malých výchyliek (len pre ne totiž plat́ı Hookov zákon).
Neohraničené riešenia teda považujeme za nefyzikálne a vždy (nielen na priamke)
hl’adáme len ohraničené riešenia vlnovej rovnice. Ohraničenost’ funkcie u(x, t) sa pre-
jav́ı na funkciách X(x) a T (t). Z ohraničenosti u(x, t) vyplýva pre T (t) nie všade
rovné nule ohraničenost’ X(x) a pre X(x) nie všade rovné nule ohraničenost’ T (t).

Riešeniami rovnice pre funkciu X(x) sú funkcie e
√
α·x, e−

√
α·x pre α > 0, funkcie

sin
√
−α · x, cos

√
−α · x pre α < 0 a funkcia a·x+b pre α = 0. Okrajové podmienky

v pŕıpade úsečky a podmienka ohraničenosti v pŕıpade priamky vylučujú spomedzi
riešeńı exponenty a nekonštantnú lineárnu funkciu (pre vol’né konce a pre priamku
prežije okrajové podmienky lineárna funkcia v podobe konštantnej funkcie X = b).

Úloha má teda riešenie len pre α ≤ 0. Pre úsečku navyše okrajová podmienka v
bode x = 0 vylučuje spomedzi riešeńı cośınus v pŕıpade pevného a śınus v pŕıpade
vol’ného konca. Okrajová podmienka v bode x = l okrem toho určuje, pre aké α
má vôbec úloha riešenie. Aby mohla byt’ táto úloha splnená, muśı byt’

√
−α rovná

celoč́ıselnému násobku π
l . Celkove teda máme

X(x) = sin (k · x) kde k =
nπ

l
pevné konce

X(x) = cos (k · x) kde k =
nπ

l
vol’né konce

X(x) = sin (k · x)

X(x) = cos (k · x) kde k je l’ubovol’né žiadne konce (priamka)

a v pŕıpade vol’ných koncov je riešeńım úlohy ešte aj konštantná funkcia X(x) = b

Riešeniami rovnice pre funkciu T (t) sú pre α < 0 funkcie

T (t) = sin (ω · t) a T (t) = cos (ω · t) kde ω =
√
−α · v2 = k · v

Pre α = 0 je riešeńım lineárna funkcia, ktorá ak nie je konštantná, tak vedie na s
časom neohraničene rastúce resp. klesajúce, t.j. nefyzikálne riešenie u(x, t). Jediným
fyzikálnym riešeńım pre α = 0 je teda súčin dvoch konštantných funkcíı, čiže funkcia
u(x, t) = c.

Riešeniami vlnovej rovnice v hl’adanom tvare sú teda funkcie

u(x, t) = sin (k · x) sin (ω · t) u(x, t) = sin (k · x) cos (ω · t)
u(x, t) = cos (k · x) sin (ω · t) u(x, t) = cos (k · x) cos (ω · t)

ktorým sa hovoŕı stojaté vlny, názov pochádza z toho, že celkový profil vlny sa
nehýbe, len sa s časom periodicky zväšuje a zmenšuje. (V pŕıpade vol’ných koncov
je riešeńım úlohy ešte aj konštantná funkcia u(x, t) = c.)

Nie každé riešenie vlnovej rovnice je ovšem stojatou vlnou. Superpoźıcia sto-

jatých v́ln je riešeńım vlnovej rovnice (prinćıp superpoźıcie), ale nie je stojatou

vlnou. Význam stojatých v́ln nespoč́ıva v tom, že by to boli jediné riešenia vlnovej
rovnice, ale v tom, že všetky riešenia vlnovej rovnice sa dajú ṕısat’ ako superpoźıcie

stojatých v́ln. Ukážeme, že je tomu naozaj tak.
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Superpoźıcia všetkých možných stojatých v́ln nám dáva

pevné konce:

u(x, t) =

∞∑
n=1

cn sin (kn · x) cos (ωn · t) + c′n sin (kn · x) sin (ωn · t)

vol’né konce:

u(x, t) = c +

∞∑
n=1

cn cos (kn · x) cos (ωn · t) + c′n cos (kn · x) sin (ωn · t)

žiadne konce (priamka):

u(x, t) =

∫ ∞
0

c(k) sin (k · x) cos (ω · t) + c′(k) sin (k · x) sin (ω · t) +

+ c̄(k) cos (k · x) cos (ω · t) + c̄′(k) cos (k · x) sin (ω · t) dk

kde kn = nπ
l , ωn = nπv

l a ω(k) = k · v (pričom argument k sa v ω(k)
často kvôli väčšej prehl’adnosti zápisov vynecháva).

Po dosadeńı počiatočných podmienok do týchto superpoźıcíı dostaneme

pevné konce:

f(x) =

∞∑
n=1

cn sin (kn · x) h(x) =

∞∑
n=1

c′n ωn sin (kn · x)

vol’né konce:

f(x) = c +

∞∑
n=1

cn cos (kn · x) h(x) =

∞∑
n=1

c′n ωn cos (kn · x)

žiadne konce (priamka):

f(x) =

∫ ∞
0

c(k) sin (k · x) + c̄(k) cos (k · x) dk

h(x) =

∫ ∞
0

c′(k) ω(k) sin (k · x) + c̄′(k) ω(k) cos (k · x) dk

Uvedené rady a integrály však nie sú nič iné ako Fourierove rady resp. Fourie-
rove integrály pre funkcie f(x) a h(x). A ked’že každá slušná funkcia sa dá rozvinút’

do Fourierovho radu resp. integrálu, znamená to, že superpoźıciou stojatých v́ln
sme schopńı splnit’ l’ubovol’né slušné počiatočné podmienky (slušnost’ funkcie je tu
daná predpokladmi vety o Fourierovom rade resp. integrále).

Koeficienty v našich superpoźıciách stojatých v́ln sú pritom dané známymi vzt’ahmi

pevné konce:

cn =
2

l

∫ l

0

f(x) sin(kn · x) dx c′n =
1

ωn

2

l

∫ l

0

h(x) sin(kn · x) dx

vol’né konce (pri označeńı c = c0
2 ):

cn =
2

l

∫ l

0

f(x) cos(kn · x) dx c′n =
1

ωn

2

l

∫ l

0

h(x) cos(kn · x) dx
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žiadne konce (priamka):

c(k) =
1

π

∫ ∞
−∞

f(x) sin(k · x) dx

c̄(k) =
1

π

∫ ∞
−∞

f(x) cos(k · x) dx

c′(k) =
1

ω(k)

1

π

∫ ∞
−∞

h(x) sin(k · x) dx

c̄′(k) =
1

ω(k)

1

π

∫ ∞
−∞

h(x) cos(k · x) dx

V pŕıpade riešenia na priamke je ovel’a prehl’adneǰśı zápis pomocou komplexnej
exponenty. Ak zaṕı̌seme Fourierov integrál vo vyjadreńı počiatočných podmienok
v komplexnom tvare, dostaneme

u(x, t) =

∫ ∞
−∞

C(k) eikx cos(ωt) + C ′(k) eikx sin(ωt) dk

čo v dôsledku cos(ωt) = 1
2 (eiωt + e−iωt) a sin(ωt) = − i

2 (eiωt − e−iωt) prejde na

u(x, t) =

∫ ∞
−∞

α(k) ei(kx−ωt) + β(k) ei(kx+ωt) dk

kde α(k) = 1
2 (C(k) + iC ′(k)), β(k) = 1

2 (C(k)− iC ′(k)). Explicitné vyjadrenie
koeficientov α(k) a β(k) je (pozri nasledovnú matematickú poznámku)

α(k) =
1

2

1

2π

∫ ∞
−∞

(
f(x) +

i

ω(k)
h(x)

)
e−ikx dx

β(k) =
1

2

1

2π

∫ ∞
−∞

(
f(x)− i

ω(k)
h(x)

)
e−ikx dx

Superpoźıcie stojatých v́ln1 s uvedenými koeficientami sú riešeniami vlnovej
rovnice s danými počiatočnými podmienkami. Fourierov postup nás teda doviedol k
riešeniu vlnovej rovnice s danými okrajovými podmienkami pre l’ubovol’né (slušné)
počiatočné podmienky. Nevýhodou Fourierovho riešenia je, že riešenie je v tvare
nekonečného radu, ktorý nevieme vždy explicitne sč́ıtat’ (takže sme často odkázańı
na to, že sč́ıtame len niekol’ko prvých členov tohto radu a dostaneme tak určité
približné riešenie). Ďaľsou nevýhodou je, že koeficienty tohto nekonečného radu sú
dané v tvare integrálov, ktoré môžu byt’ značne komplikované. Výhodou (z hl’adiska
elektrodynamiky rozhodujúcou) je možnost’ pomerne jednoduchého a prirodzeného
zovšeobecnenia na viacrozmerné pŕıpady.

1Stojaté vlny majú podobne ako postupné vlny tú vlastnost’, že sa z nich dá poskladat’

l’ubovol’né riešenie vlnovej rovnice. Možno nebude na škodu v tejto súvislosti explicitne zdôraznit’,
že stojaté a postupné vlny nie sú dve rôzne veci, ale dva rôzne jazyky vhodné na opis tých

istých većı. Prekladový slovńık medzi týmito dvomi jazykmi, t.j. vyjadrenie stojatých v́ln cez

postupné a naopak, poskytujú súčtové vzorce pre śınus a cośınus, čiže jedným smerom napŕıklad
sin(kx) sin(ωt) = 1

2
(cos(kx − ω t) − cos(kx + ωt)) a druhým smerom napŕıklad cos(kx − ωt) =

cos(kx) cos(ωt) + sin(kx) sin(ωt) V pŕıpade zápisu cez komplexné exponenty je prekladový slovńık

medzi stojatými a postupnými vlnami ešte jednoduchš́ı: ei(kx+ωt) = eikxeiωt. Preto má vyjadrenie

źıskané ako superpoźıcia stojatých v́ln zjavne tvar superpoźıcie postupných v́ln.
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Matematická poznámka – koeficienty Fourierovho radu a integrálu

Fourierov pŕıstup redukuje riešenie vlnovej rovnice na výpočet koeficientov Fou-
rierovho radu resp. integrálu. Pre úplnost’ si pripomeňme, ako sa tieto koeficienty
poč́ıtajú.

Fourierov rad pre funkciu f(x) definovanú na intervale 〈0, l〉 dostaneme doplneńım
na periodickú funkciu s periódou l

f(x) =
b0
2

+

∞∑
n=1

an sin

(
2πnx

l

)
+ bn cos

(
2πnx

l

)

an =
2

l

∫ l

0

f(x) sin

(
2πnx

l

)
dx bn =

2

l

∫ l

0

f(x) cos

(
2πnx

l

)
dx

doplneńım na nepárnu periodickú funkciu s periódou 2l Fourierov rad cez śınusy

f(x) =

∞∑
n=1

an sin
(πnx

l

)
an =

2

l

∫ l

0

f(x) sin
(πnx

l

)
dx

a doplneńım na párnu periodickú funkciu s periódou 2l Fourierov rad cez cośınusy

f(x) =
b0
2

+

∞∑
n=1

bn cos
(πnx

l

)
bn =

2

l

∫ l

0

f(x) cos
(πnx

l

)
dx

Fourierov integrál dostaneme z Fourierovho radu pre funkciu definovanú na 〈−l, l〉

f(x) =
a0

2
+

∞∑
n=1

an sin
(πnx

l

)
+ bn cos

(πnx
l

)
an =

1

l

∫ l

−l
f(x) sin

(πnx
l

)
dx bn =

1

l

∫ l

−l
f(x) cos

(πnx
l

)
dx

v limite l→∞. Najjasneǰsie to vidno ak jednotlivé členy radu vynásob́ıme šikovne
zaṕısanou jednotkou v tvare 1 = n− (n− 1) = δn = l

π δ
nπ
l a označ́ıme cn = l

π an,

c̄n = l
π bn, č́ım dostaneme

f(x) =
a0

2
+

∞∑
n=1

cn sin(
πn

l
x) δ

nπ

l
+ c̄n cos(

πn

l
x) δ

nπ

l

=
a0

2
+

∞∑
n=1

c(kn) sin(knx) δkn + c̄(kn) cos(knx) δkn

kde sme d’alej označili kn = πn
l , cn = c(kn), c̄n = c̄(kn). Ak by uvedená suma

nešla do nekonečna, ale len do nejakého konečného N , bol by to N -tý integrálny
súčet funkcie c(k) cos(k ·x)+ c̄(k) sin(k ·x). Ak suma ide do nekonečna a ak súčasne
ide δkn do nuly (čo pre l → ∞ ide) potom je táto suma (pokial’ existuje) rovná
určitému integrálu z danej funkcie t.j.

f(x) =
a0

2
+

∫ ∞
0

c(k) sin(kx) + c̄(k) cos(kx) dk

kde

c(k) = lim
l→∞

l

π

1

l

∫ l

−l
f(x) sin(kx) dx c̄(k) = lim

l→∞

l

π

1

l

∫ l

−l
f(x) cos(kx) dx
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Uvedené limity nemusia existovat’ pre l’ubovol’nú funkciu f(x), ale pokial’ je táto
funkcia absolútne integrovatel’ná, t.j. pokial’ existuje konečný integrál

∫∞
−∞ |f(x)| dx,

potom tieto limity existujú. Fourierov integrál sa preto definuje len pre absolútne

integrovatel’né funkcie. Pre také funkcie je a0 = lim
l→∞

1
l

∫ l
−l f(x) dx = 0, takže celkove

f(x) =

∫ ∞
0

c(k) sin(kx) + c̄(k) cos(kx) dk

kde

c(k) =
1

π

∫ ∞
−∞

f(x) sin(kx) dx c̄(k) =
1

π

∫ ∞
−∞

f(x) cos(kx) dx

Fourierov integrál vyjadrený cez imaginárne exponenty źıskame, ak vo vyjadreńı

cez śınusy a kośınusy použijeme cos kx = 1
2 (eikx+e−ikx) a sin kx = − i

2 (eikx−e−ikx)

f(x) =

∫ ∞
0

−c(k)
i

2
(eikx − e−ikx) + c̄(k)

1

2
(eikx + e−ikx) dk

=

∫ ∞
−∞

C(k) eikx dk

kde C(k) = 1
2 (c̄(k)− ic(k)) pre k ≥ 0 a C(k) = 1

2 (c̄(−k) + ic(−k)) pre k < 0.
Všimnime si, že C(−k) = C∗(k). Táto podmienka súviśı s reálnost’ou funkcie f(x)
(ktorú sme doteraz nezdôrazňovali, ale celý čas sme ju implicitne predpokladali).
Vyjadrenie C(k) cez imaginárnu exponentu źıskame dosadeńım vyjadreńı c(k) a
c̄(k) cez śınusy a cośınusy:

C(k) =
1

2

1

π

∫ ∞
−∞

f(x) cos(kx)− i f(x) sin(kx) dx

=
1

2π

∫ ∞
−∞

f(x) e−ikx dx

Fourierova transformácia je užitočné (ako ešte uvid́ıme) zobrazenie, ktoré prirad́ı

funkcii f(x) funkciu C(k), ktorú v tejto súvislosti označujeme symbolom f̃(k) a
voláme ju Fourierovým obrazom funkcie f(x). Inverzné zobrazenie, ktoré prirad́ı

funkcii f̃(k) funkciu f(x) voláme spätnou Fourierovou transformáciou. Fourierova
transformácia (tam a spät’) je teda definovaná ako

f(x)↔ f̃(k)

kde2

f(x) =

∫ ∞
−∞

f̃(k) eikx dk

f̃(k) =
1

2π

∫ ∞
−∞

f(x) e−ikx dx

2Často sa použ́ıva defińıcia, v ktorej sa faktor 1
2π

rozdeĺı medzi funkciou a jej Fourier obraz

f(x) =
1
√

2π

∫ ∞
−∞

f̃(k) eikx dk f̃(k) =
1
√

2π

∫ ∞
−∞

f(x) e−ikx dx

Niekedy sú v defińıcii vymenené znamienka v exponentách. Okrem toho sa pomerne často neṕı̌se
vlnovka nad f(k) a medzi funkciou a jej Fourier obrazom sa rozlǐsuje na základe toho, či je

premennou x alebo k.
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Pŕıklady

1. d’Alambertovo riešenie
(Elementárny pŕıklad, nevyžadujúci nič viac než bezduché dosadenie do vzorca.)
a) Počiatočné podmienky pre kmity nekonečnej struny sú u (x, 0) = exp

(
−x2/a2

)
,

·
u (x, 0) = v

a

(
1 + x2/a2

)−1
. Nájdite u (a, 3a/v)

b) Počiatočné podmienky pre kmity polpriamky x ≥ 0 sú u (x, 0) = 1−exp
(
−x2/a2

)
,

·
u (x, 0) = v

a

[
1−

(
1 + x2/a2

)−1
]
. Nájdite u (a, 3a/v) (a to ako v pŕıpade pevného,

tak aj vol’ného konca).
c) Počiatočné podmienky pre kmity konečnej struny 0 ≤ x ≤ 2a sú u (x, 0) =

1 − exp
(
−x2/a2

)
,

·
u (x, 0) = v

a

[
1
5 −

(
1 + x2/a2

)−1
]
. Nájdite u (a, 3a/v) ak je

koniec x = 0 pevný a koniec x = 2a vol’ný.

2. Fourierovo riešenie
(Elementárny pŕıklad, vyžadujúci poč́ıtanie jednoduchých integrálov.)
a) Nájdite Fourierovo riešenie vlnovej rovnice na úsečke 0 ≤ x ≤ L s počiatočnou

podmienkou u (x, 0) = x (x− L) /L2,
·
u (x, 0) = v/L sinπx/L. (Konce bud’ oba

pevné, alebo oba vol’né).
b) Nájdite Fourierovo riešenie vlnovej rovnice na priamke s počiatočnou podmien-

kou u (x, 0) = exp−x2/a2,
·
u (x, 0) = 0.

3. Časovo premenné okrajové podmienky
(Dôležité rozš́ırenie pŕıkladov uvádzaných v texte.)
a) Separáciou premenných riešte vlnovú rovnicu na úsečke 0 ≤ x ≤ L, s nulovými
počiatočnými podmienkami a s okrajovými podmienkami u (0, t) = 0, u (L, t) =
sin Ωt. Ukážte, že pre Ω→ ωn = nπv/L dostávame riešenie s neobmedzene rastúcim
koeficientom (rezonancia). (Návod: riešenie = superpoźıcia danej okrajovej úlohy
s l’ubovol’nými poč. podm. a úlohy s pevnými koncami a vhodnými poč. podm.)
b) To isté pre u (0, t) = 0, u (L, t) = g (t)
c) To isté pre u′ (0, t) = γ (t), u (L, t) = g (t)

4. Dve spojené struny
(Dôležité rozš́ırenie pŕıkladov uvádzaných v texte.)

a) Uvažujme dve spojené struny s rôznou rýchlost’ou v́ln v každej z nich, t.j.

uvažujme rovnicu v2
1 u
′′(x, t)− ··u(x, t) = 0 pre 0 ≤ x ≤ l, a v2

2 u
′′(x, t)− ··u(x, t) = 0

pre l ≤ x ≤ L. Nájdite riešenie tejto úlohy pre pevné konce u (0, t) = u (L, t) = 0.
(Návod: hladké zošitie riešeńı v jednotlivých strunách, pričom hladkost’ znamená
spojitost’ funkcie aj derivácie.)

b) Ukážte, že v limitnom pŕıpade v1 = v2 dostaneme riešenie pre strunu d́lžky L.
c) Ukážte, že v limitnom pŕıpade v1 � v2 sú frekvencie kmitov systému zhodné s
frekvenciami kmitov prvej struny (návod: rovnicu pre ω riešit’ iteráciami, nahliadnut’

že nultá je často dobrá, vd’aka tomu že tangens je vel’ký len v úzkych intervaloch)3

3Z tohto pŕıkladu plynú dve poučenia, po prvé frekvencie systému pozostávajúceho z dvoch

podsystémov nemusia mat’ vôbec nič spoločné s frekvenciami týchto podsystémov, a po druhé za

istých špeciálnych okolnost́ı môžu mat’ predsa len vel’a spoločného. Typickým pŕıkladom takýchto
špeciálnych okolnost́ı sú strunové hudobné nástroje, kde frekvencie nástroja sú v podstate dané

frekvenciami kmitov struny.
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2. Vlny v troch rozmeroch

2.1. Skalárne vlny v troch rozmeroch.

Ako sme už spomenuli, elmag vlny sú trojrozmerné jednak tým, že ide o vlny
v trojrozmernom priestore a jednak tým, že ide o vlny vektorové. Obe tieto troj-
rozmernosti so sebou prinášajú nové javy a aby sme jasne videli, ktoré javy sú
spôsobované jednou a ktoré druhou trojrozmernost’ou, vyšetŕıme ich postupne.

Skalárne vlny v troch rozmeroch sú oṕısané vlnovou rovnicou

4ϕ(~r, t)− 1

v2

∂2

∂t2
ϕ(~r, t) = ρ(~r, t)

pričom ϕ je neznáma funkcia (ktorej sa hovoŕı vlna) a ρ je nejaká zadaná funkcia
(ktorej sa hovoŕı hustota zdrojov). Podobne ako v jednorozmernom pŕıpade sa v
tejto časti budeme zaoberat’ najmä pŕıpadom ρ(~r, t) ≡ 0, t.j. vlnovou rovnicou s
nulovou pravou stranou, resp. homogénnou vlnovou rovnicou.

Poznámka. (O akustike.) Skalárna vlnová rovnica je základnou rovnicou akus-
tiky. Veličina ϕ sa v tomto pŕıpade nazýva akustický potenciál. Rýchlost’ ~w vzduchu
(resp. inej látky) a zmena tlaku δp (vzhl’adom k rovnovážnemu tlaku p0) sú dané
vzt’ahmi

~w = − gradϕ

δp = ρ0
∂

∂t
ϕ

kde ρ0 je rovnovážna hustota vzduchu. (Pozri pŕıklady.)

Poznámka. (O okrajových podmienkach v akustike.) Okrajové podmienky
máme v akustike pod kontrolou prostredńıctvom rýchlosti alebo tlaku na hranici.
Ak poznáme rýchlost’ stien, tak normálová zložka tejto rýchlosti wn = − (gradϕ)n
určuje Neumannove okrajové podmienky pre ϕ. Ak poznáme tlak na hranici (v
l’ubovol’nom čase), tak integráciou vzt’ahu δp = ρ0

∂
∂tϕ dostaneme hodnotu ϕ na

hranici, čo zodpovedá Dirichletovým okrajovým podmienkam.
Dirichletove okrajové podmienky dobre vystihujú napr. pomery na otvorených

koncoch ṕı̌st’al, kde je tlak podstatne nižš́ı ako vo vnútri ṕı̌st’aly a len málo sa ĺı̌si
od atmosférického tlaku, takže tu s rozumnou presnost’ou môžeme uvažovat’ δp = 0,
čo vedie na nulovú Dirichletovu podmienku na otvorenom konci4. Poznamenajme,
že na rozdiel od struny, vol’nému koncu v akustike zodpovedajú nulové Dirichletove
okrajové podmienky a pevným nehybným stenám nulové Neumannove podmienky.

4Ak uvažujeme š́ırenie sa zvuku z ṕı̌st’aly, potom otvorený koniec ṕı̌st’aly predstavuje hranicu
úlohy pre vonkaǰśı priestor a v tomto pŕıpade je podmienka δp = 0 neadekvátna, pretože δp už

nie je zanedbatel’né vzhl’adom k typickým tlakom vo vonkaǰsom prostred́ı.
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Riešenie vlnovej rovnice separáciou premenných

V pŕıpade struny sme si uviedli dve základné stratégie riešenia – d’Alambertovu
a Fourierovu. Prvá z nich viedla na jednoduché riešenie typu “počiatočná výchylka
sa rozdeĺı napoly, a každá polovica sa rozbehne svojim smerom”. Akonáhle však
prejdeme k vyšš́ım dimenziám, prestáva táto stratégia vo všeobecnosti fungovat’

(hoci funguje v istých špeciálnych súvislostiach, napr. vo sférických súradniciach
funguje pre tzv. radiálnu čast’). Problém je, zhruba povedané, v tom, že vo viac ako
jednom rozmere je nekonečne vel’a smerov a teda počiatočnú podmienku by bolo
treba rozdelit’ na nekonečne vel’a rovnakých (a teda nulových, to je ten problém)
čast́ı a každú poslat’ svojim smerom.

Na druhej strane Fourierova stratégia prechod k vyšš́ım dimenziám prežije
vcelku v dobrom zdrav́ı, aj ked’ ani ona nie celkom bez problémov. Bezproblémová
čast’ je odseparovanie časovej premennej od priestorových premenných. Problémy
sú v separácii priestorových premenných.

Začneme s bezproblémovou čast’ou. Separácia časových a priestorových pre-
menných znamená hl’adanie riešenia v tvare

ϕ(~r, t) = R(~r)T (t)

čo po dosadeńı do homogénnej vlnovej rovnice a vykonańı štandardných povinných
cvikov metódy separácie premenných5 vedie na

4R(~r) = αR(~r)

T̈ (t) = v2αT (t)

Prvá z týchto rovńıc je pre α = 0 Laplaceovou rovnicou, ktorou sme sa zaobe-
rali v elektrostatike. A podobne ako tam, aj tu slúžia riešenia Laplaceovej rovnice
na splnenie okrajových podmienok, ak tieto nezávisia od času. Na rozdiel od elek-
trostatiky sa však teraz môžu okrajové podmienky menit’ s časom, ale to nie je
podstatná komplikácia, vid’ pŕıklady.

Pre α 6= 0 a pre nulové okrajové podmienky (ktoré si môžeme dovolit’ ak
”ukoj́ıme” zadané okrajové podmienky riešeniami Laplaceovej rovnice) je prvá rov-
nicou pre vlastné funkcie a vlastné hodnoty laplaciánu. Aj o tejto rovnici bola reč
v kapitole o elektrostatike, kde sme si uviedli (hoci nedokázali) dve vel’mi dôležité
skutočnosti: 1. Vlastné hodnoty laplaciánu sú reálne záporné č́ısla. 2. Vlastné fun-
kcie laplaciánu tvoria úplný ortonormálny systém.
Z prvej z nich vyplýva, že riešeniami rovnice pre T (t) sú pre α 6= 0

T (t) = sin(ω · t) a T (t) = cos(ω · t) kde ω = v
√
−α

Z druhej potom vyplýva, že všeobecné riešenie môžeme naṕısat’ ako superpoźıciu
vlastných funkcíı laplaciánu násobených harmonickými časovými závislost’ami sinωt
a cosωt, pričom koeficienty tejto superpoźıcie urč́ıme z počiatočných podmienok6.

Separácia časovej premennej nám teda previedla problém riešenia vlnovej rov-
nice na problém hl’adania vlastných funkcíı a vlastných hodnôt laplaciánu v danej
oblasti.

5Pozri riešenie Poissonovej rovnice v kapitole o elektrostatike alebo jednorozmernej vlnovej

rovnice v predchádzajúcej časti.
6Pozri riešenie Poissonovej rovnice v kapitole o elektrostatike a jednorozmernej vlnovej rov-

nice v predchádzajúcej časti.
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Konkrétne pŕıklady

Nájst’ vlastné funkcie laplaciánu pre nejakú konkrétnu oblast’ je vo všeobecnosti
vel’mi t’ažká úloha, ktorú pre väčšinu oblast́ı vieme zvládnut’ len rôznymi približnými
metódami. V pŕıpade hranatých oblast́ı nám však Fourierova metóda, t.j. metóda
separácie premenných, vyrieši aj túto úlohu. Tým źıskame niekol’ko konkrétnych
pŕıkladov, ktoré nám poslúžia ako ilustrácia všeobecných vlastnost́ı riešeńı skalárnej
vlnovej rovnice v troch rozmeroch.

Vzhl’adom na to, že postup je prakticky totožný s postupom v elektrostatike,
nebudeme ho opakovat’, ale uvedieme rovno výsledky. Tieto výsledky by mali byt’

na základe našej doteraǰsej skúsenosti s elektrostatikou a jednorozmernou vlno-
vou rovnicou očividné. Ak nie sú, vrelo odporúčame precvičit’ si metódu separácie
premenných ešte raz a naozaj k týmto výsledkom dospiet’.

neohraničený priestor

ϕ(~r, t) =

∫
α(~k).ei(

~k·~r−ω.t) + β(~k).ei(
~k·~r+ω.t) d3k

ω = vk = v
√
k2
x + k2

y + k2
z

α(~k) =
1

2

1

(2π)3

∫ (
f(~r) +

i

ω(~k)
h(~r)

)
e−i

~k·~rd3r

β(~k) =
1

2

1

(2π)3

∫ (
f(~r)− i

ω(~k)
h(~r)

)
e−i

~k·~rd3r

kde f(~r) = ϕ(~r, 0) a h(~r) = ∂tϕ(~r, 0) sú zadané počiatočné podmienky.

Poznámka. Riešenie je superpoźıciou funkcíı ei(
~k·~r±ω.t), ktorým sa hovoŕı ro-

vinné monochromatické vlny. Tento názov pochádza z toho, že uvedené funkcie
majú jednoznačnú frekvenciu ω (ktorá v pŕıpade svetla určuje jednoznačnú farbu,
odtial’ monochromatické) a z toho, že ich hodnota je vo všetkých rovinách kolmých

na vektor ~k konštantná (odtial’ rovinné). Túto poslednú vlastnost’ vidno okamžite

z toho, že podmienke ~k · ~r ± ω.t = const vyhovujú pre l’ubovol’ný daný čas t práve
polohové vektory ~r zodpovedajúce bodom v takýchto rovinách.

Poznámka. V neohraničenom priestore sa často použ́ıva aj riešenie v tvare

tzv. (monochromatických) sférických vĺn 1
r e
i(kr±ω.t), kde r je radiálna premenná

sférických súradńıc, pričom koeficienty rozvoja do týchto sférických v́ln sú funkciami
uhlových sférických premenných ϕ a ϑ. Riešenie v tomto tvare dostaneme separáciou
premenných v sférických súradniciach, čo je vec ktorú v týchto prednáškach ne-
rob́ıme, ale vrele odporúčame pokúsit’ sa urobit’ si ju samostatne a postup aj
výsledky porovnat’ s knihami (napr. z teórie elmag pol’a, z kvantovej mechaniky, z
matematickej fyziky alebo parciálnych diferenciálnych rovńıc).
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hranatý vlnovod

oblast’ v smeroch x, y ohraničená obd́lžnikom a v smere z neohraničená
nulové Dirichletove okrajové podmienky7

ϕ(~r, t) =

∞∑
m,n=1

∫
dk sin

mπx

Lx
sin

nπy

Ly

(
αmn(k).ei(kz−ωt) + βmn(k).ei(kz+ωt)

)

ωmn(k) = v

√(
mπ

Lx

)2

+

(
nπ

Ly

)2

+ k2

αmn(k) =
1

LxLyπ

∫ Lx

0

∫ Ly

0

∫ ∞
−∞

d3r

(
f(~r) +

i

ωmn(k)
h(~r)

)
sin

mπx

Lx
sin

nπy

Ly
e−ikz

βmn(k) =
1

LxLyπ

∫ Lx

0

∫ Ly

0

∫ ∞
−∞

d3r

(
f(~r)− i

ωmn(k)
h(~r)

)
sin

mπx

Lx
sin

nπy

Ly
e−ikz

Poznámka. Pre každú dvojicu prirodzených č́ısiel (m,n) existuje minimálna

frekvencia ωmin
mn = vπ

√
m2/L2

x + n2/L2
y. Vlnovodom sa teda nemôžu š́ırit’ vlny

l’ubovol’ne ńızkej frekvencie. Konkrétny tvar ωmin
mn sa týka hranatého vlnovodu, ale

existencia minimálnej frekvencie je všeobecná vlastnost’ vlnovodov.

hranatý rezonátor

oblast’ ohraničená kvádrom, nulové Dirichletove okrajové podmienky (ako pŕıklad)

ϕ(~r, t) =

∞∑
l,m,n=1

sin
lπx

Lx
sin

mπy

Ly
sin

nπz

Lz
(clmn cosωlmnt+ c′lmn sinωlmnt)

ωlmn = vπ

√(
l

Lx

)2

+

(
m

Ly

)2

+

(
n

Lz

)2

clmn =
8

V

∫
d3r f(~r) sin

lπx

Lx
sin

mπy

Ly
sin

nπz

Lz

c′lmn =
8

V

∫
d3r

h(~r)

ωlmn
sin

lπx

Lx
sin

mπy

Ly
sin

nπz

Lz

Poznámka. Spektrum frekvencíı rezonátora je diskrétne. Konkrétny tvar ωlmn
sa týka hranatého rezonátora, ale diskrétnost’ spektra frekvencíı je všeobecná vlast-
nost’ rezonátorov.

7Nulové Neumannove okrajové podmienky – cośınusy namiesto śınusov. Nenulové okrajové
podmienky – pozri pŕıklady.
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Nepovinná poznámka o hudobných nástrojoch

Rezonátory vd’ačia za svoje meno javu rezonancie, o ktorom zatial’ nebola reč.
Reč nebola preto, lebo v tejto kapitole sa zaoberáme riešeniami vlnovej rovnice s
nulovou pravou stranou a k rezonancii treba nenulovú pravú stranu. Ked’ už sme
však na rezonátory narazili, je lákavé povedat’ si o nich niečo viac. Tomuto lákaniu
teraz na chv́ıl’ku podl’ahneme.

Ak je časová závislost’ pravej strany harmonická (t.j. śınusová resp. cośınusová)
s frekvenciou Ω rovnou niektorej z vlastných frekvencíı ωmnr rezonátora, potom
dostaneme riešenia vlnovej rovnice s formálne nekonečnou amplitúdou (že je to tak,
nahliadneme neskôr, nateraz sa uspokoj́ıme analógiou s lineárnym harmonickým
oscilátorom). V realistických pŕıpadoch nie je rezonančná amplitúda nekonečná,
ale je relat́ıvne vel’ká (znova sa zatial’ uspokoj́ıme s analógiou, tentoraz s tlmeným
LHO). Ak časová závislost’ pravej strany nie je harmonická, môžeme ju rozvinút’

do Fourierovho radu a na základe prinćıpu superpoźıcie zložit’ celkové riešenie z
riešeńı pre jednotlivé Fourierove komponenty pravej strany. V tomto riešeńı budú
vo väčšine pŕıpadov dominantné práve komponenty s rezonančnými frekvenciami
ωmnr.

A teraz k hudobným nástrojom. Celá hudba je, zhruba povedané, založená na
fakte, že l’udskému uchu resp. mozgu sú pŕıjemné zvuky s jednoznačnými frekven-
ciami, hovoŕı sa im čisté tóny. Pŕıjemné sú tiež súzvuky čistých tónov pre ktoré je
pomer frekvencíı rovný pomeru malých prirodzených č́ısiel. Pomeru 1/2 hovoŕıme
oktáva, pomeru 2/3 kvinta, pomeru 3/4 kvarta.

Vytvorenie čistého tónu v l’ubovol’nom rezonátore vyžaduje špeciálne nastave-
nie počiatočných podmienok. Pri bežných počiatočných podmienkach je riešenie
superpoźıciou viacerých vlastných frekvencíı, t.j. viacerých čistých tónov. Súzvuk
týchto vlastných frekvencíı určuje tzv. farbu zvuku daného rezonátora. Ak sú po-
mery vlastných frekvencíı celé č́ısla, vńımame farbu zvuku ako pŕıjemnú. V opačnom
pŕıpade ako menej pŕıjemnú.

Z hl’adiska farby zvuku je teda struna s frekvenciami ωn = nπv/L ideálny
hudobný nástroj. Nevýhodou struny je ”malá účinnost’ prenosu pohybu struny na
pohyb vzduchu”. Preto sa struna často pripája k nejakému inému rezonátoru, ako je
napŕıklad telo gitary či husĺı, a to tak, aby vlastné frekvencie celkovej sústavy boli
v podstate dané vlastnými frekvenciami samotnej struny (v tejto súvislosti pozri
pŕıklad o dvoch spojených strunách). Tak vzniká celá rodina strunových nástrojov.

Hranaté rezonátory sú ako hudobné nástroje vo všeobecnosti nevhodné, pretože

pomery frekvencíı ωmnr = vπ
√
m2/L2

x + n2/L2
y + r2/L2

z sa pre rôzne m,n, r môžu

značne ĺı̌sit’ od celoč́ıselných pomerov. Ak je však jeden rozmer rezonátora ovel’a
väčš́ı ako d’aľsie dva, napr. Lx � Ly, Lz potom niekol’ko najnižš́ıch vlastných
frekvencíı zodpovedá trojiciam (m, 0, 0) a teda pokial’ nie sú ”vybudené” vyššie
frekvencie, celý ”dlhý rezonátor” sa chová analogicky ako struna. Takýmto dlhým
rezonátorom hovoŕıme ṕı̌st’aly. Vyššie frekvencie samozrejme obsahujú ”nepŕıjemné
pŕımesi”od nenulových n, r. Tieto nepŕıjemné pŕımesy sa trochu zredukujú ak budú
namiesto dvojice n, r charakterizované len jedným č́ıslom, čo sa dosahuje vo val-
cových ṕı̌st’alách (redukcia počtu parametrov z dvoch na jeden je tu dôsledkom
zvýšenia symetrie). Tak vzniká celá rodina dychových nástrojov.
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2.2. Vektorové vlny v trojrozmernom pŕıpade.

neohraničený priestor

Prechod od skalárnych k vektorovým vlnám je v mnohých pŕıpadoch triviálne
jednoduchý a spoč́ıva len v doṕısańı š́ıpiek na patričné miesta. Napŕıklad riešenie

vlnovej rovnice pre nejakú vektorovú funkciu ~A(~r, t) (ktorá nemuśı byt’ nutne vek-
torovým elmag potenciálom)

4 ~A(~r, t)− 1

v2
· ∂

2

∂t2
~A(~r, t) = 0

je dané vzt’ahmi úplne analogickými vzt’ahom pre skalárne vlny

~A(~r, t) =

∫
~α(~k).ei(

~k·~r−ω.t) + ~β(~k).ei(
~k·~r+ω.t) d3k

ω = vk = v
√
k2
x + k2

y + k2
z

~α(~k) =
1

2

1

(2π)3

∫ (
~f(~r) +

i

ω(~k)
~h(~r)

)
e−i

~k·~rd3r

~β(~k) =
1

2

1

(2π)3

∫ (
~f(~r)− i

ω(~k)
~h(~r)

)
e−i

~k·~rd3r

kde ~f(~r) = ~A(~r, 0) a ~h(~r) = ∂t ~A(~r, 0) sú zadané počiatočné podmienky. Úplne
analogický je aj postup odvodenia týchto vzt’ahov, preto ho tu nebudeme opakovat’.

To nové, čo so sebou prináša vektorovost’ v́ln, sa dá vlastne zhrnút’ do jedného
slova – polarizácia. Všeobecné riešenie vlnovej rovnice je superpoźıciou rovinných

monochromatických v́ln s rôznymi polarizáciami, ktoré sú dané vektormi ~α(~k) a
~β(~k). Na elmag vlnách sú v tejto súvislosti pozoruhodné dve skutočnosti:
1. elmag vlny v neohraničenom priestore sú transverzálne
2. elmag vlny vo vlnovodoch a rezonátoroch vo všeobecnosti nie sú transverzálne

Transverzálnost’ (priečnost’) v́ln je často dôsledkom nulovosti divergencie uvažovanej

veličiny. Naozaj, ak plat́ı div ~A = 0 v l’ubovol’nom čase, potom zo vzt’ahu

div ~A =

∫
i~k · ~α(~k).ei(

~k·~r−ω.t) + i~k · ~β(~k).ei(
~k·~r+ω.t) d3k

a z jeho časovej derivácie dostaneme pre t = 0

div ~f =

∫ (
~k · ~α(~k) + ~k · ~β(~k)

)
iei
~k·~r d3k = 0

div ~h =

∫ (
~k · ~α(~k)− ~k · ~β(~k)

)
ωei

~k·~r d3k = 0

a ked’že identicky nulová funkcia má všetky Fourierove komponenty nulové, dostávame

~k · ~α(~k) = ~k · ~β(~k) = 0

čo nie je nič iné ako vyjadrenie transverzálnosti (kolmosti na ~k) vektorov ~α(~k) a ~β(~k).
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Pre elektromagnetické polia vo vákuu bez nábojov a prúdov platia vlnové rov-

nice a navyše plat́ı div ~B = 0 (vždy) a div ~E = 0 (v uvažovanom pŕıpade). Čiže
elektrické a magnetické pole vo vákuu bez nábojov a prúdov má charakter su-

perpoźıcie priečne polarizovaných rovinných monochromatických v́ln. To je koniec
koncov súčast’ou bežného fyzikálneho folklóru, rovnako ako fakt, že v rovinnej el-

mag vlne sú aj polia ~E a ~B navzájom kolmé. Túto poslednú vlastnost’ najl’ahšie

nahliadneme pomocou elmag potenciálov. V Coulombovej kalibrácii div ~A = 0 je
(jednoznačným) riešeńım rovnice pre skalárny potenciál 4ϕ = 0 (pre ρ = 0) nulová

funkcia ϕ = 0. Pre identicky nulové ϕ prejde rovnica pre ~A na vlnovú rovnicu,

ktorej riešeńım je superpoźıcia transverzálnych (vd’aka kalibračnej podmienke) v́ln.
Pri nulovom ϕ d’alej plat́ı

~E = − ∂

∂t
~A =

∫
iω~α(~k).ei(

~k·~r−ω.t) − iω~β(~k).ei(
~k·~r+ω.t) d3k

~B = rot ~A =

∫
i~k × ~α(~k).ei(

~k·~r−ω.t) + i~k × ~β(~k).ei(
~k·~r+ω.t) d3k

čiže pre jednotlivé monochromatické rovinné elmag vlny máme

~E(~k)‖~α(~k) ~B(~k)‖~k × ~α(~k) ~k⊥~α(~k)

~E(~k)‖~β(~k) ~B(~k)‖~k × ~β(~k) ~k⊥~β(~k)

t.j. ~E(~k), ~B(~k) a ~α(~k) resp. ~β(~k) sú navzájom kolmé.

vlnovody a rezonátory

Š́ırenie elmag v́ln vo vlnovodoch a rezonátoroch predstavuje rozsiahlu oblast’ s
mnohými vel’mi dôležitými elektrotechnickými aplikáciami. My sa tejto problema-
tiky dotkneme iba vel’mi zbežne, v podstate nám pôjde len o naznačenie základných
problémov a o vel’mi hrubé načrtnutie spôsobov ich riešenia.

Prvým problémom je realizácia okrajových podmienok pre elmag polia vo vl-
novode (rezonátore) ktorého steny sú tvorené vodičom. Tieto okrajové podmienky
sú pomerne jednoduché pre ideálny vodič, t.j. vodič s nekonečnou vodivost’ou. Pre
takýto vodič je rozumné predpokladat’ nulové elektrické pole v jeho vnútri, pretože
l’ubovol’né nenulové pole by na základe Ohmovho zákona viedlo k nekonečným
prúdom. Je však treba mat’ na pamäti, že toto je značná idealizácia, ktorá býva
vhodná pri opise realistickej situácie len ako akési nulté pribĺıženie.

Nulovost’ elektrického pol’a v ideálnom vodiči a hraničná podmienka pre tan-
genciálne zložky elektrického pol’a dajú pre vnútro vlnovodu nulové okrajové pod-

mienky pre niektoré zložky ~E. Pre vlnovod nekonečný v smere osi z dostávame
všade na hranici okrajovú podmienku Ez = 0, plus ešte jednu podmienku, kto-
rej konkrétny tvar záviśı od prierezu vlnovodu. Napŕıklad pre hranatý vlnovod
0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly má táto podmienka tvar

Ex (x, 0, z) = 0 Ex (x, Ly, z) = 0

Ey (0, y, z) = 0 Ey (Lx, y, z) = 0
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Vlnová rovnica a okrajové podmienky pre Ez v hranatom vlnovode sú zhodné s
pŕıpadom uvažovaným v časti venovanej skalárnym vlnám a tam uvádzané riešenie
je teda aj riešeńım pre Ez. Dôležitou skutočnost’ou zasluhujúcou zdôraznenie je
nenulovost’ všeobecného riešenia pre Ez, čo znamená, že elmag vlna š́ıriaca sa vo
vlnovode môže mat’ nenulovú zložku aj v smere vlnovodu, t.j. v smere š́ırenia sa
vlny. Vid́ıme, že elmag vlny vo vlnovode nemusia byt’ priečne.8

Pre Ex a Ey máme trochu odlǐsnú situáciu – okrajové podmienky (nulové Di-
richletove) máme zadané len na časti hranice. Avšak akonáhle poznáme riešenie pre
Ez, máme v skutočnosti okrajové podmienky zadané všade. Skutočne z podmienky

div ~E = 0 vyplýva

∂

∂y
Ey (x, 0, z) = − ∂

∂z
Ez (x, 0, z)

∂

∂y
Ey (x, Ly, z) = − ∂

∂z
Ez (x, Ly, z)

∂

∂x
Ex (0, y, z) = − ∂

∂z
Ez (0, y, z)

∂

∂x
Ex (Lx, y, z) = − ∂

∂z
Ez (Lx, y, z)

čo nie je nič iné, ako nulové Neumannove okrajové podmienky pre Ex a Ey na
zvyšku hranice. Pre Ex a Ey máme teda kombinované okrajové podmienky (nie-
kde Dirichletove, niekde Neumannove), to však nepredstavuje nijaký nový problém
– takéto úlohy sa riešia analogicky ako úlohy s čisto Dirichletovými alebo čisto
Neumannovými okrajovými podmienkami (pozri pŕıklady).

Ked’ už máme vyriešenú úlohu pre elektrické pole vo vlnovode, dostaneme zo

známeho ~E na hranici a z Maxwellových rovńıc hodnoty derivácíı ~B na hranici.

Tým pádom poznáme Neumannove okrajové podmienky pre vlnové rovnice pre ~B,

takže môžeme naṕısat’ riešenie pre jednotlivé zložky ~B. Nakoniec teda poznáme
kompletné elmag pole vo vlnovode.

Uvedený postup je technicky pomerne pracný. Dá sa śıce trochu zjednodušit’

(napr. Fourierovou transformáciou rovńıc, čo je technika, s ktorou sa zoznámime v
d’aľsej časti), ale zjednodušenie nie je dramatické. A to si ešte muśıme uvedomit’,
že sa jedná o najjednoduchš́ı pŕıpad hranatého vlnovodu so stenami z ideálneho
vodiča. Nehranatost’ so sebou prináša d’aľsie problémy, realistické vodiče vyžadujú
riešit’ rovnice nielen vo vlnovode, ale aj vo vodiči a riešenia potom ”zoš́ıvat’” v súlade
s hraničnými podmienkami, čo je zjavne obrovské množstvo roboty.

Tomuto všetkému sa vyhneme dost’ brutálnym spôsobom – celú problematiku
elmag vlnovodov a rezonátorov jednoducho preskoč́ıme. Dôvodom nie je nedôležitost’

tejto oblasti, ale skôr jej rozl’ahlost’ a technická náročnost’, ktoré by nás odviedli od
iných, tiež dôležitých većı, ktoré nás ešte čakajú.

8Tento jav sa využ́ıva napr. v urýchl’ovačoch elementárnych čast́ıc na rýchlosti bĺızke rýchlosti
svetla. Ak sa nabitá častica s rýchlost’ou takmer c dostane vo vhodnom momente do vlnovodu,

v ktorom sa š́ıri elmag vlna rýchlost’ou c, a táto vlna má nenulovú pozd́lžnu zložku elektrického
pol’a, potom je častica počas ”spoločného behu” celý čas urýchl’ovaná (pričom sa jej rýchlost’ už

moc nemeńı, ale zvyšuje sa jej energia).
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Pŕıklady

1. Ṕı̌st’aly
(.)
a) kváder: okrajové podmienky 5 stien uzavreté, 1 koniec otvorený - explicitné
riešenie
b) valec (nepovinné)

komentár: dierky na ṕı̌st’ale

2. názov
(.)
3. názov
(.)
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3. Elektromagnetické vlny v disperznom prostred́ı

Motivácia

Medzi tým, čo sme si o elmag vlnách doteraz povedali a medzi tým, čo je o nich
všeobecne známe, je jeden významný rozpor. Ciel’om tohto motivačného paragrafu
je na tento rozpor upozornit’. Ciel’om celej tejto časti je explicitne ukázat’, že v
skutočnosti rozpor neexistuje.

Súčast’ou všeobecného fyzikálneho folklóru je vysvetlenie rozkladu bieleho svetla
(skleneným hranolom alebo vodnou kvapkou) závislost’ou indexu lomu od vlnovej

d́lžky resp. frekvencie svetla. Súčast’ou folklóru je tiež súvis indexu lomu s rýchlost’ou

svetla danej vlnovej d́lžky resp. frekvencie v uvažovanom prostred́ı. Inými slovami,
vel’a bežných optických javov súviśı s tým, že v niektorých látkach záviśı rýchlost’

svetla od frekvencie – tomuto javu sa hovoŕı disperzia.

Na druhej strane riešenia vlnovej rovnice majú tvar superpoźıcie rovinných

monochromatických v́ln, ktoré sa všetky š́ıria rovnakou rýchlost’ou v. Skutočne,

rýchlost’ š́ırenia sa postupnej vlny f(~k ·~r−ω.t) = f(k(~n ·~r− v.t)) je daná práve pa-
rametrom v vystupujúcim vo vlnovej rovnici a je pre všetky postupné vlny rovnaká.
A to je ten rozpor. Pre vysvetlenie mnohých známych javov potrebujeme disperziu

v́ln, ale vo vlnovej rovnici pre ňu jednoducho nie je miesto. Kým budete č́ıtat’ d’alej,
skúste chv́ıl’ku porozmýšl’at’ o tom, ako tento rozpor odstránit’.

Dobre, predpokladajme, že ste porozmýšl’ali. Potom je dost’ možné, že vám
napadlo čosi, čo je najčasteǰsie uvádzané ako prvá odpoved’: a to, že k disperzii
dochádza ak je závislost’ ω od k iná ako lineárna. To je správna odpoved’, ale nie
na našu otázku. Pre monochromatické riešenia vlnovej rovnice totiž plat́ı ω = vk.
Rozpor (zdanlivý) spoč́ıva práve v tom, že aj ked’ potrebujeme nelineárnu závislost’

ω od k, vlnová rovnica si vynucuje závislost’ lineárnu. Takže ešte raz, kým budete
č́ıtat’ d’alej, skúste chv́ıl’ku porozmýšl’at’ o tom, ako tento rozpor odstránit’.

Riešenie má pŕıchut’ Kolumbovho vajca: Nie všetky vlny sú riešeniami vlnovej
rovnice. Existujú aj iné rovnice, ktorých riešeniami sú rovinné monochromatické
vlny. A nielenže existujú, ale niekedy úzko súvisia s Maxwellovými rovnicami.

Maxwellove rovnice vo vákuu vedú na vlnovú rovnicu. Maxwellove rovnice v is-
tom špeciálnom prostred́ı nevedú na vlnovú rovnicu, napriek tomu sú ich riešeniami
rovinné monochromatické vlny, a to s nelinárnou závislost’ou ω od k. Takýmto
špeciálnym prostred́ım sú látky s tzv. lineárnou pamät’ou. Vzhl’adom na dôležitost’

javu disperzie sa teraz budeme elektrodynamike takýchto látok venovat’ trochu pod-
robneǰsie. Najprv si objasńıme, čo sa vlastne mysĺı pod lineárnou pamät’ou, potom
si ukážeme že v látkach s takouto pamät’ou Maxwellove rovnice naozaj nevedú na
vlnovú rovnicu a nakoniec sa nauč́ıme Maxwellove rovnice v tomto pŕıpade riešit’.
A pritom si ukážeme, že ich riešenia sú naozaj monochromatické vlny s nelineárnou
závislost’ou ω od k.
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Lineárna, stále rovnaká pamät’

Lineárna skalárna funkcia jednej skalárnej premennej vyzerá takto: y = ax+ b.

Lineárna vektorová funkcia jednej vektorovej premennej vyzerá takto: ~y = ¯̄A~x+~b,

kde ¯̄A je tenzor. V kartézskych súradniciach má táto závislost’ tvar yi = Aijxj + bi.
Ak budeme uvažovat’ vektory so spojitým indexom t ∈ 〈ti, tf 〉 namiesto diskrétne-
ho i, potom suma Aijxj =

∑
j Aijxj prejde na integrál a lineárna závislost’ bude

mat’ tvar

y(t) =

∫ tf

ti

A (t, t′) x (t′) dt′ + b(t)

A presne takto vyzerá lineárna pamät’. V izotropnom prostred́ı s lineárnou pamät’ou

(a priestorovou lokálnost’ou) záviśı vektor ~D(~r, t) od vektora ~E(~r, t′) nasledovne

~D(~r, t) =

∫ t

−∞
ε (t, t′) ~E(~r, t′)dt′

Dolná hranica integrálu znamená, že pripúšt’ame nekonečne dobrú pamät’ (čiže do
l’ubovol’ne vzdialenej minulosti). Horná hranica znamená, že ide naozaj o pamät’

(takže hodnotu ~D v čase t určujú len hodnoty ~E v skorš́ıch časoch). Niekedy sa
použ́ıva zápis s hornou hranicou rovnou nekonečnu, ale potom muśıme požadovat’,
aby ε(t, t′) = 0 pre t < t′ (inak by nešlo len o pamät’, ale aj o veštenie). V pŕıpade
takzvaných tvrdých dielektŕık by sme k integrálu mali ešte pripoč́ıtat’ nejaký člen
~d(~r, t) nezávislý od ~E, ale také špecialitky tu teraz nebudeme uvažovat’.

Ak látka nemeńı s časom svoje vlastnosti, potom by jej pamät’ mala byt’ stále
rovnaká. To znamená, že o druhej by si mala pamätat’ to, čo bolo pred piatimi
minútami rovnako, ako si pamätala o pol jednej, čo bolo pred piatimi minútami. To
ale znamená, že funkcia dvoch premenných ε(t, t′) by mala závisiet’ len od rozdielu
týchto premenných. Pre látku s lineárnou, stále rovnakou pamät’ou teda dostávame

~D(~r, t) =

∫ t

−∞
ε (t− t′) ~E(~r, t′) dt′

pričom hornú hranicu integrálu môžeme posunút’ do ∞, ak ε(τ) = 0 pre τ < 0.

Klebeta: Integrálu
∫∞
−∞ f(t− t′)g(t′) dt′ sa hovoŕı konvolúcia funkcíı f a g.

Tvrdenie: Fourier obraz konvolúcie je 2π× súčin Fourier obrazov obidvoch funkcíı.

Dôkaz: Nech K(t) =
∫∞
−∞ f(t− t′)g(t′)dt′

K̃(ω) =
1

2π

∫ ∞
−∞

K(t)e−iωtdt =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t− t′)g(t′)e−iωtdt dt′

Teraz vlož́ıme jednotku naṕısanú ako e−iωt
′
eiωt

′
a urob́ıme substitúciu τ = t − t′,

č́ım sa dvojitý integrál rozlož́ı na súčin dvoch jednoduchých integrálov

K̃(ω) =
1

2π

∫ ∞
−∞

f(τ)e−iωτdτ

∫ ∞
−∞

g(t′)e−iωt
′
dt′ = 2πf̃(ω)g̃(ω)

Ešte jedno tvrdenie, ktoré budeme neskôr potrebovat’: Ak je funkcia f(t) reálna, po-

tom pre jej Fourier obraz plat́ı f̃∗(ω) = f̃(−ω). Dôkaz: f̃(ω) = 1
2π

∫∞
−∞ f(t)e−iωtdt,

čiže f̃∗(ω) = 1
2π

∫∞
−∞ f(t)eiωtdt a zároveň f̃(−ω) = 1

2π

∫∞
−∞ f(t)eiωtdt.
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Čo to znamená pre elektrodynamiku? Ak urob́ıme Fourierovu transformáciu vo
všetkých premenných (~r aj t) a ak prestaneme ṕısat’ vlnovku (či sa jedná o funkciu
alebo o jej Fourier obraz spoznáme podl’a premenných), dostaneme

~D(~k, ω) =
1

(2π)4

∫ ∞
−∞

~D(~r, t)e−i(
~k·~r+ωt)d3r dt = 2πε(ω) ~E(~k, ω)

Analogicky dostaneme pre magnetické polia ~H(~r, t) =
∫ t
−∞ µ−1 (t− t′) ~B(~r, t′)dt′

a odtial’ úplne rovnakým postupom

~H(~k, ω) =
1

(2π)4

∫ ∞
−∞

~H(~r, t)e−i(
~k·~r+ωt)d3r dt = 2πµ−1(ω) ~B(~k, ω)

Záver: Po Fourierovej transformácii vyzerá látka so stále rovnakou lineárnou pamät’ou
ako vákuum (konvolúcia prešla na súčin). Akurát že ε a µ−1 závisia od ω.

Fourierova transformácia má ešte jednu dôležitú vlastnost’: prevádza derivácie
na niečo jednoduchšie. Vezmime si napŕıklad Fourierov obraz časovej derivácie
1

2π

∫∞
−∞( ddtf(t))e−iωtdt. Metódou per partes to prevedieme na súčet dvoch integrálov

1
2π

∫∞
−∞

d
dt

(
f(t)e−iωt

)
dt − 1

2π

∫∞
−∞ f(t) ddte

−iωtdt. Prvý z nich je 1
2π [f(t)e−iωt]∞−∞

a ak ide f(t) k nule pre t→ ±∞, potom je tento pŕıspevok nulový. Druhý integrál
(aj so znamienkom mı́nus) je iω

2π

∫∞
−∞ f(t)e−iωtdt = iωf(ω), takže celkove môžeme

konštatovat’, že pre funkcie nulové v nekonečne prevádza Fourierova tranformácia
deriváciu podl’a času na násobenie faktorom iω

d
dtf(t)→ iωf(ω)

Úplne rovnako nahliadneme, že pre vyššie derivácie
dn

dtn f(t)→ (iω)nf(ω)

Ak máme v hre derivácie podl’a času aj podl’a priestorových súradńıc, potom

∂
∂xj

f(~r, t)→ ikj f(~k, ω)

div ~f(~r, t)→ i~k · ~f(~k, ω)

rot ~f(~r, t)→ i~k × ~f(~k, ω)

Záver: Fourierova transformácia prevádza derivovanie na násobenie a diferenciálne
rovnice na algebraické. A ked’že algebraické rovnice sa dost’ často riešia jedno-
duchšie ako diferenciálne, Fourierova transformácia je d’aľsou v́ıtanou metódou
riešenia diferenciálnych rovńıc. Túto metódu sme mohli použit’ už aj v niektorých
predchádzajúcich pŕıpadoch (napŕıklad pri riešeńı Maxwellových rovńıc vo vákuu
bez nábojov a prúdov), ale tam by to bolo vždy len alternat́ıva k inej dostatočne
jednoduchej metóde. Pŕıpad lineárnej, stále rovnakej pamäte, je dobrou a prakticky
dôležitou ilustráciou sily tejto metódy tam, kde iné metódy až tak dobre nefungujú.
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Fourierova transformácia Maxwellových rovńıc

Spomeňme si, ako sme riešili Maxwellove rovnice vo vákuu bez nábojov a
prúdov. Zobrali sme dve Maxwellove rovnice s rotáciami, urobili sme z nich rotáciu,
využili sme vzt’ah pre rotáciu rotácie, využili sme zvyšné dve Maxwellove rovnice a
”materiálové”vzt’ahy vo vákuu, č́ım sme dostali pre elektrické aj magnetické pole
vlnovú rovnicu. A túto diferenciálnu rovnicu vieme v neohraničenom priestore riešit’

celkom jednoducho.

Ak by sme tento postup skúsili pre prostredie s lineárnou, stále rovnakou
pamät’ou, nedostali by sme vlnové rovnice, ale komplikovaneǰsie integro-diferenciálne
rovnice (odvod’te si ich, nech viete, o čom je reč), ktoré sme sa riešit’ neučili. Je
preto milým prekvapeńım, že ak najprv urob́ıme Fourierovu transformáciu rovńıc
(čo znamená prechod k rovniciam pre Fourierove transformácie poĺı)9 starý postup
bez problémov prejde.

Maxwellove rovnice prejdú po Fourierovej transformácii na

i~k · ~D(~k, ω) = ρ(~k, ω)

i~k × ~E(~k, ω) = −iω ~B(~k, ω)

i~k · ~B(~k, ω) = 0

i~k × ~H(~k, ω) = ~j(~k, ω) + iω ~D(~k, ω)

a materiálové vzt’ahy budú

~D(~k, ω) = 2π ε(ω) ~E(~k, ω)

~H(~k, ω) = 2π µ−1(ω) ~B(~k, ω)

V takejto látke a s nulovými vonkaǰśımi hustotami náboja a prúdu teda dostaneme

ε(ω)~k · ~E(~k, ω) = 0

~k × ~E(~k, ω) = −ω ~B(~k, ω)

~k · ~B(~k, ω) = 0

~k × ~B(~k, ω) = ω ε(ω)µ(ω) ~E(~k, ω)

Teraz urob́ıme analogickú vec, ako bolo pôsobenie rotáciou na rovnice obsahujúce
rotáciu. Rotácii zodpovedá po Fourierovej transformácii násobenie (vektorový súčin)

vektorom i~k. Vezmeme teda rovnice s takýmto súčinom, vynásob́ıme ich (vektorovo)

zl’ava vektorom i~k a využijeme ~a× (~b× ~c ) = ~b (~a · ~c )− ~c (~a ·~b ), č́ım dostaneme

[k2 − ω2 ε(ω)µ(ω)] ~E(~k, ω) = 0

[k2 − ω2 ε(ω)µ(ω)] ~B(~k, ω) = 0

9Zovšeobecnenie Fourierovej transformácie na funkcie viac premenných: ~f(~x, t) ↔ ~f(~k, ω),

kde ~f(~x, t) =
∫∞
−∞

~f(~k, ω) ei(
~k·~x+ωt) d3k dω a ~f(~k, ω) = 1

(2π)4

∫∞
−∞

~f(~x, t) e−i(
~k·~x+ωt) d3x dt

(nad vektorom ~f(~k, ω) má byt’ ešte vlnovka, ale tú kvôli väčšej prehl’adnosti radšej neṕı̌seme).
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Riešenie výsledných rovńıc je úplne jednoduché. Ak je výraz k2 − ω2 ε(ω)µ(ω)
nenulový, polia musia byt’ nulové. A ak je tento výraz nulový, polia môžu byt’

akékol’vek. Tieto dve vety sa dajú elegantne zaṕısat’ pomocou δ-funkcie ako

~E(~k, ω) = ~e (~k, ω) δ
(
k2 − ω2 ε(ω)µ(ω)

)
kde ~e (~k, ω) je l’ubovol’ná vektorová funkcie premenných ~k a ω. (Pre ~B(~k, ω) plat́ı
analogický zápis).

Spätná Fourierova transformácia nám dá

~E(~r, t) =

∫
~e (~k, ω) δ

(
k2 − ω2 ε(ω)µ(ω)

)
ei(
~k·~r+ωt) d3k dω

a podobne pre ~B. Jedna z integrácíı sa urob́ı l’ahko pomocou δ-funkcie. Ktorá?
Nulové body δ-funkcie nájdeme vel’mi l’ahko vtedy, ak považujeme k za premennú a
ω za parameter. Vtedy k = ω

√
ε(ω)µ(ω) a cez k môžeme okamžite preintegrovat’ v

sférických súradniciach10 A to je všetko, zvyšné tri integrály cez dva uhly v ~k-pries-
tore a cez ω nevieme urobit’ bez explicitnej znalosti funkcíı ε(ω) a µ(ω). Výsledok
v tejto forme však nie je vel’mi prehl’adný, preto sa zvyčajne postupuje inak.

Iný postup spoč́ıva v tom, že δ-funkcie sa zbav́ıme integráciou cez premennú ω.
To znamená, že najprv integrujeme cez ω pričom v argumente δ-funkcie považujeme

ω za premennú a ~k za parameter, pričom využijeme vzt’ah δ(g~k(ω)) =
∑
i
δ(ω−ωi(~k))

|g′(ωi(~k))|
,

kde ωi(~k) sú (explicitne neznáme) nulové body funkcie g~k(ω) = k2 − ω2 ε(ω)µ(ω).

Integrácia cez ω dá ~E(~r, t) =
∫ ∑

i ~ci (~k ) ei(
~k·~r+ωi(~k )t) d3k, kde ~ci (~k ) = ~e (~k,ωi(~k ))

|g′(ωi(~k))|

sú l’ubovol’né funkcie premennej ~k (tú l’ubovol’nost’ zdedili po funkcii ~e (~k, ω)).
Kol’ko nulových bodov má funkcia g~k(ω)? V prvom rade si treba uvedomit’,

že ak je nejaké ω riešeńım rovnice k2 − ω2 ε(ω)µ(ω) = 0 pre dané k, potom
je riešeńım aj −ω. Naozaj, pre reálne funkcie f(t) plat́ı f∗(ω) = f(−ω), takže
(−ω)2 ε(−ω)µ(−ω) = ω2 ε∗(ω)µ∗(ω) = (ω2 ε(ω)µ(ω))∗ = (k2)∗ = k2. Nič viac
vo všeobecnosti povedat’ nevieme. Ak ale budeme predpokladat’ (a v konkrétnych
pŕıpadoch to potom muśıme overit’), že až na znamienko je ω určené hodnotou k
jednoznačne, potom dostaneme

~E(~r, t) =

∫ ∞
−∞

~α(~k) ei(
~k·~r+ω(k)t) + ~β(~k) ei(

~k·~r−ω(k)t) d3k

A to je superpoźıcia rovinných monochromatických v́ln so všeobecnou, nie nutne
lineárnou závislost’ou ω(k). Za uvedeného predpokladu sme teda dostali, že riešenie
Maxwellových rovńıc bez nábojov a prúdov v prostred́ı s lineárnou, stále rovnakou
pamät’ou, vyzerá až na jeden rozdiel rovnako, ako riešenie vo vákuu. Obe riešenia

majú tvar superpoźıcie rovinných monochromatických v́ln, rozdiel spoč́ıva v rôznej

závislosti ω od ~k.

10Ak polož́ıme os z v smere vektora ~r, potom

~E(~r, t) =

∫ ∞
−∞

dω

∫ 1

−1
d cosϑ

∫ 2π

0
dϕ

∫ ∞
0

dk ~e (k, ϕ, ϑ, ω) δ
(
k2 − ω2 ε(ω)µ(ω)

)
ei(kr cosϑ+ωt)

=

∫ ∞
−∞

dω

∫ 1

−1
d cosϑ

∫ 2π

0
dϕ ~α (ϕ, ϑ, ω) ei(ω

√
ε(ω)µ(ω)r cosϑ+ωt)

kde ~α (ϕ, ϑ, ω) = ~e (ω
√
ε(ω)µ(ω), ϕ, ϑ, ω) je l’ubovol’ná funkcia premenných ϕ, ϑ, ω.
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Grupová rýchlost’ vlnového baĺıka

Všeobecné riešenie Maxwellových rovńıc bez nábojov a prúdov v neohraničenom
prostred́ı s lineárnou, stále rovnakou pamät’ou, vyzerá takmer rovnako, ako ich
riešenie vo vákuu. V obidvoch pŕıpadoch ide o superpoźıciu rovinných monochroma-

tických priečne polarizovaných v́ln, ktoré sa š́ıria rýchlost’ou ω(k)
k (všetky tieto veci

sa nahliadnu rovnakým spôsobom ako v pŕıpade vákua a toto je vhodná chv́ıl’a na
zopakovanie si pŕıslušných argumentov, k čomu je čitatel’dost’ nástojčivo vyzývaný).
Jediný rozdiel je vo funkcii ω(k). Pre vákuum je táto funkcia lineárna ω(k) = ck

a rýchlost’ všetkých rovinných monochromatických v́ln je teda rovnaká (rovná c).
Pre vlny v disperznom prostred́ı to už pravda nie je. Každá monochromatická vlna

sa š́ıri svojou vlastnou rýchlost’ou ω(k)
k , ktorej hovoŕıme fázová rýchlost’.

Stretnút’ skutočnú monochromatickú rovinnú vlnu, ktorá vyzerá rovnako v ce-
lom vesmı́re, je prakticky nemožné. To, čo sa v svete okolo nás naozaj vyskytuje,

sú rôzne superpoźıcie monochromatických v́ln. Superpoźıciám, ktoré sú nezanedba-
tel’ne vel’ké len v určitej ohraničenej oblasti priestoru (a to aj v premenných ~r, t aj v

premenných ~k, ω) hovoŕıme vlnové baĺıky. Predstavme si teraz vlnový baĺık zložený

iba z monochromatických v́ln z malého okolia nejakého ~k0. Všetky tieto mono-

chromatické vlny majú fázovú rýchlost’ bĺızku k ω(k0)
k0

. Aká bude rýchlost’ celého
vlnového baĺıka?

Ak by sa nejednalo o vlnový baĺık, ale povedzme o kŕdel’ huśı, z ktorých každá
let́ı rýchlost’ou približne ~v0, potom aj celý kŕdel’ let́ı približne takouto rýchlost’ou.

V pŕıpade v́ln je to inak. Vlnový baĺık sa môže pohybovat’ rýchlost’ou, ktorá je

rádovo iná ako rýchlost’ jednotlivých monochromatických v́ln. Tento pozoruhodný
a na prvý pohl’ad prekvapujúci jav sa teraz pokúsime aspoň do istej miery pochopit’.
Sústred́ıme sa pritom na jednorozmerný pŕıpad, ktorý je formálne jednoduchš́ı a
vidno na ňom všetko podstatné. Uvažujme teda jednorozmerný vlnový baĺık

u(x, t) =

∫ ∞
−∞

α(k) ei(kx+ω(k)t) + β(k) ei(kx−ω(k)t) dk

α(k) 6= 0 len na malom intervale 〈k0 − δk, k0 + δk〉
β(k) = 0 všade

Rozviňme teraz funkciu ω(k) do Taylorovho radu v okoĺı k0 a predpokladajme, že
δk je natol’ko malé, aby boli všetky členy vyššie ako lineárne zanedbatel’né

ω(k) = ω(k0) + ω′(k0)(k − k0) + . . .

kde ω′(k) = dω(k)
dk . Dosadeńım a zanedbańım zanedbatel’ného dostaneme

u(x, t) =

∫ k0+δk

k0−δk
α(k) ei(kx+ω(k0)t+ω′(k0)(k−k0)t) dk

= ei(ω(k0)−ω′(k0)k0)t

∫ k0+δk

k0−δk
α(k) ei(kx+ω′(k0)k t) dk

čo je (nejakým periodickým fázovým faktorom závislým len od času vynásobená)

superpoźıcia monochromatických v́ln, ktoré sa všetky š́ıria rovnakou rýchlost’ou
ω′(k0)k

k = ω′(k0). Táto spoločná rýchlost’ je zároveň rýchlost’ou celého baĺıka (prečo?)
a hovoŕıme jej grupová rýchlost’ vlnového baĺıka.
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Pŕıklady

1. Precvičenie novej metódy na starom pŕıklade.
Nájdite riešenie pre Maxwellove rovnice vo vákuu bez nábojov a prúdov metódou
Fourierovej transformácie rovńıc.

2. Elementárna ilustrácia grupovej rýchlosti.
Notoricky známy pŕıklad, na ktorom je dobre vidiet’ rozdiel medzi grupovou a
fázovou rýchlost’ou, aj ked’ z neho vôbec nie je jasná univerzálnost’ týchto pojmov.

Uvažujme superpoźıciu dvoch v́ln u(x, t) = cos(kx+ωt)+cos((k+∆k)x+(ω+∆ω)t),
pričom ∆k � k a ω

k 6=
ω+∆ω
k+∆k . Pomocou súčtových vzorcov pre kośınus ukážte, že

superpoźıcia sa pohybuje grupovou rýchlost’ou ∆ω
∆k . (Odporúčanie: výsledok si na-

kreslite, najlepšie na poč́ıtači ako animáciu.)

3. Gaussovský baĺık.



4

ELEKTROMAGNETICKÉ ŽIARENIE

Ciel’om tejto kapitoly je preskúmat’ jeden dôležitý fyzikálny jav, ktorý možno
v stručnosti sformulovat’ nasledovne: Elektrický náboj pohybujúci sa so zrýchleńım
nevyhnutne stráca čast’ svojej energie. Deje sa to tak, že čast’ kinetickej energie
náboja sa premeńı na energiu elmag pol’a a táto energia ”od́ıde do nekonečna”.
Kl’́učovým slovným spojeńım predchádzajúcej vety nie je spojenie ”premeńı sa na
energiu elmag pol’a”(to ešte nie je žiarenie), ale spojenie ”od́ıde do nekonečna”(až
tomuto hovoŕıme žiarenie). Pod elektromagnetickým žiareńım totiž rozumieme práve
tú čast’ elemag poĺı, ktorá sa úplne ”oslobod́ı”od náboja a putuje si priestorom
nezávisle od náboja. Zmyslom tejto kapitoly je vysvetlit’ si, ako je existencia tejto
časti elmag poĺı zašifrovaná v Maxwellových rovniciach a ako ju odtial’ dešifrovat’.

V pŕıpade vákua bez nábojov a prúdov bolo výhodné pracovat’ v Coulombovej
kalibrácii, v ktorej sa l’ahko nahliadla transverzálnost’ (priečna polarizácia) elmag

v́ln. V pŕıpade nenulových hustôt náboja a/alebo prúdu je výhodneǰsia Lorenzova
kalibrácia, v ktorej majú rovnice pre skalárny aj vektorový potenciál tvar vlnových
rovńıc s nenulovou pravou stranou

4ϕ(~r, t)− 1

c2
∂2

∂t2
ϕ(~r, t) = − 1

ε0
ρ(~r, t)

4 ~A(~r, t)− 1

c2
∂2

∂t2
~A(~r, t) = −µ0

~j(~r, t)

Tieto rovnice sa teraz nauč́ıme riešit’ metódou Greenovej funkcie. Podobne ako v
pŕıpade Poissonovej rovnice, aj v pŕıpade vlnovej rovnice bude Greenova funkcia
definovaná ako riešenie rovnice s δ-funkciou na pravej strane – akurát, že tentoraz
to nebude len δ(~r−~r ′), ale δ(~r−~r ′) δ(t− t′). Základná idea metódy spoč́ıva v tom,
že l’ubovol’nú pravú stranu vieme vel’mi l’ahko zaṕısat’ ako superpoźıciu δ-funkcíı a
riešenie lineárnej diferenciálnej rovnice vieme potom podl’a prinćıpu superpoźıcie
okamžite naṕısat’ ako rovnakú superpoźıciu Greenových funkcíı. (Predchádzajúca
veta by mala byt’ po tom, čo sme sa o Greenovej funkcii naučili pri Poissonovej
rovnici, úplne zrozumitel’ná. Ak nebola, treba si ju poriadne premysliet’ a pochopit’.)

Poznámka. (O zdrojoch v akustike.) Rovnica pre skalárny elmag potenciál je
prakticky zhodná s rovnicou pre akustický potenciál (rozdiel je len v pŕıtomnosti
alebo nepŕıtomnosti faktora −1/ε0). Mnohé závery tejto kapitoly sa preto budú
týkat’ aj akustiky. Funkcia ρ(~r, t) súviśı v akustike so zvonku pridanou hustotou
hmotnosti, jej fyzikálna interpretácia a praktická realizácia sú teda komplikovaneǰsie
ako v pŕıpade elektrodynamiky.
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1. Jednoznačnost’ riešenia vlnovej rovnice

Ako sme už spomı́nali v kapitole o elektrostatike, pri akejkol’vek diferenciálnej
rovnici je užitočné vyjasnit’ si hned’ na začiatku otázky existencie a jednoznačnosti
riešenia. Podobne ako v pŕıpade Poissonovej rovnice, aj pri vlnovej rovnici existenciu
riešenia dokazovat’ nebudeme (v konkrétnych pŕıpadoch vyplynie z toho, že riešenie
explicitne nájdeme), ale vetu o jednoznačnosti riešenia sformulujeme a dokážeme
(bez tejto vety by sme nemohli použ́ıvat’ uhádnutie ako korektnú metódu riešenia).
Hlavný rozdiel oproti Poissonovej rovnici je, že v pŕıpade vlnovej rovnice máme
okrem okrajových podmienok (Dirichletových resp. Neumannových)

ϕ(~r, t)|S = f(~r, t) resp.
∂

∂n
ϕ(~r, t)

∣∣∣∣
S

= g(~r, t)

v typickej situácii zadané aj počiatočné podmienky (Cauchyho)

ϕ(~r, 0) = ϕ0(~r) a ϕ̇(~r, 0) = υ0(~r)

Veta o jednoznačnosti riešenia pre skalárnu vlnovú rovnicu

Dirichletova resp. Neumannova okrajová úloha (s Cauchyho po-
čiatočnými podmienkami) pre skalárnu vlnovú rovnicu v oblasti
ohraničenej uzavretou plochou S má najviac jedno riešenie, t.j.
ak riešenie existuje, tak je jednoznačné.

Dôkaz je podobne ako v pŕıpade Poissonovej rovnice založený na Greenovej identite∫
V

(ϕ4ψ +∇ϕ · ∇ψ)dV =

∮
S

ϕ∂nψdS

(pripomeňme, že ide o priamy dôsledok Gaussovej vety pre vektorové pole ϕ∇ψ).

Nech ϕ1 a ϕ2 sú dve riešenia uvažovanej úlohy. Ich rozdiel φ = ϕ1−ϕ2 sṕlňa v

oblasti ohraničenej plochou S rovnicu 4φ− 1
v2

∂2

∂t2φ = 0 a na hranici S má φ resp.

∂nφ nulovú hodnotu. Ak v Greenovej identite polož́ıme ϕ = ∂
∂tφ a ψ = φ dostaneme∫

V

(
∂φ

∂t
4φ+∇∂φ

∂t
· ∇φ

)
dV = 0

kde sme využili nulové okrajové podmienky (φ(~r, t)|S = 0⇒ ∂
∂tφ(~r, t)|S = 0). Ďalej

využijeme vlnovú rovnicu∫
V

(
1

v2

∂φ

∂t

∂2φ

∂t2
+∇∂φ

∂t
· ∇φ

)
dV = 0

a toto preṕı̌seme do tvaru

d

dt

1

2

∫
V

(
1

v2

(
∂φ

∂t

)2

+ (∇φ)
2

)
dV = 0

Hodnota tohto integrálu sa teda v čase nemeńı a ked’že na počiatku bola nulová, je
nulová navždy. To ale znamená, že nulová je aj podintegrálna funkcia (vzhl’adom
na to, že je všade nezáporná). A to d’alej znamená, že

∂φ

∂t
= 0 ∧ ∇φ = 0

Z nulovosti gradientu vyplýva, že φ ≡ const, a z nulovosti časovej derivácie vyplýva,
že táto konštanta je taká ako na počiatku t.j. nulová. Takže φ ≡ 0 a teda ϕ1 ≡ ϕ2.
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2. Greenova funkcia vlnovej rovnice

Vlnovú rovnicu s l’ubovol’nou pravou stranou budeme riešit’ metódou Greenovej
funkcie, pričom Greenova funkcia je definovaná ako riešenie rovnice s δ-funkciou (vo
všetkých premenných) na pravej strane. Takáto pravá strana zodpovedá bodovému
náboju, ktorý sa objav́ı v mieste ~r ′ v jedinom momente t′.

4G(~r, ~r ′, t, t′)− 1

c2
∂2

∂t2
G(~r, ~r ′, t, t′) = δ(~r − ~r ′)δ(t− t′)

Okrem splnenia rovnice požadujeme splnenie nulovej okrajovej podmienky (Dirich-
letovej alebo Neumannovej) na hranici a namiesto počiatočnej podmienky je v kraji
zvykom požadovat’ nulovost’ funkcie pred objaveńım sa zdroja (aby Greenova fun-
kcia opisovala len polia, ktoré vznikli v dôsledku objavenia sa bodového zdroja na
pravej strane rovnice)

lim
r→∞

G(~r, ~r ′, t, t′) = 0 G(~r, ~r ′, t, t′) = 0 pre t < t′

Takejto Greenovej funkcii sa hovoŕı retardovaná, čiže opozdená.

Počiatočné podmienky pre retardovanú Greenovu funkciu si zaslúžia komentár.
Sú śıce dobre fyzikálne motivované, ale nie sú to štandardné Cauchyho počiatočné
podmienky, aké sa vyskytujú napŕıklad v predpokladoch vety o jednoznačnosti.
Nebude to spôsobovat’ problémy napŕıklad vtedy, ak budeme chciet’ nájst’ Greenovu
funkciu čiatočným uhádnut́ım? Nebude. Po prvé, Greenovu funkciu nájdeme tento-
raz bez hádania, a po druhé, z podmienky pre retardovanú Greenovu funkciu sa
dajú relat́ıvne l’ahko odvodit’ Cauchyho počiatočné podmienky pre túto funkciu.1

Ak máme riešit’ vlnovú rovnicu s pravou stranou − 1
ε0
ρ(~r, t), potom túto pravú

stranu môžeme naṕısat’ ako− 1
ε0

∫
ρ(~r ′, t′)δ(~r−~r ′)δ(t−t′) d3r′ dt′, čo môžeme chápat’

ako superpoźıciu δ-funkcíı. Prinćıp superpoźıcie nám hned’ dá partikulárne riešenie
tejto rovnice ako rovnakú superpoźıciu retardovaných Greenových funkcíı

ϕ(~r, t) = − 1
ε0

∫
ρ(~r ′, t′)G(~r, ~r ′, t, t′) d3r′ dt′

Avšak podobne ako v pŕıpade Poissonovej rovnice, aj tu vieme dostat’ z Greeno-
vej funkcie nielen partikulárne, ale kompletné všeobecné riešenie. Inými slovami,
aj pre vlnovú rovnicu plat́ı magic rule, podobné tomu, ktoré plat́ı pre Poissonovu
rovnicu. Z časopriestorových dôvodov sa mu však v tomto texte nebudeme veno-
vat’ a vyslovene zvedavého čitatel’a odkážeme napŕıklad na vel’mi peknú knihu G.
Bartona Elements of Green’s Functions and Propagation – Potentials, Diffusion
and Waves. Na porozumenie javu elektromagnetického žiarenia – čo je náš hlavný
ciel’ – nám totiž bude stačit’ partikulárne riešenie v jednom konkrétnom pŕıpade,
a to v pŕıpade neohraničeného priestoru. Naš́ım najbližš́ım ciel’om je preto nájst’

retardovanú Greenovu funkciu pre tento pŕıpad.

1Ak integrujeme diferenciálnu rovnicu pre Greenovu funkciu podl’a času t od t′ − ε do t′ + ε,

dostaneme
∫ t′+ε
t′−ε dt 4G(~r, ~r ′, t, t′)− 1

c2
∂
∂t
G(~r, ~r ′, t′ + ε, t′) = δ(~r− ~r ′), kde sme v druhom člene

využili počiatočnú podmienku pre retardovanú Greenovu funkciu, z ktorej jednoducho vyplýva
∂
∂t
G(~r, ~r ′, t′−ε, t′) = 0. Pre ε→ 0 ide prvý integrál do nuly, č́ım dostávame Cauchyho podmienku

v t = t′ pre prvú deriváciu ∂
∂t
G(~r, ~r ′, t′, t′) = −c2δ(~r−~r ′). Ďaľsou takouto integráciou dostaneme

Cauchyho podmienku pre samotnú funkciu G(~r, ~r ′, t′, t′) = 0.
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Retardovaná Greenova funkcia pre neohraničený priestor

Uvažujme neohraničený priestor, v ktorom nie je translačná symetria vlnovej
rovnice pokazená existenciou hranice. Z toho, že pravá strana rovnice pre Greenovu
funkciu záviśı len od rozdielov ~r − ~r ′ a t − t′ je intuit́ıvne jasné, že aj Greenova
funkcia by mala závisiet’ len od týchto rozdielov (ak poznáme riešenie pre bodový
zdroj, ktorý sa objavil tu a teraz, preneseńım tohto riešenia v priestore a v čase
dostaneme riešenie pre bodový zdroj, ktorý sa objavil hocikedy a hocikde). Ak je

teda funkcia g(~R, τ) riešeńım rovnice

4g(~R, τ)− 1

c2
∂2

∂τ2
g(~R, τ) = δ(~R)δ(τ)

s podmienkami limR→∞ g(~R, τ) = 0 a g(~R, τ) = 0 pre τ < 0, potom retardovanú
Greenovu funkciu vlnovej rovnice dostaneme ako G(~r, ~r ′, t, t′) = g(~r − ~r ′, t− t′) .

Rovnicu pre g(~R, τ) riešime technikou, ktorú sme sa naučili v časti o vlnách v
disperznom prostred́ı, čiže Fourierovou transformáciou

g(~R, τ)→ g̃(~k, ω) =
1

(2π)4

∫ ∞
−∞

g(~R, τ) e−i(
~k·~R+ωτ)d3Rdτ

Táto transformácia prevedie diferenciálnu rovnicu na rovnicu algebraickú(
−k2 +

ω2

c2

)
g̃(~k, ω) =

1

(2π)4

ktorej riešenie je triviálne (pre k2c2 − ω2 6= 0)

g̃(~k, ω) =
c2

(2π)4

1

ω2 − k2c2

Netriviálna je integrácia pri spätnej Fourierovej transformácii

g(~R, τ) =

∫ ∞
−∞

g̃(~k, ω) ei(
~k·~R+ωτ)d3k dω =

c2

(2π)4

∫ ∞
−∞

1

ω2 − k2c2
ei(
~k·~R+ωτ)d3k dω

Integrácia cez ω sa najjednoduchšie rob́ı trikom, ktorým sa integrál prevedie na
integrál v komplexnej rovine a ten sa potom vel’mi jednoducho vypoč́ıta pomocou
reziduovej vety. Ale ked’že tento trik predbieha prednášku z matematiky, uvedieme

len výsledok2 . Pre τ < 0 máme z ”počiatočnej podmienky”g(~R, τ) = 0 a pre τ ≥ 0

g(~R, τ) = − c

(2π)3

∫ ∞
−∞

sin kcτ

k
ei
~k·~Rd3k

2Pre tých, ktoŕı integrovanie v komplexnej rovine a reziduovú vetu poznajú, stručne naznačme
postup. Integrál po reálnej osi (náš integrál) doplńıme nekonečne vel’kým oblúkom v hornej alebo
dolnej polrovine tak, aby sme dostali integrál po uzavretej krivke v komplexnej rovine. Ak doplńıme

horný oblúk v pŕıpade kladného τ , respekt́ıve dolný oblúk v pŕıpade záporného τ , potom integrál
po týchto oblúkoch bude nulový a v takom pŕıpade sa náš pôvodný integrál po reálnej osi rovná

integrálu po pŕıslušnej uzavretej krivke. Póly podintegrálnej funkcie však ležia na reálnej osi
a preto na výpočet integrálu nemôžeme priamo použit’ reziduovú vetu. Súčast’ou triku je preto
mierna deformácia krivky tak, aby sme póly obǐsli po malých oblúčikoch ležiacich v dolnej polrovine
(prečo v dolnej, uvid́ıme hned’). Teraz môžeme použit’ reziduovú vetu, ktorá nám dá pre záporné
τ automaticky nulu (nijaké póly v oblasti ohraničenej krivkou v dolnej polrovine). Presne takýto

výsledok sme pre záporné τ potrebovali (a preto sme malé oblúčiky umiestnili do dolnej polroviny).
Teraz už stač́ı použit’ reziduovú vetu aj pre kladné τ . Póly sú dva ω = ±kc, reziduá v nich sú

± 1
2kc

ei(
~k·~R±kcτ) a 2πi-násobok súčtu rezidúı je teda − 2π

kc
ei
~k·~R sin kcτ .
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Pre d’aľsie integrácie je výhodné prejst’ do sférických súradńıc, kde je integrál cez
jeden uhol triviálny, cez druhý uhol jednoduchý a integrál cez radiálnu premennú sa
ukáže byt’ jedným zo známych vyjadreńı δ-funkcie. V sférických súradniciach máme

g(~R, τ) = − c

(2π)3

∫ ∞
0

k2dk

∫ 1

−1

d cos θ

∫ 2π

0

dφ
sin kcτ

k
eikR cos θ

= − c

(2π)2

∫ ∞
0

dk k sin kcτ

∫ 1

−1

d cos θ eikR cos θ

= − c

(2π)2

∫ ∞
0

dk k sin kcτ
eikR − e−ikR

ikR

Teraz ešte vyjadŕıme śınus cez imaginárne exponenty sin kcτ = 1
2i (e

ikcτ − e−ikcτ )
a tým prevedieme integrál na známy tvar reprezentujúci Diracovu δ-funkciu

g(~R, τ) =
c

(2π)2

1

2R

∫ ∞
0

dk
(
eik(cτ+R) + e−ik(cτ+R) − eik(cτ−R) − e−ik(cτ−R)

)
=

c

(2π)2

1

2R

∫ ∞
−∞

dk
(
eik(cτ+R) − eik(cτ−R)

)
=

c

4πR
(δ(cτ +R)− δ(cτ −R))

Nakoniec si už len uvedomı́me, že ak τ > 0 alebo R > 0, potom δ(cτ + R) = 0,
takže pre takéto hodnoty argumentov dostávame

g(~R, τ) = − c

4πR
δ(cτ −R)

A ak ešte využijeme, že pre kladnú konštantu c plat́ı δ(cx) = 1
c δ(x), tak môžeme

výsledok zaṕısat’ ako

g(~R, τ) = − 1

4πR
δ

(
τ − R

c

)
Tým sme našli vyjadrenie Greenovej funkcie všade okrem bodu τ = 0 ∧ R = 0,
ktorý by ešte potreboval jemneǰsiu diskusiu. Tej sa však vyhneme, pretože poznat’

Greenovu funkciu v tomto bode nebudeme v d’aľsom potrebovat’.

Poznámka. Nájdená Greenova funkcia má tvar Coulombovského potenciálu,
ktorý sa š́ıri od zdroja rýchlost’ou svetla a je nenulový práve len tam, kam stihne
dorazit’ svetlo za čas τ . Na prvý pohl’ad by sa mohlo zdat’, že ide o trojrozmernú
analógiu kruhov na vode, čo sú vlny na dvojrozmernej hladine. Ale tak to nie je.
Pri tejto pŕıležitosti je asi vhodné explicitne zdôraznit’, že zatial’ čo riešenia vlnovej
rovnice s nulovou pravou stranou v rôznych dimenziách sa na seba vel’mi podobajú,
Greenove funkcie sú pre rôzne dimenzie výrazne rôzne. Greenova funkcia pre 2D a
1D sa poč́ıta rovnako ako v 3D, ale pri spätnej Fourierovej transformácii dostávame
iné priestorové integrály. Vo všetkých dimenziách je retardovaná Greenova funkcia
nulová všade tam, kam ešte svetlo nestihlo dorazit’. Ale za svetelným frontom (to je
tá oblast’, kam svetlo práve stihlo dorazit’) je to v rôznych dimenziách rôzne. V 3D
je to nula, v 2D funkcia rýchlo klesajúca od svetelného frontu smerom ku stredu (to
sú, zhruba povedané, tie kruhy na vode) a v 1D je to konštanta. Kto chce vediet’

viac, nech si pozrie napŕıklad už spomı́nanú Bartonovu knihu.
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3. Elektromagnetické žiarenie bodového náboja

Maxwellove rovnice pre elmag potenciály vo vákuu majú v Lorenzovej kalibrácii
tvar vlnových rovńıc s nenulovou pravou stranou

4ϕ(~r, t)− 1

c2
∂2

∂t2
ϕ(~r, t) = − 1

ε0
ρ(~r, t)

4 ~A(~r, t)− 1

c2
∂2

∂t2
~A(~r, t) = −µ0

~j(~r, t)

V d’aľsom nás bude zauj́ımat’ riešenie týchto rovńıc v neohraničenom priestore,
pretože práve v tomto pŕıpade vidno celý jav elektromagnetického žiarenia najlepšie.

Akonáhle poznáme Greenovu funkciu, vieme riešit’ danú rovnicu s l’ubovol’nou
pravou stranou. Z lineárnosti vlnovej rovnice vyplýva, že všeobecné riešenie rovńıc
pre elmag potenciály v Lorenzovej kalibrácii sa dá naṕısat’ v tvare

ϕ(~r, t) = − 1

ε0

∫
g(~r − ~r ′, t− t′) ρ(~r ′, t′)d3r′ dt′

~A(~r, t) = −µ0

∫
g(~r − ~r ′, t− t′)~j(~r ′, t′)d3r′ dt′

Poč́ıtanie elmag potenciálov pre dané rozloženie náboja a prúdu v priestore a v čase
sme teda previedli na poč́ıtanie pŕıslušných integrálov a tie môžeme teraz poč́ıtat’ vo
fyzikálne zauj́ımavých pŕıpadoch. Mimoriadne dôležitým pŕıpadom je pritom pŕıpad
hustôt náboja a prúdu zodpovedajúcich pohybujúcemu sa bodovému náboju. Práve
tento pŕıpad teraz pomerne podrobne preskúmame.

Predstavme si pohybujúci sa bodový náboj e. Pohyb je oṕısaný závislost’ou
polohového vektora od času. Ak označ́ıme tento polohový vektor gréckym ṕısmenom
kśı (malé aj vel’ké r už použ́ıvame na označenie súradńıc), potom je pohyb náboja

daný funciou ~ξ(t). Ako vyzerá pŕıslušná hustota náboja? To predsa vieme – hustota
bodového náboja je daná δ-funkciou, čiže

ρ(~r, t) = e δ(~r − ~ξ(t))
A ako vyzerá hustota prúdu pohybujúceho sa bodového náboja? Ako súčin náboja
a rýchlosti, čiže

~j(~r, t) = e ~̇ξ(t) δ(~r − ~ξ(t))
Elmag potenciály takto sa pohybujúceho náboja sú teda dané integrálmi

ϕ(~r, t) =
e

4πε0

∫
1

|~r − ~r ′|
δ

(
t− t′ − |~r − ~r

′|
c

)
δ(~r ′ − ~ξ(t′)) d3r′ dt′

~A(~r, t) =
eµ0

4π

∫
1

|~r − ~r ′|
δ

(
t− t′ − |~r − ~r

′|
c

)
~̇ξ(t′) δ(~r ′ − ~ξ(t′)) d3r′ dt′

Integrácia cez d3r′ je triviálna a vedie na

ϕ(~r, t) =
e

4πε0

∫
1

|~r − ~ξ(t′)|
δ

(
t− t′ − |~r −

~ξ(t′)|
c

)
dt′

~A(~r, t) =
eµ0

4π

∫
1

|~r − ~ξ(t′)|
δ

(
t− t′ − |~r −

~ξ(t′)|
c

)
~̇ξ(t′) dt′
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Posledná integrácia obsahuje δ-funkciu, ktorej argumentom je iná funkcia, konkrétne

g(t′) = t− t′ − |~r−~ξ(t
′)|

c

Ak chceme vypoč́ıtat’ pŕıslušný integrál, potrebujeme poznat’ nulové body tejto
funkcie a jej derivácie v týchto nulových bodoch. To prvé sa nám nepodaŕı, rovnicu

g(t′) = 0 nedokážeme vyriešit’ pre všeobecne zadané ~ξ(t′). To druhé je jednoduché

dg(t′)

dt′
= −1− 1

c

~r − ~ξ(t′)
|~r − ~ξ(t′)|

· (−~̇ξ(t′)) = −1 +
~n(t′) · ~̇ξ(t′)

c

kde jednotkový vektor ~n(t′) je definovaný vzt’ahom ~n(t′) = ~r−~ξ(t′)
|~r−~ξ(t′)|

.

Teraz pŕıde kl’́učový moment celého výpočtu. Ked’že náboje sa hýbu podsvetelnými

rýchlost’ami, máme |~̇ξ(t′)| < c, čiže ~n(t′)·~̇ξ(t′)
c < 1 a teda ġ(t′) < 0. To znamená,

že funkcia g(t′) je všade klesajúca. Ak je navyše pohyb náboja obmedzený len na
nejakú konečnú oblast’ priestoru, potom g(∓∞) = ±∞. Funkcia g teda zač́ına v
kladných č́ıslach, konč́ı v záporných a celý čas klesá. Taká funkcia, ked’že je spojitá,
má pre každú dvojicu ~r, t práve jeden nulový bod. Nevieme, kde je, ale vieme, že je
práve jeden. A táto informácia bude dostatočná na vyvodenie zásadných fyzikálnych
dôsledkov.

Označme čas, v ktorom funkcia g(t′) nadobúda nulovú hodnotu, symbolom tret.
Tento čas, ktorému hovoŕıme retardovaný (oneskorený), nepoznáme – vieme len, že
je jednoznačnou funkciou parametrov ~r, t. Pomocou tohto času však môžeme l’ahko
zaṕısat’ δ(g(t′)) ako 1

|ġ(tret)|δ(t
′ − tret), čiže

δ

(
t− t′ − |~r −

~ξ(t′)|
c

)
=

1

1− ~n(tret)·~̇ξ(tret)
c

δ(t′ − tret)

A teraz už l’ahko môžeme naṕısat’ výrazy pre elmag potenciály

ϕ(~r, t) =
e

4πε0

1

|~r − ~ξ(tret)|
1

1− ~n(tret)·~̇ξ(tret)
c

~A(~r, t) =
eµ0

4π

1

|~r − ~ξ(tret)|
1

1− ~n(tret)·~̇ξ(tret)
c

~̇ξ(tret)

Týmto potenciálom sa hovoŕı Liénard-Wiechertove potenciály. Ak pre lepšiu čitatel’nost’

výsledkov ešte zavedieme označenie

~R(tret) = ~r − ~ξ(tret)

~v(tret) = ~̇ξ(tret)

potom Liénard-Wiechertove potenciály nadobudnú prekvapujúco jednoduchý tvar

ϕ(~r, t) =
e

4πε0

1

R− ~R·~v
c

~A(~r, t) =
eµ0

4π

~v

R− ~R·~v
c

kde ~R a ~v sú chápané v retardovanom čase tret.
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Na výpočet elmag poĺı ( ~E = −∂ ~A∂t −gradϕ a ~B = rot ~A) potrebujeme vypoč́ıtat’

derivácie potenciálov podl’a xi a t. Potenciály závisia od retardovaného času tret,
ktorý je (implicitne zadanou) funkciou premenných ~r a t, takže ide o derivácie
zloženej funkcie, pričom niektoré derivácie muśıme poč́ıtat’ ako derivácie implicitne
zadanej funkcie. Výpočet je dlhý a nudný, presunieme ho do pŕıkladov, tu uvedieme
len výsledok

~E(~r, t) =
e

4πε0

 ~R×
[(
~R− R~v

c

)
× ~a
]

c2
(
R− ~R·~v

c

)3 +

(
1− v2

c2

)(
~R− R~v

c

)
(
R− ~R·~v

c

)3


~B(~r, t) =

1

c
~n× ~E(~r, t)

kde ~n =
~R
R a ~a je zrýchlenie pohybujúceho sa náboja (brané v retardovanom čase).

Najzauj́ımaveǰsie na týchto poliach je, ako sa chovajú pri R→∞, kde dominujú
najpomaľsie klesajúce členy úmerné 1/R. Týmto členom sa hovoŕı radiačné polia

~Erad(~r, t) =
e

4πε0

1

R

~n×
[(
~n− ~v

c

)
× ~a
]

c2
(
1− ~n·~v

c

)3
~Brad(~r, t) =

1

c
~n× ~Erad(~r, t)

Ako vyzerá tok energie d’aleko od náboja? Je daný Poyntingovým vektorom

~Srad = ~Erad × ~Hrad =
1

µ0c
~Erad ×

(
~n× ~Erad

)
a ked’že ~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) a d’alej ~n · ~Erad = ~n · (~n× . . . ) = 0

~Srad =
1

µ0c
E2

rad ~n

Kol’ko energie pretečie za jednu sekundu plochou d~Σ prislúchajúcou na sfére s
vel’kým polomerom R priestorovému uhlu dΩ? Ak je pohyb náboja obmedzený
na nejakú konečnú oblast’ priestoru a ak nás zauj́ıma vel’ká sféra d’aleko od tejto
oblasti, potom môžeme celú túto oblast’ považovat’ za umiestnenú v strede sféry, a

vtedy d~Σ = ~nR2dΩ, čiže intenzita vysielania energie do priestorového uhla dΩ je

dI = ~Srad · d~Σ =
1

µ0c

(
e

4πε0

)2
∣∣~n× [(~n− ~v

c

)
× ~a
]∣∣2

c4
(
1− ~n·~v

c

)6 dΩ

Absolútne kl’́učovou vlastnost’ou tohto vzt’ahu je jeho nezávislost’ od polomeru sféry.
Množstvo energie, ktoré pretečie sférou, je rovnaké pre sféry s čoraz väčš́ım polo-
merom. Táto energia teda odteká do nekonečna. Práve tomuto odtekaniu energie
do nekonečna hovoŕıme elektromagnetické žiarenie. Všimnime si, že radiačné polia
sú úmerné zrýchleniu náboja. To znamená, že k vyžarovaniu energie dochádza len v
pŕıpade nábojov pohybujúcich sa s nenulovým zrýchleńım pričom energia vyžiarená
(nenávratne stratená) za jednu sekundu do priestorového uhla dΩ je

dI

dΩ
=

e2

4πε0

1

4πc3

∣∣~n× [(~n− ~v
c

)
× ~a
]∣∣2(

1− ~n·~v
c

)6
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Poznámka. (Čerenkovovo žiarenie)

Poznámka. (Einsteinov faktor)

Poznámka. (Rutherfordov model)
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Jednoduché špeciálne pŕıpady

Žiarenie nerelativistického náboja. Ak sa náboj pohybuje rýchlost’ou ovel’a menšou

ako rýchlost’ svetla, t.j. ak v � c, členy úmerné v
c môžeme zanedbat’ a pre výkon

vyžiarený do priestorového uhla dΩ dostaneme

dI

dΩ
=

e2

4πε0

1

4πc3
|~n× (~n× ~a )|2 =

e2

4πε0

a2

4πc3
sin2 θ

kde θ je uhol mezi zrýchleńım ~a a smerom ~n. Vid́ıme, že uhlové rozloženie žiarenia
nerelativistického náboja je také, že najviac vyžaruje v smere kolmom na svoje
zrýchlenie (čiže oscilujúci náboj v smere kolmom na smer oscilácíı, náboj pohybujúci
sa po kružnici v smere svojej rýchlosti, a to dopredu aj dozadu). Celkový výkon
žiarenia je daný tzv. Larmorovou formulou

I =
e2

4πε0

a2

4πc3

∫ 2π

0

dφ

∫ 1

−1

d cos θ (1− cos2 θ) =
2

3

e2

4πε0

a2

c3

Žiarenie ultrarelativistického náboja. Ak sa náboj pohybuje takmer rýchlost’ou svetla,
t.j. ak v ≈ c, potom rozhodujúca je šiesta mocnina v menovateli, čo je pre ~n v smere
bĺızkom smeru ~v šiesta mocnina vel’mi malého č́ısla. Vid́ıme, že uhlové rozloženie
žiarenia ultrarelativistického náboja je také, že suverénne najviac vyžaruje pred
seba (dopredu v smere rýchlosti). Takto vyzerá typické žiarenie v urýchl’ovačoch
čast́ıc na relativistické energie (tzv. synchrotrónové žiarenie). Č́ım bližšie je rýchlost’

častice k rýchlosti svetla, tým viac energie vyžiari (jednak kvôli šiestej mocnice v
menovateli, ale aj kvôli rastúcemu dostredivému zrýchleniu). Značná čast’ energie
vloženej do urýchl’ovania ultrarelativistickej častice v kruhovom urýchl’ovači sa preto
nevyužije na zvyšovanie jej energie, ale sa vyžiari vo forme elmag energie.

Rozptyl svetla na vol’nom bodovom náboji. Rozptyl svetla je dôležitým fyzikálnym
javom, ktorý spoč́ıva v tom, že rovinná elmag vlna dopadne na nejaký náboj,
ten sa začne v dôsledku Lorentzovej sily pohybovat’ s nejakým zrýchleńım a tým
pádom vyžarovat’ energiu aj do smerov iných, než bol smer pôvodnej dopadajúcej
elmag vlny. Kol’ko energie sa vyžiari do jednotlivých smerov? Ako ilustráciu urob́ıme

výpočet pre rozptyl svetla s vel’kou vlnovou d́lžkou na vol’nom bodovom náboji.
Pohybová rovnica pre hmotný bod s hmotnost’oum a nábojom e je vo všeobecnosti

m~̈r(t) = e ~E(~r, t) + e~v × ~B(~r, t). V elektromagnetickej vlne je B = E/c, takže pre
nerelativistické náboje môžeme magnetickú silu zanedbat’ (je v

c -krát slabšia ako
elektrická sila). Ak sa náboj pohybuje v oblasti, ktorej rozmery sú ovel’a menšie

ako vlnová d́lžka dopadajúcej vlny, potom môžeme elektrické pole považovat’ za

priestorovo konštantné a časovo śınusové resp. kośınusové, čiže m~̈r(t) = e ~E0 cosωt.
Túto rovnicu nemuśıme riešit’, pretože jediné, čo potrebujeme, je zrýchlenie, a to
nám tá rovnica priamo dáva. Dosadeńım do vzt’ahu pre vyžiarený výkon dostaneme

dI

dΩ
=

e2

4πε0

1

4πc3
e2E2

0 cos2 ωt

m2
sin2 θ

a vydeleńım hustotou výkonu dopadajúcej vlny dI = cε0E
2
0 cos2 ω źıskame účinný

prierez pre tzv. Thompsonov rozptyl (vol’ný náboj, dostatočne vel’ká vlnová d́lžka)

dσ

dΩ
=

(
e2

4πε0mc2

)2

sin2 θ
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Pŕıklady

1. Polia prislúchajúce Liénard-Wiechertovým potenciálom. (Nudné, pracné, dôležité.)

Úloha: Vypoč́ıtajte ~E a ~B pre Liénard-Wiechertove potenciály.
Postup:

Ei = − ∂

∂t
Ai − gradi ϕ = − ∂Ai

∂tret

∂tret

∂t
− ∂ϕ

∂xi
− ∂ϕ

∂tret

∂tret

∂xi

Bi = εijk

(
∂Ak
∂xj

− ∂Ak
∂tret

∂tret

∂xj

)
Budeme potrebovat’ deriváciu výrazu z L -W potenciálov (vypoč́ıtajte ju)

d

dtret

1

R− ~R·~v
c

=

~R·~v
R −

v2

c +
~R·~a
c(

R− ~R·~v
c

)2

a derivácie funkcie tret(~r, t) danej implicitne vzt’ahom t−tret(~r, t)− |~r−
~ξ(tret(~r,t))|

c = 0
(vypoč́ıtajte ich)

∂tret

∂t
=

R

R− ~R·~v
c

∂tret

∂xi
= −1

c

Ri

R− ~R·~v
c

Pomocou týchto derivácíı (a s využit́ım ε0µ0 = 1
c2 ) dostaneme

∂ ~A

∂t
=

e

4πε0

1

c2

 R~a(
R− ~R·~v

c

)2 +

~R·~v
R −

v2

c +
~R·~a
c(

R− ~R·~v
c

)3 R~v


gradϕ =

e

4πε0

 ~v
c −

~R
R(

R− ~R·~v
c

)2 −
~R·~v
R −

v2

c +
~R·~a
c(

R− ~R·~v
c

)3

~R

c


rot ~A =

1

c2
rot(ϕ~v) =

1

c2
(ϕ rot~v − ~v × gradϕ)

=
1

c2

 e

4πε0

~a× ~R

c
(
R− ~R·~v

c

)2 − ~v × gradϕ


čo dá výsledok zo strany 100 (vidno po rozṕısańı vektorových súčinov v tom výsledku).
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4. Multipólový rozvoj potenciálov

Táto čast’ nie je preṕısaná do TeXu, nebola odprednášaná a netreba z nej nič
vediet’ na skúšku.


